Sample records for variable amplitude cyclic

  1. Damage accumulation of bovine bone under variable amplitude loads.

    PubMed

    Campbell, Abbey M; Cler, Michelle L; Skurla, Carolyn P; Kuehl, Joseph J

    2016-12-01

    Stress fractures, a painful injury, are caused by excessive fatigue in bone. This study on damage accumulation in bone sought to determine if the Palmgren-Miner rule (PMR), a well-known linear damage accumulation hypothesis, is predictive of fatigue failure in bone. An electromagnetic shaker apparatus was constructed to conduct cyclic and variable amplitude tests on bovine bone specimens. Three distinct damage regimes were observed following fracture. Fractures due to a low cyclic amplitude loading appeared ductile ( 4000 μ ϵ ), brittle due to high cyclic amplitude loading (> 9000 μ ϵ ), and a combination of ductile and brittle from mid-range cyclic amplitude loading (6500 -6750 μ ϵ ). Brittle and ductile fracture mechanisms were isolated and mixed, in a controlled way, into variable amplitude loading tests. PMR predictions of cycles to failure consistently over-predicted fatigue life when mixing isolated fracture mechanisms. However, PMR was not proven ineffective when used with a single damage mechanism.

  2. History-independent cyclic response of nanotwinned metals

    NASA Astrophysics Data System (ADS)

    Pan, Qingsong; Zhou, Haofei; Lu, Qiuhong; Gao, Huajian; Lu, Lei

    2017-11-01

    Nearly 90 per cent of service failures of metallic components and structures are caused by fatigue at cyclic stress amplitudes much lower than the tensile strength of the materials involved. Metals typically suffer from large amounts of cumulative, irreversible damage to microstructure during cyclic deformation, leading to cyclic responses that are unstable (hardening or softening) and history-dependent. Existing rules for fatigue life prediction, such as the linear cumulative damage rule, cannot account for the effect of loading history, and engineering components are often loaded by complex cyclic stresses with variable amplitudes, mean values and frequencies, such as aircraft wings in turbulent air. It is therefore usually extremely challenging to predict cyclic behaviour and fatigue life under a realistic load spectrum. Here, through both atomistic simulations and variable-strain-amplitude cyclic loading experiments at stress amplitudes lower than the tensile strength of the metal, we report a history-independent and stable cyclic response in bulk copper samples that contain highly oriented nanoscale twins. We demonstrate that this unusual cyclic behaviour is governed by a type of correlated ‘necklace’ dislocation consisting of multiple short component dislocations in adjacent twins, connected like the links of a necklace. Such dislocations are formed in the highly oriented nanotwinned structure under cyclic loading and help to maintain the stability of twin boundaries and the reversible damage, provided that the nanotwins are tilted within about 15 degrees of the loading axis. This cyclic deformation mechanism is distinct from the conventional strain localizing mechanisms associated with irreversible microstructural damage in single-crystal, coarse-grained, ultrafine-grained and nanograined metals.

  3. Some Recent Developments in the Endochronic Theory with Application to Cyclic Histories

    NASA Technical Reports Server (NTRS)

    Valanis, K. C.; Lee, C. F.

    1983-01-01

    Constitutive equations with only two easily determined material constants predict the stress (strain) response of normalized mild steel to a variety of general strain (stress) histories, without a need for special unloading-reloading rules. The equations are derived from the endochronic theory of plasticity of isotropic materials with an intrinsic time scale defined in the plastic strain space. Agreement between theoretical predictions and experiments are are excellent quantitatively in cases of various uniaxial constant amplitude histories, variable uniaxial strain amplitude histories and cyclic relaxation. The cyclic ratcheting phenomenon is predicted by the present theory.

  4. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  5. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  6. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  7. Study the Cyclic Plasticity Behavior of 508 LAS under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Barua, Bipul; Soppet, William K.

    This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in airmore » or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.« less

  8. Performance drifts in two-finger cyclical force production tasks performed by one and two actors.

    PubMed

    Hasanbarani, Fariba; Reschechtko, Sasha; Latash, Mark L

    2018-03-01

    We explored changes in the cyclical two-finger force performance task caused by turning visual feedback off performed either by the index and middle fingers of the dominant hand or by two index fingers of two persons. Based on an earlier study, we expected drifts in finger force amplitude and midpoint without a drift in relative phase. The subjects performed two rhythmical tasks at 1 Hz while paced by an auditory metronome. One of the tasks required cyclical changes in total force magnitude without changes in the sharing of the force between the two fingers. The other task required cyclical changes in the force sharing without changing total force magnitude. Subjects were provided with visual feedback, which showed total force magnitude and force sharing via cursor motion along the vertical and horizontal axes, respectively. Further, visual feedback was turned off, first on the variable that was not required to change and then on both variables. Turning visual feedback off led to a mean force drift toward lower magnitudes while force amplitude increased. There was a consistent drift in the relative phase in the one-hand task with the index finger leading the middle finger. No consistent relative phase drift was seen in the two-person tasks. The shape of the force cycle changed without visual feedback reflected in the lower similarity to a perfect cosine shape and in the higher time spent at lower force magnitudes. The data confirm findings of earlier studies regarding force amplitude and midpoint changes, but falsify predictions of an earlier proposed model with respect to the relative phase changes. We discuss factors that could contribute to the observed relative phase drift in the one-hand tasks including the leader-follower pattern generalized for two-effector tasks performed by one person.

  9. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  10. A simple approach for the modeling of an ODS steel mechanical behavior in pilgering conditions

    NASA Astrophysics Data System (ADS)

    Vanegas-Márquez, E.; Mocellin, K.; Toualbi, L.; de Carlan, Y.; Logé, R. E.

    2012-01-01

    The optimization of the forming of ODS tubes is linked to the choice of an appropriated constitutive model for modeling the metal forming process. In the framework of a unified plastic constitutive theory, the strain-controlled cyclic characteristics of a ferritic ODS steel were analyzed and modeled with two different tests. The first test is a classical tension-compression test, and leads to cyclic softening at low to intermediate strain amplitudes. The second test consists in alternated uniaxial compressions along two perpendicular axes, and is selected based on the similarities with the loading path induced by the Fe-14Cr-1W-Ti ODS cladding tube pilgering process. This second test exhibits cyclic hardening at all tested strain amplitudes. Since variable strain amplitudes prevail in pilgering conditions, the parameters of the considered constitutive law were identified based on a loading sequence including strain amplitude changes. A proposed semi automated inverse analysis methodology is shown to efficiently provide optimal sets of parameters for the considered loading sequences. When compared to classical approaches, the model involves a reduced number of parameters, while keeping a good ability to capture stress changes induced by strain amplitude changes. Furthermore, the methodology only requires one test, which is an advantage when the amount of available material is limited. As two distinct sets of parameters were identified for the two considered tests, it is recommended to consider the loading path when modeling cold forming of the ODS steel.

  11. A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.

    In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less

  12. A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading

    DOE PAGES

    Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.; ...

    2017-12-05

    In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less

  13. Movement amplitude on the Functional Re-adaptive Exercise Device: deep spinal muscle activity and movement control.

    PubMed

    Winnard, A; Debuse, D; Wilkinson, M; Samson, L; Weber, T; Caplan, Nick

    2017-08-01

    Lumbar multifidus (LM) and transversus abdominis (TrA) show altered motor control, and LM is atrophied, in people with low-back pain (LBP). The Functional Re-adaptive Exercise Device (FRED) involves cyclical lower-limb movement against minimal resistance in an upright posture. It has been shown to recruit LM and TrA automatically, and may have potential as an intervention for non-specific LBP. However, no studies have yet investigated the effects of changes in FRED movement amplitude on the activity of these muscles. This study aimed to assess the effects of different FRED movement amplitudes on LM and TrA muscle thickness and movement variability, to inform an evidence-based exercise prescription. Lumbar multifidus and TrA thickness of eight healthy male volunteers were examined using ultrasound imaging during FRED exercise, normalised to rest at four different movement amplitudes. Movement variability was also measured. Magnitude-based inferences were used to compare each amplitude. Exercise at all amplitudes recruited LM and TrA more than rest, with thickness increases of approximately 5 and 1 mm, respectively. Larger amplitudes also caused increased TrA thickness, LM and TrA muscle thickness variability and movement variability. The data suggests that all amplitudes are useful for recruiting LM and TrA. A progressive training protocol should start in the smallest amplitude, increasing the setting once participants can maintain a consistent movement speed, to continue to challenge the motor control system.

  14. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  15. Double Linear Damage Rule for Fatigue Analysis

    NASA Technical Reports Server (NTRS)

    Halford, G.; Manson, S.

    1985-01-01

    Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.

  16. Study on stress-strain response of multi-phase TRIP steel under cyclic loading

    NASA Astrophysics Data System (ADS)

    Dan, W. J.; Hu, Z. G.; Zhang, W. G.; Li, S. H.; Lin, Z. Q.

    2013-12-01

    The stress-strain response of multi-phase TRIP590 sheet steel is studied in cyclic loading condition at room temperature based on a cyclic phase transformation model and a multi-phase mixed kinematic hardening model. The cyclic martensite transformation model is proposed based on the shear-band intersection, where the repeat number, strain amplitude and cyclic frequency are used to control the phase transformation process. The multi-phase mixed kinematic hardening model is developed based on the non-linear kinematic hardening rule of per-phase. The parameters of transformation model are identified with the relationship between the austenite volume fraction and the repeat number. The parameters in Kinematic hardening model are confirmed by the experimental hysteresis loops in different strain amplitude conditions. The responses of hysteresis loop and stress amplitude are evaluated by tension-compression data.

  17. Mechanical annealing under low-amplitude cyclic loading in micropillars

    NASA Astrophysics Data System (ADS)

    Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo

    2016-04-01

    Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.

  18. Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Shing-Hoa; Wu, Chia-Chang; Chen, Chih-Yuan; Yang, Jer-Ren; Chiu, Po-Kay; Fang, Jason

    2007-08-01

    A fatigue behavior analysis was performed on superaustenitic stainless steel UNS S31254 (Avesta Sheffield 254 SMO), which contains about 6wt.% molybdenum, to examine the cyclic hardening/softening trend, hysteresis loops, the degree of hardening, and fatigue life during cyclic straining in the total strain amplitude range from 0.2 to 1.5%. Independent of strain rate, hardening occurs first, followed by softening. The degree of hardening is dependent on the magnitude of strain amplitude. The cyclic stress-strain curve shows material softening. The lower slope of the degree of hardening versus the strain amplitude curve at a high strain rate is attributed to the fast development of dislocation structures and quick saturation. The ɛ martensite formation, either in band or sheath form, depending on the strain rate, leads to secondary hardening at the high strain amplitude of 1.5%.

  19. An investigation on high temperature fatigue properties of tempered nuclear-grade deposited weld metals

    NASA Astrophysics Data System (ADS)

    Cao, X. Y.; Zhu, P.; Yong, Q.; Liu, T. G.; Lu, Y. H.; Zhao, J. C.; Jiang, Y.; Shoji, T.

    2018-02-01

    Effect of tempering on low cycle fatigue (LCF) behaviors of nuclear-grade deposited weld metal was investigated, and The LCF tests were performed at 350 °C with strain amplitudes ranging from 0.2% to 0.6%. The results showed that at a low strain amplitude, deposited weld metal tempered for 1 h had a high fatigue resistance due to high yield strength, while at a high strain amplitude, the one tempered for 24 h had a superior fatigue resistance due to high ductility. Deposited weld metal tempered for 1 h exhibited cyclic hardening at the tested strain amplitudes. Deposited weld metal tempered for 24 h exhibited cyclic hardening at a low strain amplitude but cyclic softening at a high strain amplitude. Existence and decomposition of martensite-austenite (M-A) islands as well as dislocations activities contributed to fatigue property discrepancy among the two tempered deposited weld metal.

  20. The Grassmannian origin of dual superconformal invariance

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Cachazo, Freddy; Cheung, Clifford

    2010-03-01

    A dual formulation of the S Matrix for mathcal {N} = 4 SYM has recently been presented, where all leading singularities of n-particle N k-2MHV amplitudes are given as an integral over the Grassmannian G( k, n), with cyclic symmetry, parity and superconformal invariance manifest. In this short note we show that the dual superconformal invariance of this object is also manifest. The geometry naturally suggests a partial integration and simple change of variable to an integral over G( k - 2, n). This change of variable precisely corresponds to the mapping between usual momentum variables and the “momentum twistors” introduced by Hodges, and yields an elementary derivation of the momentumtwistor space formula very recently presented by Mason and Skinner, which is manifestly dual superconformal invariant. Thus the G( k, n) Grassmannian formulation allows a direct understanding of all the important symmetries of mathcal {N} = 4 SYM scattering amplitudes.

  1. Micromechanics of soil responses in cyclic simple shear tests

    NASA Astrophysics Data System (ADS)

    Cui, Liang; Bhattacharya, Subhamoy; Nikitas, George

    2017-06-01

    Offshore wind turbine (OWT) foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a) Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b) Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c) Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number) were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.

  2. A possible giant planet orbiting the cataclysmic variable LX Ser

    NASA Astrophysics Data System (ADS)

    Li, Kai; Hu, Shaoming; Zhou, Jilin; Wu, Donghong; Guo, Difu; Jiang, Yunguo; Gao, Dongyang; Chen, Xu; Wang, Xianyu

    2017-04-01

    LX Ser is a deeply eclipsing cataclysmic variable with an orbital period of 0.1584325 d. 62 new eclipse times were determined by our observations and the AAVSO International Data base. Combining all available eclipse times, we analyzed the O - C behavior of LX Ser. We found that the O - C diagram of LX Ser shows a sinusoidal oscillation with a period of 22.8 yr and an amplitude of 0.00035 d. Two mechanisms (i.e., the Applegate mechanism and the light-travel time effect) are applied to explain the cyclic modulation. We found that it is difficult to apply the Applegate mechanism to explain the cyclic oscillation in the orbital period. Therefore, the cyclic period change is most likely to be caused by the light-travel time effect due to the presence of a third body. The mass of the tertiary component was determined to be M3 ∼ 7.5 MJup. We supposed that the tertiary companion is plausibly a giant planet. The stability of the giant planet was checked, and we found that the multiple system is stable.

  3. Quantifying Residual Stresses by Means of Thermoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2001-01-01

    This study focused on the application of the Thermoelastic Stress Analysis (TSA) technique as a tool for assessing the residual stress state of structures. TSA is based on the fact that materials experience small temperature changes when compressed or expanded. When a structure is cyclically loaded, a surface temperature profile results which correlates to the surface stresses. The cyclic surface temperature is measured with an infrared camera. Traditionally, the amplitude of a TSA signal was theoretically defined to be linearly dependent on the cyclic stress amplitude. Recent studies have established that the temperature response is also dependent on the cyclic mean stress (i.e., the static stress state of the structure). In a previous study by the authors, it was shown that mean stresses significantly influenced the TSA results for titanium- and nickel-based alloys. This study continued the effort of accurate direct measurements of the mean stress effect by implementing various experimental modifications. In addition, a more in-depth analysis was conducted which involved analyzing the second harmonic of the temperature response. By obtaining the amplitudes of the first and second harmonics, the stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can be simultaneously obtained. The experimental results showed good agreement with the theoretical predictions for both the first and second harmonics of the temperature response. As a result, confidence was achieved concerning the ability to simultaneously obtain values for the static stress state as well as the cyclic stress amplitude of structures subjected to cyclic loads using the TSA technique. With continued research, it is now feasible to establish a protocol that would enable the monitoring of residual stresses in structures utilizing TSA.

  4. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    PubMed Central

    Feng, Aihen; Chen, Daolun; Li, Cheng; Gu, Xijia

    2010-01-01

    We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor. PMID:22163621

  5. On the Specific Role of Microstructure in Governing Cyclic Fatigue, Deformation, and Fracture Behavior of a High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.

    2015-06-01

    In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  6. Cyclic Load Effects on Long Term Behavior of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Chamis, C. C.

    1996-01-01

    A methodology to compute the fatigue life for different ratios, r, of applied stress to the laminate strength based on first ply failure criteria combined with thermal cyclic loads has been developed and demonstrated. Degradation effects resulting from long term environmental exposure and thermo-mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation of material properties caused by cyclic and aging loads. Effect of variation in the thermal cyclic load amplitude on a quasi-symmetric graphite/epoxy laminate has been studied with respect to the impending failure modes. The results show that, for the laminate under consideration, the fatigue life under combined mechanical and low thermal amplitude cyclic loads is higher than that due to mechanical loads only. However, as the thermal amplitude increases, the life also decreases. The failure mode changes from tensile under mechanical loads only to the compressive and shear at high mechanical and thermal loads. Also, implementation of the developed methodology in the design process has been discussed.

  7. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  8. Review of the Effects of Microstructure on Fatigue in Aluminum Alloys. Ph.D. Thesis - Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Telesman, J.

    1984-01-01

    Literature survey was conducted to determine the effects of different microstructural features and different load histories on fatigue crack initiation and propagation of aluminum alloys. Comparison of microstructure and monotonic and cyclic properties between powder metallurgy (P/M) and ingot metallurgy (I/M) alloys is presented. The two alloys that are representative of each process on which the comparison is focused are X7091 and 7050. Included is a detailed description of the microstructure produced through the P/M and I/M proesses. The effect of each pertinent microstructural feature on monotonic and cyclic properties, such as yield strength, toughness, crack initiation and propagation is discussed. Also discussed are the proposed mechanisms for crack initiation and propagation, as well as the effects of aggressive environments on these cyclic properties. The effects of variable amplitude loadin on fatigue crack propagation and the various models proposed to predict load interaction effects are discussed.

  9. Amplitude-cyclic frequency decomposition of vibration signals for bearing fault diagnosis based on phase editing

    NASA Astrophysics Data System (ADS)

    Barbini, L.; Eltabach, M.; Hillis, A. J.; du Bois, J. L.

    2018-03-01

    In rotating machine diagnosis different spectral tools are used to analyse vibration signals. Despite the good diagnostic performance such tools are usually refined, computationally complex to implement and require oversight of an expert user. This paper introduces an intuitive and easy to implement method for vibration analysis: amplitude cyclic frequency decomposition. This method firstly separates vibration signals accordingly to their spectral amplitudes and secondly uses the squared envelope spectrum to reveal the presence of cyclostationarity in each amplitude level. The intuitive idea is that in a rotating machine different components contribute vibrations at different amplitudes, for instance defective bearings contribute a very weak signal in contrast to gears. This paper also introduces a new quantity, the decomposition squared envelope spectrum, which enables separation between the components of a rotating machine. The amplitude cyclic frequency decomposition and the decomposition squared envelope spectrum are tested on real word signals, both at stationary and varying speeds, using data from a wind turbine gearbox and an aircraft engine. In addition a benchmark comparison to the spectral correlation method is presented.

  10. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  11. Thermoelastic Stress Analysis: An NDE Tool for the Residual Stress Assessment of Metallic Alloys

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2000-01-01

    During manufacturing, certain propulsion components that will be used in a cyclic fatigue environment are fabricated to contain compressive residual stresses on their surfaces because these stresses inhibit the nucleation of cracks. Overloads and elevated temperature excursions cause the induced residual stresses to dissipate while the component is still in service, lowering its resistance to crack initiation. Research at the NASA Glenn Research Center at Lewis Field has focused on employing the Thermoelastic Stress Analysis technique (TSA, also recognized as SPATE: Stress Pattern Analysis by Thermal Emission) as a tool for monitoring the residual stress state of propulsion components. TSA is based on the fact that materials experience small temperature changes when they are compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed and expanded), the resulting surface-temperature profile correlates to the stress state of the structure s surface. The surface-temperature variations resulting from a cyclic load are measured with an infrared camera. Traditionally, the temperature amplitude of a TSA signal has been theoretically defined to be linearly dependent on the cyclic stress amplitude. As a result, the temperature amplitude resulting from an applied cyclic stress was assumed to be independent of the cyclic mean stress.

  12. Millennial-scale variability to 735 ka: High-resolution climate records from Santa Barbara Basin, CA

    NASA Astrophysics Data System (ADS)

    White, Sarah M.; Hill, Tessa M.; Kennett, James P.; Behl, Richard J.; Nicholson, Craig

    2013-06-01

    Determining the ultimate cause and effect of millennial-scale climate variability remains an outstanding problem in paleoceanography, partly due to the lack of high-resolution records predating the last glaciation. Recent cores from Santa Barbara Basin provide 2500-5700 year "windows" of climate with 10-50 year resolution. Ages for three cores, determined by seismic stratigraphic correlation, oxygen isotope stratigraphy, and biostratigraphy, date to 293 ka (MIS 8), 450 ka (MIS 12), and 735 ka (MIS 18). These records sample the Late Pleistocene, during which the 100 kyr cycle strengthened and the magnitude of glacial-interglacial cyclicity increased. Thus, these records provide a test of the dependence of millennial-scale behavior on variations in glacial-interglacial cyclicity. The stable isotopic (δ18O) composition of planktonic foraminifera shows millennial-scale variability in all three intervals, with similar characteristics (duration, cyclicity) to those previously documented during MIS 3 at this site. Stadial G. bulloides δ18O values are 2.75-1.75‰ (average 2.25‰) and interstadial values are 1.75-0.5‰ (average 1‰), with rapid (decadal-scale) interstadial and stadial initiations of 1-2‰, as in MIS 3. Interstadials lasted 250-1600 years and occurred every 650-1900 years. Stadial paleotemperatures were 3.5-9.5°C and interstadial paleotemperatures were 7.5-13°C. Upwelling, evidenced by planktonic foraminiferal assemblages and δ13C, increased during interstadials, similar to MIS 3; high productivity during some stadials was reminiscent of the Last Glacial Maximum. This study builds upon previous records in showing that millennial-scale shifts were an inherent feature of Northern Hemisphere glacial climates since 735 ka, and they remained remarkably constant in the details of their amplitude, cyclicity, and temperature variability.

  13. Long-term cyclicities in Phanerozoic sea-level sedimentary record and their potential drivers

    NASA Astrophysics Data System (ADS)

    Boulila, Slah; Laskar, Jacques; Haq, Bilal U.; Galbrun, Bruno; Hara, Nathan

    2018-06-01

    Cyclic sedimentation has varied at several timescales and this variability has been geologically well documented at Milankovitch timescales, controlled in part by climatically (insolation) driven sea-level changes. At the longer (tens of Myr) timescales connection between astronomical parameters and sedimentation via cyclic solar-system motions within the Milky Way has also been proposed, but this hypothesis remains controversial because of the lack of long geological records. In addition, the absence of a meaningful physical mechanism that could explain the connection between climate and astronomy at these longer timescales led to the more plausible explanation of plate motions as the main driver of climate and sedimentation through changes in ocean and continent mass distribution on Earth. Here we statistically show a prominent and persistent 36 Myr sedimentary cyclicity superimposed on two megacycles ( 250 Myr) in a relatively well-constrained sea-level (SL) record of the past 542 Myr (Phanerozoic eon). We also show two other significant 9.3 and 91 Myr periodicities, but with lower amplitudes. The 9.3 Myr cyclicity was previously attributed to long-period Milankovitch band based on the Cenozoic record. However, the 91 Myr cyclicity has never been observed before in the geologic record. The 250 Myr cyclicity was attributed to the Wilson tectonic (supercontinent) cycle. The 36 Myr periodicity, also detected for the first time in SL record, has previously been ascribed either to tectonics or to astronomical cyclicity. Given the possible link between amplitudes of the 36 and 250 Myr cyclicities in SL record and the potential that these periodicities fall into the frequency band of solar system motions, we suggest an astronomical origin, and model these periodicities as originating from the path of the solar system in the Milky Way as vertical and radial periods that modulate the flux of cosmic rays on Earth. Our finding of the 36 Myr SL cyclicity lends credibility to the existing hypothesis about the imprint of solar-system vertical period on the geological record. The 250 Myr megacycles are tentatively attributed to a radial period. However, tectonic causal mechanisms remain equally plausible. The potential existence of a correlation between the modeled astronomical signal and the geological record may offer an indirect proxy to understand the structure and history of the Milky Way by providing a 542 Myr long record of the path of the Sun in our Galaxy.

  14. Constant and variable amplitude ultrasonic fatigue of 2024-T351 aluminium alloy at different load ratios.

    PubMed

    Mayer, H; Fitzka, M; Schuller, R

    2013-12-01

    Ultrasonic fatigue testing equipment is presented that is capable of performing constant amplitude (CA) and variable amplitude (VA) experiments at different constant load ratios. This equipment is used to study cyclic properties of aluminium alloy 2024-T351 in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime at load ratios R=-1 and R=0.5. CA loading does not reveal a fatigue limit below 10¹⁰ cycles. Cracks leading to VHCF failure start at broken constituent particles. Specimens that survived more than 10¹⁰ cycles at R=-1 contain non-propagating cracks of lengths below grain size. Resonance frequency and nonlinearity parameter β(rel) show changes of vibration properties of specimens at low fractions of their VHCF lifetime. VA lifetimes are measured in the HCF and VHCF regime and compared with Miner calculations. Damage sums decrease with decreasing load (and increasing mean lifetimes) and are lower for R=0.5 than R=-1. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Double cyclic variations in orbital period of the eclipsing cataclysmic variable EX Dra

    NASA Astrophysics Data System (ADS)

    Han, Zhong-tao; Qian, Sheng-bang; Voloshina, Irina; Zhu, Li-Ying

    2017-06-01

    EX Dra is a long-period eclipsing dwarf nova with ˜2-3 mag amplitude outbursts. This star has been monitored photometrically from November, 2009 to March, 2016 and 29 new mid-eclipse times were obtained. By using new data together with the published data, the best fit to the O-C curve indicate that the orbital period of EX Dra have an upward parabolic change while undergoing double-cyclic variations with the periods of 21.4 and 3.99 years, respectively. The upward parabolic change reveals a long-term increase at a rate of \\dot{P}= {+7.46}×10^{-11} s s^{-1}. The evolutionary theory of cataclysmic variables (CVs) predicts that, as a CV evolves, the orbital period should be decreasing rather than increasing. Secular increase can be explained as the mass transfer between the secondary and primary or may be just an observed part of a longer cyclic change. Most plausible explanation for the double-cyclic variations is a pair of light travel-time effect via the presence of two companions. Their masses are determined to be MAsin i'A=29.3(±0.6) M_{Jup} and MBsin i'B=50.8(±0.2) M_{Jup}. When the two companions are coplanar to the orbital plane of the central eclipsing pair, their masses would match to brown dwarfs.

  16. Cyclic Hardness Test PHYBALCHT: A New Short-Time Procedure to Estimate Fatigue Properties of Metallic Materials

    NASA Astrophysics Data System (ADS)

    Kramer, Hendrik; Klein, Marcus; Eifler, Dietmar

    Conventional methods to characterize the fatigue behavior of metallic materials are very time and cost consuming. That is why the new short-time procedure PHYBALCHT was developed at the Institute of Materials Science and Engineering at the University of Kaiserslautern. This innovative method requires only a planar material surface to perform cyclic force-controlled hardness indentation tests. To characterize the cyclic elastic-plastic behavior of the test material the change of the force-indentation-depth-hysteresis is plotted versus the number of indentation cycles. In accordance to the plastic strain amplitude the indentation-depth width of the hysteresis loop is measured at half minimum force and is called plastic indentation-depth amplitude. Its change as a function of the number of cycles of indentation can be described by power-laws. One of these power-laws contains the hardening-exponentCHT e II , which correlates very well with the amount of cyclic hardening in conventional constant amplitude fatigue tests.

  17. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelluccio, Gustavo M.; McDowell, David L.

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less

  18. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    DOE PAGES

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-05-22

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less

  19. Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar

    2017-07-01

    This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.

  20. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  1. Fatigue-Crack-Growth Structural Analysis

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1986-01-01

    Elastic and plastic deformations calculated under variety of loading conditions. Prediction of fatigue-crack-growth lives made with FatigueCrack-Growth Structural Analysis (FASTRAN) computer program. As cyclic loads are applied to initial crack configuration, FASTRAN predicts crack length and other parameters until complete break occurs. Loads are tensile or compressive and of variable or constant amplitude. FASTRAN incorporates linear-elastic fracture mechanics with modifications of load-interaction effects caused by crack closure. FASTRAN considered research tool, because of lengthy calculation times. FASTRAN written in FORTRAN IV for batch execution.

  2. Temporal variation of applied inter fragmentary displacement at a bone fracture in harmony with maturation of the fracture callus.

    PubMed

    Gardner, T N; Evans, M; Simpson, H

    1998-09-01

    The amplitude of inter fragmentary displacement in long bone fractures greatly influences the pattern and speed of healing. Unfortunately, the amplitude of natural cyclical displacement arising from patient activity is random because of the inherent flexibility of fixation devices under natural loading. Although fixators may be designed to control the amplitude of this displacement, the amplitudes most beneficial to healing have not been determined. Furthermore, the appropriate amplitude must vary during healing as the reparative tissue (callus) progresses histologically and stiffens during maturation. In this study on an experimental fracture, the amplitude of applied cyclical displacement is varied during healing to correspond with the inverse of the callus stiffness versus time curve. In vivo mechanical stiffness tests on the callus indicate that the end point of the fixation period is achieved more rapidly than with a constant level of applied displacement.

  3. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  4. Effect of cooling rate during hot stamping on low cyclic fatigue of boron steel sheet

    NASA Astrophysics Data System (ADS)

    Suh, Chang Hee; Jang, Won Seok; Oh, Sang Kyun; Lee, Rac Gyu; Jung, Yun-Chul; Kim, Young Suk

    2012-08-01

    Boron steel is widely used throughout the automobile industry due to its high tensile strength and hardenability. When boron steel is used for body parts, only high strength is required for crashworthiness. However, when boron steel is used for chassis parts, a high fatigue life is needed. The microstructure of boron steel is mainly affected by the cooling rate during hot stamping. Therefore, this study investigated the low cyclic fatigue life according to the cooling rate. The fatigue life increased at a low strain amplitude when the cooling rate was fast. However, at a high strain amplitude, the fatigue life decreased, due to the low ductility and fracture toughness of the martensite formed by rapid cooling. Martensite formed by a fast cooling rate shows excellent fatigue life at a low total strain amplitude; however, a multiphase microstructure formed by a slow cooling rate is recommended if the parts experience high and low total strain amplitudes alternately. In addition, the cooling rate has little effect on the distribution of solute boron and boron precipitations, so it is expected that boron rarely affects low cyclic fatigue.

  5. Dynamic control of droplets and pockets formation in homogeneous porous media immiscible displacements

    NASA Astrophysics Data System (ADS)

    Lins, T. F.; Azaiez, J.

    2018-03-01

    Interfacial instabilities of immiscible two-phase radial flow displacements in homogeneous porous media are analyzed for constant and time-dependent sinusoidal cyclic injection schemes. The analysis is carried out through numerical simulations based on the immersed interface and level set methods. The effects of the fluid properties and the injection flow parameters, namely, the period and the amplitude, on the formation of droplets and pockets are analyzed. It was found that larger capillary numbers or smaller viscosity ratios lead to more droplets/pockets that tend to appear earlier in time. Furthermore, the period and amplitude of the cyclic schemes were found to have a strong effect on droplets/pockets formations, and depending on their values, these can be enhanced or attenuated. In particular, the results revealed that there is a critical amplitude above which droplets and pockets formation is suppressed up to a specified time. This critical amplitude depends on the fluid properties, namely, the viscosity ratio and surface tension as well as on the period of the time-dependent scheme. The results of this study indicate that it is possible to use time-dependent cyclic schemes to control the formation and development of droplets/pockets in the flow and in particular to delay their appearance through an appropriate combination of the displacement scheme's amplitude and period.

  6. The eclipsing binary star RZ Cas: accretion-driven variability of the multimode oscillation spectrum

    NASA Astrophysics Data System (ADS)

    Mkrtichian, D. E.; Lehmann, H.; Rodríguez, E.; Olson, E.; Kim, S.-L.; Kusakin, A. V.; Lee, J. W.; Youn, J.-H.; Kwon, S.-G.; López-González, M. J.; Janiashvili, E.; Tiwari, S. K.; Joshi, Santosh; Lampens, P.; Van Cauteren, P.; Glazunova, L.; Gamarova, A.; Grankin, K. N.; Rovithis-Livaniou, E.; Svoboda, P.; Uhlar, R.; Tsymbal, V.; Kokumbaeva, R.; Urushadze, T.; Kuratov, K.; Shin, H.-C.; Kang, Y.-W.; Soonthornthum, B.

    2018-04-01

    We analysed photometric time series of the active, semidetached Algol-type system RZ Cas obtained in 1999-2009, in order to search for seasonal and short-term variations in the oscillation spectrum of RZ Cas A. The orbital period shows ±1 s cyclic variations on time-scales of 6-9 years. We detected six low-degree p-mode oscillations with periods between 22.3 and 26.22 min and obtained safe mode identifications using the periodic spatial filter method. The amplitudes and frequencies of all modes vary.

  7. Automatic control: the vertebral column of dogfish sharks behaves as a continuously variable transmission with smoothly shifting functions.

    PubMed

    Porter, Marianne E; Ewoldt, Randy H; Long, John H

    2016-09-15

    During swimming in dogfish sharks, Squalus acanthias, both the intervertebral joints and the vertebral centra undergo significant strain. To investigate this system, unique among vertebrates, we cyclically bent isolated segments of 10 vertebrae and nine joints. For the first time in the biomechanics of fish vertebral columns, we simultaneously characterized non-linear elasticity and viscosity throughout the bending oscillation, extending recently proposed techniques for large-amplitude oscillatory shear (LAOS) characterization to large-amplitude oscillatory bending (LAOB). The vertebral column segments behave as non-linear viscoelastic springs. Elastic properties dominate for all frequencies and curvatures tested, increasing as either variable increases. Non-linearities within a bending cycle are most in evidence at the highest frequency, 2.0 Hz, and curvature, 5 m -1 Viscous bending properties are greatest at low frequencies and high curvatures, with non-linear effects occurring at all frequencies and curvatures. The range of mechanical behaviors includes that of springs and brakes, with smooth transitions between them that allow for continuously variable power transmission by the vertebral column to assist in the mechanics of undulatory propulsion. © 2016. Published by The Company of Biologists Ltd.

  8. A study of spectrum fatigue crack propagation in two aluminum alloys. 2: Influence of microstructures

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Antolovich, S. D.

    1985-01-01

    The important metallurgical factors that influence both constant amplitude and spectrum crack growth behavior in aluminum alloys were investigated. The effect of microstructural features such as grain size, inclusions, and dispersoids was evaluated. It was shown that a lower stress intensities, the I/M 7050 alloy showed better fatigue crack propagation (FCP) resistance than P/M 7091 alloy for both constant amplitude and spectrum testing. It was suggested that the most important microstructural variable accounting for superior FCP resistance of 7050 alloy is its large grain size. It was further postulated that the inhomogenous planar slip and large grain size of 7050 limit dislocation interactions and thus increase slip reversibility which improves FCP performance. The hypothesis was supported by establishing that the cyclic strain hardening exponent for the 7091 alloy is higher than that of 7050.

  9. Fatigue Tests with Random Flight Simulation Loading

    NASA Technical Reports Server (NTRS)

    Schijve, J.

    1972-01-01

    Crack propagation was studied in a full-scale wing structure under different simulated flight conditions. Omission of low-amplitude gust cycles had a small effect on the crack rate. Truncation of the infrequently occurring high-amplitude gust cycles to a lower level had a noticeably accelerating effect on crack growth. The application of fail-safe load (100 percent limit load) effectively stopped subsequent crack growth under resumed flight-simulation loading. In another flight-simulation test series on sheet specimens, the variables studied are the design stress level and the cyclic frequency of the random gust loading. Inflight mean stresses vary from 5.5 to 10.0 kg/sq mm. The effect of the stress level is larger for the 2024 alloy than for the 7075 alloy. Three frequencies were employed: namely, 10 cps, 1 cps, and 0.1 cps. The frequency effect was small. The advantages and limitations of flight-simulation tests are compared with those of alternative test procedures such as constant-amplitude tests, program tests, and random-load tests. Various testing purposes are considered. The variables of flight-simulation tests are listed and their effects are discussed. A proposal is made for performing systematic flight-simulation tests in such a way that the compiled data may be used as a source of reference.

  10. Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function

    NASA Astrophysics Data System (ADS)

    Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Parameswaran, Harikrishnan; Wellman, Tyler J.; Martinez, Nuria; Allen, Philip G.; Frey, Urs; Suki, Béla

    2015-10-01

    Cells can be exposed to irregular mechanical fluctuations, such as those arising from changes in blood pressure. Here, we report that ATP production, assessed through changes in mitochondrial membrane potential, is downregulated in vascular smooth muscle cells in culture exposed to monotonous stretch cycles when compared with cells exposed to a variable cyclic stretch that incorporates physiological levels of cycle-by-cycle variability in stretch amplitude. Variable stretch enhances ATP production by increasing the expression of ATP synthase’s catalytic domain, cytochrome c oxidase and its tyrosine phosphorylation, mitofusins and PGC-1α. Such a fluctuation-driven mechanotransduction mechanism is mediated by motor proteins and by the enhancement of microtubule-, actin- and mitochondrial-network complexity. We also show that, in aorta rings isolated from rats, monotonous stretch downregulates--whereas variable stretch maintains--physiological vessel-wall contractility through mitochondrial ATP production. Our results have implications for ATP-dependent and mechanosensitive intracellular processes.

  11. Cyclic Tensile Strain Induces Tenogenic Differentiation of Tendon-Derived Stem Cells in Bioreactor Culture.

    PubMed

    Xu, Yuan; Wang, Qiang; Li, Yudong; Gan, Yibo; Li, Pei; Li, Songtao; Zhou, Yue; Zhou, Qiang

    2015-01-01

    Different loading regimens of cyclic tensile strain impose different effects on cell proliferation and tenogenic differentiation of TDSCs in three-dimensional (3D) culture in vitro, which has been little reported in previous literatures. In this study we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation in the custom-designed 3D tensile bioreactor, which revealed that cyclic tensile strain with different frequencies (0.3 Hz, 0.5 Hz, and 1.0 Hz) and amplitudes (2%, 4%, and 8%) had no influence on TDSC viability, while it had different effects on the proliferation and the expression of type I collagen, tenascin-C, tenomodulin, and scleraxis of TDSCs, which was most obvious at 0.5 Hz frequency with the same amplitude and at 4% amplitude with the same frequency. Moreover, signaling pathway from microarray analysis revealed that reduced extracellular matrix (ECM) receptor interaction signaling initiated the tendon genius switch. Cyclic tensile strain highly upregulated genes encoding regulators of NPM1 and COPS5 transcriptional activities as well as MYC related transcriptional factors, which contributed to cell proliferation and differentiation. In particular, the transcriptome analysis provided certain new insights on the molecular and signaling networks for TDSCs loaded in these conditions.

  12. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model.

    PubMed

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M; Latash, Mark L

    2017-05-14

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1Hz, paced by an auditory metronome. One - Force task - required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task - Share task - required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model

    PubMed Central

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M.; Latash, Mark L.

    2017-01-01

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1 Hz, paced by an auditory metronome. One – Force task – required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task – Share task – required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. PMID:28344070

  14. Effect of Heat Treatment Process on Microstructure and Fatigue Behavior of a Nickel-Base Superalloy

    PubMed Central

    Zhang, Peng; Zhu, Qiang; Chen, Gang; Qin, Heyong; Wang, Chuanjie

    2015-01-01

    The study of fatigue behaviors for nickel-base superalloys is very significant because fatigue damage results in serious consequences. In this paper, two kinds of heat treatment procedures (Pro.I and Pro.II) were taken to investigate the effect of heat treatment on microstructures and fatigue behaviors of a nickel-base superalloy. Fatigue behaviors were studied through total strain controlled mode at 650 °C. Manson-Coffin relationship and three-parameter power function were used to predict fatigue life. A good link between the cyclic/fatigue behavior and microscopic studies was established. The cyclic deformation mechanism and fatigue mechanism were discussed. The results show that the fatigue resistance significantly drops with the increase of total strain amplitudes. Manson-Coffin relationship can well predict the fatigue life for total strain amplitude from 0.5% to 0.8%. The fatigue resistance is related with heat treatment procedures. The fatigue resistance performance of Pro.I is better than that of Pro.II. The cyclic stress response behaviors are closely related to the changes of the strain amplitudes. The peak stress of the alloy gradually increases with the increase of total strain amplitudes. The main fracture mechanism is inhomogeneous deformation and the different interactions between dislocations and γ′ precipitates. PMID:28793559

  15. Damage Model of Reinforced Concrete Members under Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Wei, Bo Chen; Zhang, Jing Shu; Zhang, Yin Hua; Zhou, Jia Lai

    2018-06-01

    Based on the Kumar damage model, a new damage model for reinforced concrete members is established in this paper. According to the damage characteristics of reinforced concrete members subjected to cyclic loading, four judgment conditions for determining the rationality of damage models are put forward. An ideal damage index (D) is supposed to vary within a scale of zero (no damage) to one (collapse). D should be a monotone increasing function which tends to increase in the case of the same displacement amplitude. As for members under large displacement amplitude loading, the growth rate of D should be greater than that of D under small amplitude displacement loading. Subsequently, the Park-Ang damage model, the Niu-Ren damage model, the Lu-Wang damage model and the proposed damage model are analyzed for 30 experimental reinforced concrete members, including slabs, walls, beams and columns. The results show that current damage models do not fully matches the reasonable judgment conditions, but the proposed damage model does. Therefore, a conclusion can be drawn that the proposed damage model can be used for evaluating and predicting damage performance of RC members under cyclic loading.

  16. Is the Sun a Long Period Variable

    NASA Technical Reports Server (NTRS)

    Sonett, Charles P.

    1990-01-01

    The inventory of atmospheric radiocarbon exhibits quasi-periodic variations of mean period of bar-lambda=269 years over the entire 9000 year record. But the period is inconstant and subject to random variability (sigma m exp. 1/2 = 119 years). The radiocarbon maxima correspond to the quasiperiodic extension of the Maunder minimum throughout the Holocene and resolve the long-standing issue of Maunder cyclicity. The radiocarbon maxima are amplitude modulated by the approx. 2300 year period and thus vary significantly in peak value. The approx. 2300 year period in turn appears to not be modulated by the secular geomagnetic variation. Detection of a Maunder-like sequence of minima in tree ring growth of Bristlecone pine and its correlation with the Maunder (1890, 1922) cyclicity in the radiocarbon record supports the inference that solar forcing of the radiocarbon record is accompanied by a corresponding forcing of growth of timberline Bristlecone pine. Because of the random component of the Maunder period, prediction of climate, if tied to the Maunder cycle other than probabilistically, is significantly hindered. For the mean Maunder period of 269 years, the probability is 67 percent that a given climatic maximum lies anywhere between 150 and 388 years.

  17. Short-period cyclic loading system for in situ X-ray observation of anelastic properties at high pressure.

    PubMed

    Yoshino, Takashi; Yamazaki, Daisuke; Tange, Yoshinori; Higo, Yuji

    2016-10-01

    To determine the anelastic properties of materials of the Earth's interior, a short-period cyclic loading system was installed for in situ X-ray radiographic observation under high pressure to the multi-anvil deformation DIA press at the bending magnet beam line BL04B1 at SPring-8. The hydraulic system equipped with a piston controlled by a solenoid was designed so as to enable producing smooth sinusoidal stress in a wide range of oscillation period from 0.2 to 100 s and generating variable amplitudes. Time resolved X-ray radiography imaging of the sample and reference material provides their strain as a function of time during cyclic loading. A synchrotron X-ray radiation source allows us to resolve their strain variation with time even at the short period (<1 s). The minimum resolved strain is as small as 10 -4 , and the shortest oscillation period to detect small strain is 0.5 s. Preliminary experimental results exhibited that the new system can resolve attenuation factor Q -1 at upper mantle conditions. These results are in quantitative agreement with previously reported data obtained at lower pressures.

  18. Evolution of the Deformation Behavior of Sn-Rich Solders during Cyclic Fatigue

    NASA Astrophysics Data System (ADS)

    Wentlent, Luke Arthur

    Continuous developments in the electronics industry have provided a critical need for a quantitative, fundamental understanding of the behavior of SnAgCu (SAC) solders in both isothermal and thermal fatigue conditions. This study examines the damage behavior of Sn-based solders in a constant amplitude and variable amplitude environment. In addition, damage properties are correlated with crystal orientation and slip behavior. Select solder joints were continuously characterized and tested repeatedly in order to eliminate the joint to joint variation due to the anisotropy of beta-Sn. Characterization was partitioned into three different categories: effective properties and slip behavior, creep mechanisms and crystal morphology development, and atomic behavior and evolution. Active slip systems were correlated with measured properties. Characterization of the mechanical behavior was performed by the calculation and extrapolation of the elastic modulus, work, effective stiffness, Schmid factors, and time-dependent plasticity (creep). Electron microscopy based characterization methods included Scanning Electron Microscopy (SEM), Electron Backscattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM). Testing showed a clear evolution of the steady-state creep mechanism when the cycling amplitudes were varied, from dislocation controlled to diffusion controlled creep. Dislocation behavior was examined and shown to evolve differently in single amplitude vs. variable amplitude testing. Finally, the mechanism of the recrystallization behavior of the beta-Sn was observed. This work fills a gap in the literature, providing a systematic study which identifies how the damage behavior in Sn-alloys depends upon the previous damage. A link is made between the observed creep behavior and the dislocation observations, providing a unified picture. Information developed in this work lays a stepping stone to future fundamental analyses as well as clarifying aspects of the mechanistic behavior of Sn and Sn-based alloys.

  19. High-temperature low cycle fatigue behavior of a gray cast iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by themore » interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.« less

  20. Monthly haemostatic factor variability in women and men.

    PubMed

    Hill, Alison M; Stewart, Paul W; Fung, Mark K; Kris-Etherton, Penny M; Ginsberg, Henry N; Tracy, Russell P; Pearson, Thomas A; Lefevre, Michael; Reed, Roberta G; Elmer, Patricia J; Holleran, Stephen; Ershow, Abby G

    2014-01-01

    Hormonal status influences haemostatic factors including fibrinogen, factor VII and plasminogen activator inhibitor (PAI-1), and concentrations differ among men, premenopausal and postmenopausal women. This study examines how phases of the menstrual cycle influence variability of fibrinogen, factor VII and PAI-1. We studied 103 subjects (39 premenopausal women, 18 postmenopausal women and 46 men) during three, randomized, 8-week energy- and nutrient-controlled experimental diets in the Dietary Effects on Lipids and Thrombogenic Activity (DELTA) Study. Fasting blood samples were collected weekly during the last 4 weeks of each diet period, and haemostatic factors were quantified. Two linear mixed-effects models were used for fibrinogen, factor VII and PAI-1: one to estimate and compare group-specific components of variance, and the other to estimate additional fixed effects representing cyclical functions of day of menstrual cycle in premenopausal women. Systematic cyclical variation with day of menstrual cycle was observed for fibrinogen (P < 0.0001), factor VII (P = 0.0012) and PAI-1 (P = 0.0024) in premenopausal women. However, the amplitude of cycling was small relative to the total magnitude of intra-individual variability. In addition, the intra-individual variance and corresponding coefficient of variation observed in premenopausal women did not differ from postmenopausal women and men. The variability in haemostatic factors in premenopausal women is no greater than for postmenopausal women or men. Consequently, premenopausal women can be included in studies investigating haemostatic factor responses without controlling for stage of menstrual cycle. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pletsch, Holger J.; Clark, Colin J.

    Here, we present the results of precision gamma-ray timing measurements of the binary millisecond pulsar PSR J2339–0533, an irradiating system of the "redback" type, using data from the Fermi Large Area Telescope. We describe an optimized analysis method to determine a long-term phase-coherent timing solution spanning more than six years, including a measured eccentricity of the binary orbit and constraints on the proper motion of the system. A major result of this timing analysis is the discovery of an extreme variation of the nominal 4.6 hr orbital periodmore » $${P}_{\\mathrm{orb}}$$ over time, showing alternating epochs of decrease and increase. We inferred a cyclic modulation of $${P}_{\\mathrm{orb}}$$ with an approximate cycle duration of 4.2 yr and a modulation amplitude of $${\\rm{\\Delta }}{P}_{\\mathrm{orb}}/{P}_{\\mathrm{orb}}=2.3\\times {10}^{-7}$$. Considering different possible physical causes, the observed orbital-period modulation most likely results from a variable gravitational quadrupole moment of the companion star due to cyclic magnetic activity in its convective zone.« less

  2. Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Chermahini, R. G.

    1985-01-01

    Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.

  3. Elastic-plastic analysis of a propagating crack under cyclic loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Armen, H., Jr.

    1974-01-01

    Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.

  4. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  5. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloy AZ91

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke; Anderson, Warwick; Jones, J. Wayne

    An investigation has been conducted on the influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91. Fatigue lifetimes were determined from total strain-controlled fatigue tests for strain amplitudes of 0.2%, 0.4% and 0.6%, under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using incremental step test (IST) methods. Two locations in a prototype casting with different thicknesses and, therefore, solidification rates, microstructure and porosity, were examined. In general., at all total strain amplitudes fatigue life was unaffected by microstructure refinement and was attributed to significant levels of porosity. Cyclic softening and a subsequent increased cyclic hardening rate, compared to monotonic tests, were observed, independent of microstructure. These results, fractography and damage accumulation processes, determined from metallographic sectioning, are discussed.

  6. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  7. Low-Cycle Fatigue Properties of P92 Ferritic-Martensitic Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Hu, ZhengFei; Schmauder, Siegfried; Mlikota, Marijo; Fan, KangLe

    2016-04-01

    The low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K has been extensively studied. The test results of fatigue lifetime are consistent with the Coffin-Manson relationship over a range of controlled total strain amplitudes from 0.15 to 0.6%. The influence of strain amplitude on the fatigue crack initiation and growth has been observed using optical microscopy and scanning electron microscopy. The formation mechanism of secondary cracks is established according to the observation of fracture after fatigue process and there is an intrinsic relationship between striation spacing, current crack length, and strain amplitude. Transmission electron microscopy has been employed to investigate the microstructure evolution after fatigue process. It indicates the interaction between carbides and dislocations together with the formation of cell structure inhibits the cyclic softening. The low-angle sub-boundary elimination in the martensite is mainly caused by the cyclic stress.

  8. AGN Accretion Physics in the Time Domain: Survey Cadences, Stochastic Analysis, and Physical Interpretations

    NASA Astrophysics Data System (ADS)

    Moreno, Jackeline; Vogeley, Michael S.; Richards, Gordon; O'Brien, John T.; Kasliwal, Vishal

    2018-01-01

    We present rigorous testing of survey cadences (K2, SDSS, CRTS, & Pan-STARRS) for quasar variability science using a magnetohydrodynamics synthetic lightcurve and the canonical lightcurve from Kepler, Zw 229.15. We explain where the state of the art is in regards to physical interpretations of stochastic models (CARMA) applied to AGN variability. Quasar variability offers a time domain approach of probing accretion physics at the SMBH scale. Evidence shows that the strongest amplitude changes in the brightness of AGN occur on long timescales ranging from months to hundreds of days. These global behaviors can be constrained by survey data despite low sampling resolution. CARMA processes provide a flexible family of models used to interpolate between data points, predict future observations and describe behaviors in a lightcurve. This is accomplished by decomposing a signal into rise and decay timescales, frequencies for cyclic behavior and shock amplitudes. Characteristic timescales may point to length-scales over which a physical process operates such as turbulent eddies, warping or hotspots due to local thermal instabilities. We present the distribution of SDSS Stripe 82 quasars in CARMA parameters space that pass our cadence tests and also explain how the Damped Harmonic Oscillator model, CARMA(2,1), reduces to the Damped Random Walk, CARMA(1,0), given the data in a specific region of the parameter space.

  9. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  10. Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals

    DOE PAGES

    Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; ...

    2015-10-19

    When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. We demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. Furthermore, this “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising frommore » increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. Our results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen.« less

  11. Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals

    PubMed Central

    Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; Liu, Zhan-Li; Ma, Evan; Li, Ju; Sun, Jun; Zhuang, Zhuo; Dao, Ming; Shan, Zhi-Wei; Suresh, Subra

    2015-01-01

    When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. Here we demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. This “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising from increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. These results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen. PMID:26483463

  12. Simulation of fatigue fracture of TiNi shape memory alloy samples at cyclic loading in pseudoelastic state

    NASA Astrophysics Data System (ADS)

    Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Khvorov, Aleksandr A.

    2018-05-01

    Microstructural simulation of mechanical behavior of shape memory alloy samples at cyclic loading in the pseudoelastic state has been carried out. Evolution of the oriented and scattered deformation defects leading to damage accumulation and resulting in the fatigue fracture has been taken into account. Simulations were performed for the regime of loading imitating that for endovascular stents: preliminary straining, unloading, deformation up to some mean level of the strain and subsequent mechanical cycling at specified strain amplitude. Dependence of the fatigue life on the loading parameters (pre-strain, mean and amplitude values of strain) has been obtained. The results show a good agreement with available experimental data.

  13. Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions

    NASA Technical Reports Server (NTRS)

    Nakagaki, M.; Atluri, S. N.

    1978-01-01

    Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.

  14. Undersensing of VF in a patient with optimal R wave sensing during sinus rhythm.

    PubMed

    Dekker, Lukas R C; Schrama, Tim A M; Steinmetz, Frans H L; Tukkie, Raymond

    2004-06-01

    We describe a case of potentially fatal undersensing of VF by a third generation ICD with predetermined automatic gain control. In this patient, ventricular sensing was optimal, as R wave amplitudes during sinus rhythm were at least 16 mV. Cyclical, high amplitude signals during VF elevated the sensing floor to such an extent that complete undersensing of subsequent lower amplitude local electrograms occurred. This led to bradypacing and complete ICD therapy failure. Therefore, high R wave amplitudes during sinus rhythm do not warrant flawless sensing during VF.

  15. Cyclic hardening behavior of extruded ZK60 magnesium alloy with different grain sizes

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Wencong; Chen, Wenzhen; Wang, Wenke

    2018-04-01

    Montonic and fully reversed strain-controlled cyclic deformation experiments were conducted on extruded ZK60 magnesium alloy with two different grain sizes in ambient air. Results revealed that the hardening rates of the ZK60 magnesium alloy rods with fine grain and coarse grain in the monotonic deformation and the fully reversed strain-controlled cyclic deformation were opposite along the extrusion direction. Electron Backscatter Diffration analysis revealed that fine grains were more easily rotated than coarse grains under the cyclic deformation. Under the twinning and detwinning process of the cyclic deformation at a large strain amplitude, the coarse grained ZK60 magnesium alloys were more prone to tension twinning {10-12}<10-11> and more residual twins were observed. Texture hardening of coarse grained magnesium alloy was more obvious in cyclic defromation than fine-grained magnesium alloy.

  16. Studies on thermo-elastic heating of horns used in ultrasonic plastic welding.

    PubMed

    Roopa Rani, M; Prakasan, K; Rudramoorthy, R

    2015-01-01

    Ultrasonic welding horn is half wavelength section or tool used to focus the ultrasonic vibrations to the components being welded. The horn is designed in such a way that it maximizes the amplitude of the sound wave passing through it. The ends of the horn represent the displacement anti-nodes and the center the 'node' of the wave. As the horns perform 20,000 cycles of expansion and contraction per second, they are highly stressed at the nodes and are heated owing to thermo-elastic effects. Considerable temperature rise may be observed in the horn, at the nodal region when working at high amplitudes indicating high stress levels leading to failure of horns due to cyclic loading. The limits for amplitude must therefore be evaluated for the safe working of the horn. Horns made of different materials have different thermo-elastic behaviors and hence different temperatures at the nodes and antinodes. This temperature field can be used as a control mechanism for setting the amplitude/weld parameters. Safe stress levels can be predicted using modal and harmonic analyses followed by a stress analysis to study the effect of cyclic loads. These are achieved using 'Ansys'. The maximum amplitude level obtained from the stress analysis is used as input for 'Comsol' to predict the temperature field. The actual temperature developed in the horn during operation is measured using infrared camera and compared with the simulated temperature. From experiments, it is observed that horn made of titanium had the lowest temperature rise at the critical region and can be expected to operate at amplitudes up to 77 μm without suffering failure due to cyclic loading. The method of predicting thermo-elastic stresses and temperature may be adopted by the industry for operating the horn within the safe stress limits thereby extending the life of the horn. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. New methodology for shaft design based on life expectancy

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1986-01-01

    The design of power transmission shafting for reliability has not historically received a great deal of attention. However, weight sensitive aerospace and vehicle applications and those where the penalties of shaft failure are great, require greater confidence in shaft design than earlier methods provided. This report summarizes a fatigue strength-based, design method for sizing shafts under variable amplitude loading histories for limited or nonlimited service life. Moreover, applications factors such as press-fitted collars, shaft size, residual stresses from shot peening or plating, corrosive environments can be readily accommodated into the framework of the analysis. Examples are given which illustrate the use of the method, pointing out the large life penalties due to occasional cyclic overloads.

  18. Transitions from trees to cycles in adaptive flow networks

    NASA Astrophysics Data System (ADS)

    Martens, Erik A.; Klemm, Konstantin

    2017-11-01

    Transport networks are crucial to the functioning of natural and technological systems. Nature features transport networks that are adaptive over a vast range of parameters, thus providing an impressive level of robustness in supply. Theoretical and experimental studies have found that real-world transport networks exhibit both tree-like motifs and cycles. When the network is subject to load fluctuations, the presence of cyclic motifs may help to reduce flow fluctuations and, thus, render supply in the network more robust. While previous studies considered network topology via optimization principles, here, we take a dynamical systems approach and study a simple model of a flow network with dynamically adapting weights (conductances). We assume a spatially non-uniform distribution of rapidly fluctuating loads in the sinks and investigate what network configurations are dynamically stable. The network converges to a spatially non-uniform stable configuration composed of both cyclic and tree-like structures. Cyclic structures emerge locally in a transcritical bifurcation as the amplitude of the load fluctuations is increased. The resulting adaptive dynamics thus partitions the network into two distinct regions with cyclic and tree-like structures. The location of the boundary between these two regions is determined by the amplitude of the fluctuations. These findings may explain why natural transport networks display cyclic structures in the micro-vascular regions near terminal nodes, but tree-like features in the regions with larger veins.

  19. Floquet stability analysis of the longitudinal dynamics of two hovering model insects

    PubMed Central

    Wu, Jiang Hao; Sun, Mao

    2012-01-01

    Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980

  20. Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Sullivan, C. W.

    1986-01-01

    The radiative and physical characteristics of the Weddell Sea ice cover and its marginal ice zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated ice in winter and spring cyclic increases and decrease in brightness temperatures of consolidated ice with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. Ice concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the ice margin structure and the mass balance of fresh water and of biological features of the marginal ice zone are studied.

  1. Population cycles: generalities, exceptions and remaining mysteries

    PubMed Central

    2018-01-01

    Population cycles are one of nature's great mysteries. For almost a hundred years, innumerable studies have probed the causes of cyclic dynamics in snowshoe hares, voles and lemmings, forest Lepidoptera and grouse. Even though cyclic species have very different life histories, similarities in mechanisms related to their dynamics are apparent. In addition to high reproductive rates and density-related mortality from predators, pathogens or parasitoids, other characteristics include transgenerational reduced reproduction and dispersal with increasing-peak densities, and genetic similarity among populations. Experiments to stop cyclic dynamics and comparisons of cyclic and noncyclic populations provide some understanding but both reproduction and mortality must be considered. What determines variation in amplitude and periodicity of population outbreaks remains a mystery. PMID:29563267

  2. Gamma-ray timing of redback PSR J2339-0533: Hints for gravitational quadrupole moment changes

    DOE PAGES

    Pletsch, Holger J.; Clark, Colin J.

    2015-06-25

    Here, we present the results of precision gamma-ray timing measurements of the binary millisecond pulsar PSR J2339–0533, an irradiating system of the "redback" type, using data from the Fermi Large Area Telescope. We describe an optimized analysis method to determine a long-term phase-coherent timing solution spanning more than six years, including a measured eccentricity of the binary orbit and constraints on the proper motion of the system. A major result of this timing analysis is the discovery of an extreme variation of the nominal 4.6 hr orbital periodmore » $${P}_{\\mathrm{orb}}$$ over time, showing alternating epochs of decrease and increase. We inferred a cyclic modulation of $${P}_{\\mathrm{orb}}$$ with an approximate cycle duration of 4.2 yr and a modulation amplitude of $${\\rm{\\Delta }}{P}_{\\mathrm{orb}}/{P}_{\\mathrm{orb}}=2.3\\times {10}^{-7}$$. Considering different possible physical causes, the observed orbital-period modulation most likely results from a variable gravitational quadrupole moment of the companion star due to cyclic magnetic activity in its convective zone.« less

  3. Variable thickness double-refracting plate

    DOEpatents

    Hadeishi, Tetsuo

    1976-01-01

    This invention provides an A.C., cyclic, current-controlled, phase retardation plate that uses a magnetic clamp to produce stress birefringence. It was developed for an Isotope-Zeeman Atomic Absorption Spectrometer that uses polarization modulation to effect automatic background correction in atomic absorption trace-element measurements. To this end, the phase retardation plate of the invention is a variable thickness, photoelastic, double-refracting plate that is alternately stressed and released by the magnetic clamp selectively to modulate specific components selected from the group consisting of circularly and plane polarized Zeeman components that are produced in a dc magnetic field so that they correspond respectively to Zeeman reference and transmission-probe absorption components. The polarization modulation changes the phase of these polarized Zeeman components, designated as .sigma. reference and .pi. absorption components, so that every half cycle the components change from a transmission mode to a mode in which the .pi. component is blocked and the .sigma. components are transmitted. Thus, the Zeeman absorption component, which corresponds in amplitude to the amount of the trace element to be measured in a sample, is alternately transmitted and blocked by a linear polarizer, while the circularly polarized reference components are continuously transmitted thereby. The result is a sinusoidally varying output light amplitude whose average corresponds to the amount of the trace element present in the sample.

  4. ROTATIONAL AND CYCLICAL VARIABILITY IN {gamma} CASSIOPEIAE. II. FIFTEEN SEASONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Gregory W.; Smith, Myron A., E-mail: gregory.w.henry@gmail.com, E-mail: msmith@stsci.edu

    The B0.5 IVe star {gamma} Cas is of great interest because it is the prototype of a small group of classical Be stars having hard X-ray emission of unknown origin. We discuss results from ongoing B and V observations of the {gamma} Cas star-disk system acquired with an Automated Photometric Telescope during the observing seasons 1997-2011. In an earlier study, Smith, Henry, and Vishniac showed that light variations in {gamma} Cas are dominated by a series of comparatively prominent cycles with amplitudes of 0.02-0.03 mag and lengths of 2-3 months, superimposed on a 1.21 day periodic signal some five timesmore » smaller, which they attributed to rotation. The cycle lengths clustered around 70 days, with a total range of 50-91 days. Changes in both cycle length and amplitude were observed from year to year. These authors also found the V-band cycles to be 30%-40% larger than the B-band cycles. In the present study, we find continued evidence for these variability patterns and for the bimodal distribution of the {Delta}B/{Delta}V amplitude ratios in the long cycles. During the 2010 observing season, {gamma} Cas underwent a mass-loss event ({sup o}utburst{sup )}, as evidenced by the brightening and reddening seen in our new photometry. This episode coincided with a waning of the amplitude in the ongoing cycle. The Be outburst ended the following year, and the light-curve amplitude returned to pre-outburst levels. This behavior reinforces the interpretation that cycles arise from a global disk instability. We have determined a more precise value of the rotation period, 1.215811 {+-} 0.000030 days, using the longer 15-season data set and combining solutions from the V and B light curves. Remarkably, we also find that both the amplitude and the asymmetry of the rotational waveform changed over the years. We review arguments for this modulation arising from transits of a surface magnetic disturbance. Finally, to a limit of 5 mmag, we find no evidence for any photometric variation corresponding to the {gamma} Cas binary period, 203.55 days, or to the first few harmonics.« less

  5. Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates

    DOEpatents

    Epperly, William R.; Deane, Barry C.; Brunson, Roy J.

    1982-01-01

    An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

  6. The Second International Piping Integrity Research Group (IPIRG-2) program. Final report, October 1991--April 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopper, A.; Wilowski, G.; Scott, P.

    1997-03-01

    The IPIRG-2 program was an international group program managed by the US NRC and funded by organizations from 15 nations. The emphasis of the IPIRG-2 program was the development of data to verify fracture analyses for cracked pipes and fittings subjected to dynamic/cyclic load histories typical of seismic events. The scope included: (1) the study of more complex dynamic/cyclic load histories, i.e., multi-frequency, variable amplitude, simulated seismic excitations, than those considered in the IPIRG-1 program, (2) crack sizes more typical of those considered in Leak-Before-Break (LBB) and in-service flaw evaluations, (3) through-wall-cracked pipe experiments which can be used to validatemore » LBB-type fracture analyses, (4) cracks in and around pipe fittings, such as elbows, and (5) laboratory specimen and separate effect pipe experiments to provide better insight into the effects of dynamic and cyclic load histories. Also undertaken were an uncertainty analysis to identify the issues most important for LBB or in-service flaw evaluations, updating computer codes and databases, the development and conduct of a series of round-robin analyses, and analyst`s group meetings to provide a forum for nuclear piping experts from around the world to exchange information on the subject of pipe fracture technology. 17 refs., 104 figs., 41 tabs.« less

  7. Population cycles: generalities, exceptions and remaining mysteries.

    PubMed

    Myers, Judith H

    2018-03-28

    Population cycles are one of nature's great mysteries. For almost a hundred years, innumerable studies have probed the causes of cyclic dynamics in snowshoe hares, voles and lemmings, forest Lepidoptera and grouse. Even though cyclic species have very different life histories, similarities in mechanisms related to their dynamics are apparent. In addition to high reproductive rates and density-related mortality from predators, pathogens or parasitoids, other characteristics include transgenerational reduced reproduction and dispersal with increasing-peak densities, and genetic similarity among populations. Experiments to stop cyclic dynamics and comparisons of cyclic and noncyclic populations provide some understanding but both reproduction and mortality must be considered. What determines variation in amplitude and periodicity of population outbreaks remains a mystery. © 2018 The Author(s).

  8. Cyclic debonding of unidirectional composite bonded to aluminum sheet for constant-amplitude loading

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.; Everett, R. A., Jr.; Crews, J. H., Jr.

