Sample records for variable amplitude fatigue

  1. Fatigue life prediction of rotor blade composites: Validation of constant amplitude formulations with variable amplitude experiments

    NASA Astrophysics Data System (ADS)

    Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort.

  2. Fatigue crack growth under variable amplitude loading

    NASA Astrophysics Data System (ADS)

    Sidawi, Jihad A.

    1994-09-01

    Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.

  3. An accurate fatigue damage model for welded joints subjected to variable amplitude loading

    NASA Astrophysics Data System (ADS)

    Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.

    2017-12-01

    Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.

  4. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Gates, Nicholas R.

    The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue

  5. Fatigue Behavior of AM60B Subjected to Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Kang, H.; Kari, K.; Khosrovaneh, A. K.; Nayaki, R.; Su, X.; Zhang, L.; Lee, Y.-L.

    Magnesium alloys are considered as an alternative material to reduce vehicle weight due to their weight which are 33% lighter than aluminum alloys. There has been a significant expansion in the applications of magnesium alloys in automotives components in an effort to improve fuel efficiency through vehicle mass reduction. In this project, a simple front shock tower of passenger vehicle is constructed with various magnesium alloys. To predict the fatigue behavior of the structure, fatigue properties of the magnesium alloy (AM60B) were determined from strain controlled fatigue tests. Notched specimens were also tested with three different variable amplitude loading profiles obtained from the shock tower of the similar size of vehicle. The test results were compared with various fatigue prediction results. The effect of mean stress and fatigue prediction method were discussed.

  6. Variable amplitude fatigue crack growth characteristics of railroad tank car steel volume III

    DOT National Transportation Integrated Search

    2006-12-01

    The load history that railroad tank cars experience has a significant variable amplitude characteristic. Although previous efforts have been directed toward understanding baseline fatigue crack growth behavior of TC-128B steel as a function of materi...

  7. Analyses of Fatigue and Fatigue-Crack Growth under Constant- and Variable-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily crack growth from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using small-crack theory under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta K(sub eff)) under constant-amplitude loading. Modifications to the delta K(sub eff)-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  8. Constant and variable amplitude ultrasonic fatigue of 2024-T351 aluminium alloy at different load ratios.

    PubMed

    Mayer, H; Fitzka, M; Schuller, R

    2013-12-01

    Ultrasonic fatigue testing equipment is presented that is capable of performing constant amplitude (CA) and variable amplitude (VA) experiments at different constant load ratios. This equipment is used to study cyclic properties of aluminium alloy 2024-T351 in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime at load ratios R=-1 and R=0.5. CA loading does not reveal a fatigue limit below 10¹⁰ cycles. Cracks leading to VHCF failure start at broken constituent particles. Specimens that survived more than 10¹⁰ cycles at R=-1 contain non-propagating cracks of lengths below grain size. Resonance frequency and nonlinearity parameter β(rel) show changes of vibration properties of specimens at low fractions of their VHCF lifetime. VA lifetimes are measured in the HCF and VHCF regime and compared with Miner calculations. Damage sums decrease with decreasing load (and increasing mean lifetimes) and are lower for R=0.5 than R=-1. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Prediction of composite fatigue life under variable amplitude loading using artificial neural network trained by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Rohman, Muhamad Nur; Hidayat, Mas Irfan P.; Purniawan, Agung

    2018-04-01

    Neural networks (NN) have been widely used in application of fatigue life prediction. In the use of fatigue life prediction for polymeric-base composite, development of NN model is necessary with respect to the limited fatigue data and applicable to be used to predict the fatigue life under varying stress amplitudes in the different stress ratios. In the present paper, Multilayer-Perceptrons (MLP) model of neural network is developed, and Genetic Algorithm was employed to optimize the respective weights of NN for prediction of polymeric-base composite materials under variable amplitude loading. From the simulation result obtained with two different composite systems, named E-glass fabrics/epoxy (layups [(±45)/(0)2]S), and E-glass/polyester (layups [90/0/±45/0]S), NN model were trained with fatigue data from two different stress ratios, which represent limited fatigue data, can be used to predict another four and seven stress ratios respectively, with high accuracy of fatigue life prediction. The accuracy of NN prediction were quantified with the small value of mean square error (MSE). When using 33% from the total fatigue data for training, the NN model able to produce high accuracy for all stress ratios. When using less fatigue data during training (22% from the total fatigue data), the NN model still able to produce high coefficient of determination between the prediction result compared with obtained by experiment.

  10. Damage accumulation of bovine bone under variable amplitude loads.

    PubMed

    Campbell, Abbey M; Cler, Michelle L; Skurla, Carolyn P; Kuehl, Joseph J

    2016-12-01

    Stress fractures, a painful injury, are caused by excessive fatigue in bone. This study on damage accumulation in bone sought to determine if the Palmgren-Miner rule (PMR), a well-known linear damage accumulation hypothesis, is predictive of fatigue failure in bone. An electromagnetic shaker apparatus was constructed to conduct cyclic and variable amplitude tests on bovine bone specimens. Three distinct damage regimes were observed following fracture. Fractures due to a low cyclic amplitude loading appeared ductile ( 4000 μ ϵ ), brittle due to high cyclic amplitude loading (> 9000 μ ϵ ), and a combination of ductile and brittle from mid-range cyclic amplitude loading (6500 -6750 μ ϵ ). Brittle and ductile fracture mechanisms were isolated and mixed, in a controlled way, into variable amplitude loading tests. PMR predictions of cycles to failure consistently over-predicted fatigue life when mixing isolated fracture mechanisms. However, PMR was not proven ineffective when used with a single damage mechanism.

  11. Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily "crack growth" from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using "small-crack theory" under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta-Keff) under constant-amplitude loading. Modifications to the delta-Keff-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small-and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  12. A Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Irvine, Tom

    2013-01-01

    A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.

  13. Ae Behavior of Smart Stress Memory Patch after Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Fujino, Y.; Nambu, S.; Enoki, M.

    Recently, the structural health monitoring becomes increasingly great important to assure the ease and safety of our life, and it is required significantly to develop non-destructive evaluation for structures such as bridges and tunnels. Some sacrificed specimens have been developed to evaluate the fatigue damage of structures such as fatigue cycles and residual lifetime, but it can be applied only when the stress history is known beforehand. These fatigue sensors need no cable and can be used at low cost in contrast to strain gage. In previous study, a smart stress memory patch was developed as a new fatigue sensor. The patch can measure simultaneously the maximum stress, stress amplitude and the number of fatigue cycles by crack length measurement and Kaiser effect of Acoustic Emission (AE). The crack growth behavior under constant amplitude (CA) loading has been investigated, and AE behavior also has been evaluated only after CA loading. However, AE characteristics after variable amplitude (VA) loading in service are extremely important. Moreover, it is very important to control AE behavior of the smart patch in order to evaluate the applied stress using Kaiser effect. In this study, fatigue test with single overload was investigated to evaluate its influence. Moreover, effect of crack length and heat treatment on AE behavior was also investigated. Finally, AE behavior of the patch was evaluated after fatigue CA loading with overload or VA loading with log-normal distribution and overload.

  14. Effect of Variable Amplitude Blocks' Ordering on the Functional Fatigue of Superelastic NiTi Wires

    NASA Astrophysics Data System (ADS)

    Soul, Hugo; Yawny, Alejandro

    2017-12-01

    Accumulation of superelastic cycles in NiTi uniaxial element generates changes on the stress-strain response. Basically, there is an uneven drop of martensitic transformation stress plateaus and an increase of residual strain. This evolution associated with deterioration of superelastic characteristics is referred to as "functional fatigue" and occurs due to irreversible microstructural changes taking place each time a material domain transforms. Unlike complete cycles, for which straining is continued up to elastic loading of martensite, partial cycles result in a differentiated evolution of those material portions affected by the transformation. It is then expected that the global stress-strain response would reflect the previous cycling history of the specimen. In the present work, the consequences of cycling of NiTi wires using blocks of different strain amplitudes interspersed in different sequences are analyzed. The effect of successive increasing, successive decreasing, and interleaved strain amplitudes on the evolution of the superelastic response is characterized. The feasibility of postulating a functional fatigue criterion similar to the Miner's cumulative damage law used in structural fatigue analysis is discussed. The relation of the observed stress-strain response with the transformational history of the specimen can be rationalized by considering that the stress-induced transformation proceeds via localized propagating fronts.

  15. Axial and Torsional Load-Type Sequencing in Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    2001-01-01

    The experiments described herein were performed to determine whether damage imposed by axial loading interacts with damage imposed by torsional loading. This paper is a follow on to a study that investigated effects of load-type sequencing on the cumulative fatigue behavior of a cobalt base superalloy, Haynes 188 at 538 C Both the current and the previous study were used to test the applicability of cumulative fatigue damage models to conditions where damage is imposed by different loading modes. In the previous study, axial and torsional two load level cumulative fatigue experiments were conducted, in varied combinations, with the low-cycle fatigue (high amplitude loading) applied first. In present study, the high-cycle fatigue (low amplitude loading) is applied initially. As in the previous study, four sequences (axial/axial, torsion/torsion, axial/torsion, and torsion/axial) of two load level cumulative fatigue experiments were performed. The amount of fatigue damage contributed by each of the imposed loads was estimated by both the Palmgren-Miner linear damage rule (LDR) and the non-linear damage curve approach (DCA). Life predictions for the various cumulative loading combinations are compared with experimental results.

  16. Fatigue crack identification method based on strain amplitude changing

    NASA Astrophysics Data System (ADS)

    Guo, Tiancai; Gao, Jun; Wang, Yonghong; Xu, Youliang

    2017-09-01

    Aiming at the difficulties in identifying the location and time of crack initiation in the castings of helicopter transmission system during fatigue tests, by introducing the classification diagnostic criteria of similar failure mode to find out the similarity of fatigue crack initiation among castings, an engineering method and quantitative criterion for detecting fatigue cracks based on strain amplitude changing is proposed. This method is applied on the fatigue test of a gearbox housing, whose results indicates: during the fatigue test, the system alarms when SC strain meter reaches the quantitative criterion. The afterwards check shows that a fatigue crack less than 5mm is found at the corresponding location of SC strain meter. The test result proves that the method can provide accurate test data for strength life analysis.

  17. Generating Fatigue Crack Growth Thresholds with Constant Amplitude Loads

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James C., J.; Forman, Royce G.

    2002-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. Some experimental procedures tend to induce load history effects that result in remote crack closure from plasticity. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor, K, will increase, as will the crack growth rate, da/dN. A fatigue crack growth threshold test procedure is developed and experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R.

  18. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

    NASA Astrophysics Data System (ADS)

    Wang, B. J.; Xu, D. K.; Wang, S. D.; Han, E. H.

    2017-12-01

    The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.

  19. Study the Cyclic Plasticity Behavior of 508 LAS under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Barua, Bipul; Soppet, William K.

    This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in airmore » or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.« less

  20. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  1. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan

    2016-03-01

    The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

  2. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    PubMed Central

    Feng, Aihen; Chen, Daolun; Li, Cheng; Gu, Xijia

    2010-01-01

    We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor. PMID:22163621

  3. Consolidation of fatigue and fatigue-crack-propagation data for design use

    NASA Technical Reports Server (NTRS)

    Rice, R. C.; Davies, K. B.; Jaske, C. E.; Feddersen, C. E.

    1975-01-01

    Analytical methods developed for consolidation of fatigue and fatigue-crack-propagation data for use in design of metallic aerospace structural components are evaluated. A comprehensive file of data on 2024 and 7075 aluminums, Ti-6Al-4V alloy, and 300M steel was established by obtaining information from both published literature and reports furnished by aerospace companies. Analyses are restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Both fatigue and fatigue-crack-propagation data are analyzed on a statistical basis using a least-squares regression approach. For fatigue, an equivalent strain parameter is used to account for mean stress or stress ratio effects and is treated as the independent variable; cyclic fatigue life is considered to be the dependent variable. An effective stress-intensity factor is used to account for the effect of load ratio on fatigue-crack-propagation and treated as the independent variable. In this latter case, crack-growth rate is considered to be the dependent variable. A two term power function is used to relate equivalent strain to fatigue life, and an arc-hyperbolic-tangent function is used to relate effective stress intensity to crack-growth rate.

  4. Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment

    PubMed Central

    Giurgiutiu, Victor

    2017-01-01

    Piezoelectric wafer active sensors (PWAS) are commonly used for detecting Lamb waves for structural health monitoring application. However, in most applications of active sensing, the signals are of high-amplitude and easy to detect. In this article, we have shown a new avenue of using the PWAS transducer for detecting the low-amplitude fatigue-crack related acoustic emission (AE) signals. Multiphysics finite element (FE) simulations were performed with two PWAS transducers bonded to the structure. Various configurations of the sensors were studied by using the simulations. One PWAS was placed near to the fatigue-crack and the other one was placed at a certain distance from the crack. The simulated AE event was generated at the crack tip. The simulation results showed that both PWAS transducers were capable of sensing the AE signals. To validate the multiphysics simulation results, an in-situ AE-fatigue experiment was performed. Two PWAS transducers were bonded to the thin aerospace test coupon. The fatigue crack was generated in the test coupon which had produced low-amplitude acoustic waves. The low-amplitude fatigue-crack related AE signals were successfully captured by the PWAS transducers. The distance effect on the captured AE signals was also studied. It has been shown that some high-frequency contents of the AE signal have developed as they travel away from the crack. PMID:28817081

  5. Variable-amplitude oscillatory shear response of amorphous materials.

    PubMed

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  6. Effects of Changing Stress Amplitude on the Rate of Fatigue-Crack Propagation in Two Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hudson, C. Michael; Hardrath, Herbert F.

    1961-01-01

    A series of fatigue tests with specimens subjected to constant amplitude and two-step axial loads were conducted on 12-inch-wide sheet specimens of 2024-T3 and 7075-T6 aluminum alloy to study the effects of a change in stress level on fatigue-crack propagation. Comparison of the results of the tests in which the specimens were tested at first a high and then a low stress level with those of the constant-stress- amplitude tests indicated that crack propagation was generally delayed after the transition to the lower stress level. In the tests in which the specimens were tested at first a low and then a high stress level, crack propagation continued at the expected rate after the change in stress levels.

  7. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  8. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil

    2016-08-01

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.

  9. Understanding multidecadal variability in ENSO amplitude

    NASA Astrophysics Data System (ADS)

    Russell, A.; Gnanadesikan, A.

    2013-12-01

    Sea surface temperatures (SSTs) in the tropical Pacific vary as a result of the coupling between the ocean and atmosphere driven largely by the El Niño - Southern Oscillation (ENSO). ENSO has a large impact on the local climate and hydrology of the tropical Pacific, as well as broad-reaching effects on global climate. ENSO amplitude is known to vary on long timescales, which makes it very difficult to quantify its response to climate change and constrain the physical processes that drive it. In order to assess the extent of unforced multidecadal changes in ENSO variability, a linear regression of local SST changes is applied to the GFDL CM2.1 model 4000-yr pre-industrial control run. The resulting regression coefficient strengths, which represent the sensitivity of SST changes to thermocline depth and zonal wind stress, vary by up to a factor of 2 on multi-decadal time scales. This long-term modulation in ocean-atmosphere coupling is highly correlated with ENSO variability, but do not explain the reasons for such variability. Variation in the relationship between SST changes and wind stress points to a role for changing stratification in the central equatorial Pacific in modulating ENSO amplitudes with stronger stratification reducing the response to winds. The main driving mechanism we have identified for higher ENSO variance are changes in the response of zonal winds to SST anomalies. The shifting convection and precipitation patterns associated with the changing state of the atmosphere also contribute to the variability of the regression coefficients. These mechanisms drive much of the variability in ENSO amplitude and hence ocean-atmosphere coupling in the tropical Pacific.

  10. Fatigue, Creep-Fatigue, and Thermomechanical Fatigue Life Testing of Alloys

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; McGaw, Michael A.

    2000-01-01

    The fatigue crack initiation resistance of an alloy is determined by conducting a series of tests over a range of values of stress amplitude or strain range. The observed number of cycles to failure is plotted against the stress amplitude or strain range to obtain a fatigue curve. The fatigue properties quoted for an alloy are typically the constants used in the equation(s) that describe the fatigue curve. Fatigue lives of interest may be as low as 10(exp 2) or higher than 10(exp 9) cycles. Because of the enormous scatter associated with fatigue, dozens of tests may be needed to confidently establish a fatigue curve, and the cost may run into several thousands of dollars. To further establish the effects on fatigue life of the test temperature, environment, alloy condition, mean stress effects, creep-fatigue effects, thermomechanical cycling, etc. requires an extraordinarily large and usually very costly test matrix. The total effort required to establish the fatigue resistance of an alloy should not be taken lightly. Fatigue crack initiation tests are conducted on relatively small and presumed to be initially crack-free, samples of an alloy that are intended to be representative of the alloy's metallurgical and physical condition. Generally, samples are smooth and have uniformly polished surfaces within the test section. Some may have intentionally machined notches of well-controlled geometry, but the surface at the root of the notch is usually not polished. The purpose of polishing is to attain a reproducible surface finish. This is to eliminate surface finish as an uncontrolled variable. Representative test specimen geometries will be discussed later. Test specimens are cyclically loaded until macroscopically observable cracks initiate and eventually grow to failure. Normally, the fatigue failure life of a specimen is defined as the number of cycles to separation of the specimen into two pieces. Alternative definitions are becoming more common, particularly for

  11. Amplitude Variability in gamma Dor and delta Sct Stars Observed by Kepler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzik, Joyce Ann; Kosak, Mary Katherine; Bradley, Paul Andrew

    2015-08-17

    The NASA Kepler spacecraft data revealed a large number of new multimode nonradially pulsating gamma Dor and delta Sct variable stars. The Kepler high-precision long time-series photometry makes it possible to study amplitude variations of the frequencies, and recent literature on amplitude and frequency variations in nonradially pulsating variables is summarized. Several methods are applied to study amplitude variability in about a dozen gamma Doradus or delta Scuti candidate variable stars observed for several quarters as part of the Kepler Guest Observer program. The magnitude and timescale of the amplitude variations are discussed, along with the presence or absence ofmore » correlations between amplitude variations for different frequencies of a given star. Proposed causes of amplitude spectrum variability that will require further investigation are also discussed.« less

  12. Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.

    1992-01-01

    A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path delection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys.

  13. Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.

    1991-01-01

    A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path deflection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys.

  14. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    PubMed Central

    Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655

  15. Statistical characterization of the fatigue behavior of composite lamina

    NASA Technical Reports Server (NTRS)

    Yang, J. N.; Jones, D. L.

    1979-01-01

    A theoretical model was developed to predict statistically the effects of constant and variable amplitude fatigue loadings on the residual strength and fatigue life of composite lamina. The parameters in the model were established from the results of a series of static tensile tests and a fatigue scan and a number of verification tests were performed. Abstracts for two other papers on the effect of load sequence on the statistical fatigue of composites are also presented.

  16. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelluccio, Gustavo M.; McDowell, David L.

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less

  17. Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals

    DOE PAGES

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-05-22

    The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less

  18. Fatigue reliability of steel highway bridge details.

    DOT National Transportation Integrated Search

    2001-08-01

    The expected life of a steel highway bridge subjected to random, variable-amplitude traffic cycles is highly dependent on damage accumulation caused by various fatigue mechanisms. This study addressed some of the issues associated with developing pro...

  19. Fatigue crack growth spectrum simplification: Facilitation of on-board damage prognosis systems

    NASA Astrophysics Data System (ADS)

    Adler, Matthew Adam

    2009-12-01

    Better lifetime predictions of systems subjected to fatigue loading are needed in support of the optimization of the costs of life-cycle engineering. In particular, the climate is especially encouraging for the development of safer aircraft. One issue is that aircraft experience complex fatigue loading and current methods for the prediction of fatigue damage accumulation rely on intensive computational tools that are not currently carried onboard during flight. These tools rely on complex models that are made more difficult by the complicated load spectra themselves. This presents an overhead burden as offline analysis must be performed at an offsite facility. This architecture is thus unable to provide online, timely information for on-board use. The direct objective of this research was to facilitate the real-time fatigue damage assessments of on-board systems with a particular emphasis on aging aircraft. To achieve the objective, the goal of this research was to simplify flight spectra. Variable-amplitude spectra, in which the load changes on a cycle-by-cycle basis, cannot readily be supported by an onboard system because the models required to predict fatigue crack growth during variable-amplitude loading are too complicated. They are too complicated because variable-amplitude fatigue crack growth analysis must be performed on a cycle-by-cycle basis as no closed-form solution exists. This makes these calculations too time-consuming and requires impractical, heavy onboard systems or offsite facilities. The hypothesis is to replace a variable-amplitude spectrum with an equivalent constant-amplitude spectrum. The advantage is a dramatic reduction in the complexity of the problem so that damage predictions can be made onboard by simple, fast calculations in real-time without the need to add additional weight to the aircraft. The intent is to reduce the computational burden and facilitate on-board projection of damage evolution and prediction for the accurate

  20. Speed but not amplitude of visual feedback exacerbates force variability in older adults.

    PubMed

    Kim, Changki; Yacoubi, Basma; Christou, Evangelos A

    2018-06-23

    Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.

  1. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13

    NASA Astrophysics Data System (ADS)

    Zeng, Yan; Zuo, Peng-peng; Wu, Xiao-chun; Xia, Shu-wen

    2017-09-01

    Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks.

  2. GSC4813-0981 = V921 Mon, a new low-amplitude δ Scuti star with variable amplitude

    NASA Astrophysics Data System (ADS)

    Galeev, A.; Bikmaev, I.; Shimansky, V.; Deminova, N.

    2014-11-01

    GSC 4813-0981 = V921 Mon is a low-amplitude δ Scuti-type variable with an amplitude of 0.018^m-0.027^m in different bands and a period of 48.5 minutes. The fundamental parameters of the atmosphere and physical characteristics, determined from medium-resolution spectra, are: T_{eff}=8700 K, log g=3.95 dex, [M/H]=0, M=1.7 M_{⊙}, R=2.3 R_{⊙}. We performed a long-term analysis of the variations using a ten-year data set of CCD observations (2003-2013) acquired in BVR with the 1.5-m Russian-Turkish telescope (RTT150, TUBITAK National Observatory). A preliminary result is that the amplitude of the variability changes; it was decreasing during 2003-2008, but is now increasing.

  3. Mental workload measurement: Event-related potentials and ratings of workload and fatigue

    NASA Technical Reports Server (NTRS)

    Biferno, M. A.

    1985-01-01

    Event-related potentials were elicited when a digitized word representing a pilot's call-sign was presented. This auditory probe was presented during 27 workload conditions in a 3x3x3 design where the following variables were manipulated: short-term load, tracking task difficulty, and time-on-task. Ratings of workload and fatigue were obtained between each trial of a 2.5-hour test. The data of each subject were analyzed individually to determine whether significant correlations existed between subjective ratings and ERP component measures. Results indicated that a significant number of subjects had positive correlations between: (1) ratings of workload and P300 amplitude, (2) ratings of workload and N400 amplitude, and (3) ratings of fatigue and P300 amplitude. These data are the first to show correlations between ratings of workload or fatigue and ERP components thereby reinforcing their validity as measures of mental workload and fatigue.

  4. Fatigue-Crack-Growth Structural Analysis

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1986-01-01

    Elastic and plastic deformations calculated under variety of loading conditions. Prediction of fatigue-crack-growth lives made with FatigueCrack-Growth Structural Analysis (FASTRAN) computer program. As cyclic loads are applied to initial crack configuration, FASTRAN predicts crack length and other parameters until complete break occurs. Loads are tensile or compressive and of variable or constant amplitude. FASTRAN incorporates linear-elastic fracture mechanics with modifications of load-interaction effects caused by crack closure. FASTRAN considered research tool, because of lengthy calculation times. FASTRAN written in FORTRAN IV for batch execution.

  5. MUSCLE WEAKNESS, FATIGUE, AND TORQUE VARIABILITY: EFFECTS OF AGE AND MOBILITY STATUS

    PubMed Central

    KENT-BRAUN, JANE A.; CALLAHAN, DAMIEN M.; FAY, JESSICA L.; FOULIS, STEPHEN A.; BUONACCORSI, JOHN P.

    2013-01-01

    Introduction Whereas deficits in muscle function, particularly power production, develop in old age and are risk factors for mobility impairment, a complete understanding of muscle fatigue during dynamic contractions is lacking. We tested hypotheses related to torque-producing capacity, fatigue resistance, and variability of torque production during repeated maximal contractions in healthy older, mobility-impaired older, and young women. Methods Knee extensor fatigue (decline in torque) was measured during 4 min of dynamic contractions. Torque variability was characterized using a novel 4-component logistic regression model. Results Young women produced more torque at baseline and during the protocol than older women (P < 0.001). Although fatigue did not differ between groups (P = 0.53), torque variability differed by group (P = 0.022) and was greater in older impaired compared with young women (P = 0.010). Conclusions These results suggest that increased torque variability may combine with baseline muscle weakness to limit function, particularly in older adults with mobility impairments. PMID:23674266

  6. Fatigue crack growth with single overload - Measurement and modeling

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J., Jr.; Dexter, R. J.

    1987-01-01

    This paper compares experiments with an analytical model of fatigue crack growth under variable amplitude. The stereoimaging technique was used to measure displacements near the tips of fatigue cracks undergoing simple variations in load amplitude-single overloads and overload/underload combinations. Measured displacements were used to compute strains, and stresses were determined from the strains. Local values of crack driving force (Delta-K effective) were determined using both locally measured opening loads and crack tip opening displacements. Experimental results were compared with simulations made for the same load variation conditions using Newman's FAST-2 model. Residual stresses caused by overloads, crack opening loads, and growth retardation periods were compared.

  7. Fatigue shifts and scatters heart rate variability in elite endurance athletes.

    PubMed

    Schmitt, Laurent; Regnard, Jacques; Desmarets, Maxime; Mauny, Fréderic; Mourot, Laurent; Fouillot, Jean-Pierre; Coulmy, Nicolas; Millet, Grégoire

    2013-01-01

    This longitudinal study aimed at comparing heart rate variability (HRV) in elite athletes identified either in 'fatigue' or in 'no-fatigue' state in 'real life' conditions. 57 elite Nordic-skiers were surveyed over 4 years. R-R intervals were recorded supine (SU) and standing (ST). A fatigue state was quoted with a validated questionnaire. A multilevel linear regression model was used to analyze relationships between heart rate (HR) and HRV descriptors [total spectral power (TP), power in low (LF) and high frequency (HF) ranges expressed in ms(2) and normalized units (nu)] and the status without and with fatigue. The variables not distributed normally were transformed by taking their common logarithm (log10). 172 trials were identified as in a 'fatigue' and 891 as in 'no-fatigue' state. All supine HR and HRV parameters (Beta±SE) were significantly different (P<0.0001) between 'fatigue' and 'no-fatigue': HRSU (+6.27±0.61 bpm), logTPSU (-0.36±0.04), logLFSU (-0.27±0.04), logHFSU (-0.46±0.05), logLF/HFSU (+0.19±0.03), HFSU(nu) (-9.55±1.33). Differences were also significant (P<0.0001) in standing: HRST (+8.83±0.89), logTPST (-0.28±0.03), logLFST (-0.29±0.03), logHFST (-0.32±0.04). Also, intra-individual variance of HRV parameters was larger (P<0.05) in the 'fatigue' state (logTPSU: 0.26 vs. 0.07, logLFSU: 0.28 vs. 0.11, logHFSU: 0.32 vs. 0.08, logTPST: 0.13 vs. 0.07, logLFST: 0.16 vs. 0.07, logHFST: 0.25 vs. 0.14). HRV was significantly lower in 'fatigue' vs. 'no-fatigue' but accompanied with larger intra-individual variance of HRV parameters in 'fatigue'. The broader intra-individual variance of HRV parameters might encompass different changes from no-fatigue state, possibly reflecting different fatigue-induced alterations of HRV pattern.

  8. Statistical optimisation techniques in fatigue signal editing problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window andmore » fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.« less

  9. Statistical optimisation techniques in fatigue signal editing problem

    NASA Astrophysics Data System (ADS)

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.

    2015-02-01

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  10. Effect of Understress on Fretting Fatigue Crack Initiation of Press-Fitted Axle

    NASA Astrophysics Data System (ADS)

    Kubota, Masanobu; Niho, Sotaro; Sakae, Chu; Kondo, Yoshiyuki

    Axles are one of the most important components in railway vehicles with regard to safety, since a fail-safe design is not available. The problems of fretting fatigue crack initiation in a press-fitted axle have not been completely solved even though up-to-date fatigue design methods are employed. The objective of the present study is to clarify the effect of understress on fretting fatigue crack initiation behavior in the press-fitted axle. Most of the stress amplitude given to the axle in service is smaller than the fretting fatigue limit based on the stress to initiate cracks under a constant load σwf1. Rotating bending fatigue tests were performed using a 40mm-diameter press-fitted axle assembly. Two-step variable stresses consisting of σwf1 and half or one-third of σwf1 were used in the experiment. Crack initiation life was defined as the number of cycles when a fretting fatigue crack, which is longer than 30µm, was found using a metallurgical microscope. Fretting fatigue cracks were initiated even when the variable stress did not contain the stress above the fretting fatigue crack initiation limit. The crack initiation life varied from 4.0×107 to 1.2×108 depending on the stress frequency ratio nL/nH. The sum of the number of cycles of higher stress at crack initiation NH was much smaller than the number of cycles to initiate cracks estimated from the modified Miner's rule. The value of the modified Miner's damage ranged from 0.013 to 0.185. To clarify the effect of variable amplitude on the fretting fatigue crack initiation, a comprehensive investigation related to relative slip, tangential force and fretting wear is necessary.

  11. Fatigue Variability of a Single Crystal Superalloy at Elevated Temperature (Preprint)

    DTIC Science & Technology

    2009-03-01

    cast slabs of PWA 1484 with the primary longitudinal axis in the > direction (±5 °). The dogbone specimens had a 6 mm gage length and 4 mm...literature concerning the fatigue properties of PWA 1484. It has been reported that fatigue failures often start from eutectics and carbides [ 4 , 6 ...COVERED (From - To) March 2009 Journal Article Preprint 01 March 2009 – 01 March 2009 4 . TITLE AND SUBTITLE FATIGUE VARIABILITY OF A SINGLE CRYSTAL

  12. The influence of muscle fiber type composition on the patterns of responses for electromyographic and mechanomyographic amplitude and mean power frequency during a fatiguing submaximal isometric muscle action.

    PubMed

    Beck, T W; Housh, T J; Fry, A C; Cramer, J T; Weir, J P; Schilling, B K; Falvo, M J; Moore, C A

    2007-07-01

    The purpose of this investigation was to examine the influence of muscle fiber type composition on the patterns of responses for electromyographic (EMG) and mechanomyographic (MMG) amplitude and mean power frequency (MPF) during a fatiguing submaximal isometric muscle action. Five resistance-trained (mean +/- SD age = 23.2 +/- 3.7 yrs) and five aerobically-trained (mean +/- SD age = 32.6 +/- 5.2 yrs) men volunteered to perform a fatiguing, 30-sec submaximal isometric muscle action of the leg extensors at 50% of the maximum voluntary contraction (MVC). Muscle biopsies from the vastus lateralis revealed that the myosin heavy chain (MHC) composition for the resistance-trained subjects was 59.0 +/- 4.2% Type IIa, 0.1 +/- 0.1% Type IIx, and 40.9 +/- 4.3% Type I. The aerobically-trained subjects had 27.4 +/- 7.8% Type IIa, 0.0 +/- 0.0% Type IIx, and 72.6 +/- 7.8% Type I MHC. The patterns of responses and mean values for absolute and normalized EMG amplitude and MPF during the fatiguing muscle action were similar for the resistance-trained and aerobically-trained subjects. The resistance-trained subjects demonstrated relatively stable levels for absolute and normalized MMG amplitude and MPF across time, but the aerobically-trained subjects showed increases in MMG amplitude and decreases in MMG MPE The absolute MMG amplitude and MPF values for the resistance-trained subjects were also greater than those for the aerobi-cally-trained subjects. These findings suggested that unlike surface EMG, MMG may be a useful noninvasive technique for examining fatigue-related differences in muscle fiber type composition.

  13. Sleep variability and fatigue in adolescents: Associations with school-related features.

    PubMed

    Matos, M G; Gaspar, T; Tomé, G; Paiva, T

    2016-10-01

    This study aims to evaluate the influences of sleep duration and sleep variability (SleepV), upon adolescents' school-related situations. The Health Behaviour in School-Aged Children (HBSC) survey is based on a self-completed questionnaire. The participants were 3164 pupils (53.7% girls), attending the 8th and 10th grades, 14.9 years old, and were inquired about subjective sleep duration during the week and weekends, SleepV, fatigue, difficulties in sleep initiation, school achievement, feelings towards schools, pressure with school work and skipping classes. Multiple regression models used, as dependent variables: (a) school achievement, (b) disliking school, (c) pressure with school work and (d) skipping classes, using as independent variables, each of the remaining school-related variables, fatigue, total sleep duration and difficulties in sleep initiation. The average sleep duration in the week and during weekdays was lower than recommended for these age groups, and almost half of students had high SleepV between weekdays and weekends. A logistic model revealed that the absence of SleepV was associated with lower perception of school work pressure, less frequent skipping classes, more infrequent fatigue and more infrequent difficulties in sleep initiation. Poor sleep quality, SleepV and insufficient sleep duration affected negatively school-related variables. © 2015 International Union of Psychological Science.

  14. The effect of muscle fatigue and low back pain on lumbar movement variability and complexity.

    PubMed

    Bauer, C M; Rast, F M; Ernst, M J; Meichtry, A; Kool, J; Rissanen, S M; Suni, J H; Kankaanpää, M

    2017-04-01

    Changes in movement variability and complexity may reflect an adaptation strategy to fatigue. One unresolved question is whether this adaptation is hampered by the presence of low back pain (LBP). This study investigated if changes in movement variability and complexity after fatigue are influenced by the presence of LBP. It is hypothesised that pain free people and people suffering from LBP differ in their response to fatigue. The effect of an isometric endurance test on lumbar movement was tested in 27 pain free participants and 59 participants suffering from LBP. Movement variability and complexity were quantified with %determinism and sample entropy of lumbar angular displacement and velocity. Generalized linear models were fitted for each outcome. Bayesian estimation of the group-fatigue effect with 95% highest posterior density intervals (95%HPDI) was performed. After fatiguing %determinism decreased and sample entropy increased in the pain free group, compared to the LBP group. The corresponding group-fatigue effects were 3.7 (95%HPDI: 2.3-7.1) and -1.4 (95%HPDI: -2.7 to -0.1). These effects manifested in angular velocity, but not in angular displacement. The effects indicate that pain free participants showed more complex and less predictable lumbar movement with a lower degree of structure in its variability following fatigue while participants suffering from LBP did not. This may be physiological responses to avoid overload of fatigued tissue, increase endurance, or a consequence of reduced movement control caused by fatigue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Estimating mental fatigue based on electroencephalogram and heart rate variability

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Yu, Xiaolin

    2010-01-01

    The effects of long term mental arithmetic task on psychology are investigated by subjective self-reporting measures and action performance test. Based on electroencephalogram (EEG) and heart rate variability (HRV), the impacts of prolonged cognitive activity on central nervous system and autonomic nervous system are observed and analyzed. Wavelet packet parameters of EEG and power spectral indices of HRV are combined to estimate the change of mental fatigue. Then wavelet packet parameters of EEG which change significantly are extracted as the features of brain activity in different mental fatigue state, support vector machine (SVM) algorithm is applied to differentiate two mental fatigue states. The experimental results show that long term mental arithmetic task induces the mental fatigue. The wavelet packet parameters of EEG and power spectral indices of HRV are strongly correlated with mental fatigue. The predominant activity of autonomic nervous system of subjects turns to the sympathetic activity from parasympathetic activity after the task. Moreover, the slow waves of EEG increase, the fast waves of EEG and the degree of disorder of brain decrease compared with the pre-task. The SVM algorithm can effectively differentiate two mental fatigue states, which achieves the maximum classification accuracy (91%). The SVM algorithm could be a promising tool for the evaluation of mental fatigue. Fatigue, especially mental fatigue, is a common phenomenon in modern life, is a persistent occupational hazard for professional. Mental fatigue is usually accompanied with a sense of weariness, reduced alertness, and reduced mental performance, which would lead the accidents in life, decrease productivity in workplace and harm the health. Therefore, the evaluation of mental fatigue is important for the occupational risk protection, productivity, and occupational health.

  16. Low heart rate variability and cancer-related fatigue in breast cancer survivors

    PubMed Central

    Crosswell, Alexandra D.; Lockwood, Kimberly G.; Ganz, Patricia A.; Bower, Julienne E.

    2015-01-01

    Cancer-related fatigue is a common and often long lasting symptom for many breast cancer survivors. Fatigued survivors show evidence of elevated inflammation, but the physiological mechanisms driving inflammatory activity have not been determined. Alterations in the autonomic nervous system, and particularly parasympathetic nervous system activity, are a plausible, yet understudied contributor to cancer-related fatigue. The goal of this study was to replicate one previous study showing an association between lower parasympathetic activity and higher fatigue in breast cancer survivors (Fagundes et al., 2011), and to examine whether inflammation mediates this association. Study participants were drawn from two samples and included 84 women originally diagnosed with early-stage breast cancer prior to age 50. Participants completed questionnaires, provided blood samples for determination of interleukin (IL)-6 and C-reactive protein (CRP), and underwent electrocardiography (ECG) assessment for evaluation of resting heart rate variability (HRV), a measure of parasympathetic activity. Results showed that lower HRV was associated with higher fatigue (p < .05), as predicted. In bivariate analyses, HRV was also correlated with circulating concentrations of IL-6 and CRP. However, path analyses did not support inflammation as a mediator of the association between HRV and fatigue; instead, associations among these variables appeared to be driven by age and BMI. These findings identify HRV as a potential contributor to cancer-related fatigue, but suggest that inflammation does not mediate this association in younger, healthy breast cancer survivors who are several years post-treatment. The autonomic nervous system merits additional attention in research on the etiology of cancer-related fatigue. PMID:24845177

  17. Crack deflection: Implications for the growth of long and short fatigue cracks

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    1983-11-01

    The influences of crack deflection on the growth rates of nominally Mode I fatigue cracks are examined. Previous theoretical analyses of stress intensity solutions for kinked elastic cracks are reviewed. Simple elastic deflection models are developed to estimate the growth rates of nonlinear fatigue cracks subjected to various degrees of deflection, by incorporating changes in the effective driving force and in the apparent propagation rates. Experimental data are presented for intermediate-quenched and step-quenched conditions of Fe/2Si/0.1C ferrite-martensite dual phase steel, where variations in crack morphology alone influence considerably the fatigue crack propagation rates and threshold stress intensity range values. Such results are found to be in good quantitative agreement with the deflection model predictions of propagation rates for nonlinear cracks. Experimental information on crack deflection, induced by variable amplitude loading, is also provided for 2020-T651 aluminum alloy. It is demonstrated with the aid of elastic analyses and experiments that crack deflection models offer a physically-appealing rationale for the apparently slower growth rates of long fatigue cracks subjected to constant and variable amplitude loading and for the apparent deceleration and/or arrest of short cracks. The changes in the propagation rates of deflected fatigue cracks are discussed in terms of the local mode of crack advance, microstructure, effective driving force, growth mechanisms, mean stress, slip characteristics, and crack closure.

  18. TMJ symptoms reduce chewing amplitude and velocity, and increase variability.

    PubMed

    Radke, John C; Kamyszek, Greg J; Kull, Robert S; Velasco, Gerardo R

    2017-09-04

    The null hypothesis was that mandibular amplitude, velocity, and variability during gum chewing are not altered in subjects with temporomandibular joint (TMJ) internal derangements (ID). Thirty symptomatic subjects with confirmed ID consented to chew gum on their left and right sides while being tracked by an incisor-point jaw tracker. A gender and age matched control group (p > 0.67) volunteered to be likewise recorded. Student's t-test compared the ID group's mean values to the control group. The control group opened wider (p < 0.05) and chewed faster (p < 0.05) than the ID group. The mean cycle time of the ID group (0.929 s) was longer than the control group (0.751 s; p < 0.05) and more variable (p < 0.05). The ID group exhibited reduced amplitude and velocity but increased variability during chewing. The null hypothesis was rejected. Further study of adaptation to ID by patients should be pursued.

  19. Double Linear Damage Rule for Fatigue Analysis

    NASA Technical Reports Server (NTRS)

    Halford, G.; Manson, S.

    1985-01-01

    Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.

  20. Factors that affect the fatigue strength of power transmission shafting

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1984-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  1. Assessment of low back muscle fatigue by surface EMG signal analysis: methodological aspects.

    PubMed

    Farina, Dario; Gazzoni, Marco; Merletti, Roberto

    2003-08-01

    This paper focuses on methodological issues related to surface electromyographic (EMG) signal detection from the low back muscles. In particular, we analysed (1) the characteristics (in terms of propagating components) of the signals detected from these muscles; (2) the effect of electrode location on the variables extracted from surface EMG; (3) the effect of the inter-electrode distance (IED) on the same variables; (4) the possibility of assessing fatigue during high and very low force level contractions. To address these issues, we detected single differential surface EMG signals by arrays of eight electrodes from six locations on the two sides of the spine, at the levels of the first (L1), the second (L2), and the fifth (L5) lumbar vertebra. In total, 42 surface EMG channels were acquired at the same time during both high and low force, short and long duration contractions. The main results were: (1) signal quality is poor with predominance of non-travelling components; (2) as a consequence of point (1), in the majority of the cases it is not possible to reliably estimate muscle fiber conduction velocity; (3) despite the poor signal quality, it was possible to distinguish the fatigue properties of the investigated muscles and the fatigability at different contraction levels; (4) IED affects the sensitivity of surface EMG variables to electrode location and large IEDs are suggested when spectral and amplitude analysis is performed; (5) the sensitivity of surface EMG variables to changes in electrode location is on average larger than for other muscles with less complex architecture; (6) IED influences amplitude initial values and slopes, and spectral variable initial values; (7) normalized slopes for both amplitude and spectral variables are not affected by IED and, thus, are suggested for fatigue analysis at different postures or during movement, when IED may change in different conditions (in case of separated electrodes); (8) the surface EMG technique at the

  2. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  3. The Viewing Geometry of Brown Dwarfs Influences Their Observed Colors and Variability Amplitudes

    NASA Astrophysics Data System (ADS)

    Vos, Johanna M.; Allers, Katelyn N.; Biller, Beth A.

    2017-06-01

    In this paper we study the full sample of known Spitzer [3.6 μm] and J-band variable brown dwarfs. We calculate the rotational velocities, v\\sin I, of 16 variable brown dwarfs using archival Keck NIRSPEC data and compute the inclination angles of 19 variable brown dwarfs. The results obtained show that all objects in the sample with mid-IR variability detections are inclined at an angle > 20^\\circ , while all objects in the sample displaying J-band variability have an inclination angle > 35^\\circ . J-band variability appears to be more affected by inclination than Spitzer [3.6 μm] variability, and is strongly attenuated at lower inclinations. Since J-band observations probe deeper into the atmosphere than mid-IR observations, this effect may be due to the increased atmospheric path length of J-band flux at lower inclinations. We find a statistically significant correlation between the color anomaly and inclination of our sample, where field objects viewed equator-on appear redder than objects viewed at lower inclinations. Considering the full sample of known variable L, T, and Y spectral type objects in the literature, we find that the variability properties of the two bands display notably different trends that are due to both intrinsic differences between bands and the sensitivity of ground-based versus space-based searches. However, in both bands we find that variability amplitude may reach a maximum at ˜7-9 hr periods. Finally, we find a strong correlation between color anomaly and variability amplitude for both the J-band and mid-IR variability detections, where redder objects display higher variability amplitudes.

  4. Probabilistic Fatigue Damage Program (FATIG)

    NASA Technical Reports Server (NTRS)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  5. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  6. Blue large-amplitude pulsators as a new class of variable stars

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, Paweł; Dziembowski, Wojciech A.; Latour, Marilyn; Angeloni, Rodolfo; Poleski, Radosław; di Mille, Francesco; Soszyński, Igor; Udalski, Andrzej; Szymański, Michał K.; Wyrzykowski, Łukasz; Kozłowski, Szymon; Skowron, Jan; Skowron, Dorota; Mróz, Przemek; Pawlak, Michał; Ulaczyk, Krzysztof

    2017-08-01

    Regular intrinsic brightness variations observed in many stars are caused by pulsations. These pulsations provide information on the global and structural parameters of the star. The pulsation periods range from seconds to years, depending on the compactness of the star and properties of the matter that forms its outer layers. Here, we report the discovery of more than a dozen previously unknown short-period variable stars: blue large-amplitude pulsators. These objects show very regular brightness variations with periods in the range of 20-40 min and amplitudes of 0.2-0.4 mag in the optical passbands. The phased light curves have a characteristic sawtooth shape, similar to the shape of classical Cepheids and RR Lyrae-type stars pulsating in the fundamental mode. The objects are significantly bluer than main-sequence stars observed in the same fields, which indicates that all of them are hot stars. Follow-up spectroscopy confirms a high surface temperature of about 30,000 K. Temperature and colour changes over the cycle prove the pulsational nature of the variables. However, large-amplitude pulsations at such short periods are not observed in any known type of stars, including hot objects. Long-term photometric observations show that the variable stars are very stable over time. Derived rates of period change are of the order of 10-7 per year and, in most cases, they are positive. According to pulsation theory, such large-amplitude oscillations may occur in evolved low-mass stars that have inflated helium-enriched envelopes. The evolutionary path that could lead to such stellar configurations remains unknown.

  7. A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.

    In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less

  8. A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading

    DOE PAGES

    Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.; ...

    2017-12-05

    In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less

  9. WEATHER ON OTHER WORLDS. III. A SURVEY FOR T DWARFS WITH HIGH-AMPLITUDE OPTICAL VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinze, Aren N.; Metchev, Stanimir; Kellogg, Kendra, E-mail: aren.heinze@stonybrook.edu, E-mail: smetchev@uwo.ca

    2015-03-10

    We have monitored 12 T dwarfs with the Kitt Peak 2.1 m telescope using an F814W filter (0.7-0.95 μm) to place in context the remarkable 10%-20% variability exhibited by the nearby T dwarf Luhman 16B in this wavelength regime. The motivation was the poorly known red optical behavior of T dwarfs, which have been monitored almost exclusively at infrared wavelengths, where variability amplitudes greater than 10% have been found to be very rare. We detect highly significant variability in two T dwarfs. The T2.5 dwarf 2MASS 13243559+6358284 shows consistent ∼17% variability on two consecutive nights. The T2 dwarf 2MASS J16291840+0335371 exhibits ∼10% variability thatmore » may evolve from night to night, similarly to Luhman 16B. Both objects were previously known to be variable in the infrared, but with considerably lower amplitudes. We also find evidence for variability in the T6 dwarf J162414.37+002915.6, but since it has lower significance, we conservatively refrain from claiming this object as a variable. We explore and rule out various telluric effects, demonstrating that the variations we detect are astrophysically real. We suggest that high-amplitude photometric variability for T dwarfs is likely more common in the red optical than at longer wavelengths. The two new members of the growing class of high-amplitude variable T dwarfs offer excellent prospects for further study of cloud structures and their evolution.« less

  10. Myoelectrical Manifestation of Fatigue Less Prominent in Patients with Cancer Related Fatigue

    PubMed Central

    Kisiel-Sajewicz, Katarzyna; Siemionow, Vlodek; Seyidova-Khoshknabi, Dilara; Davis, Mellar P.; Wyant, Alexandria; Ranganathan, Vinoth K.; Walsh, Declan; Yan, Jin H.; Hou, Juliet; Yue, Guang H.

    2013-01-01

    Purpose A lack of fatigue-related muscle contractile property changes at time of perceived physical exhaustion and greater central than peripheral fatigue detected by twitch interpolation technique have recently been reported in cancer survivors with fatigue symptoms. Based on these observations, it was hypothesized that compared to healthy people, myoelectrical manifestation of fatigue in the performing muscles would be less significant in these individuals while sustaining a prolonged motor task to self-perceived exhaustion (SPE) since their central fatigue was more prominent. The purpose of this study was to test this hypothesis by examining electromyographic (EMG) signal changes during fatiguing muscle performance. Methods Twelve individuals who had advanced solid cancer and cancer-related fatigue (CRF), and 12 age- and gender-matched healthy controls performed a sustained elbow flexion at 30% maximal voluntary contraction till SPE. Amplitude and mean power frequency (MPF) of EMG signals of the biceps brachii, brachioradialis, and triceps brachii muscles were evaluated when the individuals experienced minimal, moderate, and severe fatigue. Results CRF patients perceived physical “exhaustion” significantly sooner than the controls. The myoelectrical manifestation of muscular fatigue assessed by EMG amplitude and MPF was less significant in CRF than controls. The lower MPF even at minimal fatigue stage in CRF may indicate pathophysiologic condition of the muscle. Conclusions CRF patients experience less myoelectrical manifestation of muscle fatigue than healthy individuals near the time of SPE. The data suggest that central nervous system fatigue plays a more important role in limiting endurance-type of motor performance in patients with CRF. PMID:24391800

  11. Influence of fatigue, depression, and demographic, socioeconomic, and clinical variables on quality of life of patients with epilepsy.

    PubMed

    Senol, Vesile; Soyuer, Ferhan; Arman, Fehim; Oztürk, Ahmet

    2007-02-01

    The purpose of this study was to define the influence of fatigue, depression, and clinical, demographic, and socioeconomic factors on the quality of life of patients with epilepsy. The study was performed on 103 adult patients who visited Erciyes University Epilepsy Outpatient Clinic between 2004 and 2005. Patients were evaluated with the Form of Negotiation, Quality of Life in Epilepsy Inventory (QOLIE-89), Beck Depression Inventory, and Fatigue Severity Scale. Mean age of the patients was 34.3+/-12.6, and mean duration of disease was 12.6+/-9.3 years. Among these patients, 52.4% were men, 49.5% were married, 15.5% had a university education, 53.4% had low incomes, 45.6% had generalized seizures, and 35.0% had experienced one or more seizures per month during the preceding year. The most significant variables in the domain of Overall quality of life were seizure frequency (P<0.001), depression (P<0.001), and fatigue (P<0.001); the variables in the domain of Mental Health were seizure frequency (P<0.001) and fatigue (P<0.001); the variable in the Cognitive domain was fatigue (P<0.001); the variables in the domain of Physical Health were social insurance coverage (P<0.01), fatigue (P<0.01), and age (P<0.01); the variables in the Epilepsy Targeted domain were depression (P<0.001), seizure frequency (P<0.001), and fatigue (P<0.01). Although quality of life has multiple determinants, seizure frequency, fatigue, and depression are the most important factors affecting quality of life in patients with epilepsy. One or more seizures per month, severe fatigue, and depression are associated with lower quality of life in some but not all domains. Partial correlations demonstrated that fatigue was a significant independent predictor of quality of life. The present study confirms that fatigue can be a powerful predictor of quality of life.

  12. High-strength bolt corrosion fatigue life model and application.

    PubMed

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.

  13. Reduced Electromyographic Fatigue Threshold after Performing a Cognitive Fatiguing Task.

    PubMed

    Ferris, Justine R; Tomlinson, Mary A; Ward, Tayler N; Pepin, Marie E; Malek, Moh H

    2018-02-22

    Cognitive fatigue tasks performed prior to exercise may reduce exercise capacity. The electromyographic fatigue threshold (EMGFT) is the highest exercise intensity that can be maintained without significant increase in the EMG amplitude versus time relationship. To date, no studies have examined the effect of cognitive fatigue on the estimation of the EMGFT. The purpose of this study, therefore, was to determine whether or not cognitive fatigue prior to performing exercise reduces the estimated EMGFT. Eight healthy college-aged men were recruited from a university student population and visited the laboratory on multiple occasions. In a randomized order, subjects performed either the cognitive fatigue task (AX Continuous Performance Test; AX-CPT) for 60 min on one visit (experimental condition) or watched a video on trains for 60 min on the other visit (control condition). After each condition, subjects performed the incremental single-leg knee-extensor ergometry test while the EMG amplitude was recorded from the rectus femoris muscle and heart rate was monitored throughout. Thereafter, the EMGFT was calculated for each participant for each visit and compared using paired samples t-test. For exercise outcomes, there were no significant mean differences for maximal power output between the two conditions (control: 51 ± 5 vs. fatigue: 50 ± 3 W), but a significant decrease in EMGFT between the two conditions (control: 31 ± 3 vs. fatigue: 24 ± 2 W; p = 0.013). Moreover, maximal heart rate was significantly different between the two conditions (control: 151 ± 5 vs. fatigue: 132 ± 6; p = 0.027). These results suggest that performing the cognitive fatiguing task reduces the EMGFT with a corresponding reduction in maximal heart rate response.

  14. Alternating activation is related to fatigue in lumbar muscles during sustained sitting.

    PubMed

    Ringheim, Inge; Indahl, Aage; Roeleveld, Karin

    2014-06-01

    The aim of this study was to investigate the relation between variability in muscle activity and fatigue during a sustained low level contraction in the lumbar muscles. Twenty-five healthy participants (13 men 12 women) performed a 30min sitting task with 5 degrees inclination of the trunk. Surface electromyographic (EMG) signals were recorded bilaterally from the lumbar muscles with 2 high density surface EMG grids of 9×14 electrodes. Median frequency (MDF) decrease, amplitude (RMS) increase and the rating of perceived exertion (RPE) were used as fatigue indices. Alternating activation and spatial and temporal variability were computed and relations with the fatigue indices were explored. During sitting, the mono- and bipolar RMS slightly increased while the MDF remained unchanged indicating no systematic muscle fatigue, although the average RPE increased from 6 to 13 on a scale ranging between 6 and 20. Higher frequency of alternating activation between the left and right side was associated with increased RPE (p=0.03) and decreased MDF (p=0.05). A tendency in the same direction was seen between increased spatial and temporal variation within the grids and increased RPE and decreased MDF. Present findings provide evidence for a relationship between variability in muscle activity and fatigue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fatigue Shifts and Scatters Heart Rate Variability in Elite Endurance Athletes

    PubMed Central

    Schmitt, Laurent; Regnard, Jacques; Desmarets, Maxime; Mauny, Fréderic; Mourot, Laurent; Fouillot, Jean-Pierre; Coulmy, Nicolas; Millet, Grégoire

    2013-01-01

    Purpose This longitudinal study aimed at comparing heart rate variability (HRV) in elite athletes identified either in ‘fatigue’ or in ‘no-fatigue’ state in ‘real life’ conditions. Methods 57 elite Nordic-skiers were surveyed over 4 years. R-R intervals were recorded supine (SU) and standing (ST). A fatigue state was quoted with a validated questionnaire. A multilevel linear regression model was used to analyze relationships between heart rate (HR) and HRV descriptors [total spectral power (TP), power in low (LF) and high frequency (HF) ranges expressed in ms2 and normalized units (nu)] and the status without and with fatigue. The variables not distributed normally were transformed by taking their common logarithm (log10). Results 172 trials were identified as in a ‘fatigue’ and 891 as in ‘no-fatigue’ state. All supine HR and HRV parameters (Beta±SE) were significantly different (P<0.0001) between ‘fatigue’ and ‘no-fatigue’: HRSU (+6.27±0.61 bpm), logTPSU (−0.36±0.04), logLFSU (−0.27±0.04), logHFSU (−0.46±0.05), logLF/HFSU (+0.19±0.03), HFSU(nu) (−9.55±1.33). Differences were also significant (P<0.0001) in standing: HRST (+8.83±0.89), logTPST (−0.28±0.03), logLFST (−0.29±0.03), logHFST (−0.32±0.04). Also, intra-individual variance of HRV parameters was larger (P<0.05) in the ‘fatigue’ state (logTPSU: 0.26 vs. 0.07, logLFSU: 0.28 vs. 0.11, logHFSU: 0.32 vs. 0.08, logTPST: 0.13 vs. 0.07, logLFST: 0.16 vs. 0.07, logHFST: 0.25 vs. 0.14). Conclusion HRV was significantly lower in 'fatigue' vs. 'no-fatigue' but accompanied with larger intra-individual variance of HRV parameters in 'fatigue'. The broader intra-individual variance of HRV parameters might encompass different changes from no-fatigue state, possibly reflecting different fatigue-induced alterations of HRV pattern. PMID:23951198

  16. Probabilistic fatigue methodology for six nines reliability

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.; Bartlett, F. D., Jr.; Elber, Wolf

    1990-01-01

    Fleet readiness and flight safety strongly depend on the degree of reliability that can be designed into rotorcraft flight critical components. The current U.S. Army fatigue life specification for new rotorcraft is the so-called six nines reliability, or a probability of failure of one in a million. The progress of a round robin which was established by the American Helicopter Society (AHS) Subcommittee for Fatigue and Damage Tolerance is reviewed to investigate reliability-based fatigue methodology. The participants in this cooperative effort are in the U.S. Army Aviation Systems Command (AVSCOM) and the rotorcraft industry. One phase of the joint activity examined fatigue reliability under uniquely defined conditions for which only one answer was correct. The other phases were set up to learn how the different industry methods in defining fatigue strength affected the mean fatigue life and reliability calculations. Hence, constant amplitude and spectrum fatigue test data were provided so that each participant could perform their standard fatigue life analysis. As a result of this round robin, the probabilistic logic which includes both fatigue strength and spectrum loading variability in developing a consistant reliability analysis was established. In this first study, the reliability analysis was limited to the linear cumulative damage approach. However, it is expected that superior fatigue life prediction methods will ultimately be developed through this open AHS forum. To that end, these preliminary results were useful in identifying some topics for additional study.

  17. Strain-controlled fatigue of acrylic bone cement.

    PubMed

    Carter, D R; Gates, E I; Harris, W H

    1982-09-01

    Monotonic tensile tests and tension-compression fatigue tests were conducted of wet acrylic bone cement specimens at 37 degrees C. All testing was conducted in strain control at a strain rate of 0.02/s. Weibull analysis of the tensile tests indicated that monotonic fracture was governed more strongly by strain than stress. The number of cycles to fatigue failure was also more strongly controlled by strain amplitude than stress amplitude. Specimen porosity distribution played a major role in determining the tensile and fatigue strengths. The degree of data scatter suggests that Weibull analysis of fatigue data may be useful in developing design criteria for the surgical use of bone cement.

  18. Grain boundary engineering: fatigue fracture

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2017-04-01

    Grain boundary engineering has revealed significant enhancement of material properties by modifying the populations and connectivity of different types of grain boundaries within the polycrystals. The character and connectivity of grain boundaries in polycrystalline microstructures control the corrosion and mechanical behaviour of materials. A comprehensive review of the previous researches has been carried out to understand this philosophy. Present research thoroughly explores the effect of total strain amplitude on phase transformation, fatigue fracture features, grain size, annealing twinning, different grain connectivity and grain boundary network after strain controlled low cycle fatigue deformation of austenitic stainless steel under ambient temperature. Electron backscatter diffraction technique has been used extensively to investigate the grain boundary characteristics and morphologies. The nominal variation of strain amplitude through cyclic plastic deformation is quantitatively demonstrated completely in connection with the grain boundary microstructure and fractographic features to reveal the mechanism of fatigue fracture of polycrystalline austenite. The extent of boundary modifications has been found to be a function of the number of applied loading cycles and strain amplitudes. It is also investigated that cyclic plasticity induced martensitic transformation strongly influences grain boundary characteristics and modifications of the material's microstructure/microtexture as a function of strain amplitudes. The experimental results presented here suggest a path to grain boundary engineering during fatigue fracture of austenite polycrystals.

