Sample records for variable band gap

  1. Research on the effects of geometrical and material uncertainties on the band gap of the undulated beam

    NASA Astrophysics Data System (ADS)

    Li, Yi; Xu, Yanlong

    2017-09-01

    Considering uncertain geometrical and material parameters, the lower and upper bounds of the band gap of an undulated beam with periodically arched shape are studied by the Monte Carlo Simulation (MCS) and interval analysis based on the Taylor series. Given the random variations of the overall uncertain variables, scatter plots from the MCS are used to analyze the qualitative sensitivities of the band gap respect to these uncertainties. We find that the influence of uncertainty of the geometrical parameter on the band gap of the undulated beam is stronger than that of the material parameter. And this conclusion is also proved by the interval analysis based on the Taylor series. Our methodology can give a strategy to reduce the errors between the design and practical values of the band gaps by improving the accuracy of the specially selected uncertain design variables of the periodical structures.

  2. On the role of micro-inertia in enriched continuum mechanics.

    PubMed

    Madeo, Angela; Neff, Patrizio; Aifantis, Elias C; Barbagallo, Gabriele; d'Agostino, Marco Valerio

    2017-02-01

    In this paper, the role of gradient micro-inertia terms [Formula: see text] and free micro-inertia terms [Formula: see text] is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term [Formula: see text] alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term [Formula: see text] alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia [Formula: see text], in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia [Formula: see text] on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.

  3. On the role of micro-inertia in enriched continuum mechanics

    NASA Astrophysics Data System (ADS)

    Madeo, Angela; Neff, Patrizio; Aifantis, Elias C.; Barbagallo, Gabriele; d'Agostino, Marco Valerio

    2017-02-01

    In this paper, the role of gradient micro-inertia terms η ¯ ∥ ∇ u,t∥2 and free micro-inertia terms η ∥P,t∥2 is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term η ¯ ∥ ∇ u,t∥2 alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term η ∥P,t∥2 alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia η ¯ ∥ ∇ u,t∥2, in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia η ¯ ∥ ∇ u,t∥2 on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.

  4. On the role of micro-inertia in enriched continuum mechanics

    PubMed Central

    Neff, Patrizio; Aifantis, Elias C.; Barbagallo, Gabriele; d’Agostino, Marco Valerio

    2017-01-01

    In this paper, the role of gradient micro-inertia terms η¯∥ ∇u,t∥2 and free micro-inertia terms η∥P,t∥2 is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term η¯∥ ∇u,t∥2 alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term η∥P,t∥2 alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia η¯∥ ∇u,t∥2, in the sense of Cartan–Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia η¯∥ ∇u,t∥2 on more classical enriched models such as the Mindlin–Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin–Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials. PMID:28293136

  5. Strain-induced optical band gap variation of SnO 2 films

    DOE PAGES

    Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas

    2016-06-29

    In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO 2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO 2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the mainmore » origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO 2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less

  6. Inverse problem of the vibrational band gap of periodically supported beam

    NASA Astrophysics Data System (ADS)

    Shi, Xiaona; Shu, Haisheng; Dong, Fuzhen; Zhao, Lei

    2017-04-01

    The researches of periodic structures have a long history with the main contents confined in the field of forward problem. In this paper, the inverse problem is considered and an overall frame is proposed which includes two main stages, i.e., the band gap criterion and its optimization. As a preliminary investigation, the inverse problem of the flexural vibrational band gap of a periodically supported beam is analyzed. According to existing knowledge of its forward problem, the band gap criterion is given in implicit form. Then, two cases with three independent parameters, namely the double supported case and the triple one, are studied in detail and the explicit expressions of the feasible domain are constructed by numerical fitting. Finally, the parameter optimization of the double supported case with three variables is conducted using genetic algorithm aiming for the best mean attenuation within specified frequency band.

  7. Direct and indirect band gaps in Ge under biaxial tensile strain investigated by photoluminescence and photoreflectance studies

    NASA Astrophysics Data System (ADS)

    Saladukha, D.; Clavel, M. B.; Murphy-Armando, F.; Greene-Diniz, G.; Grüning, M.; Hudait, M. K.; Ochalski, T. J.

    2018-05-01

    Germanium is an indirect semiconductor which attracts particular interest as an electronics and photonics material due to low indirect-to-direct band separation. In this work we bend the bands of Ge by means of biaxial tensile strain in order to achieve a direct band gap. Strain is applied by growth of Ge on a lattice mismatched InGaAs buffer layer with variable In content. Band structure is studied by photoluminescence and photoreflectance, giving the indirect and direct bands of the material. Obtained experimental energy band values are compared with a k .p simulation. Photoreflectance spectra are also simulated and compared with the experiment. The obtained results indicate direct band structure obtained for a Ge sample with 1.94 % strain applied, with preferable Γ valley to heavy hole transition.

  8. The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability

    NASA Astrophysics Data System (ADS)

    McIntosh, Scott W.; Leamon, Robert J.; Krista, Larisza D.; Title, Alan M.; Hudson, Hugh S.; Riley, Pete; Harder, Jerald W.; Kopp, Greg; Snow, Martin; Woods, Thomas N.; Kasper, Justin C.; Stevens, Michael L.; Ulrich, Roger K.

    2015-04-01

    Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun's deep interior. Here we deduce that activity band interaction can qualitatively explain the `Gnevyshev Gap'--a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales.

  9. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  10. Temporal resolution in children.

    PubMed

    Wightman, F; Allen, P; Dolan, T; Kistler, D; Jamieson, D

    1989-06-01

    The auditory temporal resolving power of young children was measured using an adaptive forced-choice psychophysical paradigm that was disguised as a video game. 20 children between 3 and 7 years of age and 5 adults were asked to detect the presence of a temporal gap in a burst of half-octave-band noise at band center frequencies of 400 and 2,000 Hz. The minimum detectable gap (gap threshold) was estimated adaptively in 20-trial runs. The mean gap thresholds in the 400-Hz condition were higher for the younger children than for the adults, with the 3-year-old children producing the highest thresholds. Gap thresholds in the 2,000-Hz condition were generally lower than in the 400-Hz condition and showed a similar age effect. All the individual adaptive runs were "adult-like," suggesting that the children were generally attentive to the task during each run. However, the variability of threshold estimates from run to run was substantial, especially in the 3-5-year-old children. Computer simulations suggested that this large within-subjects variability could have resulted from frequent, momentary lapses of attention, which would lead to "guessing" on a substantial portion of the trials.

  11. The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability

    PubMed Central

    McIntosh, Scott W.; Leamon, Robert J.; Krista, Larisza D.; Title, Alan M.; Hudson, Hugh S.; Riley, Pete; Harder, Jerald W.; Kopp, Greg; Snow, Martin; Woods, Thomas N.; Kasper, Justin C.; Stevens, Michael L.; Ulrich, Roger K.

    2015-01-01

    Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun's deep interior. Here we deduce that activity band interaction can qualitatively explain the ‘Gnevyshev Gap'—a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales. PMID:25849045

  12. Band gaps in grid structure with periodic local resonator subsystems

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoqin; Wang, Jun; Wang, Rongqi; Lin, Jieqiong

    2017-09-01

    The grid structure is widely used in architectural and mechanical field for its high strength and saving material. This paper will present a study on an acoustic metamaterial beam (AMB) based on the normal square grid structure with local resonators owning both flexible band gaps and high static stiffness, which have high application potential in vibration control. Firstly, the AMB with variable cross-section frame is analytically modeled by the beam-spring-mass model that is provided by using the extended Hamilton’s principle and Bloch’s theorem. The above model is used for computing the dispersion relation of the designed AMB in terms of the design parameters, and the influences of relevant parameters on band gaps are discussed. Then a two-dimensional finite element model of the AMB is built and analyzed in COMSOL Multiphysics, both the dispersion properties of unit cell and the wave attenuation in a finite AMB have fine agreement with the derived model. The effects of design parameters of the two-dimensional model in band gaps are further examined, and the obtained results can well verify the analytical model. Finally, the wave attenuation performances in three-dimensional AMBs with equal and unequal thickness are presented and discussed.

  13. Band gap modulation in magnetically doped low-defect thin films of (Bi1-xSbx)2 Te3 with minimized bulk carrier concentration

    NASA Astrophysics Data System (ADS)

    Maximenko, Yulia; Scipioni, Kane; Wang, Zhenyu; Katmis, Ferhat; Steiner, Charles; Weis, Adam; van Harlingen, Dale; Madhavan, Vidya

    Topological insulators Bi2Te3 and Sb2Te3 are promising materials for electronics, but both are naturally prone to vacancies and anti-site defects that move the Fermi energy onto the bulk bands. Fabricating (Bi1-xSbx)2 Te3 (BST) with the tuned x minimizes point defects and unmasks topological surface states by reducing bulk carriers. BST thin films have shown topological surface states and quantum anomalous Hall effect. However, different studies reported variable Sb:Bi ratios used to grow an undoped BST film. Here, we develop a reliable way to grow defect-free subnanometer-flat BST thin films having the Fermi energy tuned to the Dirac point. High-resolution scanning tunneling microscopy (STM) and Landau level spectroscopy prove the importance of crystallinity and surface roughness-not only Sb:Bi ratio-for the final bulk carrier concentration. The BST thin films were doped with Cr and studied with STM with atomic resolution. Counterintuitively, Cr density is anticorrelated with the local band gap due to Cr's antiferromagnetic order. We analyze the correlations and report the relevant band gap values. Predictably, high external magnetic field compromises antiferromagnetic order, and the local band gap increases. US DOE DE-SC0014335; Moore Found. GBMF4860; F. Seitz MRL.

  14. Electrical transport and optical band gap of NiFe2Ox thin films

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Panagiota; Manos, Orestis; Klewe, Christoph; Meier, Daniel; Teichert, Niclas; Schmalhorst, Jan-Michael; Kuschel, Timo; Reiss, Günter

    2017-12-01

    We fabricated NiFe2Ox thin films on MgAl2O4(001) by reactive dc magnetron co-sputtering varying the oxygen partial pressure. The fabrication of a material with a variable oxygen deficiency leads to controllable electrical and optical properties which are beneficial for the investigations of the transport phenomena and could, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity, we obtained the conduction mechanisms that govern the systems in the high and low temperature regimes. We further extracted low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. The Hall coefficient is negative and decreases with increasing conductivity as expected for n-type conduction, while the Hall- and the drift mobilities show a large difference. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energies, with lower band gap values in the less oxidized samples.

  15. Theoretical studies of optics and charge transport in organic conducting oligomers and polymers: Rational design of improved transparent and conducting polymers

    NASA Astrophysics Data System (ADS)

    Hutchison, Geoffrey Rogers

    Theoretical studies on a variety of oligo- and polyheterocycles elucidate their optical and charge transport properties, suggesting new, improved transparent conductive polymers. First-principles calculations provide accurate methodologies for predicting both optical band gaps of neutral and cationic oligomers and intrinsic charge transfer rates. Multidimensional analysis reveals important motifs in chemical tailorability of oligoheterocycle optical and charge transport properties. The results suggest new directions for design of novel materials. Using both finite oligomer and infinite polymer calculations, the optical band gaps in polyheterocycles follow a modified particle-in-a-box formalism, scaling approximately as 1/N (where N is the number of monomer units) in short chains, saturating for long chains. Calculations demonstrate that band structure changes upon heteroatom substitution, (e.g., from polythiophene to polypyrrole) derive from heteroatom electron affinity. Further investigation of chemical variability in substituted oligoheterocycles using multidimensional statistics reveals the interplay between heteroatom and substituent in correlations between structure and redox/optical properties of neutral and cationic species. A linear correlation between band gaps of neutral and cationic species upon oxidation of conjugated oligomers, shows redshifts of optical absorption for most species and blueshifts for small band gap species. Interstrand charge-transport studies focus on two contributors to hopping-style charge transfer rates: internal reorganization energy and the electronic coupling matrix element. Statistical analysis of chemical variability of reorganization energies in oligoheterocycles proves the importance of reorganization energy in determining intrinsic charge transfer rates (e.g., charge mobility in unsubstituted oligothiophenes). Computed bandwidths across several oligothiophene crystal packing motifs show similar electron and hole bandwidths, and show that well-known tilted and herringbone motifs in oligothiophenes are driven by electrostatic repulsion. Tilted stacks exhibit intrinsic charge-transfer rates smaller than cofacial stacks, but with lower packing energy. Given similar electron and hole bandwidths, a charge injection model explains substitution-modulated majority carrier changes in n- and p-type oligothiophene field-effect transistors.

  16. Research on low-frequency band gap property of a hybrid phononic crystal

    NASA Astrophysics Data System (ADS)

    Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Chao, Ding; Wang, Benchi

    2018-05-01

    A hybrid phononic crystal has been investigated. The characteristic frequency of XY mode, transmission loss and displacement vector have been calculated by the finite element method. There are Bragg scattering band gap and local resonance band gap in the band structures. We studied the influence factors of band gap. There are many flat bands in the eigenfrequencies curve. There are many flat bands in the curve. The band gap covers a large range in low frequency. The band gaps cover more than 95% below 3000 Hz.

  17. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Sung; College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746; Lee, Hyung-Ik

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respectmore » to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.« less

  18. Research on local resonance and Bragg scattering coexistence in phononic crystal

    NASA Astrophysics Data System (ADS)

    Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Jiang, Jiulong

    2017-04-01

    Based on the finite element method (FEM), characteristics of the local resonance band gap and the Bragg scattering band gap of two periodically-distributed vibrator structures are studied. Conditions of original anti-resonance generation are theoretically derived. The original anti-resonance effect leads to localization of vibration. Factors which influence original anti-resonance band gap are analyzed. The band gap width and the mass ratio between two vibrators are closely correlated to each other. Results show that the original anti-resonance band gap has few influencing factors. In the locally resonant structure, the Bragg scattering band gap is found. The mass density of the elastic medium and the elasticity modulus have an important impact on the Bragg band gap. The coexistence of the two mechanisms makes the band gap larger. The band gap covered 90% of the low frequencies below 2000 Hz. All in all, the research could provide references for studying the low-frequency and broad band gap of phononic crystal.

  19. Formation of Degenerate Band Gaps in Layered Systems

    PubMed Central

    Ignatov, Anton I.; Merzlikin, Alexander M.; Levy, Miguel; Vinogradov, Alexey P.

    2012-01-01

    In the review, peculiarities of spectra of one-dimensional photonic crystals made of anisotropic and/or magnetooptic materials are considered. The attention is focused on band gaps of a special type—the so called degenerate band gaps which are degenerate with respect to polarization. Mechanisms of formation and properties of these band gaps are analyzed. Peculiarities of spectra of photonic crystals that arise due to the linkage between band gaps are discussed. Particularly, it is shown that formation of a frozen mode is caused by linkage between Brillouin and degenerate band gaps. Also, existence of the optical Borrmann effect at the boundaries of degenerate band gaps and optical Tamm states at the frequencies of degenerate band gaps are analyzed. PMID:28817024

  20. Temperature-induced band shift in bulk γ-InSe by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Huanfeng; Wang, Wei; Zhao, Yafei; Zhang, Xiaoqian; Feng, Yue; Tu, Jian; Gu, Chenyi; Sun, Yizhe; Liu, Chang; Nie, Yuefeng; Edmond Turcu, Ion C.; Xu, Yongbing; He, Liang

    2018-05-01

    Indium selenide (InSe) has recently become popular research topics because of its unique layered crystal structure, direct band gap and high electron mobilities. In this work, we have acquired the electronic structure of bulk γ-InSe at various temperatures using angle-resolved photoemission spectroscopy (ARPES). We have also found that as the temperature decreases, the valence bands of γ-InSe exhibit a monotonic shift to lower binding energies. This band shift is attributed to the change of lattice parameters and has been validated by variable temperature X-ray diffraction measurements and theoretical calculations.

  1. Dependence of paranodal junctional gap width on transverse bands.

    PubMed

    Rosenbluth, Jack; Petzold, Chris; Peles, Elior

    2012-08-15

    Mouse mutants with paranodal junctional (PNJ) defects display variable degrees of neurological impairment. In this study we compare control paranodes with those from three mouse mutants that differ with respect to a conspicuous PNJ component, the transverse bands (TBs). We hypothesize that TBs link the apposed junctional membranes together at a fixed distance and thereby determine the width of the junctional gap, which may in turn determine the extent to which nodal action currents can be short-circuited underneath the myelin sheath. Electron micrographs of aldehyde-fixed control PNJs, in which TBs are abundant, show a consistent junctional gap of ∼3.5 nm. In Caspr-null PNJs, which lack TBs entirely, the gap is wider (∼6-7 nm) and more variable. In CST-null PNJs, which have only occasional TBs, the mean PNJ gap width is comparable to that in Caspr-null mice. In the shaking mutant, in contrast, which has approximately 60% of the normal complement of TBs, mean PNJ gap width is not significantly different from that in controls. Correspondingly, shaking mice are much less impaired neurologically than either Caspr-null or CST-null mice. We conclude that in the absence or gross diminution of TBs, mean PNJ gap width increases significantly and suggest that this difference could underlie some of the neurological impairment seen in those mutants. Surprisingly, even in the absence of TBs, paranodes are to some extent maintained in their usual form, implying that in addition to TBs, other factors govern the formation and maintenance of overall paranodal structure. Copyright © 2012 Wiley Periodicals, Inc.

  2. Variable Gap Conjugated Polymers

    DTIC Science & Technology

    2005-12-01

    conducting gold interfacial layer interjected between the ITO glass electrode and the PEDOT/PSS hole transport layer . A family of low band gap, and near IR...which can be used as both electrochromics and as the hole transport layers in light emitting diodes. Hybrid electrochromic and electroluminescent (EC...MEH-PPV, P3HT, etc.) in order to blanket the solar spectrum. Initial device results on these multi-component blends are promising. In addition, we

  3. Band gap structures for 2D phononic crystals with composite scatterer

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-qiao; Li, Tuan-jie; Zhang, Jia-long; Zhang, Zhen; Tang, Ya-qiong

    2018-05-01

    We investigated the band gap structures in two-dimensional phononic crystals with composite scatterer. The composite scatterers are composed of two materials (Bragg scattering type) or three materials (locally resonance type). The finite element method is used to calculate the band gap structure, eigenmodes and transmission spectrum. The variation of the location and width of band gap are also investigated as a function of material ratio in the scatterer. We have found that the change trends the widest band gap of the two phononic crystals are different as the material ratio changing. In addition to this, there are three complete band gaps at most for the Bragg-scattering-type phononic crystals in the first six bands; however, the locally resonance-type phononic crystals exist only two complete band gap at most in the first six bands. The gap-tuning effect can be controlled by the material ratio in the scatterer.

  4. Opening complete band gaps in two dimensional locally resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoling; Wang, Longqi

    2018-05-01

    Locally resonant phononic crystals (LRPCs) which have low frequency band gaps attract a growing attention in both scientific and engineering field recently. Wide complete locally resonant band gaps are the goal for researchers. In this paper, complete band gaps are achieved by carefully designing the geometrical properties of the inclusions in two dimensional LRPCs. The band structures and mechanisms of different types of models are investigated by the finite element method. The translational vibration patterns in both the in-plane and out-of-plane directions contribute to the full band gaps. The frequency response of the finite periodic structures demonstrate the attenuation effects in the complete band gaps. Moreover, it is found that the complete band gaps can be further widened and lowered by increasing the height of the inclusions. The tunable properties by changing the geometrical parameters provide a good way to open wide locally resonant band gaps.