    1976-01-01

    Cyclic debonding rates were measured during constant-amplitude loading of specimens made of graphite/epoxy bonded to aluminum and S-glass/epoxy bonded to aluminum. Both room-temperature and elevated-temperature curing adhesives were used. Debonding was monitored with a photoelastic coating technique. The debonding rates were compared with three expressions for strain-energy release rate calculated in terms of the maximum stress, stress range, or a combination of the two. The debonding rates were influenced by both adherent thickness and the cyclic stress ratio. For a given value of maximum stress, lower stress ratios and thicker specimens produced faster debonding. Microscopic examination of the debonded surfaces showed different failure mechanisms both for identical adherends bonded with different adhesive and, indeed, even for different adherends bonded with identical adhesives. The expressions for strain-energy release rate correlated the data for different specimen thicknesses and stress ratios quite well for each material system, but the form of the best correlating expression varied among material systems. Empirical correlating expressions applicable to one material system may not be appropriate for another system.

  9. Influence of Austenite Stability on Steel Low Cycle Fatigue Response

    NASA Astrophysics Data System (ADS)

    Lehnhoff, G. R.; Findley, K. O.

    Austenitic steels were subjected to tensile and total strain controlled, fully reversed axial low cycle fatigue (LCF) testing to determine the influence of stacking fault energy on austenite stability, or resistance to strain induced martensitic transformation during tensile and fatigue deformation. Expected differences in stacking fault energy were achieved by modifying alloys with different amounts of silicon and aluminum. Al alloying was found to promote martensite formation during both tensile and LCF loading, while Si was found to stabilize austenite. Martensite formation increases tensile work hardening rates, though Si additions also increase the work hardening rate without martensite transformation. Similarly, secondary cyclic strain hardening during LCF is attributed to strain induced martensite formation, but Si alloying resulted in less secondary cyclic strain hardening. The amount of secondary cyclic hardening scales linearly with martensite fraction and depends only on the martensite fraction achieved and not on the martensite (i.e. parent austenite) chemistry. Martensite formation was detrimental to LCF lives at all strain amplitudes tested, although the total amount of martensitic transformation during LCF did not always monotonically increase with strain amplitude nor correlate to the amount of tensile transformation.

  10. Cyclic Axial-Torsional Deformation Behavior of a Cobalt-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1995-01-01

    The cyclic, high-temperature deformation behavior of a wrought cobalt-base super-alloy, Haynes 188, is investigated under combined axial and torsional loads. This is accomplished through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue database has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gage section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. The fatigue behavior of Haynes 188 at 760 C under axial, torsional, and combined axial-torsional loads and the monotonic and cyclic deformation behaviors under axial and torsional loads have been previously reported. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress ,versus engineering shear strain, axial strain versus engineering shear strain. and axial stress versus shear stress spaces are presented for cyclic in-phase and out-of-phase axial-torsional tests. For in-phase tests, three different values of the proportionality constant lambda (the ratio of engineering shear strain amplitude to axial strain amplitude, are examined, viz. 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 degrees with lambda equals 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase (lambda = 1.73 and phi = 0) and out-of-phase (lambda = 1.73 and phi = 90') axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Guozheng, E-mail: guozhengkang@home.swjtu.edu.cn; Dong, Yawei; Liu, Yujie

    The uniaxial ratchetting of Ti–6Al–4V alloy with two phases (i.e., primary hexagonal close packed (HCP) α and secondary body-centered cubic (BCC) β phases) was investigated by macroscopic and microscopic experiments at room temperature. Firstly, the effects of cyclic softening/hardening feature, applied mean stress and stress amplitude on the uniaxial ratchetting of the alloy were discussed. The macroscopic investigation of Ti–6Al–4V alloy presents obvious strain-amplitude-dependent cyclic softening, as well as a three-staged evolution curve with regard to the ratchetting strain rate. The ratchetting depends greatly on the applied mean stress and stress amplitude while the ratchetting strain increases with the increasingmore » applied mean stress and stress amplitude. Then, the evolution of dislocation patterns and deformation twinning during the uniaxial ratchetting of two-phase Ti–6Al–4V alloy were observed using transmission electron microscopy (TEM). The microscopic observation shows that deformation twinning occurs in the primary α phase and its amount increases gradually during the uniaxial ratchetting. Simultaneously, the planar dislocation evolves from discrete lines to some dislocation nets and parallel lines with the increasing number of cycles. The deformation twinning in the primary α phase is one of main contributions to the uniaxial ratchetting of Ti–6Al–4V alloy, and should be considered in the construction of corresponding constitutive model. - Highlights: • A three-staged ratchetting occurs in the stress-controlled cyclic tests of Ti–6Al–4V alloy. • Dislocation patterns change from discrete lines to nets and parallel lines. • Deformation twinning occurs during the uniaxial ratchetting. • Both dislocation slipping and twinning are the causes of ratchetting.« less

  12. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  13. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  14. Influence of Secondary Cyclic Hardening on the Low Cycle Fatigue Behavior of Nitrogen Alloyed 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Mathew, M. D.; Sankaran, S.

    2013-12-01

    In this article, the occurrence of secondary cyclic hardening (SCH) and its effect on high-temperature cyclic deformation and fatigue life of 316LN Stainless steel are presented. SCH is found to result from planar slip mode of deformation and enhance the degree of hardening over and above that resulted from dynamic strain aging. The occurrence of SCH is strongly governed by the applied strain amplitude, test temperature, and the nitrogen content in the 316LN SS. Under certain test conditions, SCH is noticed to decrease the low cycle fatigue life with the increasing nitrogen content.

  15. Color visualization of cyclic magnitudes

    NASA Astrophysics Data System (ADS)

    Restrepo, Alfredo; Estupiñán, Viviana

    2014-02-01

    We exploit the perceptual, circular ordering of the hues in a technique for the visualization of cyclic variables. The hue is thus meaningfully used for the indication of variables such as the azimuth and the units of the measurement of time. The cyclic (or circular) variables may be both of the continuous type or the discrete type; among the first there is azimuth and among the last you find the musical notes and the days of the week. A correspondence between the values of a cyclic variable and the chromatic hues, where the natural circular ordering of the variable is respected, is called a color code for the variable. We base such a choice of hues on an assignment of of the unique hues red, yellow, green and blue, or one of the 8 even permutations of this ordered list, to 4 cardinal values of the cyclic variable, suitably ordered; color codes based on only 3 cardinal points are also possible. Color codes, being intuitive, are easy to remember. A possible low accuracy when reading instruments that use this technique is compensated by fast, ludic and intuitive readings; also, the use of a referential frame makes readings precise. An achromatic version of the technique, that can be used by dichromatic people, is proposed.

  16. Grain boundary engineering: fatigue fracture

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2017-04-01

    Grain boundary engineering has revealed significant enhancement of material properties by modifying the populations and connectivity of different types of grain boundaries within the polycrystals. The character and connectivity of grain boundaries in polycrystalline microstructures control the corrosion and mechanical behaviour of materials. A comprehensive review of the previous researches has been carried out to understand this philosophy. Present research thoroughly explores the effect of total strain amplitude on phase transformation, fatigue fracture features, grain size, annealing twinning, different grain connectivity and grain boundary network after strain controlled low cycle fatigue deformation of austenitic stainless steel under ambient temperature. Electron backscatter diffraction technique has been used extensively to investigate the grain boundary characteristics and morphologies. The nominal variation of strain amplitude through cyclic plastic deformation is quantitatively demonstrated completely in connection with the grain boundary microstructure and fractographic features to reveal the mechanism of fatigue fracture of polycrystalline austenite. The extent of boundary modifications has been found to be a function of the number of applied loading cycles and strain amplitudes. It is also investigated that cyclic plasticity induced martensitic transformation strongly influences grain boundary characteristics and modifications of the material's microstructure/microtexture as a function of strain amplitudes. The experimental results presented here suggest a path to grain boundary engineering during fatigue fracture of austenite polycrystals.

  17. Evidence for a possible neurotransmitter/neuromodulator role of tyramine on the locust oviducts.

    PubMed

    Donini, Andrew; Lange, Angela B

    2004-04-01

    Visualization of the tyraminergic innervation of the oviducts was demonstrated by immunohistochemistry, and the presence of tyramine was confirmed using high-performance liquid chromatography coupled to electrochemical detection. Oviducts incubated in high-potassium saline released tyramine in a calcium-dependent manner. Stimulation of the oviducal nerves also resulted in tyramine release, suggesting that tyramine might function as a neurotransmitter/neuromodulator at the locust oviducts. Tyramine decreased the basal tension, and also attenuated proctolin-induced contractions in a dose-dependent manner over a range of doses between 10(-7) and 10(-4) M. Low concentrations of tyramine attenuated forskolin-stimulated cyclic AMP levels in a dose-dependent manner. This effect was not blocked by yohimbine. High concentrations of tyramine increased basal cyclic AMP levels of locust oviducts in a dose-dependent manner; however, the increases in cyclic AMP were only evident at the highest concentrations tested, 5 x 10(-5) and 10(-4) M tyramine. The tyramine-induced increase in cyclic AMP shared a similar pharmacological profile with the octopamine-induced increase in cyclic AMP. Tyramine increased the amplitude of excitatory junction potentials at low concentrations while hyperpolarizing the membrane potential by 2-5 mV. A further increase in the amplitude of the excitatory junction potentials and the occurrence of an active response was seen upon washing tyramine from the preparation. These results suggest that tyramine can activate at least three different endogenous receptors on the locust oviducts a putative tyramine receptor at low concentrations, a different tyramine receptor to inhibit muscle contraction, and an octopamine receptor at high concentrations.

  18. Layering, melting, and recrystallization of a close-packed micellar crystal under steady and large-amplitude oscillatory shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com; Wagner, Norman J.; Porcar, Lionel

    2015-05-15

    The rheology and three-dimensional microstructure of a concentrated viscoelastic solution of the triblock copolymer poly(ethylene oxide){sub 106}-poly(propylene oxide){sub 68}-poly(ethylene oxide){sub 106} (Pluronic F127) in the protic ionic liquid ethylammonium nitrate are measured by small angle neutron scattering (SANS) under flow in three orthogonal planes. This solution's shear-thinning viscosity is due to the formation of two-dimensional hexagonal close-packed (HCP) sliding layer structure. Shear-melting of the crystalline structure is observed without disruption of the self-assembled micelles, resulting in a change in flow properties. Spatially resolved measurements in the 1–2 plane reveal that both shear-melting and sliding are not uniform across the Couettemore » gap. Melting and recrystallization of the HCP layers occur cyclically during a single large amplitude oscillatory shear (LAOS) cycle, in agreement with the “stick-slip” flow mechanism proposed by Hamley et al. [Phys. Rev. E 58, 7620–7628 (1998)]. Analysis of 3D “structural” Lissajous curves show that the cyclic melting and sliding are direct functions of the strain rate amplitude and show perfect correlation with the cyclic stress response during LAOS. Both viscosity and structural order obey the Delaware–Rutgers rule. Combining rheology with in situ spatiotemporally resolved SANS is demonstrated to elucidate the structural origins of the nonlinear rheology of complex fluids.« less

  19. Computational Study of Axial Fatigue for Peripheral Nitinol Stents

    NASA Astrophysics Data System (ADS)

    Meoli, Alessio; Dordoni, Elena; Petrini, Lorenza; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo

    2014-07-01

    Despite their success as primary treatment for vascular diseases, Nitinol peripheral stents are still affected by complications related to fatigue failure. Hip and knee movements during daily activities produce large and cyclic deformations of the superficial femoral artery, that concomitant to the effects of pulsatile blood pressure, may cause fatigue failure in the stent. Fatigue failure typically occurs in cases of very extended lesions, which often require the use of two or more overlapping stents. In this study, finite element models were used to study the fatigue behavior of Nitinol stents when subjected to cyclic axial compression in different conditions. A specific commercial Nitinol stent was chosen for the analysis and subjected to cyclic axial compression typical of the femoral vascular region. Three different configurations were investigated: stent alone, stent deployed in a tube, and two overlapping stents deployed in a tube. Results confirm that stent oversizing has an influence in determining both the mean and amplitude strains induced in the stent and plays an important role in determining the fatigue response of Nitinol stents. In case of overlapping stents, numerical results suggest higher amplitude strains concentrate in the region close to the overlapping portion where the abrupt change in stiffness causes higher cyclic compression. These findings help to explain the high incidence of stent fractures observed in various clinical trials located close to the overlapping portion.

  20. Consolidation of fatigue and fatigue-crack-propagation data for design use

    NASA Technical Reports Server (NTRS)

    Rice, R. C.; Davies, K. B.; Jaske, C. E.; Feddersen, C. E.

    1975-01-01

    Analytical methods developed for consolidation of fatigue and fatigue-crack-propagation data for use in design of metallic aerospace structural components are evaluated. A comprehensive file of data on 2024 and 7075 aluminums, Ti-6Al-4V alloy, and 300M steel was established by obtaining information from both published literature and reports furnished by aerospace companies. Analyses are restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Both fatigue and fatigue-crack-propagation data are analyzed on a statistical basis using a least-squares regression approach. For fatigue, an equivalent strain parameter is used to account for mean stress or stress ratio effects and is treated as the independent variable; cyclic fatigue life is considered to be the dependent variable. An effective stress-intensity factor is used to account for the effect of load ratio on fatigue-crack-propagation and treated as the independent variable. In this latter case, crack-growth rate is considered to be the dependent variable. A two term power function is used to relate equivalent strain to fatigue life, and an arc-hyperbolic-tangent function is used to relate effective stress intensity to crack-growth rate.

  1. Investigating light curve modulation via kernel smoothing. I. Application to 53 fundamental mode and first-overtone Cepheids in the LMC

    NASA Astrophysics Data System (ADS)

    Süveges, Maria; Anderson, Richard I.

    2018-03-01

    Context. Recent studies have revealed a hitherto unknown complexity of Cepheid pulsations by discovering irregular modulated variability using photometry, radial velocities, and interferometry. Aim. We aim to perform a statistically rigorous search and characterization of such phenomena in continuous time, applying it to 53 classical Cepheids from the OGLE-III catalog. Methods: We have used local kernel regression to search for both period and amplitude modulations simultaneously in continuous time and to investigate their detectability. We determined confidence intervals using parametric and non-parametric bootstrap sampling to estimate significance, and investigated multi-periodicity using a modified pre-whitening approach that relies on time-dependent light curve parameters. Results: We find a wide variety of period and amplitude modulations and confirm that first overtone pulsators are less stable than fundamental mode Cepheids. Significant temporal variations in period are more frequently detected than those in amplitude. We find a range of modulation intensities, suggesting that both amplitude and period modulations are ubiquitous among Cepheids. Over the 12-year baseline offered by OGLE-III, we find that period changes are often nonlinear, sometimes cyclic, suggesting physical origins beyond secular evolution. Our method detects modulations (period and amplitude) more efficiently than conventional methods that are reliant on certain features in the Fourier spectrum, and pre-whitens time series more accurately than using constant light curve parameters, removing spurious secondary peaks effectively. Conclusions: Period and amplitude modulations appear to be ubiquitous among Cepheids. Current detectability is limited by observational cadence and photometric precision: detection of amplitude modulation below 3 mmag requires space-based facilities. Recent and ongoing space missions (K2, BRITE, MOST, CoRoT) as well as upcoming ones (TESS, PLATO) will significantly improve detectability of fast modulations, such as cycle-to-cycle variations, by providing high-cadence high-precision photometry. High-quality long-term ground-based photometric time series will remain crucial to study longer-term modulations and to disentangle random fluctuations from secular evolution.

  2. Mechanical properties of a nitrogen-bearing austenitic steel during static and cycle deformation

    NASA Astrophysics Data System (ADS)

    Blinov, E. V.; Terent'ev, V. F.; Prosvirnin, D. V.

    2016-09-01

    The mechanical properties of a nitrogen-bearing corrosion-resistant austenitic steel containing 0.311% nitrogen have been studied during static and cyclic deformation. It is found that the steel having an ultimate strength of 930 MPa exhibits a plasticity of 33%. The endurance limit under repeated tension at 106 loading cycles is 400 MPa. The propagation of a fatigue crack at low and high amplitudes of cyclic deformation follows a ductile fracture mechanism with the presence of fatigue grooves.

  3. On the connection between multigrid and cyclic reduction

    NASA Technical Reports Server (NTRS)

    Merriam, M. L.

    1984-01-01

    A technique is shown whereby it is possible to relate a particular multigrid process to cyclic reduction using purely mathematical arguments. This technique suggest methods for solving Poisson's equation in 1-, 2-, or 3-dimensions with Dirichlet or Neumann boundary conditions. In one dimension the method is exact and, in fact, reduces to cyclic reduction. This provides a valuable reference point for understanding multigrid techniques. The particular multigrid process analyzed is referred to here as Approximate Cyclic Reduction (ACR) and is one of a class known as Multigrid Reduction methods in the literature. It involves one approximation with a known error term. It is possible to relate the error term in this approximation with certain eigenvector components of the error. These are sharply reduced in amplitude by classical relaxation techniques. The approximation can thus be made a very good one.

  4. Long-Term Variability of the Sun in the Context of Solar-Analog Stars

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky

    2018-06-01

    The Sun is the best observed object in astrophysics, but despite this distinction the nature of its well-ordered generation of magnetic field in 11-year activity cycles remains a mystery. In this work, we place the solar cycle in a broader context by examining the long-term variability of solar analog stars within 5% of the solar effective temperature, but varied in rotation rate and metallicity. Emission in the Fraunhofer H & K line cores from singly-ionized calcium in the lower chromosphere is due to magnetic heating, and is a proven proxy for magnetic flux on the Sun. We use Ca H & K observations from the Mount Wilson Observatory HK project, the Lowell Observatory Solar Stellar Spectrograph, and other sources to construct composite activity time series of over 100 years in length for the Sun and up to 50 years for 26 nearby solar analogs. Archival Ca H & K observations of reflected sunlight from the Moon using the Mount Wilson instrument allow us to properly calibrate the solar time series to the S-index scale used in stellar studies. We find the mean solar S-index to be 5–9% lower than previously estimated, and the amplitude of activity to be small compared to active stars in our sample. A detailed look at the young solar analog HD 30495, which rotates 2.3 times faster than the Sun, reveals a large amplitude ~12-year activity cycle and an intermittent short-period variation of 1.7 years, comparable to the solar variability time scales despite its faster rotation. Finally, time series analyses of the solar analog ensemble and a quantitative analysis of results from the literature indicate that truly Sun-like cyclic variability is rare, and that the amplitude of activity over both long and short timescales is linearly proportional to the mean activity. We conclude that the physical conditions conducive to a quasi-periodic magnetic activity cycle like the Sun’s are rare in stars of approximately the solar mass, and that the proper conditions may be restricted to a relatively narrow range of rotation rates.

  5. Long-Term Variability of the Sun in the Context of Solar-Analog Stars

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky

    2017-04-01

    The Sun is the best observed object in astrophysics, but despite this distinction the nature of its well-ordered generation of magnetic field in 11-year activity cycles remains a mystery. In this work, we place the solar cycle in a broader context by examining the long-term variability of solar analog stars within 5% of the solar effective temperature, but varied in rotation rate and metallicity. Emission in the Fraunhofer H & K line cores from singly-ionized calcium in the lower chromosphere is due to magnetic heating, and is a proven proxy for magnetic flux on the Sun. We use Ca H & K observations from the Mount Wilson Observatory HK project, the Lowell Observatory Solar Stellar Spectrograph, and other sources to construct composite activity time series of over 100 years in length for the Sun and up to 50 years for 26 nearby solar analogs. Archival Ca H & K observations of reflected sunlight from the Moon using the Mount Wilson instrument allow us to properly calibrate the solar time series to the S-index scale used in stellar studies. We find the mean solar S-index to be 5-9% lower than previously estimated, and the amplitude of activity to be small compared to active stars in our sample. A detailed look at the young solar analog HD 30495, which rotates 2.3 times faster than the Sun, reveals a large amplitude 12-year activity cycle and an intermittent short-period variation of 1.7 years, comparable to the solar variability time scales despite its faster rotation. Finally, time series analyses of the solar analog ensemble and a quantitative analysis of results from the literature indicate that truly Sun-like cyclic variability is rare, and that the amplitude of activity over both long and short timescales is linearly proportional to the mean activity. We conclude that the physical conditions conducive to a quasi-periodic magnetic activity cycle like the Sun's are rare in stars of approximately the solar mass, and that the proper conditions may be restricted to a relatively narrow range of rotation rates.

  6. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  7. Inter-individual variability and pattern recognition of surface electromyography in front crawl swimming.

    PubMed

    Martens, Jonas; Daly, Daniel; Deschamps, Kevin; Staes, Filip; Fernandes, Ricardo J

    2016-12-01

    Variability of electromyographic (EMG) recordings is a complex phenomenon rarely examined in swimming. Our purposes were to investigate inter-individual variability in muscle activation patterns during front crawl swimming and assess if there were clusters of sub patterns present. Bilateral muscle activity of rectus abdominis (RA) and deltoideus medialis (DM) was recorded using wireless surface EMG in 15 adult male competitive swimmers. The amplitude of the median EMG trial of six upper arm movement cycles was used for the inter-individual variability assessment, quantified with the coefficient of variation, coefficient of quartile variation, the variance ratio and mean deviation. Key features were selected based on qualitative and quantitative classification strategies to enter in a k-means cluster analysis to examine the presence of strong sub patterns. Such strong sub patterns were found when clustering in two, three and four clusters. Inter-individual variability in a group of highly skilled swimmers was higher compared to other cyclic movements which is in contrast to what has been reported in the previous 50years of EMG research in swimming. This leads to the conclusion that coaches should be careful in using overall reference EMG information to enhance the individual swimming technique of their athletes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Amplitude Variability in gamma Dor and delta Sct Stars Observed by Kepler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzik, Joyce Ann; Kosak, Mary Katherine; Bradley, Paul Andrew

    2015-08-17

    The NASA Kepler spacecraft data revealed a large number of new multimode nonradially pulsating gamma Dor and delta Sct variable stars. The Kepler high-precision long time-series photometry makes it possible to study amplitude variations of the frequencies, and recent literature on amplitude and frequency variations in nonradially pulsating variables is summarized. Several methods are applied to study amplitude variability in about a dozen gamma Doradus or delta Scuti candidate variable stars observed for several quarters as part of the Kepler Guest Observer program. The magnitude and timescale of the amplitude variations are discussed, along with the presence or absence ofmore » correlations between amplitude variations for different frequencies of a given star. Proposed causes of amplitude spectrum variability that will require further investigation are also discussed.« less

  9. Fatigue Lifetime of Ceramic Matrix Composites at Intermediate Temperature by Acoustic Emission

    PubMed Central

    Racle, Elie; Godin, Nathalie; Reynaud, Pascal; Fantozzi, Gilbert

    2017-01-01

    The fatigue behavior of a Ceramic Matrix Composite (CMC) at intermediate temperature under air is investigated. Because of the low density and the high tensile strength of CMC, they offer a good technical solution to design aeronautical structural components. The aim of the present study is to compare the behavior of this composite under static and cyclic loading. Comparison between incremental static and cyclic tests shows that cyclic loading with an amplitude higher than 30% of the ultimate tensile strength has significant effects on damage and material lifetimes. In order to evaluate the remaining lifetime, several damage indicators, mainly based on the investigation of the liberated energy, are introduced. These indicators highlight critical times or characteristic times, allowing an evaluation of the remaining lifetime. A link is established with the characteristic time around 25% of the total test duration and the beginning of the matrix cracking during cyclic fatigue. PMID:28773019

  10. Cyclic Mario worlds — color-decomposition for one-loop QCD

    NASA Astrophysics Data System (ADS)

    Kälin, Gregor

    2018-04-01

    We present a new color decomposition for QCD amplitudes at one-loop level as a generalization of the Del Duca-Dixon-Maltoni and Johansson-Ochirov decomposition at tree level. Starting from a minimal basis of planar primitive amplitudes we write down a color decomposition that is free of linear dependencies among appearing primitive amplitudes or color factors. The conjectured decomposition applies to any number of quark flavors and is independent of the choice of gauge group and matter representation. The results also hold for higher-dimensional or supersymmetric extensions of QCD. We provide expressions for any number of external quark-antiquark pairs and gluons. [Figure not available: see fulltext.

  11. Extraordinary Activity in the BL Lac Object OJ 287

    NASA Astrophysics Data System (ADS)

    Hughes, P. A.; Aller, H. D.; Aller, M. F.

    We present the results of a wavelet transform analysis of data for the BL Lac object OJ 287 acquired as part of the UMRAO variability program. We find clear evidence for a persistent modulation of the total flux and polarization with period 1.66 years, and for another signal that dominates activity in the 1980s with period 1.12 years. It appears that the longer time scale periodicity is associated with an otherwise quiescent jet, and the shorter time scale activity is associated with the passage of a shock, or shocks. The periodic behavior in polarization exhibits excursions in U which correspond to a direction 45circ from the VLBI jet axis. This behavior suggests a small amplitude, cyclic variation in the flow direction in that part of the flow that dominates cm-wavelength emission.

  12. Aerodynamic Characteristics of the 30mm XM788E1 and XM789 projectiles

    DTIC Science & Technology

    1982-10-01

    successfully predicted the effect of a cubic Magnus moment on the damping rates by means of an amplitude-plane analysis. However, the amplitude-plane...technique becomes cumbersome for a projectile with both Magnus and pitch-dariping moment non-linearities. The effects of changi,,y epi- cyclic...show the existence of a slow arm limit- cycle yaw at high subsonic speeds, and a limit-epicycle yaw at lower subsonic speeds. The effect of the limit

  13. Cyclic axial-torsional deformation behavior of a cobalt-base superalloy

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-01-01

    Multiaxial loading, especially at elevated temperature, can cause the inelastic response of a material to differ significantly from that predicted by simple flow rules, i.e., von Mises or Tresca. To quantify some of these differences, the cyclic high-temperature, deformation behavior of a wrought cobalt-based superalloy, Haynes 188, is investigated under combined axial and torsional loads. Haynes 188 is currently used in many aerospace gas turbine and rocket engine applications, e.g., the combustor liner for the T800 turboshaft engine for the RAH-66 Comanche helicopter and the liquid oxygen posts in the main injector of the space shuttle main engine. The deformation behavior of this material is assessed through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue data base has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gauge section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress versus engineering shear strain, axial strain versus engineering shear strain, and axial stress versus shear stress spaces are presented for cyclic, in-phase and out-of-phase, axial torsional tests. For in-phase tests three different values of the proportionality constant, lambda (ratio of engineering shear strain amplitude to axial strain amplitude), are examined, viz., 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 deg with lambda = 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase and out-of-phase axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.

  14. Experimental and theoretical investigation of temperature-dependent electrical fatigue studies on 1-3 type piezocomposites

    NASA Astrophysics Data System (ADS)

    Mohan, Y.; Arockiarajan, A.

    2016-03-01

    1-3 type piezocomposites are very attractive materials for transducers and biomedical application, due to its high electromechanical coupling effects. Reliability study on 1-3 piezocomposites subjected to cyclic loading condition in transducer application is one of the primary concern. Hence, this study focuses on 1-3 piezocomposites for various PZT5A1 fiber volume fraction subjected to electrical fatigue loading up-to 106 cycles and at various elevated temperature. Initially experiments are performed on 1-3 piezocomposites, in order to understand the degradation phenomena due to various range in amplitude of electric fields (unipolar & bipolar), frequency of applied electric field and for various ambient temperature. Performing experiments for high cycle fatigue and for different fiber volume fraction of PZT5A1 is a time consuming process. Hence, a simplified macroscopic uni-axial model based on physical mechanisms of domain switching and continuum damage mechanics has been developed to predict the non-linear fatigue behaviour of 1-3 piezocomposites for temperature dependent electrical fatigue loading conditions. In this model, damage effects namely domain pinning, frozen domains and micro cracks, are considered as a damage variable (ω). Remnant variables and material properties are considered as a function of internal damage variable and the growth of the damage is derived empirically based on the experimental observation to predict the macroscopic changes in the properties. The measured material properties and dielectric hysteresis (electric displacement vs. electric field) as well as butterfly curves (longitudinal strain vs. electric field) are compared with the simulated results. It is observed that variation in amplitude of bipolar electric field and temperature has a strong influence on the response of 1-3 piezocomposites.

  15. A Close Hidden Stellar Companion to the SX Phe-Type Variable Star DW Psc

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Li, L.-J.; Wang, S.-M.; He, J.-J.; Zhou, X.; Jiang, L.-Q.

    2015-01-01

    DW Psc is a high-amplitude SX Phe-type variable with a period of pulsation of 0.05875 days. Using a few newly determined times of maximum light together with those collected from the literature, the changes in the observed-calculated (O-C) diagram are analyzed. It is discovered that the O-C curve of DW Psc shows a cyclic variation with a period of 6.08 years and a semi-amplitude of 0.0066 days. The periodic variation is analyzed for the light travel time effect, which is due to the presence of a stellar companion ({{M}2}sin i˜ 0.45(+/- 0.03) {{M}⊙ }). The two-component stars in the binary system are orbiting each other in an eccentric orbit (e ˜ 0.4) at an orbital separation of about 2.7(±0.3) AU. The detection of a close stellar companion to an SX Phe-type star supports the idea that SX Phe-type pulsating stars are blue stragglers that were formed from the merging of close binaries. The stellar companion has played an important role in the merging of the original binary by removing angular momentum from the central binary during early dynamical interaction or/and late dynamical evolution. After the more massive component in DW Psc evolves into a red giant, the cool close companion should help to remove the giant envelope via possible critical Roche-lobe overflow, and the system may be a progenitor of a cataclysmic variable. The detection of a close stellar companion to DW Psc makes it a very interesting system to study in the future.

  16. The influence of matrix microstructure

    NASA Astrophysics Data System (ADS)

    Vyletel, G. M.; Allison, J. E.; Aken, D. C.

    1993-11-01

    The low-cycle and high-cycle fatigue behavior and cyclic response of naturally aged and artificially aged 2219/TiC/15p and unreinforced 2219 Al were investigated utilizing plastic strain-controlled and stress-controlled testing. The cyclic response of both the reinforced and un-reinforced materials was similar for all plastic strain amplitudes tested except that the saturation stress level for the composite was always greater than that of the unreinforced material. The cyclic response of the naturally aged materials exhibited cyclic hardening and, in some cases, cyclic softening, while the cyclic response for the artificially aged materials showed no evidence of either cyclic hardening or softening. The higher ductility of the unreinforced material made it more resistant to fatigue failure at high strains, and thus, at a given plastic strain, it had longer fatigue life. It should be noted that the tensile ductilities of the 2219/TiC/15p were significantly higher than those previously reported for 2XXX-series composites. During stress-controlled test-ing at stresses below 220 MPa, the presence of TiC particles lead to an improvement in fatigue life. Above 220 MPa, no influence of TiC reinforcement on fatigue life could be detected. In both the composite and unreinforced materials, the low-cycle and high-cycle fatigue lives were found to be virtually independent of matrix microstructure.

  17. Fatigue of cord-rubber composites for tires

    NASA Astrophysics Data System (ADS)

    Song, Jaehoon

    Fatigue behaviors of cord-rubber composite materials forming the belt region of radial pneumatic tires have been characterized to assess their dependence on stress, strain and temperature history as well as materials composition and construction . Using actual tires, it was found that interply shear strain is one of the crucial parameters for damage assessment from the result that higher levels of interply shear strain of actual tires reduce the fatigue lifetime. Estimated at various levels of load amplitude were the fatigue life, the extent and rate of resultant strain increase ("dynamic creep"), cyclic strains at failure, and specimen temperature. The interply shear strain of 2-ply 'tire belt' composite laminate under circumferential tension was affected by twisting of specimen due to tension-bending coupling. However, a critical level of interply shear strain, which governs the gross failure of composite laminate due to the delamination, appeared to be independent of different lay-up of 2-ply vs. symmetric 4-ply configuration. Reflecting their matrix-dominated failure modes such as cord-matrix debonding and delamination, composite laminates with different cord reinforcements showed the same S-N relationship as long as they were constructed with the same rubber matrix, the same cord angle, similar cord volume, and the same ply lay-up. Because of much lower values of single cycle strength (in terms of gross fracture load per unit width), the composite laminates with larger cord angle and the 2-ply laminates exhibited exponentially shorter fatigue lifetime, at a given stress amplitude, than the composite laminates with smaller cord angle and 4-ply symmetric laminates, respectively. The increase of interply rubber thickness lengthens their fatigue lifetime at an intermediate level of stress amplitude. However, the increase in the fatigue lifetime of the composite laminate becomes less noticeable at very low stress amplitude. Even with small compressive cyclic stresses, the fatigue life of belt composites is predominantly influenced by the magnitude of maximum stress. Maximum cyclic strain of composite laminates at failure, which measures the total strain accumulation for gross failure, was independent of stress amplitude and close to the level of static failure strain. For all composite laminates under study, a linear correlation could be established between the temperature rise rate and dynamic creep rate which was, in turn, inversely proportional to the fatigue lifetime. Using the acoustic emission (AE) initiation stress value, better prediction of fatigue life was available for the fiber-reinforced composites having fatigue limit. The accumulation rate of AE activities during cyclic loading was linearly proportional to the maximum applied load and to the inverse of the fatigue life of cord-rubber composite laminates. Finally, a modified fatigue modulus model based on combination of power-law and logarithmic relation was proposed to predict the fatigue lifetime profile of cord-rubber composite laminates.

  18. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography

    PubMed Central

    Penzel, Thomas; Kantelhardt, Jan W.; Bartsch, Ronny P.; Riedl, Maik; Kraemer, Jan F.; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave). PMID:27826247

  19. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography.

    PubMed

    Penzel, Thomas; Kantelhardt, Jan W; Bartsch, Ronny P; Riedl, Maik; Kraemer, Jan F; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave).

  20. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  1. Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high-resolution fiber-optic manometry

    PubMed Central

    DINNING, P. G.; WIKLENDT, L.; MASLEN, L.; GIBBINS, I.; PATTON, V.; ARKWRIGHT, J. W.; LUBOWSKI, D. Z.; O'GRADY, G.; BAMPTON, P. A.; BROOKES, S. J.; COSTA, M.

    2015-01-01

    Background Until recently, investigations of the normal patterns of motility of the healthy human colon have been limited by the resolution of in vivo recording techniques. Methods We have used a new, high-resolution fiber-optic manometry system (72 sensors at 1-cm intervals) to record motor activity from colon in 10 healthy human subjects. Key Results In the fasted colon, on the basis of rate and extent of propagation, four types of propagating motor pattern could be identified: (i) cyclic motor patterns (at 2–6/min); (ii) short single motor patterns; (iii) long single motor patterns; and (iv) occasional retrograde, slow motor patterns. For the most part, the cyclic and short single motor patterns propagated in a retrograde direction. Following a 700 kCal meal, a fifth motor pattern appeared; high-amplitude propagating sequences (HAPS) and there was large increase in retrograde cyclic motor patterns (5.6±5.4/2 h vs 34.7±19.8/2 h; p < 0.001). The duration and amplitude of individual pressure events were significantly correlated. Discriminant and multivariate analysis of duration, gradient, and amplitude of the pressure events that made up propagating motor patterns distinguished clearly two types of pressure events: those belonging to HAPS and those belonging to all other propagating motor patterns. Conclusions & Inferences This work provides the first comprehensive description of colonic motor patterns recorded by high-resolution manometry and demonstrates an abundance of retrograde propagating motor patterns. The propagating motor patterns appear to be generated by two independent sources, potentially indicating their neurogenic or myogenic origin. PMID:25131177

  2. Effect of nitrogen on high temperature low cycle fatigue behaviors in type 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Kim, Dae Whan; Ryu, Woo-Seog; Hong, Jun Hwa; Choi, Si-Kyung

    1998-04-01

    Strain-controlled low cycle fatigue (LCF) tests were conducted in the temperature range of RT-600°C and air atmosphere to investigate the nitrogen effect on LCF behavior of type 316L stainless steels with different nitrogen contents (0.04-0.15%). The waveform of LCF was a symmetrical triangle with a strain amplitude of ±0.5% and a constant strain rate of 2×10 -3/s was employed for most tests. Cyclic stress response of the alloys exhibited a gradual cyclic softening at RT, but a cyclic hardening at an early stage of fatigue life at 300-600°C. The hardening at high temperature was attributed to dynamic strain aging (DSA). Nitrogen addition decreased hardening magnitude (maximum cyclic stress — first cyclic stress) because nitrogen retarded DSA for these conditions. The dislocation structures were changed from cell to planar structure with increasing temperature and nitrogen addition by DSA and short range order (SRO). Fatigue life was a maximum at 0.1% nitrogen content, which was attributed to the balance between DSA and SRO.

  3. Influence of fluid and volume state on PaO2 oscillations in mechanically ventilated pigs.

    PubMed

    Bodenstein, Marc; Bierschock, Stephan; Boehme, Stefan; Wang, Hemei; Vogt, Andreas; Kwiecien, Robert; David, Matthias; Markstaller, Klaus

    2013-03-01

    Varying pulmonary shunt fractions during the respiratory cycle cause oxygen oscillations during mechanical ventilation. In artificially damaged lungs, cyclical recruitment of atelectasis is responsible for varying shunt according to published evidence. We introduce a complimentary hypothesis that cyclically varying shunt in healthy lungs is caused by cyclical redistribution of pulmonary perfusion. Administration of crystalloid or colloid infusions would decrease oxygen oscillations if our hypothesis was right. Therefore, n=14 mechanically ventilated healthy pigs were investigated in 2 groups: crystalloid (fluid) versus no-fluid administration. Additional volume interventions (colloid infusion, blood withdrawal) were carried out in each pig. Intra-aortal PaO2 oscillations were recorded using fluorescence quenching technique. Phase shift of oxygen oscillations during altered inspiratory to expiratory (I:E) ventilation ratio and electrical impedance tomography (EIT) served as control methods to exclude that recruitment of atelectasis is responsible for oxygen oscillations. In hypovolemia relevant oxygen oscillations could be recorded. Fluid and volume state changed PaO2 oscillations according to our hypothesis. Fluid administration led to a mean decline of 105.3 mmHg of the PaO2 oscillations amplitude (P<0.001). The difference of the amplitudes between colloid administration and blood withdrawal was 62.4 mmHg in pigs not having received fluids (P=0.0059). Fluid and volume state also changed the oscillation phase during altered I:E ratio. EIT excluded changes of regional ventilation (i.e., recruitment of atelectasis) to be responsible for these oscillations. In healthy pigs, cyclical redistribution of pulmonary perfusion can explain the size of respiratory-dependent PaO2 oscillations.

  4. Hints for cyclical recruitment of atelectasis during ongoing mechanical ventilation in lavage and oleic acid lung injury detected by SpO₂ oscillations and electrical impedance tomography.

    PubMed

    Bodenstein, Marc; Boehme, Stefan; Wang, Hemei; Duenges, Bastian; Markstaller, Klaus

    2014-11-01

    Detection of cyclical recruitment of atelectasis after induction of lavage (LAV) or oleic acid injury (OAI) in mechanically ventilated pigs. Primary hypothesis is that oxygen oscillations within the respiratory cycle can be detected by SpO₂ recordings (direct hint). SpO₂ oscillations reflect shunt oscillations that can only be explained by cyclical recruitment of atelectasis. Secondary hypothesis is that electrical impedance tomography (EIT) depicts specific regional changes of lung aeration and of pulmonary mechanical properties (indirect hint). Three groups (each n = 7) of mechanically ventilated pigs were investigated applying above mentioned methods before and repeatedly after induction of lung injury: (1) sham treated animals (SHAM), (2) LAV, and (3) OAI. Early oxygen oscillations occurred in the LAV group (mean calculated amplitude: 73.8 mmHg reflecting shunt oscillation of 11.2% in mean). In the OAI group oxygen oscillations occurred hours after induction of lung injury (mean calculated amplitude: 57.1 mmHg reflecting shunt oscillations of 8.4% in mean). The SHAM group had no relevant oxygen oscillations (<30 mmHg, shunt oscillations < 1.5%). Synchronously to oxygen oscillations, EIT depicted (1) a decrease of ventilation in dorsal areas, (2) an increase in ventral areas, (3) a decrease of especially dependent expiratory impedance, 3) an increase in late inspiratory flow especially in the dependant areas, (4) an increase in the speed of peak expiratory flow (PEF), and (5) a decrease of dorsal late expiratory flow. SpO2 and EIT recordings detect events that are interpreted as cyclical recruitment of atelectasis.

  5. Dynamic strain aging behavior of 10Cr steel under low cycle fatigue at 650°C

    NASA Astrophysics Data System (ADS)

    Mishnev, Roman; Dudova, Nadezhda; Kaibyshev, Rustam

    2017-12-01

    The low cycle fatigue behavior of a 10Cr-2W-0.7Mo-3Co-NbV steel with 80 ppm of B additions was studied at elevated temperatures of 600 and 650°C. The steel after normalizing and tempering at 770°C was tested under fully reversed tension-compression loading with the total strain amplitude controlled from ±0.2 to ±1.0% at temperatures of 600 and 650°C. It was revealed that the steel exhibits a positive temperature dependence of both the cyclic strain hardening exponent n' and the cyclic strength coefficient K ' during cyclic loading at 650°C. It was suggested that dynamic strain aging causes fatigue resistance degradation through facilitating microcrack initiation.

  6. Access to enhanced differences in Marcus-Hush and Butler-Volmer electron transfer theories by systematic analysis of higher order AC harmonics.

    PubMed

    Stevenson, Gareth P; Baker, Ruth E; Kennedy, Gareth F; Bond, Alan M; Gavaghan, David J; Gillow, Kathryn

    2013-02-14

    The potential-dependences of the rate constants associated with heterogeneous electron transfer predicted by the empirically based Butler-Volmer and fundamentally based Marcus-Hush formalisms are well documented for dc cyclic voltammetry. However, differences are often subtle, so, presumably on the basis of simplicity, the Butler-Volmer method is generally employed in theoretical-experimental comparisons. In this study, the ability of Large Amplitude Fourier Transform AC Cyclic Voltammetry to distinguish the difference in behaviour predicted by the two formalisms has been investigated. The focus of this investigation is on the difference in the profiles of the first to sixth harmonics, which are readily accessible when a large amplitude of the applied ac potential is employed. In particular, it is demonstrated that systematic analysis of the higher order harmonic responses in suitable kinetic regimes provides predicted deviations of Marcus-Hush from Butler-Volmer behaviour to be established from a single experiment under conditions where the background charging current is minimal.

  7. Alternating current scanning electrochemical microscopy with simultaneous fast-scan cyclic voltammetry.

    PubMed

    Koch, Jason A; Baur, Melinda B; Woodall, Erica L; Baur, John E

    2012-11-06

    Fast-scan cyclic voltammetry (FSCV) is combined with alternating current scanning electrochemical microscopy (AC-SECM) for simultaneous measurements of impedance and faradaic current. Scan rates of 10-1000 V s(-1) were used for voltammetry, while a high-frequency (100 kHz), low-amplitude (10 mV rms) sine wave was added to the voltammetric waveform for the ac measurement. Both a lock-in amplifier and an analog circuit were used to measure the amplitude of the resultant ac signal. The effect of the added sine wave on the voltammetry at a carbon fiber electrode was investigated and found to have negligible effect. The combined FSCV and ac measurements were used to provide simultaneous chemical and topographical information about a substrate using a single carbon fiber probe. The technique is demonstrated in living cell culture, where cellular respiration and topography were simultaneously imaged without the addition of a redox mediator. This approach promises to be useful for the topographical and multidimensional chemical imaging of substrates.

  8. Speed but not amplitude of visual feedback exacerbates force variability in older adults.

    PubMed

    Kim, Changki; Yacoubi, Basma; Christou, Evangelos A

    2018-06-23

    Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.

  9. Hydrological deformation signals in karst systems: new evidence from the European Alps

    NASA Astrophysics Data System (ADS)

    Serpelloni, E.; Pintori, F.; Gualandi, A.; Scoccimarro, E.; Cavaliere, A.; Anderlini, L.; Belardinelli, M. E.; Todesco, M.

    2017-12-01

    The influence of rainfall on crustal deformation has been described at local scales, using tilt and strain meters, in several tectonic settings. However, the literature on the spatial extent of rainfall-induced deformation is still scarce. We analyzed 10 years of displacement time-series from 150 continuous GPS stations operating across the broad zone of deformation accommodating the N-S Adria-Eurasia convergence and the E-ward escape of the Eastern Alps toward the Pannonian basin. We applied a blind-source-separation algorithm based on a variational Bayesian Independent Component Analysis method to the de-trended time-series, being able to characterize the temporal and spatial features of several deformation signals. The most important ones are a common mode annual signal, with spatially uniform response in the vertical and horizontal components and a time-variable, non-cyclic, signal characterized by a spatially variable response in the horizontal components, with stations moving (up to 8 mm) in the opposite directions, reversing the sense of movement in time. This implies a succession of extensional/compressional strains, with variable amplitudes through time, oriented normal to rock fractures in karst areas. While seasonal displacements in the vertical component (with an average amplitude of 4 mm over the study area) are satisfactorily reproduced by surface hydrological loading, estimated from global assimilation models, the non seasonal signal is associated with groundwater flow in karst systems, and is mainly influencing the horizontal component. The temporal evolution of this deformation signal is correlated with cumulated precipitation values over periods of 200-300 days. This horizontal deformation can be explained by pressure changes associated with variable water levels within vertical fractures in the vadose zones of karst systems, and the water level changes required to open or close these fractures are consistent with the fluctuations of precipitation and with the dynamics of karst systems.

  10. Cyclic softening in annealed Zircaloy-2: Role of edge dislocation dipoles and vacancies

    NASA Astrophysics Data System (ADS)

    Sudhakar Rao, G.; Singh, S. R.; Krsjak, Vladimir; Singh, Vakil

    2018-04-01

    The mechanism of cyclic softening in annealed Zircaloy-2 at low strain amplitudes under strain controlled fatigue at room temperature is rationalized. The unusual softening due to continuous decrease in the phenomenological friction stress is found to be associated with decrease in the resistance against movement of dislocations because of the formation and easy glide of pure edge dislocation dipoles and consequent decrease in friction stress from reduction in the shear modulus. Positron annihilation spectroscopy data strongly support the increase in edge dislocation density containing jogs, from increased positron trapping and increase in annihilation lifetime.

  11. Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters

    NASA Astrophysics Data System (ADS)

    Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.

    2016-02-01

    The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of the investigated Al 7075 alloy.

  12. Gonadotropin level abnormalities in women with cyclic mastalgia.

    PubMed

    Ecochard, R; Marret, H; Rabilloud, M; Boehringer, H; Mathieu, C; Guerin, J F

    2001-01-01

    Women with cyclic mastalgia seem to be at risk of fibrocystic breast disease and/or breast cancer. We studied the relationships between mastalgia and hormone levels throughout the menstrual cycle. Ostensibly healthy women were monitored during a sum of 326 cycles. A case-control study compared personal and hormonal variables of 30 women experiencing cyclic mastalgia with those of 77 women without this symptom. Except sleeping times, no significant differences were found in personal variables. Cyclic mastalgia and symptoms of fluid retention were slightly associated. Menses and the luteal phase were significantly longer in cases than in controls. Gonadotropin but not ovarian hormone levels were also significantly higher in cases throughout the cycle. Cyclic mastalgia is less related to symptoms of fluid retention or to ovarian hormone levels than to regularly high gonadotropin levels, specific inhibitors might thus be used to alleviate the symptom.

  13. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.

    PubMed

    Shikanai, Toshiharu; Yamamoto, Hiroshi

    2017-01-09

    Photosynthetic electron transport is coupled to proton translocation across the thylakoid membrane, resulting in the formation of a trans-thylakoid proton gradient (ΔpH) and membrane potential (Δψ). Ion transporters and channels localized to the thylakoid membrane regulate the contribution of each component to the proton motive force (pmf). Although both ΔpH and Δψ contribute to ATP synthesis as pmf, only ΔpH downregulates photosynthetic electron transport via the acidification of the thylakoid lumen by inducing thermal dissipation of excessive absorbed light energy from photosystem II antennae and slowing down of the electron transport through the cytochrome b 6 f complex. To optimize the tradeoff between efficient light energy utilization and protection of both photosystems against photodamage, plants have to regulate the pmf amplitude and its components, ΔpH and Δψ. Cyclic electron transport around photosystem I (PSI) is a major regulator of the pmf amplitude by generating pmf independently of the net production of NADPH by linear electron transport. Chloroplast ATP synthase relaxes pmf for ATP synthesis, and its activity should be finely tuned for maintaining the size of the pmf during steady-state photosynthesis. Pseudo-cyclic electron transport mediated by flavodiiron protein (Flv) forms a large electron sink, which is essential for PSI photoprotection in fluctuating light in cyanobacteria. Flv is conserved from cyanobacteria to gymnosperms but not in angiosperms. The Arabidopsis proton gradient regulation 5 (pgr5) mutant is defective in the main pathway of PSI cyclic electron transport. By introducing Physcomitrella patens genes encoding Flvs, the function of PSI cyclic electron transport was substituted by that of Flv-dependent pseudo-cyclic electron transport. In transgenic plants, the size of the pmf was complemented to the wild-type level but the contribution of ΔpH to the total pmf was lower than that in the wild type. In the pgr5 mutant, the size of the pmf was drastically lowered by the absence of PSI cyclic electron transport. In the mutant, ΔpH occupied the majority of pmf, suggesting the presence of a mechanism for the homeostasis of luminal pH in the light. To avoid damage to photosynthetic electron transport by periods of excess solar energy, plants employ an intricate regulatory network involving alternative electron transport pathways, ion transporters/channels, and pH-dependent mechanisms for downregulating photosynthetic electron transport. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  14. An Experimental Study of Fatigue Crack Growth in Aluminum Sheet Subjected to Combined Bending and Membrane Stresses

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1997-01-01

    An experimental study was conducted to determine the effects of combined bending and membrane cyclic stresses on the fatigue crack growth behavior of aluminum sheet material. The materials used in the tests were 0.040-in.- thick 2024-T3 alclad and 0.090-in.-thick 2024-T3 bare sheet. In the tests, the membrane stresses were applied as a constant amplitude loading at a stress ratio (minimum to maximum stress) of 0.02, and the bending stresses were applied as a constant amplitude deflection in phase with the membrane stresses. Tests were conducted at ratios of bending to membrane stresses (B/M) of 0, 0.75, and 1.50. The general trends of the results were for larger effects of bending for the higher B/M ratios, the lower membrane stresses, and the thicker material. The addition of cyclic bending stresses to a test with cyclic membrane stresses had only a small effect on the growth rates of through-thickness cracks in the thin material, but had a significant effect on the crack growth rates of through-thickness cracks in the thick material. Adding bending stresses to a test had the most effect on the initiation and early growth of cracks and had less effect on the growth of long through-thickness cracks.

  15. Energetic costs of producing muscle work and force in a cyclical human bouncing task

    PubMed Central

    Kuo, Arthur D.

    2011-01-01

    Muscles expend energy to perform active work during locomotion, but they may also expend significant energy to produce force, for example when tendons perform much of the work passively. The relative contributions of work and force to overall energy expenditure are unknown. We therefore measured the mechanics and energetics of a cyclical bouncing task, designed to control for work and force. We hypothesized that near bouncing resonance, little work would be performed actively by muscle, but the cyclical production of force would cost substantial metabolic energy. Human subjects (n = 9) bounced vertically about the ankles at inversely proportional frequencies (1–4 Hz) and amplitudes (15–4 mm), such that the overall rate of work performed on the body remained approximately constant (0.30 ± 0.06 W/kg), but the forces varied considerably. We used parameter identification to estimate series elasticity of the triceps surae tendon, as well as the work performed actively by muscle and passively by tendon. Net metabolic energy expenditure for bouncing at 1 Hz was 1.15 ± 0.31 W/kg, attributable mainly to active muscle work with an efficiency of 24 ± 3%. But at 3 Hz (near resonance), most of the work was performed passively, so that active muscle work could account for only 40% of the net metabolic rate of 0.76 ± 0.28 W/kg. Near resonance, a cost for cyclical force that increased with both amplitude and frequency of force accounted for at least as much of the total energy expenditure as a cost for work. Series elasticity reduces the need for active work, but energy must still be expended for force production. PMID:21212245

  16. Low-cycle fatigue behavior of NIMONIC PE16 at room temperature

    NASA Astrophysics Data System (ADS)

    Singh, V.; Sundararaman, M.; Chen, W.; Wahi, R. P.

    1991-02-01

    The fatigue behavior of NIMONIC PE16 has been investigated at room temperature as a function of γ' particle size (from 10 to 30 nm) and total strain amplitude (0.44 to 2.60 pct). All specimens initially harden and then soften on further deformation. The degrees of hardening and softening show a marked variation with γ' particle size and strain amplitude. Cyclic stress-strain and Coffin-Manson plots show a bilinear behavior with a change of slope at Δɛp/2, the plastic strain amplitude, of about 0.3 pct. These results are interpreted in terms of microstructural observations, namely, the number of slip systems activated and mutual interaction of dislocations on these systems, as well as their interaction with γ' particles.

  17. Reduced effects of tendon vibration with increased task demand during active, cyclical ankle movements

    PubMed Central

    Floyd, Lisa M.; Holmes, Taylor C.; Dean, Jesse C.

    2013-01-01

    Tendon vibration can alter proprioceptive feedback, one source of sensory information which humans can use to produce accurate movements. However, the effects of tendon vibration during functional movement vary depending on the task. For example, ankle tendon vibration has considerably smaller effects during walking than standing posture. The purpose of this study was to test whether the effects of ankle tendon vibration are predictably influenced by the mechanical demands of a task, as quantified by peak velocity. Twelve participants performed symmetric, cyclical ankle plantarflexion/dorsiflexion movements while lying prone with their ankle motion unconstrained. The prescribed movement period (1s, 3s) and peak-to-peak amplitude (10°, 15°, 20°) were varied across trials; shorter movement periods or larger amplitudes increased the peak velocity. In some trials, vibration was continuously and simultaneously applied to the right ankle plantarflexor and dorsiflexor tendons, while the left ankle tendons were never vibrated. The vibration frequency (40, 80, 120, 160 Hz) was varied across trials. During trials without vibration, participants accurately matched the movement of their ankles. The application of 80 Hz vibration to the right ankle tendons significantly reduced the amplitude of right ankle movement. However, the effect of vibration was smaller during more mechanically demanding (i.e. higher peak velocity) movements. Higher vibration frequencies had larger effects on movement accuracy, possibly due to parallel increases in vibration amplitude. These results demonstrate that the effects of ankle tendon vibration are dependent on the mechanical demand of the task being performed, but cannot definitively identify the underlying physiological mechanism. PMID:24136344

  18. Invited Review: A review of deterministic effects in cyclic variability of internal combustion engines

    DOE PAGES

    Finney, Charles E.; Kaul, Brian C.; Daw, C. Stuart; ...

    2015-02-18

    Here we review developments in the understanding of cycle to cycle variability in internal combustion engines, with a focus on spark-ignited and premixed combustion conditions. Much of the research on cyclic variability has focused on stochastic aspects, that is, features that can be modeled as inherently random with no short term predictability. In some cases, models of this type appear to work very well at describing experimental observations, but the lack of predictability limits control options. Also, even when the statistical properties of the stochastic variations are known, it can be very difficult to discern their underlying physical causes andmore » thus mitigate them. Some recent studies have demonstrated that under some conditions, cyclic combustion variations can have a relatively high degree of low dimensional deterministic structure, which implies some degree of predictability and potential for real time control. These deterministic effects are typically more pronounced near critical stability limits (e.g. near tipping points associated with ignition or flame propagation) such during highly dilute fueling or near the onset of homogeneous charge compression ignition. We review recent progress in experimental and analytical characterization of cyclic variability where low dimensional, deterministic effects have been observed. We describe some theories about the sources of these dynamical features and discuss prospects for interactive control and improved engine designs. In conclusion, taken as a whole, the research summarized here implies that the deterministic component of cyclic variability will become a pivotal issue (and potential opportunity) as engine manufacturers strive to meet aggressive emissions and fuel economy regulations in the coming decades.« less

  19. Factors associated with early cyclicity in postpartum dairy cows.

    PubMed

    Vercouteren, M M A A; Bittar, J H J; Pinedo, P J; Risco, C A; Santos, J E P; Vieira-Neto, A; Galvão, K N

    2015-01-01

    The objective of this study was to evaluate factors associated with resumption of ovarian cyclicity within 21 days in milk (DIM) in dairy cows. Cows (n=768) from 2 herds in north Florida had their ovaries scanned at 17±3, 21±3, and 24±3 DIM. Cows that had a corpus luteum ≥20mm at 17±3 or at 21±3 DIM or that had a corpus luteum <20mm in 2 consecutive examinations were determined to be cyclic by 21±3 DIM. The following information was collected for up to 14 DIM: calving season, parity, calving problems, metabolic problems, metritis, mastitis, digestive problems, lameness, body weight loss, dry period length, and average daily milk yield. Body condition was scored at 17±3 DIM. Multivariable mixed logistic regression analysis was performed using the GLIMMIX procedure of SAS. Variables with P≤0.2 were considered in each model. Herd was included as a random variable. Three models were constructed: model 1 included all cows, model 2 included only cows from dairy 1 that had daily body weights available, and model 3 included only multiparous cows with a previous dry period length recorded. In model 1, variables associated with greater cyclicity by 21±3 DIM were calving in the summer and fall rather than in the winter or spring, being multiparous rather than primiparous, and not having metabolic or digestive problems. In model 2, variables associated with greater cyclicity by 21±3 DIM were calving in the summer and fall, not having metritis or digestive problems and not losing >28 kg of BW within 14 DIM. In model 3, variables associated with greater cyclicity by 21±3 DIM were absence of metabolic problems and dry period ≤76 d. In summary, cyclicity by 21±3 DIM was negatively associated with calving in winter or spring, primiparity, metritis, metabolic or digestive problems, loss of >28 kg of body weight, and a dry period >76d. Strategies preventing extended dry period length and loss of BW, together with reductions in the incidence of metritis as well as metabolic and digestive problems should improve early cyclicity postpartum. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Evidence for photometric activity cycles in 3203 Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Cameron, Robert H.; Gizon, Laurent

    2017-07-01

    Context. In recent years it has been claimed that the length of stellar activity cycles is determined by the stellar rotation rate. It has been observed that the cycle period increases with rotation period along two distinct sequences, known as the active and inactive sequences. In this picture the Sun occupies a solitary position between the two sequences. Whether the Sun might undergo a transitional evolutionary stage is currently under debate. Aims: Our goal is to measure cyclic variations of the stellar light curve amplitude and the rotation period using four years of Kepler data. Periodic changes in the light curve amplitude or the stellar rotation period are associated with an underlying activity cycle. Methods: Using a recent sample of active stars we compute the rotation period and the variability amplitude for each individual Kepler quarter and search for periodic variations of both time series. To test for periodicity in each stellar time series we consider Lomb-Scargle periodograms and use a selection based on a false alarm probability (FAP). Results: We detect amplitude periodicities in 3203 stars between 0.5 < Pcyc < 6 yr covering rotation periods between 1 < Prot < 40 days. Given our sample size of 23 601 stars and our selection criteria that the FAP is less than 5%, this number is almost three times higher than that expected from pure noise. We do not detect periodicities in the rotation period beyond those expected from noise. Our measurements reveal that the cycle period shows a weak dependence on rotation rate, slightly increasing for longer rotation periods. We further show that the shape of the variability deviates from a pure sine curve, consistent with observations of the solar cycle. The cycle shape does not show a statistically significant dependence on effective temperature. Conclusions: We detect activity cycles in more than 13% of our final sample with a FAP of 5% (calculated by randomly shuffling the measured 90-day variability measurements for each star). Our measurements do not support the existence of distinct sequences in the Prot-Pcyc plane, although there is some evidence for the inactive sequence for rotation periods between 5-25 days. Unfortunately, the total observing time is too short to draw sound conclusions on activity cycles with similar lengths to that of the solar cycle. A table containing all cycle periods and time series is only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/603/A52

  1. Effects of constant and cyclical thermal regimes on growth and feeding of juvenile cutthroat trout of variable sizes

    Treesearch

    M. H. Meeuwig; J. B. Dunham; J. P. Hayes; G. L. Vinyard

    2004-01-01

    The effects of constant (12, 18, and 24°C) and cyclical (daily variation of 15–21 and 12–24 °C) thermal regimes on the growth and feeding of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) of variable sizes were examined. Higher constant temperatures (i.e., 24°C) and more variable daily temperatures (i.e., 12–24°C daily cycle) negatively...

  2. Sediment focusing creates 100-ka cycles in interplanetary dust accumulation on the Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Higgins, Sean M.; Anderson, Robert F.; Marcantonio, Franco; Schlosser, Peter; Stute, Martin

    2002-10-01

    The accumulation of extraterrestrial 3He, a tracer for interplanetary dust particles (IDPs), in sediments from the Ontong Java Plateau (OJP; western equatorial Pacific Ocean) has been shown previously to exhibit a regular cyclicity during the late Pleistocene, with a period of ∼100 ka. Those results have been interpreted to reflect periodic variability in the global accretion of IDPs that, in turn, has been linked to changes in the inclination of Earth's orbit with respect to the invariable plane of the solar system. Here we show that the accumulation in OJP sediments of authigenic 230Th, produced by radioactive decay of 234U in seawater, exhibits a 100-ka cyclicity similar in phase and amplitude to that evident in the 3He record. We interpret the similar patterns of 230Th and 3He accumulation to reflect a common origin within the ocean-climate system. Comparing spatial and temporal patterns of sediment accumulation against regional patterns of biological productivity and against the well-established pattern of CaCO3 dissolution in the deep Pacific Ocean leads to the further conclusion that a common 100-ka cycle in accumulation of biogenic, authigenic and extraterrestrial constituents in OJP sediments reflects the influence of climate-related changes in sediment focusing, rather than changes in the rate of production or supply of sedimentary constituents.

  3. ENSO modulation of tropical Indian Ocean subseasonal variability

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Kirtman, Ben P.

    2016-12-01

    In this study, we use 30 years of retrospective climate model forecasts and observational estimates to show that El Niño/Southern Oscillation (ENSO) affects the amplitude of subseasonal variability of sea surface temperature (SST) in the southwest Indian Ocean, an important Tropical Intraseasonal Oscillation (TISO) onset region. The analysis shows that deeper background mixed-layer depths and warmer upper ocean conditions during El Niño reduce the amplitude of the subseasonal SST variability over Seychelles-Chagos Thermocline Ridge (SCTR), which may reduce SST-wind coupling and the amplitude of TISO variability. The opposite holds for La Niña where the shallower mixed-layer depth enhances SST variability over SCTR, which may increase SST-wind coupling and the amplitude of TISO variability.

  4. A detailed X-ray investigation of ζ Puppis. IV. Further characterization of the variability

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël; Ramiaramanantsoa, Tahina; Stevens, Ian R.; Howarth, Ian D.; Moffat, Anthony F. J.

    2018-01-01

    Context. One of the optically brightest and closest massive stars, ζ Pup, is also a bright X-ray source. Previously, its X-ray emission was found to be variable with light curves harbouring "trends" with a typical timescale longer than the exposure length, i.e. >1 d. The origin of these changes was proposed to be linked to large-scale structures in the wind of ζ Pup, but further characterization of the variability at high energies was needed to investigate this scenario. Aims: Since the previous papers of this series, a number of new X-ray observations have become available. Furthermore, a cyclic behaviour with a 1.78 d period was identified in long optical photometric runs, which is thought to be associated with the launching mechanism of large-scale wind structures. Methods: We analysed these new X-ray data, revisited the old data, and compared the X-ray light curves with the optical data, notably those taken simultaneously. Results: The behaviour of ζ Pup in X-rays cannot be explained in terms of a perfect clock because the amplitude and shape of its variations change with time. For example, ζ Pup was much more strongly variable between 2007 and 2011 than before and after this interval. Comparing the X-ray spectra of the star at maximum and minimum brightness yields no compelling difference beyond the overall flux change: the temperatures, absorptions, and line shapes seem to remain constant, well within errors. The only common feature between X-ray datasets is that the variation amplitudes appear maximum in the medium (0.6-1.2 keV) energy band. Finally, no clear and coherent correlation can be found between simultaneous X-ray and optical data. Only a subgroup of observations may be combined coherently with the optical period of 1.78 d, although the simultaneous optical behaviour is unknown. Conclusions: The currently available data do not reveal any obvious, permanent, and direct correlation between X-ray and optical variations. The origin of the X-ray variability therefore still needs to be ascertained, highlighting the need for long-term monitoring in multiwavelengths, i.e. X-ray, UV, and optical.

  5. How body torque and Strouhal number change with swimming speed and developmental stage in larval zebrafish.

    PubMed

    van Leeuwen, Johan L; Voesenek, Cees J; Müller, Ulrike K

    2015-09-06

    Small undulatory swimmers such as larval zebrafish experience both inertial and viscous forces, the relative importance of which is indicated by the Reynolds number (Re). Re is proportional to swimming speed (vswim) and body length; faster swimming reduces the relative effect of viscous forces. Compared with adults, larval fish experience relatively high (mainly viscous) drag during cyclic swimming. To enhance thrust to an equally high level, they must employ a high product of tail-beat frequency and (peak-to-peak) amplitude fAtail, resulting in a relatively high fAtail/vswim ratio (Strouhal number, St), and implying relatively high lateral momentum shedding and low propulsive efficiency. Using kinematic and inverse-dynamics analyses, we studied cyclic swimming of larval zebrafish aged 2-5 days post-fertilization (dpf). Larvae at 4-5 dpf reach higher f (95 Hz) and Atail (2.4 mm) than at 2 dpf (80 Hz, 1.8 mm), increasing swimming speed and Re, indicating increasing muscle powers. As Re increases (60 → 1400), St (2.5 → 0.72) decreases nonlinearly towards values of large swimmers (0.2-0.6), indicating increased propulsive efficiency with vswim and age. Swimming at high St is associated with high-amplitude body torques and rotations. Low propulsive efficiencies and large yawing amplitudes are unavoidable physical constraints for small undulatory swimmers. © 2015 The Author(s).