  19. Fatigue performance of variable message sign & luminaire support structures : volume I, fatigue related wind loads on highway support structures

    DOT National Transportation Integrated Search

    1998-04-01

    In Order to determine equivalent static pressures for fatigue loads on cantilevered highway support structures a : cantilevered Variable Message Sign(VMS) located along Interstate westbound at mile marker 48.5 in northern : New Jersey was continuousl...

  20. Fatigue performance of variable message sign & luminaire support structures : volume II, fatigue related wind loads on highway support structures.

    DOT National Transportation Integrated Search

    1998-05-01

    In Order to determine equivalent static pressures for fatigue loads on cantilevered highway support structures a : cantilevered Variable Message Sign(VMS) located along Interstate westbound at mile marker 48.5 in northern : New Jersey was continuousl...

  1. Fatigue 󈨛. Volume 2,

    DTIC Science & Technology

    1987-06-01

    non -propagating cracks should be considered and maximum principal strain amplitude Is the controlling parameter. FATIGUE DAMAGE MAPS The preceding...fatigue is strain- controlled and not stress- controlled . The small effect of R-ratio suggested by Figure 2 may simply reflect the high experimental ...present a model (and its experimental verification) describing non -damaging notches in fatigue. &FFECT OF GRAIN SIZE AND TEMPERATURE In this part we shall

  2. Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook

    2018-06-01

    El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.

  3. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  4. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  5. The Regularities of Fatigue Crack Growth in Airframes Elements at Real Operation Conditions

    NASA Astrophysics Data System (ADS)

    Pavelko, Igors; Pavelko, Vitalijs

    The results of analytical and experimental researches concerning predicting of fatigue crack growth in the operating conditions are presented. First of all the main factors causing a fatigue damage initiation and growth are analyzed and divided to two groups. Common conditions of fatigue damage precise predicting are established. The problem of fatigue crack growth at the stresses of variable amplitude was analyzed and an approach of description of this process is performed. Two examples present the efficiency of this approach. Theory of fatigue crack growth indication and the crack growth indicator (CGI) are developed. There is planned and executed a flight experiment using CGI located on two aircraft An-24 and An-26. Results of crack growth in CGI at operational load allowed to evaluate the parameters of generalized Paris-Erdogan law and statistical properties of crack increment per flight.

  6. Fatigue strength of socket welded pipe joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuchi, Makoto; Hayashi, Makoto; Yamauchi, Takayoshi

    1995-12-01

    Fully reversed four point bending fatigue tests were carried out on small diameter socket welded joints made of carbon steels. Experimental parameters were pipe diameter, thicknesses of pipe and socket wall, throat depth and shape of fillet welds, slip-on and diametral gaps in the socket welding, lack of penetration at the root of fillet welds, and peening of fillet welds. In most cases a fatigue crack started from the root of the fillet, but in the case of higher stress amplitude, it tended to start from the toe of fillet. The standard socket welded joint for a pipe with amore » 50 mm nominal diameter showed a relatively low fatigue strength of 46 MPa in stress amplitude at the 10{sup 7} cycles failure life. This value corresponds to about 1/5 of that for the smoothed base metal specimens in axial fatigue. The fatigue strength decreased with increasing pipe diameter, and increased with increasing thickness of the pipe and socket wall. The effects of throat depth and shape of fillet welds on fatigue strength were not significant. Contrary to expectation, the fatigue strength of a socket welded joint without slip-on gap is Higher than that of the joint with a normal gap. A lack of penetration at the root deleteriously reduced fatigue strength, showing 14 MPa in stress amplitude at the 10{sup 7} cycles failure life for the 50 mm diameter socket joint.« less

  7. Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes.

    PubMed

    Lepers, R; Theurel, J; Hausswirth, C; Bernard, T

    2008-07-01

    The aim of this study was to determine whether or not variable power cycling produced greater neuromuscular fatigue of knee extensor muscles than constant power cycling at the same mean power output. Eight male triathletes (age: 33+/-5 years, mass: 74+/-4 kg, VO2max: 62+/-5 mL kg(-1) min(-1), maximal aerobic power: 392+/-17 W) performed two 30 min trials on a cycle ergometer in a random order. Cycling exercise was performed either at a constant power output (CP) corresponding to 75% of the maximal aerobic power (MAP) or a variable power output (VP) with alternating +/-15%, +/-5%, and +/-10% of 75% MAP approximately every 5 min. Maximal voluntary contraction (MVC) torque, maximal voluntary activation level and excitation-contraction coupling process of knee extensor muscles were evaluated before and immediately after the exercise using the technique of electrically evoked contractions (single and paired stimulations). Oxygen uptake, ventilation and heart rate were also measured at regular intervals during the exercise. Averaged metabolic variables were not significantly different between the two conditions. Similarly, reductions in MVC torque (approximately -11%, P<0.05) after cycling were not different (P>0.05) between CP and VP trials. The magnitude of central and peripheral fatigue was also similar at the end of the two cycling exercises. It is concluded that, following 30 min of endurance cycling, semi-elite triathletes experienced no additional neuromuscular fatigue by varying power (from +/-5% to 15%) compared with a protocol that involved a constant power.

  8. Factors that affect the fatigue strength of power transmission shafting and their impact on design

    NASA Technical Reports Server (NTRS)

    Leowenthal, S. H.

    1986-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  9. Fatigue of cord-rubber composites for tires

    NASA Astrophysics Data System (ADS)

    Song, Jaehoon

    Fatigue behaviors of cord-rubber composite materials forming the belt region of radial pneumatic tires have been characterized to assess their dependence on stress, strain and temperature history as well as materials composition and construction . Using actual tires, it was found that interply shear strain is one of the crucial parameters for damage assessment from the result that higher levels of interply shear strain of actual tires reduce the fatigue lifetime. Estimated at various levels of load amplitude were the fatigue life, the extent and rate of resultant strain increase ("dynamic creep"), cyclic strains at failure, and specimen temperature. The interply shear strain of 2-ply 'tire belt' composite laminate under circumferential tension was affected by twisting of specimen due to tension-bending coupling. However, a critical level of interply shear strain, which governs the gross failure of composite laminate due to the delamination, appeared to be independent of different lay-up of 2-ply vs. symmetric 4-ply configuration. Reflecting their matrix-dominated failure modes such as cord-matrix debonding and delamination, composite laminates with different cord reinforcements showed the same S-N relationship as long as they were constructed with the same rubber matrix, the same cord angle, similar cord volume, and the same ply lay-up. Because of much lower values of single cycle strength (in terms of gross fracture load per unit width), the composite laminates with larger cord angle and the 2-ply laminates exhibited exponentially shorter fatigue lifetime, at a given stress amplitude, than the composite laminates with smaller cord angle and 4-ply symmetric laminates, respectively. The increase of interply rubber thickness lengthens their fatigue lifetime at an intermediate level of stress amplitude. However, the increase in the fatigue lifetime of the composite laminate becomes less noticeable at very low stress amplitude. Even with small compressive cyclic

  10. Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life

    PubMed Central

    Noraphaiphipaksa, Nitikorn; Manonukul, Anchalee; Kanchanomai, Chaosuan

    2017-01-01

    Fretting fatigue experiments and finite element analysis were carried out to investigate the influence of cylindrical-on-flat contact on crack nucleation, crack path and fatigue life of medium-carbon steel. The location of crack nucleation was predicted using the maximum shear stress range criterion and the maximum relative slip amplitude criterion. The prediction using the maximum relative slip amplitude criterion gave the better agreement with the experimental result, and should be used for the prediction of the location of crack nucleation. Crack openings under compressive bulk stresses were found in the fretting fatigues with flat-on-flat contact and cylindrical-on-flat contacts, i.e., fretting-contact-induced crack openings. The crack opening stress of specimen with flat-on-flat contact was lower than those of specimens with cylindrical-on-flat contacts, while that of specimen with 60-mm radius contact pad was lower than that of specimen with 15-mm radius contact pad. The fretting fatigue lives were estimated by integrating the fatigue crack growth curve from an initial propagating crack length to a critical crack length. The predictions of fretting fatigue life with consideration of crack opening were in good agreement with the experimental results. PMID:28772522

  11. Muscle-Cooling Intervention to Reduce Fatigue and Fatigue-Induced Tremor in Novice and Experienced Surgeons: A Preliminary Investigation.

    PubMed

    Jensen, Lauren; Dancisak, Michael; Korndorffer, James

    2016-10-01

    A localized, intermittent muscle-cooling protocol was implemented to determine cooling garment efficacy in reducing upper extremity muscular fatigue and tremor in novice ( n  = 10) and experienced surgeons ( n  = 9). Subjects wore a muscle-cooling garment while performing multiple trials of a forearm exercise and paired suturing task to induce muscular fatigue and exercise-induced tremor. A reduction in tremor amplitude and an extension in time to fatigue were expected with muscle cooling as compared with control trials. Each subject completed an intervention session (5°C cooling condition) and a control session (32°C or thermal neutral condition). A paired samples t test indicated that tremor amplitude was significantly reduced ( t [8] = 1.89458; p  < 0.05) in experienced surgeons in two dimensions (up and down, and back and forth). Tremor amplitude was reduced in novice surgeons but the effect was not significant. Time to fatigue and suture time improved in both cohorts with muscle cooling, but the effect did not reach significance. Results from the pilot work suggest muscle cooling as an intervention for reduction of fatigue and tremor is very promising, warranting further investigation. Surgical specialties that require prolonged procedures might benefit more from this intervention.

  12. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  13. Deformation history and load sequence effects on cumulative fatigue damage and life predictions

    NASA Astrophysics Data System (ADS)

    Colin, Julie

    Fatigue loading seldom involves constant amplitude loading. This is especially true in the cooling systems of nuclear power plants, typically made of stainless steel, where thermal fluctuations and water turbulent flow create variable amplitude loads, with presence of mean stresses and overloads. These complex loading sequences lead to the formation of networks of microcracks (crazing) that can propagate. As stainless steel is a material with strong deformation history effects and phase transformation resulting from plastic straining, such load sequence and variable amplitude loading effects are significant to its fatigue behavior and life predictions. The goal of this study was to investigate the effects of cyclic deformation on fatigue behavior of stainless steel 304L as a deformation history sensitive material and determine how to quantify and accumulate fatigue damage to enable life predictions under variable amplitude loading conditions for such materials. A comprehensive experimental program including testing under fully-reversed, as well as mean stress and/or mean strain conditions, with initial or periodic overloads, along with step testing and random loading histories was conducted on two grades of stainless steel 304L, under both strain-controlled and load-controlled conditions. To facilitate comparisons with a material without deformation history effects, similar tests were also carried out on aluminum 7075-T6. Experimental results are discussed, including peculiarities observed with stainless steel behavior, such as a phenomenon, referred to as secondary hardening characterized by a continuous increase in the stress response in a strain-controlled test and often leading to runout fatigue life. Possible mechanisms for secondary hardening observed in some tests are also discussed. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in

  14. High-temperature low cycle fatigue behavior of a gray cast iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by themore » interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.« less

  15. An investigation on high temperature fatigue properties of tempered nuclear-grade deposited weld metals

    NASA Astrophysics Data System (ADS)

    Cao, X. Y.; Zhu, P.; Yong, Q.; Liu, T. G.; Lu, Y. H.; Zhao, J. C.; Jiang, Y.; Shoji, T.

    2018-02-01

    Effect of tempering on low cycle fatigue (LCF) behaviors of nuclear-grade deposited weld metal was investigated, and The LCF tests were performed at 350 °C with strain amplitudes ranging from 0.2% to 0.6%. The results showed that at a low strain amplitude, deposited weld metal tempered for 1 h had a high fatigue resistance due to high yield strength, while at a high strain amplitude, the one tempered for 24 h had a superior fatigue resistance due to high ductility. Deposited weld metal tempered for 1 h exhibited cyclic hardening at the tested strain amplitudes. Deposited weld metal tempered for 24 h exhibited cyclic hardening at a low strain amplitude but cyclic softening at a high strain amplitude. Existence and decomposition of martensite-austenite (M-A) islands as well as dislocations activities contributed to fatigue property discrepancy among the two tempered deposited weld metal.

  16. Characterization of 67P/Churyumov-Gerasimenko interior from CONSERT signal amplitude variability

    NASA Astrophysics Data System (ADS)

    Zine, Sonia; Kofman, Wlodek; Herique, Alain; Hahnel, Ronny; Plettemeier, Dirk; Rogez, Yves; Statz, Christoph; Ciarletti, Valerie

    2016-04-01

    The bistatic radar CONSERT on Rosetta and Philae operated for 9 hours during Philae's First Science Sequence (FSS), on 12 and 13 November 2014. A strong signal was detected for 30 min at the beginning of the sequence, and for 80 min at the end. The signal propagated through the smaller lobe of the nucleus, with a length of propagation ranging between 200 and 800m, and a rapid decrease of its amplitude. First results have been published, based on the study of the signal propagation delay and the propagation path (Kofman et al., Science 2015; Ciarletti et al, A&A, 2015). This work focuses on the study of the signal amplitude, which shows variability throughout the acquisition sequence. The cause of this variability is twofold: (1) losses within the comet interior; (2) depolarization due to both antennas' varying relative attitudes. We simulate the depolarization by taking into account Rosetta's position and attitude on its orbit and by making assumptions on Philae's position, attitude, and close environment on the comet (dielectric properties). Then we assess the variability due to losses within the medium, and infer a characterization of the composition of the comet interior.

  17. Experimental and theoretical investigation of temperature-dependent electrical fatigue studies on 1-3 type piezocomposites

    NASA Astrophysics Data System (ADS)

    Mohan, Y.; Arockiarajan, A.

    2016-03-01

    1-3 type piezocomposites are very attractive materials for transducers and biomedical application, due to its high electromechanical coupling effects. Reliability study on 1-3 piezocomposites subjected to cyclic loading condition in transducer application is one of the primary concern. Hence, this study focuses on 1-3 piezocomposites for various PZT5A1 fiber volume fraction subjected to electrical fatigue loading up-to 106 cycles and at various elevated temperature. Initially experiments are performed on 1-3 piezocomposites, in order to understand the degradation phenomena due to various range in amplitude of electric fields (unipolar & bipolar), frequency of applied electric field and for various ambient temperature. Performing experiments for high cycle fatigue and for different fiber volume fraction of PZT5A1 is a time consuming process. Hence, a simplified macroscopic uni-axial model based on physical mechanisms of domain switching and continuum damage mechanics has been developed to predict the non-linear fatigue behaviour of 1-3 piezocomposites for temperature dependent electrical fatigue loading conditions. In this model, damage effects namely domain pinning, frozen domains and micro cracks, are considered as a damage variable (ω). Remnant variables and material properties are considered as a function of internal damage variable and the growth of the damage is derived empirically based on the experimental observation to predict the macroscopic changes in the properties. The measured material properties and dielectric hysteresis (electric displacement vs. electric field) as well as butterfly curves (longitudinal strain vs. electric field) are compared with the simulated results. It is observed that variation in amplitude of bipolar electric field and temperature has a strong influence on the response of 1-3 piezocomposites.

  18. The Effect of Propulsion Style on Wrist Movement Variability During the Push Phase After a Bout of Fatiguing Propulsion.

    PubMed

    Zukowski, Lisa A; Christou, Evangelos A; Shechtman, Orit; Hass, Christopher J; Tillman, Mark D

    2017-03-01

    Wheelchair propulsion has been linked to overuse injuries regardless of propulsion style. Many aspects of the arcing (ARC) and semicircular (SEMI) propulsion styles have been compared, but differences in intracycle movement variability, which have been linked to overuse injuries, have not been examined. To explore how ARC and SEMI affect changes in intracycle wrist movement variability after a fatiguing bout of propulsion. Repeated measures crossover design. Wheelchair rollers and wheelchair fatigue course in a research laboratory. Twenty healthy, nondisabled adult men without previous wheelchair experience. Participants learned ARC and SEMI and used each to perform a wheelchair fatigue protocol. Thirty seconds of propulsion on rollers were recorded by motion-capture cameras before and after a fatigue protocol for each propulsion style on 2 testing days. Angular wrist orientations (flexion/extension and radial/ulnar deviation) and linear wrist trajectories (mediolateral direction) were computed, and intracycle movement variability was calculated as standard deviations of the detrended and filtered values during the push phase beginning and end. Paired samples t tests were used to compare ARC and SEMI based on the percent changes from pre- to postfatigue protocol. Both propulsion styles resulted in increased intracycle wrist movement variability postfatigue, but observed increases did not significantly differ between ARC and SEMI. This study evinces that intersubject variability exceeded average changes in intracycle wrist movement variability for both propulsion styles. Neither propulsion style resulting in a greater change in intracycle movement variability may suggest that no single propulsion style is ideal for everyone. The large intersubject variability may indicate that the propulsion style resulting in the smallest increase in intracycle movement variability after a fatiguing bout of propulsion may differ for each person and may help explain why wheelchair

  19. Effect of Heat Treatment Process on Microstructure and Fatigue Behavior of a Nickel-Base Superalloy

    PubMed Central

    Zhang, Peng; Zhu, Qiang; Chen, Gang; Qin, Heyong; Wang, Chuanjie

    2015-01-01

    The study of fatigue behaviors for nickel-base superalloys is very significant because fatigue damage results in serious consequences. In this paper, two kinds of heat treatment procedures (Pro.I and Pro.II) were taken to investigate the effect of heat treatment on microstructures and fatigue behaviors of a nickel-base superalloy. Fatigue behaviors were studied through total strain controlled mode at 650 °C. Manson-Coffin relationship and three-parameter power function were used to predict fatigue life. A good link between the cyclic/fatigue behavior and microscopic studies was established. The cyclic deformation mechanism and fatigue mechanism were discussed. The results show that the fatigue resistance significantly drops with the increase of total strain amplitudes. Manson-Coffin relationship can well predict the fatigue life for total strain amplitude from 0.5% to 0.8%. The fatigue resistance is related with heat treatment procedures. The fatigue resistance performance of Pro.I is better than that of Pro.II. The cyclic stress response behaviors are closely related to the changes of the strain amplitudes. The peak stress of the alloy gradually increases with the increase of total strain amplitudes. The main fracture mechanism is inhomogeneous deformation and the different interactions between dislocations and γ′ precipitates. PMID:28793559

  20. Differential sensory fMRI signatures in autism and schizophrenia: Analysis of amplitude and trial-to-trial variability.

    PubMed

    Haigh, Sarah M; Gupta, Akshat; Barb, Scott M; Glass, Summer A F; Minshew, Nancy J; Dinstein, Ilan; Heeger, David J; Eack, Shaun M; Behrmann, Marlene

    2016-08-01

    Autism and schizophrenia share multiple phenotypic and genotypic markers, and there is ongoing debate regarding the relationship of these two disorders. To examine whether cortical dynamics are similar across these disorders, we directly compared fMRI responses to visual, somatosensory and auditory stimuli in adults with autism (N=15), with schizophrenia (N=15), and matched controls (N=15). All participants completed a one-back letter detection task presented at fixation (to control attention) while task-irrelevant sensory stimulation was delivered to the different modalities. We focused specifically on the response amplitudes and the variability in sensory fMRI responses of the two groups, given the evidence of greater trial-to-trial variability in adults with autism. Both autism and schizophrenia individuals showed weaker signal-to-noise ratios (SNR) in sensory-evoked responses compared to controls (d>0.42), but for different reasons. For the autism group, the fMRI response amplitudes were indistinguishable from controls but were more variable trial-to-trial (d=0.47). For the schizophrenia group, response amplitudes were smaller compared to autism (d=0.44) and control groups (d=0.74), but were not significantly more variable (d<0.29). These differential group profiles suggest (1) that greater trial-to-trial variability in cortical responses may be specific to autism and is not a defining characteristic of schizophrenia, and (2) that blunted response amplitudes may be characteristic of schizophrenia. The relationship between the amplitude and the variability of cortical activity might serve as a specific signature differentiating these neurodevelopmental disorders. Identifying the neural basis of these responses and their relationship to the underlying genetic bases may substantially enlighten the understanding of both disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Variable weight spectral amplitude coding for multiservice OCDMA networks

    NASA Astrophysics Data System (ADS)

    Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.

    2017-09-01

    The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.

  2. GRMHD Simulations of Visibility Amplitude Variability for Event Horizon Telescope Images of Sgr A*

    NASA Astrophysics Data System (ADS)

    Medeiros, Lia; Chan, Chi-kwan; Özel, Feryal; Psaltis, Dimitrios; Kim, Junhan; Marrone, Daniel P.; Sa¸dowski, Aleksander

    2018-04-01

    The Event Horizon Telescope will generate horizon scale images of the black hole in the center of the Milky Way, Sgr A*. Image reconstruction using interferometric visibilities rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence disk- and jet-dominated GRMHD simulations of Sgr A*. We also employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented parallel and perpendicular to the spin axis of the black hole follow general trends that do not depend strongly on accretion-flow properties. This suggests that fitting Event Horizon Telescope observations with simple geometric models may lead to a reasonably accurate determination of the orientation of the black hole on the plane of the sky. However, in the disk-dominated models, the locations and depths of the minima in the visibility amplitudes are highly variable and are not related simply to the size of the black hole shadow. This suggests that using time-independent models to infer additional black hole parameters, such as the shadow size or the spin magnitude, will be severely affected by the variability of the accretion flow.

  3. Stuy on Fatigue Life of Aluminum Alloy Considering Fretting

    NASA Astrophysics Data System (ADS)

    Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali

    2018-01-01

    To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.

  4. An Assessment of Cumulative Axial and Torsional Fatigue in a Cobalt-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    2010-01-01

    Cumulative fatigue under axial and torsional loading conditions can include both load-order (higMow and low/high) as well as load-type sequence (axial/torsional and torsional/axial) effects. Previously reported experimental studies on a cobalt-base superalloy, Haynes 188 at 538 C, addressed these effects. These studies characterized the cumulative axial and torsional fatigue behavior under high amplitude followed by low amplitude (Kalluri, S. and Bonacuse, P. J., "Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequance Effects," in Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, S. Kalluri, and P. J. Bonacuse, Eds., American Society for Testing and Materials, West Conshohocken, PA, 2000, pp. 281-301) and low amplitude followed by high amplitude (Bonacuse, P. and Kalluri, S. "Sequenced Axial and Torsional Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading," Biaxial/Multiaxial Fatigue and Fracture, ESIS Publication 31, A. Carpinteri, M. De Freitas, and A. Spagnoli, Eds., Elsevier, New York, 2003, pp. 165-182) conditions. In both studies, experiments with the following four load-type sequences were performed: (a) axial/axial, (b) torsional/torsional, (c) axial/torsional, and (d) torsional/axial. In this paper, the cumulative axial and torsional fatigue data generated in the two previous studies are combined to generate a comprehensive cumulative fatigue database on both the load-order and load-type sequence effects. This comprehensive database is used to examine applicability of the Palmgren-langer-Miner linear damage rule and a nonlinear damage curve approach for Haynes 188 subjected to the load-order and load-type sequencing described above. Summations of life fractions from the experiments are compared to the predictions from both the linear and nonlinear cumulative fatigue damage approaches. The significance of load-order versus load-type sequence effects for axial and torsional loading conditions

  5. Investigation of Cumulative Fatigue Damage Through Sequential Low Cycle Fatigue and High Cycle Fatigue Cycling at High Temperature for a Type 316LN Stainless Steel: Life-Prediction Techniques and Associated Mechanisms

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.; Okazaki, M.

    2017-03-01

    Cumulative fatigue damage under sequential low cycle fatigue (LCF) and high cycle fatigue (HCF) cycling was investigated at 923 K (650 °C) by conducting HCF tests on specimens subjected to prior LCF cycling at various strain amplitudes. Remnant HCF lives were found to decrease drastically with increase in prior fatigue exposure as a result of strong LCF-HCF interactions. The rate of decrease in remnant lives varied as a function of the applied strain amplitude. A threshold damage in terms of prior LCF life-fraction was found, below which no significant LCF-HCF interaction takes place. Similarly, a critical damage during the LCF pre-cycling marking the highest degree of LCF-HCF interaction was identified which was found to depend on the applied strain amplitude. In view of the non-linear damage accumulation behavior, Miner's linear damage rule proved to be highly non-conservative. Manson's damage curve approach, suitably modified, was found to be a better alternative for predicting the remnant HCF life. The single constant ( β) employed in the model, which reflects the damage accumulation of the material under two/multi-level loading conditions is derived from the regression analysis of the experimental results and validated further.

  6. An unusual very low-mass high-amplitude pre-main sequence periodic variable

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ledesma, M. V.; Mundt, R.; Ibrahimov, M.; Messina, S.; Parihar, P.; Hessman, F. V.; Alves de Oliveira, C.; Herbst, W.

    2012-08-01

    Aims: We have investigated the nature of the variability of CHS 7797, an unusual periodic variable in the Orion Nebula Cluster. Methods: An extensive I-band photometric data set of CHS 7797 was compiled between 2004-2010 using various telescopes. Further optical data have been collected in R and z' bands. In addition, simultaneous observations of the ONC region including CHS 7797 were performed in the I,J,Ks & IRAC 3.6 and 4.5 μm bands over a time interval of ≈40 d. Results: CHS 7797 shows an unusual large-amplitude variation of ≈1.7 mag in the R,I, and z' bands with a period 17.786 ± 0.03 d (FAP = 1 × 10-15%). The amplitude of the brightness modulation decreases only slightly at longer wavelengths. The star is faint during ≈2/3 of the period and the shape of the phased light-curves for the seven different observing seasons shows minor changes and small-amplitude variations. Interestingly, there are no significant colour-flux correlations for λ ≲ 2 μm, while the object becomes redder when fainter at longer wavelengths. CHS 7797 has a spectral type of M 6 and an estimated mass between 0.04-0.1 M⊙. Conclusions: The analysis of the data suggests that the periodic variability of CHS 7797 is most probably caused by an orbital motion. Variability as a result of rotational brightness modulation by a hot spot is excluded by the lack of any colour-brightness correlation in the optical. The latter indicates that CHS 7797 is most probably occulted by circumstellar matter in which grains have grown from typical 0.1 μm to ≈1-2 μm sizes. We discuss two possible scenarios in which CHS 7797 is periodically eclipsed by structures in a disc, namely that CHS 7797 is a single object with a circumstellar disc, or that CHS 7797 is a binary system, similar to KH 15D, in which an inclined circumbinary disc is responsible of the variability. Possible reasons for the typical 0.3 mag variations in I-band at a given phase are discussed.

  7. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    PubMed

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  8. Review of Corrosion Fatigue.

    DTIC Science & Technology

    1981-11-16

    other is not always well defined. 3.0 CORROSIM FATIGUE VARIABLES AND THEIR EFFECTS Corrosion fatigue behavior is pverned, y Ir of variables- environmental...on near threshold fatigue crack growth behavior is primarily a function of environmental reaction in this steel . 3.2 Mechanical Effects Among the...Gallagher""’ and Pao studied the corrosion fatigue behavior of 4340 steel at various * Ifrequencies in distilled water and water vapor, respectively

  9. Fatigue testing of weldable high strength steels under simulated service conditions

    NASA Astrophysics Data System (ADS)

    Tantbirojn, Natee

    There have been concerns over the effect of Cathodic Protection (CP) on weldable high strength steels employed in Jack-up production platform. The guidance provided by the Department of Energy HSE on higher strength steels, based on previous work, was to avoid overprotection as this could cause hydrogen embrittlement. However, the tests conducted so far at UCL for the SE702 type high strength steels (yields strength around 690 MPa) have shown that the effect of over protection on high strength steels may not be as severe as previously thought. For this thesis, SE702 high strength steels have been investigated in more detail. Thick (85mm) parent and ground welded plates were tested under constant amplitude in air and seawater with CP. Tests were also conducted on Thick (40mm) T-butt welded plates under variable amplitude loading in air and seawater with two CP levels (-800mV and -1050mV). Different backing materials (ceramic and metallic) for the welding process of the T-butt plates were also investigated. The variable amplitude sequences employed were generated using the Jack-up Offshore Standard load History (JOSH). The fatigue results are presented as crack growth and S/N curves. They were compared to the conventional offshore steel (BS 4360 50D). The results suggested that the fatigue life of the high strength steels was comparable to the BS 4360 50D steels. The effect of increasing the CP was found to be detrimental to the fatigue life but the effect was not large. The effect of CP was less noticeable in T-butt welded plates. However, in general, the effect of overprotection is not as detrimental to the Jack-up steels as previously thought. The load histories generated by JOSH were found to have some unfavourable characteristics. The framework is based on Markov Chain method and pseudo-random number generator for selecting sea-states. A study was carried out on the sequence generated by JOSH. The generated sequences were analysed for their validity for fatigue

  10. Modelling fatigue and the use of fatigue models in work settings.

    PubMed

    Dawson, Drew; Ian Noy, Y; Härmä, Mikko; Akerstedt, Torbjorn; Belenky, Gregory

    2011-03-01

    In recent years, theoretical models of the sleep and circadian system developed in laboratory settings have been adapted to predict fatigue and, by inference, performance. This is typically done using the timing of prior sleep and waking or working hours as the primary input and the time course of the predicted variables as the primary output. The aim of these models is to provide employers, unions and regulators with quantitative information on the likely average level of fatigue, or risk, associated with a given pattern of work and sleep with the goal of better managing the risk of fatigue-related errors and accidents/incidents. The first part of this review summarises the variables known to influence workplace fatigue and draws attention to the considerable variability attributable to individual and task variables not included in current models. The second part reviews the current fatigue models described in the scientific and technical literature and classifies them according to whether they predict fatigue directly by using the timing of prior sleep and wake (one-step models) or indirectly by using work schedules to infer an average sleep-wake pattern that is then used to predict fatigue (two-step models). The third part of the review looks at the current use of fatigue models in field settings by organizations and regulators. Given their limitations it is suggested that the current generation of models may be appropriate for use as one element in a fatigue risk management system. The final section of the review looks at the future of these models and recommends a standardised approach for their use as an element of the 'defenses-in-depth' approach to fatigue risk management. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  12. Handgrip fatiguing exercise can provide objective assessment of cancer-related fatigue: a pilot study.

    PubMed

    Veni, T; Boyas, S; Beaune, B; Bourgeois, H; Rahmani, A; Landry, S; Bochereau, A; Durand, S; Morel, B

    2018-06-24

    As a subjective symptom, cancer-related fatigue is assessed via patient-reported outcomes. Due to the inherent bias of such evaluation, screening and treatment for cancer-related fatigue remains suboptimal. The purpose is to evaluate whether objective cancer patients' hand muscle mechanical parameters (maximal force, critical force, force variability) extracted from a fatiguing handgrip exercise may be correlated to the different dimensions (physical, emotional, and cognitive) of cancer-related fatigue. Fourteen women with advanced breast cancer, still under or having previously received chemotherapy within the preceding 3 months, and 11 healthy women participated to the present study. Cancer-related fatigue was first assessed through the EORTC QLQ-30 and its fatigue module. Fatigability was then measured during 60 maximal repeated handgrip contractions. The maximum force, critical force (asymptote of the force-time evolution), and force variability (root mean square of the successive differences) were extracted. Multiple regression models were performed to investigate the influence of the force parameters on cancer-related fatigue's dimensions. The multiple linear regression analysis evidenced that physical fatigue was best explained by maximum force and critical force (r = 0.81; p = 0.029). The emotional fatigue was best explained by maximum force, critical force, and force variability (r = 0.83; p = 0.008). The cognitive fatigue was best explained by critical force and force variability (r = 0.62; p = 0.035). The handgrip maximal force, critical force, and force variability may offer objective measures of the different dimensions of cancer-related fatigue and could provide a complementary approach to the patient reported outcomes.

  13. Ultrasonic fatigue of a high strength steel

    NASA Astrophysics Data System (ADS)

    Koster, M.; Wagner, G.; Eifler, D.

    2010-07-01

    At the Institute of Materials Science and Engineering at the University of Kaiserslautern an ultrasonic testing system for the fatigue assessment of metallic materials in the very high cycle fatigue (VHCF) regime was developed. The ultrasonic testing system allows to control the test and to measure detailed fatigue data. The achieved results can be used to describe the cyclic deformation behaviour of wheel steels at ultrasonic frequencies. In load increase tests (LIT), the critical stress amplitude can be determined, which leads to a defined change of process parameters like generator power, dissipated energy and specimen temperature. With SEM investigations it was proved that the change of the process parameters correlates with irreversible changes in the microstructure. It can be shown that the stress amplitude, leading to first irreversible changes in the microstructure, strongly depends on the depth position within the original wheel rim. New and basic results on the fatigue mechanisms of high strength steels in the VHCF-regime can be achieved.

  14. A differential CDM model for fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1992-01-01

    A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.

  15. Mental fatigue and impaired response processes: event-related brain potentials in a Go/NoGo task.

    PubMed

    Kato, Yuichiro; Endo, Hiroshi; Kizuka, Tomohiro

    2009-05-01

    The effects of mental fatigue on the availability of cognitive resources and associated response-related processes were examined using event-related brain potentials. Subjects performed a Go/NoGo task for 60 min. Reaction time, number of errors, and mental fatigue scores all significantly increased with time spent on the task. The NoGo-P3 amplitude significantly decreased with time on task, but the Go-P3 amplitude was not modulated. The amplitude of error-related negativity (Ne/ERN) also decreased with time on task. These results indicate that mental fatigue attenuates resource allocation and error monitoring for NoGo stimuli. The Go- and NoGo-P3 latencies both increased with time on task, indicative of a delay in stimulus evaluation time due to mental fatigue. NoGo-N2 latency increased with time on task, but NoGo-N2 amplitude was not modulated. The amplitude of response-locked lateralized readiness potential (LRP) significantly decreased with time on task. Mental fatigue appears to slows down the time course of response inhibition, and impairs the intensity of response execution.

  16. Short-term variability in amplitude and motor topography of whole-body involuntary movements in Parkinson's disease dyskinesias and in Huntington's chorea.

    PubMed

    Fenney, Alison; Jog, Mandar S; Duval, Christian

    2008-02-01

    Clinical observations have noted variability in amplitude of levodopa-induced dyskinesias (LID) in Parkinson's disease (PD) and chorea in Huntington's disease (HD) during the day. However, no studies have examined whether both the amplitude and body location (motor topography) of whole-body involuntary movement (WBIM) varied over short periods of time (seconds or minutes), which may have a distinct and significant effect on how disruptive these WBIM may be. The present study quantified the variability of WBIM amplitude and motor topography in patients with PD having LID and in patients with HD having chorea. WBIM was quantified using the MotionMonitor magnetic motion tracker system. Five patients in each group were tested in two conditions: sitting and standing. WBIM increased from sitting to standing, more so in choreic patients. WBIM varied from 17% to 102% of total WBIM amplitude. Chorea tended to present with greater variability than LID in absolute terms in the standing condition, but not when the mean WBIM amplitude was taken into consideration. Motor topography of WBIM also varied more in the HD group, but mostly in the seated condition where more limbs were free to move. Neither group expressed any laterality of involuntary movement, with amplitude being equally distributed on both sides of the body. Results show significant short-term variability in amplitude of chorea and LID, as well as, variability in location of these involuntary movements, illustrating the complexity of the adaptations required to live and be active with involuntary movements such as HD chorea or PD dyskinesias.

  17. Axial-Load Fatigue Tests on 17-7 PH Stainless Steel Under Constant-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Leybold, Herbert A.

    1960-01-01

    Axial-load fatigue tests were conducted at room temperature on notched and unnotched sheet specimens of 17-7 PH stainless steel in Condition TH 1050. The notched specimens had theoretical stress-concentration factors of 2.32, 4.00, and 5.00. All specimens were tested under completely reversed loading. S-N curves are presented for each specimen configuration and ratios of fatigue strengths of unnotched specimens to those of notched specimens are given. Predictions of the fatigue behavior of notched specimens near the fatigue limit were made.

  18. Effects of Person-Centered Physical Therapy on Fatigue-Related Variables in Persons With Rheumatoid Arthritis: A Randomized Controlled Trial.

    PubMed

    Feldthusen, Caroline; Dean, Elizabeth; Forsblad-d'Elia, Helena; Mannerkorpi, Kaisa

    2016-01-01

    To examine effects of person-centered physical therapy on fatigue and related variables in persons with rheumatoid arthritis (RA). Randomized controlled trial. Hospital outpatient rheumatology clinic. Persons with RA aged 20 to 65 years (N=70): intervention group (n=36) and reference group (n=34). The 12-week intervention, with 6-month follow-up, focused on partnership between participant and physical therapist and tailored health-enhancing physical activity and balancing life activities. The reference group continued with regular activities; both groups received usual health care. Primary outcome was general fatigue (visual analog scale). Secondary outcomes included multidimensional fatigue (Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire) and fatigue-related variables (ie, disease, health, function). At posttest, general fatigue improved more in the intervention group than the reference group (P=.042). Improvement in median general fatigue reached minimal clinically important differences between and within groups at posttest and follow-up. Improvement was also observed for anxiety (P=.0099), and trends toward improvements were observed for most multidimensional aspects of fatigue (P=.023-.048), leg strength/endurance (P=.024), and physical activity (P=.023). Compared with the reference group at follow-up, the intervention group improvement was observed for leg strength/endurance (P=.001), and the trends toward improvements persisted for physical (P=.041) and living-related (P=.031) aspects of fatigue, physical activity (P=.019), anxiety (P=.015), self-rated health (P=.010), and self-efficacy (P=.046). Person-centered physical therapy focused on health-enhancing physical activity and balancing life activities showed significant benefits on fatigue in persons with RA. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Variable slew-rate spiral design: theory and application to peak B(1) amplitude reduction in 2D RF pulse design.

    PubMed

    Xu, Dan; King, Kevin F; Liang, Zhi-Pei

    2007-10-01

    A new class of spiral trajectories called variable slew-rate spirals is proposed. The governing differential equations for a variable slew-rate spiral are derived, and both numeric and analytic solutions to the equations are given. The primary application of variable slew-rate spirals is peak B(1) amplitude reduction in 2D RF pulse design. The reduction of peak B(1) amplitude is achieved by changing the gradient slew-rate profile, and gradient amplitude and slew-rate constraints are inherently satisfied by the design of variable slew-rate spiral gradient waveforms. A design example of 2D RF pulses is given, which shows that under the same hardware constraints the RF pulse using a properly chosen variable slew-rate spiral trajectory can be much shorter than that using a conventional constant slew-rate spiral trajectory, thus having greater immunity to resonance frequency offsets.

  20. Use of atomic force microscopy for characterizing damage evolution during fatigue

    NASA Astrophysics Data System (ADS)

    Cretegny, Laurent

    2000-10-01

    A study of the development of surface fatigue damage in PH 13-8 Mo stainless steel and copper by atomic force microscopy (AFM) was performed. AFM observations allow highly automated, quantitative characterization of surface deformation with a resolution of 5 nm or better, which is ideal for understanding fatigue damage evolution. A secondary objective was to establish a correlation between fatigue life exhausted and impedance spectroscopy. Strain controlled fatigue tests were conducted both in high and low cycle fatigue regimes, and interruptions of the fatigue tests allowed characterizing the evolution of the surface upset at various life-fractions. In the low strain amplitude tests on stainless steel (Deltaepsilonpl/2 = 0.0026%), surface damage occurred in the shape of narrow streaks at the interface between martensite laths where reverted austenite was present. The streaks eventually coalesced to form crack nuclei. In high strain amplitude tests (Deltaepsilon pl/2 = 0.049%), fatigue surface damage was essentially dominated by the formation of extrusions. In copper, both low (Deltaepsilonpl/2 = 0.061%) and high (Deltaepsilonpl/2 = 0.134%) strain amplitude tests showed the formation of slip bands (mainly extrusions) across entire grains. Protrusions were present only in copper specimens tested at the high strain amplitude. Crack nucleation in the low strain amplitude tests occurred in both materials at the interface between a region that sustained a high level of deformation and one with little evidence of surface upset. This commonality between these two materials that are otherwise very dissimilar in nature suggests a universal scheme for location of fatigue crack nucleation sites during HCF. A procedure was developed in this study to quantitatively characterize the amount of irreversible surface strain. The proposed formalism is applicable to any material, independently of the type of surface damage, and leads to a criterion for crack nucleation based on

  1. Intraindividual variability in cognitive performance in persons with chronic fatigue syndrome.

    PubMed

    Fuentes, K; Hunter, M A; Strauss, E; Hultsch, D F

    2001-05-01

    Studies of cognitive performance among persons with chronic fatigue syndrome (CFS) have yielded inconsistent results. We sought to contribute to findings in this area by examining intraindividual variability as well as level of performance in cognitive functioning. A battery of cognitive measures was administered to 14 CFS patients and 16 healthy individuals on 10 weekly occasions. Analyses comparing the two groups in terms of level of performance defined by latency and accuracy scores revealed that the CFS patients were slower but not less accurate than healthy persons. The CFS group showed greater intraindividual variability (as measured by intraindividual standard deviations and coefficients of variation) than the healthy group, although the results varied by task and time frame. Intraindividual variability was found to be stable across time and correlated across tasks at each testing occasion. Intraindividual variability also uniquely differentiated the groups. The present findings support the proposition that intraindividual variability is a meaningful indicator of cognitive functioning in CFS patients.

  2. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, Vito; Nissley, David; Lin, Li-Sen Jim

    1985-01-01

    The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.

  3. Low-Cycle Fatigue Properties of P92 Ferritic-Martensitic Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Hu, ZhengFei; Schmauder, Siegfried; Mlikota, Marijo; Fan, KangLe

    2016-04-01

    The low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K has been extensively studied. The test results of fatigue lifetime are consistent with the Coffin-Manson relationship over a range of controlled total strain amplitudes from 0.15 to 0.6%. The influence of strain amplitude on the fatigue crack initiation and growth has been observed using optical microscopy and scanning electron microscopy. The formation mechanism of secondary cracks is established according to the observation of fracture after fatigue process and there is an intrinsic relationship between striation spacing, current crack length, and strain amplitude. Transmission electron microscopy has been employed to investigate the microstructure evolution after fatigue process. It indicates the interaction between carbides and dislocations together with the formation of cell structure inhibits the cyclic softening. The low-angle sub-boundary elimination in the martensite is mainly caused by the cyclic stress.

  4. Effect of cooling rate during hot stamping on low cyclic fatigue of boron steel sheet

    NASA Astrophysics Data System (ADS)

    Suh, Chang Hee; Jang, Won Seok; Oh, Sang Kyun; Lee, Rac Gyu; Jung, Yun-Chul; Kim, Young Suk

    2012-08-01

    Boron steel is widely used throughout the automobile industry due to its high tensile strength and hardenability. When boron steel is used for body parts, only high strength is required for crashworthiness. However, when boron steel is used for chassis parts, a high fatigue life is needed. The microstructure of boron steel is mainly affected by the cooling rate during hot stamping. Therefore, this study investigated the low cyclic fatigue life according to the cooling rate. The fatigue life increased at a low strain amplitude when the cooling rate was fast. However, at a high strain amplitude, the fatigue life decreased, due to the low ductility and fracture toughness of the martensite formed by rapid cooling. Martensite formed by a fast cooling rate shows excellent fatigue life at a low total strain amplitude; however, a multiphase microstructure formed by a slow cooling rate is recommended if the parts experience high and low total strain amplitudes alternately. In addition, the cooling rate has little effect on the distribution of solute boron and boron precipitations, so it is expected that boron rarely affects low cyclic fatigue.

  5. Exertion fatigue and chronic fatigue are two distinct constructs in people post-stroke.

    PubMed

    Tseng, Benjamin Y; Billinger, Sandra A; Gajewski, Byron J; Kluding, Patricia M

    2010-12-01

    Post-stroke fatigue is a common and neglected issue despite the fact that it impacts daily functions, quality of life, and has been linked with a higher mortality rate because of its association with a sedentary lifestyle. The purpose of this study was to identify the contributing factors of exertion fatigue and chronic fatigue in people post-stroke. Twenty-one post-stroke people (12 males, 9 females; 59.5 ± 10.3 years of age; time after stroke 4.1 ± 3.5 years) participated in the study. The response variables included exertion fatigue and chronic fatigue. Participants underwent a standardized fatigue-inducing exercise on a recumbent stepper. Exertion fatigue level was assessed at rest and immediately after exercise using the Visual Analog Fatigue Scale. Chronic fatigue was measured by the Fatigue Severity Scale. The explanatory variables included aerobic fitness, motor control, and depressive symptoms measured by peak oxygen uptake, Fugl-Meyer motor score, and the Geriatric Depression Scale, respectively. Using forward stepwise regression, we found that peak oxygen uptake was an independent predictor of exertion fatigue (P = 0.006), whereas depression was an independent predictor of chronic fatigue (P = 0.002). Exertion fatigue and chronic fatigue are 2 distinct fatigue constructs, as identified by 2 different contributing factors.

  6. Effect of fatigue and gender on kinematics and ground reaction forces variables in recreational runners

    PubMed Central

    Durá-Gil, Juan V.; Palomares, Nicolás; Medina, Enrique; Llana-Belloch, Salvador

    2018-01-01

    The presence of fatigue has been shown to modify running biomechanics. Overall in terms of gender, women are at lower risk than men for sustaining running-related injuries, although it depends on the factors taken into account. One possible reason for these differences in the injury rate and location might be the dissimilar running patterns between men and women. The purpose of this study was to determine the effect of fatigue and gender on the kinematic and ground reaction forces (GRF) parameters in recreational runners. Fifty-seven participants (28 males and 29 females) had kinematic and GRF variables measured while running at speed of 3.3 m s−1 before and after a fatigue test protocol. The fatigue protocol included (1) a running Course-Navette test, (2) running up and down a flight of stairs for 5 min, and (3) performance of alternating jumps on a step (five sets of 1 minute each with 30 resting seconds between the sets). Fatigue decreased dorsiflexion (14.24 ± 4.98° in pre-fatigue and 12.65 ± 6.21° in fatigue condition, p < 0.05) at foot strike phase in females, and plantar flexion (−19.23 ± 4.12° in pre-fatigue and −18.26 ± 5.31° in fatigue condition, p < 0.05) at toe-off phase in males. These changes led to a decreased loading rate (88.14 ± 25.82 BW/s in pre-fatigue and 83.97 ± 18.83 BW/s in fatigue condition, p < 0.05) and the impact peak in females (1.95 ± 0.31 BW in pre-fatigue and 1.90 ± 0.31 BW in fatigue condition, p < 0.05), and higher peak propulsive forces in males (−0.26 ± 0.04 BW in pre-fatigue and −0.27 ± 0.05 BW in fatigue condition, p < 0.05) in the fatigue condition. It seems that better responses to impact under a fatigue condition are observed among women. Further studies should confirm whether these changes represent a strategy to optimize shock attenuation, prevent running injuries and improve running economy. PMID:29576960

  7. Effect of fatigue and gender on kinematics and ground reaction forces variables in recreational runners.

    PubMed

    Bazuelo-Ruiz, Bruno; Durá-Gil, Juan V; Palomares, Nicolás; Medina, Enrique; Llana-Belloch, Salvador

    2018-01-01

    The presence of fatigue has been shown to modify running biomechanics. Overall in terms of gender, women are at lower risk than men for sustaining running-related injuries, although it depends on the factors taken into account. One possible reason for these differences in the injury rate and location might be the dissimilar running patterns between men and women. The purpose of this study was to determine the effect of fatigue and gender on the kinematic and ground reaction forces (GRF) parameters in recreational runners. Fifty-seven participants (28 males and 29 females) had kinematic and GRF variables measured while running at speed of 3.3 m s -1 before and after a fatigue test protocol. The fatigue protocol included (1) a running Course-Navette test, (2) running up and down a flight of stairs for 5 min, and (3) performance of alternating jumps on a step (five sets of 1 minute each with 30 resting seconds between the sets). Fatigue decreased dorsiflexion (14.24 ± 4.98° in pre-fatigue and 12.65 ± 6.21° in fatigue condition, p  < 0.05) at foot strike phase in females, and plantar flexion (-19.23 ± 4.12° in pre-fatigue and -18.26 ± 5.31° in fatigue condition, p  < 0.05) at toe-off phase in males. These changes led to a decreased loading rate (88.14 ± 25.82 BW/s in pre-fatigue and 83.97 ± 18.83 BW/s in fatigue condition, p  < 0.05) and the impact peak in females (1.95 ± 0.31 BW in pre-fatigue and 1.90 ± 0.31 BW in fatigue condition, p  < 0.05), and higher peak propulsive forces in males (-0.26 ± 0.04 BW in pre-fatigue and -0.27 ± 0.05 BW in fatigue condition, p  < 0.05) in the fatigue condition. It seems that better responses to impact under a fatigue condition are observed among women. Further studies should confirm whether these changes represent a strategy to optimize shock attenuation, prevent running injuries and improve running economy.

  8. Research on the Fatigue Flexural Performance of RC Beams Attacked by Salt Spray

    NASA Astrophysics Data System (ADS)

    Mao, Jiang-hong; Xu, Fang-yuan; Jin, Wei-liang; Zhang, Jun; Wu, Xi-xi; Chen, Cai-sheng

    2018-04-01

    The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.

  9. Piezoelectric Bolt Breakers and Bolt Fatigue Testers

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Barengoltz, Jack; Heckman, Vanessa

    2008-01-01

    A proposed family of devices for inducing fatigue in bolts in order to break the bolts would incorporate piezoelectric actuators into resonant fixtures as in ultrasonic/ sonic drills/corers and similar devices described in numerous prior NASA Tech Briefs articles. These devices were originally intended primarily for use as safer, more-reliable, more-versatile alternatives to explosive bolts heretofore used to fasten spacecraft structures that must subsequently be separated from each other quickly on command during flight. On Earth, these devices could be used for accelerated fatigue testing of bolts. Fatigue theory suggests that a bolt subjected to both a constant-amplitude dynamic (that is, oscillatory) stress and a static tensile stress below the ultimate strength of the bolt material will fail faster than will a bolt subjected to only the dynamic stress. This suggestion would be applied in a device of the proposed type. The device would be designed so that the device and the bolt to be fatigue-tested or broken would be integral parts of an assembly (see figure). The static tension in the tightened bolt would apply not only the clamping force to hold the joined structures (if any) together but also the compression necessary for proper operation of the piezoelectric actuators as parts of a resonant structural assembly. The constant-amplitude dynamic stress would be applied to the bolt by driving the piezoelectric actuators with a sinusoidal voltage at the resonance frequency of longitudinal vibration of the assembly. The amplitude of the excitation would be made large enough so that the vibration would induce fatigue in the bolt within an acceptably short time. In the spacecraft applications or in similar terrestrial structural-separation applications, devices of the proposed type would offer several advantages over explosive bolts: Unlike explosive bolts, the proposed devices would be reusable, could be tested before final use, and would not be subject to

  10. Development of a high-frequency and large-stroke fatigue testing system for rubber

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wu, Hao; Gao, Jianwen; Lin, Qiang

    2017-04-01

    The limited capabilities of current fatigue testing machines have resulted in studies on the fatigue behavior of rubber under large-displacement amplitude and high frequency being very sparse. In this study, a fatigue testing system that can carry out large-displacement amplitude and high-frequency fatigue tests on rubber was developed using a moving magnet voice coil motor (MMVCM) actuator, with finite element analysis applied to analyze the thrust of the MMVCM actuator. The results of a series of cyclic tension tests conducted on vulcanized natural rubber specimens using the developed fatigue testing system verify that it has high precision, low noise, large-stroke, and high-frequency characteristics. Further, the load frame with the developed MMVCM actuator is feasible for material testing, especially for large-stroke and high-frequency fatigue tests.

  11. A Three-Parameter Model for Predicting Fatigue Life of Ductile Metals Under Constant Amplitude Multiaxial Loading

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Li, Jing; Zhang, Zhong-ping

    2013-04-01

    In this article, a fatigue damage parameter is proposed to assess the multiaxial fatigue lives of ductile metals based on the critical plane concept: Fatigue crack initiation is controlled by the maximum shear strain, and the other important effect in the fatigue damage process is the normal strain and stress. This fatigue damage parameter introduces a stress-correlated factor, which describes the degree of the non-proportional cyclic hardening. Besides, a three-parameter multiaxial fatigue criterion is used to correlate the fatigue lifetime of metallic materials with the proposed damage parameter. Under the uniaxial loading, this three-parameter model reduces to the recently developed Zhang's model for predicting the uniaxial fatigue crack initiation life. The accuracy and reliability of this three-parameter model are checked against the experimental data found in literature through testing six different ductile metals under various strain paths with zero/non-zero mean stress.

  12. The fatigue damage behavior of a single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1988-01-01

    The uniaxial fatigue behavior of a single crystal superalloy, PWA 1480, is described. Both monotonic tensile and constant amplitude fatigue tests were conducted at room temperature, in an effort to assess the applicability of polycrystalline-based fatigue life prediction methods to a single crystal superalloy. The observed constant amplitude behavior correlated best using a stress-based life criterion. Nearly all specimens failed at surface or slightly subsurface microporosity; this is thought to be responsible for the unusually large amount of scatter in the test results. An additional term is developed in the stress-life equation for the purpose of accounting for the effect of microporosity on fatigue life. The form chosen is a function of the effective area of the failure-producing microporosity projected on a plane perpendicular to the loading axis, as well as the applied stress. This additional term correlated the data to within factors of two on life. Although speculative, extrapolation of the microporosity relation to zero micropore area indicates that approximately an order of magnitude improvement in fatigue life should result.

  13. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  14. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  15. Predictors and Trajectories of Morning Fatigue Are Distinct from Evening Fatigue

    PubMed Central

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is the most common symptom in oncology patients during chemotherapy (CTX). Little is known about the predictors of interindividual variability in initial levels and trajectories of morning fatigue severity in these patients. Objectives An evaluation was done to determine which demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of morning fatigue and to compare findings with our companion paper on evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the morning fatigue trajectories. A piecewise model fit the data best. Patients with higher body mass index (BMI), who did not exercise regularly, with a lower functional status, and who had higher levels of state anxiety, sleep disturbance and depressive symptoms, reported higher levels of morning fatigue at enrollment. Variations in the trajectories of morning fatigue were predicted by the patients’ ethnicity and younger age. Conclusion The modifiable risk factors that were associated with only morning fatigue were BMI, exercise, and state anxiety. Modifiable risk factors that were associated with both morning and evening fatigue included functional status, depressive symptoms, and sleep disturbance. Using this information, clinicians can identify patients at higher risk for more severe morning fatigue and evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828559

  16. A probabilistic fatigue analysis of multiple site damage

    NASA Technical Reports Server (NTRS)

    Rohrbaugh, S. M.; Ruff, D.; Hillberry, B. M.; Mccabe, G.; Grandt, A. F., Jr.

    1994-01-01

    The variability in initial crack size and fatigue crack growth is incorporated in a probabilistic model that is used to predict the fatigue lives for unstiffened aluminum alloy panels containing multiple site damage (MSD). The uncertainty of the damage in the MSD panel is represented by a distribution of fatigue crack lengths that are analytically derived from equivalent initial flaw sizes. The variability in fatigue crack growth rate is characterized by stochastic descriptions of crack growth parameters for a modified Paris crack growth law. A Monte-Carlo simulation explicitly describes the MSD panel by randomly selecting values from the stochastic variables and then grows the MSD cracks with a deterministic fatigue model until the panel fails. Different simulations investigate the influences of the fatigue variability on the distributions of remaining fatigue lives. Six cases that consider fixed and variable conditions of initial crack size and fatigue crack growth rate are examined. The crack size distribution exhibited a dominant effect on the remaining fatigue life distribution, and the variable crack growth rate exhibited a lesser effect on the distribution. In addition, the probabilistic model predicted that only a small percentage of the life remains after a lead crack develops in the MSD panel.

  17. Variability of phase and amplitude fronts due to horizontal refraction in shallow water.

    PubMed

    Katsnelson, Boris G; Grigorev, Valery A; Lynch, James F

    2018-01-01

    The variability of the interference pattern of a narrow-band sound signal in a shallow water waveguide in the horizontal plane in the presence of horizontal stratification, in particular due to linear internal waves, is studied. It is shown that lines of constant phase (a phase front) and lines of constant amplitude/envelope (an amplitude front) for each waveguide mode may have different directions in the spatial vicinity of the point of reception. The angle between them depends on the waveguide's parameters, the mode number, and the sound frequency. Theoretical estimates and data processing methodology for obtaining these angles from experimental data recorded by a horizontal line array are proposed. The behavior of the angles, which are obtained for two episodes from the Shallow Water 2006 (SW06) experiment, show agreement with the theory presented.

  18. Postpartum fatigue in the active-duty military woman.

    PubMed

    Rychnovsky, Jacqueline D

    2007-01-01

    (a) To describe fatigue levels in military active-duty women, (b) to describe the relationship among selected predictor variables of fatigue, and (c) to examine the relationship between predictor variables, fatigue levels, and performance (as measured by functional status) after childbirth. Based on the Theory of Unpleasant Symptoms, a longitudinal, prospective design. A large military medical facility in the southwest United States. A convenience sample of 109 military active-duty women. Postpartum fatigue. Women were found to be moderately fatigued across time, with no change in fatigue levels from 2 to 6 weeks after delivery. All variables correlated with fatigue during hospitalization and at 2 weeks after delivery, and depression, anxiety, maternal sleep, and functional status correlated with fatigue at 6 weeks after delivery. Regression analyses indicated that maternal anxiety predicted fatigue at 6 weeks after delivery. Over half the women had not regained full functional status when they returned to work, and 40% still displayed symptoms of postpartum depression and anxiety. Military women continue to experiencing postpartum fatigue when they return to the workplace. Future research is needed to examine issues surrounding fatigue and its associated variables during the first year after delivery.

  19. Simulation of Crack Propagation in Engine Rotating Components under Variable Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, P. J.; Ghosn, L. J.; Telesman, J.; Calomino, A. M.; Kantzos, P.

    1998-01-01

    The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability ]or a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.

  20. Acoustic emission during fatigue of porous-coated Ti-6Al-4V implant alloy.

    PubMed

    Kohn, D H; Ducheyne, P; Awerbuch, J

    1992-01-01

    Acoustic emission (AE) events and event intensities (e.g., event amplitude, counts, duration, and energy counts) were recorded and analyzed during fatigue loading of uncoated and porous-coated Ti-6Al-4V. AE source location, spatial filtering, event, and event intensity distributions were used to detect, monitor, analyze, and predict failures. AE provides the ability to spatially and temporally locate multiple fatigue cracks, in real time. Fatigue of porous-coated Ti-6Al-4V is governed by a sequential, multimode fracture process of: transverse fracture in the porous coating; sphere/sphere and sphere/substrate debonding; substrate fatigue crack initiation; slow and rapid substrate fatigue crack propagation. Because of the porosity of the coating, the different stages of fracture within the coating occur in a discontinuous fashion. Therefore, the AE events generated are intermittent and the onset of each mode of fracture in the porous coating can be detected by increases in AE event rate. Changes in AE event rate also correspond to changes in crack extension rate, and may therefore be used to predict failure. AE offers two distinct advantages over conventional optical and microscopic methods of analyzing fatigue cracks--it is more sensitive and it can determine the time history of damage progression. The magnitude of the AE event intensities increased with increasing stress. Failure mechanisms are best differentiated by analyzing AE event amplitudes. Intergranular fracture and microvoid coalescence generated the highest AE event amplitudes (100 dB), whereas, plastic flow and friction generated the lowest AE event amplitudes (55-65 dB). Fractures in the porous coating were characterized by AE event amplitudes of less than 80 dB.