  5. Relating the defect band gap and the density functional band gap

    NASA Astrophysics Data System (ADS)

    Schultz, Peter; Edwards, Arthur

    2014-03-01

    Density functional theory (DFT) is an important tool to probe the physics of materials. The Kohn-Sham (KS) gap in DFT is typically (much) smaller than the observed band gap for materials in nature, the infamous ``band gap problem.'' Accurate prediction of defect energy levels is often claimed to be a casualty--the band gap defines the energy scale for defect levels. By applying rigorous control of boundary conditions in size-converged supercell calculations, however, we compute defect levels in Si and GaAs with accuracies of ~0.1 eV, across the full gap, unhampered by a band gap problem. Using GaAs as a theoretical laboratory, we show that the defect band gap--the span of computed defect levels--is insensitive to variations in the KS gap (with functional and pseudopotential), these KS gaps ranging from 0.1 to 1.1 eV. The defect gap matches the experimental 1.52 eV gap. The computed defect gaps for several other III-V, II-VI, I-VII, and other compounds also agree with the experimental gap, and show no correlation with the KS gap. Where, then, is the band gap problem? This talk presents these results, discusses why the defect gap and the KS gap are distinct, implying that current understanding of what the ``band gap problem'' means--and how to ``fix'' it--need to be rethought. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  6. Photonic-band-gap gyrotron amplifier with picosecond pulses.

    PubMed

    Nanni, Emilio A; Jawla, Sudheer; Lewis, Samantha M; Shapiro, Michael A; Temkin, Richard J

    2017-12-04

    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03 -like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  7. Photonic-band-gap gyrotron amplifier with picosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.

    Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less

  8. Photonic-band-gap gyrotron amplifier with picosecond pulses

    DOE PAGES

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; ...

    2017-12-05

    Here, we report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE 03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gainmore » is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260–800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.« less

  9. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration.

    PubMed

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-11-04

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses.

  10. Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration

    PubMed Central

    Choi, Jun Young; Heo, Keun; Cho, Kyung-Sang; Hwang, Sung Woo; Kim, Sangsig; Lee, Sang Yeol

    2016-01-01

    We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses. PMID:27812035

  11. Dark gap solitons in exciton-polariton condensates in a periodic potential.

    PubMed

    Cheng, Szu-Cheng; Chen, Ting-Wei

    2018-03-01

    We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.

  12. Dark gap solitons in exciton-polariton condensates in a periodic potential

    NASA Astrophysics Data System (ADS)

    Cheng, Szu-Cheng; Chen, Ting-Wei

    2018-03-01

    We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.

  13. Improvement of band gap profile in Cu(InGa)Se{sub 2} solar cells through rapid thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.S.; College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 200090; Yang, J.

    Highlights: • Proper RTA treatment can effectively optimize band gap profile to more expected level. • Inter-diffusion of atoms account for the improvement of the graded band gap profile. • The variation of the band gap profile created an absolute gain in the efficiency by 1.22%. - Abstract: In the paper, the effect of rapid thermal annealing on non-optimal double-graded band gap profiles was investigated by using X-ray photoelectron spectroscopy and capacitance–voltage measurement techniques. Experimental results revealed that proper rapid thermal annealing treatment can effectively improve band gap profile to more optimal level. The annealing treatment could not only reducemore » the values of front band gap and minimum band gap, but also shift the position of the minimum band gap toward front electrode and enter into space charge region. In addition, the thickness of Cu(InGa)Se{sub 2} thin film decreased by 25 nm after rapid thermal annealing treatment. All of these modifications were attributed to the inter-diffusion of atoms during thermal treatment process. Simultaneously, the variation of the band gap profile created an absolute gain in the efficiency by 1.22%, short-circuit current density by 2.16 mA/cm{sup 2} and filled factor by 3.57%.« less

  14. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset

    NASA Astrophysics Data System (ADS)

    Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.

    2017-06-01

    Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.

  15. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    PubMed

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  16. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    NASA Astrophysics Data System (ADS)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  17. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    PubMed

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  18. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  19. Band gap in tubular pillar phononic crystal plate.

    PubMed

    Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui

    2016-09-01

    In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operatesmore » unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.« less

  1. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  2. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffy, Etienne, E-mail: etienne.coffy@femto-st.fr; Lavergne, Thomas; Addouche, Mahmoud

    2015-12-07

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distributionmore » within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.« less

  3. Tuning the Energy Gap of SiCH3 Nanomaterials Under Elastic Strain

    NASA Astrophysics Data System (ADS)

    Ma, Shengqian; Li, Feng; Geng, Jiguo; Zhu, Mei; Li, Suyan; Han, Juguang

    2018-05-01

    SiCH3 nanomaterials have been studied using the density functional theory. When the nanosheets and nanoribbons (armchair and zigzag) are introduced, their energy gap is modulated under elastic strain and width. The results show that the band gap of SiCH3 nanomaterials can be easily tuned using elastic strains and widths. Surprisingly, the band gap can be modulated along two directions, namely, compressing and stretching. The band gap decreases when increasing stretching strain or decreasing compressing strain. In addition, the band gap decreases when increasing the nanoribbon width. For energy gap engineering, the band gap can be tuned by strains and widths. Therefore, the SiCH3 nanomaterials play important roles in potential applications for strain sensors, electronics, and optical electronics.

  4. Effects of electric and magnetic fields on the electronic properties of zigzag carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh; Ahmadi, Eghbal

    2012-04-01

    We have investigated the electronic properties of zigzag CNTs and BNNTs under the external transverse electric field and axial magnetic field, using tight binding approximation. It was found that after switching on the electric and magnetic fields, the band modification such as distortion of the degeneracy, change in energy dispersion, subband spacing and band gap size reduction occurs. The band gap of zigzag BNNTs decreases linearly with increasing the electric field strength but the band gap variation for CNTs increases first and later decreases (Metallic) or first hold constant and then decreases (semiconductor). For type (II) CNTs, at a weak magnetic field, by increasing the electric field strength, the band gap remains constant first and then decreases and in a stronger magnetic field the band gap reduction becomes parabolic. For type (III) CNTs, in any magnetic field, the band gap increases slowly until reaches a maximum value and then decreases linearly. Unlike to CNTs, the magnetic field has less effects on the BNNTs band gap variation.

  5. Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures.

    PubMed

    Hu, Xiaohui; Kou, Liangzhi; Sun, Litao

    2016-08-16

    The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternating stacking orders. Specifically, when Se atoms from opposite layers are stacked directly on top of each other, AA and A'B stacked heterostructures show weaker interlayer coupling, larger interlayer distance and direct band gap. Whereas, when Se atoms from opposite layers are staggered, AA', AB and AB' stacked heterostructures exhibit stronger interlayer coupling, shorter interlayer distance and indirect band gap. Thus, the direct/indirect band gap can be controllable in bilayer MoSe2-WSe2 lateral heterostructures. In addition, the calculated sliding barriers indicate that the stacking orders of bilayer MoSe2-WSe2 lateral heterostructures can be easily formed by sliding one layer with respect to the other. The novel direct band gap in bilayer MoSe2-WSe2 lateral heterostructures provides possible application for high-efficiency optoelectronic devices. The results also show that the stacking order is an effective strategy to induce and tune the band gap of layered STMDs.

  6. Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Thurston, Cameron

    Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.

  7. Effect of p–d hybridization, structural distortion and cation electronegativity on electronic properties of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, S.; Ganguli, B., E-mail: biplabg@nitrkl.ac.in

    2013-04-15

    Significant effects of p–d hybridization, structural distortion and cation-electro-negativity are found on band gap in ZnSnX{sub 2} (X=P, As, Sb). Our study suggests these compounds to be direct band gap semiconductors with band gaps of 1.23, 0.68 and 0.19 eV respectively. Lattice constants, tetragonal distortion (η), anion displacement, bond lengths and bulk moduli are calculated by Density Functional Theory based on Tight binding Linear Muffin-Tin orbital method. Our result of structural properties is in good agreement with the available experimental and other theoretical results. Calculated band gaps also agree well with the experimental works within LDA limitation. Unlike other semiconductorsmore » in the group II–IV–V{sub 2}, there is a reduction in the band gap of 0.22, 0.20 and 0.24 eV respectively in ZnSnX{sub 2} (X=P, As, Sb) due to p–d hybridization. Structural distortion decreases band gap by 0.20, 0.12 and 0.10 eV respectively. We find that cation electronegativity effect is responsible for increasing the band gap relative to their binary analogs GaInP{sub 2}, InGaAs{sub 2} and GaInSb{sub 2} respectively and increment are 0.13, 0.04 and 0.13 eV respectively. - Graphical abstract: One unit cell of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductor. Semiconductors ZnSnX{sub 2} (X=P, As, Sb) are found to be direct band gap semiconductors with band gaps 1.23, 0.68 and 0.19 eV respectively. The quantitative estimate of effects of p–d hybridization, structural distortion and cation electronegativity shows band gaps change significantly due to these effects. Highlights: ► ZnSnX{sub 2} (X=P, As, Sb) are direct band gap semiconductors. ► These have band gaps of 1.23 eV, 0.68 eV and 0.19 eV respectively. ► The band gap reduction due to p–d hybridization is 13.41%, 18.51% and 40% respectively. ► Band gap reduction due to structural distortion is 12.12%, 11.11% and 16.66% respectively. ► Band gap increases 8.38%, 3.70% and 21.31% respectively due to cation electronegativity.« less

  8. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree

    2014-04-01

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  9. Tunable and sizable band gap in silicene by surface adsorption

    PubMed Central

    Quhe, Ruge; Fei, Ruixiang; Liu, Qihang; Zheng, Jiaxin; Li, Hong; Xu, Chengyong; Ni, Zeyuan; Wang, Yangyang; Yu, Dapeng; Gao, Zhengxiang; Lu, Jing

    2012-01-01

    Opening a sizable band gap without degrading its high carrier mobility is as vital for silicene as for graphene to its application as a high-performance field effect transistor (FET). Our density functional theory calculations predict that a band gap is opened in silicene by single-side adsorption of alkali atom as a result of sublattice or bond symmetry breaking. The band gap size is controllable by changing the adsorption coverage, with an impressive maximum band gap up to 0.50 eV. The ab initio quantum transport simulation of a bottom-gated FET based on a sodium-covered silicene reveals a transport gap, which is consistent with the band gap, and the resulting on/off current ratio is up to 108. Therefore, a way is paved for silicene as the channel of a high-performance FET. PMID:23152944

  10. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures

    PubMed Central

    Warmuth, Franziska; Körner, Carolin

    2015-01-01

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented. PMID:28793713

  11. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.

    PubMed

    Warmuth, Franziska; Körner, Carolin

    2015-12-02

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.

  12. Electronic transport in Thue-Morse gapped graphene superlattice under applied bias

    NASA Astrophysics Data System (ADS)

    Wang, Mingjing; Zhang, Hongmei; Liu, De

    2018-04-01

    We investigate theoretically the electronic transport properties of Thue-Morse gapped graphene superlattice under an applied electric field. The results indicate that the combined effect of the band gap and the applied bias breaks the angular symmetry of the transmission coefficient. The zero-averaged wave-number gap can be greatly modulated by the band gap and the applied bias, but its position is robust against change of the band gap. Moreover, the conductance and the Fano factor are strongly dependent not only on the Fermi energy but also on the band gap and the applied bias. In the vicinity of the new Dirac point, the minimum value of the conductance obviously decreases and the Fano factor gradually forms a Poissonian value plateau with increasing of the band gap.

  13. Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Rohringer, Philip; Wanko, Marius; Rubio, Angel; Waßerroth, Sören; Reich, Stephanie; Cambré, Sofie; Wenseleers, Wim; Ayala, Paola; Pichler, Thomas

    2017-12-01

    Ultralong linear carbon chains of more than 6000 carbon atoms have recently been synthesized within double-walled carbon nanotubes (DWCNTs), and they show a promising route to one-atom-wide semiconductors with a direct band gap. Theoretical studies predicted that this band gap can be tuned by the length of the chains, the end groups, and their interactions with the environment. However, different density functionals lead to very different values of the band gap of infinitely long carbyne. In this work, we applied resonant Raman excitation spectroscopy with more than 50 laser wavelengths to determine the band gap of long carbon chains encapsulated inside DWCNTs. The experimentally determined band gaps ranging from 2.253 to 1.848 eV follow a linear relation with Raman frequency. This lower bound is the smallest band gap of linear carbon chains observed so far. The comparison with experimental data obtained for short chains in gas phase or in solution demonstrates the effect of the DWCNT encapsulation, leading to an essential downshift of the band gap. This is explained by the interaction between the carbon chain and the host tube, which greatly modifies the chain's bond-length alternation.

  14. First Principles Study of Electronic Band Structure and Structural Stability of Al2C Monolayer and Nanotubes

    NASA Astrophysics Data System (ADS)

    Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.

    2017-09-01

    We used density functional theory (DFT) based on generalized gradient approximation (GGA) and hybrid functional (HSE06) to investigate band gap and structural stability of Al2C monolayer and nanotubes. From the results, both GGA and HSE06 band gaps of Al2C monolayer agree well with previously reported data. For the Al2C nanotubes, we found that their band gaps are more sensitive to the size and the chirality than that of the widely studied SiC2 nanotubes, indicating the Al2C nanotubes may have higher band gap tuning capabilities (with varying diameter size and chirality) compared with those of SiC2 nanotubes. We have also discovered a desirable direct band gap in the case of (n,0) nanotubes, although Al2C monolayer band gap is indirect. The calculated strain energy reveals that (n,0) nanotubes constructed by wrapping up Al2C monolayer consume less energy than (0,n) nanotubes. Thus, (n,0) nanotubes is easier to synthesize than (0,n) nanotubes. This discovery of direct band gap in (n,0) Al2C nanotubes and their adjustable band gap suggests them as promising sensitizer for enhancing power conversion efficiency of excitonic solar cells.

  15. Engineering the Band Gap States of the Rutile TiO2 (110) Surface by Modulating the Active Heteroatom.

    PubMed

    Yu, Yaoguang; Yang, Xu; Zhao, Yanling; Zhang, Xiangbin; An, Liang; Huang, Miaoyan; Chen, Gang; Zhang, Ruiqin

    2018-04-19

    Introducing band gap states to TiO 2 photocatalysts is an efficient strategy for expanding the range of accessible energy available in the solar spectrum. However, few approaches are able to introduce band gap states and improve photocatalytic performance simultaneously. Introducing band gap states by creating surface disorder can incapacitate reactivity where unambiguous adsorption sites are a prerequisite. An alternative method for introduction of band gap states is demonstrated in which selected heteroatoms are implanted at preferred surface sites. Theoretical prediction and experimental verification reveal that the implanted heteroatoms not only introduce band gap states without creating surface disorder, but also function as active sites for the Cr VI reduction reaction. This promising approach may be applicable to the surfaces of other solar harvesting materials where engineered band gap states could be used to tune photophysical and -catalytic properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The properties of optimal two-dimensional phononic crystals with different material contrasts

    NASA Astrophysics Data System (ADS)

    Liu, Zong-Fa; Wu, Bin; He, Cun-Fu

    2016-09-01

    By modifying the spatial distribution of constituent material phases, phononic crystals (PnCs) can be designed to exhibit band gaps within which sound and vibration cannot propagate. In this paper, the developed topology optimization method (TOM), based on genetic algorithms (GAs) and the finite element method (FEM), is proposed to design two-dimensional (2D) solid PnC structures composed of two contrasting elastic materials. The PnCs have the lowest order band gap that is the third band gap for the coupled mode, the first band gap for the shear mode or the XY 34 Z band gap for the mixed mode. Moreover, the effects of the ratios of contrasting material properties on the optimal layout of unit cells and the corresponding phononic band gaps (PBGs) are investigated. The results indicate that the topology of the optimal PnCs and corresponding band gaps varies with the change of material contrasts. The law can be used for the rapid design of desired PnC structures.

  17. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    PubMed

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.

  18. Effect of interfacial lattice mismatch on bulk carrier concentration and band gap of InN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuyyalil, Jithesh; Tangi, Malleswararao; Shivaprasad, S. M.

    The issue of ambiguous values of the band gap (0.6 to 2 eV) of InN thin film in literature has been addressed by a careful experiment. We have grown wurtzite InN films by PA-MBE simultaneously on differently modified c-plane sapphire substrates and characterized by complementary structural and chemical probes. Our studies discount Mie resonances caused by metallic In segregation at grain boundaries as the reason for low band gap values ( Almost-Equal-To 0.6 eV) and also the formation of Indium oxides and oxynitrides as the cause for high band gap value ( Almost-Equal-To 2.0 eV). It is observed that polycrystallinitymore » arising from azimuthal miss-orientation of c-oriented wurtzite InN crystals increases the carrier concentration and the band gap values. We have reviewed the band gap, carrier concentration, and effective mass of InN in literature and our own measurements, which show that the Moss-Burstein relation with a non-parabolic conduction band accounts for the observed variation of band gap with carrier concentration.« less

  19. Resolution of the Band Gap Prediction Problem for Materials Design

    DOE PAGES

    Crowley, Jason M.; Tahir-Kheli, Jamil; Goddard, William A.

    2016-03-04

    An important property with any new material is the band gap. Standard density functional theory methods grossly underestimate band gaps. This is known as the band gap problem. Here in this paper, we show that the hybrid B3PW91 density functional returns band gaps with a mean absolute deviation (MAD) from experiment of 0.22 eV over 64 insulators with gaps spanning a factor of 500 from 0.014 to 7 eV. The MAD is 0.28 eV over 70 compounds with gaps up to 14.2 eV, with a mean error of -0.03 eV. To benchmark the quality of the hybrid method, we comparedmore » the hybrid method to the rigorous GW many-body perturbation theory method. Surprisingly, the MAD for B3PW91 is about 1.5 times smaller than the MAD for GW. Furthermore, B3PW91 is 3-4 orders of magnitude faster computationally. Hence, B3PW91 is a practical tool for predicting band gaps of materials before they are synthesized and represents a solution to the band gap prediction problem.« less

  20. Bi-directional evolutionary optimization for photonic band gap structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Fei; School of Civil Engineering, Central South University, Changsha 410075; Huang, Xiaodong, E-mail: huang.xiaodong@rmit.edu.au

    2015-12-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gapsmore » from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.« less

  1. Tunable terahertz reflection spectrum based on band gaps of GaP materials excited by ultrasonic

    NASA Astrophysics Data System (ADS)

    Cui, H.; Zhang, X. B.; Wang, X. F.; Wang, G. Q.