  6. How body torque and Strouhal number change with swimming speed and developmental stage in larval zebrafish

    PubMed Central

    van Leeuwen, Johan L.; Voesenek, Cees J.; Müller, Ulrike K.

    2015-01-01

    Small undulatory swimmers such as larval zebrafish experience both inertial and viscous forces, the relative importance of which is indicated by the Reynolds number (Re). Re is proportional to swimming speed (vswim) and body length; faster swimming reduces the relative effect of viscous forces. Compared with adults, larval fish experience relatively high (mainly viscous) drag during cyclic swimming. To enhance thrust to an equally high level, they must employ a high product of tail-beat frequency and (peak-to-peak) amplitude fAtail, resulting in a relatively high fAtail/vswim ratio (Strouhal number, St), and implying relatively high lateral momentum shedding and low propulsive efficiency. Using kinematic and inverse-dynamics analyses, we studied cyclic swimming of larval zebrafish aged 2–5 days post-fertilization (dpf). Larvae at 4–5 dpf reach higher f (95 Hz) and Atail (2.4 mm) than at 2 dpf (80 Hz, 1.8 mm), increasing swimming speed and Re, indicating increasing muscle powers. As Re increases (60 → 1400), St (2.5 → 0.72) decreases nonlinearly towards values of large swimmers (0.2–0.6), indicating increased propulsive efficiency with vswim and age. Swimming at high St is associated with high-amplitude body torques and rotations. Low propulsive efficiencies and large yawing amplitudes are unavoidable physical constraints for small undulatory swimmers. PMID:26269230

  7. Fatigue life prediction of rotor blade composites: Validation of constant amplitude formulations with variable amplitude experiments

    NASA Astrophysics Data System (ADS)

    Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort.

  8. Search for Trends and Periodicities in Inter-hemispheric Sea Surface Temperature Difference

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; Tiwari, R. K.

    2018-02-01

    Understanding the role of coupled solar and internal ocean dynamics on hemispheric climate variability is critical to climate modelling. We have analysed here 165 year long annual northern hemispheric (NH) and southern hemispheric (SH) sea surface temperature (SST) data employing spectral and statistical techniques to identify the imprints of solar and ocean-atmospheric processes, if any. We reconstructed the eigen modes of NH-SST and SH-SST to reveal non-linear oscillations superimposed on the monotonic trend. Our analysis reveals that the first eigen mode of NH-SST and SH-SST representing long-term trend of SST variability accounts for 15-23% variance. Interestingly, these components are matching with first eigen mode (99% variance) of the total solar irradiance (TSI) suggesting possible impact of solar activity on long-term SST variation. Furthermore, spectral analysis of SSA reconstructed signal revealed statistically significant periodicities of 63 ± 5, 22 ± 2, 10 ± 1, 7.6, 6.3, 5.2, 4.7, and 4.2 years in both NH-SST and SH-SST data. The major harmonics centred at 63 ± 5, 22 ± 2, and 10 ± 1 years are similar to solar periodicities and hence may represent solar forcing, while the components peaking at around 7.6, 6.3, 5.2, 4.7, and 4.2 years apparently falls in the frequency bands of El-Nino-Southern Oscillations linked to the oceanic internal processes. Our analyses also suggest evidence for the amplitude modulation of 9-11 and 21-22 year solar cycles, respectively, by 104 and 163 years in northern and southern hemispheric SST data. The absence of the above periodic oscillations in CO2 fails to suggest its role on observed inter-hemispheric SST difference. The cross-plot analysis also revealed strong influence of solar activity on linear trend of NH- and SH-SST in addition to small contribution from CO2. Our study concludes that (1) the long-term trends in northern and southern hemispheric SST variability show considerable synchronicity with cyclic warming and cooling phases and (2) the difference in cyclic forcing and non-linear modulations stemming from solar variability as a possible source of hemispheric SST differences.

  9. Variable Bandwidth Filtering for Improved Sensitivity of Cross-Frequency Coupling Metrics

    PubMed Central

    McDaniel, Jonathan; Liu, Song; Cornew, Lauren; Gaetz, William; Roberts, Timothy P.L.; Edgar, J. Christopher

    2012-01-01

    Abstract There is an increasing interest in examining cross-frequency coupling (CFC) between groups of oscillating neurons. Most CFC studies examine how the phase of lower-frequency brain activity modulates the amplitude of higher-frequency brain activity. This study focuses on the signal filtering that is required to isolate the higher-frequency neuronal activity which is hypothesized to be amplitude modulated. In particular, previous publications have used a filter bandwidth fixed to a constant for all assessed modulation frequencies. The present article demonstrates that fixed bandwidth filtering can destroy amplitude modulation and create false-negative CFC measures. To overcome this limitation, this study presents a variable bandwidth filter that ensures preservation of the amplitude modulation. Simulated time series data were created with theta-gamma, alpha-gamma, and beta-gamma phase-amplitude coupling. Comparisons between filtering methods indicate that the variable bandwidth approach presented in this article is preferred when examining amplitude modulations above the theta band. The variable bandwidth method of filtering an amplitude modulated signal is proposed to preserve amplitude modulation and enable accurate CFC measurements. PMID:22577870

  10. Interfractional variability of respiration-induced esophageal tumor motion quantified using fiducial markers and four-dimensional cone-beam computed tomography.

    PubMed

    Jin, Peng; Hulshof, Maarten C C M; van Wieringen, Niek; Bel, Arjan; Alderliesten, Tanja

    2017-07-01

    To investigate the interfractional variability of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional cone-beam computed tomography (4D-CBCT) and assess if a 4D-CT is sufficient for predicting the motion during the treatment. Twenty-four patients with 63 markers visible in the retrospectively reconstructed 4D-CBCTs were included. For each marker, we calculated the amplitude and trajectory of the respiration-induced motion. Possible time trends of the amplitude over the treatment course and the interfractional variability of amplitudes and trajectory shapes were assessed. Further, the amplitudes measured in the 4D-CT were compared to those in the 4D-CBCTs. The amplitude was largest in the cranial-caudal direction of the distal esophagus (mean: 7.1mm) and proximal stomach (mean: 7.8mm). No time trend was observed in the amplitude over the treatment course. The interfractional variability of amplitudes and trajectory shapes was limited (mean: ≤1.4mm). Moreover, small and insignificant deviation was found between the amplitudes quantified in the 4D-CT and in the 4D-CBCT (mean absolute difference: ≤1.0mm). The limited interfractional variability of amplitudes and trajectory shapes and small amplitude difference between 4D-CT-based and 4D-CBCT-based measurements imply that a single 4D-CT would be sufficient for predicting the respiration-induced esophageal tumor motion during the treatment course. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice

    NASA Astrophysics Data System (ADS)

    Shige, S.; Miyasaka, K.; Shi, W.; Soga, Y.; Sato, M.; Sievers, A. J.

    2018-02-01

    Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping an LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum the LSM can be continuously converted into ILMs and vice versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.

  12. On the Period-Amplitude and Amplitude-Period Relationships

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.

  13. How important is interannual variability in the climatic interpretation of moraine sequences?

    NASA Astrophysics Data System (ADS)

    Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.

    2017-12-01

    Mountain glaciers respond to both long-term climate and interannual forcing. Anderson et al. (2014) pointed out that kilometer-scale fluctuations in glacier length may result from interannual variability in temperature and precipitation given a "steady" climate with no long-term trends in mean or variability of temperature and precipitation. They cautioned that use of outermost moraines from the Last Glacial Maximum (LGM) as indicators of LGM climate will, because of the role of interannual forcing, result in overestimation of the magnitude of long-term temperature depression and/or precipitation enhancement. Here we assess the implications of these ideas, by examining the effect of interannual variability on glacier length and inferred magnitude of LGM climate change from present under both an assumed steady LGM climate and an LGM climate with low-magnitude, long-period variation in summer temperature and annual precipitation. We employ both the original 1-stage linear glacier model (Roe and O'Neal, 2009) used by Anderson et al. (2014) and a newer 3-stage linear model (Roe and Baker, 2014). We apply the models to two reconstructed LGM glaciers in the Colorado Sangre de Cristo Mountains. Three-stage-model results indicate that, absent long-term variations through a 7500-year-long LGM, interannual variability would result in overestimation of mean LGM temperature depression from the outermost moraine of 0.2-0.6°C. If small long-term cyclic variations of temperature (±0.5°C) and precipitation (±5%) are introduced, the overestimation of LGM temperature depression reduces to less than 0.4°C, and if slightly greater long-term variation (±1.0°C and ±10% precipitation) is introduced, the magnitude of overestimation is 0.3°C or less. Interannual variability may produce a moraine sequence that differs from the sequence that would be expected were glacier length forced only by long-term climate. With small amplitude (±0.5°C and ±5% precipitation) long-term variation, the moraine sequence expected if forced by a combination of interannual variability and long-term climate differs from that expected based on long-term climate forcing alone in 38% of model runs. With the larger amplitude long-term forcing (±1.0°C and ±10% precipitation) this difference occurs in 20% of model runs.

  14. Orbital-tuning of Marine Cyclic Sediments - Examples from the Neogene and Jurassic

    NASA Astrophysics Data System (ADS)

    Weedon, G. P.; Hall, I. R.; Wilson, G. S.

    2001-12-01

    Orbital-tuning of pre-Pleistocene sediments usually involves the use of variations in bulk compositional parameters, such as carbonate contents, rather than the oxygen-isotope time series available from Plio-Pleistocene marine strata. Consequently, ascertaining the relationship between orbital-climatic changes and sediment composition is not straightforward. Tuning is either conducted using a target curve (an orbital solution) for late Cenozoic records, or by using a sine wave with a specified period for earlier records - where a "floating" chronology is generated. Examples of each sort of tuning are discussed here. Drilling during Leg 181 of the Ocean Drilling Program yielded an essentially complete record of sediment-drift accumulation at Site 1123 off New Zealand for the past 20Ma. Dissolution of carbonate in the older part of the section precluded generation of isotopic records for tuning. Instead colour reflectance and magnetic susceptibility were used for tuning between 3 and 15Ma. Additionally, the mean size of sortable silt, a proxy for bottom-water flow speed, was used for orbital-tuning between 12 and 15Ma. Site 1123 possesses an exceptionally well-preserved record of geomagnetic reversals. Thus a preliminary time scale was established using the ages of 60 reversal events between 3 and 15.2Ma (based on Berggren et al., 1995). Since the sediment drift at this site accumulated under the influence of the Pacific deep western boundary current which incorporates circumpolar deep water, the sediment cyclicity is dominated by the 41ka orbital-tilt (obliquity) cycle. Tuning to the tilt cycle required relatively little revision to the ages of the magnetic reversals (maximum 65ka, average 23ka). Evolutionary spectra and band-pass filtering of the tuned reflectance time series reveal a pronounced increase in the amplitude of the stratigraphic record of the obliquity cycle after 7Ma. Eccentricity and precession cycles are evident for short intervals (less than one million years), but they are always subsidiary to the obliquity component - consistent with a high-latitude origin of the variability. The late Jurassic Kimmeridge Clay Formation is the principal oil-source rock in the North Sea Province. It is well-known for cyclic variations in organic-carbon contents linked to alternately oxic and anoxic bottom waters. During the Anatomy of a Source Rock Project, high-resolution (5-20cm) compositional records (e.g. carbonate, total organic carbon, magnetic susceptibility) were obtained from throughout the 550m Formation at the type section in Dorset, England. Spectral analysis indicates regular cyclicity in depth. The regular sedimentary cycles are interpreted as indirect climatic records of the Jurassic obliquity cycle and hence were tuned using a sine wave with a period of 38ka. Evolutionary spectral analysis of the tuned time series reveals small-amplitude 19ka precession cycles, but no evidence for 100 or 400ka orbital-eccentricity cycles. Hence, this record of Late Jurassic climatic variability in Britain implies a high-latitude forcing mechanism. The orbitally-tuned data indicate that ammonite zone durations ranged from 0.36 to 2.3Ma. Accumulation rates (post-compaction) ranged from 20-130m/Ma and organic carbon (post-diagenesis) had a flux of 0.2-2.25g/cm2/ka.

  15. An Unusual Massive Be Star HD 53367: Circumstellar Activity and Evidence for Binarity

    NASA Astrophysics Data System (ADS)

    Pogodin, M. A.; Malanushenko, V. P.; Kozlova, O. V.; Tarasova, T. N.; Franco, G. A. P.

    2006-12-01

    We present the results of high-resolution spectroscopy of the young B0e star HD 53367 obtained within the framework of a cooperative observing program in 1994--2005. We confirm that a long-term photometric variability of the object is indeed connected with the alternation of two states of the object when the gaseous circumstellar envelope disappears and arises again. Both these processes start near the star and then spread to remote parts of the envelope. We find that the radial velocities of He I and O II photospheric lines demonstrate a cyclic variability with the period P=183.7 days and the semi-amplitude K=19 km s-1. The radial velocity variation is interpreted in the framework of a model, in which the star is a companion of an eccentric binary system. An orbital solution is derived and the system's parameters are estimated. We find that the orbital eccentricity is e=0.28, the mean companion separation is 1.7 AU, and the secondary companion is most likely to be a 5 solar mass pre-main sequence object. The main part of circumstellar gas in the system is collected near the secondary companion.

  16. Hilbert-Huang Transform: A Spectral Analysis Tool Applied to Sunspot Number and Total Solar Irradiance Variations, as well as Near-Surface Atmospheric Variables

    NASA Astrophysics Data System (ADS)

    Barnhart, B. L.; Eichinger, W. E.; Prueger, J. H.

    2010-12-01

    Hilbert-Huang transform (HHT) is a relatively new data analysis tool which is used to analyze nonstationary and nonlinear time series data. It consists of an algorithm, called empirical mode decomposition (EMD), which extracts the cyclic components embedded within time series data, as well as Hilbert spectral analysis (HSA) which displays the time and frequency dependent energy contributions from each component in the form of a spectrogram. The method can be considered a generalized form of Fourier analysis which can describe the intrinsic cycles of data with basis functions whose amplitudes and phases may vary with time. The HHT will be introduced and compared to current spectral analysis tools such as Fourier analysis, short-time Fourier analysis, wavelet analysis and Wigner-Ville distributions. A number of applications are also presented which demonstrate the strengths and limitations of the tool, including analyzing sunspot number variability and total solar irradiance proxies as well as global averaged temperature and carbon dioxide concentration. Also, near-surface atmospheric quantities such as temperature and wind velocity are analyzed to demonstrate the nonstationarity of the atmosphere.

  17. Long-term variability of T Tauri stars using WASP

    NASA Astrophysics Data System (ADS)

    Rigon, Laura; Scholz, Alexander; Anderson, David; West, Richard

    2017-03-01

    We present a reference study of the long-term optical variability of young stars using data from the WASP project. Our primary sample is a group of well-studied classical T Tauri stars (CTTSs), mostly in Taurus-Auriga. WASP light curves cover time-scales of up to 7 yr and typically contain 10 000-30 000 data points. We quantify the variability as a function of time-scale using the time-dependent standard deviation 'pooled sigma'. We find that the overwhelming majority of CTTSs have a low-level variability with σ < 0.3 mag dominated by time-scales of a few weeks, consistent with rotational modulation. Thus, for most young stars, monitoring over a month is sufficient to constrain the total amount of variability over time-scales of up to a decade. The fraction of stars with a strong optical variability (σ > 0.3 mag) is 21 per cent in our sample and 21 per cent in an unbiased control sample. An even smaller fraction (13 per cent in our sample, 6 per cent in the control) show evidence for an increase in variability amplitude as a function of time-scale from weeks to months or years. The presence of long-term variability correlates with the spectral slope at 3-5 μm, which is an indicator of inner disc geometry, and with the U-B band slope, which is an accretion diagnostics. This shows that the long-term variations in CTTSs are predominantly driven by processes in the inner disc and in the accretion zone. Four of the stars with long-term variations show periods of 20-60 d, significantly longer than the rotation periods and stable over months to years. One possible explanation is cyclic changes in the interaction between the disc and the stellar magnetic field.

  18. An assessment of cold work effects on strain-controlled low-cycle fatigue behavior of type 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Rao, K. Bhanu Sankara; Valsan, M.; Sandhya, R.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of ±0.25 to ± 1.25 pct. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30 pct PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10 pct PCW displayed the lowest life. An improvement in life occurred for prior deformations exceeding 10 pct at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. The constants and exponents in these equations were found to depend on the test temperature and prior metallurgical state of the material. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.

  19. Effects of Cyclic Loading on the Uniaxial Behavior of Nitinol

    NASA Astrophysics Data System (ADS)

    Schlun, M.; Zipse, A.; Dreher, G.; Rebelo, N.

    2011-07-01

    The widespread development and use of implants made from NiTi is accompanied by the publication of many NiTi material characterization studies. These publications have increased significantly the knowledge about the mechanical properties of NiTi. However, this knowledge also increased the complexity of the numerical simulation of NiTi implants or devices. This study is focused on the uniaxial behavior of NiTi tubing due to cyclic loading and had the goal to deliver both precise and application-oriented results. Single aspects of this study have already been published (Wagner in Ein Beitrag zur strukturellen und funktionalen Ermüdung von Drähten und Federn aus NiTi-Formgedaechtnislegierungen, Ph.D. Thesis, 2005; Eucken and Duerig in Acta Metall 37:2245-2252, 1989; Yawny et al. in Z Metallkd 96:608-618, 2005); however, there is no publication known that shows all the single effects combined in a "duty cycle case." It was of particular importance to summarize the main effects of pre-strain and subsequent small or large strain amplitudes on the material properties. The phenomena observed were captured in an extended Abaqus® Nitinol material model, presented by Rebelo et al. (A Material Model for the Cyclic Behavior of Nitinol, SMST Extended Abstracts 2010). The cyclic tensile tests were performed using a video extensometer to obtain accurate strain measurement on small electro-polished dog-bone specimen that were incorporated into a stent framework so that standard manufacturing methods could be used for the fabrication. This study indicates that a prestrain beyond 6% strain alters the transformation plateaus and if the cyclic displacement amplitude is large enough, additional permanent deformations are observed, the lower plateau and most notably the upper plateau change. The changes to the upper plateau are very interesting in the sense that an additional stress plateau develops: its "start stress" is lowered thereby creating a new plateau up to the highest level of cyclic strain, followed by resuming the original plateau until full transformation. This study was conducted in the course of the work of a consortium of several stent manufacturers, SAFE Technology Limited and Dassault Systèmes Simulia Corp., dedicated to the development of fatigue laws suitable for life prediction of Nitinol devices.

  20. Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Chen, Li-jia; Zhang, Guo-qiang; Han, Dong; Li, Xiao-wu

    2018-06-01

    To explore the influence of cyclic pre-deformation on the mechanical behavior of ultrafine-grained (UFG) materials with a high stacking fault energy (SFE), UFG Al processed by equal-channel angular pressing (ECAP) was selected as a target material and its tensile behavior at different pre-cyclic levels D ( D = N i / N f, where N i and N f are the applied cycles and fatigue life at a constant stress amplitude of 50 MPa, respectively) along with the corresponding microstructures and deformation features were systematically studied. The cyclic pre-deformation treatment on the ECAPed UFG Al led to a decrease in flow stress, and a stress quasi-plateau stage was observed after yielding for all of the different-state UFG Al samples. The yield strength σ YS, ultimate tensile strength σ UTS, and uniform strain ɛ exhibited a strong dependence on D when D ≤ 20%; however, when D was in the range from 20% to 50%, no obvious change in mechanical properties was observed. The micro-mechanism for the effect of cyclic pre-deformation on the tensile properties of the ECAPed UFG Al was revealed and compared with that of ECAPed UFG Cu through the observations of deformation features and microstructures.

  1. Biomechanical contributions of the trunk and upper extremity in discrete versus cyclic reaching in survivors of stroke.

    PubMed

    Massie, Crystal L; Malcolm, Matthew P; Greene, David P; Browning, Raymond C

    2014-01-01

    Stroke rehabilitation interventions and assessments incorporate discrete and/or cyclic reaching tasks, yet no biomechanical comparison exists between these 2 movements in survivors of stroke. To characterize the differences between discrete (movements bounded by stationary periods) and cyclic (continuous repetitive movements) reaching in survivors of stroke. Seventeen survivors of stroke underwent kinematic motion analysis of discrete and cyclic reaching movements. Outcomes collected for each side included shoulder, elbow, and trunk range of motion (ROM); peak velocity; movement time; and spatial variability at target contact. Participants used significantly less shoulder and elbow ROM and significantly more trunk flexion ROM when reaching with the stroke-affected side compared with the less-affected side (P < .001). Participants used significantly more trunk rotation during cyclic reaching than discrete reaching with the stroke-affected side (P = .01). No post hoc differences were observed between tasks within the stroke-affected side for elbow, shoulder, and trunk flexion ROM. Peak velocity, movement time, and spatial variability were not different between discrete and cyclic reaching in the stroke-affected side. Survivors of stroke reached with altered kinematics when the stroke-affected side was compared with the less-affected side, yet there were few differences between discrete and cyclic reaching within the stroke-affected side. The greater trunk rotation during cyclic reaching represents a unique segmental strategy when using the stroke-affected side without consequences to end-point kinematics. These findings suggest that clinicians should consider the type of reaching required in therapeutic activities because of the continuous movement demands required with cyclic reaching.

  2. Variable-amplitude oscillatory shear response of amorphous materials.

    PubMed

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  3. A Material Model for the Cyclic Behavior of Nitinol

    NASA Astrophysics Data System (ADS)

    Rebelo, Nuno; Zipse, Achim; Schlun, Martin; Dreher, Gael

    2011-07-01

    The uniaxial behavior of Nitinol in different forms and at different temperatures has been well documented in the literature. Mathematical models for the three-dimensional behavior of this class of materials, covering superelasticity, plasticity, and shape memory effects have been previously developed. Phenomenological models embedded in FEA analysis are part of common practice today in the development of devices made out of Nitinol. In vivo loading of medical devices has cyclic characteristics. There have been some indications in the literature that cyclic loading of Nitinol modifies substantially its behavior. A consortium of several stent manufacturers, Safe Technology and Dassault Systèmes Simulia Corp., dedicated to the development of fatigue laws suitable for life prediction of Nitinol devices, has conducted an extensive experimental study of the modifications in uniaxial behavior of both Nitinol wire and tubing due to cyclic loading. The Abaqus Nitinol material model has been extended to capture some of the phenomena observed and is described in this article. Namely, a preload beyond 6% strain alters the transformation plateaus; if the cyclic load amplitude is large enough, permanent deformations (residual martensite) are observed; the lower plateau increases; and the upper plateau changes. The modifications to the upper plateau are very interesting in the sense that it appears broken: its start stress gets lowered creating a new plateau up to the highest level of cyclic strain, followed by resuming the original plateau until full transformation. Since quite often the geometry of a device at the point at which it is subjected to cyclic loading is very much dependent on the manufacturing, deployment, and preloading sequence, it is important that analyses be conducted with the original material behavior up to that point, and then with the cyclic behavior thereafter.

  4. Spatial patterns and biodiversity in off-lattice simulations of a cyclic three-species Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.

    2018-02-01

    Stochastic simulations of cyclic three-species spatial predator-prey models are usually performed in square lattices with nearest-neighbour interactions starting from random initial conditions. In this letter we describe the results of off-lattice Lotka-Volterra stochastic simulations, showing that the emergence of spiral patterns does occur for sufficiently high values of the (conserved) total density of individuals. We also investigate the dynamics in our simulations, finding an empirical relation characterizing the dependence of the characteristic peak frequency and amplitude on the total density. Finally, we study the impact of the total density on the extinction probability, showing how a low population density may jeopardize biodiversity.

  5. Effect of thermal profile on cyclic flaw growth in aluminum

    NASA Technical Reports Server (NTRS)

    Engstrom, W. L.

    1975-01-01

    Surface flawed and single edge notch tension specimens of 2219-T851 and -T87 aluminum were tested to determine static fracture characteristics and base line (constant amplitude, constant temperature) cyclic flaw growth behavior. Subsequent testing was then conducted in which flawed specimens were subjected to a thermal profile in which the applied stress was varied simultaneously with the temperature. The profile used represents a simplified space shuttle orbiter load/temperature flight cycle. Test temperatures included the range from 144K (-200 F) up to 450K (350 F). The measured flaw growth rates obtained from the thermal profile tests were then compared with rates predicted by assuming linear cumulative damage of base line rates.

  6. Microfluidic platform for neurotransmitter sensing based on cyclic voltammetry and dielectrophoresis for in vitro experiments.

    PubMed

    Mathault, Jessy; Zamprogno, Pauline; Greener, Jesse; Miled, Amine

    2015-08-01

    This paper presents a new microfluidic platform that can simultaneously measure and locally modulate neurotransmitter concentration in a neuron network. This work focuses on the development of a first prototype including a potentiostat and electrode functionalization to detect several neurotransmitter's simultaneously. We tested dopamine as proof of concept to validate functionality. The system is based on 320 bidirectional electrode array for dielectrophoretic manipulation and cyclic voltammetry. Each electrode is connected to a mechanical multiplexer in order to reduce noise interference and fully isolate the electrode. The multiplexing rate is 476 kHz and each electrode can drive a signal with an amplitude of 60 V pp for dielectrophoretic manipulation.

  7. True Triaxial Experimental Study of Rockbursts Induced By Ramp and Cyclic Dynamic Disturbances

    NASA Astrophysics Data System (ADS)

    Su, Guoshao; Hu, Lihua; Feng, Xiating; Yan, Liubin; Zhang, Gangliang; Yan, Sizhou; Zhao, Bin; Yan, Zhaofu

    2018-04-01

    A modified rockburst testing system was utilized to reproduce rockbursts induced by ramp and cyclic dynamic disturbances with a low-intermediate strain rate of 2 × 10-3-5 × 10-3 s-1 in the laboratory. The experimental results show that both the ramp and cyclic dynamic disturbances play a significant role in inducing rockbursts. In the tests of rockbursts induced by a ramp dynamic disturbance, as the static stress before the dynamic disturbance increases, both the strength of specimens and the kinetic energy of the ejected fragments first increase and then decrease. In the tests of rockbursts induced by a cyclic dynamic disturbance, there exists a rockburst threshold of the static stress and the dynamic disturbance amplitude, and the kinetic energy of the ejected fragments first increases and then decreases as the cyclic dynamic disturbance frequency increases. The main differences between rockbursts induced by ramp dynamic disturbances and those induced by cyclic dynamic disturbances are as follows: the rockburst development process of the former is characterized by an impact failure feature, while that of the latter is characterized by a fatigue failure feature; the damage evolution curve of the specimen of the former has a leap-developing form with a significant catastrophic feature, while that of the latter has an inverted S-shape with a remarkable fatigue damage characteristic; the energy mechanism of the former involves the ramp dynamic disturbance giving extra elastic strain energy to rocks, while that of the latter involves the cyclic dynamic disturbance decreasing the ultimate energy storage capacity of rocks.

  8. [Erythromycin in therapy of cyclic vomiting syndrome].

    PubMed

    Pavlović, Momcilo; Radlović, Nedeljko; Leković, Zoran; Berenji, Karolina

    2007-01-01

    Cyclic vomiting syndrome is an insufficiently understood disorder which manifests itself in stereotypical episodes of vomiting with no detectable organic cause. Considering its unknown aetiology, drugs borrowed from various medication classes are applied in the therapy of this disorder, with variable success. Among other medicaments, erythromycin is also used in treatment of cyclic vomiting syndrome. This is a case study in which the application of erythromycin led to the prevention of attacks of cyclic vomiting syndrome. Our case report presents how periodical erythromycin therapy in two-week intervals at expected attack periods in a girl led to disappearance of cyclic vomiting. Adverse effects of erythromycin did not show up.

  9. Short-term variability in amplitude and motor topography of whole-body involuntary movements in Parkinson's disease dyskinesias and in Huntington's chorea.

    PubMed

    Fenney, Alison; Jog, Mandar S; Duval, Christian

    2008-02-01

    Clinical observations have noted variability in amplitude of levodopa-induced dyskinesias (LID) in Parkinson's disease (PD) and chorea in Huntington's disease (HD) during the day. However, no studies have examined whether both the amplitude and body location (motor topography) of whole-body involuntary movement (WBIM) varied over short periods of time (seconds or minutes), which may have a distinct and significant effect on how disruptive these WBIM may be. The present study quantified the variability of WBIM amplitude and motor topography in patients with PD having LID and in patients with HD having chorea. WBIM was quantified using the MotionMonitor magnetic motion tracker system. Five patients in each group were tested in two conditions: sitting and standing. WBIM increased from sitting to standing, more so in choreic patients. WBIM varied from 17% to 102% of total WBIM amplitude. Chorea tended to present with greater variability than LID in absolute terms in the standing condition, but not when the mean WBIM amplitude was taken into consideration. Motor topography of WBIM also varied more in the HD group, but mostly in the seated condition where more limbs were free to move. Neither group expressed any laterality of involuntary movement, with amplitude being equally distributed on both sides of the body. Results show significant short-term variability in amplitude of chorea and LID, as well as, variability in location of these involuntary movements, illustrating the complexity of the adaptations required to live and be active with involuntary movements such as HD chorea or PD dyskinesias.

  10. High-resolution rock-magnetic variability in shallow marine sediment: a sensitive paleoclimatic metronome

    NASA Astrophysics Data System (ADS)

    Arai, Kohsaku; Sakai, Hideo; Konishi, Kenji

    1997-05-01

    An outer shelf deposit in central Japan centered on the Olduvai normal polarity event in the reversed Matuyama chron reveals a close correlation of both the magnetic susceptibility and remanent intensity with the sedimentary cyclicities apparent in lithologies and molluscan assemblages. Two sedimentary cycles are characterized by distinctly similar, but double-peaked magnetic cyclicities. The rock-magnetic variability is primarily attributed to the relative abundance of terrigenous magnetic minerals, and the double peak of the variability is characterized by the concentration of finer-grained magnetic minerals. The concentration is suspected to be controlled by both climatic change and shifting proximity of the shoreline as a function of rise and fall of the sea level due to glacio-eustasy. Rock-magnetic study reveals the record of a 21 ka period of orbital precession cycles within the sedimentary cyclicity attributable to a 41 ka period of orbital obliquity forcing.

  11. Variable slew-rate spiral design: theory and application to peak B(1) amplitude reduction in 2D RF pulse design.

    PubMed

    Xu, Dan; King, Kevin F; Liang, Zhi-Pei

    2007-10-01

    A new class of spiral trajectories called variable slew-rate spirals is proposed. The governing differential equations for a variable slew-rate spiral are derived, and both numeric and analytic solutions to the equations are given. The primary application of variable slew-rate spirals is peak B(1) amplitude reduction in 2D RF pulse design. The reduction of peak B(1) amplitude is achieved by changing the gradient slew-rate profile, and gradient amplitude and slew-rate constraints are inherently satisfied by the design of variable slew-rate spiral gradient waveforms. A design example of 2D RF pulses is given, which shows that under the same hardware constraints the RF pulse using a properly chosen variable slew-rate spiral trajectory can be much shorter than that using a conventional constant slew-rate spiral trajectory, thus having greater immunity to resonance frequency offsets.

  12. On the dynamical behaviour of low-frequency earthquake swarms prior to a dome collapse of Soufrière Hill volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Hammer, C.; Neuberg, J. W.

    2009-03-01

    A series of low-frequency earthquake swarms prior to a dome collapse on Soufrière Hills volcano, Montserrat, are investigated with the emphasis on event rate and amplitude behaviour. In a single swarm, the amplitudes of consecutive events tend to increase with time, while the rate of event occurrence accelerates initially and then decelerates toward the end of the swarm. However, when consecutive swarms are considered, the average event rates seem to follow the material failure law, and the time of the dome collapse can be successfully estimated using the inverse event rate. These patterns in amplitude and event rate are interpreted as fluctuations in magma ascent velocity, which result in both the generation of low-frequency events as well as cyclic ground deformation accompanying the swarm activity.

  13. Kinetic parameters and renal clearances of plasma adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in man

    PubMed Central

    Broadus, Arthur E.; Kaminsky, Neil I.; Hardman, Joel G.; Sutherland, Earl W.; Liddle, Grant W.

    1970-01-01

    Kinetic parameters and the renal clearances of plasma adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) were evaluated in normal subjects using tritium-labeled cyclic nucleotides. Each tracer was administered both by single, rapid intravenous injection and by constant intravenous infusion, and the specific activities of the cyclic nucleotides in plasma and urine were determined. Both cyclic AMP and cyclic GMP were cleared from plasma by glomerular filtration. The kidney was found to add a variable quantity of endogenous cyclic AMP to the tubular urine, amounting to an average of approximately one-third of the total level of cyclic AMP excreted. Plasma was the source of virtually all of the cyclic GMP excreted. Plasma levels of the cyclic nucleotides appeared to be in dynamic steady state. The apparent volumes of distribution of both nucleotides exceeded extracellular fluid volume, averaging 27 and 38% of body weight for cyclic AMP and cyclic GMP, respectively. Plasma production rates ranged from 9 to 17 nmoles/min for cyclic AMP and from 7 to 13 nmoles/min for cyclic GMP. Plasma clearance rates averaged 668 ml/min for cyclic AMP and 855 ml/min for cyclic GMP. Approximately 85% of the elimination of the cyclic nucleotides from the circulation was due to extrarenal clearance. PMID:5480849

  14. Probabilistic Simulation of Multi-Scale Composite Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2012-01-01

    A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.

  15. Reliability of Tin Silver Copper and mixed solders under variable loading conditions

    NASA Astrophysics Data System (ADS)

    Jaradat, Younis

    Industry use of lead free solder joints necessitates accurate modeling in predicting life in service. Yet, current extrapolations of accelerated test results do not actuate realistic conditions. This research focuses on joint properties of Pb-mixed and Pb-free solder alloys in order to explain material behavior subject to certain test conditions, i.e., varying cycling amplitudes. Additionally, this research will begin with extensive studies on backward compatible solder joints from the material's behavior to its reliability under displacement and load controlled fatigue tests. We address the evolution of the joint's microstructure ergo its properties and performance (mixed solder joints). The present work reports results of reflowing 30 mil SAC305 balls onto Cu, and ENIG coated BGA pads with different amounts of SnPb paste, aging and/or cycling the joints and inspecting the microstructure by cross polarizer microscopy and SEM. We found that the addition of small amounts of Pb had significant effects on solidification during cool-down from reflow, and consequently the initial microstructure. In terms of the varying cycling amplitude study, we note how realistic service conditions are almost never well approximated by cycling with fixed amplitudes. Recent results have demonstrated the consistent breakdown of common damage accumulation rules. In isothermal cycling tests the remaining life, after a step-down in amplitude, was invariably shorter than predicted by such a rule, while a step-up tended to have the opposite effect. The present work offers a mechanistic explanation for this and the basis for a practical approach to the assessment of life under service conditions. Realistic BGA joints were cycled individually in a micromechanical tester, monitoring the solder stiffness and the inelastic energy deposition. Cycling was seen to first cause rapid hardening, followed by leveling off in a 'cyclic saturation' stage and eventually the initiation and growth of a crack until failure. A temporary increase in amplitude during cycling caused a lasting reduction in hardness, and thus enhanced inelastic energy deposition and damage evolution, after the fact. This factor dominates during repeated increases and decreases, eventually shortening the remaining life dramatically

  16. Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes

    DOE PAGES

    Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.; ...

    2017-06-22

    Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less

  17. Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl. 3 forging steel

    NASA Astrophysics Data System (ADS)

    Lee, Byung Ho; Kim, In Sup

    1995-10-01

    The effect of dynamic strain aging on cyclic stress response and fatigue resistance of ASME SA508 Cl.3 forging steel for nuclear reactor pressure vessels has been evaluated in the temperature range of room temperature to 500°C. Total strain ranges and strain rates were varied from 0.7 to 2.0% and from 4 × 10 -4 to 1 × 10 -2 s -1, respectively. The cyclic stress response depended on the testing temperature, strain rate, and range. Generally, the initial cyclic hardening was immediately followed by cyclic softening at all strain rates. However, at 300°C, the operating temperature of nuclear reactor pressure vessels, the variation of cyclic stress amplitude showed the primary and secondary hardening stages dependent on the strain rate and strain range. Dynamic strain aging was manifested by enhanced cyclic hardening, distinguished secondary hardening, and negative strain rate sensitivity. A modified cell shutting model was described for the onset of the secondary hardening due to the dynamic strain aging and it was in good agreement with the experimental results. Fatigue life increased in strain rate at all testing temperatures. Specifically the fatigue life was longer at the dynamic strain aging temperature. Further, the dynamic strain aging was easy to initiate the crack, while crack propagation was retarded by crack branching and suppression of plastic zone, hence the dynamic strain aging caused the improvement of fatigue resistance.

  18. Cyclic deformation of NI/sub 3/(Al,Nb) single crystals at ambient and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonda, N.R.

    Cyclic tests were performed on Ni/sub 3/(Al,Nb) (..gamma..' phase) single crystals by using a servo-hydraulic machine under fully reversed plastic strain control at a frequency of 0.1-0.2 Hz at room temperature, 400/sup 0/C and 700/sup 0/C. Since the monotonic behavior is orientation dependent, three orientations were studied. Asymmetry in tensile and compressive stresses was observed in the cyclic hardening curves of specimens tested at these temperatures and they were discussed with regard to the model suggested by Paider et al for monotonic behavior. The stress levels in the cyclic stress-strain curves (CSSC) at room temperature depended on orientation and cyclicmore » history. No CSSCs were established at 400/sup 0/C and 700/sup 0/C. The deformation in cyclic tests at small plastic strain amplitudes was found to be different from that in monotonic tests in the microplastic regions in which the deformation is believed to be carried by a small density of edge dislocations. But in cyclic deformation, to and from motion of dislocations trap the edge dislocations into dipoles and therefore screw dislocations will be forced to participate in the deformation. Cracks on the surfaces of specimens tested at room temperature and 400/sup 0/C were found to be of stage I type, whereas at 700/sup 0/C, they were of stage II type.« less

  19. Impact of brain injury on functional measures of amplitude-integrated EEG at term equivalent age in premature infants.

    PubMed

    El Ters, N M; Vesoulis, Z A; Liao, S M; Smyser, C D; Mathur, A M

    2017-08-01

    To evaluate the association between qualitative and quantitative amplitude-integrated EEG (aEEG) measures at term equivalent age (TEA) and brain injury on magnetic resonance imaging (MRI) in preterm infants. A cohort of premature infants born at <30 weeks of gestation and with moderate-to-severe MRI injury on a TEA MRI scan was identified. A contemporaneous group of gestational age-matched control infants also born at <30 weeks of gestation with none/mild injury on MRI was also recruited. Quantitative aEEG measures, including maximum and minimum amplitudes, bandwidth span and spectral edge frequency (SEF 90 ), were calculated using an offline software package. The aEEG recordings were qualitatively scored using the Burdjalov system. MRI scans, performed on the same day as aEEG, occurred at a mean postmenstrual age of 38.0 (range 37 to 42) weeks and were scored for abnormality in a blinded manner using an established MRI scoring system. Twenty-eight (46.7%) infants had a normal MRI or mild brain abnormality, while 32 (53.3%) infants had moderate-to-severe brain abnormality. Univariate regression analysis demonstrated an association between severity of brain abnormality and quantitative measures of left and right SEF 90 and bandwidth span (β=-0.38, -0.40 and 0.30, respectively) and qualitative measures of cyclicity, continuity and total Burdjalov score (β=-0.10, -0.14 and -0.12, respectively). After correcting for confounding variables, the relationship between MRI abnormality score and aEEG measures of SEF 90 , bandwidth span and Burdjalov score remained significant. Brain abnormalities on MRI at TEA in premature infants are associated with abnormalities on term aEEG measures, suggesting that anatomical brain injury may contribute to delay in functional brain maturation as assessed using aEEG.

  20. Low-cycle fatigue of Fe-20%Cr alloy processed by equal- channel angular pressing

    NASA Astrophysics Data System (ADS)

    Kaneko, Yoshihisa; Tomita, Ryuji; Vinogradov, Alexei

    2014-08-01

    Low-cycle fatigue properties were investigated on Fe-20%Cr ferritic stainless steel processed by equal channel angular pressing (ECAP). The Fe-20%Cr alloy bullets were processed for one to four passes via Route-Bc. The ECAPed samples were cyclically deformed at the constant plastic strain amplitude ɛpl of 5x10-4 at room temperature in air. After the 1-pass ECAP, low-angle grain boundaries were dominantly formed. During the low-cycle fatigue test, the 1-pass sample revealed the rapid softening which continued until fatigue fracture. Fatigue life of the 1-pass sample was shorter than that of a coarse-grained sample. After the 4-pass ECAP, the average grain size reduced down to about 1.5 μm. At initial stage of the low-cycle fatigue tests, the stress amplitude increased with increasing ECAP passes. At the samples processed for more than 2 passes, the cyclic softening was relatively moderate. It was found that fatigue life of the ECAPed Fe-20%Cr alloy excepting the 1-pass sample was improved as compared to the coarse-grained sample, even under the strain controlled fatigue condition.

  1. Cyclic Mechanical Loading Enhances Transport of Antibodies Into Articular Cartilage.

    PubMed

    DiDomenico, Chris D; Xiang Wang, Zhen; Bonassar, Lawrence J

    2017-01-01

    The goal of this study was to characterize antibody penetration through cartilage tissue under mechanical loading. Mechanical stimulation aids in the penetration of some proteins, but this effect has not characterized molecules such as antibodies (>100 kDa), which may hold some clinical value for treating osteoarthritis (OA). For each experiment, fresh articular cartilage plugs were obtained and exposed to fluorescently labeled antibodies while under cyclic mechanical load in unconfined compression for several hours. Penetration of these antibodies was quantified using confocal microscopy, and finite element (FE) simulations were conducted to predict fluid flow patterns within loaded samples. Transport enhancement followed a linear trend with strain amplitude (0.25-5%) and a nonlinear trend with frequency (0.25-2.60 Hz), with maximum enhancement found to be at 5% cyclic strain and 1 Hz, respectively. Regions of highest enhancement of transport within the tissue were associated with the regions of highest interstitial fluid velocity, as predicted from finite-element simulations. Overall, cyclic compression-enhanced antibody transport by twofold to threefold. To our knowledge, this is the first study to test how mechanical stimulation affects the diffusion of antibodies in cartilage and suggest further study into other important factors regarding macromolecular transport.

  2. Dynamic strain aging in stress controlled creep-fatigue tests of 316L stainless steel under different loading conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Huifeng; Chen, Xuedong; Fan, Zhichao; Dong, Jie; Jiang, Heng; Lu, Shouxiang

    2009-08-01

    Stress controlled fatigue-creep tests were carried out for 316L stainless steel under different loading conditions, i.e. different loading levels at the fixed temperature (loading condition 1, LC1) and different temperatures at the fixed loading level (loading condition 2, LC2). Cyclic deformation behaviors were investigated with respect to the evolutions of strain amplitude and mean strain. Abrupt mean strain jumps were found during cyclic deformation, which was in response to the dynamic strain aging effect. Moreover, as to LC1, when the minimum stress is negative at 550 °C, abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While the minimum stress is positive, mean strain only jumps once at the end of deformation. Similar results were also found in LC2, when the loading level is fixed at -100 to 385 MPa, at higher temperatures (560, 575 °C), abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While at lower temperature (540 °C), mean strain only jumps once at the end of deformation.

  3. A Fatigue Life Prediction Model of Welded Joints under Combined Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Goes, Keurrie C.; Camarao, Arnaldo F.; Pereira, Marcos Venicius S.; Ferreira Batalha, Gilmar

    2011-01-01

    A practical and robust methodology is developed to evaluate the fatigue life in seam welded joints when subjected to combined cyclic loading. The fatigue analysis was conducted in virtual environment. The FE stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction using the S x N (stress x life) method. The measurement or modelling of the residual stresses resulting from the welded process is not part of this work. However, the thermal and metallurgical effects, such as distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combined cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the technical development are discussed. Major challenges associated with this modelling and improvement proposals are finally presented.

  4. Fatigue Behavior of Inconel 718 TIG Welds

    NASA Astrophysics Data System (ADS)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  5. The Role of Flow Reversals in Transition and Relaminarization of Pulsating Flows

    NASA Astrophysics Data System (ADS)

    Gomez, Joan; Goushcha, Oleg; Andreopoulos, Yiannis

    2017-11-01

    Pulsating flows, such as the flows in cardiovascular systems, exhibit a cyclic behavior of the axial velocity. They are of particular interest because at different times of the cycle the flow is laminar or turbulent, depending on the local Reynolds number. An experiment was setup to replicate the cyclic motion of the fluid in a clear, rigid tube. The flow was driven by a piston-motor assembly controlled by a computer. The motion of the piston was programmed to induce a forward-only cyclic motion of the mean flow by adjusting the amplitude of the longitudinal velocity pulsation in relation to the mean velocity. Time-Resolved Particle Image Velocimetry (TR-PIV) techniques were used to acquire velocity data on the plane of a CW laser illumination sheet. Flow reversal occurs first near the walls and the corresponding strong shearing induces transition to turbulence where the rest of the flow remains laminar. The behavior of reversed flow was analyzed under various Reynolds and Womersley numbers.

  6. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.

    2015-07-01

    The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  7. Year-class formation of upper St. Lawrence River northern pike

    USGS Publications Warehouse

    Smith, B.M.; Farrell, J.M.; Underwood, H.B.; Smith, S.J.

    2007-01-01

    Variables associated with year-class formation in upper St. Lawrence River northern pike Esox lucius were examined to explore population trends. A partial least-squares (PLS) regression model (PLS 1) was used to relate a year-class strength index (YCSI; 1974-1997) to explanatory variables associated with spawning and nursery areas (seasonal water level and temperature and their variability, number of ice days, and last day of ice presence). A second model (PLS 2) incorporated four additional ecological variables: potential predators (abundance of double-crested cormorants Phalacrocorax auritus and yellow perch Perca flavescens), female northern pike biomass (as a measure of stock-recruitment effects), and total phosphorus (productivity). Trends in adult northern pike catch revealed a decline (1981-2005), and year-class strength was positively related to catch per unit effort (CPUE; R2 = 0.58). The YCSI exceeded the 23-year mean in only 2 of the last 10 years. Cyclic patterns in the YCSI time series (along with strong year-classes every 4-6 years) were apparent, as was a dampening effect of amplitude beginning around 1990. The PLS 1 model explained over 50% of variation in both explanatory variables and the dependent variable, YCSI first-order moving-average residuals. Variables retained (N = 10; Wold's statistic ??? 0.8) included negative YCSI associations with high summer water levels, high variability in spring and fall water levels, and variability in fall water temperature. The YCSI exhibited positive associations with high spring, summer, and fall water temperature, variability in spring temperature, and high winter and spring water level. The PLS 2 model led to positive YCSI associations with phosphorus and yellow perch CPUE and a negative correlation with double-crested cormorant abundance. Environmental variables (water level and temperature) are hypothesized to regulate northern pike YCSI cycles, and dampening in YCSI magnitude may be related to a combination of factors, including wetland habitat changes, reduced nutrient loading, and increased predation by double-crested cormorants. ?? Copyright by the American Fisheries Society 2007.

  8. Amplitude variations of modulated RV Tauri stars support the dust obscuration model of the RVb phenomenon

    NASA Astrophysics Data System (ADS)

    Kiss, L. L.; Bódi, A.

    2017-12-01

    Context. RV Tauri-type variables are pulsating post-asymptotic giant branch (AGB) stars that evolve rapidly through the instability strip after leaving the AGB. Their light variability is dominated by radial pulsations. Members of the RVb subclass show an additional variability in the form of a long-term modulation of the mean brightness, for which the most popular theories all assume binarity and some kind of circumstellar dust. Here we assess whether or not the amplitude modulations are consistent with the dust obscuration model. Aims: We measure and interpret the overall changes of the mean amplitude of the pulsations along the RVb variability. Methods: We compiled long-term photometric data for RVb-type stars, including visual observations of the American Association of Variable Star Observers, ground-based CCD photometry from the OGLE and ASAS projects, and ultra-precise space photometry of one star, DF Cygni, from theKepler space telescope. After converting all the observations to flux units, we measure the cycle-to-cycle variations of the pulsation amplitude and correlate them to the actual mean fluxes. Results: We find a surprisingly uniform correlation between the pulsation amplitude and the mean flux; they scale linearly with each other for a wide range of fluxes and amplitudes. This means that the pulsation amplitude actually remains constant when measured relative to the system flux level. The apparent amplitude decrease in the faint states has long been noted in the literature but it was always claimed to be difficult to explain with the actual models of the RVb phenomenon. Here we show that when fluxes are used instead of magnitudes, the amplitude attenuation is naturally explained by periodic obscuration from a large opaque screen, one most likely corresponding to a circumbinary dusty disk that surrounds the whole system.

  9. Comparison of cyclic and impact-based reference point indentation measurements in human cadaveric tibia.

    PubMed

    Karim, Lamya; Van Vliet, Miranda; Bouxsein, Mary L

    2018-01-01

    Although low bone mineral density (BMD) is strongly associated with increased fracture risk, up to 50% of those who suffer fractures are not detected as high-risk patients by BMD testing. Thus, new approaches may improve identification of those at increased risk for fracture by in vivo assessment of altered bone tissue properties, which may contribute to skeletal fragility. Recently developed reference point indentation (RPI) allows for assessment of cortical bone indentation properties in vivo using devices that apply cyclic loading or impact loading, but there is little information available to assist with interpretation of RPI measurements. Our goals were to use human cadaveric tibia to determine: 1) the associations between RPI variables, cortical bone density, and morphology; 2) the association between variables obtained from RPI systems using cyclic, slow loading versus a single impact load; and 3) age-related differences in RPI variables. We obtained 20 human tibia and femur pairs from female donors (53-97years), measured total hip BMD using dual-energy X-ray absorptiometry, assessed tibial cortical microarchitecture using high-resolution peripheral quantitative computed tomography (HR-pQCT), and assessed cortical bone indentation properties at the mid-tibial diaphysis using both the cyclic and impact-based RPI systems (Biodent and Osteoprobe, respectively, Active Life Scientific, Santa Barbara, CA). We found a few weak associations between RPI variables, BMD, and cortical geometry; a few weak associations between measurements obtained by the two RPI systems; and no age-related differences in RPI variables. Our findings indicate that in cadaveric tibia from older women RPI measurements are largely independent of age, femoral BMD, and cortical geometry. Furthermore, measurements from the cyclic and impact loading RPI devices are weakly related to each other, indicating that each device reflects different aspects of cortical bone indentation properties. Copyright © 2016. Published by Elsevier Inc.

  10. Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rakshit, Suvendu; Stalin, C. S.

    2017-06-01

    We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V-band light curves from the Catalina Real Time Transient Survey that span 5-9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude than radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe II strength but correlated with the width of the Hβ line. The well-known anti-correlation of variability-luminosity and the variability-Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.

  11. Characterization of Electrocardiogram Changes Throughout a Marathon

    PubMed Central

    Callaway, Clifton; Salcido, David; McEntire, Serina; Roth, Ronald; Hostler, David

    2014-01-01

    Purpose There are few data examining cardiovascular physiology throughout a marathon. This study was devised to characterize electrocardiographic activity continuously throughout a marathon. Methods Cardiac activity was recorded from 19 subjects wearing a Holter monitor during a marathon. The 19 subjects (14 men and 5 women) were aged 39 ± 16 years (mean ± SD) and completed a marathon in 4:32:16 ± 1:23:35. Heart rate (HR), heart rate variability (HRV), T-wave amplitude, T-wave amplitude variability, and T-wave alternans (TWA) were evaluated continuously throughout the marathon. Results Averaged across all subjects, HRV, T-wave amplitude variability, and TWA increased throughout the marathon. Increased variability in T-wave amplitude occurred in 86% of subjects, characterized by complex oscillatory patterns and TWA. Three minutes after the marathon, HR was elevated and HRV was suppressed relative to the pre-marathon state. Conclusion HRV and T-wave amplitude variability, especially in the form of TWA, increase throughout a marathon. Increasing TWA as a marathon progresses likely represents a physiologic process as no arrhythmias or cardiac events were observed. PMID:24832192

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.

    Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less

  13. Finite element analysis of the cyclic indentation of bilayer enamel

    NASA Astrophysics Data System (ADS)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  14. Numerical Investigation of the Dynamic Properties of Intermittent Jointed Rock Models Subjected to Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Zhao, Tao; Xu, Nu-wen

    2017-01-01

    Intermittent jointed rocks, which exist in a myriad of engineering projects, are extraordinarily susceptible to cyclic loadings. Understanding the dynamic fatigue properties of jointed rocks is necessary for evaluating the stability of rock engineering structures. This study numerically investigated the influences of cyclic loading conditions (i.e., frequency, maximum stress and amplitude) and joint geometric configurations (i.e., dip angle, persistency and interspace) on the dynamic fatigue mechanisms of jointed rock models. A reduction model of stiffness and strength was first proposed, and then, sixteen cyclic uniaxial loading tests with distinct loading parameters and joint geometries were simulated. Our results indicate that the reduction model can effectively reproduce the hysteresis loops and the accumulative plastic deformation of jointed rocks in the cyclic process. Both the loading parameters and the joint geometries significantly affect the dynamic properties, including the irreversible strain, damage evolution, dynamic residual strength and fatigue life. Three failure modes of jointed rocks, which are principally controlled by joint geometries, occur in the simulations: splitting failure through the entire rock sample, sliding failure along joint planes and mixed failure, which are principally controlled by joint geometries. Furthermore, the progressive failure processes of the jointed rock samples are numerically observed, and the different loading stages can be distinguished by the relationship between the number of broken bonds and the axial stress.

  15. Reanalysis of the orbital period variations of two DLMR overcontact binaries: FG Hya and GR Vir

    NASA Astrophysics Data System (ADS)

    Zhang, Xu-Dong; Yu, Yun-Xia; Xiang, Fu-Yuan; Hu, Ke

    2017-12-01

    We investigate orbital period changes of two deep, low mass ratio (DLMR) overcontact W UMa-type binaries, FG Hya and GR Vir. It is found that the orbital period of FG Hya shows a cyclic change with a period of {P}{mod}=54.44 {yr}. The cyclic oscillation may be due to a third body in an eccentric orbit, while the orbital period of GR Vir shows a periodic variation with a period of {P}{mod}=28.56 {yr} and an amplitude of A = 0.0352 d. The periodic variation of GR Vir can be interpreted as a result of either the light-time effect of an unseen third body or the magnetic activity cycle.

  16. Exploring late Miocene climate stability: constraining background variability using high-resolution benthic δ18O and δ13C records from Site U1338

    NASA Astrophysics Data System (ADS)

    Drury, A.; John, C. M.; Lee, G.; Shevenell, A.

    2012-12-01

    The late Miocene (11.61 - 5.33 Ma) was one of the more stable climatic periods of the Cenozoic. Superimposed on this stable background climate, a number of threshold events occurred, including the late Miocene Carbon Isotope Shift (CIS, 7.6-6.6 Ma) and the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma). The goal of our study is to constrain the background climate cyclicity during the late Miocene. A better knowledge of the background cyclicity in the Earth's climate system is required to advance understanding of, and to successfully model, climate variability. Improving understanding of how changes in background climate variability affect important parameters and fluxes, such as ice volume and the carbon pump, is crucial for explaining the occurrence of threshold events such as the CIS and MSC during an otherwise climatically stable period. The study site is located in the Eastern Equatorial Pacific (IODP Site U1338, Expedition 321). U1338 was chosen, as the equatorial Pacific is an important component of the global climate system, representing half of the total tropical ocean and a quarter of the global ocean. We present δ18O and δ13C records from 3.5 to 8.5 Ma using the benthic foraminiferal species Cibicidoides mundulus, with a resolution of 3-4 kyr, which resolves all Milankovitch scale cycles. We present a revised shipboard age model, generated from new biostratigraphic age constraints based on planktic foraminiferal datums. Benthic δ18O records at IODP Site U1338 reflect the stable nature of the late Miocene climate accurately, with long-term trends showing low-amplitude (0.2‰) variations. Superimposed on this are higher-amplitude short-term fluctuations (0.3-0.4‰). Deep-sea benthic foraminferal δ18O records both temperature and the δ18O composition of global deep seawater (δ18Odsw). δ18Odsw largely reflects glacio-eustatic change. Our benthic δ18O implies that long-term trends in ice volume were minimal during the late Miocene. However, the short-term variations imply that some significant sea level fluctuations occurred. The benthic δ13C long-term trend varies by ~0.75‰. The late Miocene CIS is visible as a ~1.25‰ excursion. Short-term fluctuations in δ13C record are slightly lower amplitude (~0.50‰). Preliminary spectral analysis highlights the strength of the eccentricity forcing (400 and 100-kyr cycles) in both the δ18O and δ13C records. The 41-kyr obliquity cycles are also visible in the δ18O records. The benthic δ13C records are combined with preliminary low-resolution δ13C records measured on the planktic foraminiferal species Globigerinoides sacculifer from the same samples. Co-varying benthic-planktic δ13C is driven by changes in the ocean reservoir δ13C, whereas con/diverging benthic-planktic δ13C is related to changes in surface productivity. This initial comparison may shed some light on the forcing of the CIS, and the implications for late Miocene climate. Future work will combine benthic δ18O with independent temperature proxies, such as Mg/Ca and clumped isotopes, to isolate the δ18Odsw signal and make more robust inferences about the background cryosphere dynamics during this time. We will also increase the resolution of the planktic foraminiferal records to enable comparison of the dominant forcing in the benthic and planktic records.

  17. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 1. Field observations and possible remedies.

    PubMed

    Do, F; Rocheteau, A

    2002-06-01

    The thermal dissipation method is simple and widely used for measuring sap flow in large stems. As with several other thermal methods, natural temperature gradients are assumed to be negligible in the sapwood being measured. We studied the magnitude and variability of natural temperature gradients in sapwood of Acacia trees growing in the Sahelian zone of Senegal, analyzed their effects on sap flow measurements, and investigated possible solutions. A new measurement approach employing cyclic heating (45 minutes of heating and 15 minutes of cooling; 45/15) was also tested. Three-day measurement sequences that included 1 day without heating, a second day with continuous heating and a third day with cyclic heating were recorded during a 6.5-month period using probes installed at three azimuths in a tree trunk. Natural temperature gradients between the two probes of the sensor unit, spaced 8 to 10 cm vertically, were rarely negligible (i.e., < 0.2 degrees C): they were positive during the night and negative during the day, with an amplitude ranging from 0.3 to 3.5 degrees C depending on trunk azimuth, day and season. These temperature gradients had a direct influence on the signal from the continuously heated sensors, inducing fluctuations in the nighttime reference signal. The resulting errors in sap flow estimates can be greater than 100%. Correction protocols have been proposed in previous studies, but they were unsuitable because of the high spatial and temporal variability of the natural temperature gradients. We found that a measurement signal derived from a noncontinuous heating system could be an attractive solution because it appears to be independent of natural temperature gradients. The magnitude and variability of temperature gradients that we observed were likely exacerbated by the combination of open stand, high solar radiation and low sap flow rate. However, for all applications of the thermal dissipation method, it is wise to check regularly for natural temperature gradients by switching off the heater.

  18. WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinze, Aren N.; Metchev, Stanimir; Kellogg, Kendra, E-mail: aren.heinze@stonybrook.edu, E-mail: smetchev@uwo.ca

    2015-03-10

    We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability thatmore » may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.« less

  19. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems.

    PubMed

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = -2.48 tonnes C ha(-1)), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha(-1), respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha(-1) at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1-2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30-60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems.

  20. Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems

    PubMed Central

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = −2.48 tonnes C ha−1), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha−1, respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha−1 at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1–2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30–60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems. PMID:23335986

  1. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knybel, Lukas; VŠB-Technical University of Ostrava, Ostrava; Cvek, Jakub, E-mail: Jakub.cvek@fno.cz

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, andmore » sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated tumors in contact with mediastinal structures, although adhesion to parietal pleura did not necessarily reduce tumor motion amplitudes. The most variable lung tumors were metastatic lesions in women.« less

  2. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Gates, Nicholas R.

    The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue life predictions were found to improve for all loading conditions considered in this study. The quantification of multiaxial fatigue damage was identified as being a key area of improvement, where the shear-based Fatemi-Socie (FS) critical plane damage parameter was shown to correlate all fully-reversed constant amplitude fatigue data relatively well. Additionally, a proposed modification to the FS parameter was found to result in improved life predictions in the presence of high tensile mean stress and for different ratios of nominal shear to axial stress. For notched specimens, improvements were also gained through the use of more robust notch deformation and stress gradient models. Theory of Critical Distances (TCD) approaches, together with pseudo stress-based plasticity modeling techniques for local stress-strain estimation, resulted in better correlation of multiaxial fatigue data when compared to traditional approaches such as Neuber's rule with fatigue notch factor. Since damage parameters containing both stress and strain terms, such as the FS parameter, are able to reflect changes in fatigue damage due to transient material hardening behavior, this issue was also investigated with respect to its impact on variable amplitude life predictions. In order to ensure that material deformation behavior was properly accounted for, stress-strain predictions based on an Armstrong-Frederick-Chaboche style cyclic plasticity model were first compared to results from deformation tests performed under a variety of complex multiaxial loading conditions. The model was simplified based on the assumption of Masing material behavior, and a new transient hardening formulation was proposed so that all modeling parameters could be determined from a relatively limited amount of experimental data. Overall, model predictions were found to agree fairly well with experimental results for all loading histories considered. Finally, in order to evaluate life prediction procedures under realistic loading conditions, variable amplitude fatigue tests were performed using axial, torsion, and combined axial-torsion loading histories derived from recorded flight test data on the lower wing skin area of a military patrol aircraft (tension-dominated). While negligible improvements in life predictions were obtained through the consideration of transient material deformation behavior for these histories, crack initiation definition was found to have a slightly larger impact on prediction accuracy. As a result, when performing analyses using the modified FS damage parameter, transient stress-strain response, and a 0.2 mm crack initiation definition, nearly all variable amplitude fatigue lives, for un-notched and notched specimens, were predicted within a factor of 3 of experimental results. However, variable amplitude life predictions were still more non-conservative than those observed for constant amplitude loading conditions.

  3. General split helicity gluon tree amplitudes in open twistor string theory

    NASA Astrophysics Data System (ADS)

    Dolan, Louise; Goddard, Peter

    2010-05-01

    We evaluate all split helicity gluon tree amplitudes in open twistor string theory. We show that these amplitudes satisfy the BCFW recurrence relations restricted to the split helicity case and, hence, that these amplitudes agree with those of gauge theory. To do this we make a particular choice of the sextic constraints in the link variables that determine the poles contributing to the contour integral expression for the amplitudes. Using the residue theorem to re-express this integral in terms of contributions from poles at rational values of the link variables, which we determine, we evaluate the amplitudes explicitly, regaining the gauge theory results of Britto et al. [25].

  4. Instrumentation and Methodology for Generation of an Electrochemical Data Base for Pattern Recognition.

    DTIC Science & Technology

    1982-05-01

    and mercury drop hang time all produced changes in cyclic differential capacity curves and -..-- DD 0A" 1473 EDITION OF 1 NOV 6S IS OBSOLETE S/N 0102...scan rate, and mercury drop hang time all produced changes in cyclic differential capacity curves and cyclic staircase voltammograms which were unique...Faradaic measurements with staircase voltammetry have been enumerated elewhere (24, 25). -4- EXPERIMENTAL Experimental Design The seven variables which

  5. 3D-FE Modeling of 316 SS under Strain-Controlled Fatigue Loading and CFD Simulation of PWR Surge Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Barua, Bipul; Listwan, Joseph

    In financial year 2017, we are focusing on developing a mechanistic fatigue model of surge line pipes for pressurized water reactors (PWRs). To that end, we plan to perform the following tasks: (1) conduct stress- and strain-controlled fatigue testing of surge-line base metal such as 316 stainless steel (SS) under constant, variable, and random fatigue loading, (2) develop cyclic plasticity material models of 316 SS, (3) develop one-dimensional (1D) analytical or closed-form model to validate the material models and to understand the mechanics associated with 316 SS cyclic hardening and/or softening, (4) develop three-dimensional (3D) finite element (FE) models withmore » implementation of evolutionary cyclic plasticity, and (5) develop computational fluid dynamics (CFD) model for thermal stratification, thermal-mechanical stress, and fatigue of example reactor components, such as a PWR surge line under plant heat-up, cool-down, and normal operation with/without grid-load-following. This semi-annual progress report presents the work completed on the above tasks for a 316 SS laboratory-scale specimen subjected to strain-controlled cyclic loading with constant, variable, and random amplitude. This is the first time that the accurate 3D-FE modeling of the specimen for its entire fatigue life, including the hardening and softening behavior, has been achieved. We anticipate that this work will pave the way for the development of a fully mechanistic-computer model that can be used for fatigue evaluation of safety-critical metallic components, which are traditionally evaluated by heavy reliance on time-consuming and costly test-based approaches. This basic research will not only help the nuclear reactor industry for fatigue evaluation of reactor components in a cost effective and less time-consuming way, but will also help other safety-related industries, such as aerospace, which is heavily dependent on test-based approaches, where a single full-scale fatigue test can cost millions of dollars and require years of effort to conduct. Toward our goal of demonstration of fully mechanistic fatigue evaluation of reactor components, we also started work on developing a component-level computer model of reactor components, such as 316 SS surge line pipe. This requires developing a thermal-mechanical stress analysis model of the reactor surge line, which, in turn, requires time-dependent temperature and stratification information along the boundary of the pipe. Toward that goal, CFD models of surge lines are being developed. In this report, we also present some preliminary results showing the temperature conditions along the surge line wall under reactor heat-up, cool-down, and steady-state power operation.« less

  6. CARES/Life Ceramics Durability Evaluation Software Enhanced for Cyclic Fatigue

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.

    1999-01-01

    The CARES/Life computer program predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs--which resolve a component's temperature and stress distribution--to reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. The capability, flexibility, and uniqueness of CARES/Life have attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer. Recent work with CARES/Life was directed at enhancing the program s capabilities with regards to cyclic fatigue. Only in the last few years have ceramics been recognized to be susceptible to enhanced degradation from cyclic loading. To account for cyclic loads, researchers at the NASA Lewis Research Center developed a crack growth model that combines the Power Law (time-dependent) and the Walker Law (cycle-dependent) crack growth models. This combined model has the characteristics of Power Law behavior (decreased damage) at high R ratios (minimum load/maximum load) and of Walker law behavior (increased damage) at low R ratios. In addition, a parameter estimation methodology for constant-amplitude, steady-state cyclic fatigue experiments was developed using nonlinear least squares and a modified Levenberg-Marquardt algorithm. This methodology is used to give best estimates of parameter values from cyclic fatigue specimen rupture data (usually tensile or flexure bar specimens) for a relatively small number of specimens. Methodology to account for runout data (unfailed specimens over the duration of the experiment) was also included.