  1. A comparison of patients with Q fever fatigue syndrome and patients with chronic fatigue syndrome with a focus on inflammatory markers and possible fatigue perpetuating cognitions and behaviour.

    PubMed

    Keijmel, Stephan P; Saxe, Johanna; van der Meer, Jos W M; Nikolaus, Stephanie; Netea, Mihai G; Bleijenberg, Gijs; Bleeker-Rovers, Chantal P; Knoop, Hans

    2015-10-01

    Comparison of Q fever fatigue syndrome (QFS) and chronic fatigue syndrome (CFS) patients, with a focus on markers of inflammation and fatigue-related cognitive-behavioural variables. Data from two independent prospective studies on QFS (n=117) and CFS (n=173), respectively, were pooled and analyzed. QFS patients were less often female, had a higher BMI, and had less often received treatment for depression before the onset of symptoms. After controlling for symptom duration and correcting for differences in diagnostic criteria for QFS and CFS with respect to the level of impairment and the presence of additional symptoms, differences in the proportion of females and BMI remained significant. After correction, QFS patients were also significantly older. In all analyses QFS patients were as fatigued and distressed as CFS patients, but reported less additional symptoms. QFS patients had stronger somatic attributions, and higher levels of physical activity. No differences were found with regard to inflammatory markers and in other fatigue-related cognitive-behavioural variables. The relationship between cognitive-behavioural variables and fatigue, previously established in CFS, could not be confirmed in QFS patients with the exception of the negative relationship between physical activity and fatigue. Differences and similarities between QFS and CFS patients were found. Although the relationship between perpetuating factors and fatigue previously established in CFS could not be confirmed in QFS patients, the considerable overlap in fatigue-related cognitive-behavioural variables and the relationship found between physical activity and fatigue may suggest that behavioural interventions could reduce fatigue severity in QFS patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    NASA Astrophysics Data System (ADS)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  3. Microtexture Analysis and Modeling of Ambient Fatigue and Creep-Fatigue Damages in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, Jalaj; Singh, A. K.; Raman, S. Ganesh Sundara; Kumar, Vikas

    2017-02-01

    In the present investigation, microtexture analysis using electron back-scattered diffraction technique has been performed to study fatigue- and creep-fatigue damages and associated deformation structures in Ti-6Al-4V alloy. Special emphasis has been given to low-angle grain boundary configuration and its possible application as a damage indicator. Damage is mostly present in the form of voids as investigated through scanning electron microscopy. Stored deformation energies have been evaluated for the strain-controlled fatigue-, the stress-controlled fatigue-, and the creep-fatigue-tested samples. Stored deformation energies have also been analyzed vis-à-vis total damage energies to quantify the contribution of damages to various samples. A relation between the stored deformation energy and the applied strain amplitude has been proposed in this study.

  4. Optical Sensing of the Fatigue Damage State of CFRP under Realistic Aeronautical Load Sequences

    PubMed Central

    Zuluaga-Ramírez, Pablo; Arconada, Álvaro; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP), by measuring variations on the surface roughness. Variable amplitude loads (VAL), which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF) have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL) obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others. PMID:25760056

  5. The Role of Microtexture on Fatigue Lifetime Variability and Crack Initiation Mechanisms (Preprint)

    DTIC Science & Technology

    2011-10-01

    October 2011 4 . TITLE AND SUBTITLE THE ROLE OF MICROTEXTURE OF FATIGUE LIFETIME VARIABILITY AND CRACK INITIATION MECHANISMS (PREPRINT) 5a...CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6 . AUTHOR(S) Christopher J. Szczepanski (Universal Technology...Preprint journal article to be submitted to Titanium 2011 World Conference. This document contains color. 14. ABSTRACT Commercial titanium alloys

  6. Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress

    NASA Astrophysics Data System (ADS)

    Gibaud, Thomas; Perge, Christophe; Lindström, Stefan B.; Taberlet, Nicolas; Manneville, Sébastien

    Fatigue refers to the changes in material properties caused by repeatedly applied loads. It has been widely studied for, e.g., construction materials, but much less has been done on soft materials. Here, we characterize the fatigue dynamics of a colloidal gel. Fatigue is induced by large amplitude oscillatory stress (LAOStress), and the local displacements of the gel are measured through high-frequency ultrasonic imaging. We show that fatigue eventually leads to rupture and fluidization. We evidence four successive steps associated with these dynamics: (i) the gel first remains solid, (ii) it then slides against the walls, (iii) the bulk of the sample becomes heterogeneous and displays solid-fluid coexistence, and (iv) it is finally fully fluidized. It is possible to homogeneously scale the duration of each step with respect to the stress oscillation amplitude $\\sigma_0$. The data are compatible with both exponential and power-law scalings with $\\sigma_0$, which hints at two possible interpretations in terms of delayed yielding in terms activated processes or of the Basquin law. Surprisingly, we find that the model parameters behave nonmonotonically as we change the oscillation frequency and/or the gel concentration.

  7. THE TAIWAN-AMERICAN OCCULTATION SURVEY PROJECT STELLAR VARIABILITY. I. DETECTION OF LOW-AMPLITUDE {delta} SCUTI STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.-W.; Protopapas, P.; Alcock, C.

    2010-02-15

    We analyzed data accumulated during 2005 and 2006 by the Taiwan-American Occultation Survey (TAOS) in order to detect short-period variable stars (periods of {approx}<1 hr) such as {delta} Scuti. TAOS is designed for the detection of stellar occultation by small-size Kuiper Belt Objects and is operating four 50 cm telescopes at an effective cadence of 5 Hz. The four telescopes simultaneously monitor the same patch of the sky in order to reduce false positives. To detect short-period variables, we used the fast Fourier transform algorithm (FFT) in as much as the data points in TAOS light curves are evenly spaced.more » Using FFT, we found 41 short-period variables with amplitudes smaller than a few hundredths of a magnitude and periods of about an hour, which suggest that they are low-amplitude {delta} Scuti stars. The light curves of TAOS {delta} Scuti stars are accessible online at the Time Series Center Web site (http://timemachine.iic.harvard.edu)« less

  8. Effects of different training amplitudes on heart rate and heart rate variability in young rowers.

    PubMed

    Vaz, Marcelo S; Picanço, Luan M; Del Vecchio, Fabrício B

    2014-10-01

    The aim of this study was to investigate the autonomic nervous system recovery and the psychological response as a result of 3 training amplitudes on heart rate (HR), heart rate variability (HRV), and rate of perceived exertion (RPE) in rowing. Eight young rowers (16.8 ± 1.4 years) performed, in a randomized fashion, 2 sessions of high-intensity interval training, with high and low amplitude and a continuous training (CT) session, with the same exercise duration (10 minutes) and mean intensity (60% of maximal stroke test). The data of HR, HRV, and RPE were collected 5 minutes before, immediately after each session, and 24 hours later. High amplitude promoted higher impact in maximum HR (p ≤ 0.05) and RPE (p < 0.001) when compared with CT. For the time domain HRV variable, there was a statistically significant difference between moments of rest (pretraining or post 24 hours) and posttraining in all training sessions. Originally, we conclude that training with higher load variation between effort and recovery impacts HRV, HR, and RPE with greater intensity, but the younger rowers were ready for new training sessions 24 hours after either training method. Coaches can use the polarized training method, observing the stimulus nature and time required for recovery, because it may be an adequate strategy for the development of rower's conditioning.

  9. Fatigue testing of a NiTi rotary instrument. Part 2: Fractographic analysis.

    PubMed

    Cheung, G S P; Darvell, B W

    2007-08-01

    To examine the topographic features of the fracture surface of a NiTi instrument after fatigue failure, and to correlate the measurements of some features with the cyclic load. A total of 212 ProFile rotary instruments were subjected to a rotational-bending test at various curvatures until broken. The fracture surface of all fragments was examined by SEM to identify the crack origins. The crack radius, i.e. extent of the fatigue-crack growth towards the centroid of the cross-section, was also measured, and correlated with the strain amplitude for each instrument. All fracture surfaces revealed the presence of one or more crack origins, a region occupied by microscopic striations, and an area with microscopic dimples. The number of specimens showing multiple crack origins was significantly greater in the group fatigued under water than in air (P < 0.05). A linear relationship between the reciprocal of the square root of the crack radius and the strain amplitude was discernible (P < 0.001), the slopes of which were not significantly different for instruments fatigued in air and water. The fractographic appearance of NiTi engine-files that had failed because of fatigue is typical of that for other metals. The fatigue behaviour of NiTi instruments is adversely affected by water, not only for the low-cycle fatigue life, but also the number of crack origins. There appears to be a critical extent of crack propagation for various strain amplitudes leading to final rupture (akin to the Griffith's criterion for brittle materials).

  10. Overload and Underload Effects on the Fatigue Crack Growth Behavior of the 2024-T3 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.

    1997-01-01

    Fatigue crack growth tests were conducted on 0.09 inch thick, 3.0 inch wide middle-crack tension specimens cut from sheets of 2024-T3 aluminum alloy. The tests were conducted using a load sequence that consisted of a single block of 2,500 cycles of constant amplitude loading followed by an overload/underload combination. The largest fatigue crack growth life occurred for the tests with the overload stress equal to 2 times the constant amplitude stress and the underload stress equal to the constant amplitude minimum stress. For the tests with compressive underloads, the fatigue crack growth life decreased with increasing compressive underload stress.

  11. All Fatigue is Not Created Equal: The Association of Fatigue and Its Subtypes on Pain Interference in Orofacial Pain.

    PubMed

    Boggero, Ian A; Rojas-Ramirez, Marcia V; Carlson, Charles R

    2017-03-01

    Fatigue is known to be a pathway through which depression, psychological distress, pain intensity, and sleep disturbance influence pain interference, but the independent effects of fatigue on pain interference after controlling for these variables remains unknown. In addition, no study to date has tested whether fatigue subtypes of general fatigue, mental fatigue, emotional fatigue, physical fatigue, or vigor differentially predict pain interference. The current study tested these associations using archival medical data of 2133 chronic orofacial pain patients, who completed a battery of psychological questionnaires at the time of their first appointment at an orofacial pain clinic. Hierarchical linear regression analysis revealed that after controlling for depression, psychological distress, sleep disturbance, pain intensity, and demographic variables, fatigue predicted higher pain interference (B=0.70, SE=0.17, P<0.001, η=0.01). Physical fatigue (B=1.70, SE=0.48, P<0.001, η=0.01) and vigor (B=-3.24, SE=0.47, P<0.001, η=0.03) were independently associated with pain interference after controlling for the aforementioned variables. The findings suggest that fatigue is an important independent predictor of pain interference and not merely a mediator. These findings also suggest that not all fatigue is created equal. Interventions aimed at reducing pain interference should target specific fatigue symptoms of physical fatigue and vigor. Future research investigating the independent associations of fatigue subtypes on pain outcomes may help clarify the nature of the interrelationships between pain and fatigue.

  12. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloy AZ91

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke; Anderson, Warwick; Jones, J. Wayne

    An investigation has been conducted on the influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91. Fatigue lifetimes were determined from total strain-controlled fatigue tests for strain amplitudes of 0.2%, 0.4% and 0.6%, under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using incremental step test (IST) methods. Two locations in a prototype casting with different thicknesses and, therefore, solidification rates, microstructure and porosity, were examined. In general., at all total strain amplitudes fatigue life was unaffected by microstructure refinement and was attributed to significant levels of porosity. Cyclic softening and a subsequent increased cyclic hardening rate, compared to monotonic tests, were observed, independent of microstructure. These results, fractography and damage accumulation processes, determined from metallographic sectioning, are discussed.

  13. Tensile and Fatigue Properties of Single and Multiple Dissimilar Welded Joints of DP980 and HSLA

    NASA Astrophysics Data System (ADS)

    Cui, Q. L.; Parkes, D.; Westerbaan, D.; Nayak, S. S.; Zhou, Y.; Saha, D. C.; Liu, D.; Goodwin, F.; Bhole, S.; Chen, D. L.

    2017-02-01

    The present study focused on single and multiple dissimilar joints between DP980 and high-strength low-alloy (HSLA) galvanized steels. The tensile properties of the dissimilar joint between the strong DP980 and the relatively soft HSLA reflected only the properties of HSLA with plastic deformation, and final fracture took place entirely in HSLA. The fatigue properties of the dissimilar joints were more intriguing, with the strong DP980 outperforming at high stress amplitude and the ductile HSLA outperforming at low stress amplitude. For different load amplitudes, fatigue failure occurred in different materials and at different locations. The fatigue strength of DP980 was more negatively impaired by weld defects than that of HSLA.

  14. Fatigue Behavior of Inconel 718 TIG Welds

    NASA Astrophysics Data System (ADS)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  15. Effect of mental fatigue caused by mobile 3D viewing on selective attention: an ERP study.

    PubMed

    Mun, Sungchul; Kim, Eun-Soo; Park, Min-Chul

    2014-12-01

    This study investigated behavioral responses to and auditory event-related potential (ERP) correlates of mental fatigue caused by mobile three-dimensional (3D) viewing. Twenty-six participants (14 women) performed a selective attention task in which they were asked to respond to the sounds presented at the attended side while ignoring sounds at the ignored side before and after mobile 3D viewing. Considering different individual susceptibilities to 3D, participants' subjective fatigue data were used to categorize them into two groups: fatigued and unfatigued. The amplitudes of d-ERP components were defined as differences in amplitudes between time-locked brain oscillations of the attended and ignored sounds, and these values were used to calculate the degree to which spatial selective attention was impaired by 3D mental fatigue. The fatigued group showed significantly longer response times after mobile 3D viewing compared to before the viewing. However, response accuracy did not significantly change between the two conditions, implying that the participants used a behavioral strategy to cope with their performance accuracy decrement by increasing their response times. No significant differences were observed for the unfatigued group. Analysis of covariance revealed group differences with significant and trends toward significant decreases in the d-P200 and d-late positive potential (LPP) amplitudes at the occipital electrodes of the fatigued and unfatigued groups. Our findings indicate that mentally fatigued participants did not effectively block out distractors in their information processing mechanism, providing support for the hypothesis that 3D mental fatigue impairs spatial selective attention and is characterized by changes in d-P200 and d-LPP amplitudes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Inflammatory Pathway Genes Associated with Inter-Individual Variability in the Trajectories of Morning and Evening Fatigue in Patients Receiving Chemotherapy

    PubMed Central

    Wright, Fay; Hammer, Marilyn; Paul, Steven M.; Aouizerat, Bradley E.; Kober, Kord M.; Conley, Yvette P.; Cooper, Bruce A.; Dunn, Laura B.; Levine, Jon D.; Melkus, Gail DEramo; Miaskowski, Christine

    2017-01-01

    Fatigue, a highly prevalent and distressing symptom during chemotherapy (CTX), demonstrates diurnal and interindividual variability in severity. Little is known about the associations between variations in genes involved in inflammatory processes and morning and evening fatigue severity during CTX. The purposes of this study, in a sample of oncology patients (N=543) with breast, gastrointestinal (GI), gynecological (GYN), or lung cancer who received two cycles of CTX, were to determine whether variations in genes involved in inflammatory processes were associated with inter-individual variability in initial levels as well as in the trajectories of morning and evening fatigue. Patients completed the Lee Fatigue Scale to determine morning and evening fatigue severity a total of six times over two cycles of CTX. Using a whole exome array, 309 single nucleotide polymorphisms among the 64 candidate genes that passed all quality control filters were evaluated using hierarchical linear modeling (HLM). Based on the results of the HLM analyses, the final SNPs were evaluated for their potential impact on protein function using two bioinformational tools. The following inflammatory pathways were represented: chemokines (3 genes); cytokines (12 genes); inflammasome (11 genes); Janus kinase/signal transducers and activators of transcription (JAK/STAT, 10 genes); mitogen-activated protein kinase/jun amino-terminal kinases (MAPK/JNK, 3 genes); nuclear factor-kappa beta (NFkB, 18 genes); and NFkB and MAP/JNK (7 genes). After controlling for self-reported and genomic estimates of race and ethnicity, polymorphisms in six genes from the cytokine (2 genes); inflammasome (2 genes); and NFkB (2 genes) pathways were associated with both morning and evening fatigue. Polymorphisms in six genes from the inflammasome (1 gene); JAK/STAT (1 gene); and NFkB (4 genes) pathways were associated with only morning fatigue. Polymorphisms in three genes from the inflammasome (2 genes) and the NFkB (1

  17. Development of an improved method of consolidating fatigue life data

    NASA Technical Reports Server (NTRS)

    Leis, B. N.; Sampath, S. G.

    1978-01-01

    A fatigue data consolidation model that incorporates recent advances in life prediction methodology was developed. A combined analytic and experimental study of fatigue of notched 2024-T3 aluminum alloy under constant amplitude loading was carried out. Because few systematic and complete data sets for 2024-T3 were available in the program generated data for fatigue crack initiation and separation failure for both zero and nonzero mean stresses. Consolidations of these data are presented.

  18. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part II: Fatigue Life and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes ( ±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin-Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.

  19. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    PubMed

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  20. The process of cognitive behaviour therapy for chronic fatigue syndrome: which changes in perpetuating cognitions and behaviour are related to a reduction in fatigue?

    PubMed

    Heins, Marianne J; Knoop, Hans; Burk, William J; Bleijenberg, Gijs

    2013-09-01

    Cognitive behaviour therapy (CBT) can significantly reduce fatigue in chronic fatigue syndrome (CFS), but little is known about the process of change taking place during CBT. Based on a recent treatment model (Wiborg et al. J Psych Res 2012), we examined how (changes in) cognitions and behaviour are related to the decrease in fatigue. We included 183 patients meeting the US Centers for Disease Control criteria for CFS, aged 18 to 65 years, starting CBT. We measured fatigue and possible process variables before treatment; after 6, 12 and 18 weeks; and after treatment. Possible process variables were sense of control over fatigue, focusing on symptoms, self-reported physical functioning, perceived physical activity and objective (actigraphic) physical activity. We built multiple regression models, explaining levels of fatigue during therapy by (changes in) proposed process variables. We observed large individual variation in the patterns of change in fatigue and process variables during CBT for CFS. Increases in the sense of control over fatigue, perceived activity and self-reported physical functioning, and decreases in focusing on symptoms explained 20 to 46% of the variance in fatigue. An increase in objective activity was not a process variable. A change in cognitive factors seems to be related to the decrease in fatigue during CBT for CFS. The pattern of change varies considerably between patients, but changes in process variables and fatigue occur mostly in the same period. © 2013.

  1. Polarization fatigue of organic ferroelectric capacitors

    PubMed Central

    Zhao, Dong; Katsouras, Ilias; Li, Mengyuan; Asadi, Kamal; Tsurumi, Junto; Glasser, Gunnar; Takeya, Jun; Blom, Paul W. M.; de Leeuw, Dago M.

    2014-01-01

    The polarization of the ferroelectric polymer P(VDF-TrFE) decreases upon prolonged cycling. Understanding of this fatigue behavior is of great technological importance for the implementation of P(VDF-TrFE) in random-access memories. However, the origin of fatigue is still ambiguous. Here we investigate fatigue in thin-film capacitors by systematically varying the frequency and amplitude of the driving waveform. We show that the fatigue is due to delamination of the top electrode. The origin is accumulation of gases, expelled from the capacitor, under the impermeable top electrode. The gases are formed by electron-induced phase decomposition of P(VDF-TrFE), similar as reported for inorganic ferroelectric materials. When the gas barrier is removed and the waveform is adapted, a fatigue-free ferroelectric capacitor based on P(VDF-TrFE) is realized. The capacitor can be cycled for more than 108 times, approaching the programming cycle endurance of its inorganic ferroelectric counterparts. PMID:24861542

  2. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.

    PubMed

    Patankar, Ravindra

    2003-10-01

    Statistical fatigue life of a ductile alloy specimen is traditionally divided into three stages, namely, crack nucleation, small crack growth, and large crack growth. Crack nucleation and small crack growth show a wide variation and hence a big spread on cycles versus crack length graph. Relatively, large crack growth shows a lesser variation. Therefore, different models are fitted to the different stages of the fatigue evolution process, thus treating different stages as different phenomena. With these independent models, it is impossible to predict one phenomenon based on the information available about the other phenomenon. Experimentally, it is easier to carry out crack length measurements of large cracks compared to nucleating cracks and small cracks. Thus, it is easier to collect statistical data for large crack growth compared to the painstaking effort it would take to collect statistical data for crack nucleation and small crack growth. This article presents a fracture mechanics-based stochastic model of fatigue crack growth in ductile alloys that are commonly encountered in mechanical structures and machine components. The model has been validated by Ray (1998) for crack propagation by various statistical fatigue data. Based on the model, this article proposes a technique to predict statistical information of fatigue crack nucleation and small crack growth properties that uses the statistical properties of large crack growth under constant amplitude stress excitation. The statistical properties of large crack growth under constant amplitude stress excitation can be obtained via experiments.

  3. Energy Dissipation-Based Method for Fatigue Life Prediction of Rock Salt

    NASA Astrophysics Data System (ADS)

    He, Mingming; Huang, Bingqian; Zhu, Caihui; Chen, Yunsheng; Li, Ning

    2018-05-01

    The fatigue test for rock salt is conducted under different stress amplitudes, loading frequencies, confining pressures and loading rates, from which the evaluation rule of the dissipated energy is revealed and analysed. The evolution of energy dissipation under fatigue loading is divided into three stages: the initial stage, the second stage and the acceleration stage. In the second stage, the energy dissipation per cycle remains stable and shows an exponential relation with the stress amplitude; the failure dissipated energy only depends on the mechanical behaviour of the rock salt and confining pressure, but it is immune to the loading conditions. The energy dissipation of fatigued rock salt is discussed, and a novel model for fatigue life prediction is proposed on the basis of energy dissipation. A simple model for evolution of the accumulative dissipated energy is established. Its prediction results are compared with the test results, and the proposed model is validated.

  4. Nondestructive monitoring of fatigue damage evolution in austenitic stainless steel by positron-lifetime measurements

    NASA Astrophysics Data System (ADS)

    Holzwarth, Uwe; Schaaff, Petra

    2004-03-01

    Positron-lifetime measurements have been performed on austenitic stainless steel during (i) stress- and (ii) strain-controlled fatigue experiments for different applied stress and strain amplitudes, respectively. For this purpose a generator-detector assembly with a 72Se/72As positron generator [maximum activity 25 μCi (0.9 MBq)] has been mounted on mechanical testing machines in order to measure the positron lifetime without removing the specimens from the load train. The average positron lifetime has been determined by a β+-γ coincidence. The feasibility to use the average positron lifetime for monitoring the evolution of fatigue damage and to predict early failure has been examined. In strain- and stress-controlled experiments the average positron lifetime shows a pronounced increase within the first 10% and 40% of the fatigue life, respectively. In stress-controlled experiments the average positron lifetime at failure depends significantly on the applied stress amplitude. In strain-controlled experiments significantly different positron lifetimes for different applied plastic strain amplitudes are obtained within the first 1.000 fatigue cycles, whereas differences get wiped out during further cycling until failure.

  5. Evaluating Changes in Tendon Crimp with Fatigue Loading as an ex vivo Structural Assessment of Tendon Damage

    PubMed Central

    Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.

    2015-01-01

    The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654

  6. Actuator stiction compensation via variable amplitude pulses.

    PubMed

    Arifin, B M S; Munaro, C J; Angarita, O F B; Cypriano, M V G; Shah, S L

    2018-02-01

    A novel model free stiction compensation scheme is developed which eliminates the oscillations and also reduces valve movement, allowing good setpoint tracking and disturbance rejection. Pulses with varying amplitude are added to the controller output to overcome stiction and when the error becomes smaller than a specified limit, the compensation ceases and remains in a standby mode. The compensation re-starts as soon as the error exceeds the user specified threshold. The ability to cope with uncertainty in friction is a feature achieved by the use of pulses of varying amplitude. The algorithm has been evaluated via simulation and by application on an industrial DCS system interfaced to a pilot scale process with features identical to those found in industry including a valve positioner. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Assessment of fatigue life of remanufactured impeller based on FEA

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo

    2016-09-01

    Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

  8. The effect of matrix mechanical properties on (0)8 unidirectional SiC/Ti composite fatigue resistance

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Lerch, B. A.; Halford, G. R.

    1991-01-01

    The relationship between constituent and MMC properties in fatigue loading is investigated with low-cycle fatigue-resistance testing of an alloy Ti-15-3 matrix reinforced with SiC SCS-6 fibers. The fabrication of the composite is described, and specimens are generated that are weak and ductile (WD), strong and moderately ductile (SM), or strong and brittle (SB). Strain is measured during MMC fatigue tests at a constant load amplitude with a load-controlled waveform and during matrix-alloy fatigue tests at a constant strain amplitude using a strain-controlled waveform. The fatigue resistance of the (0)8 SiC/Ti-15-3 composite is found to be slightly influenced by matrix mechanical properties, and the composite- and matrix-alloy fatigue lives are not correlated. This finding is suggested to relate to the different crack-initiation and -growth processes in MMCs and matrix alloys.

  9. The mediating role of emotional symptomatology between anticipatory fatigue and the perception of fatigue.

    PubMed

    Rodríguez Testal, Juan F; Fuentes Márquez, Sandra; Senín Calderón, Cristina; Carrasco, Miguel A

    2016-05-01

    Clinical research stresses the importance of cognitive variables for predisposition, onset, and especially, perpetuation of perceived fatigue. The aim was to analyze the mediating effects of emotional symptomatology (somatic, depressive and anxiety) between anticipatory fatigue and perception of physical and cognitive fatigue. The sample was composed of 317 participants (29% from a clinical population) aged 18 to 76. Anticipatory fatigue and perception of fatigue were measured by fatigue scales. Emotional symptoms were assessed by the General Health Questionnaire, GHQ-28.  Results : Depressive symptomatology mediated the relationship between anticipatory fatigue and cognitive fatigue in both groups, and also somatic symptoms/somatization in patients. The indirect effect of physical fatigue was observed only in the clinical group, with depressive symptoms partially mediating the anticipatory fatigue and cognitive fatigue relationship. Anticipatory fatigue has a partial indirect effect on total physical fatigue, and full indirect effect on cognitive fatigue, mediated by depressive and somatic symptoms. Anticipatory fatigue is a relevant cognitive factor in the design of psychological intervention for improvement of cognitive and physical fatigue.

  10. Repeated Impact Method and Devices to Simulate the Impact Fatigue Property of Drillstring

    NASA Astrophysics Data System (ADS)

    Lin, Y. H.; Li, B.; Pan, J.; Li, Q.; Liu, W. Y.; Pan, Y.

    2017-05-01

    It is well known that drillstring failures are a pendent problem in drilling engineering, because of the fatigue accumulation caused by the low amplitude-repeated impact. In order to reveal the effect of low amplitude-repeated impact on the failure mechanism of the drillstring, a repeated impact method and instrument have been developed based on the Charpy impact method, by which a series of tests have been performed in the condition of non-corrosive medium and with H2S environment respective. Test results of non-corrosive medium environment indicates that, with the increase of single impact energy, the low amplitude-repeated impact resistance of drillstring decreases significantly; For H2S corrosion environment, the low amplitude-repeated impact resistances with H2S is much lower than that without H2S corrosion, and high strength material such as V-150 drillstring is more sensitive to H2S corrosion media. Furthermore, based on the experiment data, the accumulation fatigue model to predict the service life of the drillstring is developed, which could be used to predict the fatigue life. Research fruits are very vital to select a suitable rotational speed for drilling job and drillstring design.

  11. Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry.

    PubMed

    Heinz, Stefan; Balle, Frank; Wagner, Guntram; Eifler, Dietmar

    2013-12-01

    Accelerated fatigue tests with Ti6Al4V were carried out using a 20kHz ultrasonic testing facility to investigate the cyclic deformation behavior in the Very High Cycle Fatigue (VHCF) regime in detail. Beside parameters like the ultrasonic generator power and the displacement of the specimen, a 3D laser scanning vibrometer was used to characterize the oscillation and fatigue behavior of the Ti-alloy. The course of the S-N(f) curve at the stress ratio R=-1 shows a significant decrease of the bearable stress amplitude and a change from surface to subsurface failures in the VHCF regime for more than 10⁷ cycles. Microscopic investigations of the distribution of the α- and β-phase of Ti6Al4V indicate that inhomogeneities in the phase distribution are reasons for the internal crack initiation. High resolution vibrometry was used to visualize the eigenmode of the designed VHCF-specimen at 20 kHz in the initial state and to indicate local changes in the eigenmodes as a result of progressing fatigue damage. Non-contact strain measurements were realized and used to determine the stress amplitude. The determined stress amplitudes were correlated with strain gauge measurements and finite element analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Different fatigue-resistant leg muscles and EMG response during whole-body vibration.

    PubMed

    Simsek, Deniz

    2017-12-01

    The purpose of this study was to determine the effects of static whole-body vibration (WBV) on the Electromyograhic (EMG) responses of leg muscles, which are fatigue-resistant in different manner. The study population was divided into two groups according to the values obtained by the Fatigue Index [Group I: Less Fatigue Resistant (LFR), n=11; Group II: More Fatigue Resistant (MFR), n=11]. The repeated electromyographic (EMG) activities of four leg muscles were analyzed the following determinants: (1) frequency (30 Hz, 35 Hz and 40 Hz); (2) stance position (static squat position); (3) amplitude (2 mm and 4 mm) and (4) knee flexion angle (120°), (5) vertical vibration platform. Vibration data were analyzed using Minitab 16 (Minitab Ltd, State College, PA, USA). The significance level was set at p<.05. The study results showed that static WBV stimuli given at different frequencies and amplitudes resulted in a significant increase (p<.05) in compared, the LFR group showed significantly (1) higher rates of quadriceps femoris and hamstring muscle fatigue (p<.05), (2) higher levels of knee extensor and flexor torque (p<.05) and (3) higher percentage increases in EMG activation at higher frequencies (max at 40 Hz) and amplitudes (4 mm) (p<.05). The present study can be used for the optimal prescription of vibration exercise and can serve to guide the development of training programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Low-cycle fatigue of Fe-20%Cr alloy processed by equal- channel angular pressing

    NASA Astrophysics Data System (ADS)

    Kaneko, Yoshihisa; Tomita, Ryuji; Vinogradov, Alexei

    2014-08-01

    Low-cycle fatigue properties were investigated on Fe-20%Cr ferritic stainless steel processed by equal channel angular pressing (ECAP). The Fe-20%Cr alloy bullets were processed for one to four passes via Route-Bc. The ECAPed samples were cyclically deformed at the constant plastic strain amplitude ɛpl of 5x10-4 at room temperature in air. After the 1-pass ECAP, low-angle grain boundaries were dominantly formed. During the low-cycle fatigue test, the 1-pass sample revealed the rapid softening which continued until fatigue fracture. Fatigue life of the 1-pass sample was shorter than that of a coarse-grained sample. After the 4-pass ECAP, the average grain size reduced down to about 1.5 μm. At initial stage of the low-cycle fatigue tests, the stress amplitude increased with increasing ECAP passes. At the samples processed for more than 2 passes, the cyclic softening was relatively moderate. It was found that fatigue life of the ECAPed Fe-20%Cr alloy excepting the 1-pass sample was improved as compared to the coarse-grained sample, even under the strain controlled fatigue condition.

  14. Interest of analyses of heart rate variability in the prevention of fatigue states in senior runners.

    PubMed

    Leti, Thomas; Bricout, Véronique A

    2013-01-01

    The use of heart rate variability (HRV) in the management of sport training is a practice which tends to spread, especially in order to prevent the occurrence of fatigue states. To estimate the HRV parameters obtained using a heart rate recording, according to different exercise impacts, and to make the link with the appearance of subjective fatigue. Ten senior runners, aged 51±5 years, were each monitored over a period of 12 weeks in different conditions: (i) after a resting period, (ii) after a day with training, (iii) after a day of competition and (iv) after a rest day. They also completed three questionnaires, to assess fatigue (SFMS), profile of mood states (POMS) and quality of sleep. The HRV indices (heart rate, LF (n.u.), HF (n.u.) and LF/HF) were significantly altered with the competitive impact, shifting toward a sympathetic predominance. After rest and recovery nights, the LF (n.u.) increased significantly with the competitive impact (62.1±15.2 and 66.9±11.6 vs. 76.0±10.7; p<0.05 respectively) whereas the HF (n.u.) decreased significantly (37.9±15.2 and 33.1±11.6 vs. 24.0±10.7; p<0.05 respectively). Positive correlations were found between fatigue and frequency domain indices and between fatigue and training impact. Autonomic nervous system modulation-fatigue relationships were significant, suggesting the potential use of HRV in follow-up and control of training. Furthermore, the addition of questionnaires constitutes complementary tools that allow to achieve a greater relevance and accuracy of the athletes' fitness and results. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Computational Study of Axial Fatigue for Peripheral Nitinol Stents

    NASA Astrophysics Data System (ADS)

    Meoli, Alessio; Dordoni, Elena; Petrini, Lorenza; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo

    2014-07-01

    Despite their success as primary treatment for vascular diseases, Nitinol peripheral stents are still affected by complications related to fatigue failure. Hip and knee movements during daily activities produce large and cyclic deformations of the superficial femoral artery, that concomitant to the effects of pulsatile blood pressure, may cause fatigue failure in the stent. Fatigue failure typically occurs in cases of very extended lesions, which often require the use of two or more overlapping stents. In this study, finite element models were used to study the fatigue behavior of Nitinol stents when subjected to cyclic axial compression in different conditions. A specific commercial Nitinol stent was chosen for the analysis and subjected to cyclic axial compression typical of the femoral vascular region. Three different configurations were investigated: stent alone, stent deployed in a tube, and two overlapping stents deployed in a tube. Results confirm that stent oversizing has an influence in determining both the mean and amplitude strains induced in the stent and plays an important role in determining the fatigue response of Nitinol stents. In case of overlapping stents, numerical results suggest higher amplitude strains concentrate in the region close to the overlapping portion where the abrupt change in stiffness causes higher cyclic compression. These findings help to explain the high incidence of stent fractures observed in various clinical trials located close to the overlapping portion.

  16. Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands

    NASA Astrophysics Data System (ADS)

    Daghash, Sherif M.; Ozbulut, Osman E.

    2018-06-01

    This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.

  17. An assessment of cold work effects on strain-controlled low-cycle fatigue behavior of type 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Rao, K. Bhanu Sankara; Valsan, M.; Sandhya, R.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of ±0.25 to ± 1.25 pct. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30 pct PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10 pct PCW displayed the lowest life. An improvement in life occurred for prior deformations exceeding 10 pct at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. The constants and exponents in these equations were found to depend on the test temperature and prior metallurgical state of the material. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.

  18. Development of a remote-controlled fatigue test machine using a laser extensometer for investigation of irradiation effect on fatigue properties

    NASA Astrophysics Data System (ADS)

    Yonekawa, M.; Ishii, T.; Ohmi, M.; Takada, F.; Hoshiya, T.; Niimi, M.; Ioka, I.; Miwa, Y.; Tsuji, H.

    2002-12-01

    In order to investigate effects of neutron irradiation on fatigue properties of nuclear materials, a remote-controlled high temperature fatigue test machine was developed at the hot laboratory of the Japan Materials Testing Reactor (JMTR) in the Japan Atomic Energy Research Institute (JAERI). A small-sized fatigue specimen having double blades to measure strain with a laser extensometer was designed for this machine. A strain amplitude in fatigue tests of a completely reversed push-pull type using a triangular wave was controlled with an accuracy of ±3% of the total strain range during test. Low cycle fatigue tests of type 304 stainless steel irradiated in JMTR at 823 K up to a fast neutron fluence of 1×10 25 n/m 2 ( E>1 MeV) were performed in total strain ranges of 0.7-1.4% at 823 K using the designed small-sized specimens.

  19. Fatigue of restorative materials.

    PubMed

    Baran, G; Boberick, K; McCool, J

    2001-01-01

    Failure due to fatigue manifests itself in dental prostheses and restorations as wear, fractured margins, delaminated coatings, and bulk fracture. Mechanisms responsible for fatigue-induced failure depend on material ductility: Brittle materials are susceptible to catastrophic failure, while ductile materials utilize their plasticity to reduce stress concentrations at the crack tip. Because of the expense associated with the replacement of failed restorations, there is a strong desire on the part of basic scientists and clinicians to evaluate the resistance of materials to fatigue in laboratory tests. Test variables include fatigue-loading mode and test environment, such as soaking in water. The outcome variable is typically fracture strength, and these data typically fit the Weibull distribution. Analysis of fatigue data permits predictive inferences to be made concerning the survival of structures fabricated from restorative materials under specified loading conditions. Although many dental-restorative materials are routinely evaluated, only limited use has been made of fatigue data collected in vitro: Wear of materials and the survival of porcelain restorations has been modeled by both fracture mechanics and probabilistic approaches. A need still exists for a clinical failure database and for the development of valid test methods for the evaluation of composite materials.

  20. Fatigue life prediction of bonded primary joints

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.

    1979-01-01

    The validation of a proposed fatigue life prediction methodology was sought through the use of aluminum butt and scarf joint and graphite/epoxy butt joint specimens in a constant amplitude fatigue environment. The structural properties of the HYSOL 9313 adhesive system were obtained by mechanical test of molded heat adhesive specimens. Aluminum contoured double cantilever beam specimens were used to generate crack velocity versus stress intensity factor data. The specific objectives were: (1) to ascertain the feasibility of predicting fatigue failure of an adhesive in a primary bonded composite structure by incorporating linear elastic crack growth behavior; and (2) to ascertain if acoustic emission and/or compliance measurement techniques can be used to detect flaws.

  1. Microstructure-sensitive plasticity and fatigue modeling of extruded 6061 aluminum alloys

    NASA Astrophysics Data System (ADS)

    McCullough, Robert Ross

    In this study, the development of fatigue failure and stress anisotropy in light weight ductile metal alloys, specifically Al-Mg-Si aluminum alloys, was investigated. The experiments were carried out on an extruded 6061 aluminum alloy. Reverse loading experiments were performed up to a prestrain of 5% in both tension-followed-by-compression and compression-followed-by-tension. The development of isotropic and kinematic hardening and subsequent anisotropy was indicated by the observation of the Bauschinger effect phenomenon. Experimental results show that 6061 aluminum alloy exhibited a slight increase in the kinematic hardening versus applied prestrain. However, the ratio of kinematic-to-isotropic hardening remained near unity. An internal state variable (ISV) plasticity and damage model was used to capture the evolution of the anisotropy for the as-received T6 and partially annealed conditions. Following the stress anisotropy experiments, the same extruded 6061 aluminum alloy was tested under fully reversing, strain-controlled low cycle fatigue at up to 2.5% strain amplitudes and two heat treatment conditions. Observations were made of the development of striation fields up to the point of nucleation at cracked and clustered precipitants and free surfaces through localized precipitant slip band development. A finite element enabled micro-mechanics study of fatigue damage development of local strain field in the presence of hard phases was conducted. Both the FEA and experimental data sets were utilized in the implementation of a multi-stage fatigue model in order to predict the microstructure response, including fatigue nucleation and propagation contributions on the total fatigue life in AA6061. Good correlation between experimental and predicted results in the number of cycles to final failure was observed. The AA6061 material maintained relatively consistent low cycle fatigue performance despite two different heat treatments.

  2. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Liu, Xiaolong; Hong, Youshi

    2015-06-01

    In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.

  3. Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch

    NASA Astrophysics Data System (ADS)

    Agrawal, Richa; Veerababu, J.; Goyal, Sunil; Sandhya, R.; Uddanwadiker, Rashmi; Padole, Pramod

    2018-02-01

    Notches introduced in the plain specimen result in the multiaxial state of stress that exists in the actual components due to the presence of flaws and defects. In the present work, low cycle fatigue life estimation of plain and notched specimens of 316 LN stainless steel is carried out at room temperature and 823 K. The plain and notched specimens with different notch radii were subjected to varying strain amplitudes ranging from ± 0.25 to ± 1.0% at a strain rate of 3 × 10-3 s-1. The fatigue life decreased in the presence of notch for all strain amplitudes at both the temperatures. The decrease in fatigue life was found to be more at room temperature than at 823 K. The fatigue life of the notched specimen decreased by approximately 94.2% compared to plain specimen at room temperature. However, at 823 K the decrease in fatigue life for notched specimen was approximately 84.6%. Low cycle fatigue life of the plain and notched specimens was estimated by Neuber's rule and finite element analysis approach. Neuber's rule overestimated the fatigue life by maximum factor of 2.6 for specimens at room temperature and by maximum factor of 5 for specimens at 823 K. However, it gives closer approximation at higher strain amplitudes at 823 K. Life estimation by finite element analysis at room temperature was within a factor of 1.5 as compared to experimental life, whereas it underestimated the fatigue life within a factor of 6 at high temperature.

  4. Assessment of fatigue in routine care on a Multidimensional Health Assessment Questionnaire (MDHAQ): a cross-sectional study of associations with RAPID3 and other variables in different rheumatic diseases.

    PubMed

    Castrejon, Isabel; Nikiphorou, Elena; Jain, Ruchi; Huang, Annie; Block, Joel A; Pincus, Theodore

    2016-01-01

    To characterise associations of fatigue with other variables within a multidimensional health assessment questionnaire (MDHAQ) in routine care of patients with different rheumatic diagnoses. All patients complete MDHAQ, which includes fatigue on a 0-10 visual analogue scale (VAS), and routine assessment of patient index data (RAPID3), a composite of function, pain, and patient global. Physicians complete a RheuMetric checklist which includes 4 VAS for overall global status (DOCGL), inflammation, damage, and distress. Median score for fatigue and other MDHAQ and RheuMetric scores were compared in 4 diagnosis groups: rheumatoid arthritis (RA), osteoarthritis (OA), systemic lupus erythematosus (SLE), and fibromyalgia (FM), using a Kruskall-Wallis test. Associations of fatigue with other variables were analysed using Spearman correlations and multivariate regressions. 612 patients were included: 173 RA, 199 with OA, 146 with SLE, and 94 with FM. Median fatigue was significantly higher in FM (7) than in RA (4), OA (5), and SLE (5). Fatigue was correlated significantly with all other MDHAQ scores, at higher levels in RA and SLE versus OA and FM. Fatigue was correlated significantly with DOCGL in RA, OA, SLE, but not FM. In multivariate analyses, fatigue scores were explained independently by higher pain and symptom number in RA; lower age and higher symptom number in OA; only higher pain in SLE; and none of the variables in FM. Fatigue is common in rheumatic diseases and strongly associated with higher pain and number of symptoms. The MDHAQ provides a useful tool to assess fatigue in clinical settings.

  5. Fatigue Effect on Low-Frequency Force Fluctuations and Muscular Oscillations during Rhythmic Isometric Contraction

    PubMed Central

    Lin, Yen-Ting; Kuo, Chia-Hua; Hwang, Ing-Shiou

    2014-01-01

    Continuous force output containing numerous intermittent force pulses is not completely smooth. By characterizing force fluctuation properties and force pulse metrics, this study investigated adaptive changes in trajectory control, both force-generating capacity and force fluctuations, as fatigue progresses. Sixteen healthy subjects (20–24 years old) completed rhythmic isometric gripping with the non-dominant hand to volitional failure. Before and immediately following the fatigue intervention, we measured the gripping force to couple a 0.5 Hz sinusoidal target in the range of 50–100% maximal voluntary contraction. Dynamic force output was off-line decomposed into 1) an ideal force trajectory spectrally identical to the target rate; and 2) a force pulse trace pertaining to force fluctuations and error-correction attempts. The amplitude of ideal force trajectory regarding to force-generating capacity was more suppressed than that of the force pulse trace with increasing fatigue, which also shifted the force pulse trace to lower frequency bands. Multi-scale entropy analysis revealed that the complexity of the force pulse trace at high time scales increased with fatigue, contrary to the decrease in complexity of the force pulse trace at low time scales. Statistical properties of individual force pulses in the spatial and temporal domains varied with muscular fatigue, concurrent with marked suppression of gamma muscular oscillations (40–60 Hz) in the post-fatigue test. In conclusion, this study first reveals that muscular fatigue impairs the amplitude modulation of force pattern generation more than it affects the amplitude responsiveness of fine-tuning a force trajectory. Besides, motor fatigue results disadvantageously in enhancement of motor noises, simplification of short-term force-tuning strategy, and slow responsiveness to force errors, pertaining to dimensional changes in force fluctuations, scaling properties of force pulse, and muscular oscillation

  6. A robust signal processing method for quantitative high-cycle fatigue crack monitoring using soft elastomeric capacitor sensors

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki

    2017-04-01

    A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.

  7. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    PubMed

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  8. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue

    PubMed Central

    Zhou, Jianting; Yan, Lei

    2018-01-01

    For a reinforced concrete beam subjected to fatigue loads, the structural stiffness and bearing capacity will gradually undergo irreversible degeneration, leading to damage. Moreover, there is an inherent relationship between the stiffness and bearing capacity degradation and fatigue damage. In this study, a series of fatigue tests are performed to examine the degradation law of the stiffness and bearing capacity. The results pertaining to the stiffness show that the stiffness degradation of a reinforced concrete beam exhibits a very clear monotonic decreasing "S" curve, i.e., the stiffness of the beam decreases significantly at the start of the fatigue loading, it undergoes a linear decline phase in the middle for a long loading period, and before the failure, the bearing capacity decreases drastically again. The relationship between the residual stiffness and residual bearing capacity is determined based on the assumption that the residual stiffness and residual bearing capacity depend on the same damage state, and then, the bearing capacity degradation model of the reinforced concrete beam is established based on the fatigue stiffness. Through the established model and under the premise of the known residual stiffness degradation law, the degradation law of the bearing capacity is determined by using at least one residual bearing capacity test data, for which the parameters of the stiffness degradation function are considered as material constants. The results of the bearing capacity show that the bearing capacity degradation of the reinforced concrete beam also exhibits a very clear monotonic decreasing "S" curve, which is consistent with the stiffness degradation process and in good agreement with the experiment. In this study, the stiffness and bearing capacity degradation expressions are used to quantitatively describe their occurrence in reinforced concrete beams. In particular, the expression of the bearing capacity degradation can mitigate numerous

  9. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue.

    PubMed

    Liu, Fangping; Zhou, Jianting; Yan, Lei

    2018-01-01

    For a reinforced concrete beam subjected to fatigue loads, the structural stiffness and bearing capacity will gradually undergo irreversible degeneration, leading to damage. Moreover, there is an inherent relationship between the stiffness and bearing capacity degradation and fatigue damage. In this study, a series of fatigue tests are performed to examine the degradation law of the stiffness and bearing capacity. The results pertaining to the stiffness show that the stiffness degradation of a reinforced concrete beam exhibits a very clear monotonic decreasing "S" curve, i.e., the stiffness of the beam decreases significantly at the start of the fatigue loading, it undergoes a linear decline phase in the middle for a long loading period, and before the failure, the bearing capacity decreases drastically again. The relationship between the residual stiffness and residual bearing capacity is determined based on the assumption that the residual stiffness and residual bearing capacity depend on the same damage state, and then, the bearing capacity degradation model of the reinforced concrete beam is established based on the fatigue stiffness. Through the established model and under the premise of the known residual stiffness degradation law, the degradation law of the bearing capacity is determined by using at least one residual bearing capacity test data, for which the parameters of the stiffness degradation function are considered as material constants. The results of the bearing capacity show that the bearing capacity degradation of the reinforced concrete beam also exhibits a very clear monotonic decreasing "S" curve, which is consistent with the stiffness degradation process and in good agreement with the experiment. In this study, the stiffness and bearing capacity degradation expressions are used to quantitatively describe their occurrence in reinforced concrete beams. In particular, the expression of the bearing capacity degradation can mitigate numerous

  10. Fatigue crack closure: a review of the physical phenomena

    PubMed Central

    Pippan, R.

    2017-01-01

    Abstract Plasticity‐induced, roughness‐induced and oxide‐induced crack closures are reviewed. Special attention is devoted to the physical origin, the consequences for the experimental determination and the prediction of the effective crack driving force for fatigue crack propagation. Plasticity‐induced crack closure under plane stress and plane strain conditions require, in principle, a different explanation; however, both types are predictable. This is even the case in the transition region from the plane strain to the plane stress state and all types of loading conditions including constant and variable amplitude loading, the short crack case or the transition from small‐scale to large‐scale yielding. In contrast, the prediction of roughness‐induced and oxide‐induced closures is not as straightforward. PMID:28616624

  11. Passive detection and localization of fatigue cracking in aluminum plates using Green's function reconstruction from ambient noise.

    PubMed

    Yang, Yang; Xiao, Li; Qu, Wenzhong; Lu, Ye

    2017-11-01

    Recent theoretical and experimental studies have demonstrated that a local Green's function can be retrieved from the cross-correlation of ambient noise field. This technique can be used to detect fatigue cracking in metallic structures, owing to the fact that the presence of crack can lead to a change in Green's function. This paper presents a method of structural fatigue cracking characterization method by measuring Green's function reconstruction from noise excitation and verifies the feasibility of crack detection in poor noise source distribution. Fatigue cracks usually generate nonlinear effects, in which different wave amplitudes and frequency compositions can cause different nonlinear responses. This study also undertakes analysis of the capacity of the proposed approach to identify fatigue cracking under different noise amplitudes and frequency ranges. Experimental investigations of an aluminum plate are conducted to assess the cross-correlations of received noise between sensor pairs and finally to detect the introduced fatigue crack. A damage index is proposed according to the variation between cross-correlations obtained from the pristine crack closed state and the crack opening-closure state when sufficient noise amplitude is used to generate nonlinearity. A probability distribution map of damage is calculated based on damage indices. The fatigue crack introduced in the aluminum plate is successfully identified and oriented, verifying that a fatigue crack can be detected by reconstructing Green's functions from an imperfect diffuse field in which ambient noise sources exist locally. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service. ...

  13. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service. ...

  14. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service. ...

  15. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service. ...

  16. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service. ...

  17. Rapid Assessment of the Role of Microstructural Variability in the Fatigue Behavior of Structural Alloys using Ultrasonic Fatigue

    DTIC Science & Technology

    2007-06-23

    6 %AI-2%Sn- 4 %Zr- 6 %Mo in the very high cycle regime. The microstructure is a two-phase structure with primary a grains (ap grains) in a transformed [3...aluminum [2], magnesium [3], nickel-based [ 4 ], and titanium [5,6] alloy systems. Fatigue crack initiation is known to consume the majority of fatigue...microstructural neighborhood affects this process. In fatigue studies of alpha + beta titanium alloys, [ 6 -9] cyclic deformation localization is first observed in

  18. Assessing fatigue in inflammatory bowel disease: comparison of three fatigue scales.

    PubMed

    Norton, C; Czuber-Dochan, W; Bassett, P; Berliner, S; Bredin, F; Darvell, M; Forbes, A; Gay, M; Ream, E; Terry, H

    2015-07-01

    Fatigue is commonly reported by patients with inflammatory bowel disease (IBD), both in quiescent and active disease. Few fatigue scales have been tested in IBD. To assess three fatigue assessment scales in IBD and to determine correlates of fatigue. Potential participants (n = 2131) were randomly selected from an IBD organisation's members' database; 605 volunteered and were posted three fatigue scales: Inflammatory Bowel Disease Fatigue scale, Multidimensional Fatigue Inventory and Multidimensional Assessment Fatigue scale and questionnaires assessing anxiety, depression, quality of life (QoL) and IBD activity. The questionnaires were tested for stability over time with another group (n = 70) of invited participants. Internal consistency was measured by Cronbach's alpha and test-retest reliability by the intraclass correlation coefficient (ICC). Four hundred and sixty-five of 605 (77%) questionnaires were returned; of 70 invited, 48/70 returned test (68.6%) and 41/70 (58.6%) returned retest. The three scales are highly correlated (P < 0.001). Test-retest suggests reasonable agreement with ICC values between 0.65 and 0.84. Lower age, female gender, IBD diagnosis, anxiety, depression and QoL were associated with fatigue (P < 0.001) on univariable analysis. However, on multivariable analysis only depression and low QoL were consistently associated with fatigue, while female gender was associated on most scales. IBD diagnosis, age and other factors were not consistently associated with severity or impact of fatigue once other variables were controlled for. All three fatigue scales are likely to measure IBD fatigue adequately. Responsiveness to change has not been tested. Depression, poorer QoL and probably female gender are the major associations of fatigue in IBD. © 2015 John Wiley & Sons Ltd.

  19. Ultrasonic Corrosion Fatigue Behavior of High Strength Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Ebara, R.; Yamaguchi, Y.; Kanei, D.; Yamamoto, Y.

    Ultrasonic corrosion fatigue tests were conducted for high strength austenitic stainless steels such as YUS270 and SUS304N2 in 3%NaCl aqueous solution. The reduction of giga-cycle corrosion fatigue strength of YUS270 and SUS304N2 was not observed at all, while the reduction of corrosion fatigue life was observed at higher stress amplitude. Corrosion pit was observed on corrosion fatigue crack initiation area. Striation was predominantly observed on crack propagation area in air and in 3% NaCl aqueous solution. The reduction of corrosion fatigue strength of high strength austenitic stainless steels such as YUS270 and SUS304N2 is due to the corrosion pit formation at corrosion fatigue crack initiation area. It can be concluded that the higher the ultimate tensile strength of austenitic stainless steels the higher the giga-cycle corrosion fatigue strength in 3%NaCl aqueous solution is.

  20. Risk factors for fatigue in patients with epilepsy.

    PubMed

    Yan, Song; Wu, Yuanbin; Deng, Yanchun; Liu, Yonghong; Zhao, Jingjing; Ma, Lei

    2016-11-01

    Fatigue is highly prevalent in patients with epilepsy and has a major impact on quality of life, but little data is available on its effects and management in epilepsy. To identify the incidence and risk factors of fatigue in patients with epilepsy, 105 epilepsy patients (45 women and 60 men) were enrolled in our study. Demographic and clinical data were collected and psychological variables including fatigue, sleep quality, excess daytime sleepiness, anxiety, and depression were measured by Fatigue Severity Scale, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale, and Hospital Anxiety and Depression Scale, respectively. Of 105 patients, 29.5% exhibited fatigue (FSS score ⩾4). We found no correlation between the occurrence of fatigue and any of our demographic or clinical variables. Fatigue is correlated with low sleep quality, anxiety, and depression, but not with excess daytime sleepiness. Thus, we concluded that fatigue is highly prevalent in patients with epilepsy, and that low sleep quality, anxiety, and depression are significantly correlated with fatigue in epileptics, while excess daytime sleepiness not. Copyright © 2016. Published by Elsevier Ltd.

  1. Fatigue crack growth and low cycle fatigue of two nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.; Duquette, D. J.; Choe, S. J.; Golwalkar, S.

    1983-01-01

    The fatigue crack growth and low cycle fatigue behavior of two P/M superalloys, Rene 95 and Astroloy, in the hot isostatically pressed (HIP) condition, was determined. Test variables included frequency, temperature, environment, and hold times at peak tensile loads (or strains). Crack initiation sites were identified in both alloys. Crack growth rates were shown to increase in argon with decreasing frequency or with the imposition of hold times. This behavior was attributed to the effect of oxygen in the argon. Auger analyses were performed on oxide films formed in argon. Low cycle fatigue lives also were degraded by tensile hold, contrary to previous reports in the literature. The role of environment in low cycle fatigue behavior is discussed.

  2. Effects of Relaxing Music on Mental Fatigue Induced by a Continuous Performance Task: Behavioral and ERPs Evidence.

    PubMed

    Guo, Wei; Ren, Jie; Wang, Biye; Zhu, Qin

    2015-01-01

    The purpose of this study was to investigate whether listening to relaxing music would help reduce mental fatigue and to maintain performance after a continuous performance task. The experiment involved two fatigue evaluation phases carried out before and after a fatigue inducing phase. A 1-hour AX-continuous performance test was used to induce mental fatigue in the fatigue-inducing phase, and participants' subjective evaluation on the mental fatigue, as well as their neurobehavioral performance in a Go/NoGo task, were measured before and after the fatigue-inducing phase. A total of 36 undergraduate students (18-22 years) participated in the study and were randomly assigned to the music group and control group. The music group performed the fatigue-inducing task while listening to relaxing music, and the control group performed the same task without any music. Our results revealed that after the fatigue-inducing phase, (a) the music group demonstrated significantly less mental fatigue than control group, (b) reaction time significantly increased for the control group but not for the music group, (c) larger Go-P3 and NoGo-P3 amplitudes were observed in the music group, although larger NoGo-N2 amplitudes were detected for both groups. These results combined to suggest that listening to relaxing music alleviated the mental fatigue associated with performing an enduring cognitive-motor task.

  3. Characterization of fatigue properties of binders and mastics at intermediate temperatures using dynamic shear rheometer.

    DOT National Transportation Integrated Search

    2013-10-01

    The paper compares the fatigue life of neat and modified PAV-aged binders and mastics and : determines the influence of dust on fatigue life using the Linear Amplitude Sweep (LAS) method. It : will also compare these results with results from the DER...

  4. Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelluccio, Gustavo M.; Musinski, William D.; McDowell, David L.

    Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Though fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. This paper discusses multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) tomore » very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. Finally, we discuss some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.« less

  5. Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes

    DOE PAGES

    Castelluccio, Gustavo M.; Musinski, William D.; McDowell, David L.

    2016-05-19

    Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Though fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. This paper discusses multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) tomore » very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. Finally, we discuss some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.« less

  6. Shoulder girdle muscle activity and fatigue in traditional and improved design carpet weaving workstations.

    PubMed

    Allahyari, Teimour; Mortazavi, Narges; Khalkhali, Hamid Reza; Sanjari, Mohammad Ali

    2016-01-01

    Work-related musculoskeletal disorders in the neck and shoulder regions are common among carpet weavers. Working for prolonged hours in a static and awkward posture could result in an increased muscle activity and may lead to musculoskeletal disorders. Ergonomic workstation improvements can reduce muscle fatigue and the risk of musculoskeletal disorders. The aim of this study is to assess and to compare upper trapezius and middle deltoid muscle activity in 2 traditional and improved design carpet weaving workstations. These 2 workstations were simulated in a laboratory and 12 women carpet weavers worked for 3 h. Electromyography (EMG) signals were recorded during work in bilateral upper trapezius and bilateral middle deltoid. The root mean square (RMS) and median frequency (MF) values were calculated and used to assess muscle load and fatigue. Repeated measure ANOVA was performed to assess the effect of independent variables on muscular activity and fatigue. The participants were asked to report shoulder region fatigue on the Borg's Category-Ratio scale (Borg CR-10). Root mean square values in workstation A are significantly higher than in workstation B. Furthermore, EMG amplitude was higher in bilateral trapezius than in bilateral deltoid. However, muscle fatigue was not observed in any of the workstations. The results of the study revealed that muscle load in a traditional workstation was high, but fatigue was not observed. Further studies investigating other muscles involved in carpet weaving tasks are recommended. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  7. On Generating Fatigue Crack Growth Thresholds

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James, Jr.; Forman, Royce G.