    2018-02-01

    Tunable terahertz (THz) reflection spectrum, ranged from 0.2 to 8 THz, in band gaps of gallium phosphide (GaP) materials excited by ultrasonic is investigated in the present paper, in which tunable ultrasonic and terahertz wave collinear transmission in the same direction is postulated. Numerical simulation results show that, under the acousto-optic interaction, band gaps of transverse optical phonon polariton dispersion curves are turned on, this leads to a dis-propagation of polariton in GaP bulk. On the other side, GaP material has less absorption to THz wave according to experimental studies, as indicates that THz wave could be reflected by the band gaps spontaneously. The band gaps width and acousto-optic coupling strength are proportional with ultrasonic frequency and its intensity in ultrasonic frequency range of 0-250 MHz, in which low-frequency branch of transverse optical phonon polariton dispersion curves demonstrate periodicity and folding as well as. With the increase of ultrasonic frequency, frequency of band gap is blue-shifted, and total reflectivity decreased with -1-order and -2-order reflectivity decrease. The band gaps converge to the restrahlen band infinitely with frequency of ultrasonic exceeding over 250 MHz, total reflectivity of which is attenuated. As is show above, reflection of THz wave can be accommodated by regulating the frequency and its intensity of ultrasonic frequency. Relevant technology may be available in tunable THz frequency selection and filtering.

  2. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  3. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids.

    PubMed

    Alonso-Redondo, E; Schmitt, M; Urbach, Z; Hui, C M; Sainidou, R; Rembert, P; Matyjaszewski, K; Bockstaller, M R; Fytas, G

    2015-09-22

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to 'manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the 'anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies.

  4. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Haifeng; Nanjing Artillery Academy, Nanjing 211132; Liu Shaobin

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonicmore » band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.« less

  5. Graphene field effect transistor without an energy gap.

    PubMed

    Jang, Min Seok; Kim, Hyungjun; Son, Young-Woo; Atwater, Harry A; Goddard, William A

    2013-05-28

    Graphene is a room temperature ballistic electron conductor and also a very good thermal conductor. Thus, it has been regarded as an ideal material for postsilicon electronic applications. A major complication is that the relativistic massless electrons in pristine graphene exhibit unimpeded Klein tunneling penetration through gate potential barriers. Thus, previous efforts to realize a field effect transistor for logic applications have assumed that introduction of a band gap in graphene is a prerequisite. Unfortunately, extrinsic treatments designed to open a band gap seriously degrade device quality, yielding very low mobility and uncontrolled on/off current ratios. To solve this dilemma, we propose a gating mechanism that leads to a hundredfold enhancement in on/off transmittance ratio for normally incident electrons without any band gap engineering. Thus, our saw-shaped geometry gate potential (in place of the conventional bar-shaped geometry) leads to switching to an off state while retaining the ultrahigh electron mobility in the on state. In particular, we report that an on/off transmittance ratio of 130 is achievable for a sawtooth gate with a gate length of 80 nm. Our switching mechanism demonstrates that intrinsic graphene can be used in designing logic devices without serious alteration of the conventional field effect transistor architecture. This suggests a new variable for the optimization of the graphene-based device--geometry of the gate electrode.

  6. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  7. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  8. Topologically trivial and nontrivial edge bands in graphene induced by irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Cai, Zhi-Jun; Wang, Rui-Qiang; Bai, Yan-Kui

    2016-08-01

    We proposed a minimal model to describe the Floquet band structure of two-dimensional materials with light-induced resonant inter-band transition. We applied it to graphene to study the band features caused by the light irradiation. Linearly polarized light induces pseudo gaps (gaps are functions of wavevector), and circularly polarized light causes real gaps on the quasi-energy spectrum. If the polarization of light is linear and along the longitudinal direction of zigzag ribbons, flat edge bands appear in the pseudo gaps, and if it is in the lateral direction of armchair ribbons, curved edge bands can be found. For the circularly polarized cases, edge bands arise and intersect in the gaps of both types of ribbons. The edge bands induced by the circularly polarized light are helical and those by linearly polarized light are topologically trivial ones. The Chern number of the Floquet band, which reflects the number of pairs of helical edge bands in graphene ribbons, can be reduced into the winding number at resonance.

  9. Designing broad phononic band gaps for in-plane modes

    NASA Astrophysics Data System (ADS)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  10. Band gap renormalization and Burstein-Moss effect in silicon- and germanium-doped wurtzite GaN up to 1020 cm-3

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Osterburg, Sarah; Lange, Karsten; Lidig, Christian; Garke, Bernd; Goldhahn, Rüdiger; Richter, Eberhard; Netzel, Carsten; Neumann, Maciej D.; Esser, Norbert; Fritze, Stephanie; Witte, Hartmut; Bläsing, Jürgen; Dadgar, Armin; Krost, Alois

    2014-08-01

    The interplay between band gap renormalization and band filling (Burstein-Moss effect) in n-type wurtzite GaN is investigated. For a wide range of electron concentrations up to 1.6×1020cm-3 spectroscopic ellipsometry and photoluminescence were used to determine the dependence of the band gap energy and the Fermi edge on electron density. The band gap renormalization is the dominating effect up to an electron density of about 9×1018cm-3; at higher values the Burstein-Moss effect is stronger. Exciton screening, the Mott transition, and formation of Mahan excitons are discussed. A quantitative understanding of the near gap transition energies on electron density is obtained. Higher energy features in the dielectric functions up to 10eV are not influenced by band gap renormalization.

  11. Assessment of band gaps for alkaline-earth chalcogenides using improved Tran Blaha-modified Becke Johnson potential

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Kunduru, Lavanya; Roshan, S. C. Rakesh; Sainath, M.

    2018-04-01

    Assessment of band gaps for nine alkaline-earth chalcogenides namely MX (M = Ca, Sr, Ba and X = S, Se Te) compounds are reported using Tran Blaha-modified Becke Johnson (TB-mBJ) potential and its new parameterization. From the computed electronic band structures at the equilibrium lattice constants, these materials are found to be indirect band gap semiconductors at ambient conditions. The calculated band gaps are improved using TB-mBJ and its new parameterization when compared to local density approximation (LDA) and Becke Johnson potentials. We also observe that TB-mBJ new parameterization for semiconductors below 7 eV reproduces the experimental trends very well for the small band gap semiconducting alkaline-earth chalcogenides. The calculated band profiles look similar for MX compounds (electronic band structures are provided for BaS for representation purpose) using LDA and new parameterization of TB-mBJ potentials.

  12. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  13. Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director

    DTIC Science & Technology

    2014-08-01

    Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG) Surface and Director by Amir I Zaghloul, Youn M... Antenna with Electromagnetic Band Gap (EBG) Surface and Director Amir I Zaghloul, Youn M Lee, Gregory A Mitchell, and Theodore K Anthony...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Enhanced Ultra-Wideband (UWB) Circular Monopole Antenna with Electromagnetic Band Gap (EBG

  14. The Marvels of Electromagnetic Band Gap (EBG) Structures

    DTIC Science & Technology

    2003-11-01

    terminology of "Electromagnetic conference papers and journal articles dealing with Band- gaps (EBG)". Recently, many researchers the characterizations...Band Gap (EBG) Structures 9 utilized to reduce the mutual coupling between Structures: An FDTD/Prony Technique elements of antenna arrays. based on the...Band- Gap of several patents. He has had pioneering research contributions in diverse areas of electromagnetics,Snteructure", Dymposiget o l 21 IE 48

  15. A novel theoretical model for the temperature dependence of band gap energy in semiconductors

    NASA Astrophysics Data System (ADS)

    Geng, Peiji; Li, Weiguo; Zhang, Xianhe; Zhang, Xuyao; Deng, Yong; Kou, Haibo

    2017-10-01

    We report a novel theoretical model without any fitting parameters for the temperature dependence of band gap energy in semiconductors. This model relates the band gap energy at the elevated temperature to that at the arbitrary reference temperature. As examples, the band gap energies of Si, Ge, AlN, GaN, InP, InAs, ZnO, ZnS, ZnSe and GaAs at temperatures below 400 K are calculated and are in good agreement with the experimental results. Meanwhile, the band gap energies at high temperatures (T  >  400 K) are predicted, which are greater than the experimental results, and the reasonable analysis is carried out as well. Under low temperatures, the effect of lattice expansion on the band gap energy is very small, but it has much influence on the band gap energy at high temperatures. Therefore, it is necessary to consider the effect of lattice expansion at high temperatures, and the method considering the effect of lattice expansion has also been given. The model has distinct advantages compared with the widely quoted Varshni’s semi-empirical equation from the aspect of modeling, physical meaning and application. The study provides a convenient method to determine the band gap energy under different temperatures.

  16. Origin of band gap bowing in dilute GaAs1-xNx and GaP1-xNx alloys: A real-space view

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2013-07-01

    The origin of the band gap bowing in dilute nitrogen doped gallium based III-V semiconductors is largely debated. In this paper we show the dilute GaAs1-xNx and GaP1-xNx as representative examples that the nitrogen-induced states close to the conduction band minimum propagate along the zigzag chains on the {110} planes. Thereby states originating from different N atoms interact with each other resulting in broadening of the nitrogen-induced states which narrows the band gap. Our modeling based on ab initio theoretical calculations explains the experimentally observed N concentration dependent band gap narrowing both qualitatively and quantitatively.

  17. Small band gap superlattices as intrinsic long wavelength infrared detector materials

    NASA Technical Reports Server (NTRS)

    Smith, Darryl L.; Mailhiot, C.

    1990-01-01

    Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.

  18. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  19. Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2018-05-01

    Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.

  20. Modification of electronic properties of graphene by using low-energy K{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jingul; Lee, Paengro; Ryu, Mintae

    2016-05-02

    Despite its superb electronic properties, the semi-metallic nature of graphene with no band gap (E{sub g}) at the Dirac point has been a stumbling block for its industrial application. We report an improved means of producing a tunable band gap over other schemes by doping low energy (10 eV) potassium ions (K{sup +}) on single layer graphene formed on 6H-SiC(0001) surface, where the noble Dirac nature of the π-band remains almost unaltered. The changes in the π-band induced by K{sup +} ions reveal that the band gap increases gradually with increasing dose (θ) of the ions up to E{sub g} = 0.65 eV atmore » θ = 1.10 monolayers, demonstrating the tunable character of the band gap. Our core level data for C 1s, Si 2p, and K 2p suggest that the K{sup +}-induced asymmetry in charge distribution among carbon atoms drives the opening of band gap, which is in sharp contrast with no band gap when neutral K atoms are adsorbed on graphene. This tunable K{sup +}-induced band gap in graphene illustrates its potential application in graphene-based nano-electronics.« less

  1. Investigation the effect of lattice angle on the band gap width in 3D phononic crystals with rhombohedral(I) lattice

    NASA Astrophysics Data System (ADS)

    Salehi, H.; Aryadoust, M.; Shoushtari, M. Zargar

    2014-07-01

    In this paper, the propagation of acoustic waves in the phononic crystal of 3D with rhombohedral(I) lattice is studied theoretically. The crystal composite constituted of nickel spheres embedded in epoxy. The calculations of the band structure and density of states are performed with the plane wave expansion method in the irreducible part of Brillouin zone. In the present work, we have investigated the effect of lattice angle on the band structure and width of the band gap rhombohedral(I) lattice in the irreducible part of the first Brillouin zone and its planes separately. The results show that more than one complete band gape are formed in the four planes of the irreducible part. The most complete band gaps are formed in the (111) plane and the widest complete band gap in (443) with an angle greater than 80. So, if the sound passes through the (111) and (443) planes for the lattice angle close to 90, the crystal phononic displays the excellent insulation behavior. Moreover, in the other planes, the lattice angle does not affect on the width and the number of band gaps. Also, for the filling fraction 5 %, the widest complete band gap is formed. These results are consistent with the effect of symmetry on the band gap width, because the (111) plane has the most symmetry.

  2. Design of radial phononic crystal using annular soft material with low-frequency resonant elastic structures

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang

    2016-10-01

    Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  3. Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot

    NASA Astrophysics Data System (ADS)

    Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang

    2015-01-01

    In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.

  4. Linking landscape characteristics to mineral site use by band-tailed pigeons in Western Oregon: Coarse-filter conservation with fine-filter tuning

    USGS Publications Warehouse

    Overton, C.T.; Schmitz, R.A.; Casazza, Michael L.

    2006-01-01

    Mineral sites are scarce resources of high ion concentration used heavily by the Pacific Coast subpopulation of band-tailed pigeons. Over 20% of all known mineral sites used by band-tailed pigeons in western Oregon, including all hot springs, have been abandoned. Prior investigations have not analyzed stand or landscape level habitat composition in relation to band-tailed pigeon use of mineral sites. We used logistic regression models to evaluate the influence of habitat types, identified from Gap Analysis Program (GAP) products at two spatial scales, on the odds of mineral site use in Oregon (n = 69 currently used and 20 historically used). Our results indicated that the odds of current use were negatively associated with non-forested terrestrial and private land area around mineral sites. Similarly, the odds of current mineral site use were positively associated with forested and special status (GAP stewardship codes 1 and 2) land area. The most important variable associated with the odds of mineral site use was the amount of non-forested land cover at either spatial scale. Our results demonstrate the utility of meso-scale geographic information designed for regional, coarse-filter approaches to conservation in fine-filter investigation of wildlife-habitat relationships. Adjacent landcover and ownership status explain the pattern of use for known mineral sites in western Oregon. In order for conservation and management activities for band-tailed pigeons to be successful, mineral sites need to be addressed as important and vulnerable resources. Management of band-tailed pigeons should incorporate the potential for forest management activities and land ownership patterns to influence the risk of mineral site abandonment.

  5. Tuning Ferritin’s band gap through mixed metal oxide nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Olsen, Cameron R.; Embley, Jacob S.; Hansen, Kameron R.; Henrichsen, Andrew M.; Peterson, J. Ryan; Colton, John S.; Watt, Richard K.

    2017-05-01

    This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with {{{{MnO}}}4}- in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin’s potential in solar-energy harvesting. Additionally, the success of using {{{{MnO}}}4}- in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.

  6. Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Yanyu; Wang, Lifeng

    2014-08-01

    Periodic composite materials have many promising applications due to their unique ability to control the propagation of waves. Here, we report the existence and frequency tunability of complete elastic wave band gaps in bio-inspired periodic composites with nacre-like, brick-and-mortar microstructure. Numerical results show that complete band gaps in these periodic composites derive from local resonances or Bragg scattering, depending on the lattice angle and the volume fraction of each phase in the composites. The investigation of elastic wave propagation in finite periodic composites validates the simulated complete band gaps and further reveals the mechanisms leading to complete band gaps. Moreover, our results indicate that the topological arrangement of the mineral platelets and changes of material properties can be utilized to tune the evolution of complete band gaps. Our finding provides new opportunities to design mechanically robust periodic composite materials for wave absorption under hostile environments, such as for deep water applications.

  7. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.

    PubMed

    Degirmenci, Elif; Landais, Pascal

    2013-10-20

    Photonic band gap and transmission characteristics of 2D metallic photonic crystals at THz frequencies have been investigated using finite element method (FEM). Photonic crystals composed of metallic rods in air, in square and triangular lattice arrangements, are considered for transverse electric and transverse magnetic polarizations. The modes and band gap characteristics of metallic photonic crystal structure are investigated by solving the eigenvalue problem over a unit cell of the lattice using periodic boundary conditions. A photonic band gap diagram of dielectric photonic crystal in square lattice array is also considered and compared with well-known plane wave expansion results verifying our FEM approach. The photonic band gap designs for both dielectric and metallic photonic crystals are consistent with previous studies obtained by different methods. Perfect match is obtained between photonic band gap diagrams and transmission spectra of corresponding lattice structure.

  8. Theoretical aspects of photonic band gap in 1D nano structure of LN: MgLN periodic layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisodia, Namita, E-mail: namitasisodiya@gmail.com

    2015-06-24

    By using the transfer matrix method, we have analyzed the photonic band gap properties in a periodic layer of LN:MgLN medium. The Width of alternate layers of LN and MgLN is in the range of hundred nanometers. The birefringent and ferroelectric properties of the medium (i.e ordinary, extraordinary refractive indices and electric dipole moment) is given due considerations in the formulation of photonic band gap. Effect of electronic transition dipole moment of the medium on photonic band gap is also taken into account. We find that photonic band gap can be modified by the variation in the ratio of themore » width of two medium. We explain our findings by obtaining numerical values and the effect on the photonic band gap due to variation in the ratio of alternate medium is shown graphically.« less

  9. Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials

    NASA Astrophysics Data System (ADS)

    Srivastava, Sanjeev K.; Aghajamali, Alireza

    2016-05-01

    Theoretical investigation of photonic band gaps or reflection bands in one-dimensional annular photonic crystal (APC) containing double negative (DNG) metamaterials and air has been presented. The proposed structure consists of the alternate layers of dispersive DNG material and air immersed in free space. In order to study photonic band gaps we obtain the reflectance spectrum of the annular PC by employing the transfer matrix method (TMM) in the cylindrical waves for both TE and TM polarizations. In this work we study the effect of azimuthal mode number (m) and starting radius (ρ0) on the three band gaps viz. zero averaged refractive index (zero-nbar) gap, zero permittivity (zero- ε) and zero permeability (zero- μ) gaps. It is found that for m ≥ 1 , zero- μ gap appears in TE mode and zero- ε gap appears in TM mode. The width of both zero- μ and zero- ε gap increases by increasing m values, but the enhancement of zero- μ gap is more appreciable. Also, the effect of ρ0 on the three band gaps (reflection bands) of annular PC structure at the given m-number has been studied, for both TE and TM polarizations. The result shows that in both polarizations zero- ε and zero- μ gaps decreases when ρ0 increases, whereas zero-nbar gap remains invariant.

  10. Band gap opening in α-graphyne by adsorption of organic molecule

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2014-09-01

    The lack of a band gap limits the application of graphyne in nanoelectronic devices. We have investigated possibility of opening a band gap in α-graphyne by adsorption of tetracyanoethylene. The electronic property of α-graphyne in the presence of different numbers of tetracyanoethylene has been studied using density functional theory. It is found that charge is transferred from graphyne sheet to tetracyanoethylene molecules. In the presence of this electron acceptor molecule, a semimetal α-graphyne shows semiconducting property. The energy band gap at the Dirac point is enhanced by increasing the number of tetracyanoethylene. Our results provide a simple method to create and control the band gap in α-graphyne.

  11. Thin film solar cell including a spatially modulated intrinsic layer

    DOEpatents

    Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  12. All-optical band engineering of gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Kibis, O. V.; Dini, K.; Iorsh, I. V.; Shelykh, I. A.

    2017-03-01

    We demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene and transition-metal dichalchogenide monolayers) with a strong off-resonant electromagnetic field (dressing field) substantially renormalizes the band gaps and the spin-orbit splitting. Moreover, the renormalized electronic parameters drastically depend on the field polarization. Namely, a linearly polarized dressing field always decreases the band gap (and, particularly, can turn the gap into zero), whereas a circularly polarized field breaks the equivalence of valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. As a consequence, the dressing field can serve as an effective tool to control spin and valley properties of the materials and be potentially exploited in optoelectronic applications.

  13. The band gap properties of the three-component semi-infinite plate-like LRPC by using PWE/FE method

    NASA Astrophysics Data System (ADS)

    Qian, Denghui; Wang, Jianchun

    2018-06-01

    This paper applies coupled plane wave expansion and finite element (PWE/FE) method to calculate the band structure of the proposed three-component semi-infinite plate-like locally resonant phononic crystal (LRPC). In order to verify the accuracy of the result, the band structure calculated by PWE/FE method is compared to that calculated by the traditional finite element (FE) method, and the frequency range of the band gap in the band structure is compared to that of the attenuation in the transmission power spectrum. Numerical results and further analysis demonstrate that a band gap is opened by the coupling between the dominant vibrations of the rubber layer and the matrix modes. In addition, the influences of the geometry parameters on the band gap are studied and understood with the help of the simple “base-spring-mass” model, the influence of the viscidity of rubber layer on the band gap is also investigated.