  7. GSC4813-0981 = V921 Mon, a new low-amplitude δ Scuti star with variable amplitude

    NASA Astrophysics Data System (ADS)

    Galeev, A.; Bikmaev, I.; Shimansky, V.; Deminova, N.

    2014-11-01

    GSC 4813-0981 = V921 Mon is a low-amplitude δ Scuti-type variable with an amplitude of 0.018^m-0.027^m in different bands and a period of 48.5 minutes. The fundamental parameters of the atmosphere and physical characteristics, determined from medium-resolution spectra, are: T_{eff}=8700 K, log g=3.95 dex, [M/H]=0, M=1.7 M_{⊙}, R=2.3 R_{⊙}. We performed a long-term analysis of the variations using a ten-year data set of CCD observations (2003-2013) acquired in BVR with the 1.5-m Russian-Turkish telescope (RTT150, TUBITAK National Observatory). A preliminary result is that the amplitude of the variability changes; it was decreasing during 2003-2008, but is now increasing.

  8. Experimental investigation on the effects of non-cyclical frequency and amplitude variation on dynamic stall

    NASA Astrophysics Data System (ADS)

    Heintz, Kyle C.

    An experimental study of a cambered airfoil undergoing non-cyclical, transient pitch trajectories and the resulting effects on the dynamic stall phenomenon is presented. Surface pressure measurements and airfoil incidence angle are acquired simultaneously to resolve instantaneous aerodynamic load coefficients at Mach numbers ranging from 0.2 to 0.4. Derived from these coefficients are various formulations of the aerodynamic damping factor, referred to copiously throughout. Using a two-motor mechanism, each providing independent frequency and amplitude input to the airfoil, unique pitch motions can be implemented by actively controlling the phase between inputs. This work primarily focuses on three pitch motion schemas, the first of which is a "chirp" style trajectory featuring concurrent exponential frequency growth and amplitude decay. Second, these parameters are tested separately to determine their individual contributions. Lastly, a novel dual harmonic pitch motion is devised which rapidly traverses dynamic stall regimes on an inter-cycle basis by modulating the static-stall penetration angle. Throughout all results presented, there is evidence that for consecutive pitch-cycles, the process of dynamic stall is affected when prior oscillations prior have undergone deeper stall-penetration angles. In other words when stall-penetration is descending, retreating from a regime of light or deep stall, statistics of load coefficients, such as damping coefficient, maximum lift, minimum quarter-chord moment, and their phase relationships, do not match the values seen when stall-penetration was growing. The outcomes herein suggest that the airfoil retains some memory of previous flow separation which has the potential to change the influence of the dynamic stall vortex.

  9. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    NASA Astrophysics Data System (ADS)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user subroutine DISP and URDFIL of ABAQUS, respectively, while constitutive formulations of the FEM model are coded and implemented in UMAT. The results of the simulations are compared to experiments. This model verified the validity of Winter's two-phase model and Taylor's uniform stress assumption, explored substructure evolution and "intrinsic" behavior in substructures and successfully simulated the process of PSB band formation and propagation.

  10. The long- and short-term variability of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment.

    PubMed

    Dhont, Jennifer; Vandemeulebroucke, Jef; Burghelea, Manuela; Poels, Kenneth; Depuydt, Tom; Van Den Begin, Robbe; Jaudet, Cyril; Collen, Christine; Engels, Benedikt; Reynders, Truus; Boussaer, Marlies; Gevaert, Thierry; De Ridder, Mark; Verellen, Dirk

    2018-02-01

    To evaluate the short and long-term variability of breathing induced tumor motion. 3D tumor motion of 19 lung and 18 liver lesions captured over the course of an SBRT treatment were evaluated and compared to the motion on 4D-CT. An implanted fiducial could be used for unambiguous motion information. Fast orthogonal fluoroscopy (FF) sequences, included in the treatment workflow, were used to evaluate motion during treatment. Several motion parameters were compared between different FF sequences from the same fraction to evaluate the intrafraction variability. To assess interfraction variability, amplitude and hysteresis were compared between fractions and with the 3D tumor motion registered by 4D-CT. Population based margins, necessary on top of the ITV to capture all motion variability, were calculated based on the motion captured during treatment. Baseline drift in the cranio-caudal (CC) or anterior-poster (AP) direction is significant (ie. >5 mm) for a large group of patients, in contrary to intrafraction amplitude and hysteresis variability. However, a correlation between intrafraction amplitude variability and mean motion amplitude was found (Pearson's correlation coefficient, r = 0.72, p < 10 -4 ). Interfraction variability in amplitude is significant for 46% of all lesions. As such, 4D-CT accurately captures the motion during treatment for some fractions but not for all. Accounting for motion variability during treatment increases the PTV margins in all directions, most significantly in CC from 5 mm to 13.7 mm for lung and 8.0 mm for liver. Both short-term and day-to-day tumor motion variability can be significant, especially for lesions moving with amplitudes above 7 mm. Abandoning passive motion management strategies in favor of more active ones is advised. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook

    2018-06-01

    El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.

  12. The Geometric Phase of Stock Trading.

    PubMed

    Altafini, Claudio

    2016-01-01

    Geometric phases describe how in a continuous-time dynamical system the displacement of a variable (called phase variable) can be related to other variables (shape variables) undergoing a cyclic motion, according to an area rule. The aim of this paper is to show that geometric phases can exist also for discrete-time systems, and even when the cycles in shape space have zero area. A context in which this principle can be applied is stock trading. A zero-area cycle in shape space represents the type of trading operations normally carried out by high-frequency traders (entering and exiting a position on a fast time-scale), while the phase variable represents the cash balance of a trader. Under the assumption that trading impacts stock prices, even zero-area cyclic trading operations can induce geometric phases, i.e., profits or losses, without affecting the stock quote.

  13. The most plausible explanation of the cyclic period changes in close binaries: the case of the RS CVn-type binary WW Dra

    NASA Astrophysics Data System (ADS)

    Liao, W.-P.; Qian, S.-B.

    2010-07-01

    Cyclic period changes are a fairly common phenomenon in close binary systems and are usually explained as being caused either by the magnetic activity of one or both components or by the light travel time effect (LTTE) of a third body. We searched the orbital period changes in 182 EA-type (including the 101 Algol systems used by Hall), 43 EB-type and 53 EW-type binaries with known mass ratio and spectral type of the secondary component. We reproduced and improved the diagram in Hall according to the new collected data. Our plots do not support the conclusion derived by Hall that cyclic period changes are restricted to binaries having a secondary component with spectral type later than F5. The presence of period changes among systems with a secondary component of early type indicates that magnetic activity is one, but not the only, cause of the period variation. It is discovered that cyclic period changes, probably resulting from the presence of a third body, are more frequent in EW-type binaries among close systems. Therefore, the most plausible explanation of the cyclic period changes is the LTTE through the presence of a third body. Using the century-long historical record of the times of light minimum, we analysed the cyclic period change in the Algol binary WW Dra. It is found that the orbital period of the binary shows a ~112.2-yr cyclic variation with an amplitude of ~0.1977d. The cyclic oscillation can be attributed to the LTTE by means of a third body with a mass no less than 6.43Msolar. However, no spectral lines of the third body were discovered, indicating that it may be a candidate black hole. The third body is orbiting the binary at a distance closer than 14.4 au and may play an important role in the evolution of this system.

  14. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    DOEpatents

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  15. Optical Variability of Narrow-line and Broad-line Seyfert 1 Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakshit, Suvendu; Stalin, C. S., E-mail: suvenduat@gmail.com

    We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V -band light curves from the Catalina Real Time Transient Survey that span 5–9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude thanmore » radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe ii strength but correlated with the width of the H β line. The well-known anti-correlation of variability–luminosity and the variability–Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.« less

  16. Experimental Study on Surrogate Nuclear Fuel Rods under Reversed Cyclic Bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Wang, Jy-An John

    The mechanical behavior of spent nuclear fuel (SNF) rods under reversed cyclic bending or bending fatigue must be understood to evaluate their vibration integrity in a transportation environment. This is especially important for high-burnup fuels (>45 GWd/MTU), which have the potential for increased structural damage. It has been demonstrated that the bending fatigue of SNF rods can be effectively studied using surrogate rods. In this investigation, surrogate rods made of stainless steel (SS) 304 cladding and aluminum oxide pellets were tested under load or moment control at a variety of amplitude levels at 5 Hz using the Cyclic Integrated Reversible-Bendingmore » Fatigue Tester developed at Oak Ridge National Laboratory. The behavior of the rods was further characterized using flexural rigidity and hysteresis data, and fractography was performed on the failed rods. The proposed surrogate rods captured many of the characteristics of deformation and failure mode observed in SNF, including the linear-to-nonlinear deformation transition and large residual curvature in static tests, PPI and PCMI failure mechanisms, and large variation in the initial structural condition. Rod degradation was measured and characterized by measuring the flexural rigidity; the degradation of the rigidity depended on both the moment amplitude applied and the initial structural condition of the rods. It was also shown that a cracking initiation site can be located on the internal surface or the external surface of cladding. Finally, fatigue damage to the bending rods can be described in terms of flexural rigidity, and the fatigue life of rods can be predicted once damage model parameters are properly evaluated. The developed experimental approach, test protocol, and analysis method can be used to study the vibration integrity of SNF rods in the future.« less

  17. Age-Related Variability in Tongue Pressure Patterns for Maximum Isometric and Saliva Swallowing Tasks

    PubMed Central

    Peladeau-Pigeon, Melanie

    2017-01-01

    Purpose The ability to generate tongue pressure plays a major role in bolus transport in swallowing. In studies of motor control, stability or variability of movement is a feature that changes with age, disease, task complexity, and perturbation. In this study, we explored whether age and tongue strength influence the stability of the tongue pressure generation pattern during isometric and swallowing tasks in healthy volunteers. Method Tongue pressure data, collected using the Iowa Oral Performance Instrument, were analyzed from 84 participants in sex-balanced and decade age-group strata. Tasks included maximum anterior and posterior isometric pressures and regular-effort saliva swallows. The cyclic spatiotemporal index (cSTI) was used to capture stability (vs. variability) in patterns of pressure generation. Mixed-model repeated measures analyses of covariance were performed separately for each task (anterior and posterior isometric pressures, saliva swallows) with between-participant factors of age group and sex, a within-participant factor of task repetition, and a continuous covariate of tongue strength. Results Neither age group nor sex effects were found. There was no significant relationship between tongue strength and the cSTI on the anterior isometric tongue pressure task (r = −.11). For the posterior isometric tongue pressure task, a significant negative correlation (r = −.395) was found between tongue strength and the cSTI. The opposite pattern of a significant positive correlation (r = .29) between tongue strength and the cSTI was seen for the saliva swallow task. Conclusions Tongue pressure generation patterns appear highly stable across repeated maximum isometric and saliva swallow tasks, despite advancing age. Greater pattern variability is seen with weaker posterior isometric pressures. Overall, saliva swallows had the lowest pressure amplitudes and highest pressure pattern variability as measured by the cSTI. PMID:29114767

  18. Proper orthogonal decomposition analysis for cycle-to-cycle variations of engine flow. Effect of a control device in an inlet pipe

    NASA Astrophysics Data System (ADS)

    Vu, Trung-Thanh; Guibert, Philippe

    2012-06-01

    This paper aims to investigate cycle-to-cycle variations of non-reacting flow inside a motored single-cylinder transparent engine in order to judge the insertion amplitude of a control device able to displace linearly inside the inlet pipe. Three positions corresponding to three insertion amplitudes are implemented to modify the main aerodynamic properties from one cycle to the next. Numerous particle image velocimetry (PIV) two-dimensional velocity fields following cycle database are post-treated to discriminate specific contributions of the fluctuating flow. We performed a multiple snapshot proper orthogonal decomposition (POD) in the tumble plane of a pent roof SI engine. The analytical process consists of a triple decomposition for each instantaneous velocity field into three distinctive parts named mean part, coherent part and turbulent part. The 3rd- and 4th-centered statistical moments of the proper orthogonal decomposition (POD)-filtered velocity field as well as the probability density function of the PIV realizations proved that the POD extracts different behaviors of the flow. Especially, the cyclic variability is assumed to be contained essentially in the coherent part. Thus, the cycle-to-cycle variations of the engine flows might be provided from the corresponding POD temporal coefficients. It has been shown that the in-cylinder aerodynamic dispersions can be adapted and monitored by controlling the insertion depth of the control instrument inside the inlet pipe.

  19. Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones.

    PubMed

    Cowin, Stephen C; Gailani, Gaffar; Benalla, Mohammed

    2009-09-13

    The governing equations for the theory of poroelastic materials with hierarchical pore space architecture and compressible constituents undergoing small deformations are developed. These equations are applied to the problem of determining the exchange of pore fluid between the vascular porosity (PV) and the lacunar-canalicular porosity (PLC) in bone tissue due to cyclic mechanical loading and blood pressure oscillations. The result is basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. A formula for the volume of fluid that moves between the PLC and PV in a cyclic loading is obtained as a function of the cyclic mechanical loading and blood pressure oscillations. Formulas for the oscillating fluid pore pressure in both the PLC and the PV are obtained as functions of the two driving forces, the cyclic mechanical straining and the blood pressure, both with specified amplitude and frequency. The results of this study also suggest a PV permeability greater than 10(-9) m(2) and perhaps a little lower than 10(-8) m(2). Previous estimates of this permeability have been as small as 10(-14) m(2).

  20. Cyclic joint remote state preparation in noisy environment

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-yue; Bai, Ming-qiang; Zhou, Si-qi

    2018-06-01

    We propose a scheme of cyclic joint remote state preparation for three sides, which takes advantage of three GHZ states to compose product state as quantum channel. Suppose there are six legitimate participants, says Alice, Bob, Charlie, David, Emma and Fred in the scheme. It can be shown that Alice and David can remotely prepare a single-qubit state on Bob's side; meanwhile, Bob and Emma can remotely prepare a desired quantum state on Charlie's side, and Charlie and Fred can also remotely prepare a single-qubit state on Alice's side at the same time. Further, it can be achieved in the opposite direction of the cycle by changing the quantum channel. Based on it, we generalize this protocol to N (N≥3) sides utilizing three multi-qubit GHZ-type states as quantum channel. Therefore, the scheme can achieve cyclic joint remote state preparation, which remotely prepares N states in quantum network with N-party, simultaneously. In addition, we consider that the effect of amplitude-damping noise of the initial states is prepared in four different laboratory. Clearly, we use fidelity to describe how much information has been lost in the cyclic process. Our investigation about the effect of noise shows that the preparing of the initial state in different laboratories will affect the loss of information.

  1. Differential sensory fMRI signatures in autism and schizophrenia: Analysis of amplitude and trial-to-trial variability.

    PubMed

    Haigh, Sarah M; Gupta, Akshat; Barb, Scott M; Glass, Summer A F; Minshew, Nancy J; Dinstein, Ilan; Heeger, David J; Eack, Shaun M; Behrmann, Marlene

    2016-08-01

    Autism and schizophrenia share multiple phenotypic and genotypic markers, and there is ongoing debate regarding the relationship of these two disorders. To examine whether cortical dynamics are similar across these disorders, we directly compared fMRI responses to visual, somatosensory and auditory stimuli in adults with autism (N=15), with schizophrenia (N=15), and matched controls (N=15). All participants completed a one-back letter detection task presented at fixation (to control attention) while task-irrelevant sensory stimulation was delivered to the different modalities. We focused specifically on the response amplitudes and the variability in sensory fMRI responses of the two groups, given the evidence of greater trial-to-trial variability in adults with autism. Both autism and schizophrenia individuals showed weaker signal-to-noise ratios (SNR) in sensory-evoked responses compared to controls (d>0.42), but for different reasons. For the autism group, the fMRI response amplitudes were indistinguishable from controls but were more variable trial-to-trial (d=0.47). For the schizophrenia group, response amplitudes were smaller compared to autism (d=0.44) and control groups (d=0.74), but were not significantly more variable (d<0.29). These differential group profiles suggest (1) that greater trial-to-trial variability in cortical responses may be specific to autism and is not a defining characteristic of schizophrenia, and (2) that blunted response amplitudes may be characteristic of schizophrenia. The relationship between the amplitude and the variability of cortical activity might serve as a specific signature differentiating these neurodevelopmental disorders. Identifying the neural basis of these responses and their relationship to the underlying genetic bases may substantially enlighten the understanding of both disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Interfering with the neutron spin

    NASA Astrophysics Data System (ADS)

    Wagh, Apoorva G.; Rakhecha, Veer Chand

    2004-07-01

    Charge neutrality, a spin frac{1}{2} and an associated magnetic moment of the neu- tron make it an ideal probe of quantal spinor evolutions. Polarized neutron interferometry in magnetic field Hamiltonians has thus scored several firsts such as direct verification of Pauli anticommutation, experimental separation of geometric and dynamical phases and observation of non-cyclic amplitudes and phases. This paper provides a flavour of the physics learnt from such experiments.

  3. DEM study of fabric features governing undrained post-liquefaction shear deformation of sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Rui; Fu, Pengcheng; Zhang, Jian-Min

    In an effort to study undrained post-liquefaction shear deformation of sand, the discrete element method (DEM) is adopted to conduct undrained cyclic biaxial compression simulations on granular assemblies consisting of 2D circular particles. The simulations are able to successfully reproduce the generation and eventual saturation of shear strain through the series of liquefaction states that the material experiences during cyclic loading after the initial liquefaction. Also, DEM simulations with different deviatoric stress amplitudes and initial mean effective stresses on samples with different void ratios and loading histories are carried out to investigate the relationship between various mechanics- or fabric-related variablesmore » and post-liquefaction shear strain development. It is found that well-known metrics such as deviatoric stress amplitude, initial mean effective stress, void ratio, contact normal fabric anisotropy intensity, and coordination number, are not adequately correlated to the observed shear strain development and, therefore, could not possibly be used for its prediction. A new fabric entity, namely the Mean Neighboring Particle Distance (MNPD), is introduced to reflect the space arrangement of particles. It is found that the MNPD has an extremely strong and definitive relationship with the post-liquefaction shear strain development, showing MNPD’s potential role as a parameter governing post-liquefaction behavior of sand.« less

  4. DEM study of fabric features governing undrained post-liquefaction shear deformation of sand

    DOE PAGES

    Wang, Rui; Fu, Pengcheng; Zhang, Jian-Min; ...

    2016-10-05

    In an effort to study undrained post-liquefaction shear deformation of sand, the discrete element method (DEM) is adopted to conduct undrained cyclic biaxial compression simulations on granular assemblies consisting of 2D circular particles. The simulations are able to successfully reproduce the generation and eventual saturation of shear strain through the series of liquefaction states that the material experiences during cyclic loading after the initial liquefaction. Also, DEM simulations with different deviatoric stress amplitudes and initial mean effective stresses on samples with different void ratios and loading histories are carried out to investigate the relationship between various mechanics- or fabric-related variablesmore » and post-liquefaction shear strain development. It is found that well-known metrics such as deviatoric stress amplitude, initial mean effective stress, void ratio, contact normal fabric anisotropy intensity, and coordination number, are not adequately correlated to the observed shear strain development and, therefore, could not possibly be used for its prediction. A new fabric entity, namely the Mean Neighboring Particle Distance (MNPD), is introduced to reflect the space arrangement of particles. It is found that the MNPD has an extremely strong and definitive relationship with the post-liquefaction shear strain development, showing MNPD’s potential role as a parameter governing post-liquefaction behavior of sand.« less

  5. Accelerated fatigue testing of dentin-composite bond with continuously increasing load.

    PubMed

    Li, Kai; Guo, Jiawen; Li, Yuping; Heo, Young Cheul; Chen, Jihua; Xin, Haitao; Fok, Alex

    2017-06-01

    The aim of this study was to evaluate an accelerated fatigue test method that used a continuously increasing load for testing the dentin-composite bond strength. Dentin-composite disks (ϕ5mm×2mm) made from bovine incisor roots were subjected to cyclic diametral compression with a continuously increasingly load amplitude. Two different load profiles, linear and nonlinear with respect to the number of cycles, were considered. The data were then analyzed by using a probabilistic failure model based on the Weakest-Link Theory and the classical stress-life function, before being transformed to simulate clinical data of direct restorations. All the experimental data could be well fitted with a 2-parameter Weibull function. However, a calibration was required for the effective stress amplitude to account for the difference between static and cyclic loading. Good agreement was then obtained between theory and experiments for both load profiles. The in vitro model also successfully simulated the clinical data. The method presented will allow tooth-composite interfacial fatigue parameters to be determined more efficiently. With suitable calibration, the in vitro model can also be used to assess composite systems in a more clinically relevant manner. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Influence of Thermal Aging on Tensile and Low Cycle Fatigue Behavior of Type 316LN Austenitic Stainless Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.

    2018-05-01

    Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.

  7. Climate variability drives population cycling and synchrony

    Treesearch

    Lars Y. Pomara; Benjamin Zuckerberg

    2017-01-01

    Aim There is mounting concern that climate change will lead to the collapse of cyclic population dynamics, yet the influence of climate variability on population cycling remains poorly understood. We hypothesized that variability in survival and fecundity, driven by climate variability at different points in the life cycle, scales up from...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radigan, Jacqueline, E-mail: radigan@stsci.edu

    Observations of variability can provide valuable information about the processes of cloud formation and dissipation in brown dwarf atmospheres. Here we report the results of an independent analysis of archival data from the Brown dwarf Atmosphere Monitoring (BAM) program. Time series data for 14 L and T dwarfs reported to be significantly variable over timescales of hours were analyzed. We confirm large-amplitude variability (amplitudes >2%) for 4 out of 13 targets and place upper limits of 0.7%-1.6% on variability in the remaining sample. For two targets we find evidence of weak variability at amplitudes of 1.3% and 1.6%. Based onmore » our revised classification of variable objects in the BAM study, we find strong variability outside the L/T transition to be rare at near infrared wavelengths. From a combined sample of 81 L0-T9 dwarfs from the revised BAM sample and the variability survey of Radigan et al., we infer an overall observed frequency for large-amplitude variability outside the L/T transition of 3.2{sub −1.8}{sup +2.8}%, in contrast to 24{sub −9}{sup +11}% for L9-T3.5 spectral types. We conclude that while strong variability is not limited to the L/T transition, it occurs more frequently in this spectral type range, indicative of larger or more highly contrasting cloud features at these spectral types.« less

  9. The Geometric Phase of Stock Trading

    PubMed Central

    2016-01-01

    Geometric phases describe how in a continuous-time dynamical system the displacement of a variable (called phase variable) can be related to other variables (shape variables) undergoing a cyclic motion, according to an area rule. The aim of this paper is to show that geometric phases can exist also for discrete-time systems, and even when the cycles in shape space have zero area. A context in which this principle can be applied is stock trading. A zero-area cycle in shape space represents the type of trading operations normally carried out by high-frequency traders (entering and exiting a position on a fast time-scale), while the phase variable represents the cash balance of a trader. Under the assumption that trading impacts stock prices, even zero-area cyclic trading operations can induce geometric phases, i.e., profits or losses, without affecting the stock quote. PMID:27556642

  10. Fundamental mechanisms of fatigue and fracture.

    PubMed

    Christ, Hans-Jürgen

    2008-01-01

    A brief overview is given in this article on the main design philosophies and the resulting description concepts used for components which undergo monotonic and cyclic loading. Emphasis is put on a mechanistic approach avoiding a plain reproduction of empirical laws. After a short consideration of fracture as a result of monotonic loading using fracture mechanics basics, the phenomena taking place as a consequence of cyclic plasticity are introduced. The development of fatigue damage is treated by introducing the physical processes which (i) are responsible for microstructural changes, (ii) lead to crack initiation and (iii) determine crack propagation. From the current research topics within the area of metal fatigue, two aspects are dealt with in more detail because of their relevance to biomechanics. The first one is the growth behaviour of microstructural short cracks, which controls cyclic life of smooth parts at low stress amplitudes. The second issue addresses the question of the existence of a true fatigue limit and is of particular interest for components which must sustain a very high number of loading cycles (very high cycle fatigue).

  11. Cyclic Alternating Pattern Is Associated with Cerebral Hemodynamic Variation: A Near-Infrared Spectroscopy Study of Sleep in Healthy Humans

    PubMed Central

    Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2012-01-01

    The cyclic alternating pattern (CAP), that is, cyclic variation of brain activity within non-REM sleep stages, is related to sleep instability and preservation, as well as consolidation of learning. Unlike the well-known electrical activity of CAP, its cerebral hemodynamic counterpart has not been assessed in healthy subjects so far. We recorded scalp and cortical hemodynamics with near-infrared spectroscopy on the forehead and systemic hemodynamics (heart rate and amplitude of the photoplethysmograph) with a finger pulse oximeter during 23 nights in 11 subjects. Electrical CAP activity was recorded with a polysomnogram. CAP was related to changes in scalp, cortical, and systemic hemodynamic signals that resembled the ones seen in arousal. Due to their repetitive nature, CAP sequences manifested as low- and very-low-frequency oscillations in the hemodynamic signals. The subtype A3+B showed the strongest hemodynamic changes. A transient hypoxia occurred during CAP cycles, suggesting that an increased CAP rate, especially with the subtype A3+B, which may result from diseases or fragmented sleep, might have an adverse effect on the cerebral vasculature. PMID:23071658

  12. Cyclic alternating pattern is associated with cerebral hemodynamic variation: a near-infrared spectroscopy study of sleep in healthy humans.

    PubMed

    Näsi, Tiina; Virtanen, Jaakko; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J

    2012-01-01

    The cyclic alternating pattern (CAP), that is, cyclic variation of brain activity within non-REM sleep stages, is related to sleep instability and preservation, as well as consolidation of learning. Unlike the well-known electrical activity of CAP, its cerebral hemodynamic counterpart has not been assessed in healthy subjects so far. We recorded scalp and cortical hemodynamics with near-infrared spectroscopy on the forehead and systemic hemodynamics (heart rate and amplitude of the photoplethysmograph) with a finger pulse oximeter during 23 nights in 11 subjects. Electrical CAP activity was recorded with a polysomnogram. CAP was related to changes in scalp, cortical, and systemic hemodynamic signals that resembled the ones seen in arousal. Due to their repetitive nature, CAP sequences manifested as low- and very-low-frequency oscillations in the hemodynamic signals. The subtype A3+B showed the strongest hemodynamic changes. A transient hypoxia occurred during CAP cycles, suggesting that an increased CAP rate, especially with the subtype A3+B, which may result from diseases or fragmented sleep, might have an adverse effect on the cerebral vasculature.

  13. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 2: Structural fatigue, thermal cycling, creep, and residual strength

    NASA Technical Reports Server (NTRS)

    Blichfeldt, B.; Mccarty, J. E.

    1972-01-01

    Specimens representative of metal aircraft structural components reinforced with boron filamentary composites were manufactured and tested under cyclic loading, cyclic temperature, or continuously applied loading to evaluate some of the factors that affect structural integrity under cyclic conditions. Bonded, stepped joints were used throughout to provide composite-to-metal transition regions at load introduction points. Honeycomb panels with titanium or aluminum faces reinforced with unidirectional boron composite were fatigue tested at constant amplitude under completely reversed loading. Results indicated that the matrix material was the most fatigue-sensitive part of the design, with debonding initiating in the stepped joints. However, comparisons with equal weight all-metal specimens show a 10 to 50 times improved fatigue life. Fatigue crack propagation and residual strength were studied for several different stiffened panel concepts, and were found to vary considerably depending on the configuration. Composite-reinforced metal specimens were also subjected to creep and thermal cycling tests. Thermal cycling of stepped joint tensile specimens resulted in a ten percent decrease in residual strength after 4000 cycles.

  14. A fibre optic oxygen sensor that detects rapid PO2 changes under simulated conditions of cyclical atelectasis in vitro☆

    PubMed Central

    Formenti, Federico; Chen, Rongsheng; McPeak, Hanne; Matejovic, Martin; Farmery, Andrew D.; Hahn, Clive E.W.

    2014-01-01

    Two challenges in the management of Acute Respiratory Distress Syndrome are the difficulty in diagnosing cyclical atelectasis, and in individualising mechanical ventilation therapy in real-time. Commercial optical oxygen sensors can detect PaO2 oscillations associated with cyclical atelectasis, but are not accurate at saturation levels below 90%, and contain a toxic fluorophore. We present a computer-controlled test rig, together with an in-house constructed ultra-rapid sensor to test the limitations of these sensors when exposed to rapidly changing PO2 in blood in vitro. We tested the sensors’ responses to simulated respiratory rates between 10 and 60 breaths per minute. Our sensor was able to detect the whole amplitude of the imposed PO2 oscillations, even at the highest respiratory rate. We also examined our sensor's resistance to clot formation by continuous in vivo deployment in non-heparinised flowing animal blood for 24 h, after which no adsorption of organic material on the sensor's surface was detectable by scanning electron microscopy. PMID:24184746

  15. Damage evaluation of fiber reinforced plastic-confined circular concrete-filled steel tubular columns under cyclic loading using the acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Du, Fangzhu; Ou, Jinping

    2017-03-01

    Glass-fiber reinforced plastic (GFRP)-confined circular concrete-filled steel tubular (CCFT) columns comprise of concrete, steel, and GFRP and show complex failure mechanics under cyclic loading. This paper investigated the failure mechanism and damage evolution of GFRP-CCFT columns by performing uniaxial cyclic loading tests that were monitored using the acoustic emission (AE) technique. Characteristic AE parameters were obtained during the damage evolution of GFRP-CCFT columns. Based on the relationship between the loading curve and these parameters, the damage evolution of GFRP-CCFT columns was classified into three stages that represented different damage degrees. Damage evolution and failure mode were investigated by analyzing the b-value and the ratio of rise time to waveform amplitude and average frequency. The damage severity of GFRP-CCFT columns were quantitatively estimated according to the modified index of damage and NDIS-2421 damage assessment criteria corresponding to each loading step. The proposed method can explain the damage evolution and failure mechanism for GFRP-CCFT columns and provide critical warning information for composite structures.

  16. Computational Modeling of Sinkage of Objects into Porous Bed under Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Sheikh, B.; Qiu, T.; Liu, X.

    2017-12-01

    This work is a companion of another abstract submitted to this session on the computational modeling for the prediction of underwater munitions. In the other abstract, the focus is the hydrodynamics and sediment transport. In this work, the focus is on the geotechnical aspect and granular material behavior when the munitions interact with the porous bed. The final goal of the project is to create and utilize a comprehensive modeling framework, which integrates the flow and granular material models, to simulate and investigate the motion of the munitions. In this work, we present the computational modeling of one important process: the sinkage of rigid-body objects into porous bed under cyclic loading. To model the large deformation of granular bed materials around sinking objects under cyclic loading, a rate-independent elasto-plastic constitutive model is implemented into a Smoothed Particle Hydrodynamics (SPH) model. The effect of loading conditions (e.g., amplitude and frequency of shaking), object properties (e.g., geometry and density), and granular bed material properties (e.g., density) on object singkage is discussed.

  17. A mathematical model for predicting the life of polymer electrolyte fuel cell membranes subjected to hydration cycling

    NASA Astrophysics Data System (ADS)

    Burlatsky, S. F.; Gummalla, M.; O'Neill, J.; Atrazhev, V. V.; Varyukhin, A. N.; Dmitriev, D. V.; Erikhman, N. S.

    2012-10-01

    Under typical Polymer Electrolyte Membrane Fuel Cell (PEMFC) fuel cell operating conditions, part of the membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEMFC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane lifetime. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.

  18. The Microstructure Evolution and Deformation Behavior of AZ80 During Gradient Increment Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Ren, Lingbao; Quan, Gaofeng; Boehlert, Carl J.; Zhou, Mingyang; Guo, Yangyang; Fan, Lingling

    2018-06-01

    Cyclic loading-unloading uniaxial tension experiments were conducted at temperatures ranging between 293 K and 623 K and a strain rate of 10-3 s-1 to study the cyclic accumulated plastic deformation (CAP) behavior of extruded AZ80. The 673 K/4-h heat treatment to the as-extruded AZ80 led to a noticeable decrease in yield strength which was associated with both dissolution of the β-Mg17Al12 phase and growth of the matrix grain size. The critical number of cycles needed to soften the material (N c) decreased from 5 to 4 when the cyclic strain amplitude (ɛ a) increased from 3.3 to 5.0 pct for the as-extruded AZ80. The average cyclic hardening rate (Θ) increased from 11 to 23 MPa/cycle after heat treatment, and this was attributed to the more pronounced twinning process in the coarse-grained microstructure. During the 293 K to 473 K CAP deformation, the increasing accumulated cyclic tension strain may have accelerated the propagation of secondary twinning leading to the Lüders-like post-yield softening. Twinning was prevalent at low temperature (293 K to 473 K) in the ɛ a = 3.0 pct CAP deformation for the heat-treated alloy, and twin-assisted precipitation occurred during the 523 K CAP deformation, which implied that the high diffusivity in the twin boundary accelerated the heterogeneous nucleation of precipitates. The preferred cracking locations changed from twin boundaries to grain boundaries when the CAP deformation temperature increased from 473 K to 523 K. As for the 623 K CAP deformation, cavities initiated at the grain boundaries, and the volume fraction of the cracks/cavities increased from 0.01 to 0.05 with increasing temperature.

  19. Saturation of the magnetorotational instability in the unstratified shearing box with zero net flux: convergence in taller boxes

    NASA Astrophysics Data System (ADS)

    Shi, Ji-Ming; Stone, James M.; Huang, Chelsea X.

    2016-03-01

    Previous studies of the non-linear regime of the magnetorotational instability in one particular type of shearing box model - unstratified with no net magnetic flux - find that without explicit dissipation (viscosity and resistivity) the saturation amplitude decreases with increasing numerical resolution. We show that this result is strongly dependent on the vertical aspect ratio of the computational domain Lz/Lx. When Lz/Lx ≲ 1, we recover previous results. However, when the vertical domain is extended Lz/Lx ≳ 2.5, we find the saturation level of the stress is greatly increased (giving a ratio of stress to pressure α ≳ 0.1), and moreover the results are independent of numerical resolution. Consistent with previous results, we find that saturation of the magnetorotational (MRI) in this regime is controlled by a cyclic dynamo which generates patches of strong toroidal field that switches sign on scales of Lx in the vertical direction. We speculate that when Lz/Lx ≲ 1, the dynamo is inhibited by the small size of the vertical domain, leading to the puzzling dependence of saturation amplitude on resolution. We show that previous toy models developed to explain the MRI dynamo are consistent with our results, and that the cyclic pattern of toroidal fields observed in stratified shearing box simulations (leading to the so-called butterfly diagram) may also be related. In tall boxes the saturation amplitude is insensitive to whether or not explicit dissipation is included in the calculations, at least for large magnetic Reynolds and Prandtl number. Finally, we show MRI turbulence in tall domains has a smaller critical Pmc, and an extended lifetime compared to Lz/Lx ≲ 1 boxes.

  20. Optimizing an Intermittent Stretch Paradigm Using ERK1/2 Phosphorylation Results in Increased Collagen Synthesis in Engineered Ligaments

    PubMed Central

    Paxton, Jennifer Z.; Hagerty, Paul; Andrick, Jonathan J.

    2012-01-01

    Dynamic mechanical input is believed to play a critical role in the development of functional musculoskeletal tissues. To study this phenomenon, cyclic uniaxial mechanical stretch was applied to engineered ligaments using a custom-built bioreactor and the effects of different stretch frequency, amplitude, and duration were determined. Stretch acutely increased the phosphorylation of p38 (3.5±0.74-fold), S6K1 (3.9±0.19-fold), and ERK1/2 (2.45±0.32-fold). The phosphorylation of ERK1/2 was dependent on time, rather than on frequency or amplitude, within these constructs. ERK1/2 phosphorylation was similar following stretch at frequencies from 0.1 to 1 Hz and amplitudes from 2.5% to 15%, whereas phosphorylation reached maximal levels at 10 min of stretch and returned toward basal within 60 min of stretch. Following a single 10-min bout of cyclic stretch, the cells remained refractory to a second stretch for up to 6 h. Using the phosphorylation of ERK1/2 as a guide, the optimum stretch paradigm was hypothesized to be 10 min of stretch at 2.5% of resting length repeated every 6 h. Consistent with this hypothesis, 7 days of stretch using this optimized intermittent stretch program increased the collagen content of the grafts more than a continuous stretch program (CTL=3.1%±0.44%; CONT=4.8%±0.30%; and INT=5.9%±0.56%). These results suggest that short infrequent bouts of loading are optimal for improving engineered tendon and ligament physiology. PMID:21902469

  1. Capturing Cyclic Variability in EGR Dilute SI Combustion using Multi-Cycle RANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcelli, Riccardo; Sevik, James; Wallner, Thomas

    Dilute combustion is an effective approach to increase the thermal efficiency of spark-ignition (SI) internal combustion engines (ICEs). However, high dilution levels typically result in large cycle-to-cycle variations (CCV) and poor combustion stability, therefore limiting the efficiency improvement. In order to extend the dilution tolerance of SI engines, advanced ignition systems are the subject of extensive research. When simulating the effect of the ignition characteristics on CCV, providing a numerical result matching the measured average in-cylinder pressure trace does not deliver useful information regarding combustion stability. Typically Large Eddy Simulations (LES) are performed to simulate cyclic engine variations, since Reynold-Averagedmore » Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS, the cyclic perturbations coming from different initial conditions at each cycle are not damped out even after many simulated cycles. As a result, multi-cycle RANS results feature cyclic variability. This allows evaluating the effect of advanced ignition sources on combustion stability but requires validation against the entire cycle-resolved experimental dataset. A single-cylinder GDI research engine is simulated using RANS and the numerical results for 20 consecutive engine cycles are evaluated for several operating conditions, including stoichiometric as well as EGR dilute operation. The effect of the ignition characteristics on CCV is also evaluated. Results show not only that multi-cycle RANS simulations can capture cyclic variability and deliver similar trends as the experimental data, but more importantly that RANS might be an effective, lower-cost alternative to LES for the evaluation of ignition strategies for combustion systems that operate close to the stability limit.« less

  2. Variable amplitude fatigue crack growth characteristics of railroad tank car steel volume III

    DOT National Transportation Integrated Search

    2006-12-01

    The load history that railroad tank cars experience has a significant variable amplitude characteristic. Although previous efforts have been directed toward understanding baseline fatigue crack growth behavior of TC-128B steel as a function of materi...

  3. The Propagation of Movement Variability in Time: A Methodological Approach for Discrete Movements with Multiple Degrees of Freedom.

    PubMed

    Krüger, Melanie; Straube, Andreas; Eggert, Thomas

    2017-01-01

    In recent years, theory-building in motor neuroscience and our understanding of the synergistic control of the redundant human motor system has significantly profited from the emergence of a range of different mathematical approaches to analyze the structure of movement variability. Approaches such as the Uncontrolled Manifold method or the Noise-Tolerance-Covariance decomposition method allow to detect and interpret changes in movement coordination due to e.g., learning, external task constraints or disease, by analyzing the structure of within-subject, inter-trial movement variability. Whereas, for cyclical movements (e.g., locomotion), mathematical approaches exist to investigate the propagation of movement variability in time (e.g., time series analysis), similar approaches are missing for discrete, goal-directed movements, such as reaching. Here, we propose canonical correlation analysis as a suitable method to analyze the propagation of within-subject variability across different time points during the execution of discrete movements. While similar analyses have already been applied for discrete movements with only one degree of freedom (DoF; e.g., Pearson's product-moment correlation), canonical correlation analysis allows to evaluate the coupling of inter-trial variability across different time points along the movement trajectory for multiple DoF-effector systems, such as the arm. The theoretical analysis is illustrated by empirical data from a study on reaching movements under normal and disturbed proprioception. The results show increased movement duration, decreased movement amplitude, as well as altered movement coordination under ischemia, which results in a reduced complexity of movement control. Movement endpoint variability is not increased under ischemia. This suggests that healthy adults are able to immediately and efficiently adjust the control of complex reaching movements to compensate for the loss of proprioceptive information. Further, it is shown that, by using canonical correlation analysis, alterations in movement coordination that indicate changes in the control strategy concerning the use of motor redundancy can be detected, which represents an important methodical advance in the context of neuromechanics.

  4. Variations in tilt rate and harmonic tremor amplitude during the January-August 1983 east rift eruptions of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dvorak, J.J.; Okamura, A.T.

    1985-01-01

    During January-August 1983, a network of telemetered tiltmeters and seismometers recorded detailed temporal changes associated with seven major eruptive phases along the east rift of Kilauea Volcano, Hawaii. Each eruptive phase was accompanied by subsidence of the summit region and followed by reinflation of the summit to approximately the same level before renewal of eruptive activity. The cyclic summit tilt pattern and the absence of measurable tilt changes near the eruptive site suggest that conditions in the summit region controlled the timing of the last six eruptive phases. The rate of summit subsidence progressively increased from one eruptive phase to the next during the last six phases; the amplitude of harmonic tremor increased during the last four phases. The increases in subsidence rate and in tremor amplitude suggest that frequent periods of magma movement have reduced the flow resistance of the conduit system between the summit and the rift zone. ?? 1985.

  5. IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James R. Wood; W. Quinlan; A. Wylie

    2003-07-01

    Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Charlton 6 pinnacle reef (Otsego County) in the Michigan Basin. Contract negotiations by our industry partner to gain access to this CO2 that would otherwise be vented to the atmosphere are near completion. A new method of subsurface characterization, log curve amplitude slicing, is being used to map facies distributions and reservoir properties in two reefs, the Belle River Mills and Chester 18 Fields. The Belle River Mills and Chester18 fields are being used as typefields because they have excellent log-curve and core datamore » coverage. Amplitude slicing of the normalized gamma ray curves is showing trends that may indicate significant heterogeneity and compartmentalization in these reservoirs. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding the log curve amplitude slicing technique and a booth at the Midwest PTTC meeting.« less

  6. Does the terrestrial phenology concept apply in water?

    NASA Astrophysics Data System (ADS)

    Winder, M.; Cloern, J. E.

    2009-12-01

    Terrestrial plants have a life history that has evolved to a circannual rhythm in concert with the seasonal climate system and overall biomass follows a regular cycle of growth and senescence having a period of 1 year. Consistency in phase and amplitude render terrestrial plant activity an effective tool to observe shifts in the seasonal life cycle in response to climate change. The other half of Earth’s primary production occurs in aquatic systems, dominated by unicellular algae having the capacity to divide daily under optimal conditions and population changes can, in principle, occur any time within a year. Given that periods of life cycles differ on land compared to aquatic systems, it can be expected that patterns of seasonal variability might differ between terrestrial and pelagic plants. We compiled 121 phytoplankton biomass time series with a median length of 16 years from estuarine-coastal and lake ecosystems in the temperate and subtropical zone and address three questions: Do aquatic pelagic plants follow the canonical seasonal pattern of terrestrial plants? What are the dominant periodicities of aquatic primary producers? How recurrent are cyclical patterns from year to year? We applied wavelet analysis to extract the phase and amplitude of these long-term phytoplankton time series. The data revealed that in about 45 % of the aquatic sites an annual cycle of 12-month periodicity was strongest expressed, corresponding to one peak per year. In about 20 % the 6-month periodicity dominated, characteristic of two peaks within a year, and about 35 % showed a pattern best attributed to the 2-5 month band periodicity and for 2 % no consistent periodicity emerged. The reoccurrence of the seasonal fluctuations varied however greatly from year to year, ranging from more predictable patterns to irregular patterns in other sites. These findings suggest that seasonal activity of chlorophyll a can be unpredictable and variable. We propose drivers that give rise to the broad pattern of seasonal phytoplankton fluctuations and discuss advantages and limitations of using phytoplankton phenology as indicators of climate change.

  7. Variability and Order in Cytoskeletal Dynamics of Motile Amoeboid Cells

    NASA Astrophysics Data System (ADS)

    Hsu, Hsin-Fang; Bodenschatz, Eberhard; Westendorf, Christian; Gholami, Azam; Pumir, Alain; Tarantola, Marco; Beta, Carsten

    2017-10-01

    The chemotactic motion of eukaryotic cells such as leukocytes or metastatic cancer cells relies on membrane protrusions driven by the polymerization and depolymerization of actin. Here we show that the response of the actin system to a receptor stimulus is subject to a threshold value that varies strongly from cell to cell. Above the threshold, we observe pronounced cell-to-cell variability in the response amplitude. The polymerization time, however, is almost constant over the entire range of response amplitudes, while the depolymerization time increases with increasing amplitude. We show that cell-to-cell variability in the response amplitude correlates with the amount of Arp2 /3 , a protein that enhances actin polymerization. A time-delayed feedback model for the cortical actin concentration is consistent with all our observations and confirms the role of Arp2 /3 in the observed cell-to-cell variability. Taken together, our observations highlight robust regulation of the actin response that enables a reliable timing of cell movement.

  8. Piezoelectric and dielectric performance of poled lead zirconate titanate subjected to electric cyclic fatigue

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay; Mottern, Alexander M.

    2012-02-01

    Poled lead zirconate titanate (PZT) material as a single-layer plate was tested using a piezodilatometer under electric cyclic loading in both unipolar and bipolar modes. Its responses were evaluated using unipolar and bipolar measurements on the same setup. The mechanical strain and charge density loops exhibited various variations when the material was cycled for more than 108 cycles. The various quantities including loop amplitude, hysteresis, switchable polarization, and coercive field were characterized accordingly under the corresponding measurement conditions. At the same time, the offset polarization and bias electric field of the material were observed to be changed and the trend was found to be related to the measurement conditions also. Finally, the piezoelectric and dielectric coefficients were analyzed and their implications for the application of interest have been discussed.

  9. Teaching Differentials in Thermodynamics Using Spatial Visualization

    ERIC Educational Resources Information Center

    Wang, Chih-Yueh; Hou, Ching-Han

    2012-01-01

    The greatest difficulty that is encountered by students in thermodynamics classes is to find relationships between variables and to solve a total differential equation that relates one thermodynamic state variable to two mutually independent state variables. Rules of differentiation, including the total differential and the cyclic rule, are…

  10. The MASIV Survey - IV. Relationship between intra-day scintillation and intrinsic variability of radio AGNs

    NASA Astrophysics Data System (ADS)

    Koay, J. Y.; Macquart, J.-P.; Jauncey, D. L.; Pursimo, T.; Giroletti, M.; Bignall, H. E.; Lovell, J. E. J.; Rickett, B. J.; Kedziora-Chudczer, L.; Ojha, R.; Reynolds, C.

    2018-03-01

    We investigate the relationship between 5 GHz interstellar scintillation (ISS) and 15 GHz intrinsic variability of compact, radio-selected active galactic nuclei (AGNs) drawn from the Microarcsecond Scintillation-Induced Variability (MASIV) Survey and the Owens Valley Radio Observatory blazar monitoring program. We discover that the strongest scintillators at 5 GHz (modulation index, m5 ≥ 0.02) all exhibit strong 15 GHz intrinsic variability (m15 ≥ 0.1). This relationship can be attributed mainly to the mutual dependence of intrinsic variability and ISS amplitudes on radio core compactness at ˜ 100 μas scales, and to a lesser extent, on their mutual dependences on source flux density, arcsec-scale core dominance and redshift. However, not all sources displaying strong intrinsic variations show high amplitude scintillation, since ISS is also strongly dependent on Galactic line-of-sight scattering properties. This observed relationship between intrinsic variability and ISS highlights the importance of optimizing the observing frequency, cadence, timespan and sky coverage of future radio variability surveys, such that these two effects can be better distinguished to study the underlying physics. For the full MASIV sample, we find that Fermi-detected gamma-ray loud sources exhibit significantly higher 5 GHz ISS amplitudes than gamma-ray quiet sources. This relationship is weaker than the known correlation between gamma-ray loudness and the 15 GHz variability amplitudes, most likely due to jet opacity effects.

  11. The Viewing Geometry of Brown Dwarfs Influences Their Observed Colors and Variability Amplitudes

    NASA Astrophysics Data System (ADS)

    Vos, Johanna M.; Allers, Katelyn N.; Biller, Beth A.

    2017-06-01

    In this paper we study the full sample of known Spitzer [3.6 μm] and J-band variable brown dwarfs. We calculate the rotational velocities, v\\sin I, of 16 variable brown dwarfs using archival Keck NIRSPEC data and compute the inclination angles of 19 variable brown dwarfs. The results obtained show that all objects in the sample with mid-IR variability detections are inclined at an angle > 20^\\circ , while all objects in the sample displaying J-band variability have an inclination angle > 35^\\circ . J-band variability appears to be more affected by inclination than Spitzer [3.6 μm] variability, and is strongly attenuated at lower inclinations. Since J-band observations probe deeper into the atmosphere than mid-IR observations, this effect may be due to the increased atmospheric path length of J-band flux at lower inclinations. We find a statistically significant correlation between the color anomaly and inclination of our sample, where field objects viewed equator-on appear redder than objects viewed at lower inclinations. Considering the full sample of known variable L, T, and Y spectral type objects in the literature, we find that the variability properties of the two bands display notably different trends that are due to both intrinsic differences between bands and the sensitivity of ground-based versus space-based searches. However, in both bands we find that variability amplitude may reach a maximum at ˜7-9 hr periods. Finally, we find a strong correlation between color anomaly and variability amplitude for both the J-band and mid-IR variability detections, where redder objects display higher variability amplitudes.

  12. The Influence of Second Harmonic Phase and Amplitude Variation in Cyclically Pitching Wings

    NASA Astrophysics Data System (ADS)

    Culler, Ethan; Farnsworth, John

    2017-11-01

    From wind tunnel testing of a cyber-physical wing model, it has been found that the pitch trajectory for stall flutter is described by an array of higher harmonic frequencies with decaying energy content. These frequencies distort the stall flutter motion from that of a pure sinusoidal oscillation in pitch and can have a significant effect on the resulting force production. In order to understand how these higher harmonic frequencies contribute to the overall pitching moment characteristics of a wing in stall flutter, a rigid finite span wing model, with aspect ratio four, was pitched in the wind tunnel. The prescribed motion of the pitch cycle was varied by changing the amplitude ratio and phase of the second harmonic of the oscillation frequency. The second harmonic represents the second highest energy mode in the pitching cycle spectra. Pitching moment and planar particle image velocimetry data was collected. From these pitching trajectories, a significant dependence of pitching moment on both the phase and amplitude of the prescribed waveforms was found. Specifically, for the same amplitude ratio, variations in the phase produced changes of approximately 30 percent in the phase averaged pitching moment.

  13. A comparative study of gold UCLA-type and CAD/CAM titanium implant abutments

    PubMed Central

    Park, Ji-Man; Lee, Jai-Bong; Heo, Seong-Joo

    2014-01-01

    PURPOSE The aim of this study was to evaluate the interface accuracy of computer-assisted designed and manufactured (CAD/CAM) titanium abutments and implant fixture compared to gold-cast UCLA abutments. MATERIALS AND METHODS An external connection implant system (Mark III, n=10) and an internal connection implant system (Replace Select, n=10) were used, 5 of each group were connected to milled titanium abutment and the rest were connected to the gold-cast UCLA abutments. The implant fixture and abutment were tightened to torque of 35 Ncm using a digital torque gauge, and initial detorque values were measured 10 minutes after tightening. To mimic the mastication, a cyclic loading was applied at 14 Hz for one million cycles, with the stress amplitude range being within 0 N to 100 N. After the cyclic loading, detorque values were measured again. The fixture-abutment gaps were measured under a microscope and recorded with an accuracy of ±0.1 µm at 50 points. RESULTS Initial detorque values of milled abutment were significantly higher than those of cast abutment (P<.05). Detorque values after one million dynamic cyclic loadings were not significantly different (P>.05). After cyclic loading, detorque values of cast abutment increased, but those of milled abutment decreased (P<.05). There was no significant difference of gap dimension between the milled abutment group and the cast abutment group after cyclic loading. CONCLUSION In conclusion, CAD/CAM milled titanium abutment can be fabricated with sufficient accuracy to permit screw joint stability between abutment and fixture comparable to that of the traditional gold cast UCLA abutment. PMID:24605206

  14. Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives

    NASA Astrophysics Data System (ADS)

    Cerfontaine, B.; Collin, F.

    2018-02-01

    The purpose of this paper is to provide a comprehensive state of the art of fatigue and cyclic loading of natural rock materials. Papers published in the literature are classified and listed in order to ease bibliographical review, to gather data (sometimes contradictory) on classical experimental results and to analyse the main interpretation concepts. Their advantages and limitations are discussed, and perspectives for further work are highlighted. The first section summarises and defines the different experimental set-ups (type of loading, type of experiment) already applied to cyclic/fatigue investigation of rock materials. The papers are then listed based on these different definitions. Typical results are highlighted in next section. Fatigue/cyclic loading mainly results in accumulation of plastic deformation and/or damage cycle after cycle. A sample cyclically loaded at constant amplitude finally leads to failure even if the peak load is lower than its monotonic strength. This subcritical crack is due to a diffuse microfracturing and decohesion of the rock structure. The third section reviews and comments the concepts used to interpret the results. The fatigue limit and S- N curves are the most common concepts used to describe fatigue experiments. Results published from all papers are gathered into a single figure to highlight the tendency. Predicting the monotonic peak strength of a sample is found to be critical in order to compute accurate S- N curves. Finally, open questions are listed to provide a state of the art of grey areas in the understanding of fatigue mechanisms and challenges for the future.

  15. Effect of Stress Corrosion and Cyclic Fatigue on Fluorapatite Glass-Ceramic

    NASA Astrophysics Data System (ADS)

    Joshi, Gaurav V.

    2011-12-01

    Objective: The objective of this study was to test the following hypotheses: 1. Both cyclic degradation and stress corrosion mechanisms result in subcritical crack growth in a fluorapatite glass-ceramic. 2. There is an interactive effect of stress corrosion and cyclic fatigue to cause subcritical crack growth (SCG) for this material. 3. The material that exhibits rising toughness curve (R-curve) behavior also exhibits a cyclic degradation mechanism. Materials and Methods: The material tested was a fluorapatite glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). Rectangular beam specimens with dimensions of 25 mm x 4 mm x 1.2 mm were fabricated using the press-on technique. Two groups of specimens (N=30) with polished (15 mum) or air abraded surface were tested under rapid monotonic loading. Additional polished specimens were subjected to cyclic loading at two frequencies, 2 Hz (N=44) and 10 Hz (N=36), and at different stress amplitudes. All tests were performed using a fully articulating four-point flexure fixture in deionized water at 37°C. The SCG parameters were determined by using a statistical approach by Munz and Fett (1999). The fatigue lifetime data were fit to a general log-linear model in ALTA PRO software (Reliasoft). Fractographic techniques were used to determine the critical flaw sizes to estimate fracture toughness. To determine the presence of R-curve behavior, non-linear regression was used. Results: Increasing the frequency of cycling did not cause a significant decrease in lifetime. The parameters of the general log-linear model showed that only stress corrosion has a significant effect on lifetime. The parameters are presented in the following table.* SCG parameters (n=19--21) were similar for both frequencies. The regression model showed that the fracture toughness was significantly dependent (p<0.05) on critical flaw size. Conclusions: 1. Cyclic fatigue does not have a significant effect on the SCG in the fluorapatite glass-ceramic IPS e.max ZirPress. 2. There was no interactive effect between cyclic degradation and stress corrosion for this material. 3. The material exhibited a low level of R-curve behavior. It did not exhibit cyclic degradation. *Please refer to dissertation for table.

  16. Frequency and Size of Strombolian Eruptions from the Phonolitic Lava Lake at Erebus Volcano, Antarctica: Insights from Infrasound and Seismic Observations on Bubble Formation and Ascent

    NASA Astrophysics Data System (ADS)

    Rotman, H. M. M.; Kyle, P. R.; Fee, D.; Curtis, A.

    2015-12-01

    Erebus, an active intraplate volcano on Ross Island, commonly produces bubble burst Strombolian explosions from a long-lived, convecting phonolitic lava lake. Persistent lava lakes are rare, and provide direct insights into their underlying magmatic system. Erebus phonolite is H2O-poor and contains ~30% anorthoclase megacrysts. At shallow depths lab measurements suggest the magma has viscosities of ~107 Pa s. This has implications for magma and bubble ascent rates through the conduit and into the lava lake. The bulk composition and matrix glass of Erebus ejecta has remained uniform for many thousands of years, but eruptive activity varies on decadal and shorter time scales. Over the last 15 years, increased activity took place in 2005-2007, and more recently in the 2013 austral summer. In the 2014 austral summer, new infrasound sensors were installed ~700 m from the summit crater hosting the lava lake. These sensors, supplemented by the Erebus network seismic stations, recorded >1000 eruptions between 1 January and 7 April 2015, with an average infrasound daily uptime of 9.6 hours. Over the same time period, the CTBT infrasound station IS55, ~25 km from Erebus, detected ~115 of the >1000 locally observed eruptions with amplitude decreases of >100x. An additional ~200 eruptions were recorded during local infrasound downtime. This represents an unusually high level of activity from the Erebus lava lake, and while instrument noise influences the minimum observable amplitude each day, the eruption infrasound amplitudes may vary by ~3 orders of magnitude over the scale of minutes to hours. We use this heightened period of variable activity and associated seismic and acoustic waveforms to examine mechanisms for bubble formation and ascent, such as rise speed dependence and collapsing foam; repose times for the larger eruptions; and possible eruption connections to lava lake cyclicity.

  17. Anomalous propagation of Omega VLF waves near the geomagnetic equator

    NASA Astrophysics Data System (ADS)

    Ohtani, A.; Kikuchi, T.; Nozaki, K.; Kurihara, N.; Kuratani, Y.; Ohse, M.

    1983-09-01

    Omega HAIKU, REUNION, and LIBERIA signals were received and anomalous propagation characteristics were obtained near the geomagnetic equator. Short-period fluctuations were found in the phase of the HAIKU 10.2 kHz signal in November 1979 and in the phase and amplitude of the HAIKU 13.6 kHz signal in November 1981. These cyclic fluctuations are in close correlation with the phase cycle slippings, which occur most frequently when the receiver is located at 6 S geomagnetic latitude. On the basis of anisotropic waveguide mode theory indicating much less attenuation in WE propagation than in EW propagation at the geomagnetic equator, it is concluded that the short-period fluctuations in the phase and amplitude are due to interference between the short-path and the long-path signals.

  18. On the damping capacity of cast irons

    NASA Astrophysics Data System (ADS)

    Golovin, S. A.

    2012-07-01

    The treatment of experimental data on the amplitude-dependent internal friction (ADIF) in terms of various theoretical models has revealed a staged character and the main mechanisms of the processes of energy dissipation in graphite with increasing amplitude of vibrations upon cyclic loading. It is shown that the level of the damping capacity of lamellar cast iron depends on the relationship between the elastic and strength characteristics of graphite and the matrix phase. In cast irons with a rigid matrix structure (pearlite, martensite), the energy dissipation is determined by the volume fraction and morphology of the initial graphite phase. In cast irons with a softer metallic phase (ferrite), the contact interaction of graphite inclusions with the matrix and the properties of the matrix introduce additional sources of high damping.

  19. Electrochemically-driven large amplitude pH cycling for acid-base driven DNA denaturation and renaturation.

    PubMed

    Wang, Yong-Chun; Lin, Cong-Bin; Su, Jian-Jia; Ru, Ying-Ming; Wu, Qiao; Chen, Zhao-Bin; Mao, Bing-Wei; Tian, Zhao-Wu

    2011-06-15

    In this paper, we present an electrochemically driven large amplitude pH alteration method based on a serial electrolytic cell involving a hydrogen permeable bifacial working electrode such as Pd thin foil. The method allows solution pH to be changed periodically up to ±4~5 units without additional alteration of concentration and/or composition of the system. Application to the acid-base driven cyclic denaturation and renaturation of 290 bp DNA fragments is successfully demonstrated with in situ real-time UV spectroscopic characterization. Electrophoretic analysis confirms that the denaturation and renaturation processes are reversible without degradation of the DNA. The serial electrolytic cell based electrochemical pH alteration method presented in this work would promote investigations of a wide variety of potential-dependent processes and techniques.

  20. Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Prabhakar, Vedavvathi

    Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars Vijayakumar H. Doddamani*and P. Vedavathi Department of Physics, Bangalore University, Bangalore-560056, *Corresponding author:drvkdmani@gmail.com, Abstract The line and continuum flux variability is a hallmark phenomenon of Seyfert 1 galaxies and quasars. Large amplitude luminosity variability is observed in AGNs from x-rays through radio waves over a wide-ranging timescales from minutes to years. The combinations of high luminosity and short variability time scales suggests, that the power of AGN is produced by a phenomena more efficient in terms of energy release per unit mass than ordinary stellar processes. The basic structure of AGNs thus developed based on the variability studies consists of a central super massive black hole surrounded by an accretion disk or more generally optically thick plasma radiating brightly at UV and soft X-ray wavelengths. The variability studies have been important tools of understanding the physics of the central regions of AGNs, which in general cannot be resolved with the existing or planned ground and space telescopes. Therefore, we have undertaken a study of the simultaneous ultraviolet line and continuum flux variability studies in MRK501, ESOB113-IG45 (also called as Fairall 9), MRK1506, MRK1095 V*GQCOM, PG1211+143, MRK205, PG1226+023 (also known as 3C273), PG1351+640, MRK 1383, MRK876 and QSO2251-178 as these objects have been repeatedly observed by IUE satellite over several years.. It is observed that Fairall 9, MRK 1095 and 3C273 exhibit the large amplitude variability (» 30 times) over the observed timescale, which spans several years. The remaining nine objects exhibit small amplitude (» 5 times) variability over the long time scale of observations. The highest amplitude variability is observed in Lya with a least in the MgII line. The amplitude of variability decreases in the order of Lya, CIV and Mg II, lines. These results suggest that the BLR is spatially stratified into different regions from the central compact nuclear engine. Keywords: Active galaxies, Seyfert galaxies, Quasars, Line and continuum, Variability, Supermassive black hole

  1. Solving cyclical nurse scheduling problem using preemptive goal programming

    NASA Astrophysics Data System (ADS)

    Sundari, V. E.; Mardiyati, S.

    2017-07-01

    Nurse scheduling system in a hospital is being modeled as a preemptive goal programming problem that is solved by using LINGO software with the objective function to minimize deviation variable at each goal. The scheduling is done cyclically, so every nurse is treated fairly since they have the same work shift portion with the other nurses. By paying attention to the hospital's rules regarding nursing work shift cyclically, it can be obtained that numbers of nurse needed in every ward are 18 nurses and the numbers of scheduling periods are 18 periods where every period consists of 21 days.

  2. A Technical Review of Electrochemical Techniques Applied to Microbiologically Influenced Corrosion

    DTIC Science & Technology

    1991-01-01

    these cases. Additional problems can arise from the effects of the sweep rate which is used to determine R. according to equation (2). If the sweep ...small amplitude cyclic voltametry and ESCA.43 From the frequency dependence of the impedance data it was concluded that two relaxations were associated...the correct sweep rate and the elimination of the ohmic drop during the experiment are important considerations as discussed elsewhere. 5° The use of

  3. TG wave autoresonant control of plasma temperature

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Driscoll, C. F.

    2015-06-01

    The thermal correction term in the Trivelpiece-Gould (TG) wave's frequency has been used to accurately control the temperature of electron plasma, by applying a swept-frequency continuous drive autoresonantly locked in balance with the cyclotron cooling. The electron temperature can be either "pegged" at a desired value (by constant drive frequency); or varied cyclically (following the tailored frequency course), with rates limited by the cooling time (on the way down) and by chosen drive amplitude (on the way up).

  4. Nonlinearity of bituminous mixtures

    NASA Astrophysics Data System (ADS)

    Mangiafico, S.; Babadopulos, L. F. A. L.; Sauzéat, C.; Di Benedetto, H.

    2018-02-01

    This paper presents an experimental characterization of the strain dependency of the complex modulus of bituminous mixtures for strain amplitude levels lower than about 110 μm/m. A series of strain amplitude sweep tests are performed at different temperatures (8, 10, 12 and 14°C) and frequencies (0.3, 1, 3 and 10 Hz), during which complex modulus is monitored. For each combination of temperature and frequency, four maximum strain amplitudes are targeted (50, 75, 100 and 110 μm/m). For each of them, two series of 50 loading cycles are applied, respectively at decreasing and increasing strain amplitudes. Before each decreasing strain sweep and after each increasing strain sweep, 5 cycles are performed at constant maximum targeted strain amplitude. Experimental results show that the behavior of the studied material is strain dependent. The norm of the complex modulus decreases and phase angle increases with strain amplitude. Results are presented in Black and Cole-Cole plots, where characteristic directions of nonlinearity can be identified. Both the effects of nonlinearity in terms of the complex modulus variation and of the direction of nonlinearity in Black space seem to validate the time-temperature superposition principle with the same shift factors as for linear viscoelasticity. The comparison between results obtained during increasing and decreasing strain sweeps suggests the existence of another phenomenon occurring during cyclic loading, which appears to systematically induce a decrease of the norm of the complex modulus and an increase of the phase angle, regardless of the type of the strain sweep (increasing or decreasing).

  5. Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling.

    PubMed

    Kannurpatti, Sridhar S; Motes, Michael A; Rypma, Bart; Biswal, Bharat B

    2011-07-01

    In this report we demonstrate a hemodynamic scaling method with resting-state fluctuation of amplitude (RSFA) in healthy adult younger and older subject groups. We show that RSFA correlated with breath hold (BH) responses throughout the brain in groups of younger and older subjects which RSFA and BH performed comparably in accounting for age-related hemodynamic coupling changes, and yielded more veridical estimates of age-related differences in task-related neural activity. BOLD data from younger and older adults performing motor and cognitive tasks were scaled using RSFA and BH related signal changes. Scaling with RSFA and BH reduced the skew of the BOLD response amplitude distribution in each subject and reduced mean BOLD amplitude and variability in both age groups. Statistically significant differences in intrasubject amplitude variation across regions of activated cortex, and intersubject amplitude variation in regions of activated cortex were observed between younger and older subject groups. Intra- and intersubject variability differences were mitigated after scaling. RSFA, though similar to BH in minimizing skew in the unscaled BOLD amplitude distribution, attenuated the neural activity-related BOLD amplitude significantly less than BH. The amplitude and spatial extent of group activation were lower in the older than in the younger group before and after scaling. After accounting for vascular variability differences through scaling, age-related decreases in activation volume were observed during the motor and cognitive tasks. The results suggest that RSFA-scaled data yield age-related neural activity differences during task performance with negligible effects from non-neural (i.e., vascular) sources. Copyright © 2010 Wiley-Liss, Inc.