    2003-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. These experimental procedures can induce load history effects that result in crack closure. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake or blunt at the crack tip, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor range, Delta K, will increase, as will the crack growth rate. da/dN. A fatigue crack growth threshold test procedure is experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R. The authors have chosen to study a ductile aluminum alloy where the plastic deformations generated during testing may be of the magnitude to impact the crack opening.

  8. Vibration fatigue using modal decomposition

    NASA Astrophysics Data System (ADS)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  9. Probabilistic Fatigue Life Updating for Railway Bridges Based on Local Inspection and Repair.

    PubMed

    Lee, Young-Joo; Kim, Robin E; Suh, Wonho; Park, Kiwon

    2017-04-24

    Railway bridges are exposed to repeated train loads, which may cause fatigue failure. As critical links in a transportation network, railway bridges are expected to survive for a target period of time, but sometimes they fail earlier than expected. To guarantee the target bridge life, bridge maintenance activities such as local inspection and repair should be undertaken properly. However, this is a challenging task because there are various sources of uncertainty associated with aging bridges, train loads, environmental conditions, and maintenance work. Therefore, to perform optimal risk-based maintenance of railway bridges, it is essential to estimate the probabilistic fatigue life of a railway bridge and update the life information based on the results of local inspections and repair. Recently, a system reliability approach was proposed to evaluate the fatigue failure risk of structural systems and update the prior risk information in various inspection scenarios. However, this approach can handle only a constant-amplitude load and has limitations in considering a cyclic load with varying amplitude levels, which is the major loading pattern generated by train traffic. In addition, it is not feasible to update the prior risk information after bridges are repaired. In this research, the system reliability approach is further developed so that it can handle a varying-amplitude load and update the system-level risk of fatigue failure for railway bridges after inspection and repair. The proposed method is applied to a numerical example of an in-service railway bridge, and the effects of inspection and repair on the probabilistic fatigue life are discussed.

  10. Probabilistic Fatigue Life Updating for Railway Bridges Based on Local Inspection and Repair

    PubMed Central

    Lee, Young-Joo; Kim, Robin E.; Suh, Wonho; Park, Kiwon

    2017-01-01

    Railway bridges are exposed to repeated train loads, which may cause fatigue failure. As critical links in a transportation network, railway bridges are expected to survive for a target period of time, but sometimes they fail earlier than expected. To guarantee the target bridge life, bridge maintenance activities such as local inspection and repair should be undertaken properly. However, this is a challenging task because there are various sources of uncertainty associated with aging bridges, train loads, environmental conditions, and maintenance work. Therefore, to perform optimal risk-based maintenance of railway bridges, it is essential to estimate the probabilistic fatigue life of a railway bridge and update the life information based on the results of local inspections and repair. Recently, a system reliability approach was proposed to evaluate the fatigue failure risk of structural systems and update the prior risk information in various inspection scenarios. However, this approach can handle only a constant-amplitude load and has limitations in considering a cyclic load with varying amplitude levels, which is the major loading pattern generated by train traffic. In addition, it is not feasible to update the prior risk information after bridges are repaired. In this research, the system reliability approach is further developed so that it can handle a varying-amplitude load and update the system-level risk of fatigue failure for railway bridges after inspection and repair. The proposed method is applied to a numerical example of an in-service railway bridge, and the effects of inspection and repair on the probabilistic fatigue life are discussed. PMID:28441768

  11. Impacts of obesity and stress on neuromuscular fatigue development and associated heart rate variability.

    PubMed

    Mehta, R K

    2015-02-01

    Obesity and stress are independently associated with decrements in neuromuscular functions. The present study examined the interplay of obesity and stress on neuromuscular fatigue and associated heart rate variability (HRV). Forty-eight non-obese (18.5fatigue indicators (endurance time and rate of strength loss), perceived effort and mental demand, heart rate and temporal (RMSSD: root mean square of successive differences between N-N intervals) and spectral (LF/HF: ratio of low to high frequency) indices of HRV. Stress negatively affected endurance time (P<0.0001) and rate of strength loss (P=0.029). In addition, significant obesity × stress interactions were found on endurance time (P=0.0073), rate of strength loss (P=0.027) and perceived effort (P=0.026), indicating that stress increased fatigability, particularly in the obese group. Both obesity (P=0.001) and stress (P=0.033) independently lowered RMSSD. Finally, stress increased LF/HF ratio (P=0.028) and the interaction of stress and obesity (P=0.008) indicated that this was augmented in the obese group. The present study provides the first evidence that stress-related neuromuscular fatigue development is accelerated in obese individuals. In addition, the stress condition resulted in poorer HRV indices, which is indicative of autonomic dysfunction, particularly in the obese group. These findings indicate that workers are more susceptible to fatigue in high-stress work environments, particularly those with higher BMI, which can increase the risk of musculoskeletal injuries as well as cardiovascular diseases in this population.

  12. A study of spectrum fatigue crack propagation in two aluminum alloys. 2: Influence of microstructures

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Antolovich, S. D.

    1985-01-01

    The important metallurgical factors that influence both constant amplitude and spectrum crack growth behavior in aluminum alloys were investigated. The effect of microstructural features such as grain size, inclusions, and dispersoids was evaluated. It was shown that a lower stress intensities, the I/M 7050 alloy showed better fatigue crack propagation (FCP) resistance than P/M 7091 alloy for both constant amplitude and spectrum testing. It was suggested that the most important microstructural variable accounting for superior FCP resistance of 7050 alloy is its large grain size. It was further postulated that the inhomogenous planar slip and large grain size of 7050 limit dislocation interactions and thus increase slip reversibility which improves FCP performance. The hypothesis was supported by establishing that the cyclic strain hardening exponent for the 7091 alloy is higher than that of 7050.

  13. Psychological correlates of fatigue in rheumatoid arthritis: a systematic review.

    PubMed

    Matcham, F; Ali, S; Hotopf, M; Chalder, T

    2015-07-01

    Fatigue is common and debilitating in Rheumatoid Arthritis (RA). A focus on the psychological variables associated with fatigue may help to identify targets for intervention which could enhance the treatment of fatigue in RA. The purpose of this review was to systematically identify psychological variables related to fatigue in RA, with the overall aim of suggesting evidence-based targets for fatigue intervention in RA. Twenty-nine studies met inclusion criteria and were included in the narrative synthesis. A wide range of psychological variables were addressed, spanning 6 categories: affect and common mental disorders; RA-related cognitions; non-RA-related cognitions; personality traits; stress and coping; and social support/interpersonal relationships. The most consistent relationship was found between mood and fatigue, with low mood frequently associated with increased fatigue. Some evidence also highlighted the relationship between RA-related cognitions (such as RA self-efficacy) and fatigue, and non-RA-cognitions (such as goal ownership) and fatigue. Limited evidence was found to support the relationship between stress and coping or personality traits and fatigue, although mixed evidence was found for the relationship between social support and fatigue. The results of this review suggest the interventions for fatigue in RA may benefit from a focus on mental health, and disease-related cognitions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evolution of the Deformation Behavior of Sn-Rich Solders during Cyclic Fatigue

    NASA Astrophysics Data System (ADS)

    Wentlent, Luke Arthur

    Continuous developments in the electronics industry have provided a critical need for a quantitative, fundamental understanding of the behavior of SnAgCu (SAC) solders in both isothermal and thermal fatigue conditions. This study examines the damage behavior of Sn-based solders in a constant amplitude and variable amplitude environment. In addition, damage properties are correlated with crystal orientation and slip behavior. Select solder joints were continuously characterized and tested repeatedly in order to eliminate the joint to joint variation due to the anisotropy of beta-Sn. Characterization was partitioned into three different categories: effective properties and slip behavior, creep mechanisms and crystal morphology development, and atomic behavior and evolution. Active slip systems were correlated with measured properties. Characterization of the mechanical behavior was performed by the calculation and extrapolation of the elastic modulus, work, effective stiffness, Schmid factors, and time-dependent plasticity (creep). Electron microscopy based characterization methods included Scanning Electron Microscopy (SEM), Electron Backscattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM). Testing showed a clear evolution of the steady-state creep mechanism when the cycling amplitudes were varied, from dislocation controlled to diffusion controlled creep. Dislocation behavior was examined and shown to evolve differently in single amplitude vs. variable amplitude testing. Finally, the mechanism of the recrystallization behavior of the beta-Sn was observed. This work fills a gap in the literature, providing a systematic study which identifies how the damage behavior in Sn-alloys depends upon the previous damage. A link is made between the observed creep behavior and the dislocation observations, providing a unified picture. Information developed in this work lays a stepping stone to future fundamental analyses as well as clarifying aspects of the

  15. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-05-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  16. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-04-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  17. Ecological Momentary Assessment of Pain, Fatigue, Depressive, and Cognitive Symptoms Reveals Significant Daily Variability in Multiple Sclerosis.

    PubMed

    Kratz, Anna L; Murphy, Susan L; Braley, Tiffany J

    2017-11-01

    To describe the daily variability and patterns of pain, fatigue, depressed mood, and cognitive function in persons with multiple sclerosis (MS). Repeated-measures observational study of 7 consecutive days of home monitoring, including ecological momentary assessment (EMA) of symptoms. Multilevel mixed models were used to analyze data. General community. Ambulatory adults (N=107) with MS recruited through the University of Michigan and surrounding community. Not applicable. EMA measures of pain, fatigue, depressed mood, and cognitive function rated on a 0 to 10 scale, collected 5 times a day for 7 days. Cognitive function and depressed mood exhibited more stable within-person patterns than pain and fatigue, which varied considerably within person. All symptoms increased in intensity across the day (all P<.02), with fatigue showing the most substantial increase. Notably, this diurnal increase varied by sex and age; women showed a continuous increase from wake to bedtime, whereas fatigue plateaued after 7 pm for men (wake-bed B=1.04, P=.004). For the oldest subgroup, diurnal increases were concentrated to the middle of the day compared with younger subgroups, which showed an earlier onset of fatigue increase and sustained increases until bed time (wake-3 pm B=.04, P=.01; wake-7 pm B=.03, P=.02). Diurnal patterns of cognitive function varied by education; those with advanced college degrees showed a more stable pattern across the day, with significant differences compared with those with bachelor-level degrees in the evening (wake-7 pm B=-.47, P=.02; wake-bed B=-.45, P=.04). Findings suggest that chronic symptoms in MS are not static, even over a short time frame; rather, symptoms-fatigue and pain in particular-vary dynamically across and within days. Incorporation of EMA methods should be considered in the assessment of these chronic MS symptoms to enhance assessment and treatment strategies. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by

  18. Fundamental mechanisms of fatigue and fracture.

    PubMed

    Christ, Hans-Jürgen

    2008-01-01

    A brief overview is given in this article on the main design philosophies and the resulting description concepts used for components which undergo monotonic and cyclic loading. Emphasis is put on a mechanistic approach avoiding a plain reproduction of empirical laws. After a short consideration of fracture as a result of monotonic loading using fracture mechanics basics, the phenomena taking place as a consequence of cyclic plasticity are introduced. The development of fatigue damage is treated by introducing the physical processes which (i) are responsible for microstructural changes, (ii) lead to crack initiation and (iii) determine crack propagation. From the current research topics within the area of metal fatigue, two aspects are dealt with in more detail because of their relevance to biomechanics. The first one is the growth behaviour of microstructural short cracks, which controls cyclic life of smooth parts at low stress amplitudes. The second issue addresses the question of the existence of a true fatigue limit and is of particular interest for components which must sustain a very high number of loading cycles (very high cycle fatigue).

  19. Effects of local and widespread muscle fatigue on movement timing.

    PubMed

    Cowley, Jeffrey C; Dingwell, Jonathan B; Gates, Deanna H

    2014-12-01

    Repetitive movements can cause muscle fatigue, leading to motor reorganization, performance deficits, and/or possible injury. The effects of fatigue may depend on the type of fatigue task employed, however. The purpose of this study was to determine how local fatigue of a specific muscle group versus widespread fatigue of various muscle groups affected the control of movement timing. Twenty healthy subjects performed an upper extremity low-load work task similar to sawing for 5 continuous minutes both before and after completing a protocol that either fatigued all the muscles used in the task (widespread fatigue) or a protocol that selectively fatigued the primary muscles used to execute the pushing stroke of the sawing task (localized fatigue). Subjects were instructed to time their movements with a metronome. Timing error, movement distance, and speed were calculated for each movement. Data were then analyzed using a goal-equivalent manifold approach to quantify changes in goal-relevant and non-goal-relevant variability. We applied detrended fluctuation analysis to each time series to quantify changes in fluctuation dynamics that reflected changes in the control strategies used. After localized fatigue, subjects made shorter, slower movements and exerted greater control over non-goal-relevant variability. After widespread fatigue, subjects exerted less control over non-goal-relevant variability and did not change movement patterns. Thus, localized and widespread muscle fatigue affected movement differently. Local fatigue may reduce the available motor solutions and therefore cause greater movement reorganization than widespread muscle fatigue. Subjects altered their control strategies but continued to achieve the timing goal after both fatigue tasks.

  20. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

    PubMed Central

    Miura, Naoto; Watanabe, Takashi

    2016-01-01

    Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES. PMID:27110556

  1. Microstructure-Sensitive Modeling of High Cycle Fatigue (Preprint)

    DTIC Science & Technology

    2009-03-01

    SUBJECT TERMS microplasticity , microstructure-sensitive modeling, high cycle fatigue, fatigue variability 16. SECURITY CLASSIFICATION OF: 17...3Air Force Research Laboratory Wright Patterson Air Force Base, Ohio 45433 Keywords: Microplasticity , microstructure-sensitive modeling, high cycle...cyclic microplasticity ) plays a key role in modeling fatigue resistance. Unlike effective properties such as elastic stiffness, fatigue is

  2. Orbital fatigue tester for use in Skylab experiment T032

    NASA Technical Reports Server (NTRS)

    Sandorff, P. E.

    1973-01-01

    A prototype fatigue test machine is described which is suitable for use by an astronaut in conducting constant amplitude materials fatigue tests aboard a Skylab or space shuttle vehicle. The machine is comparised of a mechanical tester, which would be passed through a small (7.6-inch square) airlock to be supported in the space environment on an extendible boom, and a control console, which would provide remote control from within the space vehicle.

  3. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces

    PubMed Central

    2014-01-01

    Background The fatigue that users suffer when using steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can cause a number of serious problems such as signal quality degradation and system performance deterioration, users’ discomfort and even risk of photosensitive epileptic seizures, posing heavy restrictions on the applications of SSVEP-based BCIs. Towards alleviating the fatigue, a fundamental step is to measure and evaluate it but most existing works adopt self-reported questionnaire methods which are subjective, offline and memory dependent. This paper proposes an objective and real-time approach based on electroencephalography (EEG) spectral analysis to evaluate the fatigue in SSVEP-based BCIs. Methods How the EEG indices (amplitudes in δ, θ, α and β frequency bands), the selected ratio indices (θ/α and (θ + α)/β), and SSVEP properties (amplitude and signal-to-noise ratio (SNR)) changes with the increasing fatigue level are investigated through two elaborate SSVEP-based BCI experiments, one validates mainly the effectiveness and another considers more practical situations. Meanwhile, a self-reported fatigue questionnaire is used to provide a subjective reference. ANOVA is employed to test the significance of the difference between the alert state and the fatigue state for each index. Results Consistent results are obtained in two experiments: the significant increases in α and (θ + α)/β, as well as the decrease in θ/α are found associated with the increasing fatigue level, indicating that EEG spectral analysis can provide robust objective evaluation of the fatigue in SSVEP-based BCIs. Moreover, the results show that the amplitude and SNR of the elicited SSVEP are significantly affected by users’ fatigue. Conclusions The experiment results demonstrate the feasibility and effectiveness of the proposed method as an objective and real-time evaluation of the fatigue in SSVEP-based BCIs. This method would

  4. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis.

    PubMed

    Chidori, Kazuhiro; Yamamoto, Yuji

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.

  5. Effects of the lateral amplitude and regularity of upper body fluctuation on step time variability evaluated using return map analysis

    PubMed Central

    2017-01-01

    The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls. PMID:28700633

  6. When mental fatigue maybe characterized by Event Related Potential (P300) during virtual wheelchair navigation.

    PubMed

    Lamti, Hachem A; Gorce, Philippe; Ben Khelifa, Mohamed Moncef; Alimi, Adel M

    2016-12-01

    The goal of this study is to investigate the influence of mental fatigue on the event related potential P300 features (maximum pick, minimum amplitude, latency and period) during virtual wheelchair navigation. For this purpose, an experimental environment was set up based on customizable environmental parameters (luminosity, number of obstacles and obstacles velocities). A correlation study between P300 and fatigue ratings was conducted. Finally, the best correlated features supplied three classification algorithms which are MLP (Multi Layer Perceptron), Linear Discriminate Analysis and Support Vector Machine. The results showed that the maximum feature over visual and temporal regions as well as period feature over frontal, fronto-central and visual regions were correlated with mental fatigue levels. In the other hand, minimum amplitude and latency features didn't show any correlation. Among classification techniques, MLP showed the best performance although the differences between classification techniques are minimal. Those findings can help us in order to design suitable mental fatigue based wheelchair control.

  7. Fatigue of DIN 1.4914 martensitic stainless steel in a hydrogen environment

    NASA Astrophysics Data System (ADS)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Faulkner, R. G.; Schmilz, W.; Chung, T. E.

    1994-09-01

    Fatigue tests at room temperature in vacuum, air and hydrogen have been carried out on specimens of DIN 1.4914 martensitic stainless steel in load-controlled, push-pull type experiments. Fatigue lifetimes in hydrogen are significantly lower than in both vacuum and air and the degradation is enhanced by lowering the test frequency or introducing hold times into the tension half-cycle. Fractographic examinations reveal hydrogen embrittlement effects in the form of internal cracking between fatigue striations together with surface modifications, particularly at low stress amplitudes. It is suggested that gaseous hydrogen can influence both fatigue crack initiation and propagation events in martensitic steels.

  8. Evaluating Fatigue in Operational Settings: The NASA Ames Fatigue Countermeasures Program

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin; Miller, Donna; Webbon, Lissa; Oyung, Ray

    1996-01-01

    In response to a 1980 Congressional request, NASA Ames initiated a program to examine fatigue in flight operations. The Program objectives are to examine fatigue, sleep loss, and circadian disruption in flight operations, determine the effects of these factors on flight crew performance, and the development of fatigue countermeasures. The NASA Ames Fatigue Countermeasures Program conducts controlled laboratory experiments, full-mission flight simulations, and field studies. A range of subjective, behavioral, performance, physiological, and environmental measures are used depending on study objectives. The Program has developed substantial expertise in gathering data during actual flight operations and in other work settings. This has required the development of ambulatory and other measures that can be carried throughout the world and used at 41,000 feet in aircraft cockpits. The NASA Ames Fatigue Countermeasures Program has examined fatigue in shorthaul, longhaul, overnight cargo, and helicopter operations. A recent study of planned cockpit rest periods demonstrated the effectiveness of a brief inflight nap to improve pilot performance and alertness. This study involved inflight reaction time/vigilance performance testing and EEG/EOG measures of physiological alertness. The NASA Ames Fatigue Countermeasures Program has applied scientific findings to the development of education and training materials on fatigue countermeasures, input to federal regulatory activities on pilot flight, duty, and rest requirements, and support of National Transportation Safety Board accident investigations. Current activities are examining fatigue in nonaugmented longhaul flights, regional/commuter flight operations, corporate/business aviation, and psychophysiological variables related to performance.

  9. Trajectories of Evening Fatigue in Oncology Outpatients Receiving Chemotherapy

    PubMed Central

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is a distressing, persistent sense of physical tiredness that is not proportional to a person’s recent activity. Fatigue impacts patients’ treatment decisions and can limit their self-care activities. While significant interindividual variability in fatigue severity has been noted, little is known about predictors of interindividual variability in initial levels and trajectories of evening fatigue severity in oncology patients receiving chemotherapy (CTX). Objectives To determine whether demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the evening fatigue trajectories. A piecewise model fit the data best. Patients who were White, diagnosed with breast, gynecological, or lung cancer, and who had more years of education, child care responsibilities, lower functional status, and higher levels of sleep disturbance and depression reported higher levels of evening fatigue at enrollment. Conclusion This study identified both non-modifiable (e.g., ethnicity) and modifiable (e.g., child care responsibilities, depressive symptoms, sleep disturbance) risk factors for more severe evening fatigue. Using this information, clinicians can identify patients at higher risk for more severe evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828560

  10. Measures and Models for Estimating and Predicting Cognitive Fatigue

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Kochavi, Rebekah; Kubitz, Karla; Montgomery, Leslie D.; Rosipal, Roman; Matthews, Bryan

    2004-01-01

    We analyzed EEG and ERPs in a fatiguing mental task and created statistical models for single subjects. Seventeen subjects (4 F, 18-38 y) viewed 4-digit problems (e.g., 3+5-2+7=15) on a computer, solved the problems, and pressed keys to respond (intertrial interval = 1 s). Subjects performed until either they felt exhausted or three hours had elapsed. Re- and post-task measures of mood (Activation Deactivation Adjective Checklist, Visual Analogue Mood Scale) confirmed that fatigue increased and energy decreased over time. We tested response times (RT); amplitudes of ERP components N1, P2, P300, readiness potentials; and amplitudes of frontal theta and parietal alpha rhythms for change as a function of time. For subjects who completed 3 h (n=9) we analyzed 12 15-min blocks. For subjects who completed at least 1.5 h (n=17), we analyzed the first-, middle-, and last 100 error-free trials. Mean RT rose from 6.7 s to 8.5 s over time. We found no changes in the amplitudes of ERP components. In both analyses, amplitudes of frontal theta and parietal alpha rose by 30% or more over time. We used 30-channel EEG frequency spectra to model the effects of time in single subjects using a kernel partial least squares classifier. We classified 3.5s EEG segments as being from the first 100 or the last 100 trials, using random sub-samples of each class. Test set accuracies ranged from 63.9% to 99.6% correct. Only 2 of 17 subjects had mean accuracies lower than 80%. The results suggest that EEG accurately classifies periods of cognitive fatigue in 90% of subjects.

  11. Effect of cardiac resynchronization therapy on beat-to-beat T-wave amplitude variability.

    PubMed

    Žižek, David; Cvijić, Marta; Tasič, Jerneja; Jan, Matevž; Frljak, Sabina; Zupan, Igor

    2012-11-01

    T-wave amplitude variability (TAV) is a promising non-invasive predictor of arrhythmic events in patients with dilated cardiomyopathy. We aimed to evaluate the effect of cardiac resynchronization therapy (CRT) on native TAV, its relation with left ventricular (LV) reverse remodelling and the occurrence of ventricular tachyarrhythmias (VTs). In this prospective study, we included 40 heart failure patients with left bundle branch block in sinus rhythm (25 male; 16 with ischaemic aetiology; aged 62.7 ± 9.5 years; New York Heart Association class II-IV). Echocardiographic parameters and TAV were evaluated at baseline and 6 months after implantation of CRT device combined with an implantable cardioverter-defibrillator. T-wave amplitude variability was determined by a 20-min high-resolution electrocardiogram Holter recording during native conduction. After TAV assessment, patients were monitored for 15.7 ± 5.2 months for the occurrence of VTs. Decrease in median TAV [from 40.45 μV (24.75-56.00) to 28.15 μV (20.93-37.95), P = 0.004] was observed after 6 months of CRT. However, decrease of median TAV was only noticed in patients with LV reverse remodelling [46.9 μV (27.5-70.0) to 25.8 μV (20.2-32.4), P < 0.001] and in patients without VTs [40.5 μV (27.5-55.9) to 24.4 μV (17.1-31.5), P < 0.001]. Native median TAV > 35.4 µV after 6 months of CRT had an 83% sensitivity and 93% specificity for predicting the occurrence of VTs. Decrease of TAV after CRT is associated with LV reverse remodelling and indicates a reduction of the intrinsic arrhythmogenic substrate. Median TAV after CRT had a good predicting value for VT occurrence in long-term follow-up.

  12. Review of the Effects of Microstructure on Fatigue in Aluminum Alloys. Ph.D. Thesis - Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Telesman, J.

    1984-01-01

    Literature survey was conducted to determine the effects of different microstructural features and different load histories on fatigue crack initiation and propagation of aluminum alloys. Comparison of microstructure and monotonic and cyclic properties between powder metallurgy (P/M) and ingot metallurgy (I/M) alloys is presented. The two alloys that are representative of each process on which the comparison is focused are X7091 and 7050. Included is a detailed description of the microstructure produced through the P/M and I/M proesses. The effect of each pertinent microstructural feature on monotonic and cyclic properties, such as yield strength, toughness, crack initiation and propagation is discussed. Also discussed are the proposed mechanisms for crack initiation and propagation, as well as the effects of aggressive environments on these cyclic properties. The effects of variable amplitude loadin on fatigue crack propagation and the various models proposed to predict load interaction effects are discussed.

  13. Prevalence and associated variables of postdialysis fatigue: results of a prospective multicenter study.

    PubMed

    Bossola, Maurizio; Marzetti, Emanuele; Di Stasio, Enrico; Monteburini, Tania; Cenerelli, Stefano; Mazzoli, Katia; Parodi, Emanuele; Sirolli, Vittorio; Santarelli, Stefano; Ippoliti, Fabio; Nebiolo, Pier Eugenio; Bonomini, Mario; Melatti, Roberta; Vulpio, Carlo

    2017-04-17

    Little is known about postdialysis fatigue (PDF), a debilitating symptom of hemodialysis patients. In 5 hemodialysis units of northern-centre Italy, patients were regarded to suffer from PDF if they spontaneously offered this complaint when asked the open-ended question: Do you feel better or worse after dialysis? If worse, please specify in which way. A complaint of fatigue would be probed further with questions directed at its duration, frequency and intensity, allowing creation of a fatigue index of severity (one third of the sum of these three parameters, each rated from 1 to 5). Patients were stratified into three groups according the severity of PDF: 1) score = 0; 2) score = 1-3; 3) score > 3. We studied 271 patients: 164 had PDF and 107 had not. PDF patients had significantly longer time of recovery after dialysis (TIRD). TIRD was significantly associated with PDF duration, intensity, and frequency. Patients with PDF were older and had a lower ADL score. At multivariate analysis, PDF was significantly associated with TIRD. In multivariate model that did not include TIRD, PDF was independently associated with age and ADL. Sixty patients had moderate PDF and 104 severe PDF. In patients with severe PDF, age and dialytic age were higher, ADL and IADL scores were lower, TIRD was longer and the ultrafiltration rate was lower. At multivariate analysis, PDF severity was independently associated with TIRD. In the model without TIRD, PDF severity was associated with ADL only. PDF is frequent and associated with age and ADL. Dialytic variables seem unrelated to PDF. This article is protected by copyright. All rights reserved.

  14. Ultrasonic fatigue of SiC particle reinforced aluminum in the VHCF-regime

    NASA Astrophysics Data System (ADS)

    Wolf, M.; Wagner, G.; Eifler, D.

    At the WKK ultrasonic testing facilities (UTF) are used to perform fatigue experiments in the VHCF regime with a frequency of 20 kHz. These systems allow an on-line characterization of the actual fatigue state by changes of different process parameters such as generator power, displacement, temperature or frequency-response characteristic. Moreover the experiments can be interrupted at user defined events in order to investigate variations of the surface microstructure or changes in the electrical resistance of the specimens. The fatigue tests were realized as load increase tests as well as constant amplitude tests.

  15. Differential effects of childhood trauma subtypes on fatigue and physical functioning in chronic fatigue syndrome.

    PubMed

    De Venter, Maud; Illegems, Jela; Van Royen, Rita; Moorkens, Greta; Sabbe, Bernard G C; Van Den Eede, Filip

    2017-10-01

    There is wide consensus that childhood trauma plays an important role in the aetiology of chronic fatigue syndrome (CFS). The current study examines the differential effects of childhood trauma subtypes on fatigue and physical functioning in individuals suffering from CFS. Participants were 155 well-documented adult, predominantly female CFS patients receiving treatment at the outpatient treatment centre for CFS of the Antwerp University Hospital in Belgium. Stepwise regression analyses were conducted with outcomes of the total score of the Checklist Individual Strength (CIS) measuring fatigue and the scores on the physical functioning subscale of the Medical Outcomes Short Form 36 Health Status Survey (SF-36) as the dependent variables, and the scores on the five subscales of the Traumatic Experiences Checklist (TEC) as the independent variables. The patients' fatigue (β=1.38; p=0.025) and physical functioning scores (β=-1.79; p=0.034) were significantly predicted by childhood sexual harassment. There were no significant effects of emotional neglect, emotional abuse, bodily threat, or sexual abuse during childhood. Of the childhood trauma subtypes investigated, sexual harassment emerged as the most important predictor of fatigue and poor physical functioning in the CFS patients assessed. These findings have to be taken into account in further clinical research and in the assessment and treatment of individuals coping with chronic fatigue syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Hypothesis on the equilibrium point and variability of amplitude, speed and time of single-joint movement].

    PubMed

    Latash, M; Gottleib, G

    1990-01-01

    Problems of single-joint movement variability are analysed in the framework of the equilibrium-point hypothesis (the lambda-model). Control of the movements is described with three parameters related to movement amplitude speed, and time. Three strategies emerge from this description. Only one of them is likely to lead to a Fitts' type speed-accuracy trade-off. Experiments were performed to test one of the predictions of the model. Subjects performed identical sets of single-joint fast movements with open or closed eyes and some-what different instructions. Movements performed with closed eyes were characterized with higher peak speeds and unchanged variability in seeming violation of the Fitt's law and in a good correspondence to the model.

  17. Fatigue reduction during aggregated and distributed sequential stimulation.

    PubMed

    Bergquist, Austin J; Babbar, Vishvek; Ali, Saima; Popovic, Milos R; Masani, Kei

    2017-08-01

    Transcutaneous neuromuscular electrical stimulation (NMES) can generate muscle contractions for rehabilitation and exercise. However, NMES-evoked contractions are limited by fatigue when they are delivered "conventionally" (CONV) using a single active electrode. Researchers have developed "sequential" (SEQ) stimulation, involving rotation of pulses between multiple "aggregated" (AGGR-SEQ) or "distributed" (DISTR-SEQ) active electrodes, to reduce fatigue (torque-decline) by reducing motor unit discharge rates. The primary objective was to compare fatigue-related outcomes, "potentiation," "variability," and "efficiency" between CONV, AGGR-SEQ, and DISTR-SEQ stimulation of knee extensors in healthy participants. Torque and current were recorded during testing with fatiguing trains using each NMES type under isometric and isokinetic (180°/s) conditions. Compared with CONV stimulation, SEQ techniques reduced fatigue-related outcomes, increased potentiation, did not affect variability, and reduced efficiency. SEQ techniques hold promise for reducing fatigue during NMES-based rehabilitation and exercise; however, optimization is required to improve efficiency. Muscle Nerve 56: 271-281, 2017. © 2016 Wiley Periodicals, Inc.

  18. AE characteristic for monitoring of fatigue crack in steel bridge members

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Jung, Juong-Chae; Park, Philip; Lee, Seung-Seok

    2000-06-01

    Acoustic emission technique was employed for the monitoring of crack activity in both steel bridge members and laboratory specimen. Laboratory experiment was carried out to identify AE characteristics of fatigue cracks for compact tension specimen. The relationship between a stress intensity factor and AE signals activity as well as conventional AE parameter analysis was discussed. A field test was also conducted on a railway bridge, which contain several fatigue cracks. Crack activities were investigated while in service with strain measurement. From the results, in the laboratory tests, the features of three parameters such as the length of crack growth, the AE energy, and the cumulative AE events, showed the almost same trend in their increase as the number of fatigue cycle increased. From the comparisons of peak amplitude and AE energy with stress intensity factor, it was verified that the higher stress intensity factors generated AE signals with higher peak amplitude and a large number of AE counts. In the field test, real crack propagation signals were captured and the crack activity was verified in two cases.

  19. The association of sociodemographic and objectively-assessed disease variables with fatigue in systemic sclerosis: an analysis of 785 Canadian Scleroderma Research Group Registry patients.

    PubMed

    Levis, Brooke; Kwakkenbos, Linda; Hudson, Marie; Baron, Murray; Thombs, Brett D

    2017-02-01

    Fatigue is prevalent among patients with systemic sclerosis (SSc). To date, studies investigating fatigue in SSc have been hampered by the instruments used to measure fatigue in SSc and have included patient-reported rather than objectively-rated measures of disease. The Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) scale is a validated measure for assessing fatigue in SSc that, compared to other instruments, provides good coverage of the full range of the fatigue spectrum. The objective of this study was to assess sociodemographic and objectively-rated disease-related associates of fatigue, as measured by the FACIT-F, in a large sample of patients with SSc. Fatigue was assessed using the FACIT-F scale. Disease severity was assessed using Medsger's severity scale. Multivariable linear regression was performed to assess the independent associations between sociodemographic and medical variables and fatigue. Among 785 patients, the mean FACIT-F score was 32.2 (SD = 12.1). Being age 40-49 (reference = 60+; standardized regression coefficient (β) = -0.11), less than post-secondary education (β = 0.07), having more medical comorbidities (β = -0.11) and more severe muscle (β = -0.10), gastrointestinal (β = -0.15), lung (β = -0.13), and general system disease severity (β = -0.13) were independently associated with more fatigue (p < 0.05). Fatigue in SSc was independently associated with more severe disease. These data contribute to a better understanding of fatigue in SSc and help inform patient-centered research in SSc.

  20. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai

    2013-10-01

    This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions.

  1. Effects of the Electron Beam Welding Process on the Microstructure, Tensile, Fatigue and Fracture Properties of Nickel Alloy Nimonic 80A

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Huang, Chongxiang; Guan, Zhongwei; Li, Jiukai; Liu, Yongjie; Chen, Ronghua; Wang, Qingyuan

    2018-01-01

    The purpose of this study was to evaluate rotary bending high-cycle fatigue properties and crack growth of Nimonic 80A-based metal and electron beam-welded joints. All the tests were performed at room temperature. Fracture surfaces under high-cycle fatigue and fatigue crack growth were observed by scanning electron microscopy. Microstructure, hardness and tensile properties were also evaluated in order to understand the effects on the fatigue results obtained. It was found that the tensile properties, hardness and high-cycle fatigue properties of the welded joint are lower than the base metal. The fracture surface of the high-cycle fatigue shows that fatigue crack initiated from the surface under the high stress amplitude and from the subsurface under the low stress amplitude. The effect of the welding process on the statistical fatigue data was studied with a special focus on probabilistic life prediction and probabilistic lifetime limits. The fatigue crack growth rate versus stress intensity factor range data were obtained from the fatigue crack growth tests. From the results, it was evident that the fatigue crack growth rates of the welded are higher than the base metal. The mechanisms and fracture modes of fatigue crack growth of welded specimens were found to be related to the stress intensity factor range ΔK. In addition, the effective fatigue crack propagation thresholds and mismatch of welded joints were described and discussed.

  2. Effects of general fatigue induced by incremental maximal exercise test on gait stability and variability of healthy young subjects.

    PubMed

    Vieira, Marcus Fraga; de Sá E Souza, Gustavo Souto; Lehnen, Georgia Cristina; Rodrigues, Fábio Barbosa; Andrade, Adriano O

    2016-10-01

    The purpose of this study was to determine whether general fatigue induced by incremental maximal exercise test (IMET) affects gait stability and variability in healthy subjects. Twenty-two young healthy male subjects walked in a treadmill at preferred walking speed for 4min prior (PreT) the test, which was followed by three series of 4min of walking with 4min of rest among them. Gait variability was assessed using walk ratio (WR), calculated as step length normalized by step frequency, root mean square (RMSratio) of trunk acceleration, standard deviation of medial-lateral trunk acceleration between strides (VARML), coefficient of variation of step frequency (SFCV), length (SLCV) and width (SWCV). Gait stability was assessed using margin of stability (MoS) and local dynamic stability (λs). VARML, SFCV, SLCV and SWCV increased after the test indicating an increase in gait variability. MoS decreased and λs increased after the test, indicating a decrease in gait stability. All variables showed a trend to return to PreT values, but the 20-min post-test interval appears not to be enough for a complete recovery. The results showed that general fatigue induced by IMET alters negatively the gait, and an interval of at least 20min should be considered for injury prevention in tasks with similar demands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Multiaxial Fatigue Life Prediction Based on Nonlinear Continuum Damage Mechanics and Critical Plane Method

    NASA Astrophysics Data System (ADS)

    Wu, Z. R.; Li, X.; Fang, L.; Song, Y. D.

    2018-04-01

    A new multiaxial fatigue life prediction model has been proposed in this paper. The concepts of nonlinear continuum damage mechanics and critical plane criteria were incorporated in the proposed model. The shear strain-based damage control parameter was chosen to account for multiaxial fatigue damage under constant amplitude loading. Fatigue tests were conducted on nickel-based superalloy GH4169 tubular specimens at the temperature of 400 °C under proportional and nonproportional loading. The proposed method was checked against the multiaxial fatigue test data of GH4169. Most of prediction results are within a factor of two scatter band of the test results.

  4. Sustained Attention is Associated with Error Processing Impairment: Evidence from Mental Fatigue Study in Four-Choice Reaction Time Task

    PubMed Central

    Xiao, Yi; Ma, Feng; Lv, Yixuan; Cai, Gui; Teng, Peng; Xu, FengGang; Chen, Shanguang

    2015-01-01

    Attention is important in error processing. Few studies have examined the link between sustained attention and error processing. In this study, we examined how error-related negativity (ERN) of a four-choice reaction time task was reduced in the mental fatigue condition and investigated the role of sustained attention in error processing. Forty-one recruited participants were divided into two groups. In the fatigue experiment group, 20 subjects performed a fatigue experiment and an additional continuous psychomotor vigilance test (PVT) for 1 h. In the normal experiment group, 21 subjects only performed the normal experimental procedures without the PVT test. Fatigue and sustained attention states were assessed with a questionnaire. Event-related potential results showed that ERN (p < 0.005) and peak (p < 0.05) mean amplitudes decreased in the fatigue experiment. ERN amplitudes were significantly associated with the attention and fatigue states in electrodes Fz, FC1, Cz, and FC2. These findings indicated that sustained attention was related to error processing and that decreased attention is likely the cause of error processing impairment. PMID:25756780

  5. Fatigue crack growth in fiber-metal laminates

    NASA Astrophysics Data System (ADS)

    Ma, YuE; Xia, ZhongChun; Xiong, XiaoFeng

    2014-01-01

    Fiber-metal laminates (FMLs) consist of three layers of aluminum alloy 2024-T3 and two layers of glass/epoxy prepreg, and it (it means FMLs) is laminated by Al alloy and fiber alternatively. Fatigue crack growth rates in notched fiber-metal laminates under constant amplitude fatigue loading were studied experimentally and numerically and were compared with them in monolithic 2024-T3 Al alloy plates. It is shown that the fatigue life of FMLs is about 17 times longer than monolithic 2024-T3 Al alloy plate; and crack growth rates in FMLs panels remain constant mostly even when the crack is long, unlike in the monolithic 2024-T3 Al alloy plates. The formula to calculate bridge stress profiles of FMLs was derived based on the fracture theory. A program by Matlab was developed to calculate the distribution of bridge stress in FMLs, and then fatigue growth lives were obtained. Finite element models of FMLs were built and meshed finely to analyze the stress distributions. Both results were compared with the experimental results. They agree well with each other.

  6. Fatigue characteristics of carbon nanotube blocks under compression

    NASA Astrophysics Data System (ADS)

    Suhr, J.; Ci, L.; Victor, P.; Ajayan, P. M.

    2008-03-01

    In this paper we investigate the mechanical response from repeated high compressive strains on freestanding, long, vertically aligned multiwalled carbon nanotube membranes and show that the arrays of nanotubes under compression behave very similar to soft tissue and exhibit viscoelastic behavior. Under compressive cyclic loading, the mechanical response of nanotube blocks shows initial preconditioning and hysteresis characteristic of viscoeleastic materials. Furthermore, no fatigue failure is observed even at high strain amplitudes up to half million cycles. The outstanding fatigue life and extraordinary soft tissue-like mechanical behavior suggest that properly engineered carbon nanotube structures could mimic artificial muscles.

  7. Fatigue Life of Postbuckled Structures with Indentation Damage

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  8. Gender differences in fatigue: biopsychosocial factors relating to fatigue in men and women.

    PubMed

    Bensing, J M; Hulsman, R L; Schreurs, K M

    1999-10-01

    Fatigue is a common problem, which is found more frequently among women than men. To date, neither the etiology of fatigue nor the factors that explain the gender difference in its incidence are still fully understood. In a sample of men (n = 4,681) and women (n = 4,698) (age range, 15-64 years) in the Dutch National Survey of Morbidity and Interventions in General Practice, the gender differences in the underlying biological, psychological, and social factors of fatigue were analyzed. Both general and gender-specific factors were recognized. Men and women who experience complaints of fatigue appeared to be younger and more highly educated. They had more acute health complaints and more psychosocial problems and also showed a lower level of perceived health. Among women, only gender-specific biological complaints and psychosocial problems were related to fatigue. In addition, relevant sociodemographic variables included taking care of young children and being employed. Among men, fatigue was particularly related to having handicaps and severe chronic complaints. Taking care of young children did not make a difference in the male sample. Fatigue can only be adequately understood in a multicausal model with biomedical and psychosocial factors. Complaints of fatigue are too often ignored in general practice. By adopting a patient-centered style of communication, physicians can acquire a more complete picture of the patients' fatigue.

  9. Myoeletric indices of fatigue adopting different rest intervals during leg press sets.

    PubMed

    Miranda, Humberto; Maia, Marianna; de Oliveira, Carlos G; Farias, Déborah; da Silva, Jurandir B; Lima, Vicente P; Willardson, Jeffrey M; Paz, Gabriel A

    2018-01-01

    The purpose of this study was to examine the acute effect of different rest intervals between multiple sets of the 45° angled leg press exercise (LP45) on surface electromyographic (SEMG) spectral and amplitude indices of fatigue. Fifteen recreationally trained females performed three protocols in a randomized crossover design; each consisting of four sets of 10 repetitions with 1 (P1), 3 (P3), or 5 (P5) minute rest intervals between sets. Each set was performed with 70% of the LP45 ten-repetition maximum load. The SEMG data for biceps femoris (BF), vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles was then evaluated. The SEMG amplitude change in the time coefficient (CRMS) and spectral fatigue index (Cf5) indicated higher levels of fatigue for all muscles evaluated during the P3 protocol versus the P1 and P5 protocols (p ≤ 0.05), respectively. The RF and VL muscles showed greater fatigue levels by the second and third sets; whereas, greater fatigue was shown in the VM and BF muscles by the fourth set (p ≤ 0.05). A three-minute rest interval between sets might represent a neuromuscular window between a fatigue stated and fully recovered state in the context of neural activation. Moreover, a three minute rest interval between sets might allow for consistent recruitment of high threshold motor units over multiple sets, and thus promote a more effective stimulus for strength gains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fatigue and post-fatigue performance of Fabry-Perot FOS installed on CFRP-strengthened RC-beams

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Catalin; Labossiere, Pierre; Proulx, Jean

    2004-07-01

    There is a growing need for built-in monitoring systems for civil engineering infrastructures, due to problems such as increasing traffic loads and rising costs of maintenance and repair. Fibre optic sensors (FOS), capable of reading various parameters are promising candidates for life-long health monitoring of these structures. However, since FOS have only been introduced recently into the field of structural monitoring, their acceptance and widespread implementation will be conditioned by their durability under severe climatic and loading conditions. This paper reports on the performance of strain extrinsic FOS attached to carbon fibre reinforced polymer (CFRP) plates used to strengthen concrete structures. The specimens tested in this project are reinforced concrete (RC) beams with an additional external CFRP reinforcement. The FOS-instrumented beams were first subjected to fatigue loading for various numbers of cycles and load amplitudes. Then, they were tested monotonically to failure under four-point-bending. The test results provide an insight on the fatigue and post-fatigue behaviour of FOS used for monitoring reinforced concrete structures.

  11. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  12. On the Use of Equivalent Linearization for High-Cycle Fatigue Analysis of Geometrically Nonlinear Structures

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2003-01-01

    The use of stress predictions from equivalent linearization analyses in the computation of high-cycle fatigue life is examined. Stresses so obtained differ in behavior from the fully nonlinear analysis in both spectral shape and amplitude. Consequently, fatigue life predictions made using this data will be affected. Comparisons of fatigue life predictions based upon the stress response obtained from equivalent linear and numerical simulation analyses are made to determine the range over which the equivalent linear analysis is applicable.

  13. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2008-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  14. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2012-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  15. Fatigue of concrete subjected to biaxial loading in the tension region

    NASA Astrophysics Data System (ADS)

    Subramaniam, Kolluru V. L.

    Rigid airport pavement structures are subjected to repeated high-amplitude loads resulting from passing aircraft. The resulting stress-state in the concrete is a biaxial combination of compression and tension. It is of interest to model the response of plain concrete to such loading conditions and develop accurate fatigue-based material models for implementation in mechanistic pavement design procedures. The objective of this work is to characterize the quasi-static and low-cycle fatigue response of concrete subjected to biaxial stresses in the tensile-compression-tension (t-C-T) region, where the principal tensile stress is larger in magnitude than the principal compressive stress. An experimental investigation of material behavior in the biaxial t-C-T region is conducted. The experimental setup consists of the following test configurations: (a) notched concrete beams tested in three-point bend configuration, and (b) hollow concrete cylinders subjected to torsion with or without superimposed axial tensile force. The damage imparted to the material is examined using mechanical measurements and an independent nondestructive evaluation (NDE) technique based on vibration measurements. The failure of concrete in t-C-T region is shown to be a local phenomenon under quasi-static and fatigue loading, wherein the specimen fails owing to a single crack. The crack propagation is studied using the principles of fracture mechanics. It is shown that the crack propagation resulting from the t-C-T loading can be predicted using mode I fracture parameters. It is observed that crack growth in constant amplitude fatigue loading is a two-phase process: a deceleration phase followed by an acceleration stage. The quasi-static load envelope is shown to predict the crack length at fatigue failure. A fracture-based fatigue failure criterion is proposed, wherein the fatigue failure can be predicted using the critical mode I stress intensity factor. A material model for the damage evolution

  16. Rotorcraft fatigue life-prediction: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Everett, Richard A., Jr.; Elber, W.

    1994-01-01

    In this paper the methods used for calculating the fatigue life of metallic dynamic components in rotorcraft is reviewed. In the past, rotorcraft fatigue design has combined constant amplitude tests of full-scale parts with flight loads and usage data in a conservative manner to provide 'safe life' component replacement times. This is in contrast to other industries, such as the automobile industry, where spectrum loading in fatigue testing is a part of the design procedure. Traditionally, the linear cumulative damage rule has been used in a deterministic manner using a conservative value for fatigue strength based on a one in a thousand probability of failure. Conservatism on load and usage are also often employed. This procedure will be discussed along with the current U.S. Army fatigue life specification for new rotorcraft which is the so-called 'six nines' reliability requirement. In order to achieve the six nines reliability requirement the exploration and adoption of new approaches in design and fleet management may also be necessary if this requirement is to be met with a minimum impact on structural weight. To this end a fracture mechanics approach to fatigue life design may be required in order to provide a more accurate estimate of damage progression. Also reviewed in this paper is a fracture mechanics approach for calculating total fatigue life which is based on a crack-closure small crack considerations.

  17. Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis.

    PubMed

    Fiene, Marina; Rufener, Katharina S; Kuehne, Maria; Matzke, Mike; Heinze, Hans-Jochen; Zaehle, Tino

    2018-03-01

    Fatigue is one of the most common and debilitating symptoms affecting patients with multiple sclerosis (MS). Sustained cognitive effort induces cognitive fatigue, operationalized as subjective exhaustion and fatigue-related objective alertness decrements with time-on-task. During prolonged cognitive testing, MS patients show increased simple reaction times (RT) accompanied by lower amplitudes and prolonged latencies of the P300 event-related potential. Previous studies suggested a major role of structural and functional abnormalities in the frontal cortex including a frontal hypo-activation in fatigue pathogenesis. In the present study we investigated the neuromodulatory effect of transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) on objective measures of fatigue-related decrements in cognitive performance in MS patients. P300 during an auditory oddball task and simple reaction times in an alertness test were recorded at baseline, during and after stimulation. Compared to sham, anodal tDCS caused an increase in P300 amplitude that persisted after the end of stimulation and eliminated the fatigue-related increase in RT over the course of a testing session. Our findings demonstrate that anodal tDCS over the left DLPFC can counteract performance decrements associated with fatigue thereby leading to an improvement in the patient's ability to cope with sustained cognitive demands. This provides causal evidence for the functional relevance of the left DLPFC in fatigue pathophysiology. The results indicate that tDCS-induced modulations of frontal activity can be an effective therapeutic option for the treatment of fatigue-related declines in cognitive performance in MS patients.

  18. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  19. Tremor amplitude and tremor frequency variability in Parkinson's disease is dependent on activity and synchronisation of central oscillators in basal ganglia.

    PubMed

    Bartolić, Andrej; Pirtosek, Zvezdan; Rozman, Janez; Ribaric, Samo

    2010-02-01

    Rest tremor is one of the four main clinical features of Parkinson's disease (PD), besides rigidity, bradykinesia and postural instability. While rigidity, bradykinesia and postural instability can be explained with changes in neurotransmitter concentrations and neuronal activity in basal ganglia, the pathogenesis of parkinsonian tremor is not fully understood. According to the leading hypothesis tremor is generated by neurons or groups of neurons in the basal ganglia which act as central oscillators and generate repetitive impulses to the muscles of the body parts involved. The exact morphological substrate for central oscillators and the mechanisms leading to their activation are still an object of debate. Peripheral neural structures exert modulatory influence on tremor amplitude, but not on tremor frequency. We hypothesise that rest tremor in PD is the result of two mechanisms: increased activity and increased synchronisation of central oscillators. We tested our hypothesis by demonstrating that the reduction in rest tremor amplitude is accompanied by increased variability of tremor frequency. The reduction of tremor amplitude is attributed to decreased activity and poor synchronisation of central oscillators in basal ganglia; the increased variability of tremor frequency is attributed to poor synchronisation of the central oscillators. In addition, we demonstrated that the recurrence of clinically visible rest tremor is accompanied by a reduction in tremor frequency variability. This reduction is attributed to increased synchronisation of central oscillators in basal ganglia. We argue that both mechanisms, increased activity of central oscillators and increased synchronisation of central oscillators, are equally important and we predict that tremor becomes clinically evident only when both mechanisms are active at the same time. In circumstances when one of the mechanisms is suppressed tremor amplitude becomes markedly reduced. On the one hand, if the number

  20. Fatigue life of additively manufactured Ti6Al4V scaffolds under tension-tension, tension-compression and compression-compression fatigue load.

    PubMed

    Lietaert, Karel; Cutolo, Antonio; Boey, Dries; Van Hooreweder, Brecht

    2018-03-21

    Mechanical performance of additively manufactured (AM) Ti6Al4V scaffolds has mostly been studied in uniaxial compression. However, in real-life applications, more complex load conditions occur. To address this, a novel sample geometry was designed, tested and analyzed in this work. The new scaffold geometry, with porosity gradient between the solid ends and scaffold middle, was successfully used for quasi-static tension, tension-tension (R = 0.1), tension-compression (R = -1) and compression-compression (R = 10) fatigue tests. Results show that global loading in tension-tension leads to a decreased fatigue performance compared to global loading in compression-compression. This difference in fatigue life can be understood fairly well by approximating the local tensile stress amplitudes in the struts near the nodes. Local stress based Haigh diagrams were constructed to provide more insight in the fatigue behavior. When fatigue life is interpreted in terms of local stresses, the behavior of single struts is shown to be qualitatively the same as bulk Ti6Al4V. Compression-compression and tension-tension fatigue regimes lead to a shorter fatigue life than fully reversed loading due to the presence of a mean local tensile stress. Fractographic analysis showed that most fracture sites were located close to the nodes, where the highest tensile stresses are located.

  1. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  2. Circadian rhythm abnormalities and autonomic dysfunction in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

    PubMed Central

    Díez-Noguera, Antoni

    2018-01-01

    Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients frequently show autonomic symptoms which may be associated with a hypothalamic dysfunction. This study aimed to explore circadian rhythm patterns in rest and activity and distal skin temperature (DST) and their association with self-reported outcome measures, in CFS/ME patients and healthy controls at two different times of year. Ten women who met both the 1994 CDC/Fukuda definition and 2003 Canadian criteria for CFS/ME were included in the study, along with ten healthy controls matched for age, sex and body mass index. Self-reported measures were used to assess fatigue, sleep quality, anxiety and depression, autonomic function and health-related quality of life. The ActTrust actigraph was used to record activity, DST and light intensity, with data intervals of one minute over seven consecutive days. Sleep variables were obtained through actigraphic analysis and from subjective sleep diary. The circadian variables and the spectral analysis of the rhythms were calculated. Linear regression analysis was used to evaluate the relationship between the rhythmic variables and clinical features. Recordings were taken in the same subjects in winter and summer. Results showed no differences in rhythm stability, sleep latency or number of awakenings between groups as measured with the actigraph. However, daily activity, the relative amplitude and the stability of the activity rhythm were lower in CFS/ME patients than in controls. DST was sensitive to environmental temperature and showed lower nocturnal values in CFS/ME patients than controls only in winter. A spectral analysis showed no differences in phase or amplitude of the 24h rhythm, but the power of the second harmonic (12h), revealed differences between groups (controls showed a post-lunch dip in activity and peak in DST, while CFS/ME patients did not) and correlated with clinical features. These findings suggest that circadian regulation and skin

  3. Study on Fatigue Performance of Composite Bolted Joints with Bolt-Hole Delamination

    NASA Astrophysics Data System (ADS)

    Liu, M. J.; Yu, S.; Zhao, Q. Y.

    2018-03-01

    Fatigue performance of composite structure with imperfections is a challenging subject at present. Based on cohesive zone method and multi-continuum theory, delamination evolution response and fatigue life prediction of a 3D composite single-lap joint with a bolt-hole have been investigated through computer codes Abaqus and Fe-safe. Results from the comparison of a perfect composite bolted joint with another defect one indicates that a relatively small delamination damage around the bolt hole brings about significant degradation of local material performance. More notably, fatigue life of stress concentration region of composite bolted joints is highly sensitive to external loads, as an increase of 67% cyclic load amplitude leads to an decrease of 99.5% local fatigue life in this study. However, the numerical strategy for solving composite fatigue problems is meaningful to engineering works.

  4. Proximal and distal muscle fatigue differentially affect movement coordination

    PubMed Central

    Cowley, Jeffrey C.

    2017-01-01

    Muscle fatigue can cause people to change their movement patterns and these changes could contribute to acute or overuse injuries. However, these effects depend on which muscles are fatigued. The purpose of this study was to determine the differential effects of proximal and distal upper extremity muscle fatigue on repetitive movements. Fourteen subjects completed a repetitive ratcheting task before and after a fatigue protocol on separate days. The fatigue protocol either fatigued the proximal (shoulder flexor) or distal (finger flexor) muscles. Pre/Post changes in trunk, shoulder, elbow, and wrist kinematics were compared to determine how proximal and distal fatigue affected multi-joint movement patterns and variability. Proximal fatigue caused a significant increase (7°, p < 0.005) in trunk lean and velocity, reduced humeral elevation (11°, p < 0.005), and increased elbow flexion (4°, p < 0.01). In contrast, distal fatigue caused small but significant changes in trunk angles (2°, p < 0.05), increased velocity of wrench movement relative to the hand (17°/s, p < 0.001), and earlier wrist extension (4%, p < 0.005). Movement variability increased at proximal joints but not distal joints after both fatigue protocols (p < 0.05). Varying movements at proximal joints may help people adapt to fatigue at either proximal or distal joints. The identified differences between proximal and distal muscle fatigue adaptations could facilitate risk assessment of occupational tasks. PMID:28235005

  5. Fatigue testing of a NiTi rotary instrument. Part 1: Strain-life relationship.

    PubMed

    Cheung, G S P; Darvell, B W

    2007-08-01

    To examine the fatigue behaviour using a strain-life approach, and to determine the effect of water on the fatigue life of a NiTi rotary instrument. Instruments of one brand of NiTi engine-file (size 25, ProFile 0.04 and 0.06) were subjected to rotational bending either in air or under water, the number of revolutions to fracture (N(f)) being recorded using an optical counter and an electronic break-detection circuit. The effective surface strain amplitude (epsilon(a)) for each specimen was determined from the curvature of the instrument (on a photograph) and the diameter of the fracture cross-section (from a scanning electron micrograph of the fracture surface). Strain was plotted against fatigue life and the low-cycle fatigue (LCF) region identified. Values were examined using two-way analysis of variance for difference between various instrument-environment combinations. A total of 212 instruments were tested. A strain-life relationship typical of metals was found. N(f) declined with an inverse power function dependence on epsilon(a). A fatigue limit was present at about 0.7% strain. The apparent fatigue-ductility exponent, a material constant for the LCF life of metals, was found to be between -0.45 and -0.55. There was a significant effect of the environmental condition on the LCF life, water being more detrimental than air. The fatigue behaviour of NiTi rotary instrument is typical of most metals, provided that the analysis is based on the surface strain amplitude, and showed a high-cycle and a LCF region. The LCF life is adversely affected by water.

  6. Compassion fatigue and burnout among Rabbis working as chaplains.

    PubMed

    Taylor, Bonita E; Flannelly, Kevin J; Weaver, Andrew J; Zucker, David J

    2006-01-01

    Compassion Fatigue, Compassion Satisfaction, and Burnout were studied in a convenience sample of 66 male and female Rabbis who work as chaplains and attended the annual conference of the National Association of Jewish Chaplains (NAJC) in 2002. Although Compassion Fatigue and Burnout were low among the survey participants, both measures were significantly higher among the women in the sample. Compassion Fatigue was also higher among chaplains who were divorced, and it increased with the number of hours per week the chaplains spent working with trauma victims or their families (r = .25, p<.05). Hierarchical multiple regression was performed to determine the influence of six professional and five personal variables on each of the three dependent variables. Four professional variables accounted for 19.5% of the variation and three personal variables accounted for 20.3% of the variation in Compassion Fatigue. Attempts to predict Burnout and Compassion Satisfaction were far less successful. Burnout was predicted by only two variables (i.e. age and years as a Rabbi), which accounted for just 18.4% of the variance in Burnout scores. Age was the only variable found to have a significant effect on Compassion Satisfaction, and its effect was positive. The implications of the findings are discussed.