  14. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.

    PubMed

    Linderälv, Christopher; Lindman, Anders; Erhart, Paul

    2018-01-04

    Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.

  15. Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)

    PubMed Central

    2017-01-01

    We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon’s band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate’s band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate. PMID:29049879

  16. Bandgap Engineering of Lead-Free Double Perovskite Cs2 AgBiBr6 through Trivalent Metal Alloying.

    PubMed

    Du, Ke-Zhao; Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B

    2017-07-03

    The double perovskite family, A 2 M I M III X 6 , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH 3 NH 3 PbI 3 . Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs 2 AgBiBr 6 as host, band-gap engineering through alloying of In III /Sb III has been demonstrated in the current work. Cs 2 Ag(Bi 1-x M x )Br 6 (M=In, Sb) accommodates up to 75 % In III with increased band gap, and up to 37.5 % Sb III with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs 2 Ag(Bi 0.625 Sb 0.375 )Br 6 . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The quasiparticle band structure of zincblende and rocksalt ZnO.

    PubMed

    Dixit, H; Saniz, R; Lamoen, D; Partoens, B

    2010-03-31

    We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the p-d hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong p-d hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn(20+) pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ∼ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong p-d hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.

  18. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the opticalmore » absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.« less

  19. Estimation of photonic band gap in the hollow core cylindrical multilayer structure

    NASA Astrophysics Data System (ADS)

    Chourasia, Ritesh Kumar; Singh, Vivek

    2018-04-01

    The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.

  20. Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry

    NASA Astrophysics Data System (ADS)

    Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong

    2010-10-01

    Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.

  1. Local band gap measurements by VEELS of thin film solar cells.

    PubMed

    Keller, Debora; Buecheler, Stephan; Reinhard, Patrick; Pianezzi, Fabian; Pohl, Darius; Surrey, Alexander; Rellinghaus, Bernd; Erni, Rolf; Tiwari, Ayodhya N

    2014-08-01

    This work presents a systematic study that evaluates the feasibility and reliability of local band gap measurements of Cu(In,Ga)Se2 thin films by valence electron energy-loss spectroscopy (VEELS). The compositional gradients across the Cu(In,Ga)Se2 layer cause variations in the band gap energy, which are experimentally determined using a monochromated scanning transmission electron microscope (STEM). The results reveal the expected band gap variation across the Cu(In,Ga)Se2 layer and therefore confirm the feasibility of local band gap measurements of Cu(In,Ga)Se2 by VEELS. The precision and accuracy of the results are discussed based on the analysis of individual error sources, which leads to the conclusion that the precision of our measurements is most limited by the acquisition reproducibility, if the signal-to-noise ratio of the spectrum is high enough. Furthermore, we simulate the impact of radiation losses on the measured band gap value and propose a thickness-dependent correction. In future work, localized band gap variations will be measured on a more localized length scale to investigate, e.g., the influence of chemical inhomogeneities and dopant accumulations at grain boundaries.

  2. High band gap 2-6 and 3-5 tunneling junctions for silicon multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Daud, Taher (Inventor); Kachare, Akaram H. (Inventor)

    1986-01-01

    A multijunction silicon solar cell of high efficiency is provided by providing a tunnel junction between the solar cell junctions to connect them in series. The tunnel junction is comprised of p+ and n+ layers of high band gap 3-5 or 2-6 semiconductor materials that match the lattice structure of silicon, such as GaP (band gap 2.24 eV) or ZnS (band gap 3.6 eV). Each of which has a perfect lattice match with silicon to avoid defects normally associated with lattice mismatch.

  3. Electronic transition and electrical transport properties of delafossite CuCr1-xMgxO2 (0 ≤ x ≤ 12%) films prepared by the sol-gel method: A composition dependence study

    NASA Astrophysics Data System (ADS)

    Han, M. J.; Duan, Z. H.; Zhang, J. Z.; Zhang, S.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2013-10-01

    Highly transparent CuCr1-xMgxO2 (0 ≤ x ≤ 12%) films were prepared on (001) sapphire substrates by sol-gel method. The microstructure, phonon modes, optical band gap, and electrical transport properties have been systematically discussed. It was found that Mg-doping improved the crystal quality and enhanced the (00l) preferred orientation. The spectral transmittance of films approaches about 70%-75% in the visible-near-infrared wavelength region. With increasing Mg-composition, the optical band gap first declines and climbs up due to the band gap renormalization and Burstein-Moss effect. The direct and indirect band gaps of CuCr0.94Mg0.06O2 film are 3.00 and 2.56 eV, respectively. In addition, it shows a crossover from the thermal activation behavior to that of three-dimensional variable range hopping from temperature-dependent electrical conductivity. The crossover temperature decreases with increasing Mg-doping composition, which can be ascribed to the change of spin-charge coupling between the hole and the local spin at Cr site. It should be noted that the electrical conductivity of CuCr1-xMgxO2 films becomes larger with increasing x value. The highest electrical conductivity of 3.85 S cm-1 at room temperature for x = 12% is four-order magnitude larger than that (8.81 × 10-4 S cm-1) for pure CuCrO2 film. The high spectral transmittance and larger conductivity indicate that Mg-doped CuCrO2 films are promising for optoelectronic device applications.

  4. The electronic band structure of Ge1-x Sn x in the full composition range: indirect, direct, and inverted gaps regimes, band offsets, and the Burstein-Moss effect

    NASA Astrophysics Data System (ADS)

    Polak, M. P.; Scharoch, P.; Kudrawiec, R.

    2017-05-01

    A comprehensive and detailed study of the composition dependence of lattice constants, band gaps and band offsets has been performed for bulk Ge1-x Sn x alloy in the full composition range using state-of-the-art density functional theory methods. A spectral weight approach to band unfolding has been applied as a means of distinguishing the indirect and direct band gaps from folded supercell band structures. In this way, four characteristic regions of the band gap character have been identified for Ge1-x Sn x alloy: an indirect band gap (x  <  6.5%), a direct band gap (6.5%  <  x  <  25%) and an inverse band gap (x  >  25%) with inverse spin-orbit split-off for 45%  <  x  <  85%. In general, it has been observed that the bowing parameters of band edges (Γ and L-point in conduction band (CBΓ and CB L ), valence band (VB), and spin-orbit (SO) band) are rather large ({{b}\\text{C{{\\text{B}} Γ }}}   =  2.43  ±  0.06 eV, {{b}\\text{C{{\\text{B}}L}}}   =  0.64  ±  0.04 eV, {{b}\\text{VB}}   =  -0.59  ±  0.04 eV, and {{b}\\text{SO}}   =  -0.49  ±  0.05 eV). This indicates that Ge1-x Sn x behaves like a highly mismatched group IV alloy. The composition dependence of lattice constant shows negligible bowing (b a   =  -0.083 Å). Obtained results have been compared with available experimental data. The origin of band gap reduction and large bowing has been analyzed and conclusions have been drawn regarding the relationship between experimental and theoretical results. It is shown that due to the low DOS at the Γ-point, a significant filling of CB by electrons in the direct gap regime may easily take place. Therefore, the Burstein-Moss effect should be considered when comparing experimental data with theoretical predictions as has already been shown for other intrinsic n-type narrow gap semiconductors (e.g. InN).

  5. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    NASA Astrophysics Data System (ADS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-06-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  6. Band structures in fractal grading porous phononic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ying; Liang, Tianshu; Wang, Bin

    2018-05-01

    In this paper, a new grading porous structure is introduced based on a Sierpinski triangle routine, and wave propagation in this fractal grading porous phononic crystal is investigated. The influences of fractal hierarchy and porosity on the band structures in fractal graidng porous phononic crystals are clarified. Vibration modes of unit cell at absolute band gap edges are given to manifest formation mechanism of absolute band gaps. The results show that absolute band gaps are easy to form in fractal structures comparatively to the normal ones with the same porosity. Structures with higher fractal hierarchies benefit multiple wider absolute band gaps. This work provides useful guidance in design of fractal porous phononic crystals.

  7. Ultrawide bandgap pentamode metamaterials with an asymmetric double-cone outside profile

    NASA Astrophysics Data System (ADS)

    Chu, Yangyang; Li, Yucheng; Cai, Chengxin; Liu, Guangshuan; Wang, Zhaohong; Xu, Zhuo

    2018-03-01

    The band-gap characteristic is an important feature of acoustic metamaterials, which has important theoretical and practical significance in acoustic devices. Pentamode metamaterials (PMs) with phonon band-gap characteristics based on an asymmetric double-cone outside profile are presented and studied in this paper. The phonon band structures of these PMs are calculated by using the finite element method. In addition to the single-mode band-gaps, the complete 3D band-gaps are also obtained by changing the outside profile of the double-cone. Moreover, by adjusting the outside profile and the diameter of the double-cone to reduce the symmetry of the structure, the complete 3D band-gap can be widened. Further parametric analysis is presented to investigate the effect of geometrical parameters on the phonon band-gap property, the numerical simulations show that the maximum relative bandwidth is expanded by 15.14 times through reducing the symmetry of the structure. This study provides a possible way for PMs to control elastic wave propagation in the field of depressing vibration and noise, acoustic filtering and acoustic cloaking.

  8. Quasiparticle Energies and Band Gaps in Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Yang, Li; Park, Cheol-Hwan; Son, Young-Woo; Cohen, Marvin L.; Louie, Steven G.

    2007-11-01

    We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green’s function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5 3.0 eV for ribbons of width 2.4 0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable.

  9. Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals.

    PubMed

    Yang, Shuai; Liu, Ying

    2018-08-01

    Liquid crystal nematic elastomers are one kind of smart anisotropic and viscoelastic solids simultaneously combing the properties of rubber and liquid crystals, which is thermal sensitivity. In this paper, the wave dispersion in a liquid crystal nematic elastomer porous phononic crystal subjected to an external thermal stimulus is theoretically investigated. Firstly, an energy function is proposed to determine thermo-induced deformation in NE periodic structures. Based on this function, thermo-induced band variation in liquid crystal nematic elastomer porous phononic crystals is investigated in detail. The results show that when liquid crystal elastomer changes from nematic state to isotropic state due to the variation of the temperature, the absolute band gaps at different bands are opened or closed. There exists a threshold temperature above which the absolute band gaps are opened or closed. Larger porosity benefits the opening of the absolute band gaps. The deviation of director from the structural symmetry axis is advantageous for the absolute band gap opening in nematic state whist constrains the absolute band gap opening in isotropic state. The combination effect of temperature and director orientation provides an added degree of freedom in the intelligent tuning of the absolute band gaps in phononic crystals. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Probing optical band gaps at the nanoscale in NiFe₂O₄ and CoFe₂O₄ epitaxial films by high resolution electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dileep, K.; Loukya, B.; Datta, R., E-mail: ranjan@jncasr.ac.in

    2014-09-14

    Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct frommore » the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.« less

  11. Density-functional energy gaps of solids demystified

    NASA Astrophysics Data System (ADS)

    Perdew, John P.; Ruzsinszky, Adrienn

    2018-06-01

    The fundamental energy gap of a solid is a ground-state second energy difference. Can one find the fundamental gap from the gap in the band structure of Kohn-Sham density functional theory? An argument of Williams and von Barth (WB), 1983, suggests that one can. In fact, self-consistent band-structure calculations within the local density approximation or the generalized gradient approximation (GGA) yield the fundamental gap within the same approximation for the energy. Such a calculation with the exact density functional would yield a band gap that also underestimates the fundamental gap, because the exact Kohn-Sham potential in a solid jumps up by an additive constant when one electron is added, and the WB argument does not take this effect into account. The WB argument has been extended recently to generalized Kohn-Sham theory, the simplest way to implement meta-GGAs and hybrid functionals self-consistently, with an exchange-correlation potential that is a non-multiplication operator. Since this operator is continuous, the band gap is again the fundamental gap within the same approximation, but, because the approximations are more realistic, so is the band gap. What approximations might be even more realistic?

  12. Band Gap Optimization Design of Photonic Crystals Material

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  13. Band gap and electronic structure of MgSiN2

    NASA Astrophysics Data System (ADS)

    Quirk, J. B.; Râsander, M.; McGilvery, C. M.; Palgrave, R.; Moram, M. A.

    2014-09-01

    Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN2 is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN2 (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN2 is 6.2 eV. MgSiN2 has an additional direct gap of 6.3 eV at the Γ point.

  14. Strain-induced band-gap engineering of graphene monoxide and its effect on graphene

    NASA Astrophysics Data System (ADS)

    Pu, H. H.; Rhim, S. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J. H.

    2013-02-01

    Using first-principles calculations we demonstrate the feasibility of band-gap engineering in two-dimensional crystalline graphene monoxide (GMO), a recently reported graphene-based material with a 1:1 carbon/oxygen ratio. The band gap of GMO, which can be switched between direct and indirect, is tunable over a large range (0-1.35 eV) for accessible strains. Electron and hole transport occurs predominantly along the zigzag and armchair directions (armchair for both) when GMO is a direct- (indirect-) gap semiconductor. A band gap of ˜0.5 eV is also induced in graphene at the K' points for GMO/graphene hybrid systems.

  15. Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandieri, K., E-mail: kakhaber.jandieri@physik.uni-marburg.de; Ludewig, P.; Wegele, T.

    We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.

  16. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids

    PubMed Central

    Alonso-Redondo, E.; Schmitt, M.; Urbach, Z.; Hui, C. M.; Sainidou, R.; Rembert, P.; Matyjaszewski, K.; Bockstaller, M. R.; Fytas, G.

    2015-01-01

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to ‘manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the ‘anisotropic elasticity' across the particle–polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies. PMID:26390851

  17. Band gap scaling laws in group IV nanotubes.

    PubMed

    Wang, Chongze; Fu, Xiaonan; Guo, Yangyang; Guo, Zhengxiao; Xia, Congxin; Jia, Yu

    2017-03-17

    By using the first-principles calculations, the band gap properties of nanotubes formed by group IV elements have been investigated systemically. Our results reveal that for armchair nanotubes, the energy gaps at K points in the Brillouin zone decrease as 1/r scaling law with the radii (r) increasing, while they are scaled by -1/r 2  + C at Γ points, here, C is a constant. Further studies show that such scaling law of K points is independent of both the chiral vector and the type of elements. Therefore, the band gaps of nanotubes for a given radius can be determined by these scaling laws easily. Interestingly, we also predict the existence of indirect band gap for both germanium and tin nanotubes. Our new findings provide an efficient way to determine the band gaps of group IV element nanotubes by knowing the radii, as well as to facilitate the design of functional nanodevices.

  18. Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L).

    PubMed

    Cheng, Y; Liu, X J; Wu, D J

    2011-03-01

    This study investigates the temperature-tuned band gaps of Lamb waves in a one-dimensional phononic-crystal plate, which is formed by alternating strips of ferroelectric ceramic Ba(0.7)Sr(0.3)TiO(3) and epoxy. The sensitive and continuous temperature-tunability of Lamb wave band gaps is demonstrated using the analyses of the band structures and the transmission spectra. The width and position of Lamb wave band gaps shift prominently with variation of temperature in the range of 26 °C-50 °C. For example, the width of the second band gap increases from 0.066 to 0.111 MHz as the temperature is increased from 26 °C to 50 °C. The strong shift promises that the structure could be suitable for temperature-tuned multi-frequency Lamb wave filters. © 2011 Acoustical Society of America

  19. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Jingshan, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu; Li, Xiao; Qian, Xiaofeng, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu

    2016-06-20

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z{sub 2} invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route tomore » manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.« less

  20. Understanding band gaps of solids in generalized Kohn-Sham theory.

    PubMed

    Perdew, John P; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-03-14

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.

  1. Understanding band gaps of solids in generalized Kohn–Sham theory

    PubMed Central

    Perdew, John P.; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K. U.; Scheffler, Matthias; Scuseria, Gustavo E.; Henderson, Thomas M.; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-01-01

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations. PMID:28265085

  2. H-fractal seismic metamaterial with broadband low-frequency bandgaps

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Zeng, Yi; Xu, Yang; Yang, Hongwu; Zeng, Zuoxun

    2018-03-01

    The application of metamaterial in civil engineering to achieve isolation of a building by controlling the propagation of seismic waves is a substantial challenge because seismic waves, a superposition of longitudinal and shear waves, are more complex than electromagnetic and acoustic waves. In this paper, we design a broadband seismic metamaterial based on H-shaped fractal pillars and report numerical simulation of band structures for seismic surface waves propagating. Comparative study on the band structures of H-fractal seismic metamaterials with different levels shows that a new level of fractal structure creates new band gap, widens the total band gaps and shifts the same band gap towards lower frequencies. Moreover, the vibration modes for H-fractal seismic metamaterials are computed and analyzed to clarify the mechanism of widening band gaps. A numerical investigation of seismic surface waves propagation on a 2D array of fractal unit cells on the surface of semi-infinite substrate is proposed to show the efficiency of earthquake shielding in multiple complete band gaps.

  3. Energy band gap and optical transition of metal ion modified double crossover DNA lattices.

    PubMed

    Dugasani, Sreekantha Reddy; Ha, Taewoo; Gnapareddy, Bramaramba; Choi, Kyujin; Lee, Junwye; Kim, Byeonghoon; Kim, Jae Hoon; Park, Sung Ha

    2014-10-22

    We report on the energy band gap and optical transition of a series of divalent metal ion (Cu(2+), Ni(2+), Zn(2+), and Co(2+)) modified DNA (M-DNA) double crossover (DX) lattices fabricated on fused silica by the substrate-assisted growth (SAG) method. We demonstrate how the degree of coverage of the DX lattices is influenced by the DX monomer concentration and also analyze the band gaps of the M-DNA lattices. The energy band gap of the M-DNA, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), ranges from 4.67 to 4.98 eV as judged by optical transitions. Relative to the band gap of a pristine DNA molecule (4.69 eV), the band gap of the M-DNA lattices increases with metal ion doping up to a critical concentration and then decreases with further doping. Interestingly, except for the case of Ni(2+), the onset of the second absorption band shifts to a lower energy until a critical concentration and then shifts to a higher energy with further increasing the metal ion concentration, which is consistent with the evolution of electrical transport characteristics. Our results show that controllable metal ion doping is an effective method to tune the band gap energy of DNA-based nanostructures.

  4. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  5. The temperature-dependency of the optical band gap of ZnO measured by electron energy-loss spectroscopy in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Granerød, Cecilie S.; Galeckas, Augustinas; Johansen, Klaus Magnus; Vines, Lasse; Prytz, Øystein

    2018-04-01

    The optical band gap of ZnO has been measured as a function of temperature using Electron Energy-Loss Spectroscopy (EELS) in a (Scanning) Transmission Electron Microscope ((S)TEM) from approximately 100 K up towards 1000 K. The band gap narrowing shows a close to linear dependency for temperatures above 250 K and is accurately described by Varshni, Bose-Einstein, Pässler and Manoogian-Woolley models. Additionally, the measured band gap is compared with both optical absorption measurements and photoluminescence data. STEM-EELS is here shown to be a viable technique to measure optical band gaps at elevated temperatures, with an available temperature range up to 1500 K and the benefit of superior spatial resolution.