  6. TEST SYSTEM FOR EVALUATING SPENT NUCLEAR FUEL BENDING STIFFNESS AND VIBRATION INTEGRITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements specified by federal regulations. For normal conditions of transport, vibration loads incident to transport must be considered. This is particularly relevant for high-burnup fuel (>45 GWd/MTU). As the burnup of the fuel increases, a number of changes occur that may affect the performance of the fuel and cladding in storage and during transportation. The mechanical properties of high-burnup de-fueled cladding have been previously studied by subjecting defueled cladding tubes to longitudinal (axial) tensile tests, ring-stretch tests, ring-compression tests, and biaxial tube burst tests. The objective of this study ismore » to investigate the mechanical properties and behavior of both the cladding and the fuel in it under vibration/cyclic loads similar to the sustained vibration loads experienced during normal transport. The vibration loads to SNF rods during transportation can be characterized by dynamic, cyclic, bending loads. The transient vibration signals in a specified transport environment can be analyzed, and frequency, amplitude and phase components can be identified. The methodology being implemented is a novel approach to study the vibration integrity of actual SNF rod segments through testing and evaluating the fatigue performance of SNF rods at defined frequencies. Oak Ridge National Laboratory (ORNL) has developed a bending fatigue system to evaluate the response of the SNF rods to vibration loads. A three-point deflection measurement technique using linear variable differential transformers is used to characterize the bending rod curvature, and electromagnetic force linear motors are used as the driving system for mechanical loading. ORNL plans to use the test system in a hot cell for SNF vibration testing on high burnup, irradiated fuel to evaluate the pellet-clad interaction and bonding on the effective lifetime of fuel-clad structure bending fatigue performance. Technical challenges include pure bending implementation, remote installation and detachment of the SNF test specimen, test specimen deformation measurement, and identification of a driving system suitable for use in a hot cell. Surrogate test specimens have been used to calibrate the test setup and conduct systematic cyclic tests. The calibration and systematic cyclic tests have been used to identify test protocol issues prior to implementation in the hot cell. In addition, cyclic hardening in unidirectional bending and softening in reverse bending were observed in the surrogate test specimens. The interface bonding between the surrogate clad and pellets was found to impact the bending response of the surrogate rods; confirming this behavior in the actual spent fuel segments will be an important aspect of the hot cell test implementation,« less

  7. Seasonality in trauma admissions - Are daylight and weather variables better predictors than general cyclic effects?

    PubMed

    Røislien, Jo; Søvik, Signe; Eken, Torsten

    2018-01-01

    Trauma is a leading global cause of death, and predicting the burden of trauma admissions is vital for good planning of trauma care. Seasonality in trauma admissions has been found in several studies. Seasonal fluctuations in daylight hours, temperature and weather affect social and cultural practices but also individual neuroendocrine rhythms that may ultimately modify behaviour and potentially predispose to trauma. The aim of the present study was to explore to what extent the observed seasonality in daily trauma admissions could be explained by changes in daylight and weather variables throughout the year. Retrospective registry study on trauma admissions in the 10-year period 2001-2010 at Oslo University Hospital, Ullevål, Norway, where the amount of daylight varies from less than 6 hours to almost 19 hours per day throughout the year. Daily number of admissions was analysed by fitting non-linear Poisson time series regression models, simultaneously adjusting for several layers of temporal patterns, including a non-linear long-term trend and both seasonal and weekly cyclic effects. Five daylight and weather variables were explored, including hours of daylight and amount of precipitation. Models were compared using Akaike's Information Criterion (AIC). A regression model including daylight and weather variables significantly outperformed a traditional seasonality model in terms of AIC. A cyclic week effect was significant in all models. Daylight and weather variables are better predictors of seasonality in daily trauma admissions than mere information on day-of-year.

  8. Forskolin and protein kinase inhibitors differentially affect hair cell potassium currents and transmitter release at the cytoneural junction in the isolated frog labyrinth.

    PubMed

    Rossi, Maria Lisa; Rubbini, Gemma; Martini, Marta; Canella, Rita; Fesce, Riccardo

    2017-08-15

    The post-transductional elaboration of sensory input at the frog semicircular canal has been studied by correlating the effects of drugs that interfere with phosphorylation processes on: (i) potassium conductances in isolated hair cell and (ii) transmitter release at the cytoneural junction in the intact labyrinth. At hair cells, delayed potassium currents (IKD) undergo voltage- and time-dependent inactivation; inactivation removal requires ATP, is sensitive to kinase blockade, but is unaffected by exogenous application of cyclic nucleotides. We report here that forskolin, an activator of endogenous adenylyl cyclase, enhances IKD inactivation removal in isolated hair cells, but produces an overall decrease in IKD amplitude consistent with the direct blocking action of the drug on several families of K channels. In the intact labyrinth, forskolin enhances transmitter release, consistent with such depression of K conductances. Kinase blockers - H-89 and KT5823 - have been shown to reduce IKD inactivation removal and IKD amplitude at isolated hair cells. In the labyrinth, the effects of these drugs on junctional activity are quite variable, with predominant inhibition of transmitter release, rather than the enhancement expected from the impairment of K currents. The overall action of forskolin and kinase inhibitors on K conductances is similar (depression), but they have opposite effects on transmitter release: this indicates that some intermediate steps between the bioelectric control of hair cell membrane potential and transmitter release are affected in opposite ways and therefore are presumably regulated by protein phosphorylation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Cyclic changes of Asian monsoon intensity during the early mid-Holocene from annually-laminated stalagmites, central China

    NASA Astrophysics Data System (ADS)

    Liu, Dianbing; Wang, Yongjin; Cheng, Hai; Edwards, R. L.; Kong, Xinggong

    2015-08-01

    Climate during the early Holocene was highly variable due to the complex interplay of external and internal forcing mechanisms. The relative importance for them on the Asian monsoon (AM) evolution yet remains to be resolved. Here we present two-to six-yr-resolution oxygen isotope (δ18O) records of five stalagmites, four of which are annually-laminated, from Qingtian Cave, central China, revealing detailed AM variability between 10.9 and 6.1 ka BP. Over the contemporaneous periods, the δ18O records agree well with each other at multi-decadal to centennial timescales. When pieced together with the previously published isotopic data from the same cave, the final δ18O record reveals detailed AM variability from the last deglaciation to the mid-Holocene, consistent with other cave records. The most striking feature of the δ18O record is the recurrence of centennial-scale oscillations, especially during the annually-counted period (8.8-6.1 ka BP). Cross-wavelet analyses between the δ18O record and solar proxies show strong coherence at 200-yr cycle, suggesting that solar output was actively involved as a primary contributor. The AM depression at 8.2 ka BP is indistinguishable in amplitude and pattern from a series of weak AM events after 8 ka BP. We speculate that these centennial-scale AM changes might be regulated by the positive feedbacks of oceanic/atmospheric interactions to the solar activity under the condition of the retreat of continental ice-sheets.

  10. Long-Period Variability in o Ceti

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.; Karovska, Margarita

    2009-02-01

    We carried out a new and sensitive search for long-period variability in the prototype of the Mira class of long-period pulsating variables, o Ceti (Mira A), the closest and brightest Mira variable. We conducted this search using an unbroken light curve from 1902 to the present, assembled from the visual data archives of five major variable star observing organizations from around the world. We applied several time-series analysis techniques to search for two specific kinds of variability: long secondary periods (LSPs) longer than the dominant pulsation period of ~333 days, and long-term period variation in the dominant pulsation period itself. The data quality is sufficient to detect coherent periodic variations with photometric amplitudes of 0.05 mag or less. We do not find evidence for coherent LSPs in o Ceti to a limit of 0.1 mag, where the amplitude limit is set by intrinsic, stochastic, low-frequency variability of approximately 0.1 mag. We marginally detect a slight modulation of the pulsation period similar in timescale to that observed in the Miras with meandering periods, but with a much lower period amplitude of ±2 days. However, we do find clear evidence of a low-frequency power-law component in the Fourier spectrum of o Ceti's long-term light curve. The amplitude of this stochastic variability is approximately 0.1 mag at a period of 1000 days, and it exhibits a turnover for periods longer than this. This spectrum is similar to the red noise spectra observed in red supergiants.

  11. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-01-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  12. Analysis of variability in the burst oscillations of the accreting millisecond pulsar XTE J1814-338

    NASA Technical Reports Server (NTRS)

    Watts, Anna L.; Strohmayer, Tod E.; Markwardt, Craig B.

    2005-01-01

    The accreting millisecond pulsar XTE J1814-338 exhibits oscillations at the known spin frequency during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. We present an analysis of the variability of the burst oscillations of this source, focusing on three characteristics: fractional amplitude, harmonic content and frequency. Fractional amplitude and harmonic content constrain the size, shape and position of the emitting region, whilst variations in frequency indicate motion of the emitting region on the neutron star surface. We examine both long-term variability over the course of the outburst, and short-term variability during the bursts. For most of the bursts, fractional amplitude is consistent with that of the accretion pulsations, implying a low degree of fuel spread. There is however a population of bursts whose fractional amplitudes are substantially lower, implying a higher degree of fuel spread, possibly forced by the explosive burning front of a precursor burst. For the first harmonic, substantial differences between the burst and accretion pulsations suggest that hotspot geometry is not the only mechanism giving rise to harmonic content in the latter. Fractional amplitude variability during the bursts is low; we can only rule out the hypothesis that the fractional amplitude remains constant at the l(sigma) level for bursts that do not exhibit photospheric radius expansion (PRE). There are no significant variations in frequency in any of the bursts except for the one burst that exhibits PRE. This burst exhibits a highly significant but small (= 0.1Hz) drop in frequency in the burst rise. The timescale of the frequency shift is slower than simple burning layer expansion models predict, suggesting that other mechanisms may be at work.

  13. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  14. Energy and Transmissibility in Nonlinear Viscous Base Isolators

    NASA Astrophysics Data System (ADS)

    Markou, Athanasios A.; Manolis, George D.

    2016-09-01

    High damping rubber bearings (HDRB) are the most commonly used base isolators in buildings and are often combined with other systems, such as sliding bearings. Their mechanical behaviour is highly nonlinear and dependent on a number of factors. At first, a physical process is suggested here to explain the empirical formula introduced by J.M. Kelly in 1991, where the dissipated energy of a HDRB under cyclic testing, at constant frequency, is proportional to the amplitude of the shear strain, raised to a power of approximately 1.50. This physical process is best described by non-Newtonian fluid behaviour, originally developed by F.H. Norton in 1929 to describe creep in steel at high-temperatures. The constitutive model used includes a viscous term, that depends on the absolute value of the velocity, raised to a non-integer power. The identification of a three parameter Kelvin model, the simplest possible system with nonlinear viscosity, is also suggested here. Furthermore, a more advanced model with variable damping coefficient is implemented to better model in this complex mechanical process. Next, the assumption of strain-rate dependence in their rubber layers under cyclic loading is examined in order to best interpret experimental results on the transmission of motion between the upper and lower surfaces of HDRB. More specifically, the stress-relaxation phenomenon observed with time in HRDB can be reproduced numerically, only if the constitutive model includes a viscous term, that depends on the absolute value of the velocity raised to a non-integer power, i. e., the Norton fluid previously mentioned. Thus, it becomes possible to compute the displacement transmissibility function between the top and bottom surfaces of HDRB base isolator systems and to draw engineering-type conclusions, relevant to their design under time-harmonic loads.

  15. Solar and lunar tidal variabilities in GPS-TEC and geomagnetic field variations: Seasonal as well as during the sudden stratospheric warming of 2010

    NASA Astrophysics Data System (ADS)

    Sridharan, S.