  7. The fatigue experience for women with human immunodeficiency virus.

    PubMed

    Lee, K A; Portillo, C J; Miramontes, H

    1999-01-01

    To examine fatigue as a symptom experienced by women with human immunodeficiency virus (HIV). A convenience sample of 100 women with HIV. Independent sample t-tests were used to test for mean differences in fatigue related to variables in the women's sociocultural and home environment (ethnicity, employment, marital status, and parenting). Pearson product moment correlations were used to examine significant relationships between fatigue and physiologic variables (age, CD4 cell count, and sleep). Lower CD4 cell counts were related to more daytime sleep, higher evening fatigue, and higher morning fatigue. Morning fatigue was related to duration of wake episodes during the night, napping, and perception of sleep disturbance during the past week. The number of awakenings during the first night predicted the severity of fatigue the next evening. To understand the fatigue experienced by women with HIV, researchers and clinicians must focus on the relative contributions of sociocultural, home, and physiologic environments within which these women live. Additional research is ongoing to identify the strategies these women use to manage daily activities such that gender-relevant and culturally relevant interventions for alleviating fatigue can be tested in women with a variety of chronic illnesses, including HIV and acquired immune deficiency syndrome.

  8. Fatigue Properties of the Ultra-High Strength Steel TM210A

    PubMed Central

    Kang, Xia; Zhao, Gui-ping

    2017-01-01

    This paper presents the results of an experiment to investigate the high cycle fatigue properties of the ultra-high strength steel TM210A. A constant amplitude rotating bending fatigue experiment was performed at room temperature at stress ratio R = −1. In order to evaluate the notch effect, the fatigue experiment was carried out upon two sets of specimens, smooth and notched, respectively. In the experiment, the rotating bending fatigue life was tested using the group method, and the rotating bending fatigue limit was tested using the staircase method at 1 × 107 cycles. A double weighted least square method was then used to fit the stress-life (S–N) curve. The S–N curves of the two sets of specimens were obtained and the morphologies of the fractures of the two sets of specimens were observed with scanning electron microscopy (SEM). The results showed that the fatigue limit of the smooth specimen for rotating bending fatigue was 615 MPa; the ratio of the fatigue limit to tensile strength was 0.29, and the cracks initiated at the surface of the smooth specimen; while the fatigue limit of the notched specimen for rotating bending fatigue was 363 MPa, and the cracks initiated at the edge of the notch. The fatigue notch sensitivity index of the ultra-high strength maraging steel TM210A was 0.69. PMID:28891934

  9. Is the notion of central fatigue based on a solid foundation?

    PubMed

    Contessa, Paola; Puleo, Alessio; De Luca, Carlo J

    2016-02-01

    Exercise-induced muscle fatigue has been shown to be the consequence of peripheral factors that impair muscle fiber contractile mechanisms. Central factors arising within the central nervous system have also been hypothesized to induce muscle fatigue, but no direct empirical evidence that is causally associated to reduction of muscle force-generating capability has yet been reported. We developed a simulation model to investigate whether peripheral factors of muscle fatigue are sufficient to explain the muscle force behavior observed during empirical studies of fatiguing voluntary contractions, which is commonly attributed to central factors. Peripheral factors of muscle fatigue were included in the model as a time-dependent decrease in the amplitude of the motor unit force twitches. Our simulation study indicated that the force behavior commonly attributed to central fatigue could be explained solely by peripheral factors during simulated fatiguing submaximal voluntary contractions. It also revealed important flaws regarding the use of the interpolated twitch response from electrical stimulation of the muscle as a means for assessing central fatigue. Our analysis does not directly refute the concept of central fatigue. However, it raises important concerns about the manner in which it is measured and about the interpretation of the commonly accepted causes of central fatigue and questions the very need for the existence of central fatigue. Copyright © 2016 the American Physiological Society.

  10. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  11. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.

    PubMed

    Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-06-26

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  12. The Effect of Fatigue and Fatigue Intensity on Exercise Tolerance in Moderate COPD.

    PubMed

    Al-Shair, Khaled; Kolsum, Umme; Singh, Dave; Vestbo, Jørgen

    2016-12-01

    Fatigue is one of the most disabling symptoms in COPD, but little is known about the impact of fatigue on functional disability. We explored the impact of fatigue and fatigue intensity on exercise tolerance after adjusting for other factors using multivariate analysis and compared it to that of dyspnoea. A total of 119 patients with mainly moderate-severe stable COPD (38 % women, mean age 66 years) were enrolled. We used the Medical Research Council dyspnoea scores (MRC), Manchester COPD fatigue scale (MCFS) and its three dimensions, Borg scales for fatigue and dyspnoea, six-minute walk distance (6MWD), St George's Respiratory Questionnaire, the BODE index, and the Centre for Epidemiological Study on Depression scale (CES-D), and we measured spirometry, blood gases, systemic inflammatory markers and fat-free mass index (FFMI). Fatigue measured using the MCFS was associated with 6MWD and explained 22 % of the variability in 6MWD (p < 0.001). Fatigue remained associated with 6MWD after adjusting for MRC dyspnoea, FFMI and FEV 1 , FVC, PaO 2 , PaCO 2 , CES-D, TNF-alpha, smoking status, age and gender. We found that 33, 50 and 23 % of patients reported an increase by 2 scores on Borg scales for fatigue, dyspnoea or both at the end of the 6MWT. Fatigue scores (both before and after the 6MWT) were negatively correlated with 6MWD after adjusting for FEV 1 , FFMI, CES-D score and age (p = 0.007 and 0.001, respectively). In moderate stable COPD, fatigue may be a central driver of functional disability, to the same extent as dyspnoea.

  13. Multidisciplinary pain facility treatment outcome for pain-associated fatigue.

    PubMed

    Fishbain, David A; Lewis, John; Cole, Brandly; Cutler, Brian; Smets, Eve; Rosomoff, Hubert; Rosomoff, Rennee Steele

    2005-01-01

    Fatigue is frequently found in chronic pain patients (CPPs) and may be etiologically related to the presence of pain. Fishbain et al. have recently demonstrated that chronic low back pain (LBP) and chronic neck pain patients are more fatigued than controls. The purpose of this study was to determine whether chronic LBP- and chronic neck pain-associated fatigue responded to multidisciplinary multimodal treatment not specifically targeted to the treatment of fatigue. A total of 85 chronic LBP and 33 chronic neck pain patients completed the Multidimensional Fatigue Inventory (MFI), Neuropathic Pain Scale (NPS), and Beck Depression Inventory on admission. In addition, an information tool was completed on each CPP by the senior author. This tool listed demographic information, primary and secondary pain diagnoses, Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) psychiatric diagnoses assigned, pain location, pain precipitating event, type of injury, years in pain, number of surgeries, type of surgery, type of pain pattern, opioids consumed per day in morphine equivalents, worker compensation status, and whether, according to the clinical examination, the CPP had a neuropathic pain component. At completion of the multidisciplinary multimodal treatment, each CPP again completed the MFI. Student's t-test was utilized to test for statistical changes on the MFI five scales from pre- to post-treatment. Pearson and point-biserial correlations were utilized to determine which variables significantly correlated with MFI change scores. Variables found significant at less than or equal to 0.01 were utilized in a stepwise aggression analysis to find variables predictive of change in MFI scores. Multidisciplinary pain facility. Chronic LBP and chronic neck pain patients. Multidisciplinary multimodal treatment significantly improved CPP fatigue as measured by the MFI. The available variables utilized to predict fatigue best explained only a small percentage

  14. Fatigue Design and Prevention in Movable Scaffolding Systems

    NASA Astrophysics Data System (ADS)

    Coelho, Hugo; Torres, Alberto; Pacheco, Pedro; Moreira, Cristiano; Silva, Rute; Soares, José M.; Pinto, Dânia

    2017-06-01

    The Movable Scaffolding System (MSS) is a heavy construction equipment used for casting situ of concrete bridge decks. In the past decades, MSSs have become increasingly complex and industrialized, enlarging its span ranges, incorporating auxiliary elevation machinery and increasing productivity. The tendency nowadays is for strong reutilization and the notion of MSS as a disposable or temporary structure is somehow reductive. The main structure of MSSs may be potentially exposed to fatigue, usually characterized by low number of cycles with significant stress amplitude. Fatigue may be prevented through adequate design; judicious selection of materials; demanding quality control and implementation of robust inspection and maintenance plans.

  15. Fatigue Life of Postbuckled Structures with Indentation Damages

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  16. A link representation for gravity amplitudes

    NASA Astrophysics Data System (ADS)

    He, Song

    2013-10-01

    We derive a link representation for all tree amplitudes in supergravity, from a recent conjecture by Cachazo and Skinner. The new formula explicitly writes amplitudes as contour integrals over constrained link variables, with an integrand naturally expressed in terms of determinants, or equivalently tree diagrams. Important symmetries of the amplitude, such as supersymmetry, parity and (partial) permutation invariance, are kept manifest in the formulation. We also comment on rewriting the formula in a GL( k)-invariant manner, which may serve as a starting point for the generalization to possible Grassmannian contour integrals.

  17. Violent Offending Predicts P300 Amplitude

    PubMed Central

    Bernat, Edward M.; Hall, Jason R.; Steffen, Benjamin V.; Patrick, Christopher J.

    2007-01-01

    Prior work has consistently revealed a relationship between antisocial behavior and reduced P300 amplitude. Fewer studies have directly evaluated behavioral indices of aggression and P300, and those that have generally do not account for potential mediating variables such as age, intelligence, and behavioral task performance. The current study assessed the relationship between the total number of convicted violent and non-violent offenses and P300 in a sample of inmates from a medium security state prison. Violent offenses evidenced a robust negative relationship with P300 amplitude, whereas non-violent offenses did not. Additional analyses evaluated age, intelligence, and behavioral task performance as potential mediating variables. Only reaction time significantly predicted P300 amplitude, and mediational analyses showed that this relationship did not account for the violent-offense/P300 relationship. Findings are discussed in terms of personality correlates and neurobiological process related to aggression. PMID:17555836

  18. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  19. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  20. Binocular Vision in Chronic Fatigue Syndrome.

    PubMed

    Godts, Daisy; Moorkens, Greta; Mathysen, Danny G P

    2016-01-01

    To compare binocular vision measurements between Chronic Fatigue Syndrome (CFS) patients and healthy controls. Forty-one CFS patients referred by the Reference Centre for Chronic Fatigue Syndrome of the Antwerp University Hospital and forty-one healthy volunteers, matched for age and gender, underwent a complete orthoptic examination. Data of visual acuity, eye position, fusion amplitude, stereopsis, ocular motility, convergence, and accommodation were compared between both groups. Patients with CFS showed highly significant smaller fusion amplitudes (P < 0.001), reduced convergence capacity (P < 0.001), and a smaller accommodation range (P < 0.001) compared to the control group. In patients with CFS binocular vision, convergence and accommodation should be routinely examined. CFS patients will benefit from reading glasses either with or without prism correction in an earlier stage compared to their healthy peers. Convergence exercises may be beneficial for CFS patients, despite the fact that they might be very tiring. Further research will be necessary to draw conclusions about the efficacy of treatment, especially regarding convergence exercises. To our knowledge, this is the first prospective study evaluating binocular vision in CFS patients. © 2016 Board of regents of the University of Wisconsin System, American Orthoptic Journal, Volume 66, 2016, ISSN 0065-955X, E-ISSN 1553-4448.

  1. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: II. Fatigue crack growth, lifetime and scaling

    NASA Astrophysics Data System (ADS)

    Le, Jia-Liang; Bažant, Zdeněk P.

    2011-07-01

    This paper extends the theoretical framework presented in the preceding Part I to the lifetime distribution of quasibrittle structures failing at the fracture of one representative volume element under constant amplitude fatigue. The probability distribution of the critical stress amplitude is derived for a given number of cycles and a given minimum-to-maximum stress ratio. The physical mechanism underlying the Paris law for fatigue crack growth is explained under certain plausible assumptions about the damage accumulation in the cyclic fracture process zone at the tip of subcritical crack. This law is then used to relate the probability distribution of critical stress amplitude to the probability distribution of fatigue lifetime. The theory naturally yields a power-law relation for the stress-life curve (S-N curve), which agrees with Basquin's law. Furthermore, the theory indicates that, for quasibrittle structures, the S-N curve must be size dependent. Finally, physical explanation is provided to the experimentally observed systematic deviations of lifetime histograms of various ceramics and bones from the Weibull distribution, and their close fits by the present theory are demonstrated.

  2. Can Cognitive Activities during Breaks in Repetitive Manual Work Accelerate Recovery from Fatigue? A Controlled Experiment

    PubMed Central

    Mathiassen, Svend Erik; Hallman, David M.; Lyskov, Eugene; Hygge, Staffan

    2014-01-01

    Neurophysiologic theory and some empirical evidence suggest that fatigue caused by physical work may be more effectively recovered during “diverting” periods of cognitive activity than during passive rest; a phenomenon of great interest in working life. We investigated the extent to which development and recovery of fatigue during repeated bouts of an occupationally relevant reaching task was influenced by the difficulty of a cognitive activity between these bouts. Eighteen male volunteers performed three experimental sessions, consisting of six 7-min bouts of reaching alternating with 3 minutes of a memory test differing in difficulty between sessions. Throughout each session, recordings were made of upper trapezius muscle activity using electromyography (EMG), heart rate and heart rate variability (HRV) using electrocardiography, arterial blood pressure, and perceived fatigue (Borg CR10 scale and SOFI). A test battery before, immediately after and 1 hour after the work period included measurements of maximal shoulder elevation strength (MVC), pressure pain threshold (PPT) over the trapezius muscles, and a submaximal isometric contraction. As expected, perceived fatigue and EMG amplitude increased during the physical work bouts. Recovery did occur between the bouts, but fatigue accumulated throughout the work period. Neither EMG changes nor recovery of perceived fatigue during breaks were influenced by cognitive task difficulty, while heart rate and HRV recovered the most during breaks with the most difficult task. Recovery of perceived fatigue after the 1 hour work period was also most pronounced for the most difficult cognitive condition, while MVC and PPT showed ambiguous patterns, and EMG recovered similarly after all three cognitive protocols. Thus, we could confirm that cognitive tasks between bouts of fatiguing physical work can, indeed, accelerate recovery of some factors associated with fatigue, even if benefits may be moderate and some responses may

  3. On the Specific Role of Microstructure in Governing Cyclic Fatigue, Deformation, and Fracture Behavior of a High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.

    2015-06-01

    In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  4. General split helicity gluon tree amplitudes in open twistor string theory

    NASA Astrophysics Data System (ADS)

    Dolan, Louise; Goddard, Peter

    2010-05-01

    We evaluate all split helicity gluon tree amplitudes in open twistor string theory. We show that these amplitudes satisfy the BCFW recurrence relations restricted to the split helicity case and, hence, that these amplitudes agree with those of gauge theory. To do this we make a particular choice of the sextic constraints in the link variables that determine the poles contributing to the contour integral expression for the amplitudes. Using the residue theorem to re-express this integral in terms of contributions from poles at rational values of the link variables, which we determine, we evaluate the amplitudes explicitly, regaining the gauge theory results of Britto et al. [25].

  5. Interim Report on Fatigue Characteristics of a Typical Metal Wing

    NASA Technical Reports Server (NTRS)

    Kepert, J L; Payne, A O

    1956-01-01

    Constant amplitude fatigue tests of seventy-two P-51D "Mustang" wings are reported. The tests were performed by a vibrational loading system and by an hydraulic loading device for conditions with and without varying amounts of pre-load. The results indicate that: (a) the frequency of occurrence of fatigue at any one location is related to the range of the loads applied, (b) the rate of propagation of visible cracks is more or less constant for a large portion of the life of the specimen, (c) the fatigue strength of the structure is similar to that of notched material having a theoretical stress concentration factor of more than 3.0, (d) the frequency distribution of fatigue life is approximately logarithmic normal, (e) the relative increase in fatigue life for a given pre-load depends on the maximum load of the loading cycle only, while the optimum pre-load value is approximately 85 percent of the ultimate failing load, and (f) that normal design procedure will not permit the determination of local stress levels with sufficient accuracy to determine the fatigue strength of an element of a redundant structure.

  6. Numerical investigation of contact stresses for fretting fatigue damage initiation

    NASA Astrophysics Data System (ADS)

    Bhatti, N. A.; Abdel Wahab, M.

    2017-05-01

    Fretting fatigue phenomena occurs due to interaction between contacting bodies under application of cyclic and normal loads. In addition to environmental conditions and material properties, the response at the contact interface highly depends on the combination of applied loads. High stress concentration is present at the contact interface, which can start the damage nucleation process. At the culmination of nucleation process several micro cracks are initiated, ultimately leading to the structural failure. In this study, effect of ratio of tangential to normal load on contact stresses, slip amplitude and damage initiation is studied using finite element analysis. The results are evaluated for Ruiz parameter as it involves the slip amplitude which in an important factor in fretting fatigue conditions. It is observed that tangential to normal load ratio influences the stick zone size and damage initiation life. Furthermore, it is observed that tensile stress is the most important factor that drives the damage initiation to failure for the cases where failure occurs predominantly in mode I manner.

  7. Association of Fatigue With Sarcopenia and its Elements: A Secondary Analysis of SABE-Bogotá

    PubMed Central

    Patino-Hernandez, Daniela; David-Pardo, David Gabriel; Borda, Miguel Germán; Pérez-Zepeda, Mario Ulises; Cano-Gutiérrez, Carlos

    2017-01-01

    Objective: Sarcopenia, fatigue, and depression are associated with higher mortality rates and adverse outcomes in the aging population. Understanding the association among clinical variables, mainly symptoms, is important for screening and appropriately managing these conditions. The aim of this article is to evaluate the association among sarcopenia and its elements with depression and fatigue. Method: We used cross-sectional data from 2012 SABE (Salud, Bienestar y Envejecimiento)-Bogotá study, which included 2,000 participants of ages ≥60 years. Sarcopenia and its elements were taken as the dependent variable, while fatigue and depression were the main independent variables. We tested the association among these through multiple logistic regression models, which were fitted for each dependent variable and adjusted for confounding variables. Results: Our findings showed that gait speed was associated with fatigue (adjusted odds ratio [OR] = 1.41, 95% confidence interval [CI] = [1.05, 1.90], p = .02) as well as abnormal handgrip strength (adjusted OR = 1.40, 95% CI = [1.02, 1.93], p = .04). No other associations were significant. Conclusion: While sarcopenia and fatigue are not associated, two of the sarcopenia-defining variables are associated with fatigue; this suggests that lack of sarcopenia does not exclude undesirable outcomes related to fatigue in aging adults. Also, the lack of association between sarcopenia-defining elements and depression demonstrates that depression and fatigue are different concepts. PMID:28474000

  8. A critical review of the psychophysiology of driver fatigue.

    PubMed

    Lal, S K; Craig, A

    2001-02-01

    Driver fatigue is a major cause of road accidents and has implications for road safety. This review discusses the concepts of fatigue and provides a summary on psychophysiological associations with driver fatigue. A variety of psychophysiological parameters have been used in previous research as indicators of fatigue, with electroencephalography perhaps being the most promising. Most research found changes in theta and delta activity to be strongly linked to transition to fatigue. Therefore, monitoring electroencephalography during driver fatigue may be a promising variable for use in fatigue countermeasure devices. The review also identified anxiety and mood states as factors that may possibly affect driver fatigue. Furthermore, personality and temperament may also influence fatigue. Given the above, understanding the psychology of fatigue may lead to better fatigue management. The findings from this review are discussed in the light of directions for future studies and for the development of fatigue countermeasures.

  9. Factors associated with intern fatigue.

    PubMed

    Friesen, Lindsay D; Vidyarthi, Arpana R; Baron, Robert B; Katz, Patricia P

    2008-12-01

    Prior data suggest that fatigue adversely affects patient safety and resident well-being. ACGME duty hour limitations were intended, in part, to reduce resident fatigue, but the factors that affect intern fatigue are unknown. To identify factors associated with intern fatigue following implementation of duty hour limitations. Cross-sectional confidential survey of validated questions related to fatigue, sleep, and stress, as well as author-developed teamwork questions. Interns in cognitive specialties at the University of California, San Francisco. Univariate statistics characterized the distribution of responses. Pearson correlations elucidated bivariate relationships between fatigue and other variables. Multivariate linear regression models identified factors independently associated with fatigue, sleep, and stress. Of 111 eligible interns, 66 responded (59%). In a regression analysis including gender, hours worked in the previous week, sleep quality, perceived stress, and teamwork, only poorer quality of sleep and greater perceived stress were significantly associated with fatigue (p < 0.001 and p = 0.02, respectively). To identify factors that may affect sleep, specifically duty hours and stress, a secondary model was constructed. Only greater perceived stress was significantly associated with diminished sleep quality (p = 0.04), and only poorer teamwork was significantly associated with perceived stress (p < 0.001). Working >80 h was not significantly associated with perceived stress, quality of sleep, or fatigue. Simply decreasing the number of duty hours may be insufficient to reduce intern fatigue. Residency programs may need to incorporate programmatic changes to reduce stress, improve sleep quality, and foster teamwork in order to decrease intern fatigue and its deleterious consequences.

  10. Reduced servo-control of fatigued human finger extensor and flexor muscles.

    PubMed Central

    Hagbarth, K E; Bongiovanni, L G; Nordin, M

    1995-01-01

    1. In healthy human subjects holding the index finger semi-extended at the metacarpophalangeal joint against a moderate load, electromyographic (EMG) activity was recorded from the finger extensor and flexor muscles during different stages of muscle fatigue. The aim was to study the effect of muscle fatigue on the level of background EMG activity and on the reflex responses to torque pulses causing sudden extensor unloadings. Paired comparisons were made between the averaged EMG and finger deflection responses under two conditions: (1) at a stage of fatigue (following a sustained co-contraction) when great effort was required to maintain the finger position, and (2) under non-fatigue conditions while the subject tried to produce similar background EMG levels to those in the corresponding fatigue trials. 2. Both the unloading reflex in the extensor and the concurrent stretch reflex in the flexor were significantly less pronounced and had a longer latency in the fatigue trials. Consequently, the finger deflections had a larger amplitude and were arrested later in the fatigue trials. 3. It is concluded that--with avoidance of 'automatic gain compensation', i.e. reflex modifications attributable to differences in background EMG levels--the servo-like action of the unloading and stretch reflexes is reduced in fatigued finger extensor and flexor muscles. PMID:7562624

  11. Towards spinning Mellin amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Heng-Yu; Kuo, En-Jui; Kyono, Hideki

    2018-06-01

    We construct the Mellin representation of four point conformal correlation function with external primary operators with arbitrary integer spacetime spins, and obtain a natural proposal for spinning Mellin amplitudes. By restricting to the exchange of symmetric traceless primaries, we generalize the Mellin transform for scalar case to introduce discrete Mellin variables for incorporating spin degrees of freedom. Based on the structures about spinning three and four point Witten diagrams, we also obtain a generalization of the Mack polynomial which can be regarded as a natural kinematical polynomial basis for computing spinning Mellin amplitudes using different choices of interaction vertices.

  12. Study on Wind-induced Vibration and Fatigue Life of Cable-stayed Flexible Antenna

    NASA Astrophysics Data System (ADS)

    He, Kongde; He, Xuehui; Fang, Zifan; Zheng, Xiaowei; Yu, Hongchang

    2018-03-01

    The cable-stayed flexible antenna is a large-span space structure composed of flexible multibody, with low frequency of vibration, vortex-induced resonance can occur under the action of Stochastic wind, and a larger amplitude is generated when resonance occurs. To solve this problem, based on the theory of vortex-induced vibration, this paper analyzes the vortex-induced vibration of a cable-stayed flexible antenna under the action of Wind. Based on the sinusoidal force model and Autoregressive Model (AR) method, the vortex-induced force is simulated, then the fatigue analysis of the structure is based on the linear fatigue cumulative damage principle and the rain-flow method. The minimum fatigue life of the structure is calculated to verify the vibration fatigue performance of the structure.

  13. Bidirectional Relationships Between Fatigue and Everyday Experiences in Persons Living With HIV.

    PubMed

    Cook, Paul F; Hartson, Kimberly R; Schmiege, Sarah J; Jankowski, Catherine; Starr, Whitney; Meek, Paula

    2016-06-01

    Fatigue symptoms are very common among persons living with HIV (PLWH). Fatigue is related to functional and psychological problems and to treatment nonadherence. Using secondary data from ecological momentary assessment, we examined fatigue as a predictor of PLWH everyday experiences. In bidirectional analyses based on the shape shifters model, we also examined these experiences as predictors of fatigue. Data were examined from 67 PLWH who completed daily surveys on a handheld computer. Brief validated scales were used to assess participants' control beliefs, mood, stress, coping, social support, experience of stigma, and motivation. At the beginning and end of the study, fatigue was measured with two CES-D items that have been used in past HIV symptom research. Multilevel models and logistic regression were used to test reciprocal predictive relationships between variables. Moderate to severe fatigue affected 45% of PLWH in the study. Initial fatigue predicted PLWH subsequent overall level of control beliefs, mood, stress, coping, and social support, all p < .05. These state variables remained relatively constant over time, regardless of participants' initial fatigue. In tests for reciprocal relationships with 33 PLWH, average daily stress, OR = 4.74, and stigma, OR = 4.86, also predicted later fatigue. Fatigue predicted several daily survey variables including stress and social support. Stress and support in turn predicted fatigue at a later time, suggesting a self-perpetuating cycle but also a possible avenue for intervention. Future studies should examine daily variation in fatigue among PLWH and its relation to other everyday experiences and behaviors. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Fatigue properties of JIS H3300 C1220 copper for strain life prediction

    NASA Astrophysics Data System (ADS)

    Harun, Muhammad Faiz; Mohammad, Roslina

    2018-05-01

    The existing methods for estimating strain life parameters are dependent on the material's monotonic tensile properties. However, a few of these methods yield quite complicated expressions for calculating fatigue parameters, and are specific to certain groups of materials only. The Universal Slopes method, Modified Universal Slopes method, Uniform Material Law, the Hardness method, and Medians method are a few existing methods for predicting strain-life fatigue based on monotonic tensile material properties and hardness of material. In the present study, nine methods for estimating fatigue life and properties are applied on JIS H3300 C1220 copper to determine the best methods for strain life estimation of this ductile material. Experimental strain-life curves are compared to estimations obtained using each method. Muralidharan-Manson's Modified Universal Slopes method and Bäumel-Seeger's method for unalloyed and low-alloy steels are found to yield batter accuracy in estimating fatigue life with a deviation of less than 25%. However, the prediction of both methods only yield much better accuracy for a cycle of less than 1000 or for strain amplitudes of more than 1% and less than 6%. Manson's Original Universal Slopes method and Ong's Modified Four-Point Correlation method are found to predict the strain-life fatigue of copper with better accuracy for a high number of cycles of strain amplitudes of less than 1%. The differences between mechanical behavior during monotonic and cyclic loading and the complexity in deciding the coefficient in an equation are probably the reason for the lack of a reliable method for estimating fatigue behavior using the monotonic properties of a group of materials. It is therefore suggested that a differential approach and new expressions be developed to estimate the strain-life fatigue parameters for ductile materials such as copper.

  15. Influence of He implantation on the fatigue properties of stainless steel under different atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Sonnenberg, K.; Antesberger, G.; Brown, B.

    1981-12-01

    The influence of He on the fatigue properties of stainless steel was investigated using α-particle implantation. The He influence was compared for different external atmospheres (inert, corrosive), various fatigue temperatures (400-750°C), implantation temperatures (400-950°C), He doses (5-3000 ppm), strain amplitudes (0.5-3%) and fatigue frequencies (0.02-8 Hz). In situ and post-implantation fatigue testing showed that the effect of He implantation is very similar in both cases. The effect of He is small if the fatigue temperature is ≤ 600°C. In these cases the fracture mode remains transgranular and only small reductions of the fatigue life (less than a factor of 2) are observed upon He implantation. For higher fatigue temperatures the He causes a transition from a transgranular to an intergranular fracture mode associated with rather dramatic reductions of the fatigue life. It was shown that this fracture mode must be attributed to a growth of He bubbles at the grain boundaries. The growth is probably achieved by condensation of thermal vacancies, the flux of which is controlled by the external stresses and by grain-boundary diffusion. It was found that the size of the lifetime reduction increases with the He dose and the implantation temperature, because more He reaches the grain boundaries. The lifetime depends more strongly on the strain amplitude for irradiated samples. The lifetime for irradiated samples does not depend on the external atmosphere, in contrast to unirradiated samples which have an order of magnitude longer life in the clean atmosphere. In contrast to failure in a transgranular mode, the number of fatigue cycles until feature, N ƒ, is found to decrease with the fatigue frequency in the case of intergranular mode. The temperature above which intergranular fracture occurs (usually above 700°C) is affected by the He dose and the fatigue frequency. For high doses of ≈ 1000 ppm He and small frequencies of ≈0.02 Hz, the intergranular

  16. Translating Fatigue to Human Performance.

    PubMed

    Enoka, Roger M; Duchateau, Jacques

    2016-11-01

    Despite flourishing interest in the topic of fatigue-as indicated by the many presentations on fatigue at the 2015 Annual Meeting of the American College of Sports Medicine-surprisingly little is known about its effect on human performance. There are two main reasons for this dilemma: 1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and 2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. On the basis of the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability affect real-world performance.

  17. Monitoring fatigue damage in carbon fiber composites using an acoustic impact technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, A.; Raju, P.K.

    1998-06-01

    The acoustic impact technique (AIT) of nondestructive testing (NDT) has been used to identify the damage that results from the compressive and tension-compression cycle loading around a circular notch of quasiisotropic carbon-fiber composites. This method involves applying a low velocity impact to the test specimen and evaluating the resulting localized acoustic response. Results indicate that AIT can be applied for identification of both compressive and fatigue damage in composite laminates. The gross area of compressive and fatigue damage is detected through an increase in the pulse width, and a decrease in the amplitude, of the force-time signal. The response obtainedmore » in AIT is sensitive to the frequency of the impactor and the amplitude of the impact force and requires careful monitoring of these values to achieve repeatability of results.« less

  18. Fatigue Analysis of Magnesium Alloys Components for Car Industry

    NASA Astrophysics Data System (ADS)

    Marsavina, Liviu; Rusu, Lucian; Șerban, Dan Andrei; Negru, Radu Marcel; Cernescu, Anghel

    2017-12-01

    The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.

  19. The impairing effects of mental fatigue on response inhibition: An ERP study

    PubMed Central

    Guo, Zizheng; Chen, Ruiya; Liu, Xian; Zheng, Yan; Gong, Mingliang; Zhang, Jun

    2018-01-01

    Mental fatigue is one of the main reasons for the decline of response inhibition. This study aimed to explore the impairing influence of mental fatigue on a driver’s response inhibition. The effects of mental fatigue on response inhibition were assessed by comparing brain activity and behavioral indices when performing a Go/NoGo task before and after a 90-min fatigue manipulation task. Participants in the driving group performed a simulated driving task, while individuals in the control group spent the same time watching movies. We found that participants in the driving group reported higher levels of mental fatigue and had a higher percentage of eye closure and larger lateral deviations from their lane positions, which indicated there was effective manipulation of mental fatigue through a prolonged simulated driving task. After manipulation of mental fatigue, we observed increased reaction time and miss rates, delayed NoGo-N2 latency and Go-P3 latency, and decreased NoGo-P3 amplitude, which indicated that mental fatigue may slow down the speed of the inhibition process, delay the evaluation of visual stimuli and reduce the availability of attentional resources. These findings revealed the underlying neurological mechanisms of how mental fatigue impaired response inhibition. PMID:29856827

  20. A parametric approach to irregular fatigue prediction

    NASA Technical Reports Server (NTRS)

    Erismann, T. H.

    1972-01-01

    A parametric approach to irregular fatigue protection is presented. The method proposed consists of two parts: empirical determination of certain characteristics of a material by means of a relatively small number of well-defined standard tests, and arithmetical application of the results obtained to arbitrary loading histories. The following groups of parameters are thus taken into account: (1) the variations of the mean stress, (2) the interaction of these variations and the superposed oscillating stresses, (3) the spectrum of the oscillating-stress amplitudes, and (4) the sequence of the oscillating-stress amplitudes. It is pointed out that only experimental verification can throw sufficient light upon possibilities and limitations of this (or any other) prediction method.

  1. Fatigue degradation in compressively loaded composite laminates. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Ramkumar, R. L.

    1981-01-01

    The effect of imbedded delaminations on the compression fatigue behavior of quasi-isotropic, T300/5208, graphite/epoxy laminates was investigated. Teflon imbedments were introduced during panel layup to create delaminations. Static and constant amplitude (R=10, omega = 10 Hz) fatigue tests were conducted. S-N data and half life residual strength data were obtained. During static compression loading, the maximum deflection of the buckled delaminated region was recorded. Under compression fatigue, growth of the imbedded delamination was identified as the predominant failure mode in most of the test cases. Specimens that exhibited others failures had a single low stiffness ply above the Teflon imbedment. Delamination growth during fatigue was monitored using DIB enhanced radiography. In specimens with buried delaminations, the dye penetrant (DIB) was introduced into the delaminated region through a minute laser drilled hole, using a hypodermic needle. A low kV, microfocus, X-ray unit was mounted near the test equipment to efficiently record the cyclic growth of buried delaminations on Polaroid film.

  2. Assessment of Fatigue Resistance of Aluminide Layers on MAR 247 Nickel Super Alloy with Full-Field Optical Strain Measurements

    NASA Astrophysics Data System (ADS)

    Kukla, D.; Brynk, T.; Pakieła, Z.

    2017-08-01

    This work presents the results of fatigue tests of MAR 247 alloy flat specimens with aluminides layers of 20 or 40 µm thickness obtained in CVD process. Fatigue test was conducted at amplitude equal to half of maximum load and ranging between 300 and 650 MPa (stress asymmetry ratio R = 0, frequency f = 20 Hz). Additionally, 4 of the tests, characterized by the highest amplitude, were accompanied with non-contact strain field measurements by means of electronic speckle pattern interferometry and digital image correlation. Results of these measurements allowed to localize the areas of deformation concentration identified as the damage points of the surface layer or advanced crack presence in core material. Identification and observation of the development of deformation in localization areas allowed to assess fatigue-related phenomena in both layer and substrate materials.

  3. Simulation of fatigue fracture of TiNi shape memory alloy samples at cyclic loading in pseudoelastic state

    NASA Astrophysics Data System (ADS)

    Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Khvorov, Aleksandr A.

    2018-05-01

    Microstructural simulation of mechanical behavior of shape memory alloy samples at cyclic loading in the pseudoelastic state has been carried out. Evolution of the oriented and scattered deformation defects leading to damage accumulation and resulting in the fatigue fracture has been taken into account. Simulations were performed for the regime of loading imitating that for endovascular stents: preliminary straining, unloading, deformation up to some mean level of the strain and subsequent mechanical cycling at specified strain amplitude. Dependence of the fatigue life on the loading parameters (pre-strain, mean and amplitude values of strain) has been obtained. The results show a good agreement with available experimental data.

  4. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    PubMed Central

    Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-01-01

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064

  5. PhybalSIT — Fatigue Assessment and Life Time Calculation of the Ductile Cast Iron EN-GJS-600 at Ambient and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Jost, Benjamin; Klein, Marcus; Eifler, Dietmar

    This paper focuses on the ductile cast iron EN-GJS-600 which is often used for components of combustion engines. Under service conditions, those components are mechanically loaded at different temperatures. Therefore, this investigation targets at the fatigue behavior of EN-GJS-600 at ambient and elevated temperatures. Light and scanning electron microscopic investigations were done to characterize the sphericity of the graphite as well as the ferrite, pearlite and graphite fraction. At elevated temperatures, the consideration of dynamic strain ageing effects is of major importance. In total strain increase, temperature increase and constant total strain amplitude tests, the plastic strain amplitude, the stress amplitude, the change in temperature and the change in electrical resistance were measured. The measured values depend on plastic deformation processes in the bulk of the specimens and at the interfaces between matrix and graphite. The fatigue behavior of EN-GJS-600 is dominated by cyclic hardening processes. The physically based fatigue life calculation "PHYBALSIT" (SIT = strain increase test) was developed for total strain controlled fatigue tests. Only one temperature increase test is necessary to determine the temperature interval of pronounced dynamic strain ageing effects.

  6. A Fatigue Life Prediction Model of Welded Joints under Combined Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Goes, Keurrie C.; Camarao, Arnaldo F.; Pereira, Marcos Venicius S.; Ferreira Batalha, Gilmar

    2011-01-01

    A practical and robust methodology is developed to evaluate the fatigue life in seam welded joints when subjected to combined cyclic loading. The fatigue analysis was conducted in virtual environment. The FE stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction using the S x N (stress x life) method. The measurement or modelling of the residual stresses resulting from the welded process is not part of this work. However, the thermal and metallurgical effects, such as distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combined cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the technical development are discussed. Major challenges associated with this modelling and improvement proposals are finally presented.

  7. The meaning and measurement of work fatigue: Development and evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI).

    PubMed

    Frone, Michael R; Tidwell, Marie-Cecile O

    2015-07-01

    Although work fatigue represents an important construct in several substantive areas, prior conceptual definitions and measures have been inadequate in a number of ways. The goals of the present study were to develop a conceptual definition and outline the desirable characteristics of a work fatigue measure, briefly examine several prior measures of work fatigue-related constructs, and develop and evaluate a new measure of work fatigue. The Three-Dimensional Work Fatigue Inventory (3D-WFI) provides separate and commensurate assessments of physical, mental, and emotional work fatigue. Results from a pilot study (n = 207) and a broader evaluative study of U.S. wage and salary workers (n = 2,477) suggest that the 3D-WFI is psychometrically sound and evinces a meaningful pattern of relations with variables that comprise the nomological network of work fatigue. As with all new measures, additional research is required to evaluate fully the utility of the 3D-WFI in research on work fatigue. (c) 2015 APA, all rights reserved).

  8. The Meaning and Measurement of Work Fatigue: Development and Evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI)

    PubMed Central

    Frone, Michael R.; Tidwell, Marie-Cecile O.

    2015-01-01

    Although work fatigue represents an important construct in several substantive areas, prior conceptual definitions and measures have been inadequate in a number of ways. The goals of the present study were to develop a conceptual definition and outline the desirable characteristics of a work fatigue measure; briefly examine several prior measures of work fatigue-related constructs; and develop and evaluate a new measure of work fatigue. The Three-Dimensional Work Fatigue Inventory (3D-WFI) provides separate and commensurate assessments of physical, mental, and emotional work fatigue. Results from a pilot study (N = 207) and a broader evaluative study of U.S. wage and salary workers (N = 2,477) suggest that the 3D-WFI is psychometrically sound and evinces a meaningful pattern of relations with variables that comprise the nomological network of work fatigue. As with all new measures, additional research is required to evaluate fully the utility of the 3D-WFI in research on work fatigue. PMID:25602275

  9. A review of concepts regarding the origin of respiratory muscle fatigue

    NASA Astrophysics Data System (ADS)

    Kuraszkiewicz, Bożena; Piotrkiewicz, Maria

    2011-01-01

    In this review, the classification of respiratory muscle fatigue from the perspective of its origin is presented. The fatigue is classified as central or peripheral, and the latter further subdivided into high- and low-frequency fatigue. However, muscle fatigue is a complex process and all three types of fatigue probably occur simultaneously in the overloaded respiratory muscles. The relative importance of each type depends on the duration of respiratory loading and other physiological variables. However, central and high-frequency fatigue resolve rapidly once muscle overload is removed, whereas low-frequency fatigue persists over long time.

  10. Translating Fatigue to Human Performance

    PubMed Central

    Enoka, Roger M.; Duchateau, Jacques

    2016-01-01

    Despite flourishing interest in the topic of fatigue—as indicated by the many presentations on fatigue at the 2015 annual meeting of the American College of Sports Medicine—surprisingly little is known about its impact on human performance. There are two main reasons for this dilemma: (1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and (2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. Based on the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability impact real-world performance. PMID:27015386

  11. Factors Associated with Intern Fatigue

    PubMed Central

    Vidyarthi, Arpana R.; Baron, Robert B.; Katz, Patricia P.

    2008-01-01

    ABSTRACT BACKGROUND Prior data suggest that fatigue adversely affects patient safety and resident well-being. ACGME duty hour limitations were intended, in part, to reduce resident fatigue, but the factors that affect intern fatigue are unknown. OBJECTIVE To identify factors associated with intern fatigue following implementation of duty hour limitations. DESIGN Cross-sectional confidential survey of validated questions related to fatigue, sleep, and stress, as well as author-developed teamwork questions. SUBJECTS Interns in cognitive specialties at the University of California, San Francisco. MEASUREMENTS Univariate statistics characterized the distribution of responses. Pearson correlations elucidated bivariate relationships between fatigue and other variables. Multivariate linear regression models identified factors independently associated with fatigue, sleep, and stress. RESULTS Of 111 eligible interns, 66 responded (59%). In a regression analysis including gender, hours worked in the previous week, sleep quality, perceived stress, and teamwork, only poorer quality of sleep and greater perceived stress were significantly associated with fatigue (p < 0.001 and p = 0.02, respectively). To identify factors that may affect sleep, specifically duty hours and stress, a secondary model was constructed. Only greater perceived stress was significantly associated with diminished sleep quality (p = 0.04), and only poorer teamwork was significantly associated with perceived stress (p < 0.001). Working >80 h was not significantly associated with perceived stress, quality of sleep, or fatigue. CONCLUSIONS Simply decreasing the number of duty hours may be insufficient to reduce intern fatigue. Residency programs may need to incorporate programmatic changes to reduce stress, improve sleep quality, and foster teamwork in order to decrease intern fatigue and its deleterious consequences. PMID:18807096

  12. Muscle fatigue effects can be anticipated to reproduce a movement kinematics learned without fatigue.

    PubMed

    Monjo, Florian; Forestier, Nicolas

    2016-12-17

    Muscle fatigue modifies the gain between motor command magnitude and the mechanical muscular response. In other words, post-fatigue, central drives to the muscles must increase to maintain a particular submaximum mechanical output. In this study, we tested the hypothesis that this modified gain can be predicted by the central nervous system (CNS) during discrete ballistic movements. In two separate experiments, subjects were required to perform shoulder flexions in standing and sitting positions at submaximum target peak accelerations. They were assisted with visual feedback informing them on their performance after each trial. Shoulder flexions were performed before and after fatiguing protocols of the focal muscles. Acceleration signals, focal and postural muscle electromyograms (EMGs) were recorded. The results demonstrated that participants were able to reach with precision the target acceleration during the first movements post-fatigue at the cost of significant increase in focal motor command magnitude. Decreased variance of peak accelerations associated with increased focal command variability was observed post-fatigue. During the standing experiment, postural muscle EMGs revealed that anticipatory postural adjustments (APAs) scaled to focal movement acceleration post-fatigue. All these results support that fatigue effects are taken into account during movement planning. Indeed, given that no feedback could enable participants to adjust acceleration during movement, this capacity to anticipate fatigue effects is the exclusive result of feedforward processes. To account for this prediction capacity, we discuss the role of fatigue-related modifications in sensory inputs from the working muscles. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Modelling of a Francis Turbine Runner Fatigue Failure Process Caused by Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Lyutov, A.; Kryukov, A.; Cherny, S.; Chirkov, D.; Salienko, A.; Skorospelov, V.; Turuk, P.

    2016-11-01

    In the present paper considered is the problem of the numerical simulation of Francis turbine runner fatigue failure caused by fluid-structure interaction. The unsteady 3D flow is modeled simultaneously in the spiral chamber, each wicket gate and runner channels and in the draft tube using the Euler equations. Based on the unsteady runner loadings at each time step stresses in the whole runner are calculated using the elastic equilibrium equations solved with boundary element method. Set of static stress-strain states provides quasi-dynamics of runner cyclic loading. It is assumed that equivalent stresses in the runner are below the critical value after which irreversible plastic processes happen in the runner material. Therefore runner is subjected to the fatigue damage caused by high-cycle fatigue, in which the loads are generally low compared with the limit stress of the material. As a consequence, the stress state around the crack front can be fully characterized by linear elastic fracture mechanics. The place of runner cracking is determined as a point with maximal amplitude of stress oscillations. Stress pulsations amplitude is used to estimate the number of cycles until the moment of fatigue failure, number of loading cycles and oscillation frequency are used to calculate runner service time. Example of the real Francis runner which has encountered premature fatigue failure as a result of incorrect durability estimation is used to verify the developed numerical model.

  14. Analysis of fatigue, fatique-crack propagation, and fracture data. [design of metallic aerospace structural components

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Feddersen, C. E.; Davies, K. B.; Rice, R. C.

    1973-01-01

    Analytical methods have been developed for consolidation of fatigue, fatigue-crack propagation, and fracture data for use in design of metallic aerospace structural components. To evaluate these methods, a comprehensive file of data on 2024 and 7075 aluminums, Ti-6A1-4V, and 300M and D6Ac steels was established. Data were obtained from both published literature and unpublished reports furnished by aerospace companies. Fatigue and fatigue-crack-propagation analyses were restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Fracture toughness data were from tests of center-cracked tension panels, part-through crack specimens, and compact-tension specimens.

  15. Carbide factor predicts rolling-element bearing fatigue life

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Zaretsky, E. V.

    1973-01-01

    Analysis was made to determine correlation between number and size of carbide particles and rolling-element fatigue. Correlation was established, and carbide factor was derived that can be used to predict fatigue life more effectively than such variables as heat treatment, chemical composition, and hardening mechanism.

  16. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    PubMed

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  17. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles.

    PubMed

    Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  18. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  19. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0037: Mechanisms Causing Fatigue Variability in Turbine Engine Materials

    DTIC Science & Technology

    2008-05-01

    titanium alloy, Ti- 6 -2- 4 - 6 and a P/M processed nickel-based superalloy. Two heats of the Ti- 6 -2- 4 - 6 alloy with constant composition but...fatigue behavior, and the effect of microstructure and loading variables on the long-lifetime regime of the α+β titanium alloy Ti- 6 -2- 4 - 6 . By long...α+β titanium alloy, Ti- 6 -2- 4 - 6 . These are shown in Fig. 1 (a) and (b) respectively. We designate these as microstructures A and B,

  20. The Effect of Drive Signal Limiting on High Cycle Fatigue Life Analysis

    NASA Technical Reports Server (NTRS)

    Kihm, Frederic; Rizzi, Stephen A.

    2014-01-01

    It is common practice to assume a Gaussian distribution of both the input acceleration and the response when modeling random vibration tests. In the laboratory, however, shaker controllers often limit the drive signal to prevent high amplitude peaks. The high amplitudes may either be truncated at a given level (socalled brick wall limiting or abrupt clipping), or compressed (soft limiting), resulting in drive signals which are no longer Gaussian. The paper first introduces several methods for limiting a drive signal, including brick wall limiting and compression. The limited signal is then passed through a linear time-invariant system representing a device under test. High cycle fatigue life predictions are subsequently made using spectral fatigue and rainflow cycle counting schemes. The life predictions are compared with those obtained from unclipped input signals. Some guidelines are provided to help the test engineer decide how clipping should be applied under different test scenarios.

  1. Prevalence and factors associated with fatigue in female patients with systemic lupus erythematosus.

    PubMed

    Carrión-Barberà, Irene; Salman-Monte, Tarek Carlos; Castell, Sonia; Castro, Francisco; Ojeda, Fabiola; Carbonell, Jordi

    2018-02-10

    To determine the prevalence of fatigue in our cohort as well as the factors to which it is associated, its relationship with demographic variables, vitamin D levels, treatment, systemic lupus erythematosus (SLE) symptoms and disease activity. A cross-sectional study was carried out including 102 consecutive female patients with SLE (American College of Rheumatology 1997 criteria) who attended the Parc de Salut Mar between January 2012 and May 2014. Variables collected were: sociodemographic data, vitamin D supplementation, fatigue VAS, pharmacological treatment, main serological markers of SLE, and plasma levels of 25(OH)-vitD. The association between fatigue and the different variables was evaluated by the Spearman's Rho correlation coefficient for the continuous variables, the Mann-Whitney U test for the categorical and the Kruskal-Wallis test for the seasons of the year. The fatigue variable was evaluated through a fatigue VAS with a mean score of 52.84 (range 0-100), a median of 59 and a standard deviation of 29.86. A statistically significant relationship was found between fatigue and age, MHAQ, SLICC, summer and photosensitivity. As for the relationship between fatigue and vitamin D insufficiency (defined as 25-(OH)-vitD≤30 levels), the sample was divided into patients receiving vitamin D supplements (n=60) and patients without supplements (n=40), finding a significant relationship in that last group. A statistically significant association was found between the presence of fatigue and age, MHAQ, SLICC, photosensitivity, fibromyalgia and summer, and with vitamin D insufficiency in the group of patients without supplements (n=40). Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  2. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  3. Fatigue life assessment of 316L stainless steel and DIN-1.4914 martensitic steel before and after TEXTOR exposure

    NASA Astrophysics Data System (ADS)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Schmitz, W.; Faulkner, R. G.; Chung, T. E.

    1992-09-01

    The effects of plasma exposure in the TEXTOR tokomak on elevated temperature fatigue lifetime and failure micromechanisms of 316L austenitic stainless steel and DIN 1.4914 martensitic steel (NET reference heats) have been evaluated. Fatigue tests were carried out in vacuum in the temperature range 150°-450°C and compared with data from reference specimens.Plasma-induced surface modifications lead to significant deterioration in fatigue life of 316L steel, whereas the lifetime of 1.4914 steel is unaffected. Fatigue in the 1.4914 steel is surface-initiated only at high stresses. At low stress amplitudes internal fatigue initiation at inclusions was observed.

  4. Effect of flooring on standing comfort and fatigue.

    PubMed

    Cham, R; Redfern, M S

    2001-01-01

    This study investigated the influence of flooring on subjective discomfort and fatigue during standing and on potentially related objective measures. Participants stood for 4 h on each of 7 flooring conditions while performing computer tasks. During the 3rd and 4th h, floor type had a significant effect on a number of subjective ratings, including lower-leg and lower-back discomfort/fatigue and 2 of 4 objective variables (center of pressure weight shift and lower-extremity skin temperature). In addition, lower-leg volumetric measurements showed tendencies toward greater lower-extremity swelling on uncomfortable floors. The hard floor and 1 floor mat condition consistently had the worst discomfort/fatigue and objective ratings. Significant relationships were noted between the affected subjective ratings and objective variables. In general, floor mats characterized by increased elasticity, decreased energy absorption, and increased stiffness resulted in less discomfort and fatigue. Thus flooring properties do affect low-back and lower-leg discomfort/fatigue, but the result may be detectable only after 3 h of standing. Potential applications of this research include the reduction of work-related health problems associated with long-term standing.

  5. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  6. Cyclic Hardness Test PHYBALCHT: A New Short-Time Procedure to Estimate Fatigue Properties of Metallic Materials

    NASA Astrophysics Data System (ADS)

    Kramer, Hendrik; Klein, Marcus; Eifler, Dietmar

    Conventional methods to characterize the fatigue behavior of metallic materials are very time and cost consuming. That is why the new short-time procedure PHYBALCHT was developed at the Institute of Materials Science and Engineering at the University of Kaiserslautern. This innovative method requires only a planar material surface to perform cyclic force-controlled hardness indentation tests. To characterize the cyclic elastic-plastic behavior of the test material the change of the force-indentation-depth-hysteresis is plotted versus the number of indentation cycles. In accordance to the plastic strain amplitude the indentation-depth width of the hysteresis loop is measured at half minimum force and is called plastic indentation-depth amplitude. Its change as a function of the number of cycles of indentation can be described by power-laws. One of these power-laws contains the hardening-exponentCHT e II , which correlates very well with the amount of cyclic hardening in conventional constant amplitude fatigue tests.

  7. Fatigue and radiotherapy: (B) experience in patients 9 months following treatment.

    PubMed Central

    Smets, E. M.; Visser, M. R.; Willems-Groot, A. F.; Garssen, B.; Schuster-Uitterhoeve, A. L.; de Haes, J. C.

    1998-01-01

    Little is known regarding the prevalence and course of fatigue in cancer patients after treatment has ended and no recurrence found. The present study examines fatigue in disease-free cancer patients after being treated with radiotherapy (n = 154). The following questions are addressed. First, how do patients describe their fatigue 9 months after radiotherapy and is this different from fatigue in a nonselective sample from the general population (n = 139)? Secondly, to what degree is fatigue in patients associated with sociodemographic, medical, physical and psychological factors? Finally, is it possible to predict which patients will suffer from fatigue 9 months after radiotherapy? Results indicated that fatigue in disease-free cancer patients did not differ significantly from fatigue in the general population. However, for 34% of the patients, fatigue following treatment was worse than anticipated, 39% listed fatigue as one of the three symptoms causing them most distress, 26% of patients worried about their fatigue and patients' overall quality of life was negatively related to fatigue (r = -0.46). Fatigue in disease-free patients was significantly associated with: gender, physical distress, pain rating, sleep quality, functional disability, psychological distress and depression, but not with medical (diagnosis, prognosis, co-morbidity) or treatment-related (target area, total radiation dose, fractionation) variables. The degree of fatigue, functional disability and pain before radiotherapy were the best predictors of fatigue at 9-month follow-up, explaining 30%, 3% and 4% of the variance respectively. These findings are in line with the associations found with fatigue during treatment as reported in the preceding paper in this issue. The significant associations between fatigue and both psychological and physical variables demonstrate the complex aetiology of this symptom in patients and point out the necessity of a multidisciplinary approach for its treatment

  8. Fatigue and sleep quality in rheumatoid arthritis patients during hospital admission.

    PubMed

    Szady, Paulina; Bączyk, Grażyna; Kozłowska, Katarzyna

    2017-01-01

    Rheumatoid arthritis (RA) is a systemic disease of connective tissue characterised by chronic course with periods of exacerbation and remission. Even in the early stages of the disease patients report the occurrence of fatigue and sleep disorders. Reduced sleep quality and chronic fatigue are common among patients with rheumatoid arthritis. The aim of the research was to evaluate the severity of fatigue and sleep quality assessment among patients hospitalised with rheumatoid arthritis and to determine the relation between the level of symptoms of fatigue and sleep quality and variables such as: age, gender, disease duration, marital status, applied pharmacological treatment, and pain intensity. The study involved 38 patients (12 men and 26 women) hospitalised in the Rheumatologic Ward of the Orthopaedics and Rehabilitation Hospital of the University of Medical Sciences. The average age of the entire group was 56.26 years. Fatigue was evaluated with use of Polish version of Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F), while in order to evaluate sleep quality within the examined group of patients the Pittsburgh Sleep Quality Index (PSQI) was used. Patients with rheumatoid arthritis in the analysed group have lower sleep quality, and within subjects with such a diagnosis the fatigue is present. The relation was found between fatigue and such variables as: age, illness duration, marital status, applied pharmacological treatment, and severity of pain. Sleep quality within patients with RA is correlated by such variables as: age, gender, applied pharmaceutical treatment, and severity of pain. It was identified that patients with lower sleep quality experience increased levels of fatigue. There is a need to clarify which factors determine the level of fatigue and sleep quality in patients suffering from RA in future population-based research and to indicate to doctors, nurses, psychologists, and physiotherapists the significance and importance of

  9. The Optical Gravitational Lensing Experiment. Small Amplitude Variable Red Giants in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Kubiak, M.; Szymanski, M.; Pietrzynski, G.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2004-06-01

    We present analysis of the large sample of variable red giants from the Large and Small Magellanic Clouds detected during the second phase of the Optical Gravitational Lensing Experiment (OGLE-II) and supplemented with OGLE-III photometry. Comparing pulsation properties of detected objects we find that they constitute two groups with clearly distinct features. In this paper we analyze in detail small amplitude variable red giants (about 15400 and 3000 objects in the LMC and SMC, respectively). The vast majority of these objects are multi-periodic. At least 30% of them exhibit two modes closely spaced in the power spectrum, what likely indicates non-radial oscillations. About 50% exhibit additional so called Long Secondary Period. To distinguish between AGB and RGB red giants we compare PL diagrams of multi-periodic red giants located above and below the tip of the Red Giant Branch (TRGB). The giants above the TRGB form four parallel ridges in the PL diagram. Among much more numerous sample of giants below the TRGB we find objects located on the low luminosity extensions of these ridges, but most of the stars are located on the ridges slightly shifted in log P. We interpret the former as the second ascent AGB red giants and the latter as the first ascent RGB objects. Thus, we empirically show that the pulsating red giants fainter than the TRGB are a mixture of RGB and AGB giants. Finally, we compare the Petersen diagrams of the LMC, SMC and Galactic bulge variable red giants and find that they are basically identical indicating that the variable red giants in all these different stellar environments share similar pulsation properties.

  10. Cyclic fatigue damage characteristics observed for simple loadings extended to multiaxial life prediction

    NASA Technical Reports Server (NTRS)

    Jones, David J.; Kurath, Peter

    1988-01-01

    Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.

  11. Are Females More Resistant to Extreme Neuromuscular Fatigue?

    PubMed

    Temesi, John; Arnal, Pierrick J; Rupp, Thomas; Féasson, Léonard; Cartier, Régine; Gergelé, Laurent; Verges, Samuel; Martin, Vincent; Millet, Guillaume Y

    2015-07-01

    Despite interest in the possibility of females outperforming males in ultraendurance sporting events, little is known about the sex differences in fatigue during prolonged locomotor exercise. This study investigated possible sex differences in central and peripheral fatigue in the knee extensors and plantar flexors resulting from a 110-km ultra-trail-running race. Neuromuscular function of the knee extensors and plantar flexors was evaluated via transcranial magnetic stimulation (TMS) and electrical nerve stimulation before and after an ultra-trail-running race in 20 experienced ultraendurance trail runners (10 females and 10 males matched by percent of the winning time by sex) during maximal and submaximal voluntary contractions and in relaxed muscle. Maximal voluntary knee extensor torque decreased more in males than in females (-38% vs -29%, P = 0.006) although the reduction in plantar flexor torque was similar between sexes (-26% vs -31%). Evoked mechanical plantar flexor responses decreased more in males than in females (-23% vs -8% for potentiated twitch amplitude, P = 0.010), indicating greater plantar flexor peripheral fatigue in males. Maximal voluntary activation assessed by TMS and electrical nerve stimulation decreased similarly in both sexes for both muscle groups. Indices of knee extensor peripheral fatigue and corticospinal excitability and inhibition changes were also similar for both sexes. Females exhibited less peripheral fatigue in the plantar flexors than males did after a 110-km ultra-trail-running race and males demonstrated a greater decrease in maximal force loss in the knee extensors. There were no differences in the magnitude of central fatigue for either muscle group or TMS-induced outcomes. The lower level of fatigue in the knee extensors and peripheral fatigue in the plantar flexors could partly explain the reports of better performance in females in extreme duration running races as race distance increases.

  12. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  13. Self-motion magnitude estimation during linear oscillation - Changes with head orientation and following fatigue

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Wood, D. L.; Gulledge, W. L.; Goodrich, R. L.

    1979-01-01

    Two types of experiments concerning the estimated magnitude of self-motion during exposure to linear oscillation on a parallel swing are described in this paper. Experiment I examined changes in magnitude estimation as a function of variation of the subject's head orientation, and Experiments II a, II b, and II c assessed changes in magnitude estimation performance following exposure to sustained, 'intense' linear oscillation (fatigue-inducting stimulation). The subjects' performance was summarized employing Stevens' power law R = k x S to the nth, where R is perceived self-motion magnitude, k is a constant, S is amplitude of linear oscillation, and n is an exponent). The results of Experiment I indicated that the exponents, n, for the magnitude estimation functions varied with head orientation and were greatest when the head was oriented 135 deg off the vertical. In Experiments II a-c, the magnitude estimation function exponents were increased following fatigue. Both types of experiments suggest ways in which the vestibular system's contribution to a spatial orientation perceptual system may vary. This variability may be a contributing factor to the development of pilot/astronaut disorientation and may also be implicated in the occurrence of motion sickness.