  6. Electronic theoretical study on the influence of torsional deformation on the electronic structure and optical properties of BN-doped graphene

    NASA Astrophysics Data System (ADS)

    Fan, Dazhi; Liu, Guili; Wei, Lin

    2018-06-01

    Based on the density functional theory, the effect of torsional deformation on the electronic structure and optical properties of boron nitride (BN)-doped graphene is studied by using the first-principles calculations. The band structure calculations show that the intrinsic graphene is a semi-metallic material with zero band gap and the torsional deformation has a large effect on its band gap, opening its band gap and turning it from the semi-metal to the medium band gap semiconductor. The doping of BN in graphene makes its band gap open and becomes a medium band gap semiconductor. When it is subjected to a torsional effect, it is found to have a weak influence on its band gap. In other words, the doping of BN makes the changes of the band gap of graphene no longer sensitive to torsional deformation. Optical properties show that the doping of BN leads to a significant decrease in the light absorption coefficient and reflectivity of the graphene at the characteristic peak and that of BN-doped graphene system is also weakened by torsional deformation at the characteristic peak. In the absorption spectrum, the absorption peaks of the doping system of the torsion angle of 2-20∘ are redshifted compared with that of the BN-doped system (the torsion angle is 0∘). In the reflection spectrum, the two reflection peaks are all redshifted relative to that of the BN-doped system (the torsion angle is 0∘) and when the torsion angle exceeds 12∘, the size relationship between the two peaks is interchanged. The results of this paper are of guiding significance for the study of graphene-based nanotube devices in terms of deformation.

  7. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    DOE PAGES

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; ...

    2017-07-13

    Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

  8. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas

    Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

  9. Theoretical study of nitride short period superlattices

    NASA Astrophysics Data System (ADS)

    Gorczyca, I.; Suski, T.; Christensen, N. E.; Svane, A.

    2018-02-01

    Discussion of band gap behavior based on first principles calculations of electronic band structures for various short period nitride superlattices is presented. Binary superlattices, as InN/GaN and GaN/AlN as well as superlattices containing alloys, as InGaN/GaN, GaN/AlGaN, and GaN/InAlN are considered. Taking into account different crystallographic directions of growth (polar, semipolar and nonpolar) and different strain conditions (free-standing and pseudomorphic) all the factors influencing the band gap engineering are analyzed. Dependence on internal strain and lattice geometry is considered, but the main attention is devoted to the influence of the internal electric field and the hybridization of well and barrier wave functions. The contributions of these two important factors to band gap behavior are illustrated and estimated quantitatively. It appears that there are two interesting ranges of layer thicknesses; in one (few atomic monolayers in barriers and wells) the influence of the wave function hybridization is dominant, whereas in the other (layers thicker than roughly five to six monolayers) dependence of electric field on the band gaps is more important. The band gap behavior in superlattices is compared with the band gap dependence on composition in the corresponding ternary and quaternary alloys. It is shown that for superlattices it is possible to exceed by far the range of band gap values, which can be realized in ternary alloys. The calculated values of the band gaps are compared with the photoluminescence emission energies, when the corresponding data are available. Finally, similarities and differences between nitride and oxide polar superlattices are pointed out by comparison of wurtzite GaN/AlN and ZnO/MgO.

  10. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics.

    PubMed

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Toney, Michael F; McGehee, Michael D

    2017-08-16

    Tin and lead iodide perovskite semiconductors of the composition AMX 3 , where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.

  11. Effect of Rare Earth Elements (Er, Ho) on Semi-Metallic Materials (ScN) in an Applied Electric Field

    NASA Technical Reports Server (NTRS)

    Kim, Hyunjung; Park, Yeonjoon; King, Glen C.; Lee, Kunik; Choi, Sang H.

    2012-01-01

    The development of materials and fabrication technology for field-controlled spectrally active optics is essential for applications such as membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras and flat-panel displays. The dopants of rare earth elements, in a host of optical systems, create a number of absorption and emission band structures and can easily be incorporated into many high quality crystalline and amorphous hosts. In wide band-gap semiconductors like ScN, the existing deep levels can capture or emit the mobile charges, and can be ionized with the loss or capture of the carriers which are the fundamental basis of concept for smart optic materials. The band gap shrinkage or splitting with dopants supports the possibility of this concept. In the present work, a semi-metallic material (ScN) was doped with rare earth elements (Er, Ho) and tested under an applied electric field to characterize spectral and refractive index shifts by either Stark or Zeeman Effect. These effects can be verified using the UV-Vis spectroscopy, the Hall Effect measurement and the ellipsometric spectroscopy. The optical band gaps of ScN doped with Er and doped with Ho were experimentally estimated as 2.33eV and 2.24eV ( 0.2eV) respectively. This is less than that of undoped ScN (2.5 0.2eV). The red-shifted absorption onset is a direct evidence for the decrease of band gap energy (Eg), and the broadening of valence band states is attributable to the doping cases. A decrease in refractive index with an applied field was observed as a small shift in absorption coefficient using a variable angle spectroscopic ellipsometer. In the presence of an electric field, mobile carriers are redistributed within the space charge region (SCR) to produce this electro-refractive effect. The shift in refractive index is also affected by the density and location of deep potential wells within the SCR. In addition, the microstructure change was observed by a TEM analysis. These results give an insight for future applications for the field-controlled spectrally active material systems.

  12. Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites.

    PubMed

    Kim, Heejae; Hunger, Johannes; Cánovas, Enrique; Karakus, Melike; Mics, Zoltán; Grechko, Maksim; Turchinovich, Dmitry; Parekh, Sapun H; Bonn, Mischa

    2017-09-25

    Methylammonium lead iodide perovskite is an outstanding semiconductor for photovoltaics. One of its intriguing peculiarities is that the band gap of this perovskite increases with increasing lattice temperature. Despite the presence of various thermally accessible phonon modes in this soft material, the understanding of how precisely these phonons affect macroscopic material properties and lead to the peculiar temperature dependence of the band gap has remained elusive. Here, we report a strong coupling of a single phonon mode at the frequency of ~ 1 THz to the optical band gap by monitoring the transient band edge absorption after ultrafast resonant THz phonon excitation. Excitation of the 1 THz phonon causes a blue shift of the band gap over the temperature range of 185 ~ 300 K. Our results uncover the mode-specific coupling between one phonon and the optical properties, which contributes to the temperature dependence of the gap in the tetragonal phase.Methylammonium lead iodide perovskite, a promising material for efficient photovoltaics, shows a unique temperature dependence of its optical properties. Kim et al. quantify the coupling between the optical gap and a lattice phonon at 1 THz, which favorably contributes to the thermal variation of the gap.

  13. First principles investigation of GaNbO{sub 4} as a photocatalytic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Neelam, E-mail: sneelam@issc.unipune.ac.in; Verma, Mukta; Shah, Vaishali

    We have performed first principles density functional total energy calculations on pure and doped GaNbO{sub 4} to investigate its applicability as a photo catalyst. Pure GaNbO{sub 4} is an indirect, wide band gap semiconductor similar to the widely investigated TiO{sub 2} which is known to be a photo catalyst in UV light [K. Yang et. al. Chem. Mater. 20, 6528 (2008)]. S atom doping of TiO{sub 2} reduces the band gap [F. Tian et. al. J. Phys. Chem. B 110, 17866 (2006)], and increases its efficiency in the visible light range. It has been experimentally reported that S doping ofmore » GaNbO{sub 4} at the O site, decreases its photo catalytic efficiency. Our band structure calculations show that both pure and doped GaNbO{sub 4} have indirect band gaps and S atom doping reduces the band gap in agreement with experiments. The decrease in the band gap is due to the lowering of the conduction band minimum towards the Fermi level. An unequal reduction in the band gap was observed at the four inequivalent O sites chosen for S doping. This suggests that the photo catalytic activity varies with the dopant site.« less

  14. Band Structure Engineering of Cs2AgBiBr6 Perovskite through Order-Disordered Transition: A First-Principle Study.

    PubMed

    Yang, Jingxiu; Zhang, Peng; Wei, Su-Huai

    2018-01-04

    Cs 2 AgBiBr 6 was proposed as one of the inorganic, stable, and nontoxic replacements of the methylammonium lead halides (CH 3 NH 3 PbI 3 , which is currently considered as one of the most promising light-harvesting material for solar cells). However, the wide indirect band gap of Cs 2 AgBiBr 6 suggests that its application in photovoltaics is limited. Using the first-principle calculation, we show that by controlling the ordering parameter at the mixed sublattice, the band gap of Cs 2 AgBiBr 6 can vary continuously from a wide indirect band gap of 1.93 eV for the fully ordered double-perovskite structure to a small pseudodirect band gap of 0.44 eV for the fully random alloy. Therefore, one can achieve better light absorption simply by controlling the growth temperature and thus the ordering parameters and band gaps. We also show that controlled doping in Cs 2 AgBiBr 6 can change the energy difference between ordered and disordered Cs 2 AgBiBr 6 , thus providing further control of the ordering parameters and the band gaps. Our study, therefore, provides a novel approach to carry out band structure engineering in the mixed perovskites for optoelectronic applications.

  15. Nanodopant-Induced Band Modulation in AgPbmSbTe2+m-Type Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Ke, Xuezhi; Chen, Changfeng

    2011-01-01

    We elucidate the fundamental physics of nanoscale dopants in narrow band-gap thermoelectric nanocomposites XPbmYTe2+m (X=Ag,Na; Y=Sb,Bi) using first-principles calculations. Our re- sults unveil distinct band-structure modulations, most notably a sizable band-gap widening driven by nanodopant-induced lattice strain and a band split-off at the conduction band minimum caused by the spin-orbit interaction of the dopant Sb or Bi atoms. Boltzmann transport calculations demon- strate that these band modulations have significant but competing effects on high-temperature elec- tron transport behavior. These results offer insights for understanding recent experimental findings and suggest principles for optimizing thermoelectric properties of narrow band-gap semiconductors.

  16. Band structures of TiO2 doped with N, C and B*

    PubMed Central

    Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532

  17. The wave attenuation mechanism of the periodic local resonant metamaterial

    NASA Astrophysics Data System (ADS)

    Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying

    2018-01-01

    This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.

  18. Band Gaps for Elastic Wave Propagation in a Periodic Composite Beam Structure Incorporating Microstructure and Surface Energy Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.

    Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less

  19. Design of phononic band gaps in functionally graded piezocomposite materials by using topology optimization

    NASA Astrophysics Data System (ADS)

    Vatanabe, Sandro L.; Silva, Emílio C. N.

    2011-04-01

    One of the properties of composite materials is the possibility of having phononic band gaps, within which sound and vibrations at certain frequencies do not propagate. These materials are called Phononic Crystals (PCs). PCs with large band gaps are of great interest for many applications, such as transducers, elastic/ acoustic filters, noise control, and vibration shields. Most of previous works concentrates on PCs made of elastic isotropic materials; however, band gaps can be enlarged by using non-isotropic materials, such as piezoelectric materials. Since the main property of PCs is the presence of band gaps, one possible way to design structures which have a desired band gap is through Topology Optimization Method (TOM). TOM is a computational technique that determines the layout of a material such that a prescribed objective is maximized. Functionally Graded Materials (FGM) are composite materials whose properties vary gradually and continuously along a specific direction within the domain of the material. One of the advantages of applying the FGM concept to TOM is that it is not necessary a discrete 0-1 result, once the material gradation is part of the solution. Therefore, the interpretation step becomes easier and the dispersion diagram obtained from the optimization is not significantly modified. In this work, the main objective is to optimize the position and width of piezocomposite materials band gaps. Finite element analysis is implemented with Bloch-Floquet theory to solve the dynamic behavior of two-dimensional functionally graded unit cells. The results demonstrate that phononic band gaps can be designed by using this methodology.

  20. Band Gaps for Elastic Wave Propagation in a Periodic Composite Beam Structure Incorporating Microstructure and Surface Energy Effects

    DOE PAGES

    Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.; ...

    2017-11-20

    Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less

  1. Electronic properties of hexagonal gallium phosphide: A DFT investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vipin; Shah, Esha V.; Roy, Debesh R., E-mail: drr@ashd.svnit.ac.in

    2016-05-23

    A detail density functional investigation is performed to develop hexagonal 2D gallium phosphide material. The geometry, band structure and density of states (total and projected) of 2D hexagonal GaP are reported in detail. It is heartening to note that the developed material is identified as an indirect band gap semiconductor. The indirect gap for this material is predicted as 1.97 eV at K-Γ, and a direct gap of 2.28 eV at K point is achieved, which is very close to the reported direct band gap for zinc blende and buckled structures of GaP.

  2. Optical band gap of thermally deposited Ge-S-Ga thin films

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Heera, Pawan; Singh, Bhanu Pratap; Sharma, Raman

    2018-05-01

    Thin films of Ge20S80-xGax glassy alloy, obtained from melt quenching technique, were deposited on the glass substrate by thermal evaporation technique under a high vacuum conditions (˜ 10-5 Torr). Absorption spectrum fitting method (ASF) is employed to obtain the optical band gap from absorption spectra. This method requires only the measurement of the absorption spectrum of the sample. The width of the band tail was also determined. Optical band gap computed from absorption spectra is found to decrease with an increase in Ga content. The evaluated optical band gap (Eg) is in well agreement with the theoretically predicted Eg and obtained from transmission spectra.

  3. Measurement of locally resonant band gaps in a surface phononic crystal with inverted conical pillars

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Chen; Lin, Fan-Shun

    2018-07-01

    In this paper, we numerically and experimentally study locally resonant (LR) band gaps for surface acoustic waves (SAWs) in a honeycomb array of inverted conical pillars grown on the surface of a 128°YX lithium-niobate substrate. We show that the inverted conical pillars can be used to generate lower LR band gaps below the sound cone. This lowering effect is caused by the increase in the effective pillar mass without increasing the effective stiffness. We employ the finite-element method to calculate the LR band gaps and wideband slanted-finger interdigital transducers to measure the transmission of SAWs. Numerical results show that SAWs are prohibited from propagating through the structure in the lowered LR band gaps. Obvious LR band-gap lowering is observed in the experimental result of a surface phononic crystal with a honeycomb array of inverted conical pillars. The results enable enhanced control over the phononic metamaterial and surface structures, which may have applications in low-frequency waveguiding, acoustic isolation, acoustic absorbers, and acoustic filters.

  4. Band gap engineering of BC2N for nanoelectronic applications

    NASA Astrophysics Data System (ADS)

    Lim, Wei Hong; Hamzah, Afiq; Ahmadi, Mohammad Taghi; Ismail, Razali

    2017-12-01

    The BC2N as an example of boron-carbon-nitride (BCN), has the analogous structure as the graphene and boron nitride. It is predicted to have controllable electronic properties. Therefore, the analytical study on the engineer-able band gap of the BC2N is carried out based on the schematic structure of BC2N. The Nearest Neighbour Tight Binding (NNTB) model is employed with the dispersion relation and the density of state (DOS) as the main band gap analysing parameter. The results show that the hopping integrals having the significant effect on the band gap, band structure and DOS of BC2N nanowire (BC2NNW) need to be taken into consideration. The presented model indicates consistent trends with the published computational results around the Dirac points with the extracted band gap of 0.12 eV. Also, it is distinguished that wide energy gap of boron nitride (BN) is successfully narrowed by this carbon doped material which assures the application of BC2N on the nanoelectronics and optoelectronics in the near future.

  5. Origin of and tuning the optical and fundamental band gaps in transparent conducting oxides: The case of M2O3(M =Al ,Ga ,In )

    NASA Astrophysics Data System (ADS)

    Sabino, Fernando P.; Besse, Rafael; Oliveira, Luiz Nunes; Wei, Su-Huai; Da Silva, Juarez L. F.

    2015-11-01

    Good transparent conducting oxides (TCOs), such as In2O3 :Sn (ITO), usually combine large optical band gaps, essential for high transparency, with relatively small fundamental band gaps due to low conduction-band minima, which favor n -type doping and enhance the electrical conductivity. It has been understood that the optical band gaps are wider than the fundamental band gaps because optical transitions between the band-edge states are forbidden. The mechanism blocking such transitions, which can play a crucial role in the designing of alternative TCOs, nonetheless remains obscure. Here, based on first-principles density functional theory calculations and symmetry analysis of three oxides, M2O3 (M =Al ,Ga ,In ), we identify the physical origin of the gap disparities. Three conditions are necessary: (1) the crystal structure must have global inversion symmetry; (2) in order to belong to the Ag or A1 g irreducible representations, the states at the conduction-band minimum must have cation and oxygen s character; (3) in order to have g parity, the oxygen p orbitals constituting the states near the valence-band maximum must be strongly coupled to the cation d orbitals. Under these conditions, optical excitations across the fundamental gap will be forbidden. The three criteria explain the trends in the M2O3 (M =Al,Ga,In) sequence, in particular, explaining why In2O3 in the bixbyite structure yields the highest figure of merit. Our study provides guidelines expected to be instrumental in the search for new TCO materials.

  6. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE PAGES

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; ...

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZr xTi 1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x.more » We present structural and electrical characterization of SrZr xTi 1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  7. Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J.; Monserrat, Bartomeu

    2015-12-28

    Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from −1.5 to −1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of −1.2 to −1.4 eV. Vibrations reduce the differences between the electronic band gapsmore » of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 − 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.« less

  8. Band gap tuning of amorphous Al oxides by Zr alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J.; Jones, N. C.

    2016-08-29

    The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearlymore » as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.« less

  9. A note on anomalous band-gap variations in semiconductors with temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, P. K.; Mondal, B. N.

    2018-03-01

    An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.

  10. Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping.

    PubMed

    Yu, Woo Jong; Liao, Lei; Chae, Sang Hoon; Lee, Young Hee; Duan, Xiangfeng

    2011-11-09

    The bilayer graphene has attracted considerable attention for potential applications in future electronics and optoelectronics because of the feasibility to tune its band gap with a vertical displacement field to break the inversion symmetry. Surface chemical doping in bilayer graphene can induce an additional offset voltage to fundamentally affect the vertical displacement field and the band gap opening in bilayer graphene. In this study, we investigate the effect of chemical molecular doping on band gap opening in bilayer graphene devices with single or dual gate modulation. Chemical doping with benzyl viologen molecules modulates the displacement field to allow the opening of a transport band gap and the increase of the on/off ratio in the bilayer graphene transistors. Additionally, Fermi energy level in the opened gap can be rationally controlled by the amount of molecular doping to obtain bilayer graphene transistors with tunable Dirac points, which can be readily configured into functional devices, such as complementary inverters.

  11. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder.

    PubMed

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-04

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  12. Experimental evidence of locally resonant sonic band gap in two-dimensional phononic stubbed plates

    NASA Astrophysics Data System (ADS)

    Oudich, Mourad; Senesi, Matteo; Assouar, M. Badreddine; Ruzenne, Massimo; Sun, Jia-Hong; Vincent, Brice; Hou, Zhilin; Wu, Tsung-Tsong

    2011-10-01

    We provide experimental evidence of the existence of a locally resonant sonic band gap in a two-dimensional stubbed plate. Structures consisting of a periodic arrangement of silicone rubber stubs deposited on a thin aluminium plate were fabricated and characterized. Brillouin spectroscopy analysis is carried out to determine the elastic constants of the used rubber. The constants are then implemented in an efficient finite-element model that predicts the band structure and transmission to identify the theoretical band gap. We measure a complete sonic band gap for the out-of-plane Lamb wave modes propagating in various samples fabricated with different stub heights. Frequency domain measurements of full wave field and transmission are performed through a scanning laser Doppler vibrometer. A complete band gap from 1.9 to 2.6 kHz is showed using a sample with 6-mm stub diameter, 5-mm thickness, and 1-cm structure periodicity. Very good agreement between numerical and experimental results is obtained.