    2017-04-01

    The Global Positioning System (GPS) deduced total electron content (TEC) data at 15°N (geomagnetic), which is the northern crest region of equatorial ionization anomaly, are used to study solar and lunar tidal variabilities during the years 2008 and 2009 and also during the 2009-2010 winter, when a major sudden stratospheric warming (SSW) event has occurred. The diurnal and semidiurnal tidal amplitudes show semiannual variation with maximum amplitudes during February-March and September-November, whereas terdiurnal tide is larger during April-September. They show significant longitudinal variability with larger (smaller) amplitudes over 250°E-150°E (200°E-250°E). Lunar semidiurnal tidal amplitudes show sporadic enhancements during northern winter months and negligible amplitudes during northern summer months. They also show notable longitudinal variabilities. The solar migrating tides DW1 and SW2 show semiannual variation with larger amplitudes during spring equinox months, whereas TW3 maximizes during northern summer. DW2 shows larger amplitudes during summer months. During the SSW, except TW3, the migrating tides DW1 and SW2 show considerable enhancements. Among solar nonmigrating tides, SW1, TW2, and DS0 show larger enhancements. Solar tides in TEC and equatorial electrojet strength over Tirunelveli vary with the time scale of 60 days during October 2009-March 2010 similar to ozone mass mixing ratio at 10 hPa, and this confirms the vital role of ozone in tidal variabilities in ionospheric parameters. Lunar tidal amplitudes in changes in horizontal component of geomagnetic field (ΔH) are larger over Tirunelveli, a station near dip equator. Solar semidiurnal tides in ΔH have larger amplitudes than lunar tides over polar stations, Mawson and Godhavn.Plain Language SummaryIn this paper, the variations of solar and lunar tides in a few ionospheric parameters during the years 2008 and 2009 and during a disturbed winter are presented. We found that the migrating tides show semiannual variation, where as a nonmigrating diurnal tide DW2 shows maximum during summer. This explains the additional summer maximum observed in the seasonal variation of mesospheric tides over low-latitude stations. Besides, the semidiurnal tidal variation shows clearly 60 day variability as shown by the stratospheric ozone. This suggests the dominant role of stratospheric ozone in the variations of upper atmospheric tides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NewA...55...13Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NewA...55...13Y"><span>Orbital period variations of two W UMa-type binaries: UY UMa and EF Boo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Yun-Xia; Zhang, Xu-Dong; Hu, Ke; Xiang, Fu-Yuan</p> <p>2017-08-01</p> <p>The orbital period variations of two W UMa-type contact binaries, UY UMa and EF Boo, are analyzed by using all available times of light minimum. It is detected that the general trends of their (O - C) curves show an upward parabolic variation, which reveals their continuous period increases at the rates of dP / dt = 2.545 ×10-7 days yr-1 and dP / dt = 2.623 ×10-7 days yr-1 , respectively. Meanwhile, UY UMa also shows a cyclic period variation with a small amplitude of A = 0.0026 days superposed on the long-term increase. Due to their contact configurations, the secular period increases are interpreted as a result of mass transfer from the less massive component to the more massive one. The cyclic period variation of UY UMa may be interpreted in terms of either the magnetic activity or the light time effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMEP...25.3822D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMEP...25.3822D"><span>Effects of Hot Rolling on Low-Cycle Fatigue Properties of Zn-22 wt.% Al Alloy at Room Temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, X. H.; Cao, Q. D.; Ma, S. J.; Han, S. H.; Tang, W.; Zhang, X. P.</p> <p>2016-09-01</p> <p>The effects of the reduction ratio (RR) on the low-cycle fatigue (LCF) properties of the Zn-22 wt.% Al (Zn-22Al) alloy were investigated. Various grain sizes from 0.68 to 1.13 μm were obtained by controlled RRs. Tensile and LCF tests were carried out at room temperature. Superplasticity and cyclic softening were observed. Strength and ductility of the rolled Zn-22Al alloy increased with the RR, owing to the decrease in its grain size. The RR did not affect the cyclic softening behavior of the alloy. The fatigue life of the alloy decreased with increasing strain amplitude, while the fatigue life first decreased and then increased with increasing RR. The longest fatigue life was observed for the alloy rolled at a RR of 60%. A bilinear Coffin-Manson relationship was observed to hold true for this alloy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970020437','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970020437"><span>Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.</p> <p>1996-01-01</p> <p>The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SMaS...27e5003W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SMaS...27e5003W"><span>Superelastic SMA U-shaped dampers with self-centering functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Bin; Zhu, Songye</p> <p>2018-05-01</p> <p>As high-performance metallic materials, shape memory alloys (SMAs) have been investigated increasingly by the earthquake engineering community in recent years, because of their remarkable self-centering (SC) and energy-dissipating capabilities. This paper systematically presents an experimental study on a novel superelastic SMA U-shaped damper (SMA-UD) with SC function under cyclic loading. The mechanical properties, including strength, SC ability, and energy-dissipating capability with varying loading amplitudes and strain rates are evaluated. Test results show that excellent and stable flag-shaped hysteresis loops are exhibited in multiple loading cycles. Strain rate has a negligible effect on the cyclic behavior of the SMA-UD within the dynamic frequency range of typical interest in earthquake engineering. Furthermore, a numerical investigation is performed to understand the mechanical behavior of the SMA-UD. The numerical model is calibrated against the experimental results with reasonable accuracy. Then, the stress–strain states with different phase transformations are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010CoTPh..53.1201D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010CoTPh..53.1201D"><span>INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Coexistence and Extinction Pattern of Asymmetric Cyclic Game Species in a Square Lattice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, Lin-Rong; Li, Yong-Ming; Yang, Guang-Can</p> <p>2010-06-01</p> <p>The co-evolutionary dynamics of a cyclic game system is investigated in a two-dimensional square lattice with the asymmetrical rates for three species. Different with the well-mixed system, coexistence and extinction emerge alternately in the system, where a “zero-one" behavior is robust for a small population size, whereas, the system is predominated by coexistence for a big population one. We study in detail the influence about the fluctuation to the change of the state, and find that the difference between the maximal amplitude about the fluctuation and the average intensity determines which state the system is ultimately. In addition, we introduce Potts energy to explain the reason of the “zero-one" behavior. It is shown that the average Potts energy per site is the distance to the “zero-one" behavior in the model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhRvD..73f1502O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhRvD..73f1502O"><span>Generalized group field theories and quantum gravity transition amplitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oriti, Daniele</p> <p>2006-03-01</p> <p>We construct a generalized formalism for group field theories, in which the domain of the field is extended to include additional proper time variables, as well as their conjugate mass variables. This formalism allows for different types of quantum gravity transition amplitudes in perturbative expansion, and we show how both causal spin foam models and the usual a-causal ones can be derived from it, within a sum over triangulations of all topologies. We also highlight the relation of the so-derived causal transition amplitudes with simplicial gravity actions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3310892','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3310892"><span>Increasing measurement accuracy of age-related BOLD signal change: Minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kannurpatti, Sridhar S.; Motes, Michael A.; Rypma, Bart; Biswal, Bharat B.</p> <p>2012-01-01</p> <p>In this report we demonstrate a hemodynamic scaling method with resting-state fluctuation of amplitude (RSFA) in healthy adult younger and older subject groups. We show that RSFA correlated with breath hold (BH) responses throughout the brain in groups of younger and older subjects, that RSFA and BH performed comparably in accounting for age-related hemodynamic coupling changes, and yielded more veridical estimates of age-related differences in task-related neural activity. BOLD data from younger and older adults performing motor and cognitive tasks were scaled using RSFA and BH related signal changes. Scaling with RSFA and BH reduced the skew of the BOLD response amplitude distribution in each subject and reduced mean BOLD amplitude and variability in both age groups. Statistically significant differences in intra-subject amplitude variation across regions of activated cortex, and inter-subject amplitude variation in regions of activated cortex were observed between younger and older subject groups. Intra- and inter-subject variability differences were mitigated after scaling. RSFA, though similar to BH in minimizing skew in the un-scaled BOLD amplitude distribution, attenuated the neural activity related BOLD amplitude significantly less than BH. The amplitude and spatial extent of group activation were lower in the older than in the younger group prior to and after scaling. After accounting for vascular variability differences through scaling, age-related decreases in activation volume were observed during the motor and cognitive tasks. The results suggest that RSFA-scaled data yield age-related neural activity differences during task performance with negligible effects from non-neural (i.e., vascular) sources. PMID:20665721</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29579560','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29579560"><span>Term-equivalent functional brain maturational measures predict neurodevelopmental outcomes in premature infants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>El Ters, Nathalie M; Vesoulis, Zachary A; Liao, Steve M; Smyser, Christopher D; Mathur, Amit M</p> <p>2018-04-01</p> <p>Term equivalent age (TEA) brain MRI identifies preterm infants at risk for adverse neurodevelopmental outcomes. But some infants may experience neurodevelopmental impairments even in the absence of neuroimaging abnormalities. Evaluate the association of TEA amplitude-integrated EEG (aEEG) measures with neurodevelopmental outcomes at 24-36 months corrected age. We performed aEEG recordings and brain MRI at TEA (mean post-menstrual age of 39 (±2) weeks in a cohort of 60 preterm infants born at a mean gestational age of 26 (±2) weeks. Forty-four infants underwent Bayley Scales of Infant Development, 3rd Edition (BSID-III) testing at 24-36 months corrected age. Developmental delay was defined by a score greater than one standard deviation below the mean (<85) in any domain. An ROC curve was constructed and a value of SEF 90  < 9.2, yielded the highest sensitivity and specificity for moderate/severe brain injury on MRI. The association between aEEG measures and neurodevelopmental outcomes was assessed using odds ratio, then adjusted for confounding variables using logistic regression. Infants with developmental delay in any domain had significantly lower values of SEF 90 . Absent cyclicity was more prevalent in infants with cognitive and motor delay. Both left and right SEF 90  < 9.2 were associated with motor delay (OR left: 4.7(1.2-18.3), p = 0.02, OR right: 7.9 (1.8-34.5), p < 0.01). Left SEF 90 and right SEF 90 were associated with cognitive delay and language delay respectively. Absent cyclicity was associated with motor and cognitive delay (OR for motor delay: 5.8 (1.3-25.1), p = 0.01; OR for cognitive delay: 16.8 (3.1-91.8), p < 0.01). These associations remained significant after correcting for social risk index score and confounding variables. aEEG may be used at TEA as a new tool for risk stratification of infants at higher risk of poor neurodevelopmental outcomes. Therefore, a larger study is needed to validate these results in premature infants at low and high risk of brain injury. Copyright © 2018. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160010330','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160010330"><span>Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Irvine, T.</p> <p>2016-01-01</p> <p>Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested accordingly. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA149028','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA149028"><span>Conference Proceedings of Engine Cyclic Durability by Analysis and Testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-01-01</p> <p>mesurant l’amplitude par jauge extensom6trique. Essais de survitesse *~V Toujours pour les rotors, des essais de survitesse sont effectuds au puits sous...statiques de vol 616mentaire de laboratoire temp~ratures Y: 7 Certification Mesures par mesure des D~finition de Easais aur Essais cyoliques -*- jauges ...fins, et la photo-61asticit6. Los contraintes ainsi calculdes sont vdrifi~es A l’aide do mesures par jauges . 18-5 Les zones jugdes critiques (fig. 8</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4251056-recurrent-intensity-variations-primary-cosmic-radiation-periods-maximum-solar-activity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4251056-recurrent-intensity-variations-primary-cosmic-radiation-periods-maximum-solar-activity"><span>THE RECURRENT INTENSITY VARIATIONS OF PRIMARY COSMIC RADIATION IN PERIODS OF MAXIMUM SOLAR ACTIVITY (in French)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Freon, A.; Berry, J.; Coste, J.-P.</p> <p>1959-02-01</p> <p>Some recordings of the variations of intensity of cosmic neutrons, made since October 1956 at the observatory of the Pic du Midi and since July 1957 on the Kerguelen Islands, have shown the existence, since the beginning of the observations and during at least 20 solar rotations, of a cyclic variation with a stable period equal to 27.35 plus or minus 0.1 solar days and a maximum amplitude of 2.2% attained in October 1957. (tr-auth)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730004208','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730004208"><span>Fatigue flaw growth and NDI evaluation for preventing through cracks in spacecraft tankage structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pettit, D. E.; Hoeppner, D. W.</p> <p>1972-01-01</p> <p>A program was conducted to determine the fatigue-crack propagation behavior of parent and welded 2219-T87 aluminum alloy sheet under controlled cyclic stress conditions in room temperature air and 300 F air. Specimens possessing an initial surface defect of controlled dimensions were cycled under constant load amplitude until the propagating fatigue crack penetrated the back surface of the specimen. A series of precracked specimens were prepared to determine optimum penetrant, X-ray, ultrasonic, and eddy current nondestructive inspection procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890006812','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890006812"><span>Thermoviscoplastic model with application to copper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Freed, Alan D.</p> <p>1988-01-01</p> <p>A viscoplastic model is developed which is applicable to anisothermal, cyclic, and multiaxial loading conditions. Three internal state variables are used in the model; one to account for kinematic effects, and the other two to account for isotropic effects. One of the isotropic variables is a measure of yield strength, while the other is a measure of limit strength. Each internal state variable evolves through a process of competition between strain hardening and recovery. There is no explicit coupling between dynamic and thermal recovery in any evolutionary equation, which is a useful simplification in the development of the model. The thermodynamic condition of intrinsic dissipation constrains the thermal recovery function of the model. Application of the model is made to copper, and cyclic experiments under isothermal, thermomechanical, and nonproportional loading conditions are considered. Correlations and predictions of the model are representative of observed material behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28955784','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28955784"><span>Cyclic mechanical stretch contributes to network development of osteocyte-like cells with morphological change and autophagy promotion but without preferential cell alignment in rat.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Inaba, Nao; Kuroshima, Shinichiro; Uto, Yusuke; Sasaki, Muneteru; Sawase, Takashi</p> <p>2017-09-01</p> <p>Osteocytes play important roles in controlling bone quality as well as preferential alignment of biological apatite c -axis/collagen fibers. However, the relationship between osteocytes and mechanical stress remains unclear due to the difficulty of three-dimensional (3D) culture of osteocytes in vitro . The aim of this study was to investigate the effect of cyclic mechanical stretch on 3D-cultured osteocyte-like cells. Osteocyte-like cells were established using rat calvarial osteoblasts cultured in a 3D culture system. Cyclic mechanical stretch (8% amplitude at a rate of 2 cycles min -1 ) was applied for 24, 48 and 96 consecutive hours. Morphology, cell number and preferential cell alignment were evaluated. Apoptosis- and autophagy-related gene expression levels were measured using quantitative PCR. 3D-cultured osteoblasts became osteocyte-like cells that expressed osteocyte-specific genes such as Dmp1 , Cx43 , Sost , Fgf23 and RANKL , with morphological changes similar to osteocytes. Cell number was significantly decreased in a time-dependent manner under non-loaded conditions, whereas cyclic mechanical stretch significantly prevented decreased cell numbers with increased expression of anti-apoptosis-related genes. Moreover, cyclic mechanical stretch significantly decreased cell size and ellipticity with increased expression of autophagy-related genes, LC3b and atg7 . Interestingly, preferential cell alignment did not occur, irrespective of mechanical stretch. These findings suggest that an anti-apoptotic effect contributes to network development of osteocyte-like cells under loaded condition. Spherical change of osteocyte-like cells induced by mechanical stretch may be associated with autophagy upregulation. Preferential alignment of osteocytes induced by mechanical load in vivo may be partially predetermined before osteoblasts differentiate into osteocytes and embed into bone matrix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RMRE...49..893G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RMRE...49..893G"><span>Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghamgosar, M.; Erarslan, N.</p> <p>2016-03-01</p> <p>The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4230150','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4230150"><span>APPARATUS FOR MEASURING NEUTRON CROSS SECTIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Cranberg, L.</p> <p>1959-07-14</p> <p>An apparatus is described for analyzing the nuclear reaction products resulting from impingement of nuclear particles against a selected target material and automatically recording the number of reaction prcducts in selected energy levels. The target is bombarded by ions from a particle accelerator and the target potential is cyclicly varied over a particular energy range by a modulator. A nuclear reaction detector is lccated adjacent the target to produce pulses for each reaction product. The output from the detector and the modulator are coupled to a function sampler, for generating a pulse in respcnse to each detected event having an amplitude proportional to the amplitude of the instantaneous target potential. The later pulses are coupled to a multichannel analyzer, whereby nuclear reactions are recorded in appropriate channels of the analyzer in correspcndence with the magnitude of the energy of the impinging ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RScI...88d5113C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RScI...88d5113C"><span>Development of a high-frequency and large-stroke fatigue testing system for rubber</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Gang; Wu, Hao; Gao, Jianwen; Lin, Qiang</p> <p>2017-04-01</p> <p>The limited capabilities of current fatigue testing machines have resulted in studies on the fatigue behavior of rubber under large-displacement amplitude and high frequency being very sparse. In this study, a fatigue testing system that can carry out large-displacement amplitude and high-frequency fatigue tests on rubber was developed using a moving magnet voice coil motor (MMVCM) actuator, with finite element analysis applied to analyze the thrust of the MMVCM actuator. The results of a series of cyclic tension tests conducted on vulcanized natural rubber specimens using the developed fatigue testing system verify that it has high precision, low noise, large-stroke, and high-frequency characteristics. Further, the load frame with the developed MMVCM actuator is feasible for material testing, especially for large-stroke and high-frequency fatigue tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...35H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...35H"><span>Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hui, Chang; Zheng, Xiao-Tong</p> <p>2018-01-01</p> <p>The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25900708','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25900708"><span>Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Amanda R; Garris, Paul A; Casto, Joseph M</p> <p>2015-01-01</p> <p>Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of dopamine in the starling and rat striatum. Fast-scan cyclic voltammetry thus has the potential to be an invaluable tool for investigating the neural underpinnings of behavior in birds. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4617685','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4617685"><span>Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Smith, Amanda R.; Garris, Paul A.; Casto, Joseph M.</p> <p>2015-01-01</p> <p>Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of dopamine in the starling and rat striatum. Fast-scan cyclic voltammetry thus has the potential to be an invaluable tool for investigating the neural underpinnings of behavior in birds. PMID:25900708</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/6255141','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/6255141"><span>Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Flitney, F W; Singh, J</p> <p>1980-07-01</p> <p>1. A study has been made of a well documented but poorly understood response of the isolated frog ventricle to treatment with exogenous adenosine 5' triphosphate (ATP). Measurements of membrane potential, isometric twitch tension and levels of endogenous 3',5'-cyclic nucleotides have been made at various times during the ATP-induced response. 2. ATP elicits a characteristic triphasic response, which comprises an initial, abrupt increase in contractility, rising to a maximum within a few beats (first phase); followed by a period when the twitch amplitude falls, sometimes to below the control level (second phase); and superceded by a more slowly developing and longer-lasting increase in contractile force (third phase). The response is unaffected by atropine, propranolol or phentolamine. However, the prostaglandin synthetase inhibitor indomethacin depresses the first phase and entirely suppresses the third phase. 3. The inotropic effects of ATP are accompanied by changes in the shape of the action potential. These effects are dose-related. The duration of the action potential (D-30mV) and its positive overshoot (O) are increased during all phases of the response, for [ATP]o's up to 10(-5) M. However, at higher [ATP]o's, D-30mV and O ar both reduced during the second phase (but not the first or third phase), when isometric twitch tension is also depressed. The relationship between action potential duration and twitch tension (P) for different [ATP]o's is linear for all three phases of the response, but the slopes of the curves (delta P/delta D) are markedly different, indicating that the sensitivity of the contractile system to membrane depolarization is not constant, but varies continuously throughout the response. 4. ATP has a potent stimulatory effect on the metabolism of endogenous 3',5'-cyclic nucleotides. The time courses of the changes in adenosine 3','5-cyclic monophosphate (3',5'-cyclic AMP) and guanosine 3',5'-cyclic monophosphate (3',5'-cyclic GMP) are complex, but the accompanying change in isometric twitch tension is paralleled closely by corresponding changes in the ratio 3',5'cyclic AMP:3',5'-cyclic GMP. 5. It is concluded that ATP exerts a dual effect on the ventricle and that the contractile response is regulated by changes in the metabolism of 3',5'-cyclic nucleotides. The effects of indomethacin indicate a possible involvement of prostaglandins in mediating the ATP response. It is suggested that the initial effect of ATP on the ventricle is to increase the permeability of the fibres to Ca2+. 6. The relationship between 3',5' cyclic nucleotide levels and ventricular contractility is discussed. It is postulated that the antagonistic effects of 3',5'-cyclic AMP and 3',5'-cyclic GMP are expressed at the level of certain phosphoproteins which regulate both the availability of Ca2+ and the sensitivity of the contractile proteins to Ca2+.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JMPSo..59.1322L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JMPSo..59.1322L"><span>Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: II. Fatigue crack growth, lifetime and scaling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le, Jia-Liang; Bažant, Zdeněk P.</p> <p>2011-07-01</p> <p>This paper extends the theoretical framework presented in the preceding Part I to the lifetime distribution of quasibrittle structures failing at the fracture of one representative volume element under constant amplitude fatigue. The probability distribution of the critical stress amplitude is derived for a given number of cycles and a given minimum-to-maximum stress ratio. The physical mechanism underlying the Paris law for fatigue crack growth is explained under certain plausible assumptions about the damage accumulation in the cyclic fracture process zone at the tip of subcritical crack. This law is then used to relate the probability distribution of critical stress amplitude to the probability distribution of fatigue lifetime. The theory naturally yields a power-law relation for the stress-life curve (S-N curve), which agrees with Basquin's law. Furthermore, the theory indicates that, for quasibrittle structures, the S-N curve must be size dependent. Finally, physical explanation is provided to the experimentally observed systematic deviations of lifetime histograms of various ceramics and bones from the Weibull distribution, and their close fits by the present theory are demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JEMat.tmp...96W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JEMat.tmp...96W"><span>Effects of Amplitude Variations on Deformation and Damage Evolution in SnAgCu Solder in Isothermal Cycling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wentlent, Luke; Alghoul, Thaer M.; Greene, Christopher M.; Borgesen, Peter</p> <p>2018-02-01</p> <p>Although apparently simpler than in thermal cycling, the behavior of SnAgCu (SAC) solder joints in cyclic bending or vibration is not currently well understood. The rate of damage has been shown to scale with the inelastic work per cycle, and excursions to higher amplitudes lead to an apparent softening, some of which remains so that damage accumulation is faster in subsequent cycling at lower amplitudes. This frequently leads to a dramatic breakdown of current damage accumulation rules. An empirical damage accumulation rule has been proposed to account for this, but any applicability to the extrapolation of accelerated test results to life under realistic long-term service conditions remains to be validated. This will require a better understanding of the underlying mechanisms. The present work provides experimental evidence to support recent suggestions that the observed behavior is a result of cycling-induced dislocation structures providing for increased diffusion creep. It is argued that this means that the measured work is an indicator of the instantaneous dislocation density, rather than necessarily reflecting the actual work involved in the creation of the damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28324821','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28324821"><span>Muscular activity and torque of the foot dorsiflexor muscles during decremental isometric test: A cross-sectional study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruiz-Muñoz, Maria; González-Sánchez, Manuel; Martín-Martín, Jaime; Cuesta-Vargas, Antonio I</p> <p>2017-06-01</p> <p>To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R 2 that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AJ....155...95B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AJ....155...95B"><span>Simultaneous Multiwavelength Variability Characterization of the Free-floating Planetary-mass Object PSO J318.5‑22</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biller, Beth A.; Vos, Johanna; Buenzli, Esther; Allers, Katelyn; Bonnefoy, Mickaël; Charnay, Benjamin; Bézard, Bruno; Allard, France; Homeier, Derek; Bonavita, Mariangela; Brandner, Wolfgang; Crossfield, Ian; Dupuy, Trent; Henning, Thomas; Kopytova, Taisiya; Liu, Michael C.; Manjavacas, Elena; Schlieder, Joshua</p> <p>2018-02-01</p> <p>We present simultaneous Hubble Space Telescope (HST) WFC3+Spitzer IRAC variability monitoring for the highly variable young (∼20 Myr) planetary-mass object PSO J318.5‑22. Our simultaneous HST + Spitzer observations covered approximately two rotation periods with Spitzer and most of a rotation period with the HST. We derive a period of 8.6 ± 0.1 hr from the Spitzer light curve. Combining this period with the measured v\\sin i for this object, we find an inclination of 56.°2 ± 8.°1. We measure peak-to-trough variability amplitudes of 3.4% ± 0.1% for Spitzer Channel 2 and 4.4%–5.8% (typical 68% confidence errors of ∼0.3%) in the near-IR bands (1.07–1.67 μm) covered by the WFC3 G141 prism—the mid-IR variability amplitude for PSO J318.5‑22 is one of the highest variability amplitudes measured in the mid-IR for any brown dwarf or planetary-mass object. Additionally, we detect phase offsets ranging from 200° to 210° (typical error of ∼4°) between synthesized near-IR light curves and the Spitzer mid-IR light curve, likely indicating depth-dependent longitudinal atmospheric structure in this atmosphere. The detection of similar variability amplitudes in wide spectral bands relative to absorption features suggests that the driver of the variability may be inhomogeneous clouds (perhaps a patchy haze layer over thick clouds), as opposed to hot spots or compositional inhomogeneities at the top-of-atmosphere level.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19481847','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19481847"><span>The impact of the business cycle on occupational injuries in the UK.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Davies, Rhys; Jones, Paul; Nuñez, Imanol</p> <p>2009-07-01</p> <p>This paper investigates the cyclical fluctuations in rates of workplace injury for the UK from 1986 to 2005. Time series analysis shows that, in aggregate terms, the rate of minor injuries is pro-cyclical whilst the rate of major injury is not affected by the level of economic activity. Analysis by sector reveals that cyclical fluctuations are sharper in the construction and manufacturing sectors. Using panel data, we find that fluctuations in both the rates of minor and major injury are related to the level of new hiring and the ratio of actual to usual hours worked. However, only minor injuries are related to variables that control for workers' bargaining power. The analysis demonstrates the importance of both compositional effects and individual reporting behaviour to understanding cyclical variations in workplace injury rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27287152','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27287152"><span>Cyclic delamination behavior of plasma-sprayed hydroxyapatite coating on Ti-6Al-4V substrates in simulated body fluid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Otsuka, Yuichi; Kawaguchi, Hayato; Mutoh, Yoshiharu</p> <p>2016-10-01</p> <p>This study aimed to clarify the effect of a simulated body fluid (SBF) on the cyclic delamination behavior of a plasma-sprayed hydroxapatite (HAp) coating. A HAp coating is deposited on the surfaces of surgical metallic materials in order to enhance the bond between human bone and such surfaces. However, the HAp coating is susceptible to delamination by cyclic loading from the patient's gait. Although hip joints are subjected to both positive and negative moments, only the effects of tensile bending stresses on vertical crack propagation behavior have been investigated. Thus, the cyclic delamination behavior of a HAp coating was observed at the stress ratio R=-1 in order to determine the effects of tensile/compressive loading on the delamination behavior. The delamination growth rate increased with SBF immersion, which decreased the delamination life. Raman spectroscopy analysis revealed that the selective phase dissolution in the HAp coating was promoted at interfaces. Finite element analysis revealed that the energy release rate Gmax showed a positive value even in cases with compressive loading, which is a driving force for the delamination of a HAp coating. A prediction model for the delamination growth life was developed that combines a fracture mechanics parameter with the assumed stress-dependent dissolution rate. The predicted delamination life matched the experimental data well in cases of lower stress amplitudes with SBF. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24938923','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24938923"><span>Contributions of stress corrosion and cyclic fatigue to subcritical crack growth in a dental glass-ceramic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Joshi, Gaurav V; Duan, Yuanyuan; Della Bona, Alvaro; Hill, Thomas J; St John, Kenneth; Griggs, Jason A</p> <p>2014-08-01</p> <p>The objective of this study was to test the following hypotheses: (1) both cyclic degradation and stress-corrosion mechanisms result in subcritical crack growth (SCG) in a fluorapatite glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent) and (2) there is an interactive effect of stress corrosion and cyclic fatigue to accelerate subcritical crack growth. Rectangular beam specimens were fabricated using the lost-wax process. Two groups of specimens (N=30/group) with polished (15μm) or air-abraded surface were tested under rapid monotonic loading. Additional polished specimens were subjected to cyclic loading at two frequencies, 2Hz (N=44) and 10Hz (N=36), and at various stress amplitudes. All tests were performed using a fully articulated four-point flexure fixture in deionized water at 37°C. The SCG parameters were determined using the ratio of inert strength Weibull modulus to lifetime Weibull modulus. A general log-linear model was fit to the fatigue lifetime data including time to failure, frequency, peak stress, and the product of frequency and logarithm of stress in ALTA PRO software. SCG parameters determined were n=21.7 and A=4.99×10(-5) for 2Hz, and n=19.1 and A=7.39×10(-6) for 10Hz. After fitting the general log-linear model to cyclic fatigue data, the coefficients of the frequency term (α1), the stress term (α2), and the interaction term (α3) had estimates and 95% confidence intervals of α1=-3.16 (-15.1, 6.30), α2=-21.2 (-34.9, -9.73), and α3=0.820 (-1.59, 4.02). Only α2 was significantly different from zero. (1) Cyclic fatigue does not have a significant effect on SCG in the fluorapatite glass-ceramic evaluated and (2) there was no interactive effect between cyclic degradation and stress corrosion for this material. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1314A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1314A"><span>Cosmic ray modulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agarwal Mishra, Rekha; Mishra, Rajesh Kumar</p> <p>2016-07-01</p> <p>Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28356479','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28356479"><span>Dynamical signatures of isometric force control as a function of age, expertise, and task constraints.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vieluf, Solveig; Sleimen-Malkoun, Rita; Voelcker-Rehage, Claudia; Jirsa, Viktor; Reuter, Eva-Maria; Godde, Ben; Temprado, Jean-Jacques; Huys, Raoul</p> <p>2017-07-01</p> <p>From the conceptual and methodological framework of the dynamical systems approach, force control results from complex interactions of various subsystems yielding observable behavioral fluctuations, which comprise both deterministic (predictable) and stochastic (noise-like) dynamical components. Here, we investigated these components contributing to the observed variability in force control in groups of participants differing in age and expertise level. To this aim, young (18-25 yr) as well as late middle-aged (55-65 yr) novices and experts (precision mechanics) performed a force maintenance and a force modulation task. Results showed that whereas the amplitude of force variability did not differ across groups in the maintenance tasks, in the modulation task it was higher for late middle-aged novices than for experts and higher for both these groups than for young participants. Within both tasks and for all groups, stochastic fluctuations were lowest where the deterministic influence was smallest. However, although all groups showed similar dynamics underlying force control in the maintenance task, a group effect was found for deterministic and stochastic fluctuations in the modulation task. The latter findings imply that both components were involved in the observed group differences in the variability of force fluctuations in the modulation task. These findings suggest that between groups the general characteristics of the dynamics do not differ in either task and that force control is more affected by age than by expertise. However, expertise seems to counteract some of the age effects. NEW & NOTEWORTHY Stochastic and deterministic dynamical components contribute to force production. Dynamical signatures differ between force maintenance and cyclic force modulation tasks but hardly between age and expertise groups. Differences in both stochastic and deterministic components are associated with group differences in behavioral variability, and observed behavioral variability is more strongly task dependent than person dependent. Copyright © 2017 the American Physiological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910054399&hterms=new+star&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dnew%2Bstar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910054399&hterms=new+star&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dnew%2Bstar"><span>Four new Delta Scuti stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schutt, R. L.</p> <p>1991-01-01</p> <p>Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2677351','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2677351"><span>Speech production variability in fricatives of children and adults: Results of functional data analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Koenig, Laura L.; Lucero, Jorge C.; Perlman, Elizabeth</p> <p>2008-01-01</p> <p>This study investigates token-to-token variability in fricative production of 5 year olds, 10 year olds, and adults. Previous studies have reported higher intrasubject variability in children than adults, in speech as well as nonspeech tasks, but authors have disagreed on the causes and implications of this finding. The current work assessed the characteristics of age-related variability across articulators (larynx and tongue) as well as in temporal versus spatial domains. Oral airflow signals, which reflect changes in both laryngeal and supralaryngeal apertures, were obtained for multiple productions of ∕h s z∕. The data were processed using functional data analysis, which provides a means of obtaining relatively independent indices of amplitude and temporal (phasing) variability. Consistent with past work, both temporal and amplitude variabilities were higher in children than adults, but the temporal indices were generally less adultlike than the amplitude indices for both groups of children. Quantitative and qualitative analyses showed considerable speaker- and consonant-specific patterns of variability. The data indicate that variability in ∕s∕ may represent laryngeal as well as supralaryngeal control and further that a simple random noise factor, higher in children than in adults, is insufficient to explain developmental differences in speech production variability. PMID:19045800</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RMRE...50.1453L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RMRE...50.1453L"><span>Experimental Investigation of the Influence of Joint Geometric Configurations on the Mechanical Properties of Intermittent Jointed Rock Models Under Cyclic Uniaxial Compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu</p> <p>2017-06-01</p> <p>Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028026','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028026"><span>Nearshore wave-induced cyclical flexing of sea cliffs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Adams, P.N.; Storlazzi, C.D.; Anderson, R. Scott</p> <p>2005-01-01</p> <p>[1] Evolution of a tectonically active coast is driven by geomorphically destructive energy supplied by ocean waves. Wave energy is episodic and concentrated; sea cliffs are battered by the geomorphic wrecking ball every 4-25 s. We measure the response of sea cliffs to wave assault by sensing the ground motion using near-coastal seismometers. Sea cliffs respond to waves in two distinct styles. High-frequency motion (20 Hz) reflects the natural frequency of the sea cliff as it rings in response to direct wave impact. Low-frequency motion in the 0.1-0.05 Hz (10-20 s) band consistently agrees with the dominant nearshore wave period. Integrating microseismic velocities suggests 50 ??m and 10 ??m displacements in horizontal and vertical directions, respectively. Displacement ellipsoids exhibit simultaneous downward and seaward sea cliff motion with each wave. Video footage corroborates the downward sea cliff flex in response to the imposed water load on the wave cut platform. Gradients in displacement amplitudes documented using multiple seismometers suggest longitudinal and shear strain of the flexing sea cliff on the order of 0.5-4 ?? strains during each wave loading cycle. As this sea cliff flexure occurs approximately 3 million times annually, it has the potential to fatigue the rock through cyclical loading. Local sea cliff retreat rates of 10 cm/yr imply that a given parcel of rock is flexed through roughly 109 cycles of increasing amplitude before exposure to direct wave attack at the cliff face. Copyright 2005 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070021477','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070021477"><span>An Examination of Selected Geomagnetic Indices in Relation to the Sunspot Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.</p> <p>2006-01-01</p> <p>Previous studies have shown geomagnetic indices to be useful for providing early estimates for the size of the following sunspot cycle several years in advance. Examined this study are various precursor methods for predicting the minimum and maximum amplitude of the following sunspot cycle, these precursors based on the aa and Ap geomagnetic indices and the number of disturbed days (NDD), days when the daily Ap index equaled or exceeded 25. Also examined is the yearly peak of the daily Ap index (Apmax), the number of days when Ap greater than or equal to 100, cyclic averages of sunspot number R, aa, Ap, NDD, and the number of sudden storm commencements (NSSC), as well the cyclic sums of NDD and NSSC. The analysis yields 90-percent prediction intervals for both the minimum and maximum amplitudes for cycle 24, the next sunspot cycle. In terms of yearly averages, the best regressions give Rmin = 9.8+/-2.9 and Rmax = 153.8+/-24.7, equivalent to Rm = 8.8+/-2.8 and RM = 159+/-5.5, based on the 12-mo moving average (or smoothed monthly mean sunspot number). Hence, cycle 24 is expected to be above average in size, similar to cycles 21 and 22, producing more than 300 sudden storm commencements and more than 560 disturbed days, of which about 25 will be Ap greater than or equal to 100. On the basis of annual averages, the sunspot minimum year for cycle 24 will be either 2006 or 2007.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29333483','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29333483"><span>How heart rate variability affects emotion regulation brain networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mather, Mara; Thayer, Julian</p> <p>2018-02-01</p> <p>Individuals with high heart rate variability tend to have better emotional well-being than those with low heart rate variability, but the mechanisms of this association are not yet clear. In this paper, we propose the novel hypothesis that by inducing oscillatory activity in the brain, high amplitude oscillations in heart rate enhance functional connectivity in brain networks associated with emotion regulation. Recent studies using daily biofeedback sessions to increase the amplitude of heart rate oscillations suggest that high amplitude physiological oscillations have a causal impact on emotional well-being. Because blood flow timing helps determine brain network structure and function, slow oscillations in heart rate have the potential to strengthen brain network dynamics, especially in medial prefrontal regulatory regions that are particularly sensitive to physiological oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.130..151K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.130..151K"><span>Climatology of diurnal tide and its long-term variability in the lower middle atmosphere over a tropical station</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, P. Vinay; Dutta, Gopa; Mohammad, Salauddin; Rao, B. Venkateswara</p> <p>2017-10-01</p> <p>ECMWF reanalysis (ERA-interim) data of winds for two solar cycles (1991-2012) are harmonically analyzed to delineate the characteristics and variability of diurnal tide over a tropical site (13.5° N, 79.5° E). The diurnal cycle horizontal winds measured by Gadanki (13.5° N, 79.2° E) mesosphere-stratosphere-troposphere (MST) radar between May 2005 and April 2006 have been used to compute 24 h tidal amplitudes and phases and compared with the corresponding results obtained from ERA winds. The climatological diurnal tidal amplitudes and phases have been estimated from surface to ˜33 km using ERA interim data. The amplitudes and phases obtained in the present study are found to compare reasonably well with Global Scale Wave Model (GSWM-09). Diurnal tides show larger amplitudes in the lower troposphere below 5 km during summer and in the mid-stratosphere mainly during equinoctial months and early winter. Water vapor and convection in the lower troposphere are observed to play major roles in exciting 24-h tide. Correlations between diurnal amplitude and integrated water vapor and between diurnal amplitude and outgoing longwave radiation (OLR) are 0.59 and -0.34, respectively. Ozone mixing ratio correlates ( ρ = 0.66) well with diurnal amplitude and shows annual variation in the troposphere whereas semi-annual variation is observed at stratospheric heights with stronger peaks in equinoctial months. A clear annual variation of diurnal amplitude is displayed in the troposphere and interannual variability becomes prominent in the stratosphere which could be partly due to the influence of equatorial stratospheric QBO. The influence of solar activity on diurnal oscillations is found to be insignificant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3359523','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3359523"><span>A Trade-Off Study Revealing Nested Timescales of Constraint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wijnants, M. L.; Cox, R. F. A.; Hasselman, F.; Bosman, A. M. T.; Van Orden, G.</p> <p>2012-01-01</p> <p>This study investigates human performance in a cyclic Fitts task at three different scales of observation, either in the presence (difficult condition) or in the absence (easy condition) of a speed–accuracy trade-off. At the fastest scale, the harmonicity of the back and forth movements, which reflects the dissipation of mechanical energy, was measured within the timeframe of single trials. At an intermediate scale, speed and accuracy measures were determined over a trial. The slowest scale pertains to the temporal structure of movement variability, which evolves over multiple trials. In the difficult condition, reliable correlations across each of the measures corroborated a coupling of nested scales of performance. Participants who predominantly emphasized the speed-side of the trade-off (despite the instruction to be both fast and accurate) produced more harmonic movements and clearer 1/f scaling in the produced movement time series, but were less accurate and produced more random variability in the produced movement amplitudes (vice versa for more accurate participants). This implied that speed–accuracy trade-off was accompanied by a trade-off between temporal and spatial streams of 1/f scaling, as confirmed by entropy measures. In the easy condition, however, no trade-offs nor couplings among scales of performance were observed. Together, these results suggest that 1/f scaling is more than just a byproduct of cognition. These findings rather support the claim that interaction-dominant dynamics constitute a coordinative basis for goal-directed behavior. PMID:22654760</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003E%26PSL.213...63D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003E%26PSL.213...63D"><span>Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desprat, Stéphanie; Sánchez Goñi, María. Fernanda; Loutre, Marie-France</p> <p>2003-08-01</p> <p>Climatic variability of the last 3 millennia in NW Iberia has been documented using high-resolution pollen analysis of Vir-18 core, retrieved from the Ría de Vigo (42°14.07‧N, 8°47.37‧W). The depth-age model is based on two accelerator mass spectrometry 14C dates and three historically dated botanical events in Galicia: the expansion of Juglans and Pinus, as well as the introduction of Eucalyptus. During the last 3000 years, the relative pollen record demonstrates the occurrence of an open deciduous oak forest, indicating a humid and temperate climate in northwestern Iberia. Two-step forest reduction since 975 cal BC suggests climate as the main cause rather than major socio-economic changes documented in historical archives. Absolute pollen influx has been compared with instrumental summer and winter temperatures and tentatively used as a proxy of short (decadal-scale) and low-amplitude (˜1°C) temperature variations. This new approach allows us to detect for the first time in NW Iberia the millennial-scale climatic cyclicity suggested by North Atlantic records, challenging the apparent climatic stability reflected by the relative pollen record. The Little Ice Age is recorded as low pollen influx values between 1400 and 1860 cal AD, with a cold maximum at 1700 cal AD (Maunder Minimum). The Roman and Medieval Warm Periods are detected through high pollen influx values at 250 cal BC-450 cal AD and 950-1400 cal AD, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1850m0012S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1850m0012S"><span>Study of cyclic thermal aging of tube type receivers as a function of the duration of the cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Setien, Eneko; Fernández-Reche, Jesús; Ariza, María Jesús; Álvarez-de-Lara, Mónica</p> <p>2017-06-01</p> <p>The tube type receivers are exposed to variable duration cyclic operating conditions, which can jeopardize its reliability, and make it hard to estimate its long term performance. The designers have to deal with this problem and estimate the receiver long term performance based on the poor available litterature and the data sheets of the material. In order to help the designer better estimate the performance of the receivers, in this paper the cyclic thermal aging is analyzed as a function of the cycle duration. For this purpose, coated and uncoated Inconel alloy 625 tubular samples, similar to those used in the commercial receivers, are cyclically aged with different thermal cycle duration. The aging of these samples has been analyzed by means of oxidation kinetics, microstructure examination and mechanical and optical properties. The effect of the thermal cycle duration is studied and discussed by comparison of the results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995CMT.....7...73H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995CMT.....7...73H"><span>Experimental identification and mathematical modeling of viscoplastic material behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haupt, P.; Lion, A.</p> <p>1995-03-01</p> <p>Uniaxial torsion and biaxial torsion-tension experiments on thin-walled tubes were carried out to investigate the viscoplastic behavior of stainless steel XCrNi18.9. A series of monotonic tests under strain and stress control shows nonlinear rate dependence and suggests the existence of equilibrium states, which are asymptotically approached during relaxation and creep processes. Strain controlled cyclic experiments display various hardening and softening phenomena that depend on strain amplitude and mean strain. All experiments indicate that the equilibrium states within the material depend on the history of the input process, whereas the history-dependence of the relaxation and creep behavior appears less significant. From the experiments the design of a constitutive model of viscoplasticity is motivated: The basic assumption is a decomposition of the total stress into an equilibrium stress and a non-equilibrium overstress: At constant strain, the overstress relaxes to zero, where the relaxation time depends on the overstress in order to account for the nonlinear rate-dependence. The equilibrium stress is assumed to be a rate independent functional of the total strain history. Classical plasticity is utilized with a kinematic hardening rule of the Armstrong-Frederick type. In order to incorporate the amplitude-dependent hardening and softening behavior, a generalized arc length representation is applied [14]. The introduction of an additional kinematic hardening variable facilitates consideration of additional hardening effects resulting from the non-radiality of the input process. Apart from the common yield and loading criterion of classical plasticity, the proposed constitutive model does not contain any further distinction of different cases. The experimental data are sufficient to identify the material parameters of the constitutive model. The results of the identification procedure demonstrate the ability of the model to represent the observed phenomena with satisfactory approximation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.473.4326A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.473.4326A"><span>Far beyond the Sun - I. The beating magnetic heart in Horologium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alvarado-Gómez, Julián D.; Hussain, Gaitee A. J.; Drake, Jeremy J.; Donati, Jean-François; Sanz-Forcada, Jorge; Stelzer, Beate; Cohen, Ofer; Amazo-Gómez, Eliana M.; Grunhut, Jason H.; Garraffo, Cecilia; Moschou, Sofia P.; Silvester, James; Oksala, Mary E.</p> <p>2018-02-01</p> <p>A former member of the Hyades cluster, ι Horologii (ι Hor) is a planet-hosting Sun-like star which displays the shortest coronal activity cycle known to date (Pcyc ∼ 1.6 yr). With an age of ∼625 Myr, ι Hor is also the youngest star with a detected activity cycle. The study of its magnetic properties holds the potential to provide fundamental information to understand the origin of cyclic activity and stellar magnetism in late-type stars. In this series of papers, we present the results of a comprehensive project aimed at studying the evolving magnetic field in this star and how this evolution influences its circumstellar environment. This paper summarizes the first stage of this investigation, with results from a long-term observing campaign of ι Hor using ground-based high-resolution spectropolarimetry. The analysis includes precise measurements of the magnetic activity and radial velocity of the star, and their multiple time-scales of variability. In combination with values reported in the literature, we show that the long-term chromospheric activity evolution of ι Hor follows a beating pattern, caused by the superposition of two periodic signals of similar amplitude at P1 ≃ 1.97 ± 0.02 yr and P2 ≃ 1.41 ± 0.01 yr. Additionally, using the most recent parameters for ι Hor b in combination with our activity and radial velocity measurements, we find that stellar activity dominates the radial velocity residuals, making the detection of additional planets in this system challenging. Finally, we report here the first measurements of the surface longitudinal magnetic field strength of ι Hor, which displays varying amplitudes within ±4 G and served to estimate the rotation period of the star (P_rot = 7.70^{+0.18}_{-0.67} d).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SMaS...16..818O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SMaS...16..818O"><span>A fuzzy model of superelastic shape memory alloys for vibration control in civil engineering applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozbulut, O. E.; Mir, C.; Moroni, M. O.; Sarrazin, M.; Roschke, P. N.</p> <p>2007-06-01</p> <p>Two experimental test programs are conducted to collect data and simulate the dynamic behavior of CuAlBe shape memory alloy (SMA) wires. First, in order to evaluate the effect of temperature changes on superelastic SMA wires, a large number of cyclic, sinusoidal, tensile tests are performed at 1 Hz. These tests are conducted in a controlled environment at 0, 25 and 50 °C with three different strain amplitudes. Second, in order to assess the dynamic effects of the material, a series of laboratory experiments is conducted on a shake table with a scale model of a three-story structure that is stiffened with SMA wires. Data from these experiments are used to create fuzzy inference systems (FISs) that can predict hysteretic behavior of CuAlBe wire. Both fuzzy models employ a total of three input variables (strain, strain-rate, and temperature or pre-stress) and an output variable (predicted stress). Gaussian membership functions are used to fuzzify data for each of the input and output variables. Values of the initially assigned membership functions are adjusted using a neural-fuzzy procedure to more accurately predict the correct stress level in the wires. Results of the trained FISs are validated using test results from experimental records that had not been previously used in the training procedure. Finally, a set of numerical simulations is conducted to illustrate practical use of these wires in a civil engineering application. The results reveal the applicability for structural vibration control of pseudoelastic CuAlBe wire whose highly nonlinear behavior is modeled by a simple, accurate, and computationally efficient FIS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JMagR.110..219M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JMagR.110..219M"><span>Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Metz, G.; Wu, X. L.; Smith, S. O.</p> <p></p> <p>The Hartmann-Hahn matching profile in CP-MAS NMR shows a strong mismatch dependence if the MAS frequency is on the order of the dipolar couplings in the sample. Under these conditions, the profile breaks down into a series of narrow matching bands separated by the spinning speed, and it becomes difficult to establish and maintain an efficient matching condition. Variable-amplitude CP (VACP), as introduced previously (Peersen et al., J. Magn. Reson. A104, 334, 1993), has been proven to be effective for restoring flat profiles at high spinning speeds. Here, a refined implementation of VACP using a ramped-amplitude cross-polarization sequence (RAMP-CP) is described. The order of the amplitude modulation is shown to be of importance for the cross-polarization process. The new pulse sequence with a linear amplitude ramp is not only easier to set up but also improves the performance of the variable-amplitude experiment in that it produces flat profiles over a wider range of matching conditions even with short total contact times. An increase in signal intensity is obtained compared to both con ventional CP and the originally proposed VACP sequence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770003213','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770003213"><span>A 15,000-hour cyclic endurance test of an 8-centimeter-diameter electron bombardment mercury ion thruster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nakanishi, S.</p> <p>1976-01-01</p> <p>A laboratory model 8 cm thruster with improvements to minimize ion chamber erosion and peeling of sputtered metal was subjected to a cyclic endurance test for 15,040 hours and 460 restarts. A charted history of several thruster operating variables and off-normal events are shown in 600-hour segments at three points in the test. The transient behavior of these variables during a typical start-stop cycle is presented. Finding of the post-test inspection confirmed most of the expected results. Charge exchange ions caused normal accelerator grid erosion. The workability of the various design features was substantiated, and attainable improvements in propellant utilization efficiency should significantly reduce accelerator erosion.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9403818','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9403818"><span>Comparison of the relaxing actions of acetylcholine and substance P in smooth muscle of the guinea-pig aorta.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hozumi, T; Fukuta, H; Suzuki, H</p> <p>1997-04-01</p> <p>The relationship between relaxation produced by acetylcholine (ACh) or substance P (SP) and tissue cyclic GMP content was investigated in the isolated guinea-pig aorta. ACh and SP relaxed aortic rings precontracted with noradrenaline (NA) or high-K solution ([K+]o = 38.8 mM), in an endothelium-dependent manner. The amplitude of relaxation was larger for SP than for ACh. Nitroarginine inhibited ACh-induced but not SP-induced relaxation in NA-contraction, while this chemical inhibited both ACh- and SP-induced relaxations in high-K contraction. The tissue cyclic GMP content was not changed by nitroarginine or by removal of endothelial cells, but was elevated by stimulation with NA, ACh or SP by a factor of about 3, 5 or 11 times, respectively. These actions of ACh or SP were endothelium-dependent, and were inhibited by nitroarginine and remained unaltered by high-K solution. Thus, ACh and SP relax muscles indirectly by releasing endothelial factors, and the former by releasing mainly an endothelium-derived relaxing factor (EDRF), and the latter by releasing EDRF and other unidentified factors. As the relaxing actions of the latter factors are inhibited by high-K solution with no relation to the production of cyclic GMP, an involvement of hyperpolarizing factor, possibly EDHF, is suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JaJAP..47.4193O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JaJAP..47.4193O"><span>Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi</p> <p>2008-05-01</p> <p>One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24293181','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24293181"><span>Capacitation and Ca(2+) influx in spermatozoa: role of CNG channels and protein kinase G.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cisneros-Mejorado, A; Hernández-Soberanis, L; Islas-Carbajal, M C; Sánchez, D</p> <p>2014-01-01</p> <p>Cyclic guanosine monophosphate (cGMP) has been recently shown to modulate in vitro capacitation of mammalian spermatozoa, but the mechanisms through which it influences sperm functions have not been clarified. There are at least two targets of cGMP, cyclic nucleotide-gated (CNG) channels and cGMP-dependent protein kinase (PKG), involved in several physiological events in mammalian spermatozoa. It has been suggested that CNG channels allow the influx of Ca(2+) to cytoplasm during capacitation, whereas PKG could trigger a phosphorylation pathway which might also, indirectly, mediate calcium entry. Using the patch-clamp technique in whole-cell configuration, we showed how l-cis-Diltiazem (a CNG-channel inhibitor) and KT5823 (a PKG inhibitor) decreased significantly the amplitude of macroscopic ion currents in a dose-response manner, and decreased in vitro capacitation. The inhibition of CNG channels completely abolishes the Ca(2+) influx induced by cyclic nucleotides in mouse spermatozoa. This work suggests that the downstream cGMP pathway is required in mammalian sperm capacitation and the mechanisms involved include CNG channels and PKG, highlighting these molecules as important therapeutic targets for infertility treatments or to develop new male contraceptives. © 2013 American Society of Andrology and European Academy of Andrology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27398978','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27398978"><span>Cyclic voltammetry of apple fruits: Memristors in vivo.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Blockmon, Avery L; Reedus, Jada; Volkova, Maya I</p> <p>2016-12-01</p> <p>A memristor is a resistor with memory that exhibits a pinched hysteretic relationship in cyclic voltammetry. Recently, we have found memristors in the electrical circuitry of plants and seeds. There are no publications in literature about the possible existence of memristors and electrical differentiators in fruits. Here we found that the electrostimulation of Golden Delicious or Arkansas Black apple fruits by bipolar periodic waves induces hysteresis loops with pinched points in cyclic voltammograms at low frequencies between 0.1MHz and 1MHz. At high frequencies of 1kHz, the pinched hysteresis loop transforms to a non-pinched hysteresis loop instead of a single line I=V/R for ideal memristors because the amplitude of electrical current depends on capacitance of a fruit's tissue and electrodes, frequency and direction of scanning. Electrostimulation of electrical circuits in apple fruits by periodic voltage waves also induces electrotonic potential propagation due to cell-to-cell electrical coupling with electrical differentiators. A differentiator is an electrical circuit in which the output of the circuit is approximately directly proportional to the rate of change of the input. The information gained from electrostimulation can be used to elucidate and to observe electrochemical and electrophysiological properties of electrical circuits in fruits. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24593708','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24593708"><span>Three-dimensional analysis of the respiratory interplay effect in helical tomotherapy: Baseline variations cause the greater part of dose inhomogeneities seen.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tudor, G Samuel J; Harden, Susan V; Thomas, Simon J</p> <p>2014-03-01</p> <p>Dose differences from those planned can occur due to the respiratory interplay effect on helical tomotherapy. The authors present a technique to calculate single-fraction doses in three-dimensions resulting from craniocaudal motion applied to a patient CT set. The technique is applied to phantom and patient plans using patient respiratory traces. An additional purpose of the work is to determine the contribution toward the interplay effect of different components of the respiratory trace. MATLAB code used to calculate doses to a CT dataset from a helical tomotherapy plan has been modified to permit craniocaudal motion and improved temporal resolution. Real patient traces from seven patients were applied to ten phantom plans of differing field width, modulation factor, pitch and fraction dose, and simulations made with peak-to-peak amplitudes ranging from 0 to 2.5 cm. PTV voxels near the superior or inferior limits of the PTV are excluded from the analysis. The maximum dose discrepancy compared with the static case recorded along with the proportion of voxels receiving more than 10% and 20% different from prescription dose. The analysis was repeated with the baseline variation of the respiratory trace removed, leaving the cyclic component of motion only. Radiochromic film was used on one plan-trace combination and compared with the software simulation. For one case, filtered traces were generated and used in simulations which consisted only of frequencies near to particular characteristic frequencies of the treatment delivery. Intraslice standard deviation of dose differences was used to identify potential MLC interplay, which was confirmed using nonmodulated simulations. Software calculations were also conducted for four realistic patient plans and modeling movement of a patient CT set with amplitudes informed by the observed motion of the GTV on 4DCT. The maximum magnitude of dose difference to a PTV voxel due to the interplay effect within a particular plan-trace combination for peak-to-peak amplitudes of up to 2.5 cm ranged from 4.5% to 51.6% (mean: 23.8%) of the dose delivered in the absence of respiratory motion. For cyclic motion only, the maximum dose differences in each combination ranged from 2.1% to 26.2% (mean: 9.2%). There is reasonable correspondence between an example of the phantom plan simulations and radiochromic film measurement. The filtered trace simulations revealed that frequencies close to the characteristic frequency of the jaw motion across the target were found to generate greater interplay effect than frequencies close to the gantry frequency or MLC motion. There was evidence of interplay between respiratory motion and MLC modulation, but this is small compared with the interplay between respiratory motion and jaw motion. For patient-plan simulations, dose discrepancies are seen of up to 9.0% for a patient with 0.3 cm peak-to-peak respiratory amplitude and up to 17.7% for a patient with 0.9 cm peak-to-peak amplitude. These values reduced to 1.3% and 6.5%, respectively, when only cyclic motion was considered. Software has been developed to simulate craniocaudal respiratory motion in phantom and patient plans using real patient respiratory traces. Decomposition of the traces into baseline andcyclic components reveals that the large majority of the interplay effect seen with the full trace is due to baseline variation during treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22494130-su-correlation-displacement-vector-fields-calculated-deformable-image-registration-algorithms-motion-parameters-ct-images-well-defined-targets-controlled-motion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22494130-su-correlation-displacement-vector-fields-calculated-deformable-image-registration-algorithms-motion-parameters-ct-images-well-defined-targets-controlled-motion"><span>SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jaskowiak, J; Ahmad, S; Ali, I</p> <p></p> <p>Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were usedmore » to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased significantly and that limited image quality and poor correlation between the motion amplitude and DVF was obtained.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21503734-amplification-curvature-perturbations-cyclic-cosmology','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21503734-amplification-curvature-perturbations-cyclic-cosmology"><span>Amplification of curvature perturbations in cyclic cosmology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang Jun; Liu Zhiguo; Piao Yunsong</p> <p>2010-12-15</p> <p>We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28868987','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28868987"><span>TMJ symptoms reduce chewing amplitude and velocity, and increase variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Radke, John C; Kamyszek, Greg J; Kull, Robert S; Velasco, Gerardo R</p> <p>2017-09-04</p> <p>The null hypothesis was that mandibular amplitude, velocity, and variability during gum chewing are not altered in subjects with temporomandibular joint (TMJ) internal derangements (ID). Thirty symptomatic subjects with confirmed ID consented to chew gum on their left and right sides while being tracked by an incisor-point jaw tracker. A gender and age matched control group (p > 0.67) volunteered to be likewise recorded. Student's t-test compared the ID group's mean values to the control group. The control group opened wider (p < 0.05) and chewed faster (p < 0.05) than the ID group. The mean cycle time of the ID group (0.929 s) was longer than the control group (0.751 s; p < 0.05) and more variable (p < 0.05). The ID group exhibited reduced amplitude and velocity but increased variability during chewing. The null hypothesis was rejected. Further study of adaptation to ID by patients should be pursued.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.471.3193D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.471.3193D"><span>Large amplitude change in spot-induced rotational modulation of the Kepler Ap star KIC 2569073</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drury, Jason A.; Murphy, Simon J.; Derekas, Aliz; Sódor, Ádám; Stello, Dennis; Kuehn, Charles A.; Bedding, Timothy R.; Bognár, Zsófia; Szigeti, László; Szakáts, Róbert; Sárneczky, Krisztián; Molnár, László</p> <p>2017-11-01</p> <p>An investigation of the 200 × 200 pixel `superstamp' images of the centres of the open clusters NGC 6791 and NGC 6819 allows for the identification and study of many variable stars that were not included in the Kepler target list. KIC 2569073 (V = 14.22), is a particularly interesting variable Ap star that we discovered in the NGC 6791 superstamp. With a rotational period of 14.67 d and 0.034 mag variability, it has one of the largest peak-to-peak variations of any known Ap star. Colour photometry reveals an antiphase correlation between the B band, and the V, R and I bands. This Ap star is a rotational variable, also known as an α2 CVn star, and is one of only a handful of Ap stars observed by Kepler. While no change in spot period or amplitude is observed within the 4 yr Kepler time series, the amplitude shows a large increase compared to ground-based photometry obtained two decades ago.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20170918','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20170918"><span>Oblique abdominal muscle activity in response to external perturbations when pushing a cart.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H</p> <p>2010-05-07</p> <p>Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that occur in pushing tasks. We hypothesized that the predictable perturbations due to the cyclic push-off forces would be associated with cyclic muscle activity, while external perturbations would be counteracted by cocontraction of the oblique abdominal muscles. Eight healthy male subjects pushed at two target forces and two handle heights in a static condition and while walking without and with external perturbations. For all pushing tasks, the median, the static (10th percentile) and the peak levels (90th percentile) of the electromyographic amplitudes were determined. Linear models with oblique abdominal EMGs and trunk angles as input were fit to the twisting moments, to estimate trunk stiffness. There was no significant difference between the static EMG levels in pushing while walking compared to the peak levels in pushing while standing. When pushing while walking, the additional dynamic activity was associated with the twisting moments, which were actively modulated by the pairs of oblique muscles as in normal gait. The median and static levels of trunk muscle activity and estimated trunk stiffness were significantly higher when perturbations occurred than without perturbations. The increase baseline of muscle activity indicated cocontraction of the antagonistic muscle pairs. Furthermore, this cocontraction resulted in an increased trunk stiffness around the longitudinal axis. Copyright 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........17T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........17T"><span>Deviation from Standard Inflationary Cosmology and the Problems in Ekpyrosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tseng, Chien-Yao</p> <p></p> <p>There are two competing models of our universe right now. One is Big Bang with inflation cosmology. The other is the cyclic model with ekpyrotic phase in each cycle. This paper is divided into two main parts according to these two models. In the first part, we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes ( alma*l'm') of the spherical-harmonic coefficients. We then provide a model and study the two-point correlation of a massless scalar (the inflaton) when the stress tensor contains the energy density from an infinitely long straight cosmic string in addition to a cosmological constant. Finally, we discuss if inflation can reconcile with the Liouville's theorem as far as the fine-tuning problem is concerned. In the second part, we find several problems in the cyclic/ekpyrotic cosmology. First of all, quantum to classical transition would not happen during an ekpyrotic phase even for superhorizon modes, and therefore the fluctuations cannot be interpreted as classical. This implies the prediction of scale-free power spectrum in ekpyrotic/cyclic universe model requires more inspection. Secondly, we find that the usual mechanism to solve fine-tuning problems is not compatible with eternal universe which contains infinitely many cycles in both direction of time. Therefore, all fine-tuning problems including the flatness problem still asks for an explanation in any generic cyclic models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...856..163M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...856..163M"><span>GRMHD Simulations of Visibility Amplitude Variability for Event Horizon Telescope Images of Sgr A*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Medeiros, Lia; Chan, Chi-kwan; Özel, Feryal; Psaltis, Dimitrios; Kim, Junhan; Marrone, Daniel P.; Sa¸dowski, Aleksander</p> <p>2018-04-01</p> <p>The Event Horizon Telescope will generate horizon scale images of the black hole in the center of the Milky Way, Sgr A*. Image reconstruction using interferometric visibilities rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence disk- and jet-dominated GRMHD simulations of Sgr A*. We also employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented parallel and perpendicular to the spin axis of the black hole follow general trends that do not depend strongly on accretion-flow properties. This suggests that fitting Event Horizon Telescope observations with simple geometric models may lead to a reasonably accurate determination of the orientation of the black hole on the plane of the sky. However, in the disk-dominated models, the locations and depths of the minima in the visibility amplitudes are highly variable and are not related simply to the size of the black hole shadow. This suggests that using time-independent models to infer additional black hole parameters, such as the shadow size or the spin magnitude, will be severely affected by the variability of the accretion flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3834122','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3834122"><span>Dopamine D1 Receptors Regulate the Light Dependent Development of Retinal Synaptic Responses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>He, Quanhua; Xu, Hong-ping; Wang, Ping; Tian, Ning</p> <p>2013-01-01</p> <p>Retinal synaptic connections and function are developmentally regulated. Retinal synaptic activity plays critical roles in the development of retinal synaptic circuitry. Dopamine receptors have been thought to play important roles in the activity-dependent synaptic plasticity in central nervous system. The primary goal of this study is to determine whether dopamine D1 receptor regulates the activity-dependent development of retinal light responsiveness. Accordingly, we recorded electroretinogram from wild type mice and mice with genetic deletion of D1 dopamine receptor (D1−/− mice) raised under cyclic light conditions and constant darkness. Our results demonstrated that D1−/− mice have reduced amplitudes of all three major components of electroretinogram in adulthood. When the relative strength of the responses is considered, the D1−/− mice have selective reduction of the amplitudes of a-wave and oscillatory potentials evoked by low-intermediate intensities of lights. During postnatal development, D1−/− mice have increased amplitude of b-wave at the time of eye-opening but reduced developmental increase of the amplitude of b-wave after eye opening. Light deprivation from birth significantly reduced the amplitudes of b-wave and oscillatory potentials, increased the outer retinal light response gain and altered the light response kinetics of both a- and b-waves of wild type mice. In D1−/− mice, the effect of dark rearing on the amplitude of oscillatory potentials was diminished and dark rearing induced effects on the response gain of outer retina and the kinetics of a-wave were reversed. These results demonstrated roles of dopamine D1 receptor in the activity-dependent functional development of mouse retina. PMID:24260267</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017xru..conf...36A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017xru..conf...36A"><span>Optical variability properties of the largest AGN sample observed with Kepler/K2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aranzana, E.; Koerding, E.; Uttley, P.; Scaringi, S.; Steven, B.</p> <p>2017-10-01</p> <p>We present the first short time-scale ( hours to days) optical variability study of a large sample of Active Galactic Nuclei (AGN) observed with the Kepler/K2 mission. The sample contains 275 AGN observed over four campaigns with ˜30-minute cadence selected from the Million Quasar Catalogue with R magnitude < 19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of the AGN in our sample. The average power-law slope is 2.5±0.5, steeper than the PSDs observed in X-rays, and the rest-frame amplitude variability in the frequency range of 6×10^{-6}-10^{-4} Hz varies from 1-10 % with an average of 2.6 %. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift, but no such correlation with luminosity. We attribute these effects to the known 'bluer when brighter variability of quasars combined with the fixed bandpass of Kepler. This study enables us to distinguish between Seyferts and Blazar and confirm AGN candidates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3202062','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3202062"><span>The interaction of respiration and visual feedback on the control of force and neural activation of the agonist muscle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Baweja, Harsimran S.; Patel, Bhavini K.; Neto, Osmar P.; Christou, Evangelos A.</p> <p>2011-01-01</p> <p>The purpose of this study was to compare force variability and the neural activation of the agonist muscle during constant isometric contractions at different force levels when the amplitude of respiration and visual feedback were varied. Twenty young adults (20–32 years, 10 men and 10 women) were instructed to accurately match a target force at 15 and 50% of their maximal voluntary contraction (MVC) with abduction of the index finger while controlling their respiration at different amplitudes (85, 100 and 125% normal) in the presence and absence of visual feedback. Each trial lasted 22 s and visual feedback was removed from 8–12 to 16–20 s. Each subject performed 3 trials with each respiratory condition at each force level. Force variability was quantified as the standard deviation of the detrended force data. The neural activation of the first dorsal interosseus (FDI) was measured with bipolar surface electrodes placed distal to the innervation zone. Relative to normal respiration, force variability increased significantly only during high-amplitude respiration (~63%). The increase in force variability from normal- to high-amplitude respiration was strongly associated with amplified force oscillations from 0–3 Hz (R2 ranged from .68 – .84; p < .001). Furthermore, the increase in force variability was exacerbated in the presence of visual feedback at 50% MVC (vision vs. no-vision: .97 vs. .87 N) and was strongly associated with amplified force oscillations from 0–1 Hz (R2 = .82) and weakly associated with greater power from 12–30 Hz (R2 = .24) in the EMG of the agonist muscle. Our findings demonstrate that high-amplitude respiration and visual feedback of force interact and amplify force variability in young adults during moderate levels of effort. PMID:21546109</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100036837','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100036837"><span>Modeling Geometry and Progressive Failure of Material Interfaces in Plain Weave Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hsu, Su-Yuen; Cheng, Ron-Bin</p> <p>2010-01-01</p> <p>A procedure combining a geometrically nonlinear, explicit-dynamics contact analysis, computer aided design techniques, and elasticity-based mesh adjustment is proposed to efficiently generate realistic finite element models for meso-mechanical analysis of progressive failure in textile composites. In the procedure, the geometry of fiber tows is obtained by imposing a fictitious expansion on the tows. Meshes resulting from the procedure are conformal with the computed tow-tow and tow-matrix interfaces but are incongruent at the interfaces. The mesh interfaces are treated as cohesive contact surfaces not only to resolve the incongruence but also to simulate progressive failure. The method is employed to simulate debonding at the material interfaces in a ceramic-matrix plain weave composite with matrix porosity and in a polymeric matrix plain weave composite without matrix porosity, both subject to uniaxial cyclic loading. The numerical results indicate progression of the interfacial damage during every loading and reverse loading event in a constant strain amplitude cyclic process. However, the composites show different patterns of damage advancement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880015632','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880015632"><span>Cyclic fatigue damage characteristics observed for simple loadings extended to multiaxial life prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, David J.; Kurath, Peter</p> <p>1988-01-01</p> <p>Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730017202','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730017202"><span>The Cyclic Mechanical and Fatigue Properties of Ferroanelastic Beta Prime Gold Cadmium. Ph.D. Thesis. Final Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Karz, R. S.</p> <p>1973-01-01</p> <p>The fatigue behavior of beta prime Au1.05Cd0.95 alloy was investigated and found to be exceptional for certain orientations with lives of 10,000 to 1,000,000 cycles at total strain amplitudes above 0.05 not uncommon. Fatigue lives were influenced principally by the stress level which controlled the amount of plastic deformation, and stress fatigue resistance was low compared with most metals. Failure always exhibited brittle characteristics. An algorithm was devised to predict mechanical behavior from the twin system orientations and was found in good agreement with experiment for longitudinal strains above 0.04. The cyclic mechanical properties were examined, and a model for the behavior was proposed utilizing previous theories of the restoring force and the Peierls-Nabarro stress for twinning and new concepts. Gold-cadmium was found to have certain strain fatigue resistant applications, particularly in electronics where the alloy's high electrical conductivity is utilized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5056050','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5056050"><span>Cyclic-nucleotide–gated cation current and Ca2+-activated Cl current elicited by odorant in vertebrate olfactory receptor neurons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Rong-Chang; Ben-Chaim, Yair; Yau, King-Wai; Lin, Chih-Chun</p> <p>2016-01-01</p> <p>Olfactory transduction in vertebrate olfactory receptor neurons (ORNs) involves primarily a cAMP-signaling cascade that leads to the opening of cyclic-nucleotide–gated (CNG), nonselective cation channels. The consequent Ca2+ influx triggers adaptation but also signal amplification, the latter by opening a Ca2+-activated Cl channel (ANO2) to elicit, unusually, an inward Cl current. Hence the olfactory response has inward CNG and Cl components that are in rapid succession and not easily separable. We report here success in quantitatively separating these two currents with respect to amplitude and time course over a broad range of odorant strengths. Importantly, we found that the Cl current is the predominant component throughout the olfactory dose–response relation, down to the threshold of signaling to the brain. This observation is very surprising given a recent report by others that the olfactory-signal amplification effected by the Ca2+-activated Cl current does not influence the behavioral olfactory threshold in mice. PMID:27647918</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890013313','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890013313"><span>The isothermal fatigue behavior of a unidirectional SiC/Ti composite and the Ti alloy matrix</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gayda, John, Jr.; Gabb, Timothy P.; Freed, Alan D.</p> <p>1989-01-01</p> <p>The high temperature fatigue behavior of a metal matrix composite (MMC) consisting of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced by 33 vol percent of continuous unidirectional SiC fibers was experimentally and analytically evaluated. Isothermal MMC fatigue tests with constant amplitude loading parallel to the fiber direction were performed at 300 and 550 C. Comparative fatigue tests of the Ti-15-3 matrix alloy were also conducted. Composite fatigue behavior and the in-situ stress state of the fiber and matrix were analyzed with a micromechanical model, the Concentric Cylinder Model (CCM). The cyclic stress-strain response of the composite was stable at 300 C. However, an increase in cyclic mean strain foreshortened MMC fatigue life at high strain ranges at 550 C. Fatigue tests of the matrix alloy and CCM analyses indicated this response was associated with stress relaxation of the matrix in the composite.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667172-photometric-monitoring-coldest-known-brown-dwarf-spitzer-space-telescope','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667172-photometric-monitoring-coldest-known-brown-dwarf-spitzer-space-telescope"><span>PHOTOMETRIC MONITORING OF THE COLDEST KNOWN BROWN DWARF WITH THE SPITZER SPACE TELESCOPE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Esplin, T. L.; Luhman, K. L.; Cushing, M. C.</p> <p>2016-11-20</p> <p>Because WISE J085510.83-071442.5 (hereafter WISE 0855-0714) is the coldest known brown dwarf (∼250 K) and one of the Sun’s closest neighbors (2.2 pc), it offers a unique opportunity to study a planet-like atmosphere in an unexplored regime of temperature. To detect and characterize inhomogeneities in its atmosphere (e.g., patchy clouds, hot spots), we have performed time-series photometric monitoring of WISE 0855-0714 at 3.6 and 4.5 μ m with the Spitzer Space Telescope during two 23 hr periods that were separated by several months. For both bands, we have detected variability with peak-to-peak amplitudes of 4%–5% and 3%–4% in the firstmore » and second epochs, respectively. The light curves are semiperiodic in the first epoch for both bands, but they are more irregular in the second epoch. Models of patchy clouds have predicted a large increase in mid-infrared (mid-IR) variability amplitudes (for a given cloud covering fraction) with the appearance of water ice clouds at T {sub eff} < 375 K, so if such clouds are responsible for the variability of WISE 0855-0714, then its small amplitudes of variability indicate a very small deviation in cloud coverage between hemispheres. Alternatively, the similarity in mid-IR variability amplitudes between WISE 0855-0714 and somewhat warmer T and Y dwarfs may suggest that they share a common origin for their variability (i.e., not water clouds). In addition to our variability data, we have examined other constraints on the presence of water ice clouds in the atmosphere of WISE 0855-0714, including the recent mid-IR spectrum from Skemer et al. (2016). We find that robust evidence of such clouds is not yet available.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS33D..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS33D..03R"><span>Understanding multidecadal variability in ENSO amplitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, A.; Gnanadesikan, A.</p> <p>2013-12-01</p> <p>Sea surface temperatures (SSTs) in the tropical Pacific vary as a result of the coupling between the ocean and atmosphere driven largely by the El Niño - Southern Oscillation (ENSO). ENSO has a large impact on the local climate and hydrology of the tropical Pacific, as well as broad-reaching effects on global climate. ENSO amplitude is known to vary on long timescales, which makes it very difficult to quantify its response to climate change and constrain the physical processes that drive it. In order to assess the extent of unforced multidecadal changes in ENSO variability, a linear regression of local SST changes is applied to the GFDL CM2.1 model 4000-yr pre-industrial control run. The resulting regression coefficient strengths, which represent the sensitivity of SST changes to thermocline depth and zonal wind stress, vary by up to a factor of 2 on multi-decadal time scales. This long-term modulation in ocean-atmosphere coupling is highly correlated with ENSO variability, but do not explain the reasons for such variability. Variation in the relationship between SST changes and wind stress points to a role for changing stratification in the central equatorial Pacific in modulating ENSO amplitudes with stronger stratification reducing the response to winds. The main driving mechanism we have identified for higher ENSO variance are changes in the response of zonal winds to SST anomalies. The shifting convection and precipitation patterns associated with the changing state of the atmosphere also contribute to the variability of the regression coefficients. These mechanisms drive much of the variability in ENSO amplitude and hence ocean-atmosphere coupling in the tropical Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920047394&hterms=constitution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dconstitution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920047394&hterms=constitution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dconstitution"><span>Matrix cracking in laminated composites under monotonic and cyclic loadings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, David H.; Lee, Jong-Won</p> <p>1991-01-01</p> <p>An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC21F..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC21F..01T"><span>High-amplitude, centennial-scale climate oscillations during the last glacial in the western Third Pole as recorded in the Guliya ice cap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, L. G.; Yao, T.; Mosley-Thompson, E.; Wu, G.; Davis, M. E.; Tian, L.; Lin, P. N.</p> <p>2015-12-01</p> <p>The Guliya ice cap, located in the Kunlun Mountains in the western Third Pole (TP) region near the northern limit of the southwest monsoon influence, may be the only non-polar ice field that provides detailed histories of climate and environment over the last glacial cycle. A continuous climate record from an ice core drilled in 1992 contains Eemian ice, and basal temperatures measured that year confirmed that the record was not being removed from the bottom. The δ18O record throughout Marine Isotope Stage 2 (MIS2) displays the occurrence of high-amplitude (~20‰) episodes of ~200-year periodicity, and the aerosol records suggest snow cover, regional vegetation and fire frequency that vary in synchrony. These oscillations might reflect the movement of the northernmost penetration of the monsoon precipitation through the Late Glacial Stage, which is restricted by the topographic barrier posed by the Kunlun range, and might also reflect solar-driven nonlinearities in the climate system such as sudden shifts in the jet stream. Recent model simulations suggest that glacial cooling over China was significantly amplified by stationary waves, and the Guliya MIS2 oscillations could reflect cyclical variability in these waves. These results are supported by clumped isotope thermometry of carbonates from the Chinese Loess Plateau, which indicate a 6 to 7oC decrease in Last Glacial Maximum summer temperatures. These studies will lead to a better understanding of the mechanisms driving such high-frequency, high-amplitude oscillations. A review of the 2015 Sino-American cooperative ice core drilling program on Guliya is presented. This program will serve as a flagship for the TP Environment Program, an international, multidisciplinary collaboration among professionals and students in 14 countries designed to investigate environmental changes across the TP. The rapidly warming TP contains ~46,000 glaciers that collectively hold one of Earth's largest stores of fresh water that feeds Asia's largest rivers and helps sustain 1.5 billion people. Information on the accelerating warming of these glaciers and the impact on future water resources in this important region is urgently needed to help guide mitigation and adaptation policies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4319Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4319Y"><span>Underestimated AMOC Variability and Implications for AMV and Predictability in CMIP Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Xiaoqin; Zhang, Rong; Knutson, Thomas R.</p> <p>2018-05-01</p> <p>The Atlantic Meridional Overturning Circulation (AMOC) has profound impacts on various climate phenomena. Using both observations and simulations from the Coupled Model Intercomparison Project Phase 3 and 5, here we show that most models underestimate the amplitude of low-frequency AMOC variability. We further show that stronger low-frequency AMOC variability leads to stronger linkages between the AMOC and key variables associated with the Atlantic multidecadal variability (AMV), and between the subpolar AMV signal and northern hemisphere surface air temperature. Low-frequency extratropical northern hemisphere surface air temperature variability might increase with the amplitude of low-frequency AMOC variability. Atlantic decadal predictability is much higher in models with stronger low-frequency AMOC variability and much lower in models with weaker or without AMOC variability. Our results suggest that simulating realistic low-frequency AMOC variability is very important, both for simulating realistic linkages between AMOC and AMV-related variables and for achieving substantially higher Atlantic decadal predictability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10168E..0BK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10168E..0BK"><span>A robust signal processing method for quantitative high-cycle fatigue crack monitoring using soft elastomeric capacitor sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki</p> <p>2017-04-01</p> <p>A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cm15.book..711J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cm15.book..711J"><span>PhybalSIT — Fatigue Assessment and Life Time Calculation of the Ductile Cast Iron EN-GJS-600 at Ambient and Elevated Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jost, Benjamin; Klein, Marcus; Eifler, Dietmar</p> <p></p> <p>This paper focuses on the ductile cast iron EN-GJS-600 which is often used for components of combustion engines. Under service conditions, those components are mechanically loaded at different temperatures. Therefore, this investigation targets at the fatigue behavior of EN-GJS-600 at ambient and elevated temperatures. Light and scanning electron microscopic investigations were done to characterize the sphericity of the graphite as well as the ferrite, pearlite and graphite fraction. At elevated temperatures, the consideration of dynamic strain ageing effects is of major importance. In total strain increase, temperature increase and constant total strain amplitude tests, the plastic strain amplitude, the stress amplitude, the change in temperature and the change in electrical resistance were measured. The measured values depend on plastic deformation processes in the bulk of the specimens and at the interfaces between matrix and graphite. The fatigue behavior of EN-GJS-600 is dominated by cyclic hardening processes. The physically based fatigue life calculation "PHYBALSIT" (SIT = strain increase test) was developed for total strain controlled fatigue tests. Only one temperature increase test is necessary to determine the temperature interval of pronounced dynamic strain ageing effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023945','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023945"><span>Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dargaville, R.J.; Heimann, Martin; McGuire, A.D.; Prentice, I.C.; Kicklighter, D.W.; Joos, F.; Clein, Joy S.; Esser, G.; Foley, J.; Kaplan, J.; Meier, R.A.; Melillo, J.M.; Moore, B.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Sitch, S.; Tian, H.; Williams, L.J.; Wittenberg, U.</p> <p>2002-01-01</p> <p>An atmospheric transport model and observations of atmospheric CO2 are used to evaluate the performance of four Terrestrial Carbon Models (TCMs) in simulating the seasonal dynamics and interannual variability of atmospheric CO2 between 1980 and 1991. The TCMs were forced with time varying atmospheric CO2 concentrations, climate, and land use to simulate the net exchange of carbon between the terrestrial biosphere and the atmosphere. The monthly surface CO2 fluxes from the TCMs were used to drive the Model of Atmospheric Transport and Chemistry and the simulated seasonal cycles and concentration anomalies are compared with observations from several stations in the CMDL network. The TCMs underestimate the amplitude of the seasonal cycle and tend to simulate too early an uptake of CO2 during the spring by approximately one to two months. The model fluxes show an increase in amplitude as a result of land-use change, but that pattern is not so evident in the simulated atmospheric amplitudes, and the different models suggest different causes for the amplitude increase (i.e., CO2 fertilization, climate variability or land use change). The comparison of the modeled concentration anomalies with the observed anomalies indicates that either the TCMs underestimate interannual variability in the exchange of CO2 between the terrestrial biosphere and the atmosphere, or that either the variability in the ocean fluxes or the atmospheric transport may be key factors in the atmospheric interannual variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26276122','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26276122"><span>Opposite Effects of Visual Cueing During Writing-Like Movements of Different Amplitudes in Parkinson's Disease.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nackaerts, Evelien; Nieuwboer, Alice; Broeder, Sanne; Smits-Engelsman, Bouwien C M; Swinnen, Stephan P; Vandenberghe, Wim; Heremans, Elke</p> <p>2016-06-01</p> <p>Handwriting is often impaired in Parkinson's disease (PD). Several studies have shown that writing in PD benefits from the use of cues. However, this was typically studied with writing and drawing sizes that are usually not used in daily life. This study examines the effect of visual cueing on a prewriting task at small amplitudes (≤1.0 cm) in PD patients and healthy controls to better understand the working action of cueing for writing. A total of 15 PD patients and 15 healthy, age-matched controls performed a prewriting task at 0.6 cm and 1.0 cm in the presence and absence of visual cues (target lines). Writing amplitude, variability of amplitude, and speed were chosen as dependent variables, measured using a newly developed touch-sensitive tablet. Cueing led to immediate improvements in writing size, variability of writing size, and speed in both groups in the 1.0 cm condition. However, when writing at 0.6 cm with cues, a decrease in writing size was apparent in both groups (P < .001) and the difference in variability of amplitude between cued and uncued writing disappeared. In addition, the writing speed of controls decreased when the cue was present. Visual target lines of 1.0 cm improved the writing of sequential loops in contrast to lines spaced at 0.6 cm. These results illustrate that, unlike for gait, visual cueing for fine-motor tasks requires a differentiated approach, taking into account the possible increases of accuracy constraints imposed by cueing. © The Author(s) 2015.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatAs...1E.166P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatAs...1E.166P"><span>Blue large-amplitude pulsators as a new class of variable stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pietrukowicz, Paweł; Dziembowski, Wojciech A.; Latour, Marilyn; Angeloni, Rodolfo; Poleski, Radosław; di Mille, Francesco; Soszyński, Igor; Udalski, Andrzej; Szymański, Michał K.; Wyrzykowski, Łukasz; Kozłowski, Szymon; Skowron, Jan; Skowron, Dorota; Mróz, Przemek; Pawlak, Michał; Ulaczyk, Krzysztof</p> <p>2017-08-01</p> <p>Regular intrinsic brightness variations observed in many stars are caused by pulsations. These pulsations provide information on the global and structural parameters of the star. The pulsation periods range from seconds to years, depending on the compactness of the star and properties of the matter that forms its outer layers. Here, we report the discovery of more than a dozen previously unknown short-period variable stars: blue large-amplitude pulsators. These objects show very regular brightness variations with periods in the range of 20-40 min and amplitudes of 0.2-0.4 mag in the optical passbands. The phased light curves have a characteristic sawtooth shape, similar to the shape of classical Cepheids and RR Lyrae-type stars pulsating in the fundamental mode. The objects are significantly bluer than main-sequence stars observed in the same fields, which indicates that all of them are hot stars. Follow-up spectroscopy confirms a high surface temperature of about 30,000 K. Temperature and colour changes over the cycle prove the pulsational nature of the variables. However, large-amplitude pulsations at such short periods are not observed in any known type of stars, including hot objects. Long-term photometric observations show that the variable stars are very stable over time. Derived rates of period change are of the order of 10-7 per year and, in most cases, they are positive. According to pulsation theory, such large-amplitude oscillations may occur in evolved low-mass stars that have inflated helium-enriched envelopes. The evolutionary path that could lead to such stellar configurations remains unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930022392','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930022392"><span>Life extending control: An interdisciplinary engineering thrust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lorenzo, Carl F.; Merrill, Walter C.