  14. Speech-Processing Fatigue in Children: Auditory Event-Related Potential and Behavioral Measures

    PubMed Central

    Gustafson, Samantha J.; Rentmeester, Lindsey; Hornsby, Benjamin W. Y.; Bess, Fred H.

    2017-01-01

    Purpose Fatigue related to speech processing is an understudied area that may have significant negative effects, especially in children who spend the majority of their school days listening to classroom instruction. Method This study examined the feasibility of using auditory P300 responses and behavioral indices (lapses of attention and self-report) to measure fatigue resulting from sustained listening demands in 27 children (M = 9.28 years). Results Consistent with predictions, increased lapses of attention, longer reaction times, reduced P300 amplitudes to infrequent target stimuli, and self-report of greater fatigue were observed after the completion of a series of demanding listening tasks compared with the baseline values. The event-related potential responses correlated with the behavioral measures of performance. Conclusion These findings suggest that neural and behavioral responses indexing attention and processing resources show promise as effective markers of fatigue in children. PMID:28595261

  15. Very High Cycle Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy DZ4

    PubMed Central

    Nie, Baohua; Zhao, Zihua; Liu, Shu; Chen, Dongchu; Ouyang, Yongzhong; Hu, Zhudong; Fan, Touwen; Sun, Haibo

    2018-01-01

    The effect of casting pores on the very high cycle fatigue (VHCF) behavior of a directionally solidified (DS) Ni-base superalloy DZ4 is investigated. Casting and hot isostatic pressing (HIP) specimens were subjected to very high cycle fatigue loading in an ambient atmosphere. The results demonstrated that the continuously descending S-N curves were exhibited for both the casting and HIP specimens. Due to the elimination of the casting pores, the HIP samples had better fatigue properties than the casting samples. The subsurface crack initiated from the casting pore in the casting specimens at low stress amplitudes, whereas fatigue crack initiated from crystallographic facet decohesion for the HIP specimens. When considering the casting pores as initial cracks, there exists a critical stress intensity threshold ranged from 1.1 to 1.3 MPam, below which fatigue cracks may not initiate from the casting pores. Furthermore, the effect of the casting pores on the fatigue limit is estimated based on a modified El Haddad model, which is in good agreement with the experimental results. Fatigue life for both the casting and HIP specimens is well predicted using the Fatigue Indicator Parameter (FIP) model. PMID:29320429

  16. Low cycle fatigue and creep fatigue interaction behavior of 9Cr-0.5Mo-1.8W-V-Nb heat-resistant steel at high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Zhang, Wei; Gong, Jianming; Wahab, Magd Abdel

    2018-07-01

    In this paper, Low Cycle Fatigue (LCF) and Creep-Fatigue Interaction (CFI) behavior of 9Cr-0.5Mo-1.8 W-V-Nb heat-resistant steel (ASME Grade P92 steel) at elevated temperature of 600 °C are investigated. Strain controlled LCF tests are conducted in fully reversed triangular waveform at different strain amplitudes ranging from 0.2% to 0.8%. CFI tests are conducted at 0.4% strain amplitude in trapezoid waveform with tensile hold time varying from 1 min to 60 min and compressive hold time varying from 1 min to 10 min. During LCF and CFI loadings, the evolution of cyclic stress, mean stress and stress relaxation behavior are investigated. It turns out that the softening behavior and lifetime degradation are dependent on strain amplitude, hold time and hold direction. In addition, the microstructure evolution and fracture behavior are characterized by optical, scanning and transmission electron microscope. The initial rapid softening behavior is attributed to the quick elimination of low angle boundaries, whereas no obvious microstructure alteration appears in the stable stage. Fracture behavior analysis reveals creep voids in long-term CFI tests facilitates the initiation and propagation of secondary cracks. The different responses of outer surface oxidation layer during cycling provides an explanation for severer damage of compressive hold and also accounts for the observed various fracture behavior of failed samples.

  17. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK).

    PubMed

    Simsiriwong, Jutima; Shrestha, Rakish; Shamsaei, Nima; Lugo, Marcos; Moser, Robert D

    2015-11-01

    In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a biomaterial for orthopedic, trauma, and spinal implants. To obtain the cyclic behavior of PEEK, uniaxial fully-reversed strain-controlled fatigue tests were conducted at ambient temperature and at 0.02 mm/mm to 0.04 mm/mm strain amplitudes. The microstructure of PEEK was obtained using the optical and the scanning electron microscope (SEM) to determine the microstructural inclusion properties in PEEK specimen such as inclusion size, type, and nearest neighbor distance. SEM analysis was also conducted on the fracture surface of fatigue specimens to observe microstructural inclusions that served as the crack incubation sites. Based on the experimental strain-life results and the observed microstructure of fatigue specimens, a microstructure-sensitive fatigue model was used to predict the fatigue life of PEEK that includes both crack incubation and small crack growth regimes. Results show that the employed model is applicable to capture microstructural effects on fatigue behavior of PEEK. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Physiological and psychosocial factors that predict HIV-related fatigue.

    PubMed

    Barroso, Julie; Hammill, Bradley G; Leserman, Jane; Salahuddin, Naima; Harmon, James L; Pence, Brian Wells

    2010-12-01

    Fatigue is one of the most common and debilitating symptoms experienced by HIV-infected people. We report the results of our longitudinal analysis of physiological and psychosocial factors that were thought to predict changes in HIV-related fatigue in 128 participants over a 1-year period, in an effort to sort out the complex interplay among a comprehensive set of physiological and psychosocial variables. Physiological measures included hepatic function (aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase, alkaline phosphatase, total bilirubin, hepatitis C status), thyroid function (thyroid stimulating hormone, thyroxine), HIV viral load, immunologic function (CD4, CD8, CD4/CD8 ratio, CD16, CD8CD38), gonadal function (testosterone, dehydroepiandrosterone), hematologic function (hemoglobin, hematocrit, serum erythropoietin), and cellular injury (lactic acid). Psychosocial measures included childhood and adult trauma, anxiety, depression, social support, stressful life events, and post-traumatic stress disorder (PTSD). Unemployment, not being on antiretroviral therapy, having fewer years since HIV diagnosis, more childhood trauma, more stressful life events, less social support, and more psychological distress (e.g., PTSD, anxiety and depression) put HIV-infected persons at risk for greater fatigue intensity and fatigue-related impairment in functioning during 1-year follow-up. Physiological variables did not predict greater fatigue. Stressful life events had both direct and indirect effects on fatigue.

  19. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    NASA Technical Reports Server (NTRS)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  20. Fatigue flaw growth and NDI evaluation for preventing through cracks in spacecraft tankage structures

    NASA Technical Reports Server (NTRS)

    Pettit, D. E.; Hoeppner, D. W.

    1972-01-01

    A program was conducted to determine the fatigue-crack propagation behavior of parent and welded 2219-T87 aluminum alloy sheet under controlled cyclic stress conditions in room temperature air and 300 F air. Specimens possessing an initial surface defect of controlled dimensions were cycled under constant load amplitude until the propagating fatigue crack penetrated the back surface of the specimen. A series of precracked specimens were prepared to determine optimum penetrant, X-ray, ultrasonic, and eddy current nondestructive inspection procedures.

  1. DISCOVERY OF FAST, LARGE-AMPLITUDE OPTICAL VARIABILITY OF V648 Car (=SS73-17)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angeloni, R.; Di Mille, F.; Ferreira Lopes, C. E.

    We report on the discovery of large-amplitude flickering from V648 Car (= SS73-17), a poorly studied object listed among the very few hard X-ray-emitting symbiotic stars. We performed millimagnitude precision optical photometry with the Swope Telescope at the Las Campanas Observatory, Chile, and found that V648 Car shows large U-band variability over timescales of minutes. To our knowledge, it exhibits some of the largest flickering of a symbiotic star ever reported. Our finding supports the hypothesis that symbiotic white dwarfs producing hard X-rays are predominantly powered by accretion, rather than quasi-steady nuclear burning, and have masses close to the Chandrasekharmore » limit. No significant periodicity is evident from the flickering light curve. The All Sky Automated Survey long-term V light curve suggests the presence of a tidally distorted giant accreting via Roche lobe overflow, and a binary period of {approx}520 days. On the basis of the outstanding physical properties of V648 Car as hinted at by its fast and long-term optical variability, as well as by its nature as a hard X-ray emitter, we therefore call for simultaneous follow-up observations in different bands, ideally combined with time-resolved optical spectroscopy.« less

  2. Attention Measures of Accuracy, Variability, and Fatigue Detect Early Response to Donepezil in Alzheimer's Disease: A Randomized, Double-blind, Placebo-Controlled Pilot Trial.

    PubMed

    Vila-Castelar, Clara; Ly, Jenny J; Kaplan, Lillian; Van Dyk, Kathleen; Berger, Jeffrey T; Macina, Lucy O; Stewart, Jennifer L; Foldi, Nancy S

    2018-04-09

    Donepezil is widely used to treat Alzheimer's disease (AD), but detecting early response remains challenging for clinicians. Acetylcholine is known to directly modulate attention, particularly under high cognitive conditions, but no studies to date test whether measures of attention under high load can detect early effects of donepezil. We hypothesized that load-dependent attention tasks are sensitive to short-term treatment effects of donepezil, while global and other domain-specific cognitive measures are not. This longitudinal, randomized, double-blind, placebo-controlled pilot trial (ClinicalTrials.gov Identifier: NCT03073876) evaluated 23 participants newly diagnosed with AD initiating de novo donepezil treatment (5 mg). After baseline assessment, participants were randomized into Drug (n = 12) or Placebo (n = 11) groups, and retested after approximately 6 weeks. Cognitive assessment included: (a) attention tasks (Foreperiod Effect, Attentional Blink, and Covert Orienting tasks) measuring processing speed, top-down accuracy, orienting, intra-individual variability, and fatigue; (b) global measures (Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental Status Examination, Dementia Rating Scale); and (c) domain-specific measures (memory, language, visuospatial, and executive function). The Drug but not the Placebo group showed benefits of treatment at high-load measures by preserving top-down accuracy, improving intra-individual variability, and averting fatigue. In contrast, other global or cognitive domain-specific measures could not detect treatment effects over the same treatment interval. The pilot-study suggests that attention measures targeting accuracy, variability, and fatigue under high-load conditions could be sensitive to short-term cholinergic treatment. Given the central role of acetylcholine in attentional function, load-dependent attentional measures may be valuable cognitive markers of early treatment response.

  3. Factors on working conditions and prolonged fatigue among physicians in Japan.

    PubMed

    Wada, Koji; Arimatsu, Mayuri; Yoshikawa, Toru; Oda, Susumu; Taniguchi, Hatsumi; Higashi, Toshiaki; Aizawa, Yoshiharu

    2008-10-01

    Fatigue among physicians could affect patients' safety and physicians' health. Fatigue could be caused by unfavorable working conditions. However, there have been no studies on the working conditions and fatigue among physicians in Japan. The objective of this study was to determine the factors on working conditions associated with prolonged fatigue among physicians in Japan. A questionnaire was mailed to physicians who graduated from one of the medical schools in Japan and who have had more than 3 years of experience in clinical practice. They were asked to assess 10 different aspects of their working conditions using a 5-point Likert scale. Prolonged fatigue was measured using the checklist of individual strength questionnaire. Multiple regression analysis was used to examine the multivariate relationship between the variables and prolonged fatigue. Data from 377 men and 101 women were analyzed in this study. For both male and female physicians, a harder workload was positively associated and better career satisfaction was negatively associated with prolonged fatigue. Prolonged fatigue was negatively associated with better relationships with other physicians and staff for male physicians and less personal time for female physicians. The adjusted variance in prolonged fatigue related to exposure variables was 26 and 29% in men and in women, respectively. The result of this study suggested that it is desirable to take these factors into consideration in the management of prolonged fatigue among physicians in Japan.

  4. Interannual variability of terrestrial NEP and its attributions to carbon uptake amplitude and period

    NASA Astrophysics Data System (ADS)

    Niu, S.

    2015-12-01

    Earth system exhibits strong interannual variability (IAV) in the global carbon cycle as reflected in the year-to-year anomalies of the atmospheric CO2 concentration. Although various analyses suggested that land ecosystems contribute mostly to the IAV of atmospheric CO2 concentration, processes leading to the IAV in the terrestrial carbon (C) cycle are far from clear and hinder our effort in predicting the IAV of global C cycle. Previous studies on IAV of global C cycle have focused on the regulation of climatic variables in tropical or semiarid areas, but generated inconsistent conclusions. Using long-term eddy-flux measurements of net ecosystem production (NEP), atmospheric CO2 inversion NEP, and the MODIS-derived gross primary production (GPP), we demonstrate that seasonal carbon uptake amplitude (CUA) and period (CUP) are two key processes that control the IAV in the terrestrial C cycle. The two processes together explain 78% of the variations in the IAV in eddy covariance NEP, 70% in global atmospheric inversed NEP, and 53% in the IAV of GPP. Moreover, the three lines of evidence consistently show that variability in CUA is much more important than that of CUP in determining the variation of NEP at most eddy-flux sites, and most grids of global NEP and GPP. Our results suggest that the maximum carbon uptake potential in the peak-growing season is a determinant process of global C cycle internnual variability and carbon uptake period may play less important role than previous expectations. This study uncovers the most parsimonious, proximate processes underlying the IAV in global C cycle of the Earth system. Future research is needed to identify how climate factors affect the IAV in terrestrial C cycle through their influence on CUA and CUP.

  5. Fatigue resistance of engine-driven rotary nickel-titanium endodontic instruments.

    PubMed

    Chaves Craveiro de Melo, Marta; Guiomar de Azevedo Bahia, Maria; Lopes Buono, Vicente Tadeu

    2002-11-01

    A comparative study of the fatigue resistance of engine-driven nickel-titanium endodontic instruments was performed, aiming to access the influence of the cutting flute design and of the size of the files that reach the working length in curved canal shaping. Geometrical conditions similar to those found in practice were used. Series 29 #5 ProFile, together with #6 and #8 Quantec instruments, were tested in artificial canals with a 45-degree angle of curvature and 5-mm radius of curvature. It was observed that the size of the instrument, which determines the maximum strain amplitude during cyclic deformation, is the most important factor controlling fatigue resistance. The effect of heat sterilization on the fatigue resistance of the instruments was also examined. The results obtained indicate that the application of five sterilization procedures in dry heat increases the average number of cycles to failure of unused instruments by approximately 70%.

  6. Low-cycle fatigue behavior of NIMONIC PE16 at room temperature

    NASA Astrophysics Data System (ADS)

    Singh, V.; Sundararaman, M.; Chen, W.; Wahi, R. P.

    1991-02-01

    The fatigue behavior of NIMONIC PE16 has been investigated at room temperature as a function of γ' particle size (from 10 to 30 nm) and total strain amplitude (0.44 to 2.60 pct). All specimens initially harden and then soften on further deformation. The degrees of hardening and softening show a marked variation with γ' particle size and strain amplitude. Cyclic stress-strain and Coffin-Manson plots show a bilinear behavior with a change of slope at Δɛp/2, the plastic strain amplitude, of about 0.3 pct. These results are interpreted in terms of microstructural observations, namely, the number of slip systems activated and mutual interaction of dislocations on these systems, as well as their interaction with γ' particles.

  7. Signal identification in acoustic emission monitoring of fatigue cracking in steel bridges

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo P.; Ziehl, Paul; Pollock, Adrian

    2012-04-01

    Signal identification including noise filtering and reduction of acquired signals is needed to achieve efficient and accurate data interpretation for remote acoustic emission (AE) monitoring of in-service steel bridges. Noise filtering may ensure that genuine hits from crack growth are involved in the estimation of fatigue damage and remaining fatigue life. Reduction of the data quantity is desirable for the sensing system to conserve energy in the data transmission and processing procedures. Identification and categorization of acquired signals is a promising approach to effectively filter and reduce AE data in the application of bridge monitoring. In this study an investigation on waveform features (time domain and frequency domain) and relevant filters is carried out using the results from AE monitored fatigue tests. It is verified that duration-amplitude (D-A) filters are effective to discriminate against noise for results of steel fatigue tests. The study is helpful to find an appropriate AE data filtering protocol for field implementations.

  8. A population-based study of associations between current posttraumatic stress symptoms and current fatigue.

    PubMed

    Lerdal, Anners; Lee, Kathryn A; Rokne, Berit; Knudsen, Øistein; Wahl, Astrid K; Dahl, Alv A

    2010-10-01

    This study explores current experience with posttraumatic stress disorder (PTSD) symptoms and other variables (sociodemographic, mental distress, somatic morbidity, self-rated health, and quality of life [QoL]) in relation to fatigue. A representative sample of the Norwegian population (N = 3,944) was invited to participate in a mailed survey, and 1,857 (47%) returned valid responses on the questionnaire that included the Fatigue Severity Scale and the Posttraumatic Symptom Scale-10. Posttraumatic stress disorder symptoms showed a strong association with fatigue in univariate (β = .41) and multivariate analyses (β = .33). Associations between psychosocial health variables, QoL, and fatigue were confirmed. However, PTSD symptoms showed the strongest association with fatigue in the analyses. Findings need to be replicated in other population samples and in clinical samples with PTSD and fatigue.

  9. Rolling-Element Fatigue Testing and Data Analysis - A Tutorial

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.

    2011-01-01

    In order to rank bearing materials, lubricants and other design variables using rolling-element bench type fatigue testing of bearing components and full-scale rolling-element bearing tests, the investigator needs to be cognizant of the variables that affect rolling-element fatigue life and be able to maintain and control them within an acceptable experimental tolerance. Once these variables are controlled, the number of tests and the test conditions must be specified to assure reasonable statistical certainty of the final results. There is a reasonable correlation between the results from elemental test rigs with those results obtained with full-scale bearings. Using the statistical methods of W. Weibull and L. Johnson, the minimum number of tests required can be determined. This paper brings together and discusses the technical aspects of rolling-element fatigue testing and data analysis as well as making recommendations to assure quality and reliable testing of rolling-element specimens and full-scale rolling-element bearings.

  10. Reliability improvement of wire bonds subjected to fatigue stresses.

    NASA Technical Reports Server (NTRS)

    Ravi, K. V.; Philofsky, E. M.

    1972-01-01

    The failure of wire bonds due to repeated flexure when semiconductor devices are operated in an on-off mode has been investigated. An accelerated fatigue testing apparatus was constructed and the major fatigue variables, aluminum alloy composition, and bonding mechanism, were tested. The data showed Al-1% Mg wires to exhibit superior fatigue characteristics compared to Al-1% Cu or Al-1% Si and ultrasonic bonding to be better than thermocompression bonding for fatigue resistance. Based on these results highly reliable devices were fabricated using Al-1% Mg wire with ultrasonic bonding which withstood 120,000 power cycles with no failures.

  11. Wilson loops and QCD/string scattering amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makeenko, Yuri; Olesen, Poul; Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen O

    2009-07-15

    We generalize modern ideas about the duality between Wilson loops and scattering amplitudes in N=4 super Yang-Mills theory to large N QCD by deriving a general relation between QCD meson scattering amplitudes and Wilson loops. We then investigate properties of the open-string disk amplitude integrated over reparametrizations. When the Wilson-loop is approximated by the area behavior, we find that the QCD scattering amplitude is a convolution of the standard Koba-Nielsen integrand and a kernel. As usual poles originate from the first factor, whereas no (momentum-dependent) poles can arise from the kernel. We show that the kernel becomes a constant whenmore » the number of external particles becomes large. The usual Veneziano amplitude then emerges in the kinematical regime, where the Wilson loop can be reliably approximated by the area behavior. In this case, we obtain a direct duality between Wilson loops and scattering amplitudes when spatial variables and momenta are interchanged, in analogy with the N=4 super Yang-Mills theory case.« less

  12. Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR

    NASA Astrophysics Data System (ADS)

    Metz, G.; Wu, X. L.; Smith, S. O.

    The Hartmann-Hahn matching profile in CP-MAS NMR shows a strong mismatch dependence if the MAS frequency is on the order of the dipolar couplings in the sample. Under these conditions, the profile breaks down into a series of narrow matching bands separated by the spinning speed, and it becomes difficult to establish and maintain an efficient matching condition. Variable-amplitude CP (VACP), as introduced previously (Peersen et al., J. Magn. Reson. A104, 334, 1993), has been proven to be effective for restoring flat profiles at high spinning speeds. Here, a refined implementation of VACP using a ramped-amplitude cross-polarization sequence (RAMP-CP) is described. The order of the amplitude modulation is shown to be of importance for the cross-polarization process. The new pulse sequence with a linear amplitude ramp is not only easier to set up but also improves the performance of the variable-amplitude experiment in that it produces flat profiles over a wider range of matching conditions even with short total contact times. An increase in signal intensity is obtained compared to both con ventional CP and the originally proposed VACP sequence.

  13. The isothermal fatigue behavior of a unidirectional SiC/Ti composite and the Ti alloy matrix

    NASA Technical Reports Server (NTRS)

    Gayda, John, Jr.; Gabb, Timothy P.; Freed, Alan D.

    1989-01-01

    The high temperature fatigue behavior of a metal matrix composite (MMC) consisting of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced by 33 vol percent of continuous unidirectional SiC fibers was experimentally and analytically evaluated. Isothermal MMC fatigue tests with constant amplitude loading parallel to the fiber direction were performed at 300 and 550 C. Comparative fatigue tests of the Ti-15-3 matrix alloy were also conducted. Composite fatigue behavior and the in-situ stress state of the fiber and matrix were analyzed with a micromechanical model, the Concentric Cylinder Model (CCM). The cyclic stress-strain response of the composite was stable at 300 C. However, an increase in cyclic mean strain foreshortened MMC fatigue life at high strain ranges at 550 C. Fatigue tests of the matrix alloy and CCM analyses indicated this response was associated with stress relaxation of the matrix in the composite.

  14. Mental Fatigue: Impairment of Technical Performance in Small-Sided Soccer Games.

    PubMed

    Badin, Oliver O; Smith, Mitchell R; Conte, Daniele; Coutts, Aaron J

    2016-11-01

    To assess the effects of mental fatigue on physical and technical performance in small-sided soccer games. Twenty soccer players (age 17.8 ± 1.0 y, height 179 ± 5 cm, body mass 72.4 ± 6.8 kg, playing experience 8.3 ± 1.4 y) from an Australian National Premier League soccer club volunteered to participate in this randomized crossover investigation. Participants played 15-min 5-vs-5 small-sided games (SSGs) without goalkeepers on 2 occasions separated by 1 wk. Before the SSG, 1 team watched a 30-min emotionally neutral documentary (control), while the other performed 30 min of a computer-based Stroop task (mental fatigue). Subjective ratings of mental and physical fatigue were recorded before and after treatment and after the SSG. Motivation was assessed before treatment and SSG; mental effort was assessed after treatment and SSG. Player activity profiles and heart rate (HR) were measured throughout the SSG, whereas ratings of perceived exertion (RPEs) were recorded before the SSG and immediately after each half. Video recordings of the SSG allowed for notational analysis of technical variables. Subjective ratings of mental fatigue and effort were higher after the Stroop task, whereas motivation for the upcoming SSG was similar between conditions. HR during the SSG was possibly higher in the control condition, whereas RPE was likely higher in the mental-fatigue condition. Mental fatigue had an unclear effect on most physical-performance variables but impaired most technical-performance variables. Mental fatigue impairs technical but not physical performance in small-sided soccer games.

  15. Generalized group field theories and quantum gravity transition amplitudes

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2006-03-01

    We construct a generalized formalism for group field theories, in which the domain of the field is extended to include additional proper time variables, as well as their conjugate mass variables. This formalism allows for different types of quantum gravity transition amplitudes in perturbative expansion, and we show how both causal spin foam models and the usual a-causal ones can be derived from it, within a sum over triangulations of all topologies. We also highlight the relation of the so-derived causal transition amplitudes with simplicial gravity actions.

  16. Fatigue in the general population of Colombia - normative values for the multidimensional fatigue inventory MFI-20.

    PubMed

    Hinz, Andreas; Barboza, Carolyn Finck; Barradas, Susana; Körner, Annett; Beierlein, Volker; Singer, Susanne

    2013-01-01

    Fatigue is a frequent symptom in cancer patients. In Europe and Northern America fatigue questionnaires were developed and tested, but their generalizability to other cultural contexts is largely unknown. The aim of this study is to provide normative values for the Multidimensional Fatigue Inventory (MFI-20) based on a representative sample of the general population in Colombia and to test psychometric properties. 1,500 individuals completed a questionnaire that contained the MFI-20, as well as other questionnaires, and questions on sociodemographic variables and chronic diseases. The mean values of the scales were marginally higher than those for 2 European samples. The mean value of the total score was 44.3 ± 14.1. Women were affected by fatigue more than men, and there was an almost linear age trend, with higher mean scores for older subjects. People with chronic diseases were affected by fatigue more than people without chronic conditions. The best psychometric properties were obtained for the total scale (sum score) of the MFI-20. The normative values presented here can help us to assess the individual burden of fatigue in a Latin American context. Psychometric properties of the MFI-20 in Colombia are similar to those obtained in Europe. © 2013 S. Karger GmbH, Freiburg.

  17. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  18. Mental Fatigue Impairs Intermittent Running Performance.

    PubMed

    Smith, Mitchell R; Marcora, Samuele M; Coutts, Aaron J

    2015-08-01

    The purpose of the study was to investigate the effects of mental fatigue on intermittent running performance. Ten male intermittent team sports players performed two identical self-paced, intermittent running protocols. The two trials were separated by 7 d and preceded, in a randomized-counterbalanced order, by 90 min of either emotionally neutral documentaries (control) or the AX-continuous performance test (AX-CPT; mental fatigue). Subjective ratings of fatigue and vigor were measured before and after these treatments, and motivation was recorded before the intermittent running protocol. Velocity, heart rate, oxygen consumption, blood glucose and lactate concentrations, and ratings of perceived exertion (RPE) were measured throughout the 45-min intermittent running protocol. Session RPE was recorded 30 min after the intermittent running protocol. Subjective ratings of fatigue were higher after the AX-CPT (P = 0.005). This mental fatigue significantly reduced velocity at low intensities (1.28 ± 0.18 m·s vs 1.31 ± 0.17 m·s; P = 0.037), whereas high-intensity running and peak velocities were not significantly affected. Running velocity at all intensities significantly declined over time in both conditions (P < 0.001). Oxygen consumption was significantly lower in the mental fatigue condition (P = 0.007). Other physiological variables, vigor and motivation, were not significantly affected. Ratings of perceived exertion during the intermittent running protocol were not significantly different between conditions despite lower overall velocity in the mental fatigue condition. Session RPE was significantly higher in the mental fatigue condition (P = 0.013). Mental fatigue impairs intermittent running performance. This negative effect of mental fatigue seems to be mediated by higher perception of effort.

  19. 3D-FE Modeling of 316 SS under Strain-Controlled Fatigue Loading and CFD Simulation of PWR Surge Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Barua, Bipul; Listwan, Joseph

    In financial year 2017, we are focusing on developing a mechanistic fatigue model of surge line pipes for pressurized water reactors (PWRs). To that end, we plan to perform the following tasks: (1) conduct stress- and strain-controlled fatigue testing of surge-line base metal such as 316 stainless steel (SS) under constant, variable, and random fatigue loading, (2) develop cyclic plasticity material models of 316 SS, (3) develop one-dimensional (1D) analytical or closed-form model to validate the material models and to understand the mechanics associated with 316 SS cyclic hardening and/or softening, (4) develop three-dimensional (3D) finite element (FE) models withmore » implementation of evolutionary cyclic plasticity, and (5) develop computational fluid dynamics (CFD) model for thermal stratification, thermal-mechanical stress, and fatigue of example reactor components, such as a PWR surge line under plant heat-up, cool-down, and normal operation with/without grid-load-following. This semi-annual progress report presents the work completed on the above tasks for a 316 SS laboratory-scale specimen subjected to strain-controlled cyclic loading with constant, variable, and random amplitude. This is the first time that the accurate 3D-FE modeling of the specimen for its entire fatigue life, including the hardening and softening behavior, has been achieved. We anticipate that this work will pave the way for the development of a fully mechanistic-computer model that can be used for fatigue evaluation of safety-critical metallic components, which are traditionally evaluated by heavy reliance on time-consuming and costly test-based approaches. This basic research will not only help the nuclear reactor industry for fatigue evaluation of reactor components in a cost effective and less time-consuming way, but will also help other safety-related industries, such as aerospace, which is heavily dependent on test-based approaches, where a single full-scale fatigue test can

  20. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  1. Usefulness of multiple dimensions of fatigue in fibromyalgia.

    PubMed

    Ericsson, Anna; Bremell, Tomas; Mannerkorpi, Kaisa

    2013-07-01

    To explore in which contexts ratings of multiple dimensions of fatigue are useful in fibromyalgia, and to compare multidimensional fatigue between women with fibromyalgia and healthy women. A cross-sectional study. The Multidimensional Fatigue Inventory (MFI-20), comprising 5 subscales of fatigue, was compared with the 1-dimensional subscale of fatigue from the Fibromyalgia Impact Questionnaire (FIQ) in 133 women with fibromyalgia (mean age 46 years; standard deviation 8.6), in association with socio-demographic and health-related aspects and analyses of explanatory variables of severe fatigue. The patients were also compared with 158 healthy women (mean age 45 years; standard deviation 9.1) for scores on MFI-20 and FIQ fatigue. The MFI-20 was associated with employment, physical activity and walking capacity (rs = -0.27 to -0.36), while FIQ fatigue was not. MFI-20 and FIQ fatigue were equally associated with pain, sleep, depression and anxiety (rs = 0.32-0.63). Regression analyses showed that the MFI-20 increased the explained variance (R2) for the models of pain intensity, sleep, depression and anxiety, by between 7 and 29 percentage points, compared with if FIQ fatigue alone was included in the models. Women with fibromyalgia rated their fatigue higher than healthy women for all subscales of the MFI-20 and the FIQ fatigue (p < 0.001). Dimensions of fatigue, assessed by the MFI-20, appear to be valuable in studies of employment, pain intensity, sleep, distress and physical function in women with fibromyalgia. The patients reported higher levels on all fatigue dimensions in comparison with healthy women.

  2. Physiological and Psychosocial Factors that Predict HIV-Related Fatigue

    PubMed Central

    Hammill, Bradley G.; Leserman, Jane; Salahuddin, Naima; Harmon, James L.; Pence, Brian Wells

    2010-01-01

    Fatigue is one of the most common and debilitating symptoms experienced by HIV-infected people. We report the results of our longitudinal analysis of physiological and psychosocial factors that were thought to predict changes in HIV-related fatigue in 128 participants over a 1-year period, in an effort to sort out the complex interplay among a comprehensive set of physiological and psychosocial variables. Physiological measures included hepatic function (aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase, alkaline phosphatase, total bilirubin, hepatitis C status), thyroid function (thyroid stimulating hormone, thyroxine), HIV viral load, immunologic function (CD4, CD8, CD4/CD8 ratio, CD16, CD8CD38), gonadal function (testosterone, dehydroepiandrosterone), hematologic function (hemoglobin, hematocrit, serum erythropoietin), and cellular injury (lactic acid). Psychosocial measures included childhood and adult trauma, anxiety, depression, social support, stressful life events, and post-traumatic stress disorder (PTSD). Unemployment, not being on antiretroviral therapy, having fewer years since HIV diagnosis, more childhood trauma, more stressful life events, less social support, and more psychological distress (e.g., PTSD, anxiety and depression) put HIV-infected persons at risk for greater fatigue intensity and fatigue-related impairment in functioning during 1-year follow-up. Physiological variables did not predict greater fatigue. Stressful life events had both direct and indirect effects on fatigue. PMID:20352317

  3. Variability of maximum systolic amplitude of ΔZ/Δt curve in pregnancy. Perennial observations

    NASA Astrophysics Data System (ADS)

    Ilyin, I.; Karpov, A.; Korotkova, M.

    2010-04-01

    Maximum systolic amplitude is quite an important component of the impedance cardiogram ΔZ/Δt curve. Its values make it possible to calculate many hemodynamic indices. Therefore it is necessary to keep informed about monthly, annual and perennial maximum systolic amplitude trend. We can produce the measuring data of the maximum systolic amplitude for a fifteen-year period (from 1994 to 2009). The impedance cardiograms were obtained with the help of an electric impedance analyzer "RA-5" (1 mA, 70 kHz) with disk ECG electrodes. The data analyzed were taken from the pregnant women with non-complicated pregnancy (n=5709). We have analyzed the average monthly and annual changes of the maximum systolic amplitude ΔZ/Δt curve. It allowed us to reveal the six-year periodicity of the maximum systolic amplitude changes. There were discovered statistically significant peak values difference of the amplitude (p>0.001). The data obtained should be taken into consideration when using impedance cardiography in clinical practice. The article is supplied with tables and diagrams.

  4. Experimental study of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannikov, Mikhail, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Oborin, Vladimir, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Naimark, Oleg, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru

    Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and SEM to improve methods of monitoring of damage accumulation during fatigue test and to verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue regime using the Luong method [1] by “in-situ” infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both high cycle fatigue andmore » gigacycle fatigue regimes. Fracture surface analysis for plane and cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometer-profiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ∼300 μm has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics.« less

  5. Modelling and Laboratory Studies on the Adhesion Fatigue Performance for Thin-Film Asphalt and Aggregate System

    PubMed Central

    Wang, Dongsheng; Feng, Decheng

    2014-01-01

    Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system. PMID:25054187

  6. Modelling and laboratory studies on the adhesion fatigue performance for thin-film asphalt and aggregate system.

    PubMed

    Wang, Dongsheng; Yi, Junyan; Feng, Decheng

    2014-01-01

    Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system.

  7. Understanding How Kurtosis Is Transferred from Input Acceleration to Stress Response and Its Influence on Fatigue Llife

    NASA Technical Reports Server (NTRS)

    Kihm, Frederic; Rizzi, Stephen A.; Ferguson, Neil S.; Halfpenny, Andrew

    2013-01-01

    High cycle fatigue of metals typically occurs through long term exposure to time varying loads which, although modest in amplitude, give rise to microscopic cracks that can ultimately propagate to failure. The fatigue life of a component is primarily dependent on the stress amplitude response at critical failure locations. For most vibration tests, it is common to assume a Gaussian distribution of both the input acceleration and stress response. In real life, however, it is common to experience non-Gaussian acceleration input, and this can cause the response to be non-Gaussian. Examples of non-Gaussian loads include road irregularities such as potholes in the automotive world or turbulent boundary layer pressure fluctuations for the aerospace sector or more generally wind, wave or high amplitude acoustic loads. The paper first reviews some of the methods used to generate non-Gaussian excitation signals with a given power spectral density and kurtosis. The kurtosis of the response is examined once the signal is passed through a linear time invariant system. Finally an algorithm is presented that determines the output kurtosis based upon the input kurtosis, the input power spectral density and the frequency response function of the system. The algorithm is validated using numerical simulations. Direct applications of these results include improved fatigue life estimations and a method to accelerate shaker tests by generating high kurtosis, non-Gaussian drive signals.

  8. Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.

    2016-03-01

    A comprehensive assessment of fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy, manufactured using various powder-based processing approaches to-date, is performed in this work. The focus is on PM processes that use either blended element (BE) or pre-alloyed (PA) powder as feedstock. Porosity and the microstructure condition have been found to be the two most dominant material variables that control the fatigue strength. The evaluation reveals that the fatigue performance of PM Ti-6Al-4V, in the as-sintered state, is far lower than that in the wrought condition. This is largely caused by residual porosity, even if it is present in small amounts, or, by the coarse lamellar colony microstructure. The fatigue strength is significantly improved by the closure of pores, and it approaches the levels of wrought Ti-6Al-4V alloys, after hot-isostatic-pressing (HIPing). Further thermo-mechanical and heat treatments lead to additional increases in fatigue strength-in one case, a high fatigue strength level, exceeding that of the mill-annealed condition, was achieved. The work identifies the powder, process and microstructure improvements that are necessary for achieving high fatigue strength in powder metallurgical Ti-6Al-4V alloys in order for them to effectively compete with wrought forms. The present findings, gathered from the traditional titanium powder metallurgy, are also directly applicable to additively manufactured titanium, because of the similarities in pores, defects, and microstructures between the two manufacturing processes.

  9. A caffeine-maltodextrin mouth rinse counters mental fatigue.

    PubMed

    Van Cutsem, Jeroen; De Pauw, Kevin; Marcora, Samuele; Meeusen, Romain; Roelands, Bart

    2018-04-01

    Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity that has negative implications on many aspects in daily life. Caffeine and carbohydrate ingestion have been shown to be able to reduce these negative effects of mental fatigue. Intake of these substances might however be less desirable in some situations (e.g., restricted caloric intake, Ramadan). Rinsing caffeine or glucose within the mouth has already been shown to improve exercise performance. Therefore, we sought to evaluate the effect of frequent caffeine-maltodextrin (CAF-MALT) mouth rinsing on mental fatigue induced by a prolonged cognitive task. Ten males (age 23 ± 2 years, physical activity 7.3 ± 4.3 h/week, low CAF users) performed two trials. Participants first completed a Flanker task (3 min), then performed a 90-min mentally fatiguing task (Stroop task), followed by another Flanker task. Before the start and after each 12.5% of the Stroop task (eight blocks), subjects received a CAF-MALT mouth rinse (MR: 0.3 g/25 ml CAF: 1.6g/25 ml MALT) or placebo (PLAC: 25 ml artificial saliva). Self-reported mental fatigue was lower in MR (p = 0.017) compared to PLAC. Normalized accuracy (accuracy first block = 100%) was higher in the last block of the Stroop in MR (p = 0.032) compared to PLAC. P2 amplitude in the dorsolateral prefrontal cortex (DLPFC) decreased over time only in PLAC (p = 0.017). Frequent mouth rinsing during a prolonged and demanding cognitive task reduces mental fatigue compared to mouth rinsing with artificial saliva.

  10. Mental versus physical fatigue after subarachnoid hemorrhage: differential associations with outcome.

    PubMed

    Buunk, Anne M; Groen, Rob J M; Wijbenga, Rianne A; Ziengs, Aaltje L; Metzemaekers, Jan D M; van Dijk, J Marc C; Spikman, Jacoba M

    2018-06-20

    Fatigue is a major consequence of subarachnoid hemorrhage (SAH), but the specific characteristics are unclear. Our objective was to investigate the nature of post-SAH fatigue (mental or physical) and to determine the relationship with functional outcome in the chronic stage. Also, the possible influence of mood disorders and acute SAH-related factors (SAH type and external cerebrospinal fluid (CSF) drainage) on the presence of fatigue was investigated. Patients with an aneurysmal SAH (aSAH) or angiographically negative SAH (anSAH) were assessed 3 to 10 years post-SAH (N = 221). Questionnaires were used to investigate mental and physical fatigue and mood. Functional outcome was examined with the Glasgow Outcome Scale Extended (GOSE). Between-group comparisons and binary logistic regression analysis were performed. Frequencies of mental and physical fatigue were 48.4% and 38.5% respectively, with prevalence of mental fatigue being significantly higher. A two-way ANOVA with SAH type and external CSF drainage as independent variables and mental fatigue as dependent variable, showed a significant main effect of CSF drainage only (p < 0.001). Only mental fatigue explained a significant part of the variance in long-term functional outcome (Model χ 2 = 52.99, p < 0.001; Nagelkerke R² = 0.32). Mental fatigue after SAH is a serious burden to the patient and is associated with impaired long-term functional outcome. Distinguishing different aspects of fatigue is relevant as mental post-SAH fatigue might be a target for treatment aimed to improve long-term outcome. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Cancer-related fatigue--mechanisms, risk factors, and treatments.

    PubMed

    Bower, Julienne E

    2014-10-01

    Fatigue is one of the most common adverse effects of cancer that might persist for years after treatment completion in otherwise healthy survivors. Cancer-related fatigue causes disruption in all aspects of quality of life and might be a risk factor of reduced survival. The prevalence and course of fatigue in patients with cancer have been well characterized and there is growing understanding of the underlying biological mechanisms. Inflammation seems to have a key role in fatigue before, during, and after cancer-treatment. However, there is a considerable variability in the presentation of cancer-related fatigue, much of which is not explained by disease-related or treatment-related characteristics, suggesting that host factors might be important in the development and persistence of this symptom. Indeed, longitudinal studies have identified genetic, biological, psychosocial, and behavioural risk factors associated with cancer-related fatigue. Although no current gold-standard treatment for fatigue is available, a variety of intervention approaches have shown beneficial effects in randomized controlled trials, including physical activity, psychosocial, mind-body, and pharmacological treatments. This Review describes the mechanisms, risk factors, and possible interventions for cancer-related fatigue, focusing on recent longitudinal studies and randomized trials that have targeted fatigued patients.

  12. Influence of subsolvus thermomechanical processing on the low-cycle fatigue properties of haynes 230 alloy

    NASA Astrophysics Data System (ADS)

    Vecchio, Kenneth S.; Fitzpatrick, Michael D.; Klarstrom, Dwaine

    1995-03-01

    Strain-controlled low-cycle fatigue tests have been conducted in air at elevated temperature to determine the influence of subsolvus thermomechanical processing on the low-cycle fatigue (LCF) behavior of HAYNES 230 alloy. A series of tests at various strain ranges was conducted on material experimentally processed at 1121 °C, which is below the M23C6 carbide solvus temperature, and on material fully solution annealed at 1232 °C. A comparative strain-life analysis was performed on the LCF results, and the cyclic hardening/softening characteristics were examined. At 760 °C and 871 °C, the fatigue life of the experimental 230/1121 material was improved relative to the standard 230/1232 material up to a factor of 3. The fatigue life advantage of the experimental material was related primarily to a lower plastic (inelastic) strain amplitude response for a given imposed total strain range. It appears the increase in monotonic flow stress exhibited by the finer grain size experimental material has been translated into an increase in cyclic flow stress at the 760 °C and 871 °C test temperatures. Both materials exhibited entirely transgranular fatigue crack initiation and propagation modes at these temperatures. The LCF performance of the experimental material in tests performed at 982 °C was improved relative to the standard material up to a factor as high as 2. The life advantage of the 230/1121 material occurred despite having a larger plastic strain amplitude than the standard 230/1232 material for a given total strain range. Though not fully understood at present, it is suspected that this behavior is related to the deleterious influence of grain boundaries in the fatigue crack initiations of the standard processed material relative to the experimental material, and ultimately to differences in carbide morphology as a result of thermomechanical processing.

  13. External anal sphincter fatigue is not improved by N-acetylcysteine in an animal model.

    PubMed

    Healy, C F; McMorrow, C; O'Herlihy, C; O'Connell, P R; Jones, J F X

    2008-06-01

    Oxidative stress is associated with skeletal muscle fatigue. This study tests the hypotheses that N-acetylcysteine (NAC) reduces fatigue and accelerates recovery of the rat external anal sphincter (EAS). Fifteen female Wistar rats were killed humanely. The EAS was mounted as a ring preparation and electrically stimulated with 50 Hz trains of 200 ms in duration every 4 s for three and a half minutes. Three groups were analysed: a control group (n = 5), a group pretreated with NAC (10(-4) mol L(-1); n = 5) and a group pretreated with NAC (10(-3) mol L(-1); n = 5). A novel fatigue index was formulated and was compared to a conventional method of expressing fatigue. There was no significant difference at concentrations of NAC (10(-4) mol L(-1); P > 0.05). At high concentrations of NAC (10(-3) mol L(-1)) there was a significant depression in peak twitch amplitude before fatigue (P = 0.04). N-acetylcysteine in both concentrations used, did not alter fatigue or recovery of the rat EAS. There was a significant positive correlation between the two methods of expressing fatigue but the conventional method produced a higher fatigue index (22.4% on average). N-acetylcysteine does not ameliorate fatigue or accelerate recovery of the EAS and may not be a useful medical therapy for faecal incontinence.

  14. Influence of Austenite Stability on Steel Low Cycle Fatigue Response

    NASA Astrophysics Data System (ADS)

    Lehnhoff, G. R.; Findley, K. O.

    Austenitic steels were subjected to tensile and total strain controlled, fully reversed axial low cycle fatigue (LCF) testing to determine the influence of stacking fault energy on austenite stability, or resistance to strain induced martensitic transformation during tensile and fatigue deformation. Expected differences in stacking fault energy were achieved by modifying alloys with different amounts of silicon and aluminum. Al alloying was found to promote martensite formation during both tensile and LCF loading, while Si was found to stabilize austenite. Martensite formation increases tensile work hardening rates, though Si additions also increase the work hardening rate without martensite transformation. Similarly, secondary cyclic strain hardening during LCF is attributed to strain induced martensite formation, but Si alloying resulted in less secondary cyclic strain hardening. The amount of secondary cyclic hardening scales linearly with martensite fraction and depends only on the martensite fraction achieved and not on the martensite (i.e. parent austenite) chemistry. Martensite formation was detrimental to LCF lives at all strain amplitudes tested, although the total amount of martensitic transformation during LCF did not always monotonically increase with strain amplitude nor correlate to the amount of tensile transformation.

  15. Fatigue after stroke: frequency and effect on daily life.

    PubMed

    Crosby, Gail A; Munshi, Sunil; Karat, Aaron Sanjit; Worthington, Esme; Lincoln, Nadina B

    2012-01-01

    An audit was conducted to assess the frequency of fatigue after stroke, to determine the impact on daily life, and whether it was discussed with clinicians. Patients were recruited from Nottingham University Hospitals NHS Trust stroke service. Patients were interviewed about their fatigue, and the Fatigue Severity Subscale (FSS-FAI), Brief Assessment Schedule for Depression Cards (BASDEC), Barthel Index and Nottingham Extended Activities of Daily Living (EADL) Scale were administered. 64 patients were recruited, with a mean age 73.5 years (SD 14.0, range 37-94 years), 37 (58%) as in-patients and 27 (42%) as outpatients. There were 41 (64%) who reported significant levels of fatigue and 31 (48%) with significant fatigue on the Fatigue Severity Scale. Demographic and clinical variables were not significantly related to fatigue (p > 0.05), apart from gender, with women reporting significantly more fatigue than men (p = 0.006). There was a moderate correlation between the BASDEC and FSS (r(s) = 0.41, p = 0.002). Of the 41 participants who reported fatigue, 33 (81%) had not discussed this with their clinician. Fatigue was a common problem after stroke. There was a lack of awareness in both patients and clinicians and little advice being given to patients with fatigue.

  16. Intensity, Chronicity, Circumstances, and Consequences of HIV-Related Fatigue: A Longitudinal Study

    PubMed Central

    Barroso, Julie; Harmon, James L.; Madison, Jane Leserman; Pence, Brian Wells

    2013-01-01

    HIV-related fatigue remains the most troubling complaint of seropositive people. Researchers often use tools to measure fatigue that were developed for other patient populations; thus, the measurement of fatigue specific to HIV is needed. This article describes results from the HIV-Related Fatigue Scale (HRFS) including: (a) the variability in intensity and chronicity of HIV-related fatigue, (b) the circumstances surrounding changes in fatigue, (c) the impact of fatigue on activities of daily living (ADLs), and (d) the consequences of HIV-related fatigue. We collected data every 3 months over a 3-year period from 128 people. HIV-related fatigue was chronic and did not appear to remit spontaneously; those who were the most fatigued at the beginning of the study remained the most fatigued over 3 years. Fatigue interfered more with instrumental activities of daily living than basic ADLs; it also interfered with work, family, and social life. Stress and depression increased fatigue. PMID:23814175

  17. The influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination during weightlifting.

    PubMed

    Hu, Boyi; Ning, Xiaopeng

    2015-01-01

    Lumbar muscle fatigue is a potential risk factor for the development of low back pain. In this study, we investigated the influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination patterns during weightlifting. Each of the 15 male subjects performed five repetitions of weightlifting tasks both before and after a lumbar extensor muscle fatiguing protocol. Lumbar muscle electromyography was collected to assess fatigue. Trunk kinematics was recorded to calculate lumbar-pelvic continuous relative phase (CRP) and CRP variability. Results showed that fatigue significantly reduced the average lumbar-pelvic CRP value (from 0.33 to 0.29 rad) during weightlifting. The average CRP variability reduced from 0.17 to 0.15 rad, yet this change ws statistically not significant. Further analyses also discovered elevated spinal loading during weightlifting after the development of lumbar extensor muscle fatigue. Our results suggest that frequently experienced lumbar extensor muscle fatigue should be avoided in an occupational environment. Lumbar extensor muscle fatigue generates more in-phase lumbar-pelvic coordination patterns and elevated spinal loading during lifting. Such increase in spinal loading may indicate higher risk of back injury. Our results suggest that frequently experienced lumbar muscle fatigue should be avoided to reduce the risk of LBP.

  18. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    PubMed Central

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (p<0.01). People with fibromyalgia performed equivalently on measures of physical performance and cognitive performance on the physical and cognitive fatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  19. Demographic factors, fatigue, and driving accidents: An examination of the published literature.

    PubMed

    Di Milia, Lee; Smolensky, Michael H; Costa, Giovanni; Howarth, Heidi D; Ohayon, Maurice M; Philip, Pierre

    2011-03-01

    This article reviews the literature pertaining to the association between demographic variables (e.g., age, sex, race, socio-economic status) with fatigue, and when feasible, accident risk. It also explores their potential influence and interaction with some working arrangements, commute time, personality characteristics, and circadian chronotype. Fatigue has been implicated in a range of impairments that can have detrimental effects on individuals, and it is differentially associated with conventional demographic variables. However, several major methodological limitations prevent clear conclusions. First, there is absence of a shared definition both within and across disciplines. Second, although fatigue has been investigated using a variety of diverse designs, they have either been too weak to substantiate causality or lacked ecological validity. Third, while both subjective and objective measures have been used as dependent variables, fatigue has been more often found to be more strongly linked with the former. Fourth, with the exception of age and sex, the influence of other demographic variables is unknown, since they have not yet been concomitantly assessed. In instances when they have been assessed and included in statistical analyses, they are considered as covariates or confounders; thus, their contribution to the outcome variable is controlled for, rather than being a planned aspect of investigation. Because the interaction of demographic factors with fatigue is largely a neglected area of study, we recommend greater interdisciplinary collaborations, incorporation of multiple demographic variables as independent factors, and use of within-participant analyses. These recommendations would provide meaningful results that may be used to inform public policy and preventive strategies. Copyright © 2009 Elsevier Ltd. All rights reserved.

  20. Healthy older adults demonstrate generalized postural motor learning in response to variable amplitude oscillations of the support surface

    PubMed Central

    Van Ooteghem, Karen; Frank, James S.; Allard, Fran; Horak, Fay B

    2011-01-01

    Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a constant frequency-variable amplitude oscillating platform. One group was trained using an embedded sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45-s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body centre of mass (COM), and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Improvements were also characterized by general rather than specific postural motor learning. These findings are similar to young adults (Van Ooteghem et al. 2008) and indicate that age does not influence the type of learning which occurs for balance control. PMID:20544184

  1. Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Chermahini, R. G.

    1985-01-01

    Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.

  2. Objective assessment of motor fatigue in multiple sclerosis using kinematic gait analysis: a pilot study

    PubMed Central

    2011-01-01

    Background Fatigue is a frequent and serious symptom in patients with Multiple Sclerosis (MS). However, to date there are only few methods for the objective assessment of fatigue. The aim of this study was to develop a method for the objective assessment of motor fatigue using kinematic gait analysis based on treadmill walking and an infrared-guided system. Patients and methods Fourteen patients with clinically definite MS participated in this study. Fatigue was defined according to the Fatigue Scale for Motor and Cognition (FSMC). Patients underwent a physical exertion test involving walking at their pre-determined patient-specific preferred walking speed until they reached complete exhaustion. Gait was recorded using a video camera, a three line-scanning camera system with 11 infrared sensors. Step length, width and height, maximum circumduction with the right and left leg, maximum knee flexion angle of the right and left leg, and trunk sway were measured and compared using paired t-tests (α = 0.005). In addition, variability in these parameters during one-minute intervals was examined. The fatigue index was defined as the number of significant mean and SD changes from the beginning to the end of the exertion test relative to the total number of gait kinematic parameters. Results Clearly, for some patients the mean gait parameters were more affected than the variability of their movements while other patients had smaller differences in mean gait parameters with greater increases in variability. Finally, for other patients gait changes with physical exertion manifested both in changes in mean gait parameters and in altered variability. The variability and fatigue indices correlated significantly with the motoric but not with the cognitive dimension of the FSMC score (R = -0.602 and R = -0.592, respectively; P < 0.026). Conclusions Changes in gait patterns following a physical exertion test in patients with MS suffering from motor fatigue can be measured

  3. Fatigue, pain, and functional status during outpatient chemotherapy.

    PubMed

    Siefert, Mary Lou

    2010-03-01

    To examine the relationship of fatigue and pain with functional status and the pattern of the two symptoms' occurrence over time in individuals with cancer who were receiving outpatient chemotherapy. The aims were to describe the levels of fatigue and pain with functional status and the inter-relationships with each other and with demographic and clinical variables over time. Descriptive, correlational. Outpatient chemotherapy clinic in the New England region of the United States. Total available population of 70 consecutive adult patients with breast cancer (n = 9), colorectal cancer (n = 21), lung cancer (n = 21), or lymphoma (n = 19). Retrospective data were extracted from the medical records; descriptive, correlational, and mixed-modeling methods were used to describe the sample and to examine the relationships of the symptoms and functional status. Fatigue, pain, functional status, and demographic and clinical factors. Fatigue was the most frequently reported symptom; pain was rarely and almost exclusively reported by patients with lung cancer or lymphoma during their early treatments. Fatigue and functional status impairment were highly associated with each other and had similar relationships with the other variables. The patterns and relationships of fatigue and functional status reported by this fairly healthy sample provide useful information to help guide early assessments and nursing interventions for people receiving outpatient chemotherapy. The patterns and severity of symptoms and functional status impairment in people with colorectal cancer or lymphoma warrant further investigation. Targeted exercise interventions for specific outpatient populations should be developed and tested to address specific patterns of symptoms and functional status impairment in individuals with cancer.

  4. Fatigue, emotional functioning, and executive dysfunction in pediatric multiple sclerosis.

    PubMed

    Holland, Alice Ann; Graves, Donna; Greenberg, Benjamin M; Harder, Lana L

    2014-01-01

    Fatigue, depression, anxiety, and executive dysfunction are associated with multiple sclerosis (MS) in adults. Existing research suggests similar problems in pediatric MS, but relationships between these variables have not been investigated. This study investigates the associations between executive functioning and fatigue, emotional functioning, age of onset, and disease duration in pediatric MS. Twenty-six MS or Clinically Isolated Syndrome (CIS) patients, ages 7 to 18, were evaluated through a multidisciplinary demyelinating diseases clinic. Participants completed neuropsychological screening including Verbal Fluency, Digit Span, and Trail-Making Test. Parents completed rating forms of behavioral, emotional, and executive functioning. Patients and parents completed questionnaires related to the patient's quality of life and fatigue. Pearson's correlation coefficients were calculated to investigate relationships between fatigue, emotional functioning, and executive functioning, as well as to examine correlations between parent and child reports of fatigue. Rates of parent-reported anxiety, depression, fatigue, and executive dysfunction varied widely. Means were below average on the Trail-Making Test and average on Verbal Fluency and Digit Span, though scores varied widely. Various fatigue and emotional functioning indices-but not age of onset or disease duration-significantly correlated with various performance-based measures of executive functioning. Results indicate pediatric MS is associated with some degree of fatigue, emotional difficulties, and executive dysfunction, the latter of which is associated with the two former. Notably, age of onset and disease duration did not significantly correlate with executive functioning. Results advance understanding of psychological and clinical variables related to neurocognitive outcomes in pediatric MS.

  5. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue

    PubMed Central

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (−10 ± 8%) and the time trial (−21 ± 9%). The voluntary activation level (VAL; −6 ± 8 and −12 ± 10%), peak twitch (Pt; −21 ± 16 and −32 ± 17%), and paired stimuli (P100 Hz; −7 ± 11 and −12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522

  6. Cancer-related fatigue: Mechanisms, risk factors, and treatments

    PubMed Central

    Bower, Julienne E.

    2015-01-01

    Fatigue is one of the most common and distressing side effects of cancer and its treatment, and may persist for years after treatment completion in otherwise healthy survivors. Cancer-related fatigue causes disruption in all aspects of quality of life and may be a risk factor for reduced survival. The prevalence and course of fatigue in cancer patients has been well characterized, and there is growing understanding of underlying biological mechanisms. Inflammation has emerged as a key biological pathway for cancer-related fatigue, with studies documenting links between markers of inflammation and fatigue before, during, and particularly after treatment. There is considerable variability in the experience of cancer-related fatigue that is not explained by disease- or treatment-related characteristics, suggesting that host factors may play an important role in the development and persistence of this symptom. Indeed, longitudinal studies have begun to identify genetic, biological, psychosocial, and behavioral risk factors for cancer-related fatigue. Given the multi-factorial nature of cancer-related fatigue, a variety of intervention approaches have been examined in randomized controlled trials, including physical activity, psychosocial, mind-body, and pharmacological treatments. Although there is currently no gold standard for treating fatigue, several of these approaches have shown beneficial effects and can be recommended to patients. This report provides a state of the science review of mechanisms, risk factors, and interventions for cancer-related fatigue, with a focus on recent longitudinal studies and randomized trials that have targeted fatigued patients. PMID:25113839

  7. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  8. Fatigue in sarcoidosis and idiopathic pulmonary fibrosis: differences in character and severity between diseases.

    PubMed

    Atkins, Christopher Peter; Gilbert, Daniel; Brockwell, Claire; Robinson, Sue; Wilson, Andrew Malcolm

    2016-08-01

    Sarcoidosis and idiopathic pulmonary fibrosis (IPF) are two common forms of interstitial lung disease. Fatigue is a recognised feature of sarcoidosis but an association between IPF and fatigue has not been investigated. To investigate the frequency and severity of fatigue in these groups, and variables affecting fatigue scores. A cross-sectional questionnaire study of patients with sarcoidosis and IPF followed-up at a single hospital was undertaken. Questionnaire data included validated measures of fatigue, anxiety, depression, sleepiness and dyspnoea, plus measures of disease severity including spirometry data. Questionnaires were administered to 232 patients (82 healthy volunteers, 73 sarcoidosis patients and 77 IPF patients). Sarcoidosis patients had statistically higher sleepiness scores but no significant difference was seen between overall measures of fatigue, anxiety or depression. Stratification by severity revealed a non-statistically significant tendency towards more severe fatigue scores in sarcoidosis. Regression analysis failed to identify any significant predictor variables measured in the sarcoidosis cohort, though in the IPF group both dyspnoea and sleepiness scores were significant predictors of fatigue (R2=0.74). Both sarcoidosis and IPF patients suffer with fatigue, although sarcoidosis patients tended towards reporting more severe fatigue scores, suggesting a subgroup with severe fatigue. The fatigue experienced by the two groups appears to be different; sarcoidosis patients report greater frequency of mental fatigue whereas IPF patients appear to suffer exhaustion, potentially related to dyspnoea. Dyspnoea and sleepiness scores modeled the majority of fatigue in the IPF group, whereas no single factor was able to predict fatigue in sarcoidosis.