  13. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder

    NASA Astrophysics Data System (ADS)

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-01

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  14. Electronic structure in 1T-ZrS2 monolayer by strain

    NASA Astrophysics Data System (ADS)

    Xin, Qianqian; Zhao, Xu; Ma, Xu; Wu, Ninghua; Liu, Xiaomeng; Wei, Shuyi

    2017-09-01

    We report electronic structure of 1T-ZrS2 monolayer with biaxial strain from -10% to 15%, basing the first principles calculations. Our calculation results indicate that the band structure of ZrS2 monolayer was changed clearly. The location of conduction band minimum (CBM) and valence band maximum (VBM) changed with the variation of isotropic strain. At compressive strain, the location of CBM and VBM retains at M and Γ point, respectively. The band gap of ZrS2 monolayer decreases from 1.111 eV to 0 eV when compressive strain increases from 0% to -8%, which means that the ZrS2 monolayer turns to metal at -8% compressive strain. Under the tensile strain, the ZrS2 monolayer also retains be an indirect band gap semiconductor. The location of CBM moves from M to Γ point and the location of VBM moves along Γ-A-K-Γ direction. The band gap of ZrS2 monolayer firstly increases and then decreases and the biggest band gap is 1.577 eV at tensile strain 6%. We can see the compression strain is more effective than tensile strain in modulating band gap of 1T-ZrS2 monolayer.

  15. Model construction and superconductivity analysis of organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta) based on first-principles band calculation

    NASA Astrophysics Data System (ADS)

    Aizawa, H.; Kuroki, K.; Yasuzuka, S.; Yamada, J.

    2012-11-01

    We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ-B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of Tc is qualitatively consistent with the experimental observation.

  16. Valley polarization in silicene induced by circularly-polarized resonance light

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Qi, Fenghua

    2017-06-01

    In the presence of circularly-polarized resonance light, silicene develops dynamical band gaps in its quasi-energy band structure. Using numerical calculations, our results show that the gap appearing at ħω/2, where ħω is the photon energy. More importantly, we find that these gaps are non-symmetric for two inequivalent valleys. Therefore we can introduce light-controlled valley polarization in these dynamical band gaps. Different valleytronic devices can be realized using this technique.

  17. Atypically small temperature-dependence of the direct band gap in the metastable semiconductor copper nitride Cu 3 N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkett, Max; Savory, Christopher N.; Fioretti, Angela N.

    The temperature-dependence of the direct band gap and thermal expansion in the metastable anti-ReO 3 semiconductor Cu 3N are investigated between 4.2 and 300 K by Fourier-transform infrared spectroscopy and x-ray diffraction. Complementary refractive index spectra are determined by spectroscopic ellipsometry at 300K. A direct gap of 1.68eV is associated with the absorption onset at 300K, which strengthens continuously and reaches a magnitude of 3.5 x 10 5cm -1 at 2.7eV, suggesting potential for photovoltaic applications. Notably, the direct gap redshifts by just 24meV between 4.2 and 300K, giving an atypically small band-gap temperature coefficient dE g/dT of -0.082meV/K. Additionally,more » the band structure, dielectric function, phonon dispersion, linear expansion, and heat capacity are calculated using density functional theory; remarkable similarities between the experimental and calculated refractive index spectra support the accuracy of these calculations, which indicate beneficially low hole effective masses and potential negative thermal expansion below 50K. To assess the lattice expansion contribution to the band-gap temperature-dependence, a quasiharmonic model fit to the observed lattice contraction finds a monotonically decreasing linear expansion (descending past 10 -6K -1 below 80K), while estimating the Debye temperature, lattice heat capacity, and Gruneisen parameter. Accounting for lattice and electron-phonon contributions to the observed band-gap evolution suggests average phonon energies that are qualitatively consistent with predicted maxima in the phonon density of states. Furthermore, as band-edge temperature-dependence has significant consequences for device performance, copper nitride should be well suited for applications that require a largely temperature-invariant band gap.« less

  18. Atypically small temperature-dependence of the direct band gap in the metastable semiconductor copper nitride Cu 3 N

    DOE PAGES

    Birkett, Max; Savory, Christopher N.; Fioretti, Angela N.; ...

    2017-03-06

    The temperature-dependence of the direct band gap and thermal expansion in the metastable anti-ReO 3 semiconductor Cu 3N are investigated between 4.2 and 300 K by Fourier-transform infrared spectroscopy and x-ray diffraction. Complementary refractive index spectra are determined by spectroscopic ellipsometry at 300K. A direct gap of 1.68eV is associated with the absorption onset at 300K, which strengthens continuously and reaches a magnitude of 3.5 x 10 5cm -1 at 2.7eV, suggesting potential for photovoltaic applications. Notably, the direct gap redshifts by just 24meV between 4.2 and 300K, giving an atypically small band-gap temperature coefficient dE g/dT of -0.082meV/K. Additionally,more » the band structure, dielectric function, phonon dispersion, linear expansion, and heat capacity are calculated using density functional theory; remarkable similarities between the experimental and calculated refractive index spectra support the accuracy of these calculations, which indicate beneficially low hole effective masses and potential negative thermal expansion below 50K. To assess the lattice expansion contribution to the band-gap temperature-dependence, a quasiharmonic model fit to the observed lattice contraction finds a monotonically decreasing linear expansion (descending past 10 -6K -1 below 80K), while estimating the Debye temperature, lattice heat capacity, and Gruneisen parameter. Accounting for lattice and electron-phonon contributions to the observed band-gap evolution suggests average phonon energies that are qualitatively consistent with predicted maxima in the phonon density of states. Furthermore, as band-edge temperature-dependence has significant consequences for device performance, copper nitride should be well suited for applications that require a largely temperature-invariant band gap.« less

  19. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.

    PubMed

    Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua

    2017-12-06

    A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.

  20. Achieving omnidirectional photonic band gap in sputter deposited TiO{sub 2}/SiO{sub 2} one dimensional photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jena, S., E-mail: shuvendujena9@gmail.com; Tokas, R. B.; Sarkar, P.

    2015-06-24

    The multilayer structure of TiO{sub 2}/SiO{sub 2} (11 layers) as one dimensional photonic crystal (1D PC) has been designed and then fabricated by using asymmetric bipolar pulse DC magnetron sputtering technique for omnidirectional photonic band gap. The experimentally measured photonic band gap (PBG) in the visible region is well matched with the theoretically calculated band structure (ω vs. k) diagram. The experimentally measured omnidirectional reflection band of 44 nm over the incident angle range of 0°-70° is found almost matching within the theoretically calculated band.

  1. The Role of Work Function and Band Gap in Resistive Switching Behaviour of ZnTe Thin Films

    NASA Astrophysics Data System (ADS)

    Rowtu, Srinu; Sangani, L. D. Varma; Krishna, M. Ghanashyam

    2018-02-01

    Resistive switching behavior by engineering the electrode work function and band gap of ZnTe thin films is demonstrated. The device structures Au/ZnTe/Au, Au/ZnTe/Ag, Al/ZnTe/Ag and Pt/ZnTe/Ag were fabricated. ZnTe was deposited by thermal evaporation and the stoichiometry and band gap were controlled by varying the source-substrate distance. Band gap could be varied between 1.0 eV to approximately 4.0 eV with the larger band gap being attributed to the partial oxidation of ZnTe. The transport characteristics reveal that the low-resistance state is ohmic in nature which makes a transition to Poole-Frenkel defect-mediated conductivity in the high-resistance states. The highest R off-to- R on ratio achieved is 109. Interestingly, depending on stoichiometry, both unipolar and bipolar switching can be realized.

  2. Dipole-allowed direct band gap silicon superlattices

    PubMed Central

    Oh, Young Jun; Lee, In-Ho; Kim, Sunghyun; Lee, Jooyoung; Chang, Kee Joo

    2015-01-01

    Silicon is the most popular material used in electronic devices. However, its poor optical properties owing to its indirect band gap nature limit its usage in optoelectronic devices. Here we present the discovery of super-stable pure-silicon superlattice structures that can serve as promising materials for solar cell applications and can lead to the realization of pure Si-based optoelectronic devices. The structures are almost identical to that of bulk Si except that defective layers are intercalated in the diamond lattice. The superlattices exhibit dipole-allowed direct band gaps as well as indirect band gaps, providing ideal conditions for the investigation of a direct-to-indirect band gap transition. The fact that almost all structural portions of the superlattices originate from bulk Si warrants their stability and good lattice matching with bulk Si. Through first-principles molecular dynamics simulations, we confirmed their thermal stability and propose a possible method to synthesize the defective layer through wafer bonding. PMID:26656482

  3. Manipulating sonic band gaps at will: vibrational density of states in three-dimensional acoustic metamaterial composites

    NASA Astrophysics Data System (ADS)

    Terao, Takamichi

    2018-04-01

    Vibrational properties of elastic composites containing a mass-in-mass microstructure embedded in a solid matrix are numerically studied. Using a lattice model, we investigate the vibrational density of states in three-dimensional composite structures where resonant particles are randomly dispersed. By dispersing such particles in the system, a sonic band gap appears. It is confirmed that this band gap can be introduced in a desired frequency regime by changing the parameters of resonant particles and the frequency width of this band gap can be controlled by varying the concentration of the resonant particles to be dispersed. In addition, multiple sonic band gaps can be realized using different species of resonant particles. These results enable us to suggest an alternative method to fabricate devices that can inhibit the propagation of elastic waves with specific frequencies using acoustic metamaterials.

  4. Recent Developments in Quantum-Well Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, K. M. S. V.

    1995-01-01

    Intrinsic infrared (IR) detectors in the long wavelength range (8-20 Am) are based on an optically excited interband transition, which promotes an electron across the band gap (E(sub g)) from the valence band to the conduction band as shown. These photoelectrons can be collected efficiently, thereby producing a photocurrent in the external circuit. Since the incoming photon has to promote an electron from the valence band to the conduction band, the energy of the photon (h(sub upsilon)) must be higher than the E(sub g) of the photosensitive material. Therefore, the spectral response of the detectors can be controlled by controlling the E(sub g) of the photosensitive material. Examples for such materials are Hg(1-x), Cd(x), Te, and Pb(1-x), Sn(x), Te, in which the energy gap can be controlled by varying x. This means detection of very-long-wavelength IR radiation up to 20 microns requires small band gaps down to 62 meV. It is well known that these low band gap materials, characterized by weak bonding and low melting points, are more difficult to grow and process than large-band gap semiconductors such as GaAs. These difficulties motivate the exploration of utilizing the intersub-band transitions in multiquantum well (MQW) structures made of more refractory large-band gap semiconductors. The idea of using MQW structures to detect IR radiation can be explained by using the basic principles of quantum mechanics. The quantum well is equivalent to the well-known particle in a box problem in quantum mechanics, which can be solved by the time independent Schroudiner equation.

  5. Sensitive detection of surface- and size-dependent direct and indirect band gap transitions in ferritin.

    PubMed

    Colton, J S; Erickson, S D; Smith, T J; Watt, R K

    2014-04-04

    Ferritin is a protein nano-cage that encapsulates minerals inside an 8 nm cavity. Previous band gap measurements on the native mineral, ferrihydrite, have reported gaps as low as 1.0 eV and as high as 2.5-3.5 eV. To resolve this discrepancy we have used optical absorption spectroscopy, a well-established technique for measuring both direct and indirect band gaps. Our studies included controls on the protein nano-cage, ferritin with the native ferrihydrite mineral, and ferritin with reconstituted ferrihydrite cores of different sizes. We report measurements of an indirect band gap for native ferritin of 2.140 ± 0.015 eV (579.7 nm), with a direct transition appearing at 3.053 ± 0.005 eV (406.1 nm). We also see evidence of a defect-related state having a binding energy of 0.220 ± 0.010 eV . Reconstituted ferrihydrite minerals of different sizes were also studied and showed band gap energies which increased with decreasing size due to quantum confinement effects. Molecules that interact with the surface of the mineral core also demonstrated a small influence following trends in ligand field theory, altering the native mineral's band gap up to 0.035 eV.

  6. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  7. Designing Phononic Crystals with Wide and Robust Band Gaps

    DOE PAGES

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; ...

    2018-04-16

    Here, phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with widemore » and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.« less

  8. Band gap engineering for graphene by using Na{sup +} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, S. J.; Lee, P. R.; Kim, J. G.

    2014-08-25

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the π* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}.more » The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}≥0.70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.« less

  9. Designing Phononic Crystals with Wide and Robust Band Gaps

    NASA Astrophysics Data System (ADS)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  10. Residual stress dependant anisotropic band gap of various (hkl) oriented BaI{sub 2} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pradeep; Gulia, Vikash; Vedeshwar, Agnikumar G., E-mail: agni@physics.du.ac.in, E-mail: agvedeshwar@gmail.com

    2013-11-21

    The thermally evaporated layer structured BaI{sub 2} grows in various completely preferred (hkl) film orientations with different growth parameters like film thickness, deposition rate, substrate temperature, etc. which were characterized by structural, morphological, and optical absorption measurements. Structural analysis reveals the strain in the films and the optical absorption shows a direct type band gap. The varying band gaps of these films were found to scale linearly with their strain. The elastic moduli and other constants were also calculated using Density Functional Theory (DFT) formalism implemented in WIEN2K code for converting the strain into residual stress. Films of different sixmore » (hkl) orientations show stress free anisotropic band gaps (2.48–3.43 eV) and both positive and negative pressure coefficients. The negative and positive pressure coefficients of band gap are attributed to the strain in I-I (or Ba-Ba or both) and Ba-I distances along [hkl], respectively. The calculated band gaps are also compared with those experimentally determined. The average pressure coefficient of band gap of all six orientations (−0.071 eV/GPa) found to be significantly higher than that calculated (−0.047 eV/GPa) by volumetric pressure dependence. Various these issues have been discussed with consistent arguments. The electron effective mass m{sub e}{sup *}=0.66m{sub 0} and the hole effective mass m{sub h}{sup *}=0.53m{sub 0} have been determined from the calculated band structure.« less

  11. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.

    PubMed

    Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R

    2014-11-21

    We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.

  12. Effect of point defects on the electronic density states of SnC nanosheets: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Majidi, Soleyman; Achour, Amine; Rai, D. P.; Nayebi, Payman; Solaymani, Shahram; Beryani Nezafat, Negin; Elahi, Seyed Mohammad

    In this work, we investigated the electronic and structural properties of various defects including single Sn and C vacancies, double vacancy of the Sn and C atoms, anti-sites, position exchange and the Stone-Wales (SW) defects in SnC nanosheets by using density-functional theory (DFT). We found that various vacancy defects in the SnC monolayer can change the electronic and structural properties. Our results show that the SnC is an indirect band gap compound, with the band gap of 2.10 eV. The system turns into metal for both structure of the single Sn and C vacancies. However, for the double vacancy contained Sn and C atoms, the structure remains semiconductor with the direct band gap of 0.37 eV at the G point. We also found that for anti-site defects, the structure remains semiconductor and for the exchange defect, the structure becomes indirect semiconductor with the K-G point and the band gap of 0.74 eV. Finally, the structure of SW defect remains semiconductor with the direct band gap at K point with band gap of 0.54 eV.

  13. A Quasi-Classical Model of the Hubbard Gap in Lightly Compensated Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poklonski, N. A.; Vyrko, S. A.; Kovalev, A. I.

    2016-03-15

    A quasi-classical method for calculating the narrowing of the Hubbard gap between the A{sup 0} and A{sup +} acceptor bands in a hole semiconductor or the D{sup 0} and D{sup –} donor bands in an electron semiconductor is suggested. This narrowing gives rise to the phenomenon of a semiconductor transition from the insulator to metal state with an increase in doping level. The major (doping) impurity can be in one of three charge states (–1, 0, or +1), while the compensating impurity can be in states (+1) or (–1). The impurity distribution over the crystal is assumed to be randommore » and the width of Hubbard bands (levels), to be much smaller than the gap between them. It is shown that narrowing of the Hubbard gap is due to the formation of electrically neutral acceptor (donor) states of the quasicontinuous band of allowed energies for holes (electrons) from excited states. This quasicontinuous band merges with the top of the valence band (v band) for acceptors or with the bottom of the conduction band (c band) for donors. In other words, the top of the v band for a p-type semiconductor or the bottom of the c band for an n-type semiconductor is shifted into the band gap. The value of this shift is determined by the maximum radius of the Bohr orbit of the excited state of an electrically neutral major impurity atom, which is no larger than half the average distance between nearest impurity atoms. As a result of the increasing dopant concentration, the both Hubbard energy levels become shallower and the gap between them narrows. Analytical formulas are derived to describe the thermally activated hopping transition of holes (electrons) between Hubbard bands. The calculated gap narrowing with increasing doping level, which manifests itself in a reduction in the activation energy ε{sub 2} is consistent with available experimental data for lightly compensated p-Si crystals doped with boron and n-Ge crystals doped with antimony.« less

  14. Gap state analysis in electric-field-induced band gap for bilayer graphene.

    PubMed

    Kanayama, Kaoru; Nagashio, Kosuke

    2015-10-29

    The origin of the low current on/off ratio at room temperature in dual-gated bilayer graphene field-effect transistors is considered to be the variable range hopping in gap states. However, the quantitative estimation of gap states has not been conducted. Here, we report the systematic estimation of the energy gap by both quantum capacitance and transport measurements and the density of states for gap states by the conductance method. An energy gap of ~ 250 meV is obtained at the maximum displacement field of ~ 3.1 V/nm, where the current on/off ratio of ~ 3 × 10(3) is demonstrated at 20 K. The density of states for the gap states are in the range from the latter half of 10(12) to 10(13) eV(-1) cm(-2). Although the large amount of gap states at the interface of high-k oxide/bilayer graphene limits the current on/off ratio at present, our results suggest that the reduction of gap states below ~ 10(11) eV(-1) cm(-2) by continual improvement of the gate stack makes bilayer graphene a promising candidate for future nanoelectronic device applications.

  15. Band gap and band offset of (GaIn)(PSb) lattice matched to InP

    NASA Astrophysics Data System (ADS)

    Köhler, F.; Böhm, G.; Meyer, R.; Amann, M.-C.

    2005-07-01

    Metastable (GaxIn1-x)(PySb1-y) layers were grown on (001) InP substrates by gas source molecular beam epitaxy. Low-temperature photoluminescence spectroscopy was applied to these heterostructures and revealed spatially indirect band-to-band recombination of electrons localized in the InP with holes in the (GaxIn1-x)(PySb1-y). In addition, samples with layer thicknesses larger than 100nm showed direct PL across the band gap of (GaxIn1-x)(PySb1-y). Band-gap energies and band offset energies of (GaxIn1-x)(PySb1-y) relative to InP were derived from these PL data. A strong bowing parameter was observed.

  16. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.