</p> <p>1991-01-01</p> <p>The concept of Life Extending Control (LEC) is introduced. Possible extensions to the cyclic damage prediction approach are presented based on the identification of a model from elementary forms. Several candidate elementary forms are presented. These extensions will result in a continuous or differential form of the damage prediction model. Two possible approaches to the LEC based on the existing cyclic damage prediction method, the measured variables LEC and the estimated variables LEC, are defined. Here, damage estimates or measurements would be used directly in the LEC. A simple hydraulic actuator driven position control system example is used to illustrate the main ideas behind LEC. Results from a simple hydraulic actuator example demonstrate that overall system performance (dynamic plus life) can be maximized by accounting for component damage in the control design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22558324','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22558324"><span>Seasonal patterns of body temperature daily rhythms in group-living Cape ground squirrels Xerus inauris.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scantlebury, Michael; Danek-Gontard, Marine; Bateman, Philip W; Bennett, Nigel C; Manjerovic, Mary Beth; Manjerovic, Mary-Beth; Joubert, Kenneth E; Waterman, Jane M</p> <p>2012-01-01</p> <p>Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (T(a)). We measured core body temperature (T(b)) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily T(a) provided the greatest explanatory power for mean T(b) whereas sunrise had greatest power for T(b) acrophase. There were significant changes in mean T(b) and T(b) acrophase over time with mean T(b) increasing and T(b) acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in T(b), sometimes in excess of 5°C, were noted during the first hour post emergence, after which T(b) remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to 'offload' heat. In addition, greater T(b) amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their T(a)-T(b) gradient. Finally, there were significant effects of age and group size on T(b) with a lower and less variable T(b) in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile T(b) which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3338621','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3338621"><span>Seasonal Patterns of Body Temperature Daily Rhythms in Group-Living Cape Ground Squirrels Xerus inauris</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Scantlebury, Michael; Danek-Gontard, Marine; Bateman, Philip W.; Bennett, Nigel C.; Manjerovic, Mary-Beth; Joubert, Kenneth E.; Waterman, Jane M.</p> <p>2012-01-01</p> <p>Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (Ta). We measured core body temperature (Tb) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily Ta provided the greatest explanatory power for mean Tb whereas sunrise had greatest power for Tb acrophase. There were significant changes in mean Tb and Tb acrophase over time with mean Tb increasing and Tb acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in Tb, sometimes in excess of 5°C, were noted during the first hour post emergence, after which Tb remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to ‘offload’ heat. In addition, greater Tb amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their Ta-Tb gradient. Finally, there were significant effects of age and group size on Tb with a lower and less variable Tb in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile Tb which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable environment. PMID:22558324</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT.......196L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT.......196L"><span>Cyclic variation of ultrasonic backscattering from porcine whole blood under pulsatile flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Yu-Hong</p> <p>1997-10-01</p> <p>The cyclic variation of ultrasonic backscattering from blood under pulsatile flow is believed to be related to the change of aggregation state of red cells and is only observed in whole blood. This study was to investigate the phenomenon by an invasive approach which was performed by inserting a 10 MHz catheter mounted transducer into a vessel. For ultrasonic measurement from blood, the most fundamental scheme is the hematocrit dependence. The backscatter maximum location was changed as the blood was stirred or stationary, as well as under steady laminar or turbulent flows. The same trend was also observed under pulsatile flow with 10% to 50% hematocrits in this study, as the backscattering to hematocrit curves were plotted at different times during a flow cycle. When the cyclic variation at 20 beats per minute (BPM) was interpreted in time domain, the enhanced aggregation at the beginning of shearing was observed. At 20 BPM with 40% hematocrit, the amplitude of cyclic variation was reduced when the shear rate was increased and the threshold of 150 s-1 was estimated. The results showed that there was no cyclic variation at 60 BPM. The backscattering was also plotted against the mean flow velocity, which demonstrated the hysteresis loops. The ultrasonic measurements showed that the relationship between the forward and backward paths of the loops were altered as beat rate, hematocrit, and shear rate were varied. Since the pulsatile flow was very complicated, a computational fluid dynamics package, FIDAPTM, was used to compute the shear rate based on the Power Law Model for non-Newtonian fluid viscosity. The non- Newtonian index and consistency in the model were computed from the viscosity to shear rate curves at 10% to 50% hematocrits measured by a cone-plate viscometer. For in vivo measurements, small pigs were used as models. Ultrasonic backscattering measurements were performed in the arteries and veins. The effect of stenosis was also investigated at the site below the renal branch in the artery. The results show that the cyclic variation from whole blood was mediated by the shear rate, hematocrit, beat rate, and fibrinogen concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNG41A1764C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNG41A1764C"><span>Internal Interdecadal Variability in CMIP5 Control Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheung, A. H.; Mann, M. E.; Frankcombe, L. M.; England, M. H.; Steinman, B. A.; Miller, S. K.</p> <p>2015-12-01</p> <p>Here we make use of control simulations from the CMIP5 models to quantify the amplitude of the interdecadal internal variability component in Atlantic, Pacific, and Northern Hemisphere mean surface temperature. We compare against estimates derived from observations using a semi-empirical approach wherein the forced component as estimated using CMIP5 historical simulations is removed to yield an estimate of the residual, internal variability. While the observational estimates are largely consistent with those derived from the control simulations for both basins and the Northern Hemisphere, they lie in the upper range of the model distributions, suggesting the possibility of differences between the amplitudes of observed and modeled variability. We comment on some possible reasons for the disparity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..278..204I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..278..204I"><span>Ground-based observation of the cyclic nature and temporal variability of planetary-scale UV features at the Venus cloud top level</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Imai, Masataka; Takahashi, Yukihiro; Watanabe, Makoto; Kouyama, Toru; Watanabe, Shigeto; Gouda, Shuhei; Gouda, Yuya</p> <p>2016-11-01</p> <p>A planetary-scale bright and dark UV feature, known as the ;Y-feature,; rotates around Venus with a period of 4-5 days and has been long-time interpreted as planetary waves. When assuming this, its rotation period and spatial structure might help to understand the propagation of the planetary-scale waves and find out their role in the acceleration-deceleration of the zonal wind speed, which is essential for understanding the super-rotation of the planet. The rotation period of the UV feature varied over the course of observation by the Pioneer Venus orbiter. However, in previous explorations of Venus such as Pioneer Venus and Venus Express, the spacecraft were operated in nearly fixed inertial space. As a result, the periodicity variations on sub-yearly timescales (one Venusian year is ∼224 Earth days) were obscured by the limitations of continuous dayside observations. We newly conducted six periods of ground-based Venus imaging observations at 365 nm from mid-August 2013 to the end of June 2014. Each observation period spanned over half or one month, enabling long-term monitoring of Venus' atmosphere above the equator region. Distributions of the relative brightness were obtained from the equatorial (EQ) to mid-latitudinal regions in both hemispheres, and from the cyclical variations of these distributions we deduced the rotation periods of the UV features of the cloud tops brightness. The relative brightness exhibited periods of 5.2 and 3.5 days above 90% of significance. The relative intensities of these two significant components also seemed subject to temporal variations. Although the 3.5-day component considered persists throughout the observation periods, its dominance over the longer period varied in a cyclic fashion. The prevailing first significant mode seems to change from 5.2-day waves to 3.5-day waves in about nine months, which is clearly inconsistent with the Venusian year. Clear periodic perturbations, indicating stability of the planetary-scale UV-feature, were observed only in the presence of single longer or shorter periodic waves. During the transition periods of dominant-wave changing, the amplitude of the relative brightness was largely changed. This can be explained by the deformation of the Y-shaped UV feature as observed by Pioneer Venus in 1979.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4143235','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4143235"><span>SAMPLING OSCILLOSCOPE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Sugarman, R.M.</p> <p>1960-08-30</p> <p>An oscilloscope is designed for displaying transient signal waveforms having random time and amplitude distributions. The oscilloscopc is a sampling device that selects for display a portion of only those waveforms having a particular range of amplitudes. For this purpose a pulse-height analyzer is provided to screen the pulses. A variable voltage-level shifter and a time-scale rampvoltage generator take the pulse height relative to the start of the waveform. The variable voltage shifter produces a voltage level raised one step for each sequential signal waveform to be sampled and this results in an unsmeared record of input signal waveforms. Appropriate delay devices permit each sample waveform to pass its peak amplitude before the circuit selects it for display.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22060438','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22060438"><span>Wavelet analysis of corneal endothelial electrical potential difference reveals cyclic operation of the secretory mechanism.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cacace, V I; Montalbetti, N; Kusnier, C; Gomez, M P; Fischbarg, J</p> <p>2011-09-01</p> <p>The corneal endothelium is a fluid-transporting epithelium. As other similar tissues, it displays an electrical potential of ~1 mV (aqueous side negative) across the entire layer [transendothelial potential difference (TEPD)]. It appears that this electrical potential is mainly the result of the transport of anions across the cell layer (from stroma to aqueous). There is substantial evidence that the TEPD is related linearly to fluid transport; hence, under proper conditions, its measure could serve as a measure of fluid transport. Furthermore, the TEPD is not steady; instead, it displays a spectrum of frequency components (0-15 Hz) recognized recently using Fourier transforms. Such frequency components appear due to charge-separating (electrogenic) processes mediated by epithelial plasma membrane proteins (both ionic channels and ionic cotransporters). In particular, the endothelial TEPD oscillations of the highest amplitude (1-2 Hz) were linked to the operation of so-called sodium bicarbonate cotransporters. However, no time localization of that activity could be obtained with the Fourier methodology utilized. For that reason we now characterize the TEPD using wavelet analysis with the aim to localize in time the variations in TEPD. We find that the mentioned high-amplitude oscillatory components of the TEPD appear cyclically during the several hours that an endothelial preparation survives in vitro. They have a period of 4.6 ± 0.4 s on average (n=4). The wavelet power value at the peak of such oscillations is 1.5 ± 0.1 mV(2) Hz on average (n = 4), and is remarkably narrow in its distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4213017','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4213017"><span>Cyclic Colour Change in the Bearded Dragon Pogona vitticeps under Different Photoperiods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fan, Marie; Stuart-Fox, Devi; Cadena, Viviana</p> <p>2014-01-01</p> <p>The ability to change colour rapidly is widespread among ectotherms and has various functions including camouflage, communication and thermoregulation. The process of colour change can occur as an aperiodic event or be rhythmic, induced by cyclic environmental factors or regulated by internal oscillators. Despite the importance of colour change in reptile ecology, few studies have investigated the occurrence of a circadian rhythm in lizard pigmentation. Additionally, although colour change also entails changes in near-infrared reflectance, which may affect thermoregulation, little research has examined this part of the spectrum. We tested whether the bearded dragon lizard, Pogona vitticeps, displays an endogenous circadian rhythm in pigmentation changes that could be entrained by light/dark (LD) cycles and how light affected the relative change in reflectance in both ultraviolet-visible and near-infrared spectra. We subjected 11 lizards to four photoperiodic regimens: LD 12∶12; LD 6∶18; LD 18∶6 and DD; and measured their dorsal skin reflectance at 3-hour intervals for 72 hours after a habituation period. A proportion of lizards displayed a significant rhythm under constant darkness, with maximum reflectance occurring in the subjective night. This endogenous rhythm synchronised to the different artificial LD cycles, with maximum reflectance occurring during dark phases, but did not vary in amplitude. In addition, the total ultraviolet-visible reflectance in relation to the total near-infrared reflectance was significantly higher during dark phases than during light phases. We conclude that P. vitticeps exhibits a circadian pigmentation rhythm of constant amplitude, regulated by internal oscillators and that can be entrained by light/dark cycles. PMID:25354192</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25354192','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25354192"><span>Cyclic colour change in the bearded dragon Pogona vitticeps under different photoperiods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fan, Marie; Stuart-Fox, Devi; Cadena, Viviana</p> <p>2014-01-01</p> <p>The ability to change colour rapidly is widespread among ectotherms and has various functions including camouflage, communication and thermoregulation. The process of colour change can occur as an aperiodic event or be rhythmic, induced by cyclic environmental factors or regulated by internal oscillators. Despite the importance of colour change in reptile ecology, few studies have investigated the occurrence of a circadian rhythm in lizard pigmentation. Additionally, although colour change also entails changes in near-infrared reflectance, which may affect thermoregulation, little research has examined this part of the spectrum. We tested whether the bearded dragon lizard, Pogona vitticeps, displays an endogenous circadian rhythm in pigmentation changes that could be entrained by light/dark (LD) cycles and how light affected the relative change in reflectance in both ultraviolet-visible and near-infrared spectra. We subjected 11 lizards to four photoperiodic regimens: LD 12:12; LD 6:18; LD 18:6 and DD; and measured their dorsal skin reflectance at 3-hour intervals for 72 hours after a habituation period. A proportion of lizards displayed a significant rhythm under constant darkness, with maximum reflectance occurring in the subjective night. This endogenous rhythm synchronised to the different artificial LD cycles, with maximum reflectance occurring during dark phases, but did not vary in amplitude. In addition, the total ultraviolet-visible reflectance in relation to the total near-infrared reflectance was significantly higher during dark phases than during light phases. We conclude that P. vitticeps exhibits a circadian pigmentation rhythm of constant amplitude, regulated by internal oscillators and that can be entrained by light/dark cycles.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21314829','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21314829"><span>The influence of carbon content on cyclic fatigue of NiTi SMA wires.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matheus, T C U; Menezes, W M M; Rigo, O D; Kabayama, L K; Viana, C S C; Otubo, J</p> <p>2011-06-01</p> <p>To evaluate two NiTi wires with different carbon and oxygen contents in terms of mechanical resistance to rotary bending fatigue (RBF) under varied parameters of strain amplitude and rotational speed. The wires produced from two vacuum induction melting (VIM) processed NiTi ingots were tested, Ti-49.81 at%Ni and Ti-50.33 at%Ni, named VIM 1 and VIM 2. A brief analysis related to wire fabrication is also presented, as well as chemical and microstructural analysis by energy dispersive spectroscopy (EDS) and optical microscope, respectively. A computer controlled RBF machine was specially constructed for the tests. Three radii of curvature were used: 50.0, 62.5 and 75.0 mm, respectively, R(1), R(2) and R(3), resulting in three strain amplitudes ε(a) : 1.00%, 0.80% and 0.67%. The selected rotational speeds were 250 and 455 rpm. The VIM 1 wire had a high carbon content of 0.188 wt% and a low oxygen content of 0.036 wt%. The oxygen and carbon contents of wire VIM 2 did not exceed their maximum, of 0.070 and 0.050 wt%, according to ASTM standard (ASTM F-2063-00 2001). The wire with lower carbon content performed better when compared to the one with higher carbon content, withstanding 29,441 and 12,895 cycles, respectively, to fracture. The surface quality of the wire was associated with resistance to cyclic fatigue. Surface defects acted as stress concentrators points. Overall, the number of cycles to failure was higher for VIM 2 wires with lower carbon content. © 2011 International Endodontic Journal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4909544','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4909544"><span>Enhanced dopamine release by dopamine transport inhibitors described by a restricted diffusion model and fast scan cyclic voltammetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hoffman, Alexander F.; Spivak, Charles E.; Lupica, Carl R.</p> <p>2016-01-01</p> <p>Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple, 5 parameter, two compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using non-linear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altered Ca2+/Mg2+ ratio or tetrodotoxin (TTX), reduced the release parameter with no effect on the uptake parameter. The DAT inhibitors methylenedioxypyrovalerone (MDPV), cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa-opioid receptor (KOR) agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data. PMID:27018734</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27018734','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27018734"><span>Enhanced Dopamine Release by Dopamine Transport Inhibitors Described by a Restricted Diffusion Model and Fast-Scan Cyclic Voltammetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R</p> <p>2016-06-15</p> <p>Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple five-parameter, two-compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using nonlinear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altering the Ca(2+)/Mg(2+) ratio or adding tetrodotoxin reduced the release parameter with no effect on the uptake parameter. DAT inhibitors methylenedioxypyrovalerone, cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa opioid receptor agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/825355','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/825355"><span>Dynamic Time Expansion and Compression Using Nonlinear Waveguides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi</p> <p>2004-06-22</p> <p>Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/982798','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/982798"><span>Dynamic time expansion and compression using nonlinear waveguides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Findikoglu, Alp T [Los Alamos, NM; Hahn, Sangkoo F [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM</p> <p>2004-06-22</p> <p>Dynamic time expansion or compression of a small-amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small-amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2219466','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2219466"><span>Violent Offending Predicts P300 Amplitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bernat, Edward M.; Hall, Jason R.; Steffen, Benjamin V.; Patrick, Christopher J.</p> <p>2007-01-01</p> <p>Prior work has consistently revealed a relationship between antisocial behavior and reduced P300 amplitude. Fewer studies have directly evaluated behavioral indices of aggression and P300, and those that have generally do not account for potential mediating variables such as age, intelligence, and behavioral task performance. The current study assessed the relationship between the total number of convicted violent and non-violent offenses and P300 in a sample of inmates from a medium security state prison. Violent offenses evidenced a robust negative relationship with P300 amplitude, whereas non-violent offenses did not. Additional analyses evaluated age, intelligence, and behavioral task performance as potential mediating variables. Only reaction time significantly predicted P300 amplitude, and mediational analyses showed that this relationship did not account for the violent-offense/P300 relationship. Findings are discussed in terms of personality correlates and neurobiological process related to aggression. PMID:17555836</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FNL....1650014C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FNL....1650014C"><span>Trend Extraction in Functional Data of Amplitudes of R and T Waves in Exercise Electrocardiogram</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cammarota, Camillo; Curione, Mario</p> <p></p> <p>The amplitudes of R and T waves of the electrocardiogram (ECG) recorded during the exercise test show both large inter- and intra-individual variability in response to stress. We analyze a dataset of 65 normal subjects undergoing ambulatory test. We model the dataset of R and T series in the framework of functional data, assuming that the individual series are realizations of a non-stationary process, centered at the population trend. We test the time variability of this trend computing a simultaneous confidence band and the zero crossing of its derivative. The analysis shows that the amplitudes of the R and T waves have opposite responses to stress, consisting respectively in a bump and a dip at the early recovery stage. Our findings support the existence of a relationship between R and T wave amplitudes and respectively diastolic and systolic ventricular volumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1368018-variations-coda-amplitudes-middle-east','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1368018-variations-coda-amplitudes-middle-east"><span>2D Variations in Coda Amplitudes in the Middle East</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pasyanos, Michael E.; Gok, Rengin; Walter, William R.</p> <p>2016-08-16</p> <p>Here, coda amplitudes have proven to be a stable feature of seismograms, allowing one to reliably measure magnitudes for moderate to large-sized (M≥3) earthquakes over broad regions. Since smaller (M<3) earthquakes are only recorded at higher frequencies where we find larger interstation scatter, amplitude and magnitude estimates for these events are more variable, regional, and path dependent. In this study, we investigate coda amplitude measurements in the Middle East for 2-D variations in attenuation structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1368018','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1368018"><span>2D Variations in Coda Amplitudes in the Middle East</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pasyanos, Michael E.; Gok, Rengin; Walter, William R.</p> <p></p> <p>Here, coda amplitudes have proven to be a stable feature of seismograms, allowing one to reliably measure magnitudes for moderate to large-sized (M≥3) earthquakes over broad regions. Since smaller (M<3) earthquakes are only recorded at higher frequencies where we find larger interstation scatter, amplitude and magnitude estimates for these events are more variable, regional, and path dependent. In this study, we investigate coda amplitude measurements in the Middle East for 2-D variations in attenuation structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9382930','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9382930"><span>Changes of spontaneous miniature excitatory postsynaptic currents in rat hippocampal pyramidal cells induced by aniracetam.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghamari-Langroudi, M; Glavinovíc, M I</p> <p>1998-01-01</p> <p>Spontaneous miniature excitatory postsynaptic currents (mEPSCs) in rat hippocampal pyramidal neurones in slices (CA1 region) were recorded at 35-37 degrees C using the whole-cell patch-clamp technique before and after addition of aniracetam (1 mM) to determine how a partial blockade of desensitization alters the relationship between the amplitude (A) and kinetics of mEPSCs, and to evaluate the factors that determine their variability. The rise time (taur) and the time constant of decay of mEPSCs (taud) are essentially amplitude independent in control conditions, but become clearly amplitude dependent in the presence of aniracetam. The slopes of the best fitting lines to taud:A and taur:A data pairs were (+/- SD; ms/pA; n = 5): (1) (control) 0.07 +/- 0.02 and 0.008 +/- 0.003; (2) (aniracetam) 0.40 +/- 0.19 and 0.22 +/- 0.22. The amplitude-dependent prolongation of taud is explained by the concentration dependence of two related processes, the buffering of glutamate molecules by AMPA receptor channels, and the occupancy of the double-bound activatable states. A slower deactivation makes an amplitude-independent contribution. Desensitization reduces the amplitude dependence of taud by minimizing repeated openings of alpha-amino-3-hydroxy-methyl-isoxazole (AMPA) receptor channels. A greater amplitude dependence of taur probably involves both pre- and postsynaptic factors. The variability of A and taud values did not change significantly, but the factors underlying the variability of taud values were much affected. The greater amplitude dependence and the greater scatter about the best fitting lines to taud:A data pairs are approximately balanced by the greater mean values. The greater scatter of taud about the best fitting lines probably occurs because the saturation of AMPA receptors is not the same at different synapses with different numbers of AMPA receptors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMPSo.111..530P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMPSo.111..530P"><span>Cyclic steady states in diffusion-induced plasticity with applications to lithium-ion batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peigney, Michaël</p> <p>2018-02-01</p> <p>Electrode materials in lithium-ion batteries offer an example of medium in which stress and plastic flow are generated by the diffusion of guest atoms. In such a medium, deformation and diffusion are strongly coupled processes. For designing electrodes with improved lifetime and electro-mechanical efficiency, it is crucial to understand how plasticity and diffusion evolve over consecutive charging-recharging cycles. With such questions in mind, this paper provides general results for the large-time behavior of media coupling plasticity with diffusion when submitted to cyclic chemo-mechanical loadings. Under suitable assumptions, we show that the stress, the plastic strain rate, the chemical potential and the flux of guest atoms converge to a cyclic steady state which is largely independent of the initial state. A special emphasis is laid on the special case of elastic shakedown, which corresponds to the situation where the plastic strain stops evolving after a sufficiently large number of cycles. Elastic shakedown is expected to be beneficial for the fatigue behavior and - in the case of lithium-ion batteries - for the electro-chemical efficiency. We provide a characterization of the chemo-mechanical loadings for which elastic shakedown occurs. Building on that characterization, we suggest a general method for designing structures in such fashion that they operate in the elastic shakedown regime, whatever the initial state is. An attractive feature of the proposed method is that incremental analysis of the fully coupled plasticity-diffusion problem is avoided. The results obtained are applied to the model problem of a battery electrode cylinder particle under cyclic charging. Closed-form expressions are obtained for the set of charging rates and charging amplitudes for which elastic shakedown occurs, as well as for the corresponding cyclic steady states of stress, lithium concentration and chemical potential. Some results for a spherical particle are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5507271','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5507271"><span>Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls. PMID:28700633</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23742372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23742372"><span>Development of speech motor control: lip movement variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schötz, Susanne; Frid, Johan; Löfqvist, Anders</p> <p>2013-06-01</p> <p>This study examined variability of lip movements across repetitions of the same utterance as a function of age in Swedish speakers. The specific purpose was to extend earlier findings by examining variability in both phase and amplitude. Subjects were 50 typically developed native Swedish children and adults (28 females, 22 males, aged 5 to 31 yr). Lip movements were recorded during 15 to 20 repetitions of a short Swedish phrase using three-dimensional articulography. After correction for head movements, the kinematic records were expressed in a maxilla-based coordinate system. Movement onset and offset of the utterance were identified using kinematic landmarks. The Euclidean distance between receivers on the upper and lower lips was calculated and subjected to functional data analysis to assess both phase and amplitude variability. Results show a decrease in both indices as a function of age, with a greater reduction of amplitude variability. There was no difference between males and females for either index. The two indices were moderately correlated with each other, suggesting that they capture different aspects of speech production. Utterance duration also decreased with age, but variability was unrelated to duration. The standard deviation of utterance duration also decreased with age. The present results thus suggest that age related changes in speech motor control continue up until 30 years of age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28700633','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28700633"><span>Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chidori, Kazuhiro; Yamamoto, Yuji</p> <p>2017-01-01</p> <p>The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960003344','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960003344"><span>Advanced compilation techniques in the PARADIGM compiler for distributed-memory multicomputers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Su, Ernesto; Lain, Antonio; Ramaswamy, Shankar; Palermo, Daniel J.; Hodges, Eugene W., IV; Banerjee, Prithviraj</p> <p>1995-01-01</p> <p>The PARADIGM compiler project provides an automated means to parallelize programs, written in a serial programming model, for efficient execution on distributed-memory multicomputers. .A previous implementation of the compiler based on the PTD representation allowed symbolic array sizes, affine loop bounds and array subscripts, and variable number of processors, provided that arrays were single or multi-dimensionally block distributed. The techniques presented here extend the compiler to also accept multidimensional cyclic and block-cyclic distributions within a uniform symbolic framework. These extensions demand more sophisticated symbolic manipulation capabilities. A novel aspect of our approach is to meet this demand by interfacing PARADIGM with a powerful off-the-shelf symbolic package, Mathematica. This paper describes some of the Mathematica routines that performs various transformations, shows how they are invoked and used by the compiler to overcome the new challenges, and presents experimental results for code involving cyclic and block-cyclic arrays as evidence of the feasibility of the approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910069267&hterms=amp&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Damp','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910069267&hterms=amp&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Damp"><span>Cyclic AMP-receptor proteins in heart muscle of rats flown on Cosmos 1887</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mednieks, Maija I.; Popova, Irina A.; Grindeland, Richard E.</p> <p>1991-01-01</p> <p>The cellular compartmentalization of the cyclic AMP-receptor proteins in heart ventricular tissue obtained from rats flown on the Cosmos 1887 is determined. Photoaffinity labeling of soluble and particular cell fractions with a (32P)-8-azido analog of cyclic AMP is followed by electrophoretic separation of the proteins and by autoradiographic identification of the labeled isoforms of cAPK R subunits. It is shown that RII in the particulate subcellular fraction was significantly decreased in heart cells from rats in the flight group when compared to controls. Protein banding patterns in both the cytoplasmic fraction and in a fraction enriched in chromatin-bound proteins exhibited some variability in tissues of individual animals, but showed no changes that could be directly attributed to flight conditions. No significant change was apparent in the distribution of RI or RII cyclic AMP binding in the soluble fractions. It is inferred that the cardiac cell integrity or its protein content is not compromised under flight conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29874668','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29874668"><span>No Menstrual Cyclicity in Mood and Interpersonal Behaviour in Nine Women with Self-Reported Premenstrual Syndrome.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bosman, Renske C; Albers, Casper J; de Jong, Jettie; Batalas, Nikolaos; Aan Het Rot, Marije</p> <p>2018-06-06</p> <p>Before diagnosing premenstrual dysphoric disorder (PMDD), 2 months of prospective assessment are required to confirm menstrual cyclicity in symptoms. For a diagnosis of premenstrual syndrome (PMS), this is not required. Women with PMDD and PMS often report that their symptoms interfere with mood and social functioning, and are said to show cyclical changes in interpersonal behaviour, but this has not been examined using a prospective approach. We sampled cyclicity in mood and interpersonal behaviour for 2 months in women with self- reported PMS. Participants met the criteria for PMS on the Premenstrual Symptoms Screening Tool (PSST), a retrospective questionnaire. For 2 menstrual cycles, after each social interaction, they used the online software TEMPEST to record on their smartphones how they felt and behaved. We examined within-person variability in negative affect, positive affect, quarrelsomeness, and agreeableness. Participants evaluated TEMPEST as positive. However, we found no evidence for menstrual cyclicity in mood and interpersonal behaviour in any of the individual women (n = 9). Retrospective questionnaires such as the PSST may lead to oversampling of PMS. The diagnosis of PMS, like that of PMDD, might require 2 months of prospective assessment. © 2018 S. Karger AG, Basel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870009419','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870009419"><span>A Constitutive Model for the Inelastic Multiaxial Cyclic Response of a Nickel Base Superalloy Rene 80. Ph.D. Thesis. Final Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ramaswamy, V. G.</p> <p>1986-01-01</p> <p>The objective was to develop unified constitutive equations which can model a variety of nonlinear material phenomena observed in Rene 80 at elevated temperatures. A constitutive model was developed based on back stress and drag stress. The tensorial back stress was used to model directional effects; whereas, the scalar drag stress was used to model isotropic effects and cyclic hardening or softening. A flow equation and evolution equations for the state variables were developed in multiaxial form. Procedures were developed to generate the material parameters. The model predicted very well the monotonic tensile, cyclic, creep, and stress relaxation behavior of Rene 80 at 982 C. The model was then extended to 871, 760, and 538 C. It was shown that strain rate dependent behavior at high temperatures and strain rate independent behavior at the lower temperatures could be predicted very well. A large number of monotonic tensile, creep, stress relation, and cyclic experiments were predicted. The multiaxial capabilities of the model were verified extensively for combined tension/torsion experiments. The prediction of the model agreed very well for proportional, nonproportional, and pure shear cyclic loading conditions at 982 and 871 C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22126890-weather-other-worlds-detection-periodic-variability-l3-dwarf-denis-j1058-precise-multi-wavelength-photometry','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22126890-weather-other-worlds-detection-periodic-variability-l3-dwarf-denis-j1058-precise-multi-wavelength-photometry"><span>WEATHER ON OTHER WORLDS. I. DETECTION OF PERIODIC VARIABILITY IN THE L3 DWARF DENIS-P J1058.7-1548 WITH PRECISE MULTI-WAVELENGTH PHOTOMETRY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Heinze, Aren N.; Metchev, Stanimir; Apai, Daniel</p> <p>2013-04-20</p> <p>Photometric monitoring from warm Spitzer reveals that the L3 dwarf DENIS-P J1058.7-1548 varies sinusoidally in brightness with a period of 4.25{sup +0.26}{sub -0.16} hr and an amplitude of 0.388% {+-} 0.043% (peak-to-valley) in the 3.6 {mu}m band, confirming the reality of a 4.31 {+-} 0.31 hr periodicity detected in J-band photometry from the SOAR telescope. The J-band variations are a factor of 2.17 {+-} 0.35 larger in amplitude than those at 3.6 {mu}m, while 4.5 {mu}m Spitzer observations yield a 4.5 {mu}m/3.6 {mu}m amplitude ratio of only 0.23 {+-} 0.15, consistent with zero 4.5 {mu}m variability. This wide range inmore » amplitudes indicates rotationally modulated variability due to magnetic phenomena and/or inhomogeneous cloud cover. Weak H{alpha} emission indicates some magnetic activity, but it is difficult to explain the observed amplitudes by magnetic phenomena unless they are combined with cloud inhomogeneities (which might have a magnetic cause). However, inhomogeneous cloud cover alone can explain all our observations, and our data align with theory in requiring that the regions with the thickest clouds also have the lowest effective temperature. Combined with published vsin (i) results, our rotation period yields a 95% confidence lower limit of R{sub *} {>=} 0.111 R{sub Sun }, suggesting upper limits of 320 Myr and 0.055 M{sub Sun} on the age and mass. These limits should be regarded cautiously because of {approx}3{sigma} inconsistencies with other data; however, a lower limit of 45 Degree-Sign on the inclination is more secure. DENIS-P J1058.7-1548 is only the first of nearly two dozen low-amplitude variables discovered and analyzed by the Weather on Other Worlds project.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5040508','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5040508"><span>Looking for a precursor of spontaneous Sleep Slow Oscillations in human sleep: The role of the sigma activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Allegrini, Paolo; Bedini, Remo; Bergamasco, Massimo; Laurino, Marco; Sebastiani, Laura; Gemignani, Angelo</p> <p>2016-01-01</p> <p>Sleep Slow Oscillations (SSOs), paradigmatic EEG markers of cortical bistability (alternation between cellular downstates and upstates), and sleep spindles, paradigmatic EEG markers of thalamic rhythm, are two hallmarks of sleeping brain. Selective thalamic lesions are reportedly associated to reductions of spindle activity and its spectrum ~14 Hz (sigma), and to alterations of SSO features. This apparent, parallel behavior suggests that thalamo-cortical entrainment favors cortical bistability. Here we investigate temporally-causal associations between thalamic sigma activity and shape, topology, and dynamics of SSOs. We recorded sleep EEG and studied whether spatio-temporal variability of SSO amplitude, negative slope (synchronization in downstate falling) and detection rate are driven by cortical-sigma-activity expression (12–18 Hz), in 3 consecutive 1 s-EEG-epochs preceding each SSO event (Baselines). We analyzed: (i) spatial variability, comparing maps of baseline sigma power and of SSO features, averaged over the first sleep cycle; (ii) event-by-event shape variability, computing for each electrode correlations between baseline sigma power and amplitude/slope of related SSOs; (iii) event-by-event spreading variability, comparing baseline sigma power in electrodes showing an SSO event with the homologous ones, spared by the event. The scalp distribution of baseline sigma power mirrored those of SSO amplitude and slope; event-by-event variability in baseline sigma power was associated with that in SSO amplitude in fronto-central areas; within each SSO event, electrodes involved in cortical bistability presented higher baseline sigma activity than those free of SSO. In conclusion, spatio-temporal variability of thalamocortical entrainment, measured by background sigma activity, is a reliable estimate of the cortical proneness to bistability. PMID:26003553</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21301341-taiwan-american-occultation-survey-project-stellar-variability-detection-low-amplitude-delta-scuti-stars','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21301341-taiwan-american-occultation-survey-project-stellar-variability-detection-low-amplitude-delta-scuti-stars"><span>THE TAIWAN-AMERICAN OCCULTATION SURVEY PROJECT STELLAR VARIABILITY. I. DETECTION OF LOW-AMPLITUDE {delta} SCUTI STARS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, D.-W.; Protopapas, P.; Alcock, C.</p> <p>2010-02-15</p> <p>We analyzed data accumulated during 2005 and 2006 by the Taiwan-American Occultation Survey (TAOS) in order to detect short-period variable stars (periods of {approx}<1 hr) such as {delta} Scuti. TAOS is designed for the detection of stellar occultation by small-size Kuiper Belt Objects and is operating four 50 cm telescopes at an effective cadence of 5 Hz. The four telescopes simultaneously monitor the same patch of the sky in order to reduce false positives. To detect short-period variables, we used the fast Fourier transform algorithm (FFT) in as much as the data points in TAOS light curves are evenly spaced.more » Using FFT, we found 41 short-period variables with amplitudes smaller than a few hundredths of a magnitude and periods of about an hour, which suggest that they are low-amplitude {delta} Scuti stars. The light curves of TAOS {delta} Scuti stars are accessible online at the Time Series Center Web site (http://timemachine.iic.harvard.edu)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1839927','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1839927"><span>Cardiac regulation in the socially monogamous prairie vole</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Grippo, Angela J.; Lamb, Damon G.; Carter, C. Sue; Porges, Stephen W.</p> <p>2007-01-01</p> <p>Social experiences, both positive and negative, may influence cardiovascular regulation. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that form social bonds similar to those seen in primates, and this species may provide a useful model for investigating neural and social regulation of cardiac function. Cardiac regulation has not been studied previously in the prairie vole. Radiotelemetry transmitters were implanted into adult female prairie voles under anesthesia, and electrocardiographic parameters were recorded. Autonomic blockade was performed using atenolol (8 mg/kg ip) and atropine methyl nitrate (4 mg/kg ip). Several variables were evaluated, including heart rate (HR), HR variability and the amplitude of respiratory sinus arrhythmia. Sympathetic blockade significantly reduced HR. Parasympathetic blockade significantly increased HR, and reduced HR variability and the amplitude of respiratory sinus arrhythmia. Combined autonomic blockade significantly increased HR, and reduced HR variability and respiratory sinus arrhythmia amplitude. The data indicate that autonomic function in prairie voles shares similarities with primates, with a predominant vagal influence on cardiac regulation. The current results provide a foundation for studying neural and social regulation of cardiac function during different behavioral states in this socially monogamous rodent model. PMID:17107695</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28664973','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28664973"><span>Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO2 mesoporous film.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Y S; Balland, V; Limoges, B; Costentin, C</p> <p>2017-07-21</p> <p>Cyclic voltammetry is a particularly useful tool for characterizing charge accumulation in conductive materials. A simple model is presented to evaluate proton transport effects on charge storage in conductive materials associated with a redox process coupled with proton insertion in the bulk material from an aqueous buffered solution, a situation frequently encountered in metal oxide materials. The interplay between proton transport inside and outside the materials is described using a formulation of the problem through introduction of dimensionless variables that allows defining the minimum number of parameters governing the cyclic voltammetry response with consideration of a simple description of the system geometry. This approach is illustrated by analysis of proton insertion in a mesoporous TiO 2 film.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA564975','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA564975"><span>Climate Change: Potential Effects on Demands for US Military Humanitarian Assistance and Disaster Response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-11-01</p> <p>As we do not fully understand how decision-makers will approach future climate- induced requirements, gaming provides a tool for better understanding...result in the need for humanitarian response missions. Those cases involve not only the stress induced by the natural environment, but also the...natural cyclic variability and a warming- induced variability. The pri- mary variability related to SST involves the strength of the storms, rather</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4675657','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4675657"><span>VARIABLE-THROW CAM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Godsil, E.C.; Robinson, E.Y.</p> <p>1963-07-16</p> <p>A variable-throw cam comprising inner and outer eccentric sleeves which are adjustably locked together is described. The cam throw is varied by unlocking the inner and outer sleeves, rotating the outer sleeve relative to the inner one until the desired throw is obtained, and locking the sleeves together again. The cam is useful in applications wherein a continuously-variable throw is required, e.g., ram-and-die pressing operations, cyclic fatigue testing of materials, etc. (AEC)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMEP53A0600Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMEP53A0600Y"><span>Cyclic Steps and Antidunes : Relating Their Features to a Suspension Index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yokokawa, M.; Kishima, Y.; Parker, G.</p> <p>2010-12-01</p> <p>Cyclic Steps and Antidunes : Relating Their Features to a Suspension Index Miwa Yokokawa (1), Yasushi Kishima (1), Gary Parker (2, 3) 1: Osaka Institute of Technology, Hirakata, Osaka, Japan 2: Dept. of Civil & Environmental Engineering, University of Illinois, Urbana, Illinois, U.S.A. 3: Dept. of Geology, University of Illinois, Urbana, Illinois, U.S.A. There are very few comparative studies of the differences in hydraulic conditions and morphologic features of bed- and water-surface-waves associated with cyclic steps and antidunes. In this study, the features of both the bed and the water surface, as well as hydraulic conditions are examined over the spectrum from antidune to cyclic steps. Experiments were performed using a flume at the Osaka Institute of Technology. The resultant features of the bedforms are as follows. In the case of antidunes, bed waves and water surface waves are in phase except when they collapse. Antidunes show several kinds of behavior; migrating downstream, standing, or migrating upstream. Upstream-migrating antidunes are divided into non-breaking, and breaking-types. Breaking antidunes appear alternatively with the plane bed state. Cyclic steps migrate upstream regularly associated with trains of hydraulic jumps, which divide each step. There is a significant change in water depth at the hydraulic jump, so that the phasing between the bed waves and water surface waves break at the each hydraulic jump. There is a kind of compromise between cyclic steps and antidunes, which we designate as “intermediate steps”. They move upstream and are associated with regular trains of hydraulic jumps. The jumps, however, occasionally collapse toward upstream. When this happens, bed waves move rapidly upstream; low-amplitude water surface waves and bed waves become in phase all over the bed shortly after the collapse. Then after some time, water surface waves become sufficiently prominent to yield regular hydraulic jumps. This cycle is then repeated.The hydraulic conditions for these bedfoms were examined using three non-dimensional parameters, i.e. the Froude Number, the Suspension Index, and the dimensionless particle size. The suspension index is a newly introduced parameter which is the ratio of the shear velocity divided by the settling velocity of the sediment (u*/Vs). Data from previous experimental studies are examined together with the present data in studying the characteristic regimes of bedform formation. In a diagram of Froude Number v.s. Suspension Index, antidunes, intermediate steps and cyclic steps can be divided along the axis of the Suspension Index. In the lowest range of the suspension index, downstream-migrating antidunes and upstream-migrating antidunes that do not break are found. The intermediate steps discussed above are located in the middle range. The highest range corresponds to cyclic steps and breaking antidunes. As described above, the Suspension Index can serve as a scale to quantify the spectrum between antidunes and cyclic steps. The use of the parameter also helps verify that suspension plays an important role in the formation and maintenance of cyclic steps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJTP...54.4576R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJTP...54.4576R"><span>Quantization and Quantum-Like Phenomena: A Number Amplitude Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, T. R.; Haven, E.</p> <p>2015-12-01</p> <p>Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22041331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22041331"><span>Body temperature circadian rhythm variability corresponds to left ventricular systolic dysfunction in decompensated cardiomyopathic hamsters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahmed, Amany; Gondi, Sreedevi; Cox, Casey; Zheng, Minjuan; Mohammed, Anwarullah; Stupin, Igor V; Wang, Suwei; Vela, Deborah; Brewer, Alan; Elayda, Macarthur A; Buja, L Maximilian; Ward Casscells, S; Wilson, James M</p> <p>2011-11-01</p> <p>A declining amplitude of body temperature circadian rhythm (BTCR) predicts decompensation or death in cardiomyopathic hamsters. We tested the hypothesis that changes in BTCR amplitude accompany significant changes in left ventricular (LV) size and function. Using intraperitoneal transmitters, we continuously monitored the temperature of 30 male BIO TO-2 Syrian dilated cardiomyopathic hamsters. Cosinor analysis was used to detect significant changes--defined as changes >1 standard deviation from the baseline amplitude for 3 consecutive days--in BTCR amplitude over each hamster's lifespan. The Student t-test was used to compare BTCR variability and LV size and function (as assessed by 2D echocardiography) between baseline and the time that BTCR amplitude declined. All hamsters received 10 mg/kg furosemide daily. At the time of BTCR amplitude decline, functional parameters had changed significantly (P < .0001) from baseline: ejection fraction (0.31 ± 0.09% vs. 0.52 ± 0.08%), LV end-systolic volume (0.11 ± 0.03 vs. 0.05 ± 0.02 cm(3)), and LV end-diastolic volume (0.16 ± 0.04 vs. 0.10 ± 0.03 cm(3)). In decompensated cardiomyopathic hamsters, a decline in BTCR amplitude was associated with progression of heart failure and cardiac decompensation. Variation in BTCR warrants further investigation because of its potential implications for the diagnosis and treatment of cardiovascular disorders. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CNSNS..54...21S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CNSNS..54...21S"><span>Analysis of cyclical behavior in time series of stock market returns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stratimirović, Djordje; Sarvan, Darko; Miljković, Vladimir; Blesić, Suzana</p> <p>2018-01-01</p> <p>In this paper we have analyzed scaling properties and cyclical behavior of the three types of stock market indexes (SMI) time series: data belonging to stock markets of developed economies, emerging economies, and of the underdeveloped or transitional economies. We have used two techniques of data analysis to obtain and verify our findings: the wavelet transform (WT) spectral analysis to identify cycles in the SMI returns data, and the time-dependent detrended moving average (tdDMA) analysis to investigate local behavior around market cycles and trends. We found cyclical behavior in all SMI data sets that we have analyzed. Moreover, the positions and the boundaries of cyclical intervals that we found seam to be common for all markets in our dataset. We list and illustrate the presence of nine such periods in our SMI data. We report on the possibilities to differentiate between the level of growth of the analyzed markets by way of statistical analysis of the properties of wavelet spectra that characterize particular peak behaviors. Our results show that measures like the relative WT energy content and the relative WT amplitude of the peaks in the small scales region could be used to partially differentiate between market economies. Finally, we propose a way to quantify the level of development of a stock market based on estimation of local complexity of market's SMI series. From the local scaling exponents calculated for our nine peak regions we have defined what we named the Development Index, which proved, at least in the case of our dataset, to be suitable to rank the SMI series that we have analyzed in three distinct groups.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5909914','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5909914"><span>Empirical mode decomposition processing to improve multifocal-visual-evoked-potential signal analysis in multiple sclerosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2018-01-01</p> <p>Objective To study the performance of multifocal-visual-evoked-potential (mfVEP) signals filtered using empirical mode decomposition (EMD) in discriminating, based on amplitude, between control and multiple sclerosis (MS) patient groups, and to reduce variability in interocular latency in control subjects. Methods MfVEP signals were obtained from controls, clinically definitive MS and MS-risk progression patients (radiologically isolated syndrome (RIS) and clinically isolated syndrome (CIS)). The conventional method of processing mfVEPs consists of using a 1–35 Hz bandpass frequency filter (XDFT). The EMD algorithm was used to decompose the XDFT signals into several intrinsic mode functions (IMFs). This signal processing was assessed by computing the amplitudes and latencies of the XDFT and IMF signals (XEMD). The amplitudes from the full visual field and from ring 5 (9.8–15° eccentricity) were studied. The discrimination index was calculated between controls and patients. Interocular latency values were computed from the XDFT and XEMD signals in a control database to study variability. Results Using the amplitude of the mfVEP signals filtered with EMD (XEMD) obtains higher discrimination index values than the conventional method when control, MS-risk progression (RIS and CIS) and MS subjects are studied. The lowest variability in interocular latency computations from the control patient database was obtained by comparing the XEMD signals with the XDFT signals. Even better results (amplitude discrimination and latency variability) were obtained in ring 5 (9.8–15° eccentricity of the visual field). Conclusions Filtering mfVEP signals using the EMD algorithm will result in better identification of subjects at risk of developing MS and better accuracy in latency studies. This could be applied to assess visual cortex activity in MS diagnosis and evolution studies. PMID:29677200</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.3754O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.3754O"><span>Daily estimates of the migrating tide and zonal mean temperature in the mesosphere and lower thermosphere derived from SABER data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortland, David A.</p> <p>2017-04-01</p> <p>Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SMaS...22j5007H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SMaS...22j5007H"><span>A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai</p> <p>2013-10-01</p> <p>This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4378451','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4378451"><span>Triassic–Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sha, Jingeng; Olsen, Paul E.; Pan, Yanhong; Xu, Daoyi; Wang, Yaqiang; Zhang, Xiaolin; Yao, Xiaogang; Vajda, Vivi</p> <p>2015-01-01</p> <p>Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth’s geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic–Early Jurassic (∼198–202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth–Mars orbital resonance was in today’s 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data. PMID:25759439</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25759439','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25759439"><span>Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sha, Jingeng; Olsen, Paul E; Pan, Yanhong; Xu, Daoyi; Wang, Yaqiang; Zhang, Xiaolin; Yao, Xiaogang; Vajda, Vivi</p> <p>2015-03-24</p> <p>Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth's geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic-Early Jurassic (∼198-202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth-Mars orbital resonance was in today's 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24466031','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24466031"><span>The influence of topographic and dynamic cyclic variables on the distribution of small cetaceans in a shallow coastal system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Boer, Marijke N; Simmonds, Mark P; Reijnders, Peter J H; Aarts, Geert</p> <p>2014-01-01</p> <p>The influence of topographic and temporal variables on cetacean distribution at a fine-scale is still poorly understood. To study the spatial and temporal distribution of harbour porpoise Phocoena phocoena and the poorly known Risso's dolphin Grampus griseus we carried out land-based observations from Bardsey Island (Wales, UK) in summer (2001-2007). Using Kernel analysis and Generalized Additive Models it was shown that porpoises and Risso's appeared to be linked to topographic and dynamic cyclic variables with both species using different core areas (dolphins to the West and porpoises to the East off Bardsey). Depth, slope and aspect and a low variation in current speed (for Risso's) were important in explaining the patchy distributions for both species. The prime temporal conditions in these shallow coastal systems were related to the tidal cycle (Low Water Slack and the flood phase), lunar cycle (a few days following the neap tidal phase), diel cycle (afternoons) and seasonal cycle (peaking in August) but differed between species on a temporary but predictable basis. The measure of tidal stratification was shown to be important. Coastal waters generally show a stronger stratification particularly during neap tides upon which the phytoplankton biomass at the surface rises reaching its maximum about 2-3 days after neap tide. It appeared that porpoises occurred in those areas where stratification is maximised and Risso's preferred more mixed waters. This fine-scale study provided a temporal insight into spatial distribution of two species that single studies conducted over broader scales (tens or hundreds of kilometers) do not achieve. Understanding which topographic and cyclic variables drive the patchy distribution of porpoises and Risso's in a Headland/Island system may form the initial basis for identifying potentially critical habitats for these species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA176743','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA176743"><span>Cyclic Strain Amplitude and Heat Treatment Effects on the High Damping Behavior of INCRAMUTE Alloy under Random Vibration Loading in the 50-1000 Hz Frequency Range</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1986-09-01</p> <p>for each mode and heat treament condition are plotted versus the average peak strain, £_) ea ^. in Figures 4.10, 4.11, and 4.12. For Mode 1 resonance...specimen reversed its relative position to the other heat treament conditions (i.e., it showed the lowest damping levels in Modes 2 and 3). However, as...LATTICE PARAMETERS FOR EACH HEAT TREATMENT CONDITION OF INCRAMUTE Heat Treament Lattice Parameter (Angstrons) AQ 3.7484 1 Hour Age 3.737864 2 Hour Age</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.6929E..0QS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.6929E..0QS"><span>Fatigue characteristics of carbon nanotube blocks under compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suhr, J.; Ci, L.; Victor, P.; Ajayan, P. M.</p> <p>2008-03-01</p> <p>In this paper we investigate the mechanical response from repeated high compressive strains on freestanding, long, vertically aligned multiwalled carbon nanotube membranes and show that the arrays of nanotubes under compression behave very similar to soft tissue and exhibit viscoelastic behavior. Under compressive cyclic loading, the mechanical response of nanotube blocks shows initial preconditioning and hysteresis characteristic of viscoeleastic materials. Furthermore, no fatigue failure is observed even at high strain amplitudes up to half million cycles. The outstanding fatigue life and extraordinary soft tissue-like mechanical behavior suggest that properly engineered carbon nanotube structures could mimic artificial muscles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160007732','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160007732"><span>Fatigue Life of Postbuckled Structures with Indentation Damage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davila, Carlos G.; Bisagni, Chiara</p> <p>2016-01-01</p> <p>The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4784917','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4784917"><span>Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reeves, Daniel B.; Shi, Yipeng; Weaver, John B.</p> <p>2016-01-01</p> <p>Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties (e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles’ size distribution and moment and the applied field’s amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter. PMID:26959493</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16640269','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16640269"><span>Video repairing under variable illumination using cyclic motions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jia, Jiaya; Tai, Yu-Wing; Wu, Tai-Pang; Tang, Chi-Keung</p> <p>2006-05-01</p> <p>This paper presents a complete system capable of synthesizing a large number of pixels that are missing due to occlusion or damage in an uncalibrated input video. These missing pixels may correspond to the static background or cyclic motions of the captured scene. Our system employs user-assisted video layer segmentation, while the main processing in video repair is fully automatic. The input video is first decomposed into the color and illumination videos. The necessary temporal consistency is maintained by tensor voting in the spatio-temporal domain. Missing colors and illumination of the background are synthesized by applying image repairing. Finally, the occluded motions are inferred by spatio-temporal alignment of collected samples at multiple scales. We experimented on our system with some difficult examples with variable illumination, where the capturing camera can be stationary or in motion.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770030156&hterms=PEELING&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DPEELING','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770030156&hterms=PEELING&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DPEELING"><span>A 15,000-hour cyclic endurance test of an 8-centimeter-diameter electron bombardment mercury ion thruster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nakanishi, S.</p> <p>1976-01-01</p> <p>A laboratory model 8-cm thruster with improvements to minimize ion chamber erosion and peeling of sputtered metal was subjected to a cyclic endurance test for 15,040 hours and 460 restarts. A charted history of several thruster operating variables and off-normal events are shown in 600-hour segments at three points in the test. The transient behavior of these variables during a typical start-stop cycle is presented. Performance and operating characteristics were nearly constant throughout the test except for a change in the accelerator back-streaming limit. Findings of the post-test inspection confirmed most of the expected results. Charge-exchange ions caused normal accelerator grid erosion. The workability of the various design features have been substantiated, and attainable improvements in propellant utilization efficiency should significantly reduce accelerator erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.965a2030P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.965a2030P"><span>Transfer matrix spectrum for cyclic representations of the 6-vertex reflection algebra by quantum separation of variables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pezelier, Baptiste</p> <p>2018-02-01</p> <p>In this proceeding, we recall the notion of quantum integrable systems on a lattice and then introduce the Sklyanin’s Separation of Variables method. We sum up the main results for the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. These results apply as well to the spectral analysis of the lattice sine-Gordon model with open boundary conditions. The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations. We state an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation, allowing us to rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AIPC.1218..128L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AIPC.1218..128L"><span>Investigation on the Inertance Tubes of Pulse Tube Cryocooler Without Reservoir</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Y. J.; Yang, L. W.; Liang, J. T.; Hong, G. T.</p> <p>2010-04-01</p> <p>Phase angle is of vital importance for high-efficiency pulse tube cryocoolers (PTCs). Inertance tube as the main phase shifter is useful for the PTCs to obtain appropriate phase angle. Experiments of inertance tube without reservoir under variable frequency, variable length and diameter of inertance tube and variable pressure amplitude are investigated respectively. In addition, the authors used DeltaEC, a computer program to predict the performance of low-amplitude thermoacoustic engines, to simulate the effects of inertance tube without reservoir. According to the comparison of experiments and theoretical simulations, DeltaEC method is feasible and effective to direct and improve the design of inertance tubes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JHEP...10..139H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JHEP...10..139H"><span>A link representation for gravity amplitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Song</p> <p>2013-10-01</p> <p>We derive a link representation for all tree amplitudes in supergravity, from a recent conjecture by Cachazo and Skinner. The new formula explicitly writes amplitudes as contour integrals over constrained link variables, with an integrand naturally expressed in terms of determinants, or equivalently tree diagrams. Important symmetries of the amplitude, such as supersymmetry, parity and (partial) permutation invariance, are kept manifest in the formulation. We also comment on rewriting the formula in a GL( k)-invariant manner, which may serve as a starting point for the generalization to possible Grassmannian contour integrals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040110690','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040110690"><span>An Expanded RXTE Survey of Long-Term X-ray Variability in Seyfert 1 Galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Markowitz, A.; Edelson, R.</p> <p>2004-01-01</p> <p>The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogenous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from approx. 1 day to approx. 3.5 years. 2-10 keV variability on time scales of approx. 1 day, as probed by ASCA, are included. All sources exhibit stronger X-ray variability towards longer time scales, with variability amplitudes saturating at the longest time scales, but the increase is greater for relatively higher luminosity sources. The well-documented anticorrelation between variability amplitude and luminosity is confirmed on all time scales. However, anticorrelations between variability amplitude and black hole mass estimate are evident on only the shortest time scales probed. The data are consistent with the models of power spectral density (PSD) movement described in Markowitz et al. (2003) and McHardy et al. (2004), whereby Seyfert 1 galaxies variability can be described by a single, universal PSD shape whose cutoff frequency scales with black hole mass. The best-fitting scaling relations between variability time scale, black hole mass and X-ray luminosity support an average accretion rate of 2% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all time scales. Color-flux diagrams support also Seyfert 1s' softening as they brighten. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21714250','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21714250"><span>[Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo</p> <p>2011-04-01</p> <p>In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyS...93e5101D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyS...93e5101D"><span>Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danilin, S.; Vepsäläinen, A.; Paraoanu, G. S.</p> <p>2018-05-01</p> <p>Quantum state manipulation with gates based on geometric phases acquired during cyclic operations promises inherent fault-tolerance and resilience to local fluctuations in the control parameters. Here we create a general non-Abelian and non-adiabatic holonomic gate acting in the (∣0〉, ∣2〉) subspace of a three-level (qutrit) transmon device fabricated in a fully coplanar design. Experimentally, this is realized by simultaneously coupling the first two transitions by microwave pulses with amplitudes and phases defined such that the condition of parallel transport is fulfilled. We demonstrate the creation of arbitrary superpositions in this subspace by changing the amplitudes of the pulses and the relative phase between them. We use two-photon pulses acting in the holonomic subspace to reveal the coherence of the state created by the geometric gate pulses and to prepare different superposition states. We also test the action of holonomic NOT and Hadamard gates on superpositions in the (| 0> ,| 2> ) subspace.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JPhCS.240a2044K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JPhCS.240a2044K"><span>Ultrasonic fatigue of a high strength steel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koster, M.; Wagner, G.; Eifler, D.</p> <p>2010-07-01</p> <p>At the Institute of Materials Science and Engineering at the University of Kaiserslautern an ultrasonic testing system for the fatigue assessment of metallic materials in the very high cycle fatigue (VHCF) regime was developed. The ultrasonic testing system allows to control the test and to measure detailed fatigue data. The achieved results can be used to describe the cyclic deformation behaviour of wheel steels at ultrasonic frequencies. In load increase tests (LIT), the critical stress amplitude can be determined, which leads to a defined change of process parameters like generator power, dissipated energy and specimen temperature. With SEM investigations it was proved that the change of the process parameters correlates with irreversible changes in the microstructure. It can be shown that the stress amplitude, leading to first irreversible changes in the microstructure, strongly depends on the depth position within the original wheel rim. New and basic results on the fatigue mechanisms of high strength steels in the VHCF-regime can be achieved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.843a2054B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.843a2054B"><span>Numerical investigation of contact stresses for fretting fatigue damage initiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhatti, N. A.; Abdel Wahab, M.</p> <p>2017-05-01</p> <p>Fretting fatigue phenomena occurs due to interaction between contacting bodies under application of cyclic and normal loads. In addition to environmental conditions and material properties, the response at the contact interface highly depends on the combination of applied loads. High stress concentration is present at the contact interface, which can start the damage nucleation process. At the culmination of nucleation process several micro cracks are initiated, ultimately leading to the structural failure. In this study, effect of ratio of tangential to normal load on contact stresses, slip amplitude and damage initiation is studied using finite element analysis. The results are evaluated for Ruiz parameter as it involves the slip amplitude which in an important factor in fretting fatigue conditions. It is observed that tangential to normal load ratio influences the stick zone size and damage initiation life. Furthermore, it is observed that tensile stress is the most important factor that drives the damage initiation to failure for the cases where failure occurs predominantly in mode I manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364359-weather-other-worlds-ii-survey-results-spots-ubiquitous-dwarfs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364359-weather-other-worlds-ii-survey-results-spots-ubiquitous-dwarfs"><span>WEATHER ON OTHER WORLDS. II. SURVEY RESULTS: SPOTS ARE UBIQUITOUS ON L AND T DWARFS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Metchev, Stanimir A.; Heinze, Aren; Apai, Dániel</p> <p>2015-02-01</p> <p>We present results from the Weather on Other Worlds Spitzer Exploration Science program to investigate photometric variability in L and T dwarfs, usually attributed to patchy clouds. We surveyed 44 L3-T8 dwarfs, spanning a range of J – K{sub s} colors and surface gravities. We find that 14/23 (61%{sub −20%}{sup +17%}, 95% confidence) of our single L3-L9.5 dwarfs are variable with peak-to-peak amplitudes between 0.2% and 1.5%, and 5/16 (31%{sub −17%}{sup +25%}) of our single T0-T8 dwarfs are variable with amplitudes between 0.8% and 4.6%. After correcting for sensitivity, we find that 80%{sub −27%}{sup +20%} of L dwarfs vary bymore » ≥0.2%, and 36%{sub −17%}{sup +26%} of T dwarfs vary by ≥0.4%. Given viewing geometry considerations, we conclude that photospheric heterogeneities causing >0.2% 3-5 μm flux variations are present on virtually all L dwarfs, and probably on most T dwarfs. A third of L dwarf variables show irregular light curves, indicating that L dwarfs may have multiple spots that evolve over a single rotation. Also, approximately a third of the periodicities are on timescales >10 hr, suggesting that slowly rotating brown dwarfs may be common. We observe an increase in the maximum amplitudes over the entire spectral type range, revealing a potential for greater temperature contrasts in T dwarfs than in L dwarfs. We find a tentative association (92% confidence) between low surface gravity and high-amplitude variability among L3-L5.5 dwarfs. Although we can not confirm whether lower gravity is also correlated with a higher incidence of variables, the result is promising for the characterization of directly imaged young extrasolar planets through variability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RMRE...50.2871Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RMRE...50.2871Y"><span>Experimental Investigation on Deformation Failure Characteristics of Crystalline Marble Under Triaxial Cyclic Loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Sheng-Qi; Tian, Wen-Ling; Ranjith, P. G.</p> <p>2017-11-01</p> <p>The deformation failure characteristics of marble subjected to triaxial cyclic loading are significant when evaluating the stability and safety of deep excavation damage zones. To date, however, there have been notably few triaxial experimental studies on marble under triaxial cyclic loading. Therefore, in this research, a series of triaxial cyclic tests was conducted to analyze the mechanical damage characteristics of a marble. The post-peak deformation of the marble changed gradually from strain softening to strain hardening as the confining pressure increased from 0 to 10 MPa. Under uniaxial compression, marble specimens showed brittle failure characteristics with a number axial splitting tensile cracks; in the range of σ 3 = 2.5-7.5 MPa, the marble specimens assumed single shear fracture characteristics with larger fracture angles of about 65°. However, at σ 3 = 10 MPa, the marble specimens showed no obvious shear fracture surfaces. The triaxial cyclic experimental results indicate that in the range of the tested confining pressures, the triaxial strengths of the marble specimens under cyclic loading were approximately equal to those under monotonic loading. With the increase in cycle number, the elastic strains of the marble specimens all increased at first and later decreased, achieving maximum values, but the plastic strains of the marble specimens increased nonlinearly. To evaluate quantitatively the damage extent of the marble under triaxial cyclic loading, a damage variable is defined according to the irreversible deformation for each cycle. The evolutions of the elastic modulus for the marble were characterized by four stages: material strengthening, material degradation, material failure and structure slippage. Based on the experimental results of the marble specimens under complex cyclic loading, the cohesion of the marble decreased linearly, but the internal friction angles did not depend on the damage extent. To describe the peak strength characteristics of the marble specimens under complex cyclic loadings with various deformation positions, a revised strength criterion for damaged rocks is offered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PMB....63c5032S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PMB....63c5032S"><span>Motion vector field phase-to-amplitude resampling for 4D motion-compensated cone-beam CT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sauppe, Sebastian; Kuhm, Julian; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc</p> <p>2018-02-01</p> <p>We propose a phase-to-amplitude resampling (PTAR) method to reduce motion blurring in motion-compensated (MoCo) 4D cone-beam CT (CBCT) image reconstruction, without increasing the computational complexity of the motion vector field (MVF) estimation approach. PTAR is able to improve the image quality in reconstructed 4D volumes, including both regular and irregular respiration patterns. The PTAR approach starts with a robust phase-gating procedure for the initial MVF estimation and then switches to a phase-adapted amplitude gating method. The switch implies an MVF-resampling, which makes them amplitude-specific. PTAR ensures that the MVFs, which have been estimated on phase-gated reconstructions, are still valid for all amplitude-gated reconstructions. To validate the method, we use an artificially deformed clinical CT scan with a realistic breathing pattern and several patient data sets acquired with a TrueBeamTM integrated imaging system (Varian Medical Systems, Palo Alto, CA, USA). Motion blurring, which still occurs around the area of the diaphragm or at small vessels above the diaphragm in artifact-specific cyclic motion compensation (acMoCo) images based on phase-gating, is significantly reduced by PTAR. Also, small lung structures appear sharper in the images. This is demonstrated both for simulated and real patient data. A quantification of the sharpness of the diaphragm confirms these findings. PTAR improves the image quality of 4D MoCo reconstructions compared to conventional phase-gated MoCo images, in particular for irregular breathing patterns. Thus, PTAR increases the robustness of MoCo reconstructions for CBCT. Because PTAR does not require any additional steps for the MVF estimation, it is computationally efficient. Our method is not restricted to CBCT but could rather be applied to other image modalities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120000554','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120000554"><span>A Shock-Refracted Acoustic Wave Model for Screech Amplitude in Supersonic Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kandula, Max</p> <p>2007-01-01</p> <p>A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fully expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on the directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130012974','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130012974"><span>A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kandula, Max</p> <p>2007-01-01</p> <p>A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950058571&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtemperature%2Bvariability','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950058571&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtemperature%2Bvariability"><span>Solar variability: Implications for global change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lean, Judith; Rind, David</p> <p>1994-01-01</p> <p>Solar variability is examined in search of implications for global change. The topics covered include the following: solar variation modification of global surface temperature; the significance of solar variability with respect to future climate change; and methods of reducing the uncertainty of the potential amplitude of solar variability on longer time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992JPhy3...2.1491A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992JPhy3...2.1491A"><span>Effet Bauschinger lors de la plasticité cyclique de l'aluminium pur monocristallin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alhamany, A.; Chicois, J.; Fougères, R.; Hamel, A.</p> <p>1992-08-01</p> <p>This paper is concerned with the study of microscopic mechanisms which control the cyclic deformation of pure aluminium and especially with the analysis of the Bauschinger effect which appears in aluminium single crystals deformed by cyclic straining. Fatigue tests are performed on Al single crystals with the crystal axis parallel to [ overline{1}23] at room temperature, at plastic shear strain amplitudes in the range from 10^{-4} to 3× 10^{-3}. Mechanical saturation is not obtained at any strain level. Instead, a hardening-softening-secondary hardening sequence is found. The magnitude of the Bauschinger effect as the difference between yield stresses in traction and in compression, changes all along the fatigue loop and during the fatigue test. The Bauschinger effect disappears at two points of the fatigue loop, one in the traction part, the other in the compression one. At these points, the Bauschinger effect is inverted. Dislocation arrangement evolutions with fatigue conditions can explain the cyclic behaviour of Al single crystals. An heterogeneous dislocation distribution can be observed in the cyclically strained metal : dislocation tangles, long dislocation walls and dislocation cell walls, separated by dislocation poor channels appear in the material as a function of the cycle number. The long range internal stress necessary to ensure the compatibility of deformation between the hard and soft regions controls the observed Bauschinger effect. Ce travail s'inscrit dans le cadre de l'étude des mécanismes microsocopiques intervenant lors de la déformation cyclique de l'aluminium pur et concerne en particulier l'analyse de l'effet Bauschinger apparaissant au cours de la solliciation cyclique des monocristaux. L'étude a été menée à température ambiante sur des monocristaux d'aluminium pur orientés pour un glissement simple (axe [ overline{1}23] ), à des amplitudes de déformation plastique comprise entre 10^{-4} et quelques 10^{-3}. Nous n'avons pas obtenu de véritable saturation mécanique. Nous sommes en présence d'une séquence durcissement-adoucissement-durcissement secondaire. L'amplitude de l'effet Bauschinger considéré comme la différence entre les limites élastiques en traction et en compression mesurées selon une procédure appropriée, évolue le long d'une boucle de fatigue, s'annule pour deux points particuliers l'un en traction l'autre en compression. De part et d'autre de ces points, le signe de l'effet Bauschinger est inversé. Les microstructures des états fatigués sont caractérisés par une répartition hétérogène des dislocations constituée d'amas, de murs ou des parois, suivant le degré de déformation cyclique, séparés par des zones à faible densité de dislocations. Les contraintes internes liées aux incompatibilités de déformation résultant de cette répartition hétérogène des dislocations sont à l'origine de l'effet Bauschinger observé dans les monocristaux. Ces contraintes et l'évolution de la quantité de cellules de dislocations avec la fatigue expliquent le durcissement secondaire.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14651597','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14651597"><span>The effect of sildenafil on oesophageal motor function in healthy subjects and patients with nutcracker oesophagus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, J I; Park, H; Kim, J H; Lee, S I; Conklin, J L</p> <p>2003-12-01</p> <p>Type 5 phosphodiesterase terminates the action of nitric oxide (NO) induced 3',5'-cyclic monophosphate (cGMP). Sildenafil inhibits this phosphodiesterase, increases cellular cGMP concentrations and enhances NO-induced smooth muscle relaxation. We investigated the effect of sildenafil on the oesophageal motor function of healthy subjects and patients with nutcracker oesophagus. Eight healthy volunteers and nine patients with nutcracker oesophagus participated in this study. The participants underwent oesophageal manometries on two separate days after either 20 mL of distilled water or 0.8 mg kg-1 sildenafil dissolved in 20 mL of water was infused into the stomach. Lower oesophageal sphincter (LOS) resting pressure, the duration of LOS relaxation and the amplitudes of oesophageal pressure waves were examined before, and 7.5, 15, 30 and 60 min after either placebo or sildenafil. In both healthy subjects and patients with nutcracker oesophagus, sildenafil decreased resting LOS pressure and the amplitude of peristaltic pressure waves at 3, 8 and 13 cm above LOS. Sildenafil also prolonged the duration of LOS relaxation. It had no effect on the velocity of peristalsis or the amplitude of peristaltic pressure waves 18 cm above LOS. Sildenafil may be considered as an alternative treatment in nutcracker oesophagus although there are several limitations to be overcome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4331351','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4331351"><span>Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tian, Ning; Xu, Hong-ping; Wang, Ping</p> <p>2014-01-01</p> <p>Retinal light responsiveness measured via electroretinography undergoes developmental modulation and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study is to determine whether the dopamine D2 receptor regulates the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild type mice and mice with a genetic deletion of the gene that encodes the dopamine D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that mutation of the dopamine D2 receptors preferentially increases the amplitude of the inner retinal light responses evoked by high intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, the a-wave, b-wave and oscillatory potentials, increase with age. Comparatively, mutation of the dopamine D2 receptors preferentially reduces the age-dependent increase of b-waves evoked by low intensity light. Light deprivation from birth reduces the amplitude of b-waves and completely diminishes the increased amplitude of oscillatory potentials. Taken together, these results demonstrate that the dopamine D2 receptor plays an important role in the activity-dependent functional development of the mouse retina. PMID:25393815</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18614557','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18614557"><span>Frequency and peak stretch magnitude affect alveolar epithelial permeability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cohen, T S; Cavanaugh, K J; Margulies, S S</p> <p>2008-10-01</p> <p>The present study measured stretch-induced changes in transepithelial permeability to uncharged tracers (1.5-5.5 A) using cultured monolayers of alveolar epithelial type-I like cells. Cultured alveolar epithelial cells were subjected to uniform cyclic (0, 0.25 and 1.0 Hz) biaxial stretch from 0% to 12, 25 or 37% change in surface area (DeltaSA) for 1 h. Significant changes in permeability of cell monolayers were observed when stretched from 0% to 37% DeltaSA at all frequencies, and from 0% to 25% DeltaSA only at high frequency (1 Hz), but not at all when stretched from 0% to 12% DeltaSA compared with unstretched controls. At stretch oscillation amplitudes of 25 and 37% DeltaSA, imposed at 1 Hz, tracer permeability increased compared with that at 0.25 Hz. Cells subjected to a single stretch cycle at 37% DeltaSA (0.25 Hz), to simulate a deep sigh, were not distinguishable from unstretched controls. Reducing stretch oscillation amplitude while maintaining a peak stretch of 37% DeltaSA (0.25 Hz) via the application of a simulated post-end-expiratory pressure did not protect barrier properties. In conclusion, peak stretch magnitude and stretch frequency were the primary determining factors for epithelial barrier dysfunction, as opposed to oscillation amplitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26417080','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26417080"><span>Orbital pacing of carbon fluxes by a ∼9-My eccentricity cycle during the Mesozoic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martinez, Mathieu; Dera, Guillaume</p> <p>2015-10-13</p> <p>Eccentricity, obliquity, and precession are cyclic parameters of the Earth's orbit whose climatic implications have been widely demonstrated on recent and short time intervals. Amplitude modulations of these parameters on million-year time scales induce "grand orbital cycles," but the behavior and the paleoenvironmental consequences of these cycles remain debated for the Mesozoic owing to the chaotic diffusion of the solar system in the past. Here, we test for these cycles from the Jurassic to the Early Cretaceous by analyzing new stable isotope datasets reflecting fluctuations in the carbon cycle and seawater temperatures. Our results document a prominent cyclicity of ∼9 My in the carbon cycle paced by changes in the seasonal dynamics of hydrological processes and long-term sea level fluctuations. These paleoenvironmental changes are linked to a great eccentricity cycle consistent with astronomical solutions. The orbital forcing signal was mainly amplified by cumulative sequestration of organic matter in the boreal wetlands under greenhouse conditions. Finally, we show that the ∼9-My cycle faded during the Pliensbachian, which could either reflect major paleoenvironmental disturbances or a chaotic transition affecting this cycle.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15635812','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15635812"><span>Modulation of the olfactory CNG channel by Ptdlns(3,4,5)P3.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhainazarov, A B; Spehr, M; Wetzel, C H; Hatt, H; Ache, B W</p> <p>2004-09-01</p> <p>Recent data suggest that the 3-phosphoinositides can modulate cyclic nucleotide signaling in rat olfactory receptor neurons (ORNs). Given the ability of diverse lipids to modulate ion channels, we asked whether phosphatidylinositol 3,4,5-trisphosphate (PIP3) can regulate the olfactory cyclic nucleotide-gated (CNG) channel as a possible mechanism for this modulation. We show that applying PIP3 to the intracellular side of inside-out patches from rat ORNs inhibits activation of the olfactory CNG channel by cAMP. The effect of PIP3 is immediate and partially reversible, and reflects an increase in the EC50 of cAMP, not a reduction in the single-channel current amplitude. The effect of PIP3 is significantly stronger than that of PIP2; other phospholipids tested have no appreciable effect on channel activity. PIP3 similarly inhibits the recombinant heteromeric (A2/A4) and homomeric (A2) olfactory CNG channel expressed in HEK293 cells, suggesting that PIP3 acts directly on the channel. These findings indicate that 3-phosphoinositides can be functionally important regulators of CNG channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MTDM...20..299S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MTDM...20..299S"><span>Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard</p> <p>2016-08-01</p> <p>Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NewA...38....1W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NewA...38....1W"><span>Multifractal properties of solar filaments and sunspots numbers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Nan; Li, Qi-Xiu; Zou, Peng</p> <p>2015-07-01</p> <p>We analyze multifractal properties of low (LLSFNs; < 50 °), high (HLSFNs; ⩾ 50 °), full-disk (FDSFNs; 0 ° ˜ 90 °) solar filament numbers (SFNs) and international sunspot numbers (ISNs) by estimating characteristic parameters (α0, Δα , spectrum skewness) of f (α) singularity spectrum. We find that the SFNs and ISNs have multifractal nature. The obtained α0 and Δα indicate that long-term behaviour of the solar filaments is more complex than that of the sunspots and the high-latitude filaments is the most complex in long-term behaviour. The spectrum skewnesses manifest that the ISNs display well symmetrical distribution in singularity strengths, whereas the SFNs are dominated by low singularity strengths, which means that the long-term behaviour of sunspots has homogenous structures and the filaments display averagely small fluctuations in amplitude. To detect the origin of their multifractality, we decompose the raw data of ISNs and SFNs: smoothed data represent ˜11-year cyclic activities and detrended data represent accidental activities. We also calculate their f (α) spectra, respectively. We find that the ˜11-year cyclic activities of filaments and sunspots tend to be a monofractal and display a bit predominance of low singularity strengths. Their accidental activities have the most complex behaviour than the raw and smoothed data. The accidental activities are dominated by high singularity strengths showing averagely large fluctuations in amplitude. Furthermore, multifractal properties from α0 and Δα of the accidental activities have the same features as that of raw data. We think that the ˜11-year periodic activity determines global fluctuations, while the accidental activities rule local complexity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1329656','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1329656"><span>Poisson process stimulation of an excitable membrane cable model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Goldfinger, M D</p> <p>1986-01-01</p> <p>The convergence of multiple inputs within a single-neuronal substrate is a common design feature of both peripheral and central nervous systems. Typically, the result of such convergence impinges upon an intracellularly contiguous axon, where it is encoded into a train of action potentials. The simplest representation of the result of convergence of multiple inputs is a Poisson process; a general representation of axonal excitability is the Hodgkin-Huxley/cable theory formalism. The present work addressed multiple input convergence upon an axon by applying Poisson process stimulation to the Hodgkin-Huxley axonal cable. The results showed that both absolute and relative refractory periods yielded in the axonal output a random but non-Poisson process. While smaller amplitude stimuli elicited a type of short-interval conditioning, larger amplitude stimuli elicited impulse trains approaching Poisson criteria except for the effects of refractoriness. These results were obtained for stimulus trains consisting of pulses of constant amplitude and constant or variable durations. By contrast, with or without stimulus pulse shape variability, the post-impulse conditional probability for impulse initiation in the steady-state was a Poisson-like process. For stimulus variability consisting of randomly smaller amplitudes or randomly longer durations, mean impulse frequency was attenuated or potentiated, respectively. Limitations and implications of these computations are discussed. PMID:3730505</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.467.3963K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.467.3963K"><span>EC03089-6421: a new, very rapidly pulsating sdO star</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kilkenny, D.; Worters, H. L.; Østensen, R. H.</p> <p>2017-06-01</p> <p>EC 03089-6421, classified sdO in the Edinburgh-Cape (EC) blue object survey, is shown to have unusually rapid pulsations with a dominant frequency near 32 mHz (amplitude ˜0.02 mag; period 31.1 s) - which appears to be strongly variable in amplitude on time-scales of hours and days - and a generally weaker frequency near 29 mHz (amplitude ˜0.004 mag; period 34.2 s), which is also variable in amplitude. This star varies at twice the frequency of any known hot subdwarf pulsator. Although the low-resolution EC spectrogram appears very similar to those of DAO stars, our analysis derives Teff = 40 200 ± 1600 K; log g = 6.25 ± 0.23 and log N(He)/N(H) = -1.63 ± 0.55; more recent spectrograms give Teff = 37 400 ± 1000 K; log g = 5.70 ± 0.13 and log N(He)/N(H) = -2.02 ± 0.17, both of which indicate that the gravity is too low for a white dwarf star, although the low temperature derived from the Balmer lines is at odds with the absence of neutral Helium and the strength of He II 4686. It is possible that EC 03089-6421 is a field analogue of the ω Cen sdO variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MNRAS.439.2618M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MNRAS.439.2618M"><span>VISTA variables in the Sagittarius dwarf spheroidal galaxy: pulsation-versus dust-driven winds on the giant branches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McDonald, I.; Zijlstra, A. A.; Sloan, G. C.; Kerins, E.; Lagadec, E.; Minniti, D.</p> <p>2014-04-01</p> <p>Variability is examined in over 2.6 million stars covering 11 square degrees of the core of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) from Visible and Infrared Survey Telescope for Astronomy Z-band observations. Generally, pulsation on the Sgr dSph giant branches appears to be excited by the internal κ mechanism. Pulsation amplitudes appear identical between red and asymptotic (red giant branch/asymptotic giant branch) giant stars, and between unreddened carbon and oxygen-rich stars at the same luminosity. The lack of correlation between infrared excess and variability among oxygen-rich stars indicates that pulsations do not contribute significantly to wind driving in oxygen-rich stars in the Sgr dSph, though the low amplitudes of these stars mean this may not apply elsewhere. The dust-enshrouded carbon stars have the highest amplitudes of the stars we observe. Only in these stars does an external κ-mechanism-driven pulsation seem likely, caused by variations in their more opaque carbon-rich molecules or dust. This may allow pulsation driving of winds to be effective in carbon stars. Variability can be simplified to a power law (A ∝ L/T2), as in other systems. In total, we identify 3026 variable stars (with rms variability of δZ ≳ 0.015 mag), of which 176 are long-period variables associable with the upper giant branches of the Sgr dSph. We also identify 324 candidate RR Lyrae variables in the Sgr dSph and 340 in the outer Galactic bulge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=333052','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=333052"><span>Direct Inhibitory Effect of Hypercalcemia on Renal Actions of Parathyroid Hormone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Beck, Nama; Singh, Harbans; Reed, Sarah W.; Davis, Bernard B.</p> <p>1974-01-01</p> <p>The effects of calcium on the renal actions of parathyroid hormone (PTH) were studied in vivo and in vitro. In parathyroidectomized rats, variable levels of blood calcium concentration were induced by intravenous infusion of calcium. The renal responses to the injected PTH, i.e. phosphate and cyclic AMP excretion, were compared in these animals. After PTH injection, the increases of both phosphate and cyclic AMP excretion were less in the calcium-infused animals than in the control group without calcium infusion. There was an inverse correlation between the renal responses to PTH and plasma calcium concentration of 4.2-13.5 mg/100 ml. But calcium had no effect on phosphate excretion induced by infusion of dibutyryl cyclic AMP. In the in vitro experiments, the increase of cyclic AMP concentration in response to PTH was less in renal cortical slices taken from the calcium-infused animals than in ones from the control group without calcium infusion. Calcium also inhibited the activation of renal cortical adenylate cyclase in response to PTH, but calcium had no effect on phosphodiesterase. The data indicate that calcium directly inhibits renal actions of PTH both in vivo and in vitro. Such inhibitory mechanism is probably at or before the step of PTH-dependent cyclic AMP generation in the kidney. PMID:4359938</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26904659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26904659"><span>Determining the Effects of High Intensity Ultrasound on the Reduction of Microbes in Milk and Orange Juice Using Response Surface Methodology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ganesan, Balasubramanian; Martini, Silvana; Solorio, Jonathan; Walsh, Marie K</p> <p>2015-01-01</p> <p>This study investigated the effects of high intensity ultrasound (temperature, amplitude, and time) on the inactivation of indigenous bacteria in pasteurized milk, Bacillus atrophaeus spores inoculated into sterile milk, and Saccharomyces cerevisiae inoculated into sterile orange juice using response surface methodology. The variables investigated were sonication temperature (range from 0 to 84°C), amplitude (range from 0 to 216 μm), and time (range from 0.17 to 5 min) on the response, log microbe reduction. Data were analyzed by statistical analysis system software and three models were developed, each for bacteria, spore, and yeast reduction. Regression analysis identified sonication temperature and amplitude to be significant variables on microbe reduction. Optimization of the inactivation of microbes was found to be at 84.8°C, 216 μm amplitude, and 5.8 min. In addition, the predicted log reductions of microbes at common processing conditions (72°C for 20 sec) using 216 μm amplitude were computed. The experimental responses for bacteria, spore, and yeast reductions fell within the predicted levels, confirming the accuracy of the models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4745508','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4745508"><span>Determining the Effects of High Intensity Ultrasound on the Reduction of Microbes in Milk and Orange Juice Using Response Surface Methodology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Martini, Silvana; Solorio, Jonathan; Walsh, Marie K.</p> <p>2015-01-01</p> <p>This study investigated the effects of high intensity ultrasound (temperature, amplitude, and time) on the inactivation of indigenous bacteria in pasteurized milk, Bacillus atrophaeus spores inoculated into sterile milk, and Saccharomyces cerevisiae inoculated into sterile orange juice using response surface methodology. The variables investigated were sonication temperature (range from 0 to 84°C), amplitude (range from 0 to 216 μm), and time (range from 0.17 to 5 min) on the response, log microbe reduction. Data were analyzed by statistical analysis system software and three models were developed, each for bacteria, spore, and yeast reduction. Regression analysis identified sonication temperature and amplitude to be significant variables on microbe reduction. Optimization of the inactivation of microbes was found to be at 84.8°C, 216 μm amplitude, and 5.8 min. In addition, the predicted log reductions of microbes at common processing conditions (72°C for 20 sec) using 216 μm amplitude were computed. The experimental responses for bacteria, spore, and yeast reductions fell within the predicted levels, confirming the accuracy of the models. PMID:26904659</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RaSc...52..132S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RaSc...52..132S"><span>One day prediction of nighttime VLF amplitudes using nonlinear autoregression and neural network modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santosa, H.; Hobara, Y.</p> <p>2017-01-01</p> <p>The electric field amplitude of very low frequency (VLF) transmitter from Hawaii (NPM) has been continuously recorded at Chofu (CHF), Tokyo, Japan. The VLF amplitude variability indicates lower ionospheric perturbation in the D region (60-90 km altitude range) around the NPM-CHF propagation path. We carried out the prediction of daily nighttime mean VLF amplitude by using Nonlinear Autoregressive with Exogenous Input Neural Network (NARX NN). The NARX NN model, which was built based on the daily input variables of various physical parameters such as stratospheric temperature, total column ozone, cosmic rays, Dst, and Kp indices possess good accuracy during the model building. The fitted model was constructed within the training period from 1 January 2011 to 4 February 2013 by using three algorithms, namely, Bayesian Neural Network (BRANN), Levenberg Marquardt Neural Network (LMANN), and Scaled Conjugate Gradient (SCG). The LMANN has the largest Pearson correlation coefficient (r) of 0.94 and smallest root-mean-square error (RMSE) of 1.19 dB. The constructed models by using LMANN were applied to predict the VLF amplitude from 5 February 2013 to 31 December 2013. As a result the one step (1 day) ahead predicted nighttime VLF amplitude has the r of 0.93 and RMSE of 2.25 dB. We conclude that the model built according to the proposed methodology provides good predictions of the electric field amplitude of VLF waves for NPM-CHF (midlatitude) propagation path.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720035862&hterms=EEG&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEEG','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720035862&hterms=EEG&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DEEG"><span>Individual variation in circadian rhythms of sleep, EEG, temperature, and activity among monkeys - Implications for regulatory mechanisms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crowley, T. J.; Halberg, F.; Kripke, D. F.; Pegram, G. V.</p> <p>1971-01-01</p> <p>Investigation of circadian rhythms in a number of variables related to sleep, EEG, temperature, and motor activity in rhesus monkeys on an LD 12:12 schedule. Circadian rhythms were found to appear in each of 15 variables investigated. Statistical procedures assessed the variables for evidence of common regulation in these aspects of their circadian rhythms: acrophase (timing), amplitude (extent of change), and level (24-hr mean value). Patterns appearing in the data suggested that the circadian rhythms of certain variables are regulated in common. The circadian modulation of activity in the beta and sigma frequency bands of the EEG was correlated with statistical significance in acrophase, level, and amplitude. The delta frequency band appeared to be under circadian rhythm regulation distinct from that of the other bands. The circadian rhythm of REM stage sleep was like that of beta activity in level and amplitude. The data indicate that REM stage may share some common regulation of circadian timing with both stage 3-4 sleep and with temperature. Generally, however, the circadian rhythm of temperature appeared to bear little relation to the circadian rhythms of motor activity, EEG, or sleep.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814939Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814939Z"><span>Characterization of 67P/Churyumov-Gerasimenko interior from CONSERT signal amplitude variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zine, Sonia; Kofman, Wlodek; Herique, Alain; Hahnel, Ronny; Plettemeier, Dirk; Rogez, Yves; Statz, Christoph; Ciarletti, Valerie</p> <p>2016-04-01</p> <p>The bistatic radar CONSERT on Rosetta and Philae operated for 9 hours during Philae's First Science Sequence (FSS), on 12 and 13 November 2014. A strong signal was detected for 30 min at the beginning of the sequence, and for 80 min at the end. The signal propagated through the smaller lobe of the nucleus, with a length of propagation ranging between 200 and 800m, and a rapid decrease of its amplitude. First results have been published, based on the study of the signal propagation delay and the propagation path (Kofman et al., Science 2015; Ciarletti et al, A&A, 2015). This work focuses on the study of the signal amplitude, which shows variability throughout the acquisition sequence. The cause of this variability is twofold: (1) losses within the comet interior; (2) depolarization due to both antennas' varying relative attitudes. We simulate the depolarization by taking into account Rosetta's position and attitude on its orbit and by making assumptions on Philae's position, attitude, and close environment on the comet (dielectric properties). Then we assess the variability due to losses within the medium, and infer a characterization of the composition of the comet interior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27577980','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27577980"><span>Radiolabeling of a cyclic RGD (cyclo Arg-Gly-Asp-d-Tyr-Lys) peptide using sodium hypochlorite as an oxidizing agent.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Doll, Stephanie; Woolum, Karen; Kumar, Krishan</p> <p>2016-09-01</p> <p>A simple and rapid nonradioactive iodide labeling/radiolabeling method for peptides, using an inexpensive oxidizing agent such as sodium hypochlorite and a cyclic peptide, cRGDyK (cyclo Arg-Gly-Asp-d-Tyr-Lys), was developed in this work. Labeling reaction was optimized by conducting experiments under variable ratios of the reagents, the reaction times, and the pH. The study demonstrated that radiolabeling of the cyclic peptide was fast and pH independent. Monoiodinated and di-iodinated cRGDyK were formed under all conditions and varied with the ratio of the reagents and the reaction time. Total percent of the iodinated cRGDyK (monoiodinated and di-iodinated cRGDyK) varied between 44 and 100 depending on the reaction conditions. Excess cyclic peptide over equal molar ratio of sodium iodide and sodium hypochlorite yielded in predominant amounts of monoiodinated cRGDyK, ie, >60% under 2:1:1 ratio and ~88% under 5:1:1 ratio of cRGDyK:sodium iodide:sodium hypochlorite. Copyright © 2016 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940002832&hterms=System+Equations+Structural&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DSystem%2BEquations%2BStructural','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940002832&hterms=System+Equations+Structural&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DSystem%2BEquations%2BStructural"><span>FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newman, J. C.</p> <p>1994-01-01</p> <p>Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied loads may be either tensile or compressive. Several standardized aircraft flight-load histories, such as TWIST, Mini-TWIST, FALSTAFF, Inverted FALSTAFF, Felix and Gaussian, are included as options. FASTRAN II also includes two other methods that will help the user input spectrum load histories. The two methods are: (1) a list of stress points, and (2) a flight-by-flight history of stress points. Examples are provided in the user manual. Developed as a research program, FASTRAN II has successfully predicted crack growth in many metallic materials under various aircraft spectrum loading. A computer program DKEFF which is a part of the FASTRAN II package was also developed to analyze crack growth rate data from laboratory specimens to obtain the effective stress-intensity factor against crack growth rate relations used in FASTRAN II. FASTRAN II is written in standard FORTRAN 77. It has been successfully compiled and implemented on Sun4 series computers running SunOS and on IBM PC compatibles running MS-DOS using the Lahey F77L FORTRAN compiler. Sample input and output data are included with the FASTRAN II package. The UNIX version requires 660K of RAM for execution. The standard distribution medium for the UNIX version (LAR-14865) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the MS-DOS version (LAR-14944) is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The program was developed in 1984 and revised in 1992. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a trademark of International Business Machines Corp. MS-DOS is a trademark of Microsoft, Inc. F77L is a trademark of the Lahey Computer Systems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories. PKWARE and PKUNZIP are trademarks of PKWare, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940002843&hterms=System+Equations+Structural&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DSystem%2BEquations%2BStructural','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940002843&hterms=System+Equations+Structural&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DSystem%2BEquations%2BStructural"><span>FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newman, J. C.</p> <p>1994-01-01</p> <p>Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied loads may be either tensile or compressive. Several standardized aircraft flight-load histories, such as TWIST, Mini-TWIST, FALSTAFF, Inverted FALSTAFF, Felix and Gaussian, are included as options. FASTRAN II also includes two other methods that will help the user input spectrum load histories. The two methods are: (1) a list of stress points, and (2) a flight-by-flight history of stress points. Examples are provided in the user manual. Developed as a research program, FASTRAN II has successfully predicted crack growth in many metallic materials under various aircraft spectrum loading. A computer program DKEFF which is a part of the FASTRAN II package was also developed to analyze crack growth rate data from laboratory specimens to obtain the effective stress-intensity factor against crack growth rate relations used in FASTRAN II. FASTRAN II is written in standard FORTRAN 77. It has been successfully compiled and implemented on Sun4 series computers running SunOS and on IBM PC compatibles running MS-DOS using the Lahey F77L FORTRAN compiler. Sample input and output data are included with the FASTRAN II package. The UNIX version requires 660K of RAM for execution. The standard distribution medium for the UNIX version (LAR-14865) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The standard distribution medium for the MS-DOS version (LAR-14944) is a 5.25 inch 360K MS-DOS format diskette. The contents of the diskette are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The program was developed in 1984 and revised in 1992. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a trademark of International Business Machines Corp. MS-DOS is a trademark of Microsoft, Inc. F77L is a trademark of the Lahey Computer Systems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories. PKWARE and PKUNZIP are trademarks of PKWare, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1016389','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1016389"><span>Effects of constant and cyclical thermal regimes on growth and feeding of juvenile cutthroat trout of variable sizes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Meeuwig, M.H.; Dunham, J.B.; Hayes, J.P.; Vinyard, G.L.</p> <p>2004-01-01</p> <p>The effects of constant (12, 18, and 24 A?C) and cyclical (daily variation of 15a??21 and 12a??24 A?C) thermal regimes on the growth and feeding of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) of variable sizes were examined. Higher constant temperatures (i.e., 24 A?C) and more variable daily temperatures (i.e., 12a??24 A?C daily cycle) negatively affected growth rates. As fish mass increased (from 0.24 to 15.52 g) the effects of different thermal regimes on mass growth became more pronounced. Following 14 days exposure to the thermal regimes, feeding rates of individual fish were assessed during acute exposure (40 min) to test temperatures of 12, 18, and 24 A?C. Feeding rate was depressed during acute exposure to 24 A?C, but was not significantly affected by the preceding thermal regime. Our results indicate that even brief daily exposure to higher temperatures (e.g., 24 A?C) can have considerable sublethal effects on cutthroat trout, and that fish size should be considered when examining the effects of temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5872915','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5872915"><span>Bond–Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao</p> <p>2018-01-01</p> <p>The objective of this paper was to explore the bond–slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond–slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond–slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond–slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond–slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond–slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results. PMID:29495383</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29495383','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29495383"><span>Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao</p> <p>2018-02-26</p> <p>The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...515265G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...515265G"><span>Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar</p> <p>2015-10-01</p> <p>Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26482921','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26482921"><span>Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gupta, Ram K; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar</p> <p>2015-10-20</p> <p>Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4611180','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4611180"><span>Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar</p> <p>2015-01-01</p> <p>Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures. PMID:26482921</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=business+AND+cycle&pg=4&id=ED518109','ERIC'); return false;" href="https://eric.ed.gov/?q=business+AND+cycle&pg=4&id=ED518109"><span>An Analysis of Economic Variables Affecting Enrollments in the South Carolina Technical College System and Virginia Community College System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rivers, Hope Epps</p> <p>2010-01-01</p> <p>The idea that high unemployment rates give rise to higher enrollments for community colleges is widely accepted (Sundberg, 1998). However, according to Betts and McFarland (1995), not much is known empirically about the role that economic factors play in determining two-year college enrollment. Only a few states have included cyclical variables in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......204S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......204S"><span>Determination of sound types and source levels of airborne vocalizations by California sea lions, Zalophus californianus, in rehabilitation at the Marine Mammal Center in Sausalito, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwalm, Afton Leigh</p> <p></p> <p>California sea lions (Zalophus californianus) are a highly popular and easily recognized marine mammal in zoos, aquariums, circuses, and often seen by ocean visitors. They are highly vocal and gregarious on land. Surprisingly, little research has been performed on the vocalization types, source levels, acoustic properties, and functions of airborne sounds used by California sea lions. This research on airborne vocalizations of California sea lions will advance the understanding of this aspect of California sea lions communication, as well as examine the relationship between health condition and acoustic behavior. Using a PhillipsRTM digital recorder with attached microphone and a calibrated RadioShackRTM sound pressure level meter, acoustical data were recorded opportunistically on California sea lions during rehabilitation at The Marine Mammal Center in Sausalito, CA. Vocalizations were analyzed using frequency, time, and amplitude variables with Raven Pro: Interactive Sound Analysis Software Version 1.4 (The Cornell Lab of Ornithology, Ithaca, NY). Five frequency, three time, and four amplitude variables were analyzed for each vocalization. Differences in frequency, time, and amplitude variables were not significant by sex. The older California sea lion group produced vocalizations that were significantly lower in four frequency variables, significantly longer in two time variables, significantly higher in calibrated maximum and minimum amplitude variables, and significantly lower in frequency at maximum and minimum amplitude compared with pups. Six call types were identified: bark, goat, growl/grumble, bark/grumble, bark/growl, and grumble/moan. The growl/grumble call was higher in dominant beginning, ending, and minimum frequency, as well as in the frequency at maximum amplitude compared with the bark, goat, bark/grumble calls in the first versus last vocalization sample. The goat call was significantly higher in first harmonic interval than any other call type in the all vocalizations sample. The "fate" of a sea lion was categorized as: released, placed at another facility, remained at TMMC, euthanized, or died. To determine if acoustic features could be used to assess the recovery of a pup, the acoustic features of a pup's first recorded vocalization were compared with the frequency, time, and amplitude of the last vocalization recorded (i.e., before it was released or placed at another facility). In addition, all first vocalizations were pooled and all last vocalizations were pooled for acoustic analysis, regardless of their fate. Released pups had shorter duration calls, a greater first harmonic interval, and a higher dominant maximum frequency than either pups that died or pups remaining at TMMC. Released pups had a higher frequency at maximum and minimum amplitude compared to dead and remaining pups. Pups that died had significantly lower dominant ending frequency and a lower dominant minimum frequency than released or remaining pups. These results were supported by other studies on different species of otariids, phocids, and cetaceans. The preliminary analyses presented in this thesis holds promise that with additional data acoustic features of California sea lion airborne vocalizations could indicate sex, age, and possibly health condition or the potential for release.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1296663-cloud-structure-nearest-brown-dwarfs-ii-high-amplitude-variability-luhman-out-feh-feature','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1296663-cloud-structure-nearest-brown-dwarfs-ii-high-amplitude-variability-luhman-out-feh-feature"><span>Cloud structure of the nearest brown dwarfs. II: High-amplitude variability for Luhman 16 A and B in and out of the 0.99 μm FeH feature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Buenzli, Esther; Marley, Mark S.; Apai, Daniel; ...</p> <p>2015-10-20</p> <p>The re-emergence of the 0.99 μm FeH feature in brown dwarfs of early- to mid-T spectral type has been suggested as evidence for cloud disruption where flux from deep, hot regions below the Fe cloud deck can emerge. The same mechanism could account for color changes at the L/T transition and photometric variability. We present the first observations of spectroscopic variability of brown dwarfs covering the 0.99 μm FeH feature. We observed the spatially resolved very nearby brown dwarf binary WISE J104915.57–531906.1 (Luhman 16AB), a late-L and early-T dwarf, with Hubble Space Telescope/WFC3 in the G102 grism at 0.8–1.15 μm.more » We find significant variability at all wavelengths for both brown dwarfs, with peak-to-valley amplitudes of 9.3% for Luhman 16B and 4.5% for Luhman 16A. This represents the first unambiguous detection of variability in Luhman 16A. We estimate a rotational period between 4.5 and 5.5 hr, very similar to Luhman 16B. Variability in both components complicates the interpretation of spatially unresolved observations. The probability for finding large amplitude variability in any two brown dwarfs is less than 10%. Our finding may suggest that a common but yet unknown feature of the binary is important for the occurrence of variability. For both objects, the amplitude is nearly constant at all wavelengths except in the deep K i feature below 0.84 μm. No variations are seen across the 0.99 μm FeH feature. The observations lend strong further support to cloud height variations rather than holes in the silicate clouds, but cannot fully rule out holes in the iron clouds. Here, we re-evaluate the diagnostic potential of the FeH feature as a tracer of cloud patchiness.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27936619','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27936619"><span>Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure-Property Relationships.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Longo, Julie M; Sanford, Maria J; Coates, Geoffrey W</p> <p>2016-12-28</p> <p>Polyesters synthesized through the alternating copolymerization of epoxides and cyclic anhydrides compose a growing class of polymers that exhibit an impressive array of chemical and physical properties. Because they are synthesized through the chain-growth polymerization of two variable monomers, their syntheses can be controlled by discrete metal complexes, and the resulting materials vary widely in their functionality and physical properties. This polymer-focused review gives a perspective on the current state of the field of epoxide/anhydride copolymerization mediated by discrete catalysts and the relationships between the structures and properties of these polyesters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1082011-analysis-cyclic-variability-heat-release-high-egr-gdi-engine-operation-observations-implications-effective-control','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1082011-analysis-cyclic-variability-heat-release-high-egr-gdi-engine-operation-observations-implications-effective-control"><span>Analysis of Cyclic Variability of Heat Release for High-EGR GDI Engine Operation with Observations on Implications for Effective Control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kaul, Brian C; Wagner, Robert M; Green Jr, Johney Boyd</p> <p>2013-01-01</p> <p>Operation of spark-ignition (SI) engines with high levels of charge dilution through exhaust gas recirculation (EGR) achieves significant engine efficiency gains while maintaining stoichiometric operation for compatibility with three-way catalysts. Dilution levels, however, are limited by cyclic variability-including significant numbers of misfires-that becomes more pronounced with increasing dilution. This variability has been shown to have both stochastic and deterministic components. Stochastic effects include turbulence, mixing variations, and the like, while the deterministic effect is primarily due to the nonlinear dependence of flame propagation rates and ignition characteristics on the charge composition, which is influenced by the composition of residual gasesmore » from prior cycles. The presence of determinism implies that an increased understanding the dynamics of such systems could lead to effective control approaches that allow operation near the edge of stability, effectively extending the dilution limit. This nonlinear dependence has been characterized previously for homogeneous charge, port fuel-injected (PFI) SI engines operating fuel-lean as well as with inert diluents such as bottled N2 gas. In this paper, cyclic dispersion in a modern boosted gasoline direct injection (GDI) engine using a cooled external EGR loop is examined, and the potential for improvement with effective control is evaluated through the use of symbol sequence statistics and other techniques from chaos theory. Observations related to the potential implications of these results for control approaches that could effectively enable engine operation at the edge of combustion stability are noted.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26113190','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26113190"><span>A simple, physiologically-based model of sea turtle remigration intervals and nesting population dynamics: Effects of temperature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Neeman, Noga; Spotila, James R; O'Connor, Michael P</p> <p>2015-09-07</p> <p>Variation in the yearly number of sea turtles nesting at rookeries can interfere with population estimates and obscure real population dynamics. Previous theoretical models suggested that this variation in nesting numbers may be driven by changes in resources at the foraging grounds. We developed a physiologically-based model that uses temperatures at foraging sites to predict foraging conditions, resource accumulation, remigration probabilities, and, ultimately, nesting numbers for a stable population of sea turtles. We used this model to explore several scenarios of temperature variation at the foraging grounds, including one-year perturbations and cyclical temperature oscillations. We found that thermally driven resource variation can indeed synchronize nesting in groups of turtles, creating cohorts, but that these cohorts tend to break down over 5-10 years unless regenerated by environmental conditions. Cohorts were broken down faster at lower temperatures. One-year perturbations of low temperature had a synchronizing effect on nesting the following year, while high temperature perturbations tended to delay nesting in a less synchronized way. Cyclical temperatures lead to cyclical responses both in nesting numbers and remigration intervals, with the amplitude and lag of the response depending on the duration of the cycle. Overall, model behavior is consistent with observations at nesting beaches. Future work should focus on refining the model to fit particular nesting populations and testing further whether or not it may be used to predict observed nesting numbers and remigration intervals. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JBO.....3..129M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JBO.....3..129M"><span>Contrast features of breast cancer in frequency-domain laser scanning mammography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moesta, K. Thomas; Fantini, Sergio; Jess, Helge; Totkas, Susan; Franceschini, Maria-Angela; Kaschke, Michael; Schlag, Peter M.</p> <p>1998-04-01</p> <p>Frequency-domain optical mammography has been advocated to improve contrast and thus cancer detectability in breast transillumination. To the best of our knowledge, this report provides the first systematic clinical results of a frequency-domain laser scanning mammograph (FLM). The instrument provides monochromatic light at 690 and 810 nm, whose intensity is modulated at 110.0008 MHz, respectively. The breast is scanned by stepwise positioning of source and detector, and amplitude and phase for both wavelengths are measured by a photomultiplier tube using heterodyne detection. Images are formed representing amplitude or phase data on linear gray scales. Furthermore, various algorithms carrying on more than one signal were essayed. Twenty visible cancers out of 25 cancers in the first 59 investigations were analyzed for their quantitative contrast with respect to the whole breast or to defined reference areas. Contrast definitions refer to the signal itself, to the signal noise, or were based on nonparametric comparison. The amplitude signal provides better contrast than the phase signal. Ratio images between red and IR amplitudes gave variable results; in some cases the tumor contrast was canceled. The algorithms to determine (mu) a and (mu) sPRM from amplitude and phase data did not significantly improve upon objective contrast. The N algorithm, using the phase signal to flatten the amplitude signal did significantly improve upon contrast according to contrast definitions 1 and 2, however, did not improve upon nonparametric contrast. Thus, with the current instrumentation, the phase signal is helpful to correct for the complex and variable geometry of the breast. However, an independent informational content for tumor differentiation could not be determined. The flat field algorithm did greatly enhance optical contrast in comparison with amplitude or amplitude ratio images. Further evaluation of FLM will have to be based on the N-algorithm images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25864052','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25864052"><span>Exploring the characteristics and dynamics of Ontario dairy herds experiencing increases in bulk milk somatic cell count during the summer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shock, D A; LeBlanc, S J; Leslie, K E; Hand, K; Godkin, M A; Coe, J B; Kelton, D F</p> <p>2015-06-01</p> <p>Regionally aggregated bulk milk somatic cell count (BMSCC) data from around the world shows a repeatable cyclicity, with the highest levels experienced during warm, humid seasons. No studies have evaluated this seasonal phenomenon at the herd level. The objectives of this study were to define summer seasonality in BMSCC on an individual herd basis, and subsequently to describe the characteristics and dynamics of herds with increased BMSCC in the summer. The data used for this analysis were from all dairy farms in Ontario, Canada, between January 2000 and December 2011 (n≈4,000 to 6,000 herds/yr). Bulk milk data were obtained from the milk marketing board and consisted of bulk milk production, components (fat, protein, lactose, other solids), and quality (BMSCC, bacterial count, inhibitor presence, freezing point), total milk quota of the farm, and milk quota and incentive fill percentage. A time-series linear mixed model, with random slopes and intercepts, was constructed using sine and cosine terms as predictors to describe seasonality, with herd as a random effect. For each herd, seasonality was described with reference to 1 cosine function of variable amplitude and phase shift. The predicted months of maximal and minimal BMSCC were then calculated. Herds were assigned as low, medium, and high summer increase (LSI, MSI, and HSI, respectively) based on percentiles of amplitude in BMSCC change for each of the 4 seasons. Using these seasonality classifications, 2 transitional repeated measures logistic regression models were built to assess the characteristics of MSI and HSI herds, using LSI herds as controls. Based on the analyses performed, a history of summer BMSCC increases increased the odds of experiencing a subsequent increase. As herd size decreased, the odds of experiencing HSI to MSI in BMSCC increased. Herds with more variability in daily BMSCC were at higher odds of experiencing MSI and HSI in BMSCC, as were herds with lower annual mean BMSCC. Finally, a negative association was noted between filling herd production targets and experiencing MSI to HSI in BMSCC. These findings provide farm advisors direction for predicting herds likely to experience increases in SCC over the summer, allowing them to proactively focus udder health prevention strategies before the high-risk summer period. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OEng....5...45M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OEng....5...45M"><span>Structural and mechanical defects of materials of offshore and onshore main gas pipelines after long-term operation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maruschak, Pavlo; Panin, Sergey; Danyliuk, Iryna; Poberezhnyi, Lyubomyr; Pyrig, Taras; Bishchak, Roman; Vlasov, Ilya</p> <p>2015-10-01</p> <p>The study has established the main regularities of a fatigue failure of offshore gas steel pipes installed using S-lay and J-lay methods.We have numerically analyzed the influence of preliminary deformation on the fatigue life of 09Mn2Si steel at different amplitudes of cyclic loading. The results have revealed the regularities of formation and development of a fatigue crack in 17Mn1Si steel after 40 years of underground operation. The quantitative analysis describes the regularities of occurrence and growth of fatigue cracks in the presence of a stress concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160010143','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160010143"><span>Fatigue Life of Postbuckled Structures with Indentation Damages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davila, Carlos G.; Bisagni, Chiara</p> <p>2016-01-01</p> <p>The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.2501A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.2501A"><span>Short time-scale optical variability properties of the largest AGN sample observed with Kepler/K2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aranzana, E.; Körding, E.; Uttley, P.; Scaringi, S.; Bloemen, S.</p> <p>2018-05-01</p> <p>We present the first short time-scale (˜hours to days) optical variability study of a large sample of active galactic nuclei (AGNs) observed with the Kepler/K2 mission. The sample contains 252 AGN observed over four campaigns with ˜30 min cadence selected from the Million Quasar Catalogue with R magnitude <19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of our sample. A variety of power-law slopes were found indicating that there is not a universal slope for all AGNs. We find that the rest-frame amplitude variability in the frequency range of 6 × 10-6-10-4 Hz varies from 1to10 per cent with an average of 1.7 per cent. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift. We attribute this effect to the known `bluer when brighter' variability of quasars combined with the fixed bandpass of Kepler data. This study also enables us to distinguish between Seyferts and blazars and confirm AGN candidates. For our study, we have compared results obtained from light curves extracted using different aperture sizes and with and without detrending. We find that limited detrending of the optimal photometric precision light curve is the best approach, although some systematic effects still remain present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H41J1595B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H41J1595B"><span>Measurements of soil, surface water, and groundwater CO2 concentration variability within Earth's critical zone: low-cost, long-term, high-temporal resolution monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blackstock, J. M.; Covington, M. D.; Williams, S. G. W.; Myre, J. M.; Rodriguez, J.</p> <p>2017-12-01</p> <p>Variability in CO2 fluxes within Earth's Critical zone occurs over a wide range of timescales. Resolving this and its drivers requires high-temporal resolution monitoring of CO2 both in the soil and aquatic environments. High-cost (> 1,000 USD) gas analyzers and data loggers present cost-barriers for investigations with limited budgets, particularly if high spatial resolution is desired. To overcome high-costs, we developed an Arduino based CO2 measuring platform (i.e. gas analyzer and data logger). The platform was deployed at multiple sites within the Critical Zone overlying the Springfield Plateau aquifer in Northwest Arkansas, USA. The CO2 gas analyzer used in this study was a relatively low-cost SenseAir K30. The analyzer's optical housing was covered by a PTFE semi-permeable membrane allowing for gas exchange between the analyzer and environment. Total approximate cost of the monitoring platform was 200 USD (2% detection limit) to 300 USD (10% detection limit) depending on the K30 model used. For testing purposes, we deployed the Arduino based platform alongside a commercial monitoring platform. CO2 concentration time series were nearly identical. Notably, CO2 cycles at the surface water site, which operated from January to April 2017, displayed a systematic increase in daily CO2 amplitude. Preliminary interpretation suggests key observation of seasonally increasing stream metabolic function. Other interpretations of observed cyclical and event-based behavior are out of the scope of the study; however, the presented method describes an accurate near-hourly characterization of CO2 variability. The new platform has been shown to be operational for several months, and we infer reliable operation for much longer deployments (> 1 year) given adequate environmental protection and power supply. Considering cost-savings, this platform is an attractive option for continuous, accurate, low-power, and low-cost CO2 monitoring for remote locations, globally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17598878','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17598878"><span>Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kreibig, Sylvia D; Wilhelm, Frank H; Roth, Walton T; Gross, James J</p> <p>2007-09-01</p> <p>Responses to fear- and sadness-inducing films were assessed using a broad range of cardiovascular (heart rate, T-wave amplitude, low- and high-frequency heart rate variability, stroke volume, preejection period, left-ventricular ejection time, Heather index, blood pressure, pulse amplitude and transit time, and finger temperature), electrodermal (level, response rate, and response amplitude), and respiratory (rate, tidal volume and its variability, inspiratory flow rate, duty cycle, and end-tidal pCO(2)) measures. Subjective emotional experience and facial behavior (Corrugator Supercilii and Zygomaticus Major EMG) served as control measures. Results indicated robust differential physiological response patterns for fear, sadness, and neutral (mean classification accuracy 85%). Findings are discussed in terms of the fight-flight and conservation-withdrawal responses and possible limitations of a valence-arousal categorization of emotion in affective space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29390752','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29390752"><span>Variability of phase and amplitude fronts due to horizontal refraction in shallow water.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Katsnelson, Boris G; Grigorev, Valery A; Lynch, James F</p> <p>2018-01-01</p> <p>The variability of the interference pattern of a narrow-band sound signal in a shallow water waveguide in the horizontal plane in the presence of horizontal stratification, in particular due to linear internal waves, is studied. It is shown that lines of constant phase (a phase front) and lines of constant amplitude/envelope (an amplitude front) for each waveguide mode may have different directions in the spatial vicinity of the point of reception. The angle between them depends on the waveguide's parameters, the mode number, and the sound frequency. Theoretical estimates and data processing methodology for obtaining these angles from experimental data recorded by a horizontal line array are proposed. The behavior of the angles, which are obtained for two episodes from the Shallow Water 2006 (SW06) experiment, show agreement with the theory presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4049426','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4049426"><span>The interplay between seasonality and density: consequences for female breeding decisions in a small cyclic herbivore</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p>Background Cyclic rodent population dynamics are subjected to both intrinsic regulatory processes such as density-dependence and extrinsic environmental forcing. Among extrinsic factors, seasonal environmental variation is understood to facilitate cycles. In rodents, these processes have been studied mostly independently and their relative importance for population dynamics is poorly known. Results We performed a detailed analysis of common vole (Microtus arvalis) reproduction in a cyclic population using a spatially extensive data set over 17 years in central-western France. Environmental seasonality was the main source of explained variation in common vole reproduction. Additionally, inter-annual variation in the environment explained a smaller part of the variance in reproduction in spring and summer than in winter, whereas the effect of density was only found in autumn and winter. In particular, we detected a strong impact of plant productivity on fecundity during the breeding season, with low vegetation productivity being able to bring vole reproduction nearly to a halt. In contrast, vole reproduction during autumn and winter was mainly shaped by intrinsic factors, with only the longer and heavier females being able to reproduce. The effect of population density on reproduction was negative, mediated by direct negative effects on the proportion of breeders in autumn and winter during outbreak years and by a delayed negative effect on litter size the following year. Conclusions During the main breeding season, variability of female vole reproduction is predominantly shaped by food resources, suggesting that only highly productive environment may induce vole outbreaks. During fall and winter, variability of female vole reproduction is mainly controlled by intrinsic factors, with high population density suppressing reproduction. This suggests, in this cyclic population, that negative direct density dependence on reproduction could explain winter declines after outbreaks. PMID:24886481</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24886481','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24886481"><span>The interplay between seasonality and density: consequences for female breeding decisions in a small cyclic herbivore.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pinot, Adrien; Gauffre, Bertrand; Bretagnolle, Vincent</p> <p>2014-05-28</p> <p>Cyclic rodent population dynamics are subjected to both intrinsic regulatory processes such as density-dependence and extrinsic environmental forcing. Among extrinsic factors, seasonal environmental variation is understood to facilitate cycles. In rodents, these processes have been studied mostly independently and their relative importance for population dynamics is poorly known. We performed a detailed analysis of common vole (Microtus arvalis) reproduction in a cyclic population using a spatially extensive data set over 17 years in central-western France. Environmental seasonality was the main source of explained variation in common vole reproduction. Additionally, inter-annual variation in the environment explained a smaller part of the variance in reproduction in spring and summer than in winter, whereas the effect of density was only found in autumn and winter. In particular, we detected a strong impact of plant productivity on fecundity during the breeding season, with low vegetation productivity being able to bring vole reproduction nearly to a halt. In contrast, vole reproduction during autumn and winter was mainly shaped by intrinsic factors, with only the longer and heavier females being able to reproduce. The effect of population density on reproduction was negative, mediated by direct negative effects on the proportion of breeders in autumn and winter during outbreak years and by a delayed negative effect on litter size the following year. During the main breeding season, variability of female vole reproduction is predominantly shaped by food resources, suggesting that only highly productive environment may induce vole outbreaks. During fall and winter, variability of female vole reproduction is mainly controlled by intrinsic factors, with high population density suppressing reproduction. This suggests, in this cyclic population, that negative direct density dependence on reproduction could explain winter declines after outbreaks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAVSO..45...30P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAVSO..45...30P"><span>Studies of the Long Secondary Periods in Pulsating Red Giants. II. Lower-Luminosity Stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Percy, J. R.; Leung, H. W.</p> <p>2017-06-01</p> <p>We have used AAVSO visual and photoelectric V data, and the AAVSO time-series package VSTAR and the Lomb-Scargle time-series algorithm to determine improved pulsation periods, "long secondary periods" (LSPs), and their amplitudes in 51 shorter-period pulsating red giants in the AAVSO photoelectric photometry program, and in the AAVSO long-period variable (LPV) binocular program. As is well known, radial pulsation becomes detectable in red giants at about spectral type M0, with periods of about 20 days. We find that the LSP phenomenon is also first detectable at about M0. Pulsation and LSP amplitudes increase from near zero to about 0.1 at pulsation periods of 100 days. At longer periods, the pulsation amplitudes continue to increase, but the LSP amplitudes are generally between 0.1 and 0.2 on average. The ratios of LSP to pulsation period cluster around 5 and 10, presumably depending on whether the pulsation period is the fundamental or first overtone. The pulsation and LSP phase curves are generally close to sinusoidal, except when the amplitude is small, in which case they may be distorted by observational scatter or, in the case of the LSP amplitude, by the pulsational variability. As with longer-period stars, the LSP amplitude i ncreases and decreases by a factor of two or more, for unknown reasons, on a time scale of about 20 LSPs. The LSP phenomenon is thus present and similar in radially pulsating red giants of all periods. Its cause remains unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..276a2038A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..276a2038A"><span>An accurate fatigue damage model for welded joints subjected to variable amplitude loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.</p> <p>2017-12-01</p> <p>Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22410317-magnetic-island-plasma-rotation-under-external-resonant-magnetic-perturbation-tokamak','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22410317-magnetic-island-plasma-rotation-under-external-resonant-magnetic-perturbation-tokamak"><span>Magnetic island and plasma rotation under external resonant magnetic perturbation in the T-10 tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Eliseev, L. G.; Ivanov, N. V., E-mail: ivanov-nv@nrcki.ru; Kakurin, A. M.</p> <p>2015-05-15</p> <p>Experimental comparison of the m = 2, n = 1 mode and plasma rotation velocities at q = 2 magnetic surface in a wide range of the mode amplitudes is presented. Phase velocity of the mode rotation is measured with a set of poloidal magnetic field sensors located at the inner side of the vacuum vessel wall. Plasma rotation velocity at the q = 2 magnetic surface in the direction of the mode phase velocity is measured with the heavy ion beam probe diagnostics. In the presence of a static Resonant Magnetic Perturbation (RMP), the rotation is irregular that appears as cyclical variations of the mode and plasmamore » instantaneous velocities. The period of these variations is equal to the period of the mode oscillations. In the case of high mode amplitude, the rotation irregularity of the mode is consistent with the rotation irregularity of the resonant plasma layer. On the contrary, the observed rise of the mode rotation irregularity in the case of low mode amplitude occurs without an increase of the rotation irregularity of the resonant plasma layer. The experimental results are simulated and analyzed with the TEAR code based on the two-fluid MHD approximation. Calculated irregularities of the mode and plasma rotation depend on the mode amplitude similar to the experimental data. For large islands, the rotation irregularity is attributed to oscillations of the electromagnetic torque applied to the resonant plasma layer. For small islands, the deviation of the mode rotation velocity from the plasma velocity occurs due to the effect of finite plasma resistivity.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830038640&hterms=ia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830038640&hterms=ia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dia"><span>Variability and mass loss in IA O-B-A supergiants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schild, R. E.; Garrison, R. F.; Hiltner, W. A.</p> <p>1983-01-01</p> <p>Recently completed catalogs of MK spectral types and UBV photometry of 1227 OB stars in the southern Milky Way have been analyzed to investigate brightness and color variability among the Ia supergiants. It is found that brightness variability is common among the O9-B1 supergiants with typical amplitudes about 0.1 and time scales longer than a week and shorter than 1000 days. Among the A supergiants fluctuations in U-B color are found on similar time scales and with amplitude about 0.1. For many early Ia supergiants there is a poor correlation between Balmer jump and spectral type, as had been known previously. An attempt to correlate the Balmer jump deficiency with mass loss rate yielded uncertain results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2083283','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2083283"><span>[Hypothesis on the equilibrium point and variability of amplitude, speed and time of single-joint movement].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Latash, M; Gottleib, G</p> <p>1990-01-01</p> <p>Problems of single-joint movement variability are analysed in the framework of the equilibrium-point hypothesis (the lambda-model). Control of the movements is described with three parameters related to movement amplitude speed, and time. Three strategies emerge from this description. Only one of them is likely to lead to a Fitts' type speed-accuracy trade-off. Experiments were performed to test one of the predictions of the model. Subjects performed identical sets of single-joint fast movements with open or closed eyes and some-what different instructions. Movements performed with closed eyes were characterized with higher peak speeds and unchanged variability in seeming violation of the Fitt's law and in a good correspondence to the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1352938-tangent-linear-superparameterization-convection-layer-global-atmosphere-calibrated-climatology','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1352938-tangent-linear-superparameterization-convection-layer-global-atmosphere-calibrated-climatology"><span>Tangent linear superparameterization of convection in a 10 layer global atmosphere with calibrated climatology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kelly, Patrick; Mapes, Brian; Hu, I-Kuan; ...</p> <p>2017-04-03</p> <p>This study describes a new intermediate global atmosphere model in which synoptic and planetary dynamics including the advection of water vapor are explicit, the time mean flow is centered near a realistic state through the calibration of time-independent 3D forcings, and temporal anomalies of convective tendencies of heat and moisture in each column are represented as a linear matrix acting on the anomalous temperature and moisture profiles in the GCM. This matrix was devised from Kuang’s [2010] linear response function (LRF) of a cooled cyclic convection-permitting model (CCPM) with 256 km periodic domain and 1km mesh, measured around an equilibriummore » state with a mean rainrate of 3.5 mm/d. The goal of this effort was to cleanly test the role of convection’s free-tropospheric moisture sensitivity in tropical waves, without incurring large changes of mean climate that confuse the interpretation of experiments with entrainment rates in the convection schemes of full-physics GCMs. As the sensitivity to free tropospheric moisture (columns 12-20 of the matrix, representing sensitivity to humidity above 900 hPa altitude) is multiplied by a factor ranging from 0 to 2, the model’s variability ranges from: (1) moderately strong convectively coupled waves with speeds near 20 m s -1; to (0) weak waves, but still slowed by convective coupling; to (2) wave variability that is greater in amplitude as the water vapor field plays an increasingly important role. Longitudinal structure in the model’s time-mean tropical flow is not fully realistic, and does change significantly with matrix edits, disappointing initial hopes that the Madden-Julian oscillation would be well simulated in the control and could be convincingly decomposed, but further work could improve this class of models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1352938-tangent-linear-superparameterization-convection-layer-global-atmosphere-calibrated-climatology','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1352938-tangent-linear-superparameterization-convection-layer-global-atmosphere-calibrated-climatology"><span>Tangent linear superparameterization of convection in a 10 layer global atmosphere with calibrated climatology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kelly, Patrick; Mapes, Brian; Hu, I-Kuan</p> <p></p> <p>This study describes a new intermediate global atmosphere model in which synoptic and planetary dynamics including the advection of water vapor are explicit, the time mean flow is centered near a realistic state through the calibration of time-independent 3D forcings, and temporal anomalies of convective tendencies of heat and moisture in each column are represented as a linear matrix acting on the anomalous temperature and moisture profiles in the GCM. This matrix was devised from Kuang’s [2010] linear response function (LRF) of a cooled cyclic convection-permitting model (CCPM) with 256 km periodic domain and 1km mesh, measured around an equilibriummore » state with a mean rainrate of 3.5 mm/d. The goal of this effort was to cleanly test the role of convection’s free-tropospheric moisture sensitivity in tropical waves, without incurring large changes of mean climate that confuse the interpretation of experiments with entrainment rates in the convection schemes of full-physics GCMs. As the sensitivity to free tropospheric moisture (columns 12-20 of the matrix, representing sensitivity to humidity above 900 hPa altitude) is multiplied by a factor ranging from 0 to 2, the model’s variability ranges from: (1) moderately strong convectively coupled waves with speeds near 20 m s -1; to (0) weak waves, but still slowed by convective coupling; to (2) wave variability that is greater in amplitude as the water vapor field plays an increasingly important role. Longitudinal structure in the model’s time-mean tropical flow is not fully realistic, and does change significantly with matrix edits, disappointing initial hopes that the Madden-Julian oscillation would be well simulated in the control and could be convincingly decomposed, but further work could improve this class of models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.473.5532R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.473.5532R"><span>BRITE-Constellation high-precision time-dependent photometry of the early O-type supergiant ζ Puppis unveils the photospheric drivers of its small- and large-scale wind structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramiaramanantsoa, Tahina; Moffat, Anthony F. J.; Harmon, Robert; Ignace, Richard; St-Louis, Nicole; Vanbeveren, Dany; Shenar, Tomer; Pablo, Herbert; Richardson, Noel D.; Howarth, Ian D.; Stevens, Ian R.; Piaulet, Caroline; St-Jean, Lucas; Eversberg, Thomas; Pigulski, Andrzej; Popowicz, Adam; Kuschnig, Rainer; Zocłońska, Elżbieta; Buysschaert, Bram; Handler, Gerald; Weiss, Werner W.; Wade, Gregg A.; Rucinski, Slavek M.; Zwintz, Konstanze; Luckas, Paul; Heathcote, Bernard; Cacella, Paulo; Powles, Jonathan; Locke, Malcolm; Bohlsen, Terry; Chené, André-Nicolas; Miszalski, Brent; Waldron, Wayne L.; Kotze, Marissa M.; Kotze, Enrico J.; Böhm, Torsten</p> <p>2018-02-01</p> <p>From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He II λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He II λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MPLB...3050318C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MPLB...3050318C"><span>Solitons for a forced generalized variable-coefficient Korteweg-de Vries equation for the atmospheric blocking phenomenon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chai, Jun; Tian, Bo; Xie, Xi-Yang; Chai, Han-Peng</p> <p>2016-12-01</p> <p>Investigation is given to a forced generalized variable-coefficient Korteweg-de Vries equation for the atmospheric blocking phenomenon. Applying the double-logarithmic and rational transformations, respectively, under certain variable-coefficient constraints, we get two different types of bilinear forms: (a) Based on the first type, the bilinear Bäcklund transformation (BT) is derived, the N-soliton solutions in the Wronskian form are constructed, and the (N - 1)- and N-soliton solutions are proved to satisfy the bilinear BT; (b) Based on the second type, via the Hirota method, the one- and two-soliton solutions are obtained. Those two types of solutions are different. Graphic analysis on the two types shows that the soliton velocity depends on d(t), h(t), f(t) and R(t), the soliton amplitude is merely related to f(t), and the background depends on R(t) and f(t), where d(t), h(t), q(t) and f(t) are the dissipative, dispersive, nonuniform and line-damping coefficients, respectively, and R(t) is the external-force term. We present some types of interactions between the two solitons, including the head-on and overtaking interactions, interactions between the velocity- and amplitude-unvarying two solitons, between the velocity-varying while amplitude-unvarying two solitons and between the velocity- and amplitude-varying two solitons, as well as the interactions occurring on the constant and varying backgrounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24736775','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24736775"><span>Effects of different training amplitudes on heart rate and heart rate variability in young rowers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vaz, Marcelo S; Picanço, Luan M; Del Vecchio, Fabrício B</p> <p>2014-10-01</p> <p>The aim of this study was to investigate the autonomic nervous system recovery and the psychological response as a result of 3 training amplitudes on heart rate (HR), heart rate variability (HRV), and rate of perceived exertion (RPE) in rowing. Eight young rowers (16.8 ± 1.4 years) performed, in a randomized fashion, 2 sessions of high-intensity interval training, with high and low amplitude and a continuous training (CT) session, with the same exercise duration (10 minutes) and mean intensity (60% of maximal stroke test). The data of HR, HRV, and RPE were collected 5 minutes before, immediately after each session, and 24 hours later. High amplitude promoted higher impact in maximum HR (p ≤ 0.05) and RPE (p < 0.001) when compared with CT. For the time domain HRV variable, there was a statistically significant difference between moments of rest (pretraining or post 24 hours) and posttraining in all training sessions. Originally, we conclude that training with higher load variation between effort and recovery impacts HRV, HR, and RPE with greater intensity, but the younger rowers were ready for new training sessions 24 hours after either training method. Coaches can use the polarized training method, observing the stimulus nature and time required for recovery, because it may be an adequate strategy for the development of rower's conditioning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvE..91d2717M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvE..91d2717M"><span>Coding stimulus amplitude by correlated neural activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Metzen, Michael G.; Ávila-Åkerberg, Oscar; Chacron, Maurice J.</p> <p>2015-04-01</p> <p>While correlated activity is observed ubiquitously in the brain, its role in neural coding has remained controversial. Recent experimental results have demonstrated that correlated but not single-neuron activity can encode the detailed time course of the instantaneous amplitude (i.e., envelope) of a stimulus. These have furthermore demonstrated that such coding required and was optimal for a nonzero level of neural variability. However, a theoretical understanding of these results is still lacking. Here we provide a comprehensive theoretical framework explaining these experimental findings. Specifically, we use linear response theory to derive an expression relating the correlation coefficient to the instantaneous stimulus amplitude, which takes into account key single-neuron properties such as firing rate and variability as quantified by the coefficient of variation. The theoretical prediction was in excellent agreement with numerical simulations of various integrate-and-fire type neuron models for various parameter values. Further, we demonstrate a form of stochastic resonance as optimal coding of stimulus variance by correlated activity occurs for a nonzero value of noise intensity. Thus, our results provide a theoretical explanation of the phenomenon by which correlated but not single-neuron activity can code for stimulus amplitude and how key single-neuron properties such as firing rate and variability influence such coding. Correlation coding by correlated but not single-neuron activity is thus predicted to be a ubiquitous feature of sensory processing for neurons responding to weak input.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1017462','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1017462"><span>Radar transponder operation with compensation for distortion due to amplitude modulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.</p> <p>2011-01-04</p> <p>In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002ASAJ..111.2478K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002ASAJ..111.2478K"><span>The use of functional data analysis to study variability in childrens speech: Further data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koenig, Laura L.; Lucero, Jorge C.</p> <p>2002-05-01</p> <p>Much previous research has reported increased token-to-token variability in children relative to adults, but the sources and implications of this variability remain matters of debate. Recently, functional data analysis has been used as a tool to gain greater insight into the nature of variability in children's and adults' speech data. In FDA, signals are time-normalized using a smooth function of time. The magnitude of the time-warping function provides an index of phasing (temporal) variability, and a separate index of amplitude variability is calculated from the time-normalized signal. Here, oral airflow data are analyzed from 5-year-olds, 10-year-olds, and adult women producing laryngeal and oral fricatives (/h, s, z/). The preliminary FDA results show that children generally have higher temporal and amplitude indices than adults, suggesting greater variability both in gestural timing and magnitude. However, individual patterns are evident in the relative magnitude of the two indices, and in which consonants show the highest values. The time-varying patterns of flow variability over time in /s/ are also explored as a method of inferring relative variability among laryngeal and oral gestures. [Work supported by NIH and CNPq, Brazil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJTIA.131..844T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJTIA.131..844T"><span>Study on Online Analysis of Transfer Function of Variable-Speed Rolling Mill Motor with Shaft Torsional Vibration Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamaoki, Toshifumi; Takanezawa, Makoto; Kimoto, Masanori; Morita, Noboru; Hoshino, Takeo; Hashizume, Kenji</p> <p></p> <p>The torsional vibration between metal rolling rolls and a rolling mill motor, may occur in recent days, as a result of higher speed response adjustment for variable speed rolling mill motor drive system. Issues in this paper are focused on excess acceleration value, in tangential direction of the mill motor rotor, which is caused by the motor shaft torsional resonance at the white noise signal superposition to the speed reference signal of the motor drive system for the online transfer function analysis. As a result of the acceleration analysis, the acceleration values in “G” (Relative acceleration value on the basis of Gravity) can be plotted on “Bode-Diagram”, which is namely frequency response for the speed signal amplitude transmission ratio. In addition, relation between the white noise amplitude reduction and the transfer function analysis accuracy deterioration is also examined, in this paper. As the amplitude of the white noise decreases, the analysis error increases because of the reduction in the resolution when the amplitude of the white noise signal is small.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.3799C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.3799C"><span>A possible explanation for the divergent projection of ENSO amplitude change under global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Lin; Li, Tim; Yu, Yongqiang; Behera, Swadhin K.</p> <p>2017-12-01</p> <p>The El Niño-Southern Oscillation (ENSO) is the greatest climate variability on interannual time scale, yet what controls ENSO amplitude changes under global warming (GW) is uncertain. Here we show that the fundamental factor that controls the divergent projections of ENSO amplitude change within 20 coupled general circulation models that participated in the Coupled Model Intercomparison Project phase-5 is the change of climatologic mean Pacific subtropical cell (STC), whose strength determines the meridional structure of ENSO perturbations and thus the anomalous thermocline response to the wind forcing. The change of the thermocline response is a key factor regulating the strength of Bjerknes thermocline and zonal advective feedbacks, which ultimately lead to the divergent changes in ENSO amplitude. Furthermore, by forcing an ocean general circulation mode with the change of zonal mean zonal wind stress estimated by a simple theoretical model, a weakening of the STC in future is obtained. Such a change implies that ENSO variability might strengthen under GW, which could have a profound socio-economic consequence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1361945-observed-projected-changes-precipitation-annual-cycle','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1361945-observed-projected-changes-precipitation-annual-cycle"><span>Observed and Projected Changes to the Precipitation Annual Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Marvel, Kate; Biasutti, Michela; Bonfils, Celine; ...</p> <p>2017-06-08</p> <p>Anthropogenic climate change is predicted to cause spatial and temporal shifts in precipitation patterns. These may be apparent in changes to the annual cycle of zonal mean precipitation P. Trends in the amplitude and phase of the P annual cycle in two long-term, global satellite datasets are broadly similar. Model-derived fingerprints of externally forced changes to the amplitude and phase of the P seasonal cycle, combined with these observations, enable a formal detection and attribution analysis. Observed amplitude changes are inconsistent with model estimates of internal variability but not attributable to the model-predicted response to external forcing. This mismatch betweenmore » observed and predicted amplitude changes is consistent with the sustained La Niña–like conditions that characterize the recent slowdown in the rise of the global mean temperature. However, observed changes to the annual cycle phase do not seem to be driven by this recent hiatus. Furthermore these changes are consistent with model estimates of forced changes, are inconsistent (in one observational dataset) with estimates of internal variability, and may suggest the emergence of an externally forced signal.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1361945-observed-projected-changes-precipitation-annual-cycle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1361945-observed-projected-changes-precipitation-annual-cycle"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marvel, Kate; Biasutti, Michela; Bonfils, Celine</p> <p></p> <p>Anthropogenic climate change is predicted to cause spatial and temporal shifts in precipitation patterns. These may be apparent in changes to the annual cycle of zonal mean precipitation P. Trends in the amplitude and phase of the P annual cycle in two long-term, global satellite datasets are broadly similar. Model-derived fingerprints of externally forced changes to the amplitude and phase of the P seasonal cycle, combined with these observations, enable a formal detection and attribution analysis. Observed amplitude changes are inconsistent with model estimates of internal variability but not attributable to the model-predicted response to external forcing. This mismatch betweenmore » observed and predicted amplitude changes is consistent with the sustained La Niña–like conditions that characterize the recent slowdown in the rise of the global mean temperature. However, observed changes to the annual cycle phase do not seem to be driven by this recent hiatus. Furthermore these changes are consistent with model estimates of forced changes, are inconsistent (in one observational dataset) with estimates of internal variability, and may suggest the emergence of an externally forced signal.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5458934','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5458934"><span>Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix</p> <p>2015-01-01</p> <p>This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AtmRe.147...10J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AtmRe.147...10J"><span>Sensitivity to Madden-Julian Oscillation variations on heavy precipitation over the contiguous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, Charles; Carvalho, Leila M. V.</p> <p>2014-10-01</p> <p>The Madden-Julian Oscillation (MJO) is the most prominent mode of tropical intraseasonal variability in the climate system and has worldwide influences on the occurrences and forecasts of heavy precipitation. This paper investigates the sensitivity of precipitation over the contiguous United States (CONUS) in a case study (boreal 2004-05 winter). Several major storms affected the western and eastern CONUS producing substantial economic and social impacts including loss of lives. The Weather Research and Forecasting (WRF) model is used to perform experiments to test the significance of the MJO amplitude. The control simulation uses the MJO amplitude observed by reanalysis, whereas the amplitude is modified in perturbation experiments. WRF realistically simulates the precipitation variability over the CONUS, although large biases occur over the Western and Midwest United States. Daily precipitation is aggregated in western, central and eastern sectors and the frequency distribution is analyzed. Increases in MJO amplitude produce moderate increases in the median and interquartile range and large and robust increases in extreme (90th and 95th percentiles) precipitation. The MJO amplitude clearly affects the transport of moisture from the tropical Pacific and Gulf of Mexico into North America providing moist rich air masses and the dynamical forcing that contributes to heavy precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1511.1341E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1511.1341E"><span>Ground penetrating radar applied to rebar corrosion inspection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eisenmann, David; Margetan, Frank; Chiou, Chien-Ping T.; Roberts, Ron; Wendt, Scott</p> <p>2013-01-01</p> <p>In this paper we investigate the use of ground penetrating radar (GPR) to detect corrosion-induced thinning of rebar in concrete bridge structures. We consider a simple pulse/echo amplitude-based inspection, positing that the backscattered response from a thinned rebar will be smaller than the similar response from a fully-intact rebar. Using a commercial 1600-MHz GPR system we demonstrate that, for laboratory specimens, backscattered amplitude measurements can detect a thinning loss of 50% in rebar diameter over a short length. GPR inspections on a highway bridge then identify several rebar with unexpectedly low amplitudes, possibly signaling thinning. To field a practical amplitude-based system for detecting thinned rebar, one must be able to quantify and assess the many factors that can potentially contribute to GPR signal amplitude variations. These include variability arising from the rebar itself (e.g., thinning) and from other factors (concrete properties, antenna orientation and liftoff, etc.). We report on early efforts to model the GPR instrument and the inspection process so as to assess such variability and to optimize inspections. This includes efforts to map the antenna radiation pattern, to predict how backscattered responses will vary with rebar size and location, and to assess detectability improvements via synthetic aperture focusing techniques (SAFT).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25644508','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25644508"><span>Continuous versus cyclic oral contraceptives for the treatment of endometriosis: a systematic review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zorbas, Konstantinos A; Economopoulos, Konstantinos P; Vlahos, Nikos F</p> <p>2015-07-01</p> <p>Recurrence of endometriosis after conservative surgery has been observed in 40-50 % of patients within the first 5 years. A variety of regimens such as combined oral contraceptives, GnRH agonists, danazol, and progestins have been used postoperatively to reduce recurrence rates. Oral contraceptives (oCP) have been used either in a cyclic or in a continuous (no pill-free interval) fashion. The purpose of this article was to summarize the existing evidence on the efficacy and patient compliance for the use of oCP in a continuous versus cyclic fashion following conservative surgery for endometriosis. A systematic search of Medline identified four eligible studies. Studies were considered eligible, if they have evaluated oCP therapy, either in a cyclic or continuous regimen, after conservative surgery for endometriosis. Specifically, studies (1) reporting on women with endometriosis who were treated postoperatively with both continuous oCP and cyclic oCP, (2) written in English, (3) with minimum 6 months duration of medical treatment, and (4) with minimum 12 months duration of follow-up were considered eligible for our systematic review. Outcome measures of these eligible studies were tabulated and then analyzed cumulatively. A purely descriptive approach was adopted concerning all variables. Postoperative use of continuous oCP was associated with a reduction in the recurrence rate of dysmenorrhea, delay in the presentation of dysmenorrhea, reduction in nonspecific pelvic pain, and reduction in the recurrence rate for endometrioma. Use of oCP in a continuous fashion following conservative surgery for endometriosis is more beneficial to cyclic use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20558082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20558082"><span>Characterization of postural control deficit in whiplash patients by means of linear and nonlinear analyses - A pilot study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Madeleine, Pascal; Nielsen, Mogens; Arendt-Nielsen, Lars</p> <p>2011-04-01</p> <p>The ability to maintain balance is diminished in patients suffering from a whiplash injury. The aim of this study was to characterize the variability of postural control in patients with chronic whiplash injury. For this purpose, we analyzed static postural recordings from 11 whiplash patients and sex- and age-matched asymptomatic healthy volunteers. Static postural recordings were performed randomly with eyes open, eyes closed, and eyes open and speaking (dual task). Spatial-temporal changes of the center of pressure displacement were analyzed to assess the amplitude and structure of postural variability by computing, respectively, the standard deviation/coefficient of variation and sample entropy/fractal dimension of the time series. The amplitude of variability of the center of pressure was larger among whiplash patients compared with controls (P<0.001) while fractal dimension was lower (P<0.001). The sample entropy increased during both eyes closed and a simple dual task compared with eyes open (P<0.05). The analysis of postural control dynamics revealed increased amplitude of postural variability and decreased signal dimensionality related to the deficit in postural stability found in whiplash patients. Linear and nonlinear analyses can thus be helpful for the quantification of postural control in normal and pathological conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994asim.nasa..755S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994asim.nasa..755S"><span>Fatigue crack growth under variable amplitude loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sidawi, Jihad A.</p> <p>1994-09-01</p> <p>Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27766073','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27766073"><span>Differences in Motor Evoked Potentials Induced in Rats by Transcranial Magnetic Stimulation under Two Separate Anesthetics: Implications for Plasticity Studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sykes, Matthew; Matheson, Natalie A; Brownjohn, Philip W; Tang, Alexander D; Rodger, Jennifer; Shemmell, Jonathan B H; Reynolds, John N J</p> <p>2016-01-01</p> <p>Repetitive transcranial magnetic stimulation (rTMS) is primarily used in humans to change the state of corticospinal excitability. To assess the efficacy of different rTMS stimulation protocols, motor evoked potentials (MEPs) are used as a readout due to their non-invasive nature. Stimulation of the motor cortex produces a response in a targeted muscle, and the amplitude of this twitch provides an indirect measure of the current state of the cortex. When applied to the motor cortex, rTMS can alter MEP amplitude, however, results are variable between participants and across studies. In addition, the mechanisms underlying any change and its locus are poorly understood. In order to better understand these effects, MEPs have been investigated in vivo in animal models, primarily in rats. One major difference in protocols between rats and humans is the use of general anesthesia in animal experiments. Anesthetics are known to affect plasticity-like mechanisms and so may contaminate the effects of an rTMS protocol. In the present study, we explored the effect of anesthetic on MEP amplitude, recorded before and after intermittent theta burst stimulation (iTBS), a patterned rTMS protocol with reported facilitatory effects. MEPs were assessed in the brachioradialis muscle of the upper forelimb under two anesthetics: a xylazine/zoletil combination and urethane. We found MEPs could be induced under both anesthetics, with no differences in the resting motor threshold or the average baseline amplitudes. However, MEPs were highly variable between animals under both anesthetics, with the xylazine/zoletil combination showing higher variability and most prominently a rise in amplitude across the baseline recording period. Interestingly, application of iTBS did not facilitate MEP amplitude under either anesthetic condition. Although it is important to underpin human application of TMS with mechanistic examination of effects in animals, caution must be taken when selecting an anesthetic and in interpreting results during prolonged TMS recording.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5052269','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5052269"><span>Differences in Motor Evoked Potentials Induced in Rats by Transcranial Magnetic Stimulation under Two Separate Anesthetics: Implications for Plasticity Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sykes, Matthew; Matheson, Natalie A.; Brownjohn, Philip W.; Tang, Alexander D.; Rodger, Jennifer; Shemmell, Jonathan B. H.; Reynolds, John N. J.</p> <p>2016-01-01</p> <p>Repetitive transcranial magnetic stimulation (rTMS) is primarily used in humans to change the state of corticospinal excitability. To assess the efficacy of different rTMS stimulation protocols, motor evoked potentials (MEPs) are used as a readout due to their non-invasive nature. Stimulation of the motor cortex produces a response in a targeted muscle, and the amplitude of this twitch provides an indirect measure of the current state of the cortex. When applied to the motor cortex, rTMS can alter MEP amplitude, however, results are variable between participants and across studies. In addition, the mechanisms underlying any change and its locus are poorly understood. In order to better understand these effects, MEPs have been investigated in vivo in animal models, primarily in rats. One major difference in protocols between rats and humans is the use of general anesthesia in animal experiments. Anesthetics are known to affect plasticity-like mechanisms and so may contaminate the effects of an rTMS protocol. In the present study, we explored the effect of anesthetic on MEP amplitude, recorded before and after intermittent theta burst stimulation (iTBS), a patterned rTMS protocol with reported facilitatory effects. MEPs were assessed in the brachioradialis muscle of the upper forelimb under two anesthetics: a xylazine/zoletil combination and urethane. We found MEPs could be induced under both anesthetics, with no differences in the resting motor threshold or the average baseline amplitudes. However, MEPs were highly variable between animals under both anesthetics, with the xylazine/zoletil combination showing higher variability and most prominently a rise in amplitude across the baseline recording period. Interestingly, application of iTBS did not facilitate MEP amplitude under either anesthetic condition. Although it is important to underpin human application of TMS with mechanistic examination of effects in animals, caution must be taken when selecting an anesthetic and in interpreting results during prolonged TMS recording. PMID:27766073</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JHEP...03..110A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JHEP...03..110A"><span>The S-matrix in twistor space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J.</p> <p>2010-03-01</p> <p>The marvelous simplicity and remarkable hidden symmetries recently uncovered in (Super) Yang-Mills and (Super)Gravity scattering amplitudes strongly suggests the existence of a “weak-weak” dual formulation of these theories where these structures are made more manifest at the expense of manifest locality. In this note we suggest that in four dimensions, this dual description lives in (2, 2) signature and is naturally formulated in twistor space. We begin at tree-level, by recasting the momentum-space BCFW recursion relation in a completely on-shell form that begs to be transformed into twistor space. Our transformation is strongly inspired by Witten’s twistor string theory, but differs in treating twistor and dual twistor variables on a more equal footing; a related transcription of the BCFW formula using only twistor space variables has been carried out independently by Mason and Skinner. Using both twistor and dual twistor variables, the three and four-point amplitudes are strikingly simple-for Yang-Mills theories they are “1” or “-1”. The BCFW computation of higher-order amplitudes can be represented by a simple set of diagrammatic rules, concretely realizing Penrose’s program of relating “twistor diagrams” to scattering amplitudes. More specifically, we give a precise definition of the twistor diagram formalism developed over the past few years by Andrew Hodges. The “Hodges diagram” representation of the BCFW rules allows us to compute amplitudes and study their remarkable properties in twistor space. For instance the diagrams for Yang-Mills theory are topologically disks and not trees, and reveal striking connections between amplitudes that are not manifest in momentum space. Twistor space also suggests a new representation of the amplitudes directly in momentum space, that is naturally determined by the Hodges diagrams. The BCFW rules and Hodges diagrams also enable a systematic twistorial formulation of gravity. All tree amplitudes can be combined into an “S-Matrix” scattering functional which is the natural holographic observable in asymptotically flat space; the BCFW formula turns into a simple quadratic equation for this “S-Matrix” in twistor space, providing a holographic description of mathcal{N} = 4 SYM and mathcal{N} = 8 Supergravity at tree level. We move on to initiate the exploration of loop amplitudes in (2, 2) signature and twistor space, beginning with a discussion of their IR behavior. We find that the natural pole prescriptions needed for transformation to twistor space make the amplitudes perfectly well-defined objects, free of IR divergences. Indeed in momentum space, the loop amplitudes so regulated vanish for generic momenta, and transformed to twistor space, are even simpler than their tree-level counterparts: the full 4-pt one-loop amplitudes in mathcal{N} = 4 SYM are simply equal to “1” or “0”! This further supports the idea that there exists a sharply defined object corresponding to the S-Matrix in (2, 2) signature, computed by a dual theory naturally living in twistor space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23357802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23357802"><span>The effect of muscle contraction level on the cervical vestibular evoked myogenic potential (cVEMP): usefulness of amplitude normalization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bogle, Jamie M; Zapala, David A; Criter, Robin; Burkard, Robert</p> <p>2013-02-01</p> <p>The cervical vestibular evoked myogenic potential (cVEMP) is a reflexive change in sternocleidomastoid (SCM) muscle contraction activity thought to be mediated by a saccular vestibulo-collic reflex. CVEMP amplitude varies with the state of the afferent (vestibular) limb of the vestibulo-collic reflex pathway, as well as with the level of SCM muscle contraction. It follows that in order for cVEMP amplitude to reflect the status of the afferent portion of the reflex pathway, muscle contraction level must be controlled. Historically, this has been accomplished by volitionally controlling muscle contraction level either with the aid of a biofeedback method, or by an a posteriori method that normalizes cVEMP amplitude by the level of muscle contraction. A posteriori normalization methods make the implicit assumption that mathematical normalization precisely removes the influence of the efferent limb of the vestibulo-collic pathway. With the cVEMP, however, we are violating basic assumptions of signal averaging: specifically, the background noise and the response are not independent. The influence of this signal-averaging violation on our ability to normalize cVEMP amplitude using a posteriori methods is not well understood. The aims of this investigation were to describe the effect of muscle contraction, as measured by a prestimulus electromyogenic estimate, on cVEMP amplitude and interaural amplitude asymmetry ratio, and to evaluate the benefit of using a commonly advocated a posteriori normalization method on cVEMP amplitude and asymmetry ratio variability. Prospective, repeated-measures design using a convenience sample. Ten healthy adult participants between 25 and 61 yr of age. cVEMP responses to 500 Hz tone bursts (120 dB pSPL) for three conditions describing maximum, moderate, and minimal muscle contraction. Mean (standard deviation) cVEMP amplitude and asymmetry ratios were calculated for each muscle-contraction condition. Repeated measures analysis of variance and t-tests compared the variability in cVEMP amplitude between sides and conditions. Linear regression analyses compared asymmetry ratios. Polynomial regression analyses described the corrected and uncorrected cVEMP amplitude growth functions. While cVEMP amplitude increased with increased muscle contraction, the relationship was not linear or even proportionate. In the majority of cases, once muscle contraction reached a certain "threshold" level, cVEMP amplitude increased rapidly and then saturated. Normalizing cVEMP amplitudes did not remove the relationship between cVEMP amplitude and muscle contraction level. As muscle contraction increased, the normalized amplitude increased, and then decreased, corresponding with the observed amplitude saturation. Abnormal asymmetry ratios (based on values reported in the literature) were noted for four instances of uncorrected amplitude asymmetry at less than maximum muscle contraction levels. Amplitude normalization did not substantially change the number of observed asymmetry ratios. Because cVEMP amplitude did not typically grow proportionally with muscle contraction level, amplitude normalization did not lead to stable cVEMP amplitudes or asymmetry ratios across varying muscle contraction levels. Until we better understand the relationships between muscle contraction level, surface electromyography (EMG) estimates of muscle contraction level, and cVEMP amplitude, the application of normalization methods to correct cVEMP amplitude appears unjustified. American Academy of Audiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC44B1251U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC44B1251U"><span>High Frequency Radar Observations of Tidal Current Variability in the Lower Chesapeake Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Updyke, T. G.; Dusek, G.; Atkinson, L. P.</p> <p>2016-02-01</p> <p>Analysis of eight years of high frequency radar surface current observations in the lower Chesapeake Bay is presented with a focus on the variability of the tidal component of the surface circulation which accounts for a majority of the variance of the surface flow (typically 70-80% for the middle of the radar footprint). Variations in amplitude and phase of the major tidal constituents are examined in the context of water level, wind and river discharge data. Comparisons are made with harmonic analysis results from long-term records of current data measured by three current profilers operated by NOAA as part of the Chesapeake Bay Physical Oceanographic Real-Time System (PORTS). Preliminary results indicate that there is significant spatial variability in the M2 amplitude over the HF radar grid as well as temporal variability when harmonic analysis is performed using bi-monthly time segments over the course of the record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=definition+AND+validity+AND+reliability&pg=2&id=EJ297067','ERIC'); return false;" href="https://eric.ed.gov/?q=definition+AND+validity+AND+reliability&pg=2&id=EJ297067"><span>Scientific Inquiry: A Model for Online Searching.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Harter, Stephen P.</p> <p>1984-01-01</p> <p>Explores scientific inquiry as philosophical and behavioral model for online search specialist and information retrieval process. Nature of scientific research is described and online analogs to research concepts of variable, hypothesis formulation and testing, operational definition, validity, reliability, assumption, and cyclical nature of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5627079','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5627079"><span>Prey selection and dietary flexibility of three species of mammalian predator during an irruption of non-cyclic prey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dickman, Christopher R.</p> <p>2017-01-01</p> <p>Predators often display dietary shifts in response to fluctuating prey in cyclic systems, but little is known about predator diets in systems that experience non-cyclic prey irruptions. We tracked dietary shifts by feral cats (Felis catus), red foxes (Vulpes vulpes) and dingoes (Canis dingo) through a non-cyclic irruption of small mammalian prey in the Simpson Desert, central Australia. We predicted that all three predators would alter their diets to varying degrees as small mammals declined post irruption, and to test our predictions we live-trapped small mammals through the irruption event and collected scats to track predator diets. Red foxes and dingoes included a broader variety of prey in their diets as small mammals declined. Feral cats did not exhibit a similar dietary shift, but did show variable use and selectivity of small mammal species through the irruption cycle. Results were largely consistent with prior studies that highlighted the opportunistic feeding habits of the red fox and dingo. They also, however, showed that feral cats may exhibit less dietary flexibility in response to small mammal irruptions, emphasizing the importance of tracking predator diets before, during and after irruption events. PMID:28989739</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22254350','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22254350"><span>Variability of hand tremor in rest and in posture--a pilot study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rahimi, Fariborz; Bee, Carina; South, Angela; Debicki, Derek; Jog, Mandar</p> <p>2011-01-01</p> <p>Previous, studies have demonstrated variability in the frequency and amplitude in tremor between subjects and between trials in both healthy individuals and those with disease states. However, to date, few studies have examined the composition of tremor. Efficacy of treatment for tremor using techniques such as Botulinum neurotoxin type A (BoNT A) injection may benefit from a better understanding of tremor variability, but more importantly, tremor composition. In the present study, we evaluated tremor variability and composition in 8 participants with either essential tremor or Parkinson disease tremor using kinematic recording methods. Our preliminary findings suggest that while individual patients may have more intra-trial and intra-task variability, overall, task effect was significant only for amplitude of tremor. Composition of tremor varied among patients and the data suggest that tremor composition is complex involving multiple muscle groups. These results may support the value of kinematic assessment methods and the improved understanding of tremor composition in the management of tremor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21316295-wilson-loops-qcd-string-scattering-amplitudes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21316295-wilson-loops-qcd-string-scattering-amplitudes"><span>Wilson loops and QCD/string scattering amplitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Makeenko, Yuri; Olesen, Poul; Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O</p> <p>2009-07-15</p> <p>We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson loops. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-loop is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant whenmore » the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson loop can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson loops and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22486176-quantum-frequency-up-conversion-continuous-variable-entangled-states','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22486176-quantum-frequency-up-conversion-continuous-variable-entangled-states"><span>Quantum frequency up-conversion of continuous variable entangled states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Wenyuan; Wang, Ning; Li, Zongyang</p> <p></p> <p>We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pumpmore » field, making it a practical building block for quantum information processing and communication networks.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MPLB...3250268Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MPLB...3250268Z"><span>Solitons interaction and integrability for a (2+1)-dimensional variable-coefficient Broer-Kaup system in water waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Xue-Hui; Tian, Bo; Guo, Yong-Jiang; Li, Hui-Min</p> <p>2018-03-01</p> <p>Under investigation in this paper is a (2+1)-dimensional variable-coefficient Broer-Kaup system in water waves. Via the symbolic computation, Bell polynomials and Hirota method, the Bäcklund transformation, Lax pair, bilinear forms, one- and two-soliton solutions are derived. Propagation and interaction for the solitons are illustrated: Amplitudes and shapes of the one soliton keep invariant during the propagation, which implies that the transport of the energy is stable for the (2+1)-dimensional water waves; and inelastic interactions between the two solitons are discussed. Elastic interactions between the two parabolic-, cubic- and periodic-type solitons are displayed, where the solitonic amplitudes and shapes remain unchanged except for certain phase shifts. However, inelastically, amplitudes of the two solitons have a linear superposition after each interaction which is called as a soliton resonance phenomenon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26951654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26951654"><span>Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli</p> <p>2016-03-22</p> <p>Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.4840B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.4840B"><span>The effect of tides on self-driven stellar pulsations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balona, L. A.</p> <p>2018-06-01</p> <p>In addition to rotation, a tidal force in a binary introduces another axis of symmetry joining the two centres of mass. If the stars are in circular orbit and synchronous rotation, a pulsation with spherical harmonic degree l is split into l + 1 frequencies. In the observer's frame of reference, these in turn are further split into equidistant frequencies spaced by multiples of the orbital frequency. In the periodogram of a pulsating star, tidal action can be seen as low-amplitude equidistant splitting of each oscillation mode which are not harmonics of the orbital frequency. This effect is illustrated using Kepler observations of the heartbeat variable, KIC 4142768, which is also a δ Scuti star. Even though the theory is only applicable to circular orbits, the expected equidistant splitting is clearly seen in all four of the highest amplitude modes. This results in amplitude variability of each pulsation mode with a period equal to the orbital period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26427338','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26427338"><span>Effect of walking speed on the gait of king penguins: An accelerometric approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Willener, Astrid S T; Handrich, Yves; Halsey, Lewis G; Strike, Siobhán</p> <p>2015-12-21</p> <p>Little is known about non-human bipedal gaits. This is probably due to the fact that most large animals are quadrupedal and that non-human bipedal animals are mostly birds, whose primary form of locomotion is flight. Very little research has been conducted on penguin pedestrian locomotion with the focus instead on their associated high energy expenditure. In animals, tri-axial accelerometers are frequently used to estimate physiological energy cost, as well as to define the behaviour pattern of a species, or the kinematics of swimming. In this study, we showed how an accelerometer-based technique could be used to determine the biomechanical characteristics of pedestrian locomotion. Eight king penguins, which represent the only family of birds to have an upright bipedal gait, were trained to walk on a treadmill. The trunk tri-axial accelerations were recorded while the bird was walking at four different speeds (1.0, 1.2, 1.4 and 1.6km/h), enabling the amplitude of dynamic body acceleration along the three axes (amplitude of DBAx, DBAy and DBAz), stride frequency, waddling and leaning amplitude, as well as the leaning angle to be defined. The magnitude of the measured variables showed a significant increase with increasing speed, apart from the backwards angle of lean, which decreased with increasing speed. The variability of the measured variables also showed a significant increase with speed apart from the DBAz amplitude, the waddling amplitude, and the leaning angle, where no significant effect of the walking speed was found. This paper is the first approach to describe 3D biomechanics with an accelerometer on wild animals, demonstrating the potential of this technique. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28645730','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28645730"><span>The relation of digital vascular function to cardiovascular risk factors in African-Americans using digital tonometry: the Jackson Heart Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McClendon, Eric E; Musani, Solomon K; Samdarshi, Tandaw E; Khaire, Sushant; Stokes, Donny; Hamburg, Naomi M; Sheffy, Koby; Mitchell, Gary F; Taylor, Herman R; Benjamin, Emelia J; Fox, Ervin R</p> <p>2017-06-01</p> <p>Digital vascular tone and function, as measured by peripheral arterial tonometry (PAT), are associated with cardiovascular risk and events in non-Hispanic whites. There are limited data on relations between PAT and cardiovascular risk in African-Americans. PAT was performed on a subset of Jackson Heart Study participants using a fingertip tonometry device. Resting digital vascular tone was assessed as baseline pulse amplitude. Hyperemic vascular response to 5 minutes of ischemia was expressed as the PAT ratio (hyperemic/baseline amplitude ratio). Peripheral augmentation index (AI), a measure of relative wave reflection, also was estimated. The association of baseline pulse amplitude (PA), PAT ratio, and AI to risk factors was assessed using stepwise multivariable models. The study sample consisted of 837 participants from the Jackson Heart Study (mean age, 54 ± 11 years; 61% women). In stepwise multivariable regression models, baseline pulse amplitude was related to male sex, body mass index, and diastolic blood pressure (BP), accounting for 16% of the total variability of the baseline pulse amplitude. Age, male sex, systolic BP, diastolic BP, antihypertensive medication, and prevalent cardiovascular disease contributed to 11% of the total variability of the PAT ratio. Risk factors (primarily age, sex, and heart rate) explained 47% of the total variability of the AI. We confirmed in our cohort of African-Americans, a significant relation between digital vascular tone and function measured by PAT and multiple traditional cardiovascular risk factors. Further studies are warranted to investigate the utility of these measurements in predicting clinical outcomes in African-Americans. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AIPC..784..685B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AIPC..784..685B"><span>Cyclical period changes in cataclysmic variables: evidence of magnetic activity cycles in the mass-donor star</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borges, B. W.; Baptista, R.</p> <p>2005-09-01</p> <p>Cataclymic variables (CVs) are semi-detached binary systems in which a main sequence late-type star (the secondary) fills its Roche lobe and transfers matter to a white dwarf (the primary) through the inner Lagragian point L1. Evolutive models of CVs predicts that the orbital periods Porb of these systems would decrease on time scales of 108 - 109 years due to angular momentum losses either by magnetic braking via the secondary star's wind (Porb > 3 hr) or by emission of gravitational radiation (Porb > 3 hr). These models try to explain the observed gap of systems with Porb in the range of ~ 2 to 3 hr as the consequence of a sharp reduction of magnetic field open lines when the secondary star become fully convective (at Porb ~ 3 hr). However, up to now no well-studied CVs show evidence of period decrease. Instead, most well-observed eclipsing CVs show cyclical period changes probably associated to solar-type (quasi-periodic and/or multiperiodic) magnetic activity cycles in the secondary star. The fast spinning secondaries of CVs, covering a range of masses and rotation periods, are an important laboratory to understand magnetic activities cycles in late type stars. In the present work, we report the investigation of cyclical period changes in IP Peg: CV with orbital periods of 3.8 hr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27765760','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27765760"><span>Advanced spatiotemporal mapping methods give new insights into the coordination of contractile activity in the stomach of the rat.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lentle, R G; Reynolds, G W; Hulls, C M; Chambers, J P</p> <p>2016-12-01</p> <p>We used spatiotemporal mapping of strain rate to determine the direction of propagation and amplitudes of the longitudinal and circumferential components of antrocorporal (AC) contractions and fundal contractions in the rat stomach maintained ex vivo and containing a volume of fluid that was within its normal functional capacity. In the region of the greater curvature the longitudinal and circular components of AC contractions propagated synchronously at right angles to the arciform geometric axis of the stomach. However, the configuration of AC contractions was U shaped, neither the circular nor the longitudinal component of contractions being evident in the upper proximal corpus. Similarly, in the distal upper antrum of some preparations, circumferential components propagated more rapidly than longitudinal components. Ongoing "high-frequency, low-amplitude myogenic contractions" were identified in the upper proximal gastric corpus and on the anterior and posterior wall of the fundus. The amplitudes of these contractions were modulated in the occluded stomach by low-frequency pressure waves that occurred spontaneously. Hence the characteristics of phasic contractions vary regionally in the antrum and corpus and a previously undescribed high-frequency contractile component was identified in the proximal corpus and fundus, the latter being modulated in synchrony with cyclic variation in intrafundal pressure in the occluded fundus. Copyright © 2016 the American Physiological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23545114','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23545114"><span>Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heinz, Stefan; Balle, Frank; Wagner, Guntram; Eifler, Dietmar</p> <p>2013-12-01</p> <p>Accelerated fatigue tests with Ti6Al4V were carried out using a 20kHz ultrasonic testing facility to investigate the cyclic deformation behavior in the Very High Cycle Fatigue (VHCF) regime in detail. Beside parameters like the ultrasonic generator power and the displacement of the specimen, a 3D laser scanning vibrometer was used to characterize the oscillation and fatigue behavior of the Ti-alloy. The course of the S-N(f) curve at the stress ratio R=-1 shows a significant decrease of the bearable stress amplitude and a change from surface to subsurface failures in the VHCF regime for more than 10⁷ cycles. Microscopic investigations of the distribution of the α- and β-phase of Ti6Al4V indicate that inhomogeneities in the phase distribution are reasons for the internal crack initiation. High resolution vibrometry was used to visualize the eigenmode of the designed VHCF-specimen at 20 kHz in the initial state and to indicate local changes in the eigenmodes as a result of progressing fatigue damage. Non-contact strain measurements were realized and used to determine the stress amplitude. The determined stress amplitudes were correlated with strain gauge measurements and finite element analysis. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19656636','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19656636"><span>Tremor amplitude and tremor frequency variability in Parkinson's disease is dependent on activity and synchronisation of central oscillators in basal ganglia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bartolić, Andrej; Pirtosek, Zvezdan; Rozman, Janez; Ribaric, Samo</p> <p>2010-02-01</p> <p>Rest tremor is one of the four main clinical features of Parkinson's disease (PD), besides rigidity, bradykinesia and postural instability. While rigidity, bradykinesia and postural instability can be explained with changes in neurotransmitter concentrations and neuronal activity in basal ganglia, the pathogenesis of parkinsonian tremor is not fully understood. According to the leading hypothesis tremor is generated by neurons or groups of neurons in the basal ganglia which act as central oscillators and generate repetitive impulses to the muscles of the body parts involved. The exact morphological substrate for central oscillators and the mechanisms leading to their activation are still an object of debate. Peripheral neural structures exert modulatory influence on tremor amplitude, but not on tremor frequency. We hypothesise that rest tremor in PD is the result of two mechanisms: increased activity and increased synchronisation of central oscillators. We tested our hypothesis by demonstrating that the reduction in rest tremor amplitude is accompanied by increased variability of tremor frequency. The reduction of tremor amplitude is attributed to decreased activity and poor synchronisation of central oscillators in basal ganglia; the increased variability of tremor frequency is attributed to poor synchronisation of the central oscillators. In addition, we demonstrated that the recurrence of clinically visible rest tremor is accompanied by a reduction in tremor frequency variability. This reduction is attributed to increased synchronisation of central oscillators in basal ganglia. We argue that both mechanisms, increased activity of central oscillators and increased synchronisation of central oscillators, are equally important and we predict that tremor becomes clinically evident only when both mechanisms are active at the same time. In circumstances when one of the mechanisms is suppressed tremor amplitude becomes markedly reduced. On the one hand, if the number of active central oscillators is very low, the muscle-stimulating impulses are too weak to cause clinically evident tremor. On the other hand, if central oscillator synchronisation is poor, the impulses originating from different central oscillators are not in phase and thus cancel out, again leading to reduced stimulation of muscles and reduced tremor amplitude. Our hypothesis is supported by our measurements on patients with PD and by experimental data cited in the literature. The proposed two mechanisms could have clinical implications. New medical treatments, which would specifically target only one of the proposed mechanisms (oscillator activity or synchronisation), could be effective in reducing tremor amplitude and thus supplement established antiparkinsonian treatments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1312576','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1312576"><span>Predictive modeling and reducing cyclic variability in autoignition engines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob</p> <p>2016-08-30</p> <p>Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>