  9. Distinct Evening Fatigue Profiles in Oncology Outpatients Receiving Chemotherapy

    PubMed Central

    Wright, Fay; Cooper, Bruce A.; Conley, Yvette P.; Hammer, Marilyn J.; Chen, Lee-May; Paul, Steven M.; Levine, Jon D.; Miaskowski, Christine; Kober, Kord M.

    2018-01-01

    Background Fatigue is the most common and debilitating symptom experienced by oncology patients during chemotherapy (CTX). Fatigue severity demonstrates a large amount of inter-individual and diurnal variability. Purpose Study purposes were to evaluate for subgroups of patients with distinct evening fatigue profiles and evaluate how these subgroups differed on demographic, clinical, and symptom characteristics. Methods Outpatients with breast, gastrointestinal, gynecological, or lung cancer (n=1332) completed questionnaires six times over two cycles of CTX. Lee Fatigue Scale (LFS) evaluated evening fatigue severity. Latent profile analysis was used to identify distinct evening fatigue profiles. Results Four distinct evening fatigue classes (i.e., Low (14.0%), Moderate (17.2%), High (36.0%), Very High (32.8%)) were identified. Compared to the Low class, patients in the Very High evening fatigue class were: younger, female, had childcare responsibilities, had more years of education, had a lower functional status, had a higher comorbidity burden, and were diagnosed with breast cancer. Patients in the Very High class reported higher levels of depressive symptoms, sleep disturbance, and evening fatigue at enrollment. Conclusions Findings provide new insights into modifiable risk factors for higher levels of evening fatigue. Clinicians can use this information to identify higher risk patients and plan appropriate interventions. PMID:29725554

  10. The effects of pitting on fatigue crack nucleation in 7075-T6 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Ma, LI; Hoeppner, David W.

    1994-01-01

    A high-strength aluminum alloy, 7075-T6, was studied to quantitatively evaluate chemical pitting effects of its corrosion fatigue life. The study focused on pit nucleation, pit growth, and fatigue crack nucleation. Pitting corrosion fatigue experiments were conducted in 3.5 percent NaCl aqueous solution under constant amplitude sinusoidal loading at two frequencies, 5 and 20 Hz. Smooth and unnotched specimens were used in this investigation. A video recording system was developed to allow in situ observation of the surface changes of the specimens during testing. The results indicated that pitting corrosion considerably reduces the fatigue strength by accelerating fatigue crack nucleation. A metallographic examination was conducted on the specimens to evaluate the nature of corrosion pits. First, the actual shapes of the corrosion pits were evaluated by cross-sectioning the pits. Secondly, the relation between corrosion pits and microstructure was also investigated. Finally, the possibility of another corrosion mechanism that might be involved in pitting was explored in this investigation. The fractography of the tested specimens showed that corner corrosion pits were responsible for fatigue crack nucleation in the material due to the associated stress concentration. The pits exhibited variance of morphology. Fatigue life for the experimental conditions appeared to be strongly dependent on pitting kinetics and the crack nucleation stage.

  11. Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling

    2017-08-01

    The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.

  12. Effect of Deoxidation Process on Inclusion and Fatigue Performance of Spring Steel for Automobile Suspension

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Chen, Weiqing; Wan, Changjie; Wang, Fangjun; Han, Huaibin

    2018-04-01

    55SiCrA spring steel was smelted in a vacuum induction levitation furnace. The liquid steel was treated by Si deoxidation, Al modification with Ca treatment and Al modification, and the steel samples were obtained with deformable Al2O3-SiO2-CaO-MgO inclusions closely contacted with steel matrix, Al2O3-CaO-CaS-SiO2-MgO inclusions surrounded by small voids or Al2O3(> 80 pct)-SiO2-CaO-MgO inclusions surrounded by big voids, respectively. Effect of three types of inclusions on steel fatigue cracks was studied. The perpendicular and transverse fatigue cracks around the three types of inclusions leading to fracture were found to vary in behavior. Under the applied stress amplitude of 775 MPa, the fatigue lives of the three spring steels decreased from 4.0 × 107 to 3.8 × 107, and to 3.1 × 107 cycles. For the applied stress amplitude of 750 MPa, the fatigue lives of the three spring steels decreased from 5.2 × 107 to 4.1 × 107, and to 3.4 × 107 cycles. Based on the voids around inclusions, the equivalent size of initial fatigue crack has been newly defined as √ {{{area}_{inclusion} }/{(1 - {CC)}}} , where the contraction coefficient CC of inclusion was introduced. A reliable forecast model of the critical size of inclusion leading to fracture was established by the incorporation of actual width b inclusion or diameter d inclusion of internal inclusion; the model prediction was found to be in agreement with experimental results.

  13. The influence of temperature on fatigue-crack growth in a mill-annealed Ti-6Al-4V alloy

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Ritter, D. L.

    1971-01-01

    To understand the influence of temperature on the rate of fatigue crack growth in high strength metal alloys, constant load amplitude fatigue crack growth experiments were carried out using a 1/4 inch thick (6.35 mm) mill-annealed Ti-6Al-4V alloy plate as a model material. The rates of fatigue crack growth were determined as a function of temperature, ranging from room temperature to about 290 C and as a function of the crack tip, stress intensity factor K, in dehumidified high purity argon environment. The dependence of the rate of fatigue crack growth on K appears to be separable into two regions. The transition correlates with changes in both the microscopic and macroscopic appearances of the fracture surfaces, and suggests a change in the mechanism and the influence of microstructure on fatigue crack growth.

  14. Effect of environment on low-cycle fatigue of a nickel-titanium instrument.

    PubMed

    Cheung, Gary S P; Shen, Ya; Darvell, Brian W

    2007-12-01

    This study examined the low-cycle fatigue (LCF) behavior of a nickel-titanium (NiTi) engine-file under various environmental conditions. One brand of NiTi instrument was subjected to rotational-bending fatigue in air, deionized water, sodium hypochlorite, or silicone oil. The curvature of each instrument, diameter of the fracture cross-section, and the number of rotations to failure were determined. The strain-life relationship in the LCF region was examined by using one-way analysis of variance, and the number of crack origins with chi2, for differences between groups. The results showed a linear relationship, on logarithmic scales, between the LCF life and the surface strain amplitude; regression line slopes were significantly different between noncorrosive (air, silicone oil) and corrosive (water, hypochlorite) environments (P < .05), as well as number of crack origins (P < .05). Hypochlorite was more detrimental to fatigue life than water. In conclusion, environmental conditions significantly affect the LCF behavior of NiTi rotary instruments. Fatigue testing of NiTi engine-files should be in a service-like environment.

  15. [Objective evaluation of driving fatigue by using variability of pupil diameter under spontaneous pupillary fluctuation conditions].

    PubMed

    Xiong, Xingliang; Zhang, Yan; Chen, Mengmeng; Chen, Longcong

    2013-04-01

    Objective evaluation of driver drowsiness is necessary toward suppression of fatigued driving and prevention of traffic accident. We have developed a new method in which we utilized pupillary diameter variability (PDV) under spontaneous pupillary fluctuation conditions. The method consists of three main steps. Firstly, we use a 90s long infrared video of pupillogram infrared-sensitive CCD camera. Secondly, we employed edge detection algorithm based on curvature characteristics of pupil boundary to extract a set of points of visible pupil boundary, and then we adopted these points to fit a circle to obtain the diameter of the pupil in current frame of video. Finally, the values of PDV in 90s long video is calculated. In an experimental pilot study, the values of PDV of two groups were measured. One group rated themselves as alert (12 men), the other group as sleepy (13 men). The results showed that significant differences could be found between the two groups, and the values were 0.06 +/- 0.005 and 0.141 +/- 0.042, respectively. Taking into account of the knowledge that spontaneous pupillary fluctuation is innervated by autonomic nervous system which activity is known to change in parallel with drowsiness and cannot be influenced by subjective motive of people. From the results of the experiments, we concluded that PDV could be used to evaluate driver fatigue objectively.

  16. 2D Variations in Coda Amplitudes in the Middle East

    DOE PAGES

    Pasyanos, Michael E.; Gok, Rengin; Walter, William R.

    2016-08-16

    Here, coda amplitudes have proven to be a stable feature of seismograms, allowing one to reliably measure magnitudes for moderate to large-sized (M≥3) earthquakes over broad regions. Since smaller (M<3) earthquakes are only recorded at higher frequencies where we find larger interstation scatter, amplitude and magnitude estimates for these events are more variable, regional, and path dependent. In this study, we investigate coda amplitude measurements in the Middle East for 2-D variations in attenuation structure.

  17. 2D Variations in Coda Amplitudes in the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasyanos, Michael E.; Gok, Rengin; Walter, William R.

    Here, coda amplitudes have proven to be a stable feature of seismograms, allowing one to reliably measure magnitudes for moderate to large-sized (M≥3) earthquakes over broad regions. Since smaller (M<3) earthquakes are only recorded at higher frequencies where we find larger interstation scatter, amplitude and magnitude estimates for these events are more variable, regional, and path dependent. In this study, we investigate coda amplitude measurements in the Middle East for 2-D variations in attenuation structure.

  18. Behavior of motor units in human biceps brachii during a submaximal fatiguing contraction.

    PubMed

    Garland, S J; Enoka, R M; Serrano, L P; Robinson, G A

    1994-06-01

    The activity of 50 single motor units was recorded in the biceps brachii muscle of human subjects while they performed submaximal isometric elbow flexion contractions that were sustained to induce fatigue. The purposes of this study were to examine the influence of fatigue on motor unit threshold force and to determine the relationship between the threshold force of recruitment and the initial interimpulse interval on the discharge rates of single motor units during a fatiguing contraction. The discharge rate of most motor units that were active from the beginning of the contraction declined during the fatiguing contraction, whereas the discharge rates of most newly recruited units were either constant or increased slightly. The absolute threshold forces of recruitment and derecruitment decreased, and the variability of interimpulse intervals increased after the fatigue task. The change in motor unit discharge rate during the fatigue task was related to the initial rate, but the direction of the change in discharge rate could not be predicted from the threshold force of recruitment or the variability in the interimpulse intervals. The discharge rate of most motor units declined despite an increase in the excitatory drive to the motoneuron pool during the fatigue task.

  19. Relationship between Defect Size and Fatigue Life Distributions in Al-7 Pct Si-Mg Alloy Castings

    NASA Astrophysics Data System (ADS)

    Tiryakioğlu, Murat

    2009-07-01

    A new method for predicting the variability in fatigue life of castings was developed by combining the size distribution for the fatigue-initiating defects and a fatigue life model based on the Paris-Erdoğan law for crack propagation. Two datasets for the fatigue-initiating defects in Al-7 pct Si-Mg alloy castings, reported previously in the literature, were used to demonstrate that (1) the size of fatigue-initiating defects follow the Gumbel distribution; (2) the crack propagation model developed previously provides respectable fits to experimental data; and (3) the method developed in the present study expresses the variability in both datasets, almost as well as the lognormal distribution and better than the Weibull distribution.

  20. A review of fatigue in people with HIV infection.

    PubMed

    Barroso, J

    1999-01-01

    Fatigue is often cited by clinicians as a debilitating symptom suffered by the many who are infected with HIV. This article provides a review of HIV-related fatigue, including research on possible physiological causes such as anemia, CD4 count, impaired liver function, impaired thyroid function, and cortisol abnormalities. Psychological causes of fatigue, particularly depression, are reviewed as well. Measurement issues, such as the use of inappropriate tools, the problem of measuring the presence or absence of fatigue, and the use of tools developed for other groups of patients, are reviewed. The need for a comprehensive fatigue tool that is appropriate for people with HIV is discussed. Current treatment research, including thyroid replacement, hyperbaric oxygen, and dextroamphetamine, is presented. Finally, the implications for further research, including the need for qualitative studies to learn more about the phenomenon, develop an instrument to measure fatigue, and examine variables together to get a complete picture of this complex concept, are reviewed.

  1. Heterogeneity in chronic fatigue syndrome - empirically defined subgroups from the PACE trial.

    PubMed

    Williams, T E; Chalder, T; Sharpe, M; White, P D

    2017-06-01

    Chronic fatigue syndrome is likely to be a heterogeneous condition. Previous studies have empirically defined subgroups using combinations of clinical and biological variables. We aimed to explore the heterogeneity of chronic fatigue syndrome. We used baseline data from the PACE trial, which included 640 participants with chronic fatigue syndrome. Variable reduction, using a combination of clinical knowledge and principal component analyses, produced a final dataset of 26 variables for 541 patients. Latent class analysis was then used to empirically define subgroups. The most statistically significant and clinically recognizable model comprised five subgroups. The largest, 'core' subgroup (33% of participants), had relatively low scores across all domains and good self-efficacy. A further three subgroups were defined by: the presence of mood disorders (21%); the presence of features of other functional somatic syndromes (such as fibromyalgia or irritable bowel syndrome) (21%); or by many symptoms - a group which combined features of both of the above (14%). The smallest 'avoidant-inactive' subgroup was characterized by physical inactivity, belief that symptoms were entirely physical in nature, and fear that they indicated harm (11%). Differences in the severity of fatigue and disability provided some discriminative validation of the subgroups. In addition to providing further evidence for the heterogeneity of chronic fatigue syndrome, the subgroups identified may aid future research into the important aetiological factors of specific subtypes of chronic fatigue syndrome and the development of more personalized treatment approaches.

  2. Central and Peripheral Fatigue During Resistance Exercise - A Critical Review.

    PubMed

    Zając, Adam; Chalimoniuk, Małgorzata; Maszczyk, Adam; Gołaś, Artur; Lngfort, Józef

    2015-12-22

    Resistance exercise is a popular form of conditioning for numerous sport disciplines, and recently different modes of strength training are being evaluated for health benefits. Resistance exercise differs significantly in nature, and several variables determine the direction and range of adaptive changes that occur in the muscular and skeletal system of the body. Some modes of resistance training can also be effective in stimulating the cardiovascular system. These variables include exercise selection (general, specific, single or multi joint, dynamic, explosive), type of resistance (free weights, variable resistance, isokinetics), order of exercise (upper and lower body or push and pull exercises), and most of all the training load which includes intensity expressed as % of 1RM, number of repetitions, number of sets and the rest interval between sets. Manipulating these variables allows for specific adaptive changes which may include gains in muscle mass, muscle strength or muscle endurance. It has been well established that during resistance exercise fatigue occurs, regardless of the volume and intensity of work applied. The peripheral mechanisms of fatigue have been studied and explained in more detail than those related to the CNS. This review is an attempt to bring together the latest knowledge regarding fatigue, both peripheral and central, during resistance exercise. The authors of this review concentrated on physiological and biochemical mechanisms underlying fatigue in exercises performed with maximal intensity, as well as those performed to exhaustion with numerous repetitions and submaximal load.

  3. New method of determination of spot welding-adhesive joint fatigue life using full field strain evolution

    NASA Astrophysics Data System (ADS)

    Sadowski, T.; Kneć, M.

    2016-04-01

    Fatigue tests were conducted since more than two hundred years ago. Despite this long period, as fatigue phenomena are very complex, assessment of fatigue response of standard materials or composites still requires a long time. Quite precise way to estimate fatigue parameters is to test at least 30 standardized specimens for the analysed material and further statistical post processing is required. In case of structural elements analysis like hybrid joints (Figure 1), the situation is much more complex as more factors influence the fatigue load capacity due to much more complicated structure of the joint in comparison to standard materials specimen, i.e. occurrence of: welded hot spots or rivets, adhesive layers, local notches creating the stress concentrations, etc. In order to shorten testing time some rapid methods are known: Locati's method [1] - step by step load increments up to failure, Prot's method [2] - constant increase of the load amplitude up to failure; Lehr's method [2] - seeking for the point during regular fatigue loading when an increase of temperature or strains become non-linear. The present article proposes new method of the fatigue response assessment - combination of the Locati's and Lehr's method.

  4. Coding stimulus amplitude by correlated neural activity

    NASA Astrophysics Data System (ADS)

    Metzen, Michael G.; Ávila-Åkerberg, Oscar; Chacron, Maurice J.

    2015-04-01

    While correlated activity is observed ubiquitously in the brain, its role in neural coding has remained controversial. Recent experimental results have demonstrated that correlated but not single-neuron activity can encode the detailed time course of the instantaneous amplitude (i.e., envelope) of a stimulus. These have furthermore demonstrated that such coding required and was optimal for a nonzero level of neural variability. However, a theoretical understanding of these results is still lacking. Here we provide a comprehensive theoretical framework explaining these experimental findings. Specifically, we use linear response theory to derive an expression relating the correlation coefficient to the instantaneous stimulus amplitude, which takes into account key single-neuron properties such as firing rate and variability as quantified by the coefficient of variation. The theoretical prediction was in excellent agreement with numerical simulations of various integrate-and-fire type neuron models for various parameter values. Further, we demonstrate a form of stochastic resonance as optimal coding of stimulus variance by correlated activity occurs for a nonzero value of noise intensity. Thus, our results provide a theoretical explanation of the phenomenon by which correlated but not single-neuron activity can code for stimulus amplitude and how key single-neuron properties such as firing rate and variability influence such coding. Correlation coding by correlated but not single-neuron activity is thus predicted to be a ubiquitous feature of sensory processing for neurons responding to weak input.

  5. Recent developments on SMA actuators: predicting the actuation fatigue life for variable loading schemes

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert W.; Lagoudas, Dimitris C.

    2017-04-01

    Shape memory alloys (SMAs), due to their ability to repeatably recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method for predicting actuator lifetimes. In recent years, multiple research efforts have increased our understanding of the actuation fatigue process of SMAs. These advances can be utilized to predict the fatigue lives and failure loads in SMA actuators. Additionally, these prediction methods can be implemented in order to intelligently design actuators in accordance with their fatigue and failure limits. In the following paper, both simple and complex thermomechanical loading paths have been considered. Experimental data was utilized from two material systems: equiatomic Nickel-Titanium and Nickelrich Nickel-Titanium.

  6. Statistical summaries of fatigue data for design purposes

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1983-01-01

    Two methods are discussed for constructing a design curve on the safe side of fatigue data. Both the tolerance interval and equivalent prediction interval (EPI) concepts provide such a curve while accounting for both the distribution of the estimators in small samples and the data scatter. The EPI is also useful as a mechanism for providing necessary statistics on S-N data for a full reliability analysis which includes uncertainty in all fatigue design factors. Examples of statistical analyses of the general strain life relationship are presented. The tolerance limit and EPI techniques for defining a design curve are demonstrated. Examples usng WASPALOY B and RQC-100 data demonstrate that a reliability model could be constructed by considering the fatigue strength and fatigue ductility coefficients as two independent random variables. A technique given for establishing the fatigue strength for high cycle lives relies on an extrapolation technique and also accounts for "runners." A reliability model or design value can be specified.

  7. Simplification of Fatigue Test Requirements for Damage Tolerance of Composite Interstage Launch Vehicle Hardware

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Hodge, A. J.; Jackson, J. R.

    2010-01-01

    The issue of fatigue loading of structures composed of composite materials is considered in a requirements document that is currently in place for manned launch vehicles. By taking into account the short life of these parts, coupled with design considerations, it is demonstrated that the necessary coupon level fatigue data collapse to a static case. Data from a literature review of past studies that examined compressive fatigue loading after impact and data generated from this experimental study are presented to support this finding. Damage growth, in the form of infrared thermography, was difficult to detect due to rapid degradation of compressive properties once damage growth initiated. Unrealistically high fatigue amplitudes were needed to fail 5 of 15 specimens before 10,000 cycles were reached. Since a typical vehicle structure, such as the Ares I interstage, only experiences a few cycles near limit load, it is concluded that static compression after impact (CAI) strength data will suffice for most launch vehicle structures.

  8. Microstructure, Fatigue Behavior, and Failure Mechanisms of Direct Laser-Deposited Inconel 718

    NASA Astrophysics Data System (ADS)

    Johnson, Alex S.; Shao, Shuai; Shamsaei, Nima; Thompson, Scott M.; Bian, Linkan

    2017-03-01

    Inconel 718 is considered to be a superalloy with a series of superior properties such as high strength, creep resistance, and corrosion resistance at room and elevated temperatures. Additive manufacturing (AM) is particularly appealing to Inconel 718 because of its near-net-shape production capability for circumventing the poor machinability of this superalloy. Nevertheless, AM parts are prone to porosity, which is detrimental to their fatigue resistance. Thus, further understanding of their fatigue behavior is required before their widespread use in load-bearing applications. In this work, the microstructure and fatigue properties of AM Inconel 718, produced in a Laser Engineered Net Shaping (LENS™) system and heat treated with a standard heat treatment schedule, are evaluated at room temperature. Fully reversed strain controlled fatigue tests were performed on cylindrical specimens with straight gage sections at strain amplitudes ranging from 0.001 mm/mm to 0.01 mm/mm. The fracture surfaces of fatigue specimens were inspected with a scanning electron microscope. The results indicate that the employed heat treatment allowed the large, elongated grains and dendritic structure of the as-built material to break down into smaller, equiaxed grains, with some dendritic structures remaining between layers. The AM specimens were found to possess lower fatigue resistance than wrought Inconel 718, and this is primarily attributed to the presence of brittle metal-carbide/oxide inclusions or pores near their surface.

  9. Subjective but Not Actigraphy-Defined Sleep Predicts Next-Day Fatigue in Chronic Fatigue Syndrome: A Prospective Daily Diary Study.

    PubMed

    Russell, Charlotte; Wearden, Alison J; Fairclough, Gillian; Emsley, Richard A; Kyle, Simon D

    2016-04-01

    This study aimed to (1) examine the relationship between subjective and actigraphy-defined sleep, and next-day fatigue in chronic fatigue syndrome (CFS); and (2) investigate the potential mediating role of negative mood on this relationship. We also sought to examine the effect of presleep arousal on perceptions of sleep. Twenty-seven adults meeting the Oxford criteria for CFS and self-identifying as experiencing sleep difficulties were recruited to take part in a prospective daily diary study, enabling symptom capture in real time over a 6-day period. A paper diary was used to record nightly subjective sleep and presleep arousal. Mood and fatigue symptoms were rated four times each day. Actigraphy was employed to provide objective estimations of sleep duration and continuity. Multilevel modelling revealed that subjective sleep variables, namely sleep quality, efficiency, and perceiving sleep to be unrefreshing, predicted following-day fatigue levels, with poorer subjective sleep related to increased fatigue. Lower subjective sleep efficiency and perceiving sleep as unrefreshing predicted reduced variance in fatigue across the following day. Negative mood on waking partially mediated these relationships. Increased presleep cognitive and somatic arousal predicted self-reported poor sleep. Actigraphy-defined sleep, however, was not found to predict following-day fatigue. For the first time we show that nightly subjective sleep predicts next-day fatigue in CFS and identify important factors driving this relationship. Our data suggest that sleep specific interventions, targeting presleep arousal, perceptions of sleep and negative mood on waking, may improve fatigue in CFS. © 2016 Associated Professional Sleep Societies, LLC.

  10. Electromyographic amplitude variability of chewing cycles in deaf individuals.

    PubMed

    de Oliveira, A Siriani; Vitti, M; Chaves, T C; Bevilaqua-Grossi, D; Zuccolotto, M C C; Regalo, S C H

    2006-09-01

    This study had the goal of determining if the amplitude of the surface electromyograph signals changes in terms of time of analysis and subjects, deaf or normal listeners, when estimated in a 250 ms of length window, visually determined, considering the most stable signal period from the center of the chewing cycle. In order to do this, groups with control subjects, listeners and deaf individuals, who made use of the Brazilian sign language (LIBRAS), were studied. All participants performed continuous 5 s of chewing for the electromyographic recording of the temporalis and masseter muscles. The normalized RMS values of three chewing cycles were compared between and among groups. The results from the Kruskall-Wallis test did not show any statistically significant differences (p > 0.05) between the normalized RMS values obtained in the three individual chewing cycles, for each of the two completed and evaluated cycles, in both groups studied. The Mann-Whitney test showed that the mean normalized RMS values obtained in the first chewing cycle were higher for the control group when compared to the mean amplitude values of the first chewing cycle of the group of deaf volunteers. It can be concluded that, in these experimental conditions, the RMS values obtained from the select windows of 250 ms length duration, in relatively stable periods of the electromyographic signal of chewing cycles did not suffer any changes in terms of EMG register duration, in both studied groups, but does give evidence of the differences among the groups.

  11. Subjective but Not Actigraphy-Defined Sleep Predicts Next-Day Fatigue in Chronic Fatigue Syndrome: A Prospective Daily Diary Study

    PubMed Central

    Russell, Charlotte; Wearden, Alison J.; Fairclough, Gillian; Emsley, Richard A.; Kyle, Simon D.

    2016-01-01

    Study Objectives: This study aimed to (1) examine the relationship between subjective and actigraphy-defined sleep, and next-day fatigue in chronic fatigue syndrome (CFS); and (2) investigate the potential mediating role of negative mood on this relationship. We also sought to examine the effect of presleep arousal on perceptions of sleep. Methods: Twenty-seven adults meeting the Oxford criteria for CFS and self-identifying as experiencing sleep difficulties were recruited to take part in a prospective daily diary study, enabling symptom capture in real time over a 6-day period. A paper diary was used to record nightly subjective sleep and presleep arousal. Mood and fatigue symptoms were rated four times each day. Actigraphy was employed to provide objective estimations of sleep duration and continuity. Results: Multilevel modelling revealed that subjective sleep variables, namely sleep quality, efficiency, and perceiving sleep to be unrefreshing, predicted following-day fatigue levels, with poorer subjective sleep related to increased fatigue. Lower subjective sleep efficiency and perceiving sleep as unrefreshing predicted reduced variance in fatigue across the following day. Negative mood on waking partially mediated these relationships. Increased presleep cognitive and somatic arousal predicted self-reported poor sleep. Actigraphy-defined sleep, however, was not found to predict following-day fatigue. Conclusions: For the first time we show that nightly subjective sleep predicts next-day fatigue in CFS and identify important factors driving this relationship. Our data suggest that sleep specific interventions, targeting presleep arousal, perceptions of sleep and negative mood on waking, may improve fatigue in CFS. Citation: Russell C, Wearden AJ, Fairclough G, Emsley RA, Kyle SD. Subjective but not actigraphy-defined sleep predicts next-day fatigue in chronic fatigue syndrome: a prospective daily diary study. SLEEP 2016;39(4):937–944. PMID:26715232

  12. Neuromuscular fatigue following isometric contractions with similar torque time integral.

    PubMed

    Rozand, V; Cattagni, T; Theurel, J; Martin, A; Lepers, R

    2015-01-01

    Torque time integral (TTI) is the combination of intensity and duration of a contraction. The aim of this study was to compare neuromuscular alterations following different isometric sub-maximal contractions of the knee extensor muscles but with similar TTI. Sixteen participants performed 3 sustained contractions at different intensities (25%, 50%, and 75% of Maximal Voluntary Contraction (MVC) torque) with different durations (68.5±33.4 s, 35.1±16.8 s and 24.8±12.9 s, respectively) but similar TTI value. MVC torque, maximal voluntary activation level (VAL), M-wave characteristics and potentiated doublet amplitude were assessed before and immediately after the sustained contractions. EMG activity of the vastus lateralis (VL) and -rectus femoris (RF) muscles was recorded during the sustained contractions. MVC torque reduction was similar in the 3 conditions after the exercise (-23.4±2.7%). VAL decreased significantly in a similar extent (-3.1±1.3%) after the 3 sustained contractions. Potentiated doublet amplitude was similarly reduced in the 3 conditions (-19.7±1.5%), but VL and RF M-wave amplitudes remained unchanged. EMG activity of VL and RF muscles increased in the same extent during the 3 contractions (VL: 54.5±40.4%; RF: 53.1±48.7%). These results suggest that central and peripheral alterations accounting for muscle fatigue are similar following isometric contractions with similar TTI. TTI should be considered in the exploration of muscle fatigue during sustained isometric contractions. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    NASA Technical Reports Server (NTRS)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  14. Task-related increases in fatigue predict recovery time after academic stress.

    PubMed

    Blasche, Gerhard; Zilic, Jelena; Frischenschlager, Oskar

    2016-01-01

    The aim of this study was to investigate the time course of recovery after an academic exam as a model of high workload and its association with stress-related fatigue. Thirty-six medical students (17 females, 19 males) filled out diaries during an exam phase, starting 2 days prior to the exam, and a control phase 4 weeks after the exam for 14 days, respectively. Fatigue, distress, quality of sleep, and health complaints were assessed. Recovery time was determined for each individual and variable by comparing the 3-day average with the confidence interval of the control phase. Recovery time was predicted by Cox regression analyses. Recovery times of all variables except health complaints were predicted by stress-related fatigue. Half of the individuals had recovered after 6 days, and 80% of the individuals had recovered after 8 days. The time necessary for recovery from work demands is determined by fatigue as a measure of resource depletion.

  15. The influence of temperature on fatigue-crack growth in a mill annealed Ti-6Al-4V alloy

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Ritter, D. L.

    1972-01-01

    To understand the influence temperature on the rate of fatigue crack growth in high strength metal alloys, constant load amplitude, fatigue crack growth experiments were carried out using a 1/4-inch-thick (6.35 mm) mill annealed Ti-6Al-4V alloy plate as a model material. The rates of fatigue crack growth were determined as a function of temperature, ranging from room temperature to about 290 C (or, about 550 F/563K) and as a function of the crack tip stress intensity factor in a dehumidified high purity argon environment. Limited correlative experiments indicate that dehumidified oxygen and hydrogen have no effect on the rate of fatigue crack growth in this alloy, while distilled water increased the rate of crack growth slightly in the range tested. Companion fractographic examinations suggest that the mechanisms for fatigue crack growth in the various environments are essentially the same.

  16. [Preliminary study of rabbit experiment modality for evaluating cardiac fatigue].

    PubMed

    Yan, Xiaobo; Luo, Linmei; Liu, Leichu; Xiao, Shouzhong; Deng, Suyuan; Xiang, Lingli; Zhang, Cong

    2013-04-01

    This paper presents a preliminary study of rabbit experiment modality incorporating a new indicator for evaluating cardiac function changes, providing a basis for subsequent study of cardiac fatigue. Using only biochemical indicators, such as troponins, is difficult to make a distinction between exercise-induced cardiac fatigue (EICF) and exercise-induced cardiac damage (EICD). Therefore, some new indicators are needed to evaluate cardiac fatigue synthetically. In our study, we used New Zealand white rabbits to conduct a multi-step swimming experiments with load. We made the rabbits reach an exhaustive state to evaluate whether the amplitude ratio of the first to second heart sound (S1/S2) and heart rate (HR) during the exhaustive exercise would be decreased and whether they would be able to recover after the exhaustive exercise for 24 hours. During the first phase of swimming, S1/S2 and HR were increased, and then decreased at exhaustive state. They were recovered after the exhaustive exercise for 24 hours. Overloading led to deaths of three rabbis, and new phenomena from overloading and related to this kind of death were observed. The experiments proved that Multi-steps swimming experiments with loads by using New Zealand white rabbit is useful for studying cardiac fatigue and premonition of sudden cardiac death.

  17. A Model of Fatigue Following Traumatic Brain Injury.

    PubMed

    Ponsford, Jennie; Schönberger, Michael; Rajaratnam, Shantha M W

    2015-01-01

    Fatigue is one of the most frequent sequelae of traumatic brain injury (TBI), although its causes are poorly understood. This study investigated the interrelationships between fatigue and sleepiness, vigilance performance, depression, and anxiety, using a structural equation modeling approach. Seventy-two participants with moderate to severe TBI (78% males) were recruited a median of 305 days postinjury. They completed the Fatigue Severity Scale, a vigilance task, the Epworth Sleepiness Scale, and Hospital Anxiety and Depression Scale. A model of the interrelationships between the study variables was developed, tested, and modified with path analysis. The modified model had a good overall fit (χ2 = 1.3, P = .54; comparative fit index = 1.0; root-mean square error of approximation = 0.0; standardized root-mean square residual = 0.02). Most paths in this model were significant (P < .05). Fatigue predicted anxiety, depression, and daytime sleepiness. Depression predicted daytime sleepiness and poor vigilance, whereas anxiety tended to predict reduced daytime sleepiness. This model confirms the complexity of fatigue experience. It supports the hypothesis that fatigue after TBI is a cause, not a consequence, of anxiety, depression, and daytime sleepiness, which, in turn (especially depression), may exacerbate fatigue by affecting cognitive functioning. These findings suggest that to alleviate fatigue, it is important to address each of these factors. However, the findings need to be confirmed with a longitudinal research design.

  18. Mental fatigue impairs soccer-specific decision-making skill.

    PubMed

    Smith, Mitchell R; Zeuwts, Linus; Lenoir, Matthieu; Hens, Nathalie; De Jong, Laura M S; Coutts, Aaron J

    2016-07-01

    This study aimed to investigate the impact of mental fatigue on soccer-specific decision-making. Twelve well-trained male soccer players performed a soccer-specific decision-making task on two occasions, separated by at least 72 h. The decision-making task was preceded in a randomised order by 30 min of the Stroop task (mental fatigue) or 30 min of reading from magazines (control). Subjective ratings of mental fatigue were measured before and after treatment, and mental effort (referring to treatment) and motivation (referring to the decision-making task) were measured after treatment. Performance on the soccer-specific decision-making task was assessed using response accuracy and time. Visual search behaviour was also assessed throughout the decision-making task. Subjective ratings of mental fatigue and effort were almost certainly higher following the Stroop task compared to the magazines. Motivation for the upcoming decision-making task was possibly higher following the Stroop task. Decision-making accuracy was very likely lower and response time likely higher in the mental fatigue condition. Mental fatigue had unclear effects on most visual search behaviour variables. The results suggest that mental fatigue impairs accuracy and speed of soccer-specific decision-making. These impairments are not likely related to changes in visual search behaviour.

  19. Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration

    PubMed Central

    2013-01-01

    Background Our previous model of the non-isometric muscle fatigue that occurs during repetitive functional electrical stimulation included models of force, motion, and fatigue and accounted for applied load but not stimulation pulse duration. Our objectives were to: 1) further develop, 2) validate, and 3) present outcome measures for a non-isometric fatigue model that can predict the effect of a range of pulse durations on muscle fatigue. Methods A computer-controlled stimulator sent electrical pulses to electrodes on the thighs of 25 able-bodied human subjects. Isometric and non-isometric non-fatiguing and fatiguing knee torques and/or angles were measured. Pulse duration (170–600 μs) was the independent variable. Measurements were divided into parameter identification and model validation subsets. Results The fatigue model was simplified by removing two of three non-isometric parameters. The third remained a function of other model parameters. Between 66% and 77% of the variability in the angle measurements was explained by the new model. Conclusion Muscle fatigue in response to different stimulation pulse durations can be predicted during non-isometric repetitive contractions. PMID:23374142

  20. Movement amplitude on the Functional Re-adaptive Exercise Device: deep spinal muscle activity and movement control.

    PubMed

    Winnard, A; Debuse, D; Wilkinson, M; Samson, L; Weber, T; Caplan, Nick

    2017-08-01

    Lumbar multifidus (LM) and transversus abdominis (TrA) show altered motor control, and LM is atrophied, in people with low-back pain (LBP). The Functional Re-adaptive Exercise Device (FRED) involves cyclical lower-limb movement against minimal resistance in an upright posture. It has been shown to recruit LM and TrA automatically, and may have potential as an intervention for non-specific LBP. However, no studies have yet investigated the effects of changes in FRED movement amplitude on the activity of these muscles. This study aimed to assess the effects of different FRED movement amplitudes on LM and TrA muscle thickness and movement variability, to inform an evidence-based exercise prescription. Lumbar multifidus and TrA thickness of eight healthy male volunteers were examined using ultrasound imaging during FRED exercise, normalised to rest at four different movement amplitudes. Movement variability was also measured. Magnitude-based inferences were used to compare each amplitude. Exercise at all amplitudes recruited LM and TrA more than rest, with thickness increases of approximately 5 and 1 mm, respectively. Larger amplitudes also caused increased TrA thickness, LM and TrA muscle thickness variability and movement variability. The data suggests that all amplitudes are useful for recruiting LM and TrA. A progressive training protocol should start in the smallest amplitude, increasing the setting once participants can maintain a consistent movement speed, to continue to challenge the motor control system.

  1. Fatigue effect on phase transition of pedestrian movement: experiment and simulation study

    NASA Astrophysics Data System (ADS)

    Luo, Lin; Fu, Zhijian; Zhou, Xiaodong; Zhu, Kongjin; Yang, Hongtai; Yang, Lizhong

    2016-10-01

    How to model pedestrian movement is an intriguing problem in the area of statistical physics. As a common phenomenon of pedestrian movement, fatigue has a significant negative effect on pedestrian movement, especially when pedestrians move or run with heavy luggage, rescue the wounded in disaster, climb stairs and etc. According to the field observations and previous researches, fatigue coefficient is defined as the decrease of desired velocity in this study. However, previous researches lacked quantitative analysis of the effect of fatigue on pedestrian speed. It has been a great challenge to study the effect of fatigue on pedestrian flow, since pedestrians of heterogeneous walking abilities and the change of pedestrians’ moving properties need to be taken into consideration. Thus, at first, a series of pedestrian experiments, under three different conditions, were conducted to formulate the empirical relationship among fatigue, average free velocity, and walking distance. Then the empirical formulation of pedestrian fatigue was imported into the multi-velocity field floor cellular automata (FFCA) model for following pedestrian dynamics analysis. The velocity ratio was adjusted dynamically to adapt the change of pedestrians’ velocity due to fatigue. The fatigue, entrance flow rate and pedestrian’s initial desired velocity are found to have significant effects on the pedestrian flow. The space-time distributions of pedestrian density and velocity were explored in detail, with phase transition analyses from a free flow phase to a congestion phase. Additionally, the ‘density wave’ in the system can be observed if a certain ratio of burdened pedestrians lay in the high density region. The envelope of the ‘density wave’ reaches its maximum amplitude around the entrance position, and gradually diminishes away from the entrance.

  2. Stimulated peripheral production of interferon-gamma is related to fatigue and depression in multiple sclerosis.

    PubMed

    Pokryszko-Dragan, A; Frydecka, I; Kosmaczewska, A; Ciszak, L; Bilińska, M; Gruszka, E; Podemski, R; Frydecka, D

    2012-10-01

    The aim of the study was to evaluate the stimulated production of interferon-gamma (IFNγ) by peripheral CD3+CD4+ T lymphocytes in patients with multiple sclerosis (MS) with regard to the degree of fatigue, and to investigate relationships between immunological parameters, level of depression and clinical variables. Forty MS patients (30 women, 10 men, aged 22-60 years): 20 fatigued and 20 non-fatigued were involved in the study. Fatigue was evaluated using the Fatigue Severity Scale (FSS) and Modified Fatigue Impact Scale (MFIS), depression level - using Beck Depression Inventory (BDI). Production of IFNγ by stimulated peripheral blood CD3+CD4+ T lymphocytes, assessed using flow cytometry, was compared between MS patients with different levels of fatigue and controls. Correlations were searched out between immunological findings and BDI, age, duration and course of MS, relapse rate, disability (assessed in Expanded Disability Status Scale - EDSS) and its progression. Stimulated production of IFNγ by CD3+CD4+ T lymphocytes was higher in severely fatigued patients in comparison with non-fatigued ones and controls, tended to correlate with FSS and MFIS, and correlated with BDI. No relationships were found between immunological findings and disease-related variables. Stimulated production of IFNγ by peripheral CD3+CD4+ T lymphocytes is related to fatigue and depression in MS patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Aging does not affect generalized postural motor learning in response to variable amplitude oscillations of the support surface.

    PubMed

    Van Ooteghem, Karen; Frank, James S; Allard, Fran; Horak, Fay B

    2010-08-01

    Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. in Exp Brain Res 199(2):185-193, 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a translating platform that oscillated with variable amplitude and constant frequency. One group was trained using an embedded-sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped-sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45 s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body center of mass (COM) and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Furthermore, improvements reflected general rather than specific postural motor learning regardless of training protocol (ES or LS). This finding is similar to young adults (Van Ooteghem et al. in Exp Brain Res 187(4):603-611, 2008) and indicates that age does not influence the type of learning which occurs for balance control.

  4. Fatigue

    MedlinePlus

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  5. Quality Factor and Microslipping of Fatigue Cracks in Thin Plates at Resonant Vibration

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Fulton, J. P.

    1993-01-01

    Resonant vibrations have been stimulated in thin metal plates using a non-contacting electromagnetic driver. A sinusoidal force was applied in a swept frequency fashion and the resulting surface displacements were monitored through the use of an acoustic microphone. It has been found that the presence of a fatigue crack in the sample causes a broadening of the second resonance peak. The Q factors of the resonance curves were determined and are directly correlated with the presence of fatigue cracks in the samples. The broadening of the curves is explained in terms of a microslipping at the crack face walls which reduces the amplitude of the resonant vibration by increasing the damping of the system. A comparison is made between the resonance characteristics of fatigue damaged and notched samples, where the stiffness of the two systems is nearly constant while the interaction between crack face walls is eliminated in the latter.

  6. High-temperature, low-cycle fatigue behavior of an Al-Mg-Si based heat-resistant aluminum alloy

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Sik; Sung, Si-Young; Han, Bum-Suck; Park, Joong-Cheol; Lee, Kee-Ahn

    2015-11-01

    High-temperature, low-cycle fatigue behavior of the new heat-resistant aluminum alloy was investigated in this study. The aluminum alloy consists of aluminum matrix and small amount of precipitated Mg2Si and (Co, Ni)3Al4 strengthening particles. At room temperature and 523 K, the yield and tensile strengths of Al-Mg-Si-(Co, Ni) the aluminum alloy were maintained with no significant decrease, and elongation increased slightly. Low-cycle fatigue tests controlled by total strain were performed with strain ratio (R) = -1, strain rate = 2×10-3 s-1 at 523 K. The fatigue limit of the low-cycle fatigue of this alloy showed plastic strain amplitude (Δ ɛ pa) of 0.22% at 103 cycles. This value was superior to that of conventional aluminum alloy such as A319. The results of the fractographical observation showed that second phases, especially (Co, Ni)3Al4 particles, affected fatigue behavior. This study also attempted to clarify the mechanism of high-temperature, low-cycle fatigue deformation of Al-Mg-Si-(Co, Ni) alloy in relation to its microstructure and energy dissipation analysis.

  7. Mental Fatigue and Spatial References Impair Soccer Players' Physical and Tactical Performances

    PubMed Central

    Coutinho, Diogo; Gonçalves, Bruno; Travassos, Bruno; Wong, Del P.; Coutts, Aaron J.; Sampaio, Jaime E

    2017-01-01

    This study examined the effects of mental fatigue and additional corridor and pitch sector lines on players' physical and tactical performances during soccer small-sided games. Twelve youth players performed four Gk+6vs6+Gk small-sided games. Prior to the game, one team performed a motor coordination task to induce mental fatigue, while the other one performed a control task. A repeated measures design allowed to compare players' performances across four conditions: (a) with mental fatigue against opponents without mental fatigue in a normal pitch (MEN), (b) with mental fatigue on a pitch with additional reference lines (#MEN); (c) without mental fatigue against mentally fatigued opponents on a normal pitch (CTR); and (d) without mental fatigue on a pitch with reference lines (#CTR). Player's physical performance was assessed by the distance covered per minute and the number of accelerations and decelerations (0.5–3.0 m/s2; > −3.0 m/s2). Positional data was used to determine individual (spatial exploration index, time synchronized in longitudinal and lateral directions) and team-related variables (length, width, speed of dispersion and contraction). Unclear effects were found for the physical activity measures in most of the conditions. There was a small decrease in time spent laterally synchronized and a moderate decrease in the contraction speed when MEN compared to the CTR. Also, there was a small decrease in the time spent longitudinally synchronized during the #MEN condition compared to MEN. The results showed that mental fatigue affects the ability to use environmental information and players' positioning, while the additional reference lines may have enhanced the use of less relevant information to guide their actions during the #MEN condition. Overall, coaches could manipulate the mental fatigue and reference lines to induce variability and adaptation in young soccer players' behavior. PMID:28983273

  8. Ecological momentary assessment of fatigue, sleepiness, and exhaustion in ESKD.

    PubMed

    Abdel-Kader, Khaled; Jhamb, Manisha; Mandich, Lee Anne; Yabes, Jonathan; Keene, Robert M; Beach, Scott; Buysse, Daniel J; Unruh, Mark L

    2014-02-06

    Many patients on maintenance dialysis experience significant sleepiness and fatigue. However, the influence of the hemodialysis (HD) day and circadian rhythms on patients' symptoms have not been well characterized. We sought to use ecological momentary assessment to evaluate day-to-day and diurnal variability of fatigue, sleepiness, exhaustion and related symptoms in thrice-weekly maintenance HD patients. Subjects used a modified cellular phone to access an interactive voice response system that administered the Daytime Insomnia Symptom Scale (DISS). The DISS assessed subjective vitality, mood, and alertness through 19 questions using 7- point Likert scales. Subjects completed the DISS 4 times daily for 7 consecutive days. Factor analysis was conducted and a mean composite score of fatigue-sleepiness-exhaustion was created. Linear mixed regression models (LMM) were used to examine the association of time of day, dialysis day and fatigue, sleepiness, and exhaustion composite scores. The 55 participants completed 1,252 of 1,540 (81%) possible assessments over the 7 day period. Multiple symptoms related to mood (e.g., feeling sad, feeling tense), cognition (e.g., difficulty concentrating), and fatigue (e.g., exhaustion, feeling sleepy) demonstrated significant daily and diurnal variation, with higher overall symptom scores noted on hemodialysis days and later in the day. In factor analysis, 4 factors explained the majority of the observed variance for DISS symptoms. Fatigue, sleepiness, and exhaustion loaded onto the same factor and were highly intercorrelated. In LMM, mean composite fatigue-sleepiness-exhaustion scores were associated with dialysis day (coefficient and 95% confidence interval [CI] 0.21 [0.02 - 0.39]) and time of day (coefficient and 95% CI 0.33 [0.25 - 0.41]. Observed associations were minimally affected by adjustment for demographics and common confounders. Maintenance HD patients experience fatigue-sleepiness-exhaustion symptoms that demonstrate

  9. Sex differences in kinematic adaptations to muscle fatigue induced by repetitive upper limb movements.

    PubMed

    Bouffard, Jason; Yang, Chen; Begon, Mickael; Côté, Julie

    2018-04-19

    Muscle fatigue induced by repetitive movements contributes to the development of musculoskeletal disorders. Men and women respond differently to muscle fatigue during isometric single-joint efforts, but sex differences during dynamic multi-joint tasks have not been clearly identified. Moreover, most studies comparing men and women during fatigue development assessed endurance time. However, none evaluated sex differences in kinematic adaptations to fatigue during multi-joint dynamic tasks. The objective of the study was to compare how men and women adapt their upper body kinematics during a fatiguing repetitive pointing task. Forty men and 41 women performed repetitive pointing movements (one per second) between two targets while maintaining their elbow elevated at shoulder height. The task ended when participants rated a perceived level of fatigue of 8/10. Trunk, humerothoracic, and elbow angles were compared between the first and last 30 s of the experiment and between men and women. Linear positions of the index finger (distance from the target) and the elbow (arm elevation) as well as movement timing were documented as task performance measures. Men (7.4 ± 3.2 min) and women (8.3 ± 4.5 min) performed the repetitive pointing task for a similar duration. For both sex groups, trunk range of motion increased with fatigue while shoulder's and elbow's decreased. Moreover, participants modified their trunk posture to compensate for the decreased humerothoracic elevation. Movements at all joints also became more variable with fatigue. However, of the 24 joint angle variables assessed, only two Sex × Fatigue interactions were observed. Although average humerothoracic elevation angle decreased in both subgroups, this decrease was greater in men (standardized response mean [SRM] - 1.63) than in women (SRM - 1.44). Moreover, the movement-to-movement variability of humerothoracic elevation angle increased only in women (SRM 0.42). Despite many similarities

  10. On the Period-Amplitude and Amplitude-Period Relationships

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.

  11. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    NASA Astrophysics Data System (ADS)

    Toft, Anders; Roe-Poulsen, Bjarke; Christiansen, Rasmus; Knudsen, Torben

    2016-09-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods. The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy for actuation as it always operates at the blade eigenfrequency.

  12. Study on the deterioration origin of thermomechanical contact fatigue

    NASA Astrophysics Data System (ADS)

    Tudose-Sandu-Ville, O. F.

    2016-08-01

    Thermomechanical wear is a complex phenomenon present in a number of industrial domains, such as rolling bearings, gears, friction wheels, rolling mill rollers. In this type of surface tribological deterioration, both fundamental and some peculiar wears are combined (abrasive, adhesive, corrosive wear and contact fatigue), with mechanical ant thermal causes. The present paper takes into account the contact fatigue type of deterioration, with both causes in mechanical variable load and the thermal tide action on the contact surface. There are some theories synthetically presented regarding the location of critical stresses in rolling contact fatigue. The Jacq thermal effect is briefly presented with some considerations concerning the temperature gradient in the metallic wall. The connection between the Jacq thermal anomaly and the thermomechanical contact fatigue is considered to be a new approach. Also, the same location for both mechanical and thermal critical stresses gives a strong support for the thermomechanical contact fatigue primary deterioration, according to the results obtained during the author's PhD research.

  13. Amplitude variations of modulated RV Tauri stars support the dust obscuration model of the RVb phenomenon

    NASA Astrophysics Data System (ADS)

    Kiss, L. L.; Bódi, A.

    2017-12-01

    Context. RV Tauri-type variables are pulsating post-asymptotic giant branch (AGB) stars that evolve rapidly through the instability strip after leaving the AGB. Their light variability is dominated by radial pulsations. Members of the RVb subclass show an additional variability in the form of a long-term modulation of the mean brightness, for which the most popular theories all assume binarity and some kind of circumstellar dust. Here we assess whether or not the amplitude modulations are consistent with the dust obscuration model. Aims: We measure and interpret the overall changes of the mean amplitude of the pulsations along the RVb variability. Methods: We compiled long-term photometric data for RVb-type stars, including visual observations of the American Association of Variable Star Observers, ground-based CCD photometry from the OGLE and ASAS projects, and ultra-precise space photometry of one star, DF Cygni, from theKepler space telescope. After converting all the observations to flux units, we measure the cycle-to-cycle variations of the pulsation amplitude and correlate them to the actual mean fluxes. Results: We find a surprisingly uniform correlation between the pulsation amplitude and the mean flux; they scale linearly with each other for a wide range of fluxes and amplitudes. This means that the pulsation amplitude actually remains constant when measured relative to the system flux level. The apparent amplitude decrease in the faint states has long been noted in the literature but it was always claimed to be difficult to explain with the actual models of the RVb phenomenon. Here we show that when fluxes are used instead of magnitudes, the amplitude attenuation is naturally explained by periodic obscuration from a large opaque screen, one most likely corresponding to a circumbinary dusty disk that surrounds the whole system.

  14. Self-critical perfectionism and its relationship to fatigue and pain in the daily flow of life in patients with chronic fatigue syndrome.

    PubMed

    Kempke, S; Luyten, P; Claes, S; Goossens, L; Bekaert, P; Van Wambeke, P; Van Houdenhove, B

    2013-05-01

    Research suggests that the personality factor of self-critical or maladaptive perfectionism may be implicated in chronic fatigue syndrome (CFS). However, it is not clear whether self-critical perfectionism (SCP) also predicts daily symptoms in CFS. Method In the present study we investigated whether SCP predicted fatigue and pain over a 14-day period in a sample of 90 CFS patients using a diary method approach. After completing the Depressive Experiences Questionnaire (DEQ) as a measure of SCP, patients were asked each day for 14 days to complete Visual Analogue Scales (VAS) of fatigue, pain and severity of depression. Data were analysed using multilevel analysis. The results from unconditional models revealed considerable fluctuations in fatigue over the 14 days, suggesting strong temporal variability in fatigue. By contrast, pain was relatively stable over time but showed significant inter-individual differences. Congruent with expectations, fixed-effect models showed that SCP was prospectively associated with higher daily fatigue and pain levels over the 14-day period, even after controlling for levels of depression. This is the first study to show that SCP predicts both fatigue and pain symptoms in CFS in the daily course of life. Hence, therapeutic interventions aimed at targeting SCP should be considered in the treatment of CFS patients with such features.

  15. Probabilistic Description of Fatigue Crack Growth Under Constant-and Variable-Amplitude Loading

    DTIC Science & Technology

    1989-03-01

    plane, see figure 14. The length of the defected crack component and its angle, b and q, respectively, in Figure 15 were found to depend on the crack...length at which the defection occurs; as the crack length increases, b increases while q decreases. Due to the orientation of the deflected component...Breakpoint Voltage to Fun. Generator Output Setpoint Voltage Take Function Generator Gate High Start Test LNext page 153 Q! ~From last ag lastr DMAe 70

  16. New optomechanical approach to quantitative characterization of fatigue behavior of dynamically loaded structures

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1995-06-01

    The basic relationships between stress and strain under cyclic conditions of loading are not at present well understood. It would seem that information of this type is vital for a fundamental approach to understand the fatigue behavior of dynamically loaded structures. In this paper, experimental and computational methods are utilized to study the fatigue behavior of a thin aluminum cantilever plate subjected to dynamic loading. The studies are performed by combining optomechanical and finite element methods. The cantilever plate is loaded periodically by excitation set at a fixed amplitude and at a specific resonance frequency of the plate. By continuously applying this type of loading and using holographic interferometry, the behavior of the plate during a specific period of time is investigated. Quantitative information is obtained from laser vibrometry data which are utilized by a finite element program to calculate strains and stresses assuming a homogeneous and isotropic material and constant strain elements. It is shown that the use of experimental and computational hybrid methodologies allows identification of different zones of the plate that are fatigue critical. This optomechanical approach proves to be a viable tool for understanding of fatigue behavior of mechanical components and for performing optimization of structures subjected to fatigue conditions.

  17. Stroke-Related Changes in Neuromuscular Fatigue of the Hip Flexors and Functional Implications

    PubMed Central

    Hyngstrom, Allison S.; Onushko, Tanya; Heitz, Robert P.; Rutkowski, Anthony; Hunter, Sandra K.; Schmit, Brian D.

    2014-01-01

    Objective To compare stroke-related changes in hip-flexor neuromuscular fatigue of the paretic leg during a sustained, isometric sub-maximal contraction with the non-paretic leg and controls, and correlate fatigue with clinical measures of function. Design Hip torques were measured during a fatiguing hip-flexion contraction at 20% of the hip flexion maximal voluntary contraction (MVC) in the paretic and non-paretic legs of 13 people with chronic stroke and 10 age-matched controls. In addition, participants with stroke performed a fatiguing contraction of the paretic leg at the absolute torque equivalent to 20% MVC of the non-paretic leg and were tested for self-selected walking speed (Ten-Meter Walk Test) and balance (Berg). Results When matching the non-paretic target torque, the paretic hip flexors had a shorter time to task failure compared with the non-paretic leg and controls (p<0.05). Time to failure of the paretic leg was inversely correlated with the reduction of hip flexion MVC torque. Self-selected walking speed was correlated with declines in torque and steadiness. Berg-Balance scores were inversely correlated with the force fluctuation amplitude. Conclusions Fatigue and precision of contraction are correlated with walking function and balance post stroke. PMID:22157434

  18. Responsive upper limb and cognitive fatigue measures during light precision work: an 8-hour simulated micro-pipetting study.

    PubMed

    Yung, Marcus; Wells, Richard P

    2017-07-01

    Many contemporary occupations are characterised by long periods of low loads. These lower force levels, which are relevant to the development of work-related musculoskeletal disorders, are usually not the focus of fatigue studies. In studies that did measure fatigue in light manual or precision work, within and between measurement responses were inconsistent. The aim of this study was to identify fatigue measures that were responsive at lower force levels (<10% MVC) over the course of an 8-h period. A complementary set of fatigue measures, reflecting both neuromuscular and cognitive mechanisms, was measured during a light precision micro-pipetting task performed by 11 participants. Nine measures were found to be significantly responsive over the 8-h period, including: ratings of perceived fatigue, postural tremor, blink frequency and critical flicker fusion frequency threshold. Common field measures, specifically electromyography RMS amplitude and maximum voluntary contractions, did not lead to extraordinary time effects. Practitioner summary: The findings provide insight towards the responsiveness of a complementary set of field usable fatigue measures at low work intensities Although commonly used measures did not reveal significant increases in fatigue, nine alternative measures were significantly responsive over the 8-h period.

  19. Compassion Fatigue and Mindfulness: Comparing Mental Health Professionals and MSW Student Interns.

    PubMed

    Brown, Jodi L Constantine; Ong, Jacqueline; Mathers, Jessica M; Decker, James T

    2017-01-01

    The relationship between compassion fatigue and mindfulness in mental health professionals compared to Master of Social Work (MSW) students is explored. A convenience sample of mental health professionals (n = 40) and MSW students (n = 111) completed the Five Facet Mindfulness Questionnaire and Professional Quality of Life Scale. Results indicate a medium, negative correlation between compassion fatigue and mindfulness, with high levels of compassion fatigue associated with lower levels of mindfulness. There was no statistically significant difference between mental health workers and MSW students on the combined dependent variables. Results suggest that mindfulness protects against compassion fatigue regardless of professional or student status.

  20. Exploring the relationship between work-related rumination, sleep quality, and work-related fatigue.

    PubMed

    Querstret, Dawn; Cropley, Mark

    2012-07-01

    This study examined the association among three conceptualizations of work-related rumination (affective rumination, problem-solving pondering, and detachment) with sleep quality and work-related fatigue. It was hypothesized that affective rumination and poor sleep quality would be associated with increased fatigue and that problem-solving pondering and detachment would be associated with decreased fatigue. The mediating effect of sleep quality on the relationship between work-related rumination and fatigue was also tested. An online questionnaire was completed by a heterogeneous sample of 719 adult workers in diverse occupations. The following variables were entered as predictors in a regression model: affective rumination, problem-solving pondering, detachment, and sleep quality. The dependent variables were chronic work-related fatigue (CF) and acute work-related fatigue (AF). Affective rumination was the strongest predictor of increased CF and AF. Problem-solving pondering was a significant predictor of decreased CF and AF. Poor sleep quality was predictive of increased CF and AF. Detachment was significantly negatively predictive for AF. Sleep quality partially mediated the relationship between affective rumination and fatigue and between problem-solving pondering and fatigue. Work-related affective rumination appears more detrimental to an individual's ability to recover from work than problem-solving pondering. In the context of identifying mechanisms by which demands at work are translated into ill-health, this appears to be a key finding and suggests that it is the type of work-related rumination, not rumination per se, that is important.

  1. Effects of Hot Rolling on Low-Cycle Fatigue Properties of Zn-22 wt.% Al Alloy at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dong, X. H.; Cao, Q. D.; Ma, S. J.; Han, S. H.; Tang, W.; Zhang, X. P.

    2016-09-01

    The effects of the reduction ratio (RR) on the low-cycle fatigue (LCF) properties of the Zn-22 wt.% Al (Zn-22Al) alloy were investigated. Various grain sizes from 0.68 to 1.13 μm were obtained by controlled RRs. Tensile and LCF tests were carried out at room temperature. Superplasticity and cyclic softening were observed. Strength and ductility of the rolled Zn-22Al alloy increased with the RR, owing to the decrease in its grain size. The RR did not affect the cyclic softening behavior of the alloy. The fatigue life of the alloy decreased with increasing strain amplitude, while the fatigue life first decreased and then increased with increasing RR. The longest fatigue life was observed for the alloy rolled at a RR of 60%. A bilinear Coffin-Manson relationship was observed to hold true for this alloy.

  2. Cloud structure of the nearest brown dwarfs. II: High-amplitude variability for Luhman 16 A and B in and out of the 0.99 μm FeH feature

    DOE PAGES

    Buenzli, Esther; Marley, Mark S.; Apai, Daniel; ...

    2015-10-20

    The re-emergence of the 0.99 μm FeH feature in brown dwarfs of early- to mid-T spectral type has been suggested as evidence for cloud disruption where flux from deep, hot regions below the Fe cloud deck can emerge. The same mechanism could account for color changes at the L/T transition and photometric variability. We present the first observations of spectroscopic variability of brown dwarfs covering the 0.99 μm FeH feature. We observed the spatially resolved very nearby brown dwarf binary WISE J104915.57–531906.1 (Luhman 16AB), a late-L and early-T dwarf, with Hubble Space Telescope/WFC3 in the G102 grism at 0.8–1.15 μm.more » We find significant variability at all wavelengths for both brown dwarfs, with peak-to-valley amplitudes of 9.3% for Luhman 16B and 4.5% for Luhman 16A. This represents the first unambiguous detection of variability in Luhman 16A. We estimate a rotational period between 4.5 and 5.5 hr, very similar to Luhman 16B. Variability in both components complicates the interpretation of spatially unresolved observations. The probability for finding large amplitude variability in any two brown dwarfs is less than 10%. Our finding may suggest that a common but yet unknown feature of the binary is important for the occurrence of variability. For both objects, the amplitude is nearly constant at all wavelengths except in the deep K i feature below 0.84 μm. No variations are seen across the 0.99 μm FeH feature. The observations lend strong further support to cloud height variations rather than holes in the silicate clouds, but cannot fully rule out holes in the iron clouds. Here, we re-evaluate the diagnostic potential of the FeH feature as a tracer of cloud patchiness.« less

  3. Accelerated fatigue testing of dentin-composite bond with continuously increasing load.

    PubMed

    Li, Kai; Guo, Jiawen; Li, Yuping; Heo, Young Cheul; Chen, Jihua; Xin, Haitao; Fok, Alex

    2017-06-01

    The aim of this study was to evaluate an accelerated fatigue test method that used a continuously increasing load for testing the dentin-composite bond strength. Dentin-composite disks (ϕ5mm×2mm) made from bovine incisor roots were subjected to cyclic diametral compression with a continuously increasingly load amplitude. Two different load profiles, linear and nonlinear with respect to the number of cycles, were considered. The data were then analyzed by using a probabilistic failure model based on the Weakest-Link Theory and the classical stress-life function, before being transformed to simulate clinical data of direct restorations. All the experimental data could be well fitted with a 2-parameter Weibull function. However, a calibration was required for the effective stress amplitude to account for the difference between static and cyclic loading. Good agreement was then obtained between theory and experiments for both load profiles. The in vitro model also successfully simulated the clinical data. The method presented will allow tooth-composite interfacial fatigue parameters to be determined more efficiently. With suitable calibration, the in vitro model can also be used to assess composite systems in a more clinically relevant manner. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Movement amplitude and tempo change in piano performance

    NASA Astrophysics Data System (ADS)

    Palmer, Caroline

    2004-05-01

    Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.

  5. The Nature of Fatigue in Chronic Fatigue Syndrome.

    PubMed

    Olson, Karin; Zimka, Oksana; Stein, Eleanor

    2015-10-01

    In this article, we report the findings of our study on the nature of fatigue in patients diagnosed with chronic fatigue syndrome. Using ethnoscience as a design, we conducted a series of unstructured interviews and card sorts to learn more about how people with chronic fatigue syndrome describe fatigue. Participants (N = 14) described three distinct domains: tiredness, fatigue, and exhaustion. Most participants experienced tiredness prior to diagnosis, fatigue during daily life, and exhaustion after overexertion. We also discuss participants' ability to adapt to a variety of stressors and prevent shifts to exhaustion, and relate our findings to stress theory and other current research. Primary strategies that promoted adaptation to stressors included pacing and extended rest periods. These findings can aid health care professionals in detecting impending shifts between tiredness, fatigue, and exhaustion and in improving adaptive strategies, thereby improving quality of life. © The Author(s) 2015.

  6. Comparison of the effects of fatigue on kinematics and muscle activation between men and women after anterior cruciate ligament reconstruction.

    PubMed

    Lessi, Giovanna Camparis; Silva, Rodrigo Scattone; Serrão, Fábio Viadanna

    2018-05-01

    Studies comparing the effects of fatigue between men and women after anterior cruciate ligament (ACL) reconstruction are lacking. The purpose of this study was to compare the effects of muscle fatigue on trunk, pelvis and lower limb kinematics and on lower limb muscle activation between male and female athletes who underwent ACL reconstruction. Cross-sectional study. Laboratory setting. Fourteen recreational athletes (7 males and 7 females) with unilateral ACL reconstruction participated of this study. Trunk, pelvis and lower limb kinematics and muscle activation of the vastus lateralis, gluteus medius and gluteus maximus were evaluated during a single-leg drop vertical jump landing before and after a fatigue protocol. Females had greater peak knee abduction after fatigue in relation to before fatigue (P = 0.008), and in relation to men after fatigue (P = 0.011). Also, in females, peak knee abduction was greater in the reconstructed limb in relation to the non-reconstructed limb after fatigue (P = 0.029). Males showed a greater mean amplitude of activation of the vastus lateralis muscle after fatigue in relation to before fatigue (P < 0.001). Muscle fatigue produced kinematic alterations that have been shown to increase the risk for a second ACL injury in female athletes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Daily cytokine fluctuations, driven by leptin, are associated with fatigue severity in chronic fatigue syndrome: evidence of inflammatory pathology.

    PubMed

    Stringer, Elizabeth Ann; Baker, Katharine Susanne; Carroll, Ian R; Montoya, Jose G; Chu, Lily; Maecker, Holden T; Younger, Jarred W

    2013-04-09

    Chronic fatigue syndrome (CFS) is a debilitating disorder characterized by persistent fatigue that is not alleviated by rest. The lack of a clearly identified underlying mechanism has hindered the development of effective treatments. Studies have demonstrated elevated levels of inflammatory factors in patients with CFS, but findings are contradictory across studies and no biomarkers have been consistently supported. Single time-point approaches potentially overlook important features of CFS, such as fluctuations in fatigue severity. We have observed that individuals with CFS demonstrate significant day-to-day variability in their fatigue severity. Therefore, to complement previous studies, we implemented a novel longitudinal study design to investigate the role of cytokines in CFS pathophysiology. Ten women meeting the Fukuda diagnostic criteria for CFS and ten healthy age- and body mass index (BMI)-matched women underwent 25 consecutive days of blood draws and self-reporting of symptom severity. A 51-plex cytokine panel via Luminex was performed for each of the 500 serum samples collected. Our primary hypothesis was that daily fatigue severity would be significantly correlated with the inflammatory adipokine leptin, in the women with CFS and not in the healthy control women. As a post-hoc analysis, a machine learning algorithm using all 51 cytokines was implemented to determine whether immune factors could distinguish high from low fatigue days. Self-reported fatigue severity was significantly correlated with leptin levels in six of the participants with CFS and one healthy control, supporting our primary hypothesis. The machine learning algorithm distinguished high from low fatigue days in the CFS group with 78.3% accuracy. Our results support the role of cytokines in the pathophysiology of CFS.

  8. Knee Kinematics is Altered Post-Fatigue While Performing a Crossover Task

    PubMed Central

    Cortes, Nelson; Greska, Eric; Ambegaonkar, Jatin P.; Kollock, Roger O.; Caswell, Shane V.; Onate, James A.

    2013-01-01

    Purpose To examine the effect of a sequential fatigue protocol on lower extremity biomechanics during a crossover cutting task in female soccer players. Methods Eighteen female collegiate soccer players alternated between a fatigue protocol and two consecutive unanticipated crossover trials until fatigue was reached. Lower extremity biomechanics were evaluated during the crossover using a 3D motion capture system and two force plates. Repeated measures ANOVAs analyzed differences between three sequential stages of fatigue (pre, 50%, 100%) for each dependent variable (α=0.05). Results Knee flexion angles at initial contact (IC) for pre- (−32±9°) and 50% (−29±11°) were significantly higher than at 100% fatigue (−22±9°) (p<0.001 and p=0.015, respectively). Knee adduction angles at IC for pre- (9±5°) and 50% (8±4°) were significantly higher (p=0.006 and p=0.049, respectively) than at 100% fatigue (6±4°). Conclusions Fatigue altered sagittal and frontal knee kinematics after 50% fatigue whereupon participants had diminished knee control at initial contact. Interventions should attempt to reduce the negative effects of fatigue on lower extremity biomechanics by promotion appropriate frontal plane alignment, and increased knee flexion during fatigue status. PMID:24045915

  9. Effects of Tube Processing on the Fatigue Life of Nitinol

    NASA Astrophysics Data System (ADS)

    Adler, Paul; Frei, Rudolf; Kimiecik, Michael; Briant, Paul; James, Brad; Liu, Chuan

    2018-03-01

    Nitinol tubes were manufactured from Standard Grade VIM-VAR ingots using Tube Manufacturing method "TM-1." Diamond-shaped samples were laser cut, shape set, then fatigued at 37 °C to 107 cycles. The 50, 5, and 1% probabilities of fracture were calculated as a function of number of cycles to fracture and compared with probabilities determined for fatigue data published by Robertson et al. (J Mech Behav Biomater 51:119-131, 2015). Robertson tested similar diamonds made from the same standard grade of Nitinol as in the current study, two other standard grades of Nitinol, and two high-purity grades of Nitinol expressly designed to improve fatigue life. Robertson's tubes were manufactured using Tube Manufacturing method "TM-2." Fatigue performance of TM-1 and TM-2 diamonds were compared: At 107 cycles, strain amplitudes corresponding to the three probabilities of fracture of the TM-1 diamonds were 2-3 times those of the TM-2 diamonds made from the same grade of Nitinol, and comparable to TM-2 diamonds made from the higher-purity materials. This difference is likely a result of the differences in tube manufacturing techniques and effects on resulting microstructures. Microstructural analyses of samples revealed a correlation between the median probability of fracture and median inclusion diameter that follows an inverse power-law function of the form y ≈ x -1.

  10. Probabilistic analysis for fatigue strength degradation of materials

    NASA Technical Reports Server (NTRS)

    Royce, Lola

    1989-01-01

    This report presents the results of the first year of a research program conducted for NASA-LeRC by the University of Texas at San Antonio. The research included development of methodology that provides a probabilistic treatment of lifetime prediction of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Linear elastic fracture mechanics is utilized in the latter model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs, RANDOM2, RANDOM3, and RANDOM4. These programs determine the random lifetime of an engine component, in mechanical load cycles, to reach a critical fatigue strength or crack size. The material considered was a cast nickel base superalloy, one typical of those used in the Space Shuttle Main Engine.

  11. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang

    2018-06-01

    The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.

  12. Acoustic emission and fatigue damage induced in plasma-sprayed hydroxyapatite coating layers.

    PubMed

    Laonapakul, Teerawat; Otsuka, Yuichi; Nimkerdphol, Achariya Rakngarm; Mutoh, Yoshiharu

    2012-04-01

    In order to improve the adhesive strength of hydroxyapatite (HAp) coatings, grit blasting with Al(2)O(3) powder and then wet blasting with HAp/Ti mixed powders was carried out on a commercially pure Ti (cp-Ti) substrate. Subsequently, an HAp/Ti bond coat layer and HAp top coat layer were deposited by plasma spraying. Fatigue tests of the HAp-coated specimens were carried out under four-point bending. Acoustic emission (AE) signals during the entire fatigue test were monitored to investigate the fatigue cracking behavior of the HAp-coated specimens. The HAp-coated specimens could survive up to 10(7) cycles without spallation of the HAp coating layers at the stress amplitude of 120 MPa. The HAp-coated specimens without HAp/Ti bond coat layer showed shorter fatigue life and easy crack nucleation compared to the HAp-coated specimens with HAp/Ti bond coat layer. The delamination and spallation of the HAp top coat with HAp/Ti bond coat on cp-Ti was not observed until the crack propagated into the cp-Ti during the final fracture stage of the fatigue cycle. Therefore, the HAp/Ti bond coat layer was found to greatly improve the fatigue damage resistance of the HAp coating layer. Three stages of the fatigue failure behavior of the HAp top coat with HAp/Ti bond coat on a cp-Ti substrate can be clearly estimated by the AE monitoring technique. These stages are cracks nucleating and propagating in the coating layer, cracks propagating in the substrate, and cracks propagating unstably to final fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Characterization of the strain-life fatigue properties of thin sheet metal using an optical extensometer

    NASA Astrophysics Data System (ADS)

    Zhang, Shuiqiang; Mao, Shuangshuang; Arola, Dwayne; Zhang, Dongsheng

    2014-09-01

    Characterizing the strain-life fatigue behavior of thin sheet metals is often challenging since the required specimens have short gauge lengths to avoid buckling, thereby preventing the use of conventional mechanical extensometers. To overcome this obstacle a microscopic optical imaging system has been developed to measure the strain amplitude during fatigue testing using Digital Image Correlation (DIC). A strategy for rapidly recording images is utilized to enable sequential image sampling rates of at least 10 frames per second (fps) using a general digital camera. An example of a complete strain-life fatigue test for thin sheet steel under constant displacement control is presented in which the corresponding strain within the gage section of the specimen is measured using the proposed imaging system. The precision in strain measurement is assessed and methods for improving the image sampling rates in dynamic testing are discussed.

  14. Bithermal fatigue: A simplified alternative to thermomechanical fatigue

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.

    1988-01-01

    A bithermal fatigue test technique was proposed as a simplified alternative to the thermomechanical fatigue test. Both the thermomechanical cycle and the bithermal technique can be used to study nonisothermal fatigue behavior. The difference between the two cycles is that in a conventional thermomechanical fatigue cycle the temperature is continuously varied concurrently with the applied mechanical strains, but in the bithermal fatigue cycle the specimen is held at zero load during the temperature excursions and all the loads are applied at the two extreme temperatures of the cycle. Experimentally, the bithermal fatigue test technique offers advantages such as ease in synchronizing the temperature and mechanical strain waveforms, in minimizing temperature gradients in the specimen gauge length, and in reducing and interpreting thermal fatigue such as the influence of alternate high and low temperatures on the cyclic stress-strain response characteristics, the effects of thermal state, and the possibility of introducing high- and low-temperature deformation mechanisms within the same cycle. The bithermal technique was used to study nonisothermal fatigue behavior of alloys such as single-crystal PWA 1480, single-crystal Rene N4, cast B1900+Hf, and wrought Haynes 188.

  15. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue

    PubMed Central

    Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A.

    2012-01-01

    This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress. PMID:23564979

  16. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    NASA Astrophysics Data System (ADS)

    Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong

    2016-12-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  17. A study into psychosocial factors as predictors of work-related fatigue.

    PubMed

    Rahman, Hanif Abdul; Abdul-Mumin, Khadizah; Naing, Lin

    2016-07-14

    To explore and determine relationship between psychosocial factors and work-related fatigue among emergency and critical care nurses in Brunei. Cross-sectional study conducted on all emergency and critical care nurses across Brunei public hospitals from February to April 2016. 201 nurses participated in the study (82% response rate). A total of 36% of the variance of chronic fatigue was explained by stress, trust in management, decision latitude, self-rated health, and work-family conflict. Burnout, self-rated health, commitment to workplace, and trust in management explained 30% of the variance of acute fatigue. Stress, work-family conflict and reward explained 28% of the variance of intershift recovery after controlling for significant sociodemographic variables. Smoking was identified as an important sociodemographic factor for work-related fatigue. Psychosocial factors were good predictors of work-related fatigue. A range of psychosocial factors were established, however more research is required to determine all possible causation factors of nurses' work-related fatigue.

  18. Measurement of Fatigue in Cancer, Stroke, and HIV Using the Functional Assessment of Chronic Illness Therapy – Fatigue (FACIT-F) Scale

    PubMed Central

    Butt, Zeeshan; Lai, Jin-shei; Rao, Deepa; Heinemann, Allen W.; Bill, Alex; Cella, David

    2012-01-01

    Objective Given the importance of fatigue in cancer, stroke and HIV, we sought to assess the measurement properties of a single, well-described fatigue scale in these populations. We hypothesized that the psychometric properties of the Functional Assessment of Chronic Illness Therapy – Fatigue (FACIT-F) subscale would be favorable and that the scale could serve as a useful indicator of fatigue in these populations. Methods Patients were eligible for the study if they were outpatients, aged 18 or older, with a diagnosis of cancer (n=297), stroke (n=51), or HIV/AIDS (n=51). All participants were able to understand and speak English. Patients answered study-related questions, including the FACIT-F using a touch-screen laptop, assisted by the research assistant as necessary. Clinical information was abstracted from patients’ medical records. Results Item-level statistics on the FACIT-F were similar across the groups and internal consistency reliability was uniformly high (α>0.91). Correlations with performance status ratings were statistically significant across the groups (range r=−0.28 to −0.80). Fatigue scores were moderately to highly correlated with general quality of life (range r=0.66–0.80) in patients with cancer, stroke, and HIV. Divergent validity was supported in low correlations with variables not expected to correlate with fatigue. Conclusions Originally developed to assess cancer-related fatigue, the FACIT-F has utility as a measure of fatigue in other populations, such as stroke and HIV. Ongoing research will soon allow for comparison of FACIT-F scores to those obtained using the fatigue measures from the Patient-Reported Outcomes Measurement Information System (PROMIS®; www.nihpromis.org) initiative. PMID:23272990

  19. Contribution of hamstring fatigue to quadriceps inhibition following lumbar extension exercise.

    PubMed

    Hart, Joseph M; Kerrigan, D Casey; Fritz, Julie M; Saliba, Ethan N; Gansneder, Bruce; Ingersoll, Christopher D

    2006-01-01

    The purpose of this study was to determine the contribution of hamstrings and quadriceps fatigue to quadriceps inhibition following lumbar extension exercise. Regression models were calculated consisting of the outcome variable: quadriceps inhibition and predictor variables: change in EMG median frequency in the quadriceps and hamstrings during lumbar fatiguing exercise. Twenty-five subjects with a history of low back pain were matched by gender, height and mass to 25 healthy controls. Subjects performed two sets of fatiguing isometric lumbar extension exercise until mild (set 1) and moderate (set 2) fatigue of the lumbar paraspinals. Quadriceps and hamstring EMG median frequency were measured while subjects performed fatiguing exercise. A burst of electrical stimuli was superimposed while subjects performed an isometric maximal quadriceps contraction to estimate quadriceps inhibition after each exercise set. Results indicate the change in hamstring median frequency explained variance in quadriceps inhibition following the exercise sets in the history of low back pain group only. Change in quadriceps median frequency explained variance in quadriceps inhibition following the first exercise set in the control group only. In conclusion, persons with a history of low back pain whose quadriceps become inhibited following lumbar paraspinal exercise may be adapting to the fatigue by using their hamstring muscles more than controls. Key PointsA neuromuscular relationship between the lumbar paraspinals and quadriceps while performing lumbar extension exercise may be influenced by hamstring muscle fatigue.QI following lumbar extension exercise in persons with a history of LBP group may involve significant contribution from the hamstring muscle group.More hamstring muscle contribution may be a necessary adaptation in the history of LBP group due to weaker and more fatigable lumbar extensors.

  20. ENSO modulation of tropical Indian Ocean subseasonal variability

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Kirtman, Ben P.

    2016-12-01

    In this study, we use 30 years of retrospective climate model forecasts and observational estimates to show that El Niño/Southern Oscillation (ENSO) affects the amplitude of subseasonal variability of sea surface temperature (SST) in the southwest Indian Ocean, an important Tropical Intraseasonal Oscillation (TISO) onset region. The analysis shows that deeper background mixed-layer depths and warmer upper ocean conditions during El Niño reduce the amplitude of the subseasonal SST variability over Seychelles-Chagos Thermocline Ridge (SCTR), which may reduce SST-wind coupling and the amplitude of TISO variability. The opposite holds for La Niña where the shallower mixed-layer depth enhances SST variability over SCTR, which may increase SST-wind coupling and the amplitude of TISO variability.

  1. True amplitude wave equation migration arising from true amplitude one-way wave equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Guanquan; Bleistein, Norman

    2003-10-01

    One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition

  2. Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives

    NASA Astrophysics Data System (ADS)

    Cerfontaine, B.; Collin, F.

    2018-02-01

    The purpose of this paper is to provide a comprehensive state of the art of fatigue and cyclic loading of natural rock materials. Papers published in the literature are classified and listed in order to ease bibliographical review, to gather data (sometimes contradictory) on classical experimental results and to analyse the main interpretation concepts. Their advantages and limitations are discussed, and perspectives for further work are highlighted. The first section summarises and defines the different experimental set-ups (type of loading, type of experiment) already applied to cyclic/fatigue investigation of rock materials. The papers are then listed based on these different definitions. Typical results are highlighted in next section. Fatigue/cyclic loading mainly results in accumulation of plastic deformation and/or damage cycle after cycle. A sample cyclically loaded at constant amplitude finally leads to failure even if the peak load is lower than its monotonic strength. This subcritical crack is due to a diffuse microfracturing and decohesion of the rock structure. The third section reviews and comments the concepts used to interpret the results. The fatigue limit and S- N curves are the most common concepts used to describe fatigue experiments. Results published from all papers are gathered into a single figure to highlight the tendency. Predicting the monotonic peak strength of a sample is found to be critical in order to compute accurate S- N curves. Finally, open questions are listed to provide a state of the art of grey areas in the understanding of fatigue mechanisms and challenges for the future.

  3. Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury

    PubMed Central

    Estigoni, Eduardo H.; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M.; Davis, Glen M.

    2014-01-01

    This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery. PMID:25479324

  4. Evoked EMG versus muscle torque during fatiguing functional electrical stimulation-evoked muscle contractions and short-term recovery in individuals with spinal cord injury.

    PubMed

    Estigoni, Eduardo H; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M; Davis, Glen M

    2014-12-03

    This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery.

  5. Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys

    NASA Technical Reports Server (NTRS)

    Mason, Mark E.; Gangloff, Richard P.

    1994-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.

  6. The Effect of Hole Quality on the Fatigue Life of 2024-T3 Aluminum Alloy Sheet

    NASA Technical Reports Server (NTRS)

    Everett, Richard A., Jr.

    2004-01-01

    This paper presents the results of a study whose main objective was to determine which type of fabrication process would least affect the fatigue life of an open-hole structural detail. Since the open-hole detail is often the fundamental building block for determining the stress concentration of built-up structural parts, it is important to understand any factor that can affect the fatigue life of an open hole. A test program of constant-amplitude fatigue tests was conducted on five different sets of test specimens each made using a different hole fabrication process. Three of the sets used different mechanical drilling procedures while a fourth and fifth set were mechanically drilled and then chemically polished. Two sets of specimens were also tested under spectrum loading to aid in understanding the effects of residual compressive stresses on fatigue life. Three conclusions were made from this study. One, the residual compressive stresses caused by the hole-drilling process increased the fatigue life by two to three times over specimens that were chemically polished after the holes were drilled. Second, the chemical polishing process does not appear to adversely affect the fatigue life. Third, the chemical polishing process will produce a stress-state adjacent to the hole that has insignificant machining residual stresses.

  7. The Cyclic Mechanical and Fatigue Properties of Ferroanelastic Beta Prime Gold Cadmium. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Karz, R. S.

    1973-01-01

    The fatigue behavior of beta prime Au1.05Cd0.95 alloy was investigated and found to be exceptional for certain orientations with lives of 10,000 to 1,000,000 cycles at total strain amplitudes above 0.05 not uncommon. Fatigue lives were influenced principally by the stress level which controlled the amount of plastic deformation, and stress fatigue resistance was low compared with most metals. Failure always exhibited brittle characteristics. An algorithm was devised to predict mechanical behavior from the twin system orientations and was found in good agreement with experiment for longitudinal strains above 0.04. The cyclic mechanical properties were examined, and a model for the behavior was proposed utilizing previous theories of the restoring force and the Peierls-Nabarro stress for twinning and new concepts. Gold-cadmium was found to have certain strain fatigue resistant applications, particularly in electronics where the alloy's high electrical conductivity is utilized.

  8. Neuromuscular transmission and muscle fatigue changes by nanostructured oxygen.

    PubMed

    Ivannikov, Maxim V; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2017-04-01

    Oxygen (O 2 ) nanobubbles offer a new method for tissue oxygenation. The effects of O 2 nanobubbles on transmission at neuromuscular junctions (NMJs) and muscle function were explored in murine diaphragm. Electrophysiological parameters, NMJ ultrastructure, muscle force, and muscle fatigue were studied during superfusion with solutions with different oxygen levels or oxygen nanobubbles. High frequency nerve stimulation of muscles superfused with O 2 nanobubble solution slowed neurotransmission decline over those with either control or hyperoxic solution. O 2 nanobubble solution increased the amplitude of evoked end plate potentials and quantal content but did not affect spontaneous activity. Electron microscopy of stimulated O 2 nanobubble treated NMJs showed accumulation of large synaptic vesicles and endosome-like structures. O 2 nanobubble solution had no effects on isometric muscle force, but it significantly decreased fatigability and maximum force recovery time in nerve stimulated muscles. O 2 nanobubbles increase neurotransmission and reduce the probability of neurotransmission failure in muscle fatigue. Muscle Nerve 55: 555-563, 2017. © 2016 Wiley Periodicals, Inc.

  9. The prevalence of severe fatigue in rheumatic diseases: an international study.

    PubMed

    Overman, Cécile L; Kool, Marianne B; Da Silva, José A P; Geenen, Rinie

    2016-02-01

    Fatigue is a common, disabling, and difficult-to-manage problem in rheumatic diseases. Prevalence estimates of fatigue within rheumatic diseases vary considerably. Data on the prevalence of severe fatigue across multiple rheumatic diseases using a similar instrument is missing. Our aim was to provide an overview of the prevalence of severe fatigue across a broad range of rheumatic diseases and to examine its association with clinical and demographic variables. Online questionnaires were filled out by an international sample of 6120 patients (88 % female, mean age 47) encompassing 30 different rheumatic diseases. Fatigue was measured with the RAND(SF)-36 Vitality scale. A score of ≤35 was taken as representing severe fatigue (90 % sensitivity and 81 % specificity for chronic fatigue syndrome). Severe fatigue was present in 41 to 57 % of patients with a single inflammatory rheumatic disease such as rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, Sjögren's syndrome, psoriatic arthritis, and scleroderma. Severe fatigue was least prevalent in patients with osteoarthritis (35 %) and most prevalent in patients with fibromyalgia (82 %). In logistic regression analysis, severe fatigue was associated with having fibromyalgia, having multiple rheumatic diseases without fibromyalgia, younger age, lower education, and language (French: highest prevalence; Dutch: lowest prevalence). In conclusion, one out of every two patients with a rheumatic disease is severely fatigued. As severe fatigue is detrimental to the patient, the near environment, and society at large, unraveling the underlying mechanisms of fatigue and developing optimal treatment should be top priorities in rheumatologic research and practice.

  10. Fatigue in young survivors of extracranial childhood cancer: a Finnish nationwide survey.

    PubMed

    Mört, Susanna; Lähteenmäki, Päivi M; Matomäki, Jaakko; Salmi, Toivo T; Salanterä, Sanna

    2011-11-01

    To evaluate self-reports of fatigue by young cancer survivors (aged 11-18 years), to compare young survivors' fatigue scores with the scores of a healthy control group and of the parent proxy evaluation, and to analyze whether demographic or disease-related factors are associated with young survivors' fatigue. Cross-sectional quantitative study. An urban hospital in southwestern Finland. 384 survivors diagnosed with an extracranial malignancy at age 16 or younger, who have survived four or more years postdiagnosis, and who are free of cancer. General matched population controls were randomly selected from the Finnish Population Registry. Demographic data and a self-report written fatigue questionnaire. Total fatigue (TF), general fatigue (GF), sleep or rest fatigue (SF), and cognitive fatigue. The control populations reported significantly more issues with TF, GF, and SF than did the survivor population. In survivors, older age, the need for remedial education at school, and a sarcoma diagnosis were associated with increasing fatigue, whereas female gender, better school grades, and greater health-related quality-of-life (HRQOL) scores were associated with lower fatigue. The study variables explained 49%-65% of the variation in fatigue scores. Although survivors and their matched controls seem to have similar fatigue, subgroups of survivors do experience excessive fatigue, which may have an impact on their HRQOL. This study increases the knowledge about fatigue levels of young survivors of extracranial malignancies and identifies the need for instruments specifically designed to assess fatigue in this population. The healthcare team should pay attention to the fatigue level of young survivors, particularly SF.

  11. Selective effect of physical fatigue on motor imagery accuracy.

    PubMed

    Di Rienzo, Franck; Collet, Christian; Hoyek, Nady; Guillot, Aymeric

    2012-01-01

    While the use of motor imagery (the mental representation of an action without overt execution) during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years) conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001) were observed during the posttest for internal visual imagery. A significant correlation (r=0.64; p<0.05) was observed between motor imagery vividness (estimated through imagery questionnaire) and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to temporary

  12. Selective Effect of Physical Fatigue on Motor Imagery Accuracy

    PubMed Central

    Di Rienzo, Franck; Collet, Christian; Hoyek, Nady; Guillot, Aymeric

    2012-01-01

    While the use of motor imagery (the mental representation of an action without overt execution) during actual training sessions is usually recommended, experimental studies examining the effect of physical fatigue on subsequent motor imagery performance are sparse and yielded divergent findings. Here, we investigated whether physical fatigue occurring during an intense sport training session affected motor imagery ability. Twelve swimmers (nine males, mean age 15.5 years) conducted a 45 min physically-fatiguing protocol where they swam from 70% to 100% of their maximal aerobic speed. We tested motor imagery ability immediately before and after fatigue state. Participants randomly imagined performing a swim turn using internal and external visual imagery. Self-reports ratings, imagery times and electrodermal responses, an index of alertness from the autonomic nervous system, were the dependent variables. Self-reports ratings indicated that participants did not encounter difficulty when performing motor imagery after fatigue. However, motor imagery times were significantly shortened during posttest compared to both pretest and actual turn times, thus indicating reduced timing accuracy. Looking at the selective effect of physical fatigue on external visual imagery did not reveal any difference before and after fatigue, whereas significantly shorter imagined times and electrodermal responses (respectively 15% and 48% decrease, p<0.001) were observed during the posttest for internal visual imagery. A significant correlation (r = 0.64; p<0.05) was observed between motor imagery vividness (estimated through imagery questionnaire) and autonomic responses during motor imagery after fatigue. These data support that unlike local muscle fatigue, physical fatigue occurring during intense sport training sessions is likely to affect motor imagery accuracy. These results might be explained by the updating of the internal representation of the motor sequence, due to temporary

  13. A fatigue test method for Pb(Zr,Ti)O3 thin films by using MEMS-based self-sensitive piezoelectric microcantilevers

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Maeda, R.; Itoh, T.

    2008-11-01

    In the present study, we propose a new method for the fatigue test of lead zirconate titanate (PZT) thin films for MEMS devices by using self-sensitive piezoelectric microcantilevers developed in our previous study. We have deposited PZT thin films on SOI wafers and fabricated the microcantilevers through the MEMS microfabrication process. In the self-sensitive piezoelectric microcantilevers, the PZT thin films are separated in order to act as an actuator and a sensor. The fatigue characteristic of the PZT thin films can be evaluated by measuring the output voltage of the sensor as a function of time. When a sine wave of 20 Vpp and a dc bias of 10 V were applied to the PZT thin films for an actuator, the output voltage of the sensor fell down after 107 fatigue cycles. We have also investigated the influence of amplitude of the actuation sine wave and dc bias on the fatigue of the PZT thin films by using the proposed fatigue test method.

  14. Offshore fatigue design turbulence

    NASA Astrophysics Data System (ADS)

    Larsen, Gunner C.

    2001-07-01

    Fatigue damage on wind turbines is mainly caused by stochastic loading originating from turbulence. While onshore sites display large differences in terrain topology, and thereby also in turbulence conditions, offshore sites are far more homogeneous, as the majority of them are likely to be associated with shallow water areas. However, despite this fact, specific recommendations on offshore turbulence intensities, applicable for fatigue design purposes, are lacking in the present IEC code. This article presents specific guidelines for such loading. These guidelines are based on the statistical analysis of a large number of wind data originating from two Danish shallow water offshore sites. The turbulence standard deviation depends on the mean wind speed, upstream conditions, measuring height and thermal convection. Defining a population of turbulence standard deviations, at a given measuring position, uniquely by the mean wind speed, variations in upstream conditions and atmospheric stability will appear as variability of the turbulence standard deviation. Distributions of such turbulence standard deviations, conditioned on the mean wind speed, are quantified by fitting the measured data to logarithmic Gaussian distributions. By combining a simple heuristic load model with the parametrized conditional probability density functions of the turbulence standard deviations, an empirical offshore design turbulence intensity is determined. For pure stochastic loading (as associated with standstill situations), the design turbulence intensity yields a fatigue damage equal to the average fatigue damage caused by the distributed turbulence intensity. If the stochastic loading is combined with a periodic deterministic loading (as in the normal operating situation), the proposed design turbulence intensity is shown to be conservative.

  15. Violent offending predicts P300 amplitude.

    PubMed

    Bernat, Edward M; Hall, Jason R; Steffen, Benjamin V; Patrick, Christopher J

    2007-11-01

    Prior work has consistently revealed a relationship between antisocial behavior and reduced P300 amplitude. Fewer studies have directly evaluated behavioral indices of aggression and P300, and those that have generally do not account for potential mediating variables such as age, intelligence, and behavioral task performance. The current study assessed the relationship between the total number of convicted violent and non-violent offenses and P300 in a sample of inmates from a medium security state prison. Violent offenses evidenced a robust negative relationship with P300 amplitude, whereas non-violent offenses did not. Additional analyses evaluated age, intelligence, and behavioral task performance as potential mediating variables. Only reaction time significantly predicted P300 amplitude, and mediational analyses showed that this relationship did not account for the violent-offense/P300 relationship. Findings are discussed in terms of personality correlates and neurobiological process related to aggression. There is long-standing interest in the notion that antisocial behavior, and aggression in particular, involves neurobiologically-based deficits in information processing. Neuropsychological research has revealed that antisocial behavior is associated with impaired executive function (c.f. Morgan and Lilienfeld, 2000), and neuroimaging studies have consistently identified frontal lobe abnormalities among violent offenders (Goyer et al., 1994; Raine et al., 1997; Raine et al., 2000; Volkow et al., 1995). Furthermore, research using event-related brain potentials has indicated that antisocial behavior is associated with reduced P300 responses to task-relevant stimuli in target detection tasks (e.g., Bauer et al., 1994; Iacono et al., 2003). These deficits may reflect inefficient neural processing of salient environmental stimuli (Donchin and Coles, 1988), which could potentially contribute to risk for antisocial deviance. Notably, antisocial behavior encompasses

  16. Changes in lower extremity biomechanics due to a short-term fatigue protocol.

    PubMed

    Cortes, Nelson; Greska, Eric; Kollock, Roger; Ambegaonkar, Jatin; Onate, James A

    2013-01-01

    Noncontact anterior cruciate ligament injury has been reported to occur during the later stages of a game when fatigue is most likely present. Few researchers have focused on progressive changes in lower extremity biomechanics that occur throughout fatiguing. To evaluate the effects of a sequential fatigue protocol on lower extremity biomechanics during a sidestep-cutting task (SS). Controlled laboratory study. Laboratory. Eighteen uninjured female collegiate soccer players (age = 19.2 ± 0.9 years, height = 1.66 ± 0.5 m, mass = 61.6 ± 5.1 kg) volunteered. The independent variable was fatigue level, with 3 levels (prefatigue, 50% fatigue, and 100% fatigue). Using 3-dimensional motion capture, we assessed lower extremity biomechanics during the SS. Participants alternated between a fatigue protocol that solicited different muscle groups and mimicked actual sport situations and unanticipated SS trials. The process was repeated until fatigue was attained. Dependent variables were hip- and knee-flexion and abduction angles and internal moments measured at initial contact and peak stance and defined as measures obtained between 0% and 50% of stance phase. Knee-flexion angle decreased from prefatigue (-17° ± 5°) to 50% fatigue (-16° ± 6°) and to 100% fatigue (-14° ± 4°) (F2,34 = 5.112, P = .004). Knee flexion at peak stance increased from prefatigue (-52.9° ± 5.6°) to 50% fatigue (-56.1° ± 7.2°) but decreased from 50% to 100% fatigue (-50.5° ± 7.1°) (F2,34 = 8.282, P = 001). Knee-adduction moment at peak stance increased from prefatigue (0.49 ± 0.23 Nm/kgm) to 50% fatigue (0.55 ± 0.25 Nm/kgm) but decreased from 50% to 100% fatigue (0.37 ± 0.24) (F2,34 = 3.755, P = 03). Hip-flexion angle increased from prefatigue (45.4° ± 10.9°) to 50% fatigue (46.2° ± 11.2°) but decreased from 50% to 100% fatigue (40.9° ± 11.3°) (F2,34 = 6.542, P = .004). Hip flexion at peak stance increased from prefatigue (49.8° ± 9.9°) to 50% fatigue (52.9° ± 12.1

  17. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue

    PubMed Central

    Leader, John P.; Loiselle, Denis S.; Higgins, Amanda; Lin, Wei; Renaud, Jean-Marc

    2015-01-01

    We examined whether a Ca2+-K+ interaction was a potential mechanism operating during fatigue with repeated tetani in isolated mouse muscles. Raising the extracellular Ca2+ concentration ([Ca2+]o) from 1.3 to 10 mM in K+-depressed slow-twitch soleus and/or fast-twitch extensor digitorum longus muscles caused the following: 1) increase of intracellular K+ activity by 20–60 mM (raised intracellular K+ content, unchanged intracellular fluid volume), so that the K+-equilibrium potential increased by ∼10 mV and resting membrane potential repolarized by 5–10 mV; 2) large restoration of action potential amplitude (16–54 mV); 3) considerable recovery of excitable fibers (∼50% total); and 4) restoration of peak force with the peak tetanic force-extracellular K+ concentration ([K+]o) relationship shifting rightward toward higher [K+]o. Double-sigmoid curve-fitting to fatigue profiles (125 Hz for 500 ms, every second for 100 s) showed that prior exposure to raised [K+]o (7 mM) increased, whereas lowered [K+]o (2 mM) decreased, the rate and extent of force loss during the late phase of fatigue (second sigmoid) in soleus, hence implying a K+ dependence for late fatigue. Prior exposure to 10 mM [Ca2+]o slowed late fatigue in both muscle types, but was without effect on the extent of fatigue. These combined findings support our notion that a Ca2+-K+ interaction is plausible during severe fatigue in both muscle types. We speculate that a diminished transsarcolemmal K+ gradient and lowered [Ca2+]o contribute to late fatigue through reduced action potential amplitude and excitability. The raised [Ca2+]o-induced slowing of fatigue is likely to be mediated by a higher intracellular K+ activity, which prolongs the time before stimulation-induced K+ efflux depolarizes the sarcolemma sufficiently to interfere with action potentials. PMID:25571990

  18. Maximal Voluntary Activation of the Elbow Flexors Is under Predicted by Transcranial Magnetic Stimulation Compared to Motor Point Stimulation Prior to and Following Muscle Fatigue

    PubMed Central

    Cadigan, Edward W. J.; Collins, Brandon W.; Philpott, Devin T. G.; Kippenhuck, Garreth; Brenton, Mitchell; Button, Duane C.

    2017-01-01

    Transcranial magnetic (TMS) and motor point stimulation have been used to determine voluntary activation (VA). However, very few studies have directly compared the two stimulation techniques for assessing VA of the elbow flexors. The purpose of this study was to compare TMS and motor point stimulation for assessing VA in non-fatigued and fatigued elbow flexors. Participants performed a fatigue protocol that included twelve, 15 s isometric elbow flexor contractions. Participants completed a set of isometric elbow flexion contractions at 100, 75, 50, and 25% of maximum voluntary contraction (MVC) prior to and following fatigue contractions 3, 6, 9, and 12 and 5 and 10 min post-fatigue. Force and EMG of the bicep and triceps brachii were measured for each contraction. Force responses to TMS and motor point stimulation and EMG responses to TMS (motor evoked potentials, MEPs) and Erb's point stimulation (maximal M-waves, Mmax) were also recorded. VA was estimated using the equation: VA% = (1−SITforce/PTforce) × 100. The resting twitch was measured directly for motor point stimulation and estimated for both motor point stimulation and TMS by extrapolation of the linear regression between the superimposed twitch force and voluntary force. MVC force, potentiated twitch force and VA significantly (p < 0.05) decreased throughout the elbow flexor fatigue protocol and partially recovered 10 min post fatigue. VA was significantly (p < 0.05) underestimated when using TMS compared to motor point stimulation in non-fatigued and fatigued elbow flexors. Motor point stimulation compared to TMS superimposed twitch forces were significantly (p < 0.05) higher at 50% MVC but similar at 75 and 100% MVC. The linear relationship between TMS superimposed twitch force and voluntary force significantly (p < 0.05) decreased with fatigue. There was no change in triceps/biceps electromyography, biceps/triceps MEP amplitudes, or bicep MEP amplitudes throughout the fatigue protocol at 100% MVC

  19. Maximal Voluntary Activation of the Elbow Flexors Is under Predicted by Transcranial Magnetic Stimulation Compared to Motor Point Stimulation Prior to and Following Muscle Fatigue.

    PubMed

    Cadigan, Edward W J; Collins, Brandon W; Philpott, Devin T G; Kippenhuck, Garreth; Brenton, Mitchell; Button, Duane C

    2017-01-01

    Transcranial magnetic (TMS) and motor point stimulation have been used to determine voluntary activation (VA). However, very few studies have directly compared the two stimulation techniques for assessing VA of the elbow flexors. The purpose of this study was to compare TMS and motor point stimulation for assessing VA in non-fatigued and fatigued elbow flexors. Participants performed a fatigue protocol that included twelve, 15 s isometric elbow flexor contractions. Participants completed a set of isometric elbow flexion contractions at 100, 75, 50, and 25% of maximum voluntary contraction (MVC) prior to and following fatigue contractions 3, 6, 9, and 12 and 5 and 10 min post-fatigue. Force and EMG of the bicep and triceps brachii were measured for each contraction. Force responses to TMS and motor point stimulation and EMG responses to TMS (motor evoked potentials, MEPs) and Erb's point stimulation (maximal M-waves, M max ) were also recorded. VA was estimated using the equation: VA% = (1- SITforce / PTforce ) × 100. The resting twitch was measured directly for motor point stimulation and estimated for both motor point stimulation and TMS by extrapolation of the linear regression between the superimposed twitch force and voluntary force. MVC force, potentiated twitch force and VA significantly ( p < 0.05) decreased throughout the elbow flexor fatigue protocol and partially recovered 10 min post fatigue. VA was significantly ( p < 0.05) underestimated when using TMS compared to motor point stimulation in non-fatigued and fatigued elbow flexors. Motor point stimulation compared to TMS superimposed twitch forces were significantly ( p < 0.05) higher at 50% MVC but similar at 75 and 100% MVC. The linear relationship between TMS superimposed twitch force and voluntary force significantly ( p < 0.05) decreased with fatigue. There was no change in triceps/biceps electromyography, biceps/triceps MEP amplitudes, or bicep MEP amplitudes throughout the fatigue protocol at

  20. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  1. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants

    PubMed Central

    Yu, Zheng-Yong; Liu, Qiang; Liu, Yunhan

    2017-01-01

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi–Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings. PMID:28792487

  2. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.

    PubMed

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-08-09

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi-Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings.

  3. Analysis of methods for determining high cycle fatigue strength of a material with investigation of titanium-aluminum-vanadium gigacycle fatigue behavior

    NASA Astrophysics Data System (ADS)

    Pollak, Randall D.

    Today, aerospace engineers still grapple with the qualitative and quantitative understanding of fatigue behavior in the design and testing of turbine-driven jet engines. The Department of Defense has taken a very active role in addressing this problem with the formation of the National High Cycle Fatigue Science & Technology Program in 1994. The primary goal of this program is to further the understanding of high cycle fatigue (HCF) behavior and develop methods in order to mitigate the negative impact of HCF on aerospace operations. This research supports this program by addressing the fatigue strength testing guidance currently provided by the DoD to engine manufacturers, with the primary goal to investigate current methods and recommend a test strategy to characterize the fatigue strength of a material at a specified number of cycles, such as the 109 design goal specified by MIL-HDBK-1783B, or range of cycles. The research utilized the benefits of numerical simulation to initially investigate the staircase method for use in fatigue strength testing. The staircase method is a commonly used fatigue strength test, but its ability to characterize fatigue strength variability is extremely suspect. A modified staircase approach was developed and shown to significantly reduce bias and scatter in estimates for fatigue strength variance. Experimental validation of this proposed test strategy was accomplished using a dual-phase Ti-6Al-4V alloy. The HCF behavior of a second material with a very different microstructure (beta annealed Ti-6Al-4V) was also investigated. The random fatigue limit (RFL) model, a recently developed analysis tool, was investigated to characterize stress-life behavior but found to have difficulty representing fatigue life curves with sharp transitions. Two alternative models (bilinear and hyperbolic) were developed based on maximum likelihood methods to better characterize the Ti-6Al-4V fatigue life behavior. These models provided a good fit to the

  4. Persistent fatigue in young athletes: measuring the clinical course and identifying variables affecting clinical recovery.

    PubMed

    Locke, S; Osborne, M; O'Rourke, P

    2011-02-01

    The objective of this paper is to measure the clinical course (months) in young athletes with persistent fatigue and to identify any covariates affecting the duration of recovery. This was a prospective longitudinal study of 68 athletes; 87% were elite (42 males, 26 females), aged 20.5±3.74 years (SD), who presented with the symptom of persistent fatigue. The collective duration to full clinical recovery was estimated using Kaplan-Meier product-limit curves, and covariates associated with prolonging recovery were identified from Cox proportional hazard models. The median recovery was 5 months (range 1-60 months). The range of presenting symptom duration was 0.5-36 months. The covariates identified were an increased duration of presenting symptoms [hazard ratio (HR), 1.06; 95% confidence interval (CI), 1.02-1.12; P=0.005] and the response of serum cortisol concentration to a standard exercise challenge (HR, 1.92; 95% CI, 1.09-3.38; P=0.03). Delay in recovery was not associated with categories of fatigue that included medical, training-related diagnoses, or other causes. In conclusion, the fatigued athlete represents a significant clinical problem with a median recovery of 5 months, whose collective clinical course to recovery can be estimated by Kaplan-Meier curves and appears to be a continuum. © 2009 John Wiley & Sons A/S.

  5. Functional assessment of chronic illness therapy—the fatigue scale exhibits stronger associations with clinical parameters in chronic dialysis patients compared to other fatigue-assessing instruments

    PubMed Central

    Chao, Chia-Ter; Huang, Jenq-Wen

    2016-01-01

    Background. Patients with end-stage renal disease (ESRD) have a high symptom burden, among which fatigue is highly prevalent. Many fatigue-assessing instruments exist, but comparisons among instruments in this patient population have yet to be investigated. Methods. ESRD patients under chronic hemodialysis were prospectively enrolled and seven types of fatigue instruments were administered: Brief Fatigue Inventory (BFI), Functional Assessment of Chronic Illness Therapy–Fatigue (FACIT-F), Fatigue Severity Scale (FSS), Lee Fatigue Scale (LFS), Fatigue Questionnaire (FQ), Fatigue Symptom Inventory (FSI), and Short-Form 36-Vitality (SF36-V). Using these instruments, we investigated the correlation between fatigue severity and clinical/biochemical parameters, including demographic/comorbidity profile, dialysis-related complications, and frailty severity. We used regression analysis with serum albumin and frailty severity as the dependent variables to investigate the independent correlations. Results. A total of 46 ESRD patients were enrolled (average age of 67 ± 11.6 years), and 50% of them had type 2 diabetes mellitus. Results from the seven tested instruments showed high correlation with each other. We found that the fatigue severity by FACIT-F was significantly associated with age (p = 0.03), serum albumin (p = 0.003) and creatinine (p = 0.02) levels, while SF36-V scores were also significantly associated with age (p = 0.02) and serum creatinine levels (p = 0.04). However, the fatigue severity measured by the FSS, FSI, FQ, BFI, and LFS did not exhibit these associations. Moreover, regression analysis showed that only FACIT-F scores were independently associated with serum albumin levels and frailty severity in ESRD patients. Conclusion. Among the seven fatigue-assessing instruments, only the FACIT-F yielded results that demonstrated significant and independent associations with important outcome-related features in ESRD patients. PMID:26998414

  6. Adrenal Fatigue

    MedlinePlus

    ... unlikely to cover the costs. What is the theory behind adrenal fatigue? Supporters of adrenal fatigue believe ... by producing hormones like cortisol. According to the theory of adrenal fatigue, when people are faced with ...

  7. Adaptive increase in force variance during fatigue in tasks with low redundancy.

    PubMed

    Singh, Tarkeshwar; S K M, Varadhan; Zatsiorsky, Vladimir M; Latash, Mark L

    2010-11-26

    We tested a hypothesis that fatigue of an element (a finger) leads to an adaptive neural strategy that involves an increase in force variability in the other finger(s) and an increase in co-variation of commands to fingers to keep total force variability relatively unchanged. We tested this hypothesis using a system with small redundancy (two fingers) and a marginally redundant system (with an additional constraint related to the total moment of force produced by the fingers, unstable condition). The subjects performed isometric accurate rhythmic force production tasks by the index (I) finger and two fingers (I and middle, M) pressing together before and after a fatiguing exercise by the I finger. Fatigue led to a large increase in force variance in the I-finger task and a smaller increase in the IM-task. We quantified two components of variance in the space of hypothetical commands to fingers, finger modes. Under both stable and unstable conditions, there was a large increase in the variance component that did not affect total force and a much smaller increase in the component that did. This resulted in an increase in an index of the force-stabilizing synergy. These results indicate that marginal redundancy is sufficient to allow the central nervous system to use adaptive increase in variability to shield important variables from effects of fatigue. We offer an interpretation of these results based on a recent development of the equilibrium-point hypothesis known as the referent configuration hypothesis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    NASA Technical Reports Server (NTRS)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  9. Fatigue in rheumatoid arthritis; a persistent problem: a large longitudinal study

    PubMed Central

    van Steenbergen, Hanna W; Tsonaka, Roula; Huizinga, Tom W J; Boonen, Annelies; van der Helm-van Mil, Annette H M

    2015-01-01

    Objective Fatigue is prevalent and disabling in rheumatoid arthritis (RA). Surprisingly, the long-term course of fatigue is studied seldom and it is unclear to what extent it is influenced by inflammation. This study aimed to determine the course of fatigue during 8 years follow-up, its association with the severity of inflammation and the effect of improved treatment strategies. Methods 626 patients with RA included in the Leiden Early Arthritis Clinic cohort were studied during 8 years. Fatigue severity, measured on a 0–100 mm scale, and other clinical variables were assessed yearly. Patients included in 1993–1995, 1996–1998 and 1999–2007 were treated with delayed treatment with disease-modifying antirheumatic drugs (DMARDs), early treatment with mild DMARDs and early treatment with methotrexate respectively. After multiple imputation, the serial measurements were analysed using linear quantile mixed models. Results Median fatigue severity at baseline was 45 mm and remained, despite treatment, rather stable thereafter. Female gender (effect size=4.4 mm), younger age (0.2 mm less fatigue/year), higher swollen and tender joint counts (0.3 mm and 1.0 mm more fatigue/swollen or tender joint) and C reactive protein-levels (0.1 mm more fatigue per mg/L) were independently and significantly (p<0.05) associated with fatigue severity over 8 years. Although improved treatment strategies associated with less severe radiographic progression, there was no effect on fatigue severity (p=0.96). Conclusions This largest longitudinal study on fatigue so far demonstrated that the association between inflammation and fatigue is statistically significant but effect sizes are small, suggesting that non-inflammatory pathways mediate fatigue as well. Improved treatment strategies did not result in less severe fatigue. Therefore, fatigue in RA remains an ‘unmet need’. PMID:26509063

  10. Understanding factors associated with misclassification of fatigue-related accidents in police record.

    PubMed

    Li, Yanyan; Yamamoto, Toshiyuki; Zhang, Guangnan

    2018-02-01

    Fatigue is one of the riskiest causes of traffic accidents threatening road safety. Due to lack of proper criteria, the identification of fatigue-related accidents by police officers largely depends on inferential evidence and their own experience. As a result, many fatigue-related accidents are misclassified and the harmfulness of fatigue on road safety is misestimated. In this paper, a joint model framework is introduced to analyze factors contributing to misclassification of a fatigue-related accident in police reports. Association rule data mining technique is employed to identify the potential interactions of factors, and logistic regression models are applied to analyze factors that hinder police officers' identification of fatigue-related accidents. Using the fatigue-related crash records from Guangdong Province during 2005-2014, factors contributing to the false positive and false negative detection of the fatigue-related accident have been identified and compared. Some variables and interactions were identified to have significant impacts on fatigue-related accident detection. Based on the results, it can be inferred that the stereotype of certain groups of drivers, crash types, and roadway conditions affects police officers' judgment on fatigue-related accidents. This finding can provide useful information for training police officers and build better criteria for fatigue identification. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  11. Biomarkers of Fatigue: Ranking Mental Fatigue Susceptibility

    DTIC Science & Technology

    2010-12-10

    expected declines in performance during the 36-hour, 15-minute period of sleep deprivation without caffeine. The simple change from baseline results...rankings for fatigue resistance were then determined via a percent- change rule similar to that used in Chaiken, Harville, Harrison, Fischer, Fisher...and Whitmore (2008). This rule ranks subjects on percent change of cognitive performance from a baseline performance (before fatigue) to a fatigue

  12. Differential continuum damage mechanics models for creep and fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1991-01-01

    Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.

  13. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  14. The effect of elbow flexor fatigue on spine kinematics and muscle activation in response to sudden loading at the hands.

    PubMed

    Zwambag, Derek P; Freeman, Nikole E; Brown, Stephen H M

    2015-04-01

    Sudden loads, originating at either the hands or the feet, can cause injury to spine structures. As muscles are primarily responsible for stabilization following a perturbation, the effect of spine muscle fatigue in this context has been well investigated. However, the effect of fatigue of arm muscles, which can help control perturbations originating at the hands, on the spine is unknown. The purpose of this study was to determine if the magnitude of spine flexion or the pre-activation, reflex amplitude, and reflex latency of spine muscles were altered by elbow flexor fatigue during a sudden loading (6.8 kg) perturbation at the hands. Elbow flexor fatigue was induced by an isometric 30% maximal elbow flexion moment until failure. Results demonstrate that spine kinematics were not altered in the presence of elbow flexor fatigue. Small magnitude differences in trunk muscle pre- and peak activation indicate that the presence of elbow flexor fatigue does not necessitate substantially greater spine muscle action under the tested conditions. Despite fatigued elbow flexors, the arm muscles were sufficiently able to control the perturbation. Interestingly, 5/14 participants demonstrated altered reflex latencies in all observed muscles that lasted up to 10 min after the fatiguing task. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fatigue crack tip deformation and fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1972-01-01

    The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).

  16. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors.

    PubMed

    Hall, Daniel L; Antoni, Michael H; Lattie, Emily G; Jutagir, Devika R; Czaja, Sara J; Perdomo, Dolores; Lechner, Suzanne C; Stagl, Jamie M; Bouchard, Laura C; Gudenkauf, Lisa M; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G

    Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one's daily functioning in both patient populations to better understand their relationships with depressed mood. Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants' fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p's <.001. These factors were significantly positively correlated among CFS/ME patients (β=.36, p <.001), but not the fatigued breast cancer survivors (β=.18, p =.19). CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed.

  17. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors

    PubMed Central

    Hall, Daniel L.; Antoni, Michael H.; Lattie, Emily G.; Jutagir, Devika R.; Czaja, Sara J.; Perdomo, Dolores; Lechner, Suzanne C.; Stagl, Jamie M.; Bouchard, Laura C.; Gudenkauf, Lisa M.; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G.

    2015-01-01

    Objective Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one’s daily functioning in both patient populations to better understand their relationships with depressed mood. Methods Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants’ fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. Results CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p’s<.001. These factors were significantly positively correlated among CFS/ME patients (β=.36, p<.001), but not the fatigued breast cancer survivors (β=.18, p=.19). Conclusions CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed. PMID:26180660

  18. Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.

    2004-01-01

    The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.

  19. Fatigue in industry.

    PubMed Central

    Grandjean, E

    1979-01-01

    Physical fatigue is a painful phenomenon which is localised in overstressed muscles. Mental fatigue is a diffuse sensation of weariness; it is a functional state, one of several intermediate conditions between the two extremes of alarm and sleep. A neurophysiological model of fatigue, involving an activating and inhibitory system has been developed. Fatigue in industrial practice has clinical symptoms: psychic instability, fits of depression and increased liability to illness. Indicators of fatigue are work of performance, subjective feelings of fatigue, electroencephalography, flicker-fusion frequency and various psychomotor and mental tests. Several field studies do, to some extent, confirm the above-mentioned concept of fatigue. PMID:40999

  20. Effort-reward imbalance and social support are associated with chronic fatigue among medical residents in Japan.

    PubMed

    Wada, Koji; Sakata, Yumi; Theriault, Gilles; Aratake, Yutaka; Shimizu, Midori; Tsutsumi, Akizumi; Tanaka, Katsutoshi; Aizawa, Yoshiharu

    2008-01-01

    The purpose of this study was to determine the associations of effort-reward imbalance and social support with chronic fatigue among medical residents in Japan. A total of 104 men and 42 women at 14 teaching hospitals participated in this study. Chronic fatigue was measured by the checklist individual strength questionnaire. Effort, reward and overcommitment were determined by the effort-reward questionnaire developed by Siegrist. Social support was determined by a visual analog scale. Sleeping hours for the last 30 days were estimated based on the number of overnight shifts worked, the average number of sleeping hours, and the number of hours of napping during overnight work. Multiple regression analysis was used to examine the multivariate relationship between these variables and chronic fatigue. In both men and women, effort-reward imbalance was positively associated, and higher social support was negatively associated with chronic fatigue. In men, higher overcommitment was positively associated with chronic fatigue. In women, longer sleeping hours was negatively associated with chronic fatigue and an interaction between sleeping hours and social support was found. The adjusted variance in fatigue explained by the exposure variables was 34% in men and 51% in women. The result of this study suggested that it is desirable to take these factors into consideration in the management of chronic fatigue among medical residents.