    PubMed

    Knutson, Jeremy L; Martin, James D; Mitzi, David B

    2005-06-27

    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  17. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  18. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    PubMed Central

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  19. Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles

    NASA Astrophysics Data System (ADS)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-01

    Complex doping schemes in R3 Al5 O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu3 B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5 O12 , where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. This approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.

  20. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    DOE PAGES

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; ...

    2015-11-24

    Complex doping schemes in R 3Al 5O 12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimummore » (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu 3B 5O 12 where B is Al, Ga, In, As, and Sb, and R 3Al 5O 12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less

  1. Fabrication of 3-D Photonic Band Gap Crystals Via Colloidal Self-Assembly

    NASA Technical Reports Server (NTRS)

    Subramaniam, Girija; Blank, Shannon

    2005-01-01

    The behavior of photons in a Photonic Crystals, PCs, is like that of electrons in a semiconductor in that, it prohibits light propagation over a band of frequencies, called Photonic Band Gap, PBG. Photons cannot exist in these band gaps like the forbidden bands of electrons. Thus, PCs lend themselves as potential candidates for devices based on the gap phenomenon. The popular research on PCs stem from their ability to confine light with minimal losses. Large scale 3-D PCs with a PBG in the visible or near infra red region will make optical transistors and sharp bent optical fibers. Efforts are directed to use PCs for information processing and it is not long before we can have optical integrated circuits in the place of electronic ones.

  2. Multicomponent Electron-Hole Superfluidity and the BCS-BEC Crossover in Double Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Conti, S.; Perali, A.; Peeters, F. M.; Neilson, D.

    2017-12-01

    Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap Eg˜80 - 120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.

  3. The strain induced band gap modulation from narrow gap semiconductor to half-metal on Ti{sub 2}CrGe: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: jiali@hebut.edu.cn; Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300401; Zhang, Zhidong

    The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part ofmore » the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.« less

  4. Quasiparticle band gap in the topological insulator Bi2Te3

    NASA Astrophysics Data System (ADS)

    Nechaev, I. A.; Chulkov, E. V.

    2013-10-01

    We present a theoretical study of dispersion of states that form the bulk band-gap edges in the three-dimensional topological insulator Bi2Te3. Within density functional theory, we analyze the effect of atomic positions varied within the error range of the available experimental data and approximation chosen for the exchange-correlation functional on the bulk band gap and k-space location of valence- and conduction-band extrema. For each set of the positions with different exchange-correlation functionals, we show how many-body corrections calculated within a one-shot GW approach affect the mentioned characteristics of electronic structure of Bi2Te3. We thus also illustrate to what degree the one-shot GW results are sensitive to the reference one-particle band structure in the case of bismuth telluride. We found that for this topological insulator the GW corrections enlarge the fundamental band gap and for certain atomic positions and reference band structure bring its value in close agreement with experiment.

  5. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2006-08-01

    In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient.

  6. Lamb wave band gaps in a double-sided phononic plate

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Tian-Ning; Yu, Kun-Peng; Wang, Xiao-Peng

    2013-02-01

    In this paper, we report on the theoretical investigation of the propagation characteristics of Lamb wave in a phononic crystal structure constituted by a square array of cylindrical stubs deposited on both sides of a thin homogeneous plate. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite-element method. We investigate the evolution of band gaps in the double-sided phononic plate with stub height on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Numerical results show that as the double stubs in a unit cell arranged more symmetrically on both sides, band width shifts, new band gaps appear, and the bands become flat due to localized resonant modes which couple with plate modes. Specially, more band gaps and flat bands can be found in the symmetrical system as a result of local resonances of the stubs which interact in a stronger way with the plate modes. Moreover, the symmetrical double-sided plate exhibits lower and smaller band gap than that of the asymmetrical plate. These propagation properties of elastic or acoustic waves in the double-sided plate can potentially be utilized to generate filters, slow the group velocity, low-frequency sound insulation, and design acoustic sensors.

  7. Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene

    PubMed Central

    Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2014-01-01

    Using first-principles calculations, we study the electronic properties of few-layer phosphorene focusing on layer-dependent behavior of band gap, work function band alignment and carrier effective mass. It is found that few-layer phosphorene shows a robust direct band gap character, and its band gap decreases with the number of layers following a power law. The work function decreases rapidly from monolayer (5.16 eV) to trilayer (4.56 eV), and then slowly upon further increasing the layer number. Compared to monolayer phosphorene, there is a drastic decrease of hole effective mass along the ridge (zigzag) direction for bilayer phosphorene, indicating a strong interlayer coupling and screening effect. Our study suggests that 1). Few-layer phosphorene with a layer-dependent band gap and a robust direct band gap character is promising for efficient solar energy harvest. 2). Few-layer phosphorene outperforms monolayer counterpart in terms of a lighter carrier effective mass, a higher carrier density and a weaker scattering due to enhanced screening. 3). The layer-dependent band edges and work functions of few-layer phosphorene allow for modification of Schottky barrier with enhanced carrier injection efficiency. It is expected that few-layer phosphorene will present abundant opportunities for a plethora of new electronic applications. PMID:25327586

  8. Phonon-induced ultrafast band gap control in LaTiO3

    NASA Astrophysics Data System (ADS)

    Gu, Mingqiang; Rondinelli, James M.

    We propose a route for ultrafast band gap engineering in correlated transition metal oxides by using optically driven phonons. We show that the ∖Gamma-point electron band energies can be deterministically tuned in the nonequilibrium state. Taking the Mott insulator LaTiO3 as an example, we show that such phonon-assisted processes dynamically induce an indirect-to-direct band gap transition or even a metal-to-insulator transition, depending on the electron correlation strength. We explain the origin of the dynamical band structure control and also establish its generality by examining related oxides. Lastly, we describe experimental routes to realize the band structure control with impulsive stimulated Raman scattering.

  9. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  10. Tunable band gap in Bi(Fe1-xMnx)O3 films

    NASA Astrophysics Data System (ADS)

    Xu, X. S.; Ihlefeld, J. F.; Lee, J. H.; Ezekoye, O. K.; Vlahos, E.; Ramesh, R.; Gopalan, V.; Pan, X. Q.; Schlom, D. G.; Musfeldt, J. L.

    2010-05-01

    In order to investigate band gap tunability in polar oxides, we measured the optical properties of a series of Bi(Fe1-xMnx)O3 thin films. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members, a result that demonstrates straightforward band gap tunability in this system.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyewon; Cheong, S.W.; Kim, Bog G., E-mail: boggikim@pusan.ac.kr

    We have studied the properties of SnO{sub 6} octahedra-containing perovskites and their derived structures using ab initio calculations with different density functionals. In order to predict the correct band gap of the materials, we have used B3LYP hybrid density functional, and the results of B3LYP were compared with those obtained using the local density approximation and generalized gradient approximation data. The calculations have been conducted for the orthorhombic ground state of the SnO{sub 6} containing perovskites. We also have expended the hybrid density functional calculation to the ASnO{sub 3}/A'SnO{sub 3} system with different cation orderings. We propose an empirical relationshipmore » between the tolerance factor and the band gap of SnO{sub 6} containing oxide materials based on first principles calculation. - Graphical abstract: (a) Structure of ASnO{sub 3} for orthorhombic ground state. The green ball is A (Ba, Sr, Ca) cation and the small (red) ball on edge is oxygen. SnO{sub 6} octahedrons are plotted as polyhedron. (b) Band gap of ASnO{sub 3} as a function of the tolerance factor for different density functionals. The experimental values of the band gap are marked as green pentagons. (c) ASnO{sub 3}/A'SnO{sub 3} superlattices with two types cation arrangement: [001] layered structure and [111] rocksalt structure, respectively. (d) B3LYP hybrid functional band gaps of ASnO{sub 3}, [001] ordered superlattices, and [111] ordered superlattices of ASnO{sub 3}/A'SnO{sub 3} as a function of the effective tolerance factor. Note the empirical linear relationship between the band gap and effective tolerance factor. - Highlights: • We report the hybrid functional band gap calculation of ASnO{sub 3} and ASnO{sub 3}/A'SnO{sub 3}. • The band gap of ASnO{sub 3} using B3LYP functional reproduces the experimental value. • We propose the linear relationship between the tolerance factor and the band gap.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Zachary M.; Kim, Hyun-Sik; Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803

    In characterizing thermoelectric materials, electrical and thermal transport measurements are often used to estimate electronic band structure properties such as the effective mass and band gap. The Goldsmid-Sharp band gap, E{sub g} = 2e|S|{sub max}T{sub max}, is a tool widely employed to estimate the band gap from temperature dependent Seebeck coefficient measurements. However, significant deviations of more than a factor of two are now known to occur. We find that this is when either the majority-to-minority weighted mobility ratio (A) becomes very different from 1.0 or as the band gap (E{sub g}) becomes significantly smaller than 10 k{sub B}T. For narrow gapsmore » (E{sub g} ≲ 6 k{sub B}T), the Maxwell-Boltzmann statistics applied by Goldsmid-Sharp break down and Fermi-Dirac statistics are required. We generate a chart that can be used to quickly estimate the expected correction to the Goldsmid-Sharp band gap depending on A and S{sub max}; however, additional errors can occur for S < 150 μV/K due to degenerate behavior.« less

  13. Optical properties of II-VI structures for solar energy utilization

    NASA Astrophysics Data System (ADS)

    Schrier, Joshua; Demchenko, Denis; Wang, Lin-Wang

    2007-03-01

    Although II-VI semiconductor materials are abundant, stable, and have direct band gaps, the band gaps are too large for optimal photovoltaic efficiency. However, staggered band alignments of pairs of these materials, and also the formation of intermediate impurity levels in the band gap (which has been demonstrated to increase the efficiency as compared to both single-junction devices), could be utilized to improve the suitability of these materials for solar energy utilization. Previous theoretical studies of these materials are limited, due to the well-known band gap underestimation by density-functional theory. To calculate the absorption spectra, we utilize a band-corrected planewave pseudopotential approach, which gives agreements of within 0.1 eV of the bulk optical gaps values. In this talk, I will present our work on predicting the optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures, nanostructures, and alloys. This work was supported by U.S. Department of Energy under Contract No.DE-AC02-05CH11231 and used the resources of the National Energy Research Scientific Computing Center.

  14. Zn(x)Cd(1-x)Se nanomultipods with tunable band gaps: synthesis and first-principles calculations.

    PubMed

    Wei, Hao; Su, Yanjie; Han, Ziyi; Li, Tongtong; Ren, Xinglong; Yang, Zhi; Wei, Liangming; Cong, Fengsong; Zhang, Yafei

    2013-06-14

    In this paper, we demonstrate that ZnxCd1-xSe nanomultipods can be synthesized via a facile and nontoxic solution-based method. Interesting aspects of composition, morphology and optical properties were deeply explored. The value of Zn/(Zn+Cd) could be altered across the entire range from 0.08 to 0.86 by varying the ratio of cation precursor contents. The band gap energy could be linearly tuned from 1.88 to 2.48 eV with respect to the value of Zn/(Zn+Cd). The experiment also showed that oleylamine played a dominant role in the formation of multipod structure. A possible growth mechanism was further suggested. First-principles calculations of band gap energy and density of states in the Vienna ab initio simulation package code were performed to verify the experimental variation tendency of the band gap. Computational results indicated that dissimilarities of electronic band structures and orbital constitutions determined the tunable band gap of the as-synthesized nanomultipod, which might be promising for versatile applications in relevant areas of solar cells, biomedicine, sensors, catalysts and so on.

  15. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening.

    PubMed

    Ni, Zhen Hua; Yu, Ting; Lu, Yun Hao; Wang, Ying Ying; Feng, Yuan Ping; Shen, Ze Xiang

    2008-11-25

    Graphene was deposited on a transparent and flexible substrate, and tensile strain up to approximately 0.8% was loaded by stretching the substrate in one direction. Raman spectra of strained graphene show significant red shifts of 2D and G band (-27.8 and -14.2 cm(-1) per 1% strain, respectively) because of the elongation of the carbon-carbon bonds. This indicates that uniaxial strain has been successfully applied on graphene. We also proposed that, by applying uniaxial strain on graphene, tunable band gap at K point can be realized. First-principle calculations predicted a band-gap opening of approximately 300 meV for graphene under 1% uniaxial tensile strain. The strained graphene provides an alternative way to experimentally tune the band gap of graphene, which would be more efficient and more controllable than other methods that are used to open the band gap in graphene. Moreover, our results suggest that the flexible substrate is ready for such a strain process, and Raman spectroscopy can be used as an ultrasensitive method to determine the strain.

  16. Prediction of large gap flat Chern band in a two-dimensional metal-organic framework

    NASA Astrophysics Data System (ADS)

    Su, Ninghai; Jiang, Wei; Wang, Zhengfei; Liu, Feng

    2018-01-01

    Systems with a flat Chern band have been extensively studied for their potential to realize high-temperature fractional quantum Hall states. To experimentally observe the quantum transport properties, a sizable topological gap is highly necessary. Here, taking advantage of the high tunability of two-dimensional (2D) metal-organic frameworks (MOFs), whose crystal structures can be easily tuned using different metal atoms and molecular ligands, we propose a design of a 2D MOF [Tl2(C6H4)3, Tl2Ph3] showing nontrivial topological states with an extremely large gap in both the nearly flat Chern band and the Dirac bands. By coordinating π-conjugated thallium ions and benzene rings, crystalline Tl2Ph3 can be formed with Tl and Ph constructing honeycomb and kagome lattices, respectively. The px,y orbitals of Tl on the honeycomb lattice form ideal pxy four-bands, through which a flat Chern band with a spin-orbit coupling (SOC) gap around 140 meV evolves below the Fermi level. This is the largest SOC gap among all the theoretically proposed organic topological insulators so far.

  17. Band gap bowing in NixMg1−xO

    PubMed Central

    Niedermeier, Christian A.; Råsander, Mikael; Rhode, Sneha; Kachkanov, Vyacheslav; Zou, Bin; Alford, Neil; Moram, Michelle A.

    2016-01-01

    Epitaxial transparent oxide NixMg1−xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1−xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x < 0.037. Density functional calculations of the NixMg1−xO band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1−xO solid solution system. PMID:27503808

  18. Electrical and optical properties of Si-doped Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru

    2017-05-01

    The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.

  19. First-principles study of electronic structure modulations in graphene on Ru(0001) by Au intercalation

    NASA Astrophysics Data System (ADS)

    Nishidate, Kazume; Tanibayashi, Satoru; Yoshimoto, Noriyuki; Hasegawa, Masayuki

    2018-03-01

    First-principles calculations based on density functional theory are used to explore the electronic-structure modulations in graphene on Ru(0001) by Au intercalation. We first use a lattice-matched model to demonstrate that a substantial band gap is induced in graphene by sufficiently strong A-B sublattice symmetry breaking. This band gap opening occurs even in the absence of hybridization between graphene π states and Au states, and a strong sublattice asymmetry is established for a small separation (d ) between the graphene and Au layer, typically, d <3.0 Å , which can actually be achieved for a low Au coverage. In realistic situations, which are mimicked using lattice-mismatched models, graphene π states near the Dirac point easily hybridize with nearby (in energy) Au states even for a van der Waals distance, d ˜3.4 Å , and this hybridization usually dictates a band gap opening in graphene. In that case, the top parts of the intact Dirac cones survive the hybridization and are isolated to form midgap states within the hybridization gap, denying that the band gap is induced by sublattice symmetry breaking. This feature of a band gap opening is similar to that found for the so-called "first" graphene layer on silicon carbide (SiC) and the predicted band gap and doping level are in good agreement with the experiments for graphene/Au/Ru(0001).

  20. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R., E-mail: krp@northwestern.edu

    2016-08-15

    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectramore » of Sn-doped In{sub 2}O{sub 3} (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In{sub 2}O{sub 3} single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.« less

  1. Layer specific optical band gap measurement at nanoscale in MoS{sub 2} and ReS{sub 2} van der Waals compounds by high resolution electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dileep, K., E-mail: dileep@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in; Sahu, R.; Datta, R., E-mail: dileep@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in

    2016-03-21

    Layer specific direct measurement of optical band gaps of two important van der Waals compounds, MoS{sub 2} and ReS{sub 2}, is performed at nanoscale by high resolution electron energy loss spectroscopy. For monolayer MoS{sub 2}, the twin excitons (1.8 and 1.95 eV) originating at the K point of the Brillouin zone are observed. An indirect band gap of 1.27 eV is obtained from the multilayer regions. Indirect to direct band gap crossover is observed which is consistent with the previously reported strong photoluminescence from the monolayer MoS{sub 2}. For ReS{sub 2}, the band gap is direct, and a value of 1.52 andmore » 1.42 eV is obtained for the monolayer and multilayer, respectively. The energy loss function is dominated by features due to high density of states at both the valence and conduction band edges, and the difference in analyzing band gap with respect to ZnO is highlighted. Crystalline 1T ReS{sub 2} forms two dimensional chains like superstructure due to the clustering between four Re atoms. The results demonstrate the power of HREELS technique as a nanoscale optical absorption spectroscopy tool.« less

  2. Band structure of comb-like photonic crystals containing meta-materials

    NASA Astrophysics Data System (ADS)

    Weng, Yi; Wang, Zhi-Guo; Chen, Hong

    2007-09-01

    We study the transmission properties and band structure of comb-like photonic crystals (PC) with backbones constructed of meta-materials (negative-index materials) within the frame of the interface response theory. The result shows the existence of a special band gap at low frequency. This gap differs from the Bragg gaps in that it is insensitive to the geometrical scaling and disorder. In comparison with the zero-average-index gap in one-dimensional PC made of alternating positive- and negative-index materials, the gap is obviously deeper and broader, given the same system parameters. In addition, the behavior of its gap-edges is also different. One gap-edge is decided by the average permittivity whereas the other is only subject to the changing of the permeability of the backbone. Due to this asymmetry of the two gap-edges, the broadening of the gap could be realized with much freedom and facility.

  3. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  4. Electronic structure and its external electric field modulation of PbPdO2 ultrathin slabs with (002) and (211) preferred orientations.

    PubMed

    Yang, Yanmin; Zhong, Kehua; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao

    2017-07-31

    The Electronic structure of PbPdO 2 with (002) and (211) preferred orientations were investigated using first-principles calculation. The calculated results indicate that, (002) and (211) orientations exhibit different electric field dependence of band-gap and carrier concentration. The small band gap and more sensitive electric field modulation of band gap were found in (002) orientation. Moreover, the electric field modulation of the resistivity up to 3-4 orders of magnitude is also observed in (002) slab, which reveals that origin of colossal electroresistance. Lastly, electric field modulation of band gap is well explained. This work should be significant for repeating the colossal electroresistance.

  5. An investigation of impurity centers in semiconductors of variable composition. Part 1: General theory and some applications

    NASA Technical Reports Server (NTRS)

    Vonroos, O. H.

    1982-01-01

    A theory of deep point defects imbedded in otherwise perfect semiconductor crystals is developed with the aid of pseudopotentials. The dominant short-range forces engendered by the impurity are sufficiently weakened in all cases where the cancellation theorem of the pseudopotential formalism is operative. Thus, effective-mass-like equations exhibiting local effective potentials derived from nonlocal pseudopotentials are shown to be valid for a large class of defects. A two-band secular determinant for the energy eigenvalues of deep defects is also derived from the set of integral equations which corresponds to the set of differential equations of the effective-mass type. Subsequently, the theory in its simplest form, is applied to the system Al(x)Ga(1-x)As:Se. It is shown that the one-electron donor level of Se within the forbidden gap of Al(x)Ga(1-x)As as a function of the AlAs mole fraction x reaches its maximum of about 300 meV (as measured from the conduction band edge) at the cross-over from the direct to the indirect band-gap at x = 0.44 in agreement with experiments.

  6. Fullerene-Free Organic Solar Cells with an Efficiency of 10.2% and an Energy Loss of 0.59 eV Based on a Thieno[3,4-c]Pyrrole-4,6-dione-Containing Wide Band Gap Polymer Donor.

    PubMed

    Hadmojo, Wisnu Tantyo; Wibowo, Febrian Tri Adhi; Ryu, Du Yeol; Jung, In Hwan; Jang, Sung-Yeon

    2017-09-27

    Although the combination of wide band gap polymer donors and narrow band gap small-molecule acceptors achieved state-of-the-art performance as bulk heterojunction (BHJ) active layers for organic solar cells, there have been only several of the wide band gap polymers that actually realized high-efficiency devices over >10%. Herein, we developed high-efficiency, low-energy-loss fullerene-free organic solar cells using a weakly crystalline wide band gap polymer donor, PBDTTPD-HT, and a nonfullerene small-molecule acceptor, ITIC. The excessive intermolecular stacking of ITIC is efficiently suppressed by the miscibility with PBDTTPD-HT, which led to a well-balanced nanomorphology in the PBDTTPD-HT/ITIC BHJ active films. The favorable optical, electronic, and energetic properties of PBDTTPD-HT with respect to ITIC achieved panchromatic photon-to-current conversion with a remarkably low energy loss (0.59 eV).

  7. Effect of ZnO on the Physical Properties and Optical Band Gap of Soda Lime Silicate Glass

    PubMed Central

    Zaid, Mohd Hafiz Mohd; Matori, Khamirul Amin; Aziz, Sidek Hj. Abdul; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    This manuscript reports on the physical properties and optical band gap of five samples of soda lime silicate (SLS) glass combined with zinc oxide (ZnO) that were prepared by a melting and quenching process. To understand the role of ZnO in this glass structure, the density, molar volume and optical band gaps were investigated. The density and absorption spectra in the Ultra-Violet-Visible (UV-Visible) region were recorded at room temperature. The results show that the densities of the glass samples increased as the ZnO weight percentage increased. The molar volume of the glasses shows the same trend as the density: the molar volume increased as the ZnO content increased. The optical band gaps were calculated from the absorption edge, and it was found that the optical band gap decreased from 3.20 to 2.32 eV as the ZnO concentration increased. PMID:22837711

  8. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  9. Orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications

    DOE PAGES

    Qiao, L.; Zhang, S.; Xiao, H. Y.; ...

    2018-01-01

    Bismuth ferrite BiFeO 3 (BFO) is an important ferroelectric material for thin-film optoelectronic sensing and potential photovoltaic applications. Its relatively large band gap, however, limits the conversion efficiency of BFO absorber-based PV devices. In this study, based on density functional theory calculations we demonstrate that with well-designed Fe-site elemental substitution, tetragonal BFO can exhibit a much lower fundamental band gap than conventional rhombohedral BFO without forming in-gap electronic states and unravel the underlying mechanisms. Cation atomic size, electronegativity, and crystallographic symmetry are evidenced as critical parameters to tailor the metal 3d – oxygen 2p orbital interactions and thus intrinsically modifymore » electronic structure, particularly, the shape and character of the valence and conduction band edges. With reduced band gap, improved mobility, and uncompromised ferroelectric and magnetic ground states, the present results provide a new strategy of designing high symmetry BFO for efficient optoelectronic applications.« less

  10. Orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, L.; Zhang, S.; Xiao, H. Y.

    Bismuth ferrite BiFeO 3 (BFO) is an important ferroelectric material for thin-film optoelectronic sensing and potential photovoltaic applications. Its relatively large band gap, however, limits the conversion efficiency of BFO absorber-based PV devices. In this study, based on density functional theory calculations we demonstrate that with well-designed Fe-site elemental substitution, tetragonal BFO can exhibit a much lower fundamental band gap than conventional rhombohedral BFO without forming in-gap electronic states and unravel the underlying mechanisms. Cation atomic size, electronegativity, and crystallographic symmetry are evidenced as critical parameters to tailor the metal 3d – oxygen 2p orbital interactions and thus intrinsically modifymore » electronic structure, particularly, the shape and character of the valence and conduction band edges. With reduced band gap, improved mobility, and uncompromised ferroelectric and magnetic ground states, the present results provide a new strategy of designing high symmetry BFO for efficient optoelectronic applications.« less

  11. Band gap engineering of N-alloyed Ga{sub 2}O{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Dongyu; Li, Bingsheng, E-mail: libingsheng@hit.edu.cn, E-mail: ashen@ccny.cuny.edu; Sui, Yu

    2016-06-15

    The authors report the tuning of band gap of GaON ternary alloy in a wide range of 2.75 eV. The samples were prepared by a two-step nitridation method. First, the samples were deposited on 2-inch fused silica substrates by megnetron sputtering with NH{sub 3} and Ar gas for 60 minutes. Then they were annealed in NH{sub 3} ambience at different temperatures. The optical band gap energies are calculated from transmittance measurements. With the increase of nitridation temperature, the band gap gradually decreases from 4.8 eV to 2.05 eV. X-ray diffraction results indicate that as-deposited amorphous samples can crystallize into monoclinicmore » and hexagonal structures after they were annealed in oxygen or ammonia ambience, respectively. The narrowing of the band gap is attributed to the enhanced repulsion of N2p -Ga3d orbits and formation of hexagonal structure.« less

  12. Torsional wave band gap properties in a circular plate of a two-dimensional generalized phononic crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Shu, Haisheng; Liang, Shanjun; Shi, Xiaona; An, Shuowei; Ren, Wanyue; Zhu, Jie

    2018-05-01

    The torsional wave band gap properties of a two-dimensional generalized phononic crystal (GPC) are investigated in this paper. The GPC structure considered is consisted of two different materials being arranged with radial and circumferential periodicities simultaneously. Based on the viewpoint of energy distribution and the finite element method, the power flow, energy density, sound intensity vector together with the stress field of the structure excited by torsional load are numerically calculated and discussed. Our results show that, the band gap of Bragg type exists in these two-dimensional composite structures, and the band gap range is mainly determined by radial periodicity while the circumferential periodicity would result in some transmission peaks within the band gap. These peaks are mainly produced by two different mechanisms, the energy leakage occurred in circumferential channels and the excitation of the local eigenmodes of certain scatterers. These results may be useful in torsional vibration control for various rotational parts and components, and in the application of energy harvesting, etc.

  13. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals.

    PubMed

    Manzi, Aurora; Tong, Yu; Feucht, Julius; Yao, En-Ping; Polavarapu, Lakshminarayana; Urban, Alexander S; Feldmann, Jochen

    2018-04-17

    Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr 3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 E g ). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 10 5 . The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials.

  14. On the optical band gap of zinc oxide

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Clarke, D. R.

    1998-05-01

    Three different values (3.1, 3.2, and 3.3 eV) have been reported for the optical band gap of zinc oxide single crystals at room temperature. By comparing the optical properties of ZnO crystals using a variety of optical techniques it is concluded that the room temperature band gap is 3.3 eV and that the other values are attributable to a valence band-donor transition at ˜3.15 eV that can dominate the optical absorption when the bulk of a single crystal is probed.

  15. Simple Experimental Verification of the Relation between the Band-Gap Energy and the Energy of Photons Emitted by LEDs

    ERIC Educational Resources Information Center

    Precker, Jurgen W.

    2007-01-01

    The wavelength of the light emitted by a light-emitting diode (LED) is intimately related to the band-gap energy of the semiconductor from which the LED is made. We experimentally estimate the band-gap energies of several types of LEDs, and compare them with the energies of the emitted light, which ranges from infrared to white. In spite of…

  16. Two Photon Absorption And Refraction in Bulk of the Semiconducting Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Vinay; Department of Physics, DCRUST Murthal, Haryana; Kumar, Vinod

    2011-10-20

    Fast electronic detection systems have opened up a number of new fields like nonlinear optics, optical communication, coherent optics, optical bistability, two/four wave mixing. The interest in this field has been stimulated by the importance of multiphoton processes in many fundamental aspects of physics. It has proved to be an invaluable tool for determining the optical and electronic properties of the solids because of the fact that one gets the information about the bulk of the material rather than the surface one. In this paper we report, the measurement of the nonlinear absorption and refraction from the band gap tomore » half-band gap region of bulk of semiconductors in the direct and indirect band gap crystals with nanosecond laser. The measured theoretical calculated values of two-photon absorption coefficients ({beta}) and nonlinear refraction n{sub 2}({omega}) of direct band gap crystal match the earlier reported theoretical predictions. By making use of these theoretical calculated values, we have estimated {beta} and n{sub 2}({omega}) in the case of indirect band gap crystals. Low value of absorption coefficient in case of indirect band gap crystals have been attributed to phonon assisted transition while reduction in nonlinear refraction is due to the rise in saturation taking place in the absorption.« less

  17. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1−x) Alloys

    PubMed Central

    Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1–2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1−x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1−x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1−x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470

  18. Pulsed laser deposited BexZn1-xO1-ySy quaternary alloy films: structure, composition, and band gap bowing

    NASA Astrophysics Data System (ADS)

    Zhang, Wuzhong; Xu, Maji; Zhang, Mi; Cheng, Hailing; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Chen, Changqing; He, Yunbin

    2018-03-01

    In this work, c-axis preferentially oriented BexZn1-xO1-ySy (BeZnOS) quaternary alloy films were prepared successfully on c-plane sapphire by pulsed laser deposition for the first time. By appropriate adjustment of O2 pressure during the deposition, the grown films exhibited a single-phase hexagonal structure and good crystalline quality. The solid solubility of S in BexZn1-xO1-ySy quaternary alloy was significantly expanded (y ≤ 0.17 or y ≥ 0.35) as a result of simultaneous substitution of cation Zn2+ by smaller Be2+ and anion O2- by bigger S2-. Besides, due to the introduction of BeO with a wide band gap, BeZnOS quaternary films exhibited wider band gaps than the ternary ZnOS films with similar S contents. As the O2 pressure increased from 0.05 Pa to 6 Pa, the band gap of BeZnOS displayed an interesting bowing behavior. The variation range of the band gap was between 3.55 eV and 3.10 eV. The BeZnOS films with a wide band gap show potential applications in fabricating optoelectronic devices such as UV-detectors.

  19. Direct band gap silicon crystals predicted by an inverse design method

    NASA Astrophysics Data System (ADS)

    Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Kim, Sunghyun; Chang, Kee Joo

    2015-03-01

    Cubic diamond silicon has an indirect band gap and does not absorb or emit light as efficiently as other semiconductors with direct band gaps. Thus, searching for Si crystals with direct band gaps around 1.3 eV is important to realize efficient thin-film solar cells. In this work, we report various crystalline silicon allotropes with direct and quasi-direct band gaps, which are predicted by the inverse design method which combines a conformation space annealing algorithm for global optimization and first-principles density functional calculations. The predicted allotropes exhibit energies less than 0.3 eV per atom and good lattice matches, compared with the diamond structure. The structural stability is examined by performing finite-temperature ab initio molecular dynamics simulations and calculating the phonon spectra. The absorption spectra are obtained by solving the Bethe-Salpeter equation together with the quasiparticle G0W0 approximation. For several allotropes with the band gaps around 1 eV, photovoltaic efficiencies are comparable to those of best-known photovoltaic absorbers such as CuInSe2. This work is supported by the National Research Foundation of Korea (2005-0093845 and 2008-0061987), Samsung Science and Technology Foundation (SSTF-BA1401-08), KIAS Center for Advanced Computation, and KISTI (KSC-2013-C2-040).

  20. Environmentally sensitive theory of electronic and optical transitions in atomically thin semiconductors

    NASA Astrophysics Data System (ADS)

    Cho, Yeongsu; Berkelbach, Timothy C.

    2018-01-01

    We present an electrostatic theory of band-gap renormalization in atomically thin semiconductors that captures the strong sensitivity to the surrounding dielectric environment. In particular, our theory aims to correct known band gaps, such as that of the three-dimensional bulk crystal. Combining our quasiparticle band gaps with an effective-mass theory of excitons yields environmentally sensitive optical gaps as would be observed in absorption or photoluminescence. For an isolated monolayer of MoS2, the presented theory is in good agreement with ab initio results based on the G W approximation and the Bethe-Salpeter equation. We find that changes in the electronic band gap are almost exactly offset by changes in the exciton binding energy such that the energy of the first optical transition is nearly independent of the electrostatic environment, rationalizing experimental observations.

  1. Sizable band gap in organometallic topological insulator

    NASA Astrophysics Data System (ADS)

    Derakhshan, V.; Ketabi, S. A.

    2017-01-01

    Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.

  2. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    PubMed

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  3. Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Yu; Chen, Lien-Wen

    2011-02-01

    This study theoretically and experimentally investigates the acoustic band gap of a three-dimensional woodpile sonic crystal. Such crystals are built by blocks or rods that are orthogonally stacked together. The adjacent layers are perpendicular to each other. The woodpile structure is embedded in air background. Their band structures and transmission spectra are calculated using the finite element method with a periodic boundary condition. The dependence of the band gap on the width of the stacked rods is discussed. The deaf bands in the band structure are observed by comparing with the calculated transmission spectra. The experimental transmission spectra for the Γ-X and Γ-X' directions are also presented. The calculated results are compared with the experimental results.

  4. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    PubMed Central

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-01-01

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides. PMID:26088416

  5. [Study on diversity of protein between Houttuynia cordata plant].

    PubMed

    Zhang, Xi-li; He, Fu-yuan; Wang, Hai-qin; Yang, Yan-tao; Shi, Ji-lian; Liu, Wen-long; Li, Shun-xiang

    2013-12-01

    To reveal protein diversity between the same batch of fresh Houttuynia cordata in the same GAP base,and to lay the foundation construction for "node metabolic network". Three methods including the Ramagli improved Bradford law, SDS-PAGE gel electrophoresis method and double wavelength thin-layer scanning method were used to study the total protein content diversity, protein species diversity and various kinds of content variability. The molecular weight of 53 plant protein mostly concentrated in the range of 6.5-97.2 kDa, the species diversity was not obvious with main performance for banding color shades; The RSD of zero moment (AUCT), first moment (MCRTT) and second moment (VCRTT) in protein electrophoresis banding was 40.92%, 6.01% and 18.57%, respectively. There is rich diversity in different Houttuynia cordata plant in the same GAP base, which provides basis for the foundation of subsequent key protease search, "node metabolic network" construction, and study on the Chinese medicine quality stability.

  6. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE PAGES

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; ...

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe 2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe 2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS 2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSemore » 2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  7. Sub-band gap photo-enhanced secondary electron emission from high-purity single-crystal chemical-vapor-deposited diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yater, J. E., E-mail: joan.yater@nrl.navy.mil; Shaw, J. L.; Pate, B. B.

    2016-02-07

    Secondary-electron-emission (SEE) current measured from high-purity, single-crystal (100) chemical-vapor-deposited diamond is found to increase when sub-band gap (3.06 eV) photons are incident on the hydrogenated surface. Although the light does not produce photoemission directly, the SEE current increases by more than a factor of 2 before saturating with increasing laser power. In energy distribution curves (EDCs), the emission peak shows a corresponding increase in intensity with increasing laser power. However, the emission-onset energy in the EDCs remains constant, indicating that the bands are pinned at the surface. On the other hand, changes are observed on the high-energy side of the distributionmore » as the laser power increases, with a well-defined shoulder becoming more pronounced. From an analysis of this feature in the EDCs, it is deduced that upward band bending is present in the near-surface region during the SEE measurements and this band bending suppresses the SEE yield. However, sub-band gap photon illumination reduces the band bending and thereby increases the SEE current. Because the bands are pinned at the surface, we conclude that the changes in the band levels occur below the surface in the electron transport region. Sample heating produces similar effects as observed with sub-band gap photon illumination, namely, an increase in SEE current and a reduction in band bending. However, the upward band bending is not fully removed by either increasing laser power or temperature, and a minimum band bending of ∼0.8 eV is established in both cases. The sub-band gap photo-excitation mechanism is under further investigation, although it appears likely at present that defect or gap states play a role in the photo-enhanced SEE process. In the meantime, the study demonstrates the ability of visible light to modify the electronic properties of diamond and enhance the emission capabilities, which may have potential impact for diamond-based vacuum electron sources, particle detectors, and other electronic devices.« less

  8. Ultrafast laser-induced modifications of energy bands of non-metal crystals

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2009-10-01

    Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.

  9. Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si

    NASA Astrophysics Data System (ADS)

    Persson, C.; Lindefelt, U.; Sernelius, B. E.

    1999-10-01

    Doping-induced energy shifts of the conduction band minimum and the valence band maximum have been calculated for n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. The narrowing of the fundamental band gap and of the optical band gap are presented as functions of ionized impurity concentration. The calculations go beyond the common parabolic treatments of the ground state energy dispersion by using energy dispersion and overlap integrals from band structure calculations. The nonparabolic valence band curvatures influence strongly the energy shifts especially in p-type materials. The utilized method is based on a zero-temperature Green's function formalism within the random phase approximation with local field correction according to Hubbard. We have parametrized the shifts of the conduction and the valence bands and made comparisons with recently published results from a semi-empirical model.

  10. Band alignment of semiconductors and insulators using dielectric-dependent hybrid functionals: Toward high-throughput evaluation

    NASA Astrophysics Data System (ADS)

    Hinuma, Yoyo; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu

    2017-02-01

    The band alignment of prototypical semiconductors and insulators is investigated using first-principles calculations. A dielectric-dependent hybrid functional, where the nonlocal Fock exchange mixing is set at the reciprocal of the static electronic dielectric constant and the exchange correlation is otherwise treated as in the Perdew-Burke-Ernzerhof (PBE0) hybrid functional, is used as well as the Heyd-Scuseria-Ernzerhof (HSE06) hybrid and PBE semilocal functionals. In addition, these hybrid functionals are applied non-self-consistently to accelerate calculations. The systems considered include C and Si in the diamond structure, BN, AlP, AlAs, AlSb, GaP, GaAs, InP, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, MgO in the rocksalt structure, and GaN and ZnO in the wurtzite structure. Surface band positions with respect to the vacuum level, i.e., ionization potentials and electron affinities, and band offsets at selected zinc-blende heterointerfaces are evaluated as well as band gaps. The non-self-consistent approach speeds up hybrid functional calculations by an order of magnitude, while it is shown using HSE06 that the resultant band gaps and surface band positions are similar to the self-consistent results. The dielectric-dependent hybrid functional improves the band gaps and surface band positions of wide-gap systems over HSE06. The interfacial band offsets are predicted with a similar degree of precision. Overall, the performance of the dielectric-dependent hybrid functional is comparable to the G W0 approximation based on many-body perturbation theory in the prediction of band gaps and alignments for most systems. The present results demonstrate that the dielectric-dependent hybrid functional, particularly when applied non-self-consistently, is promising for applications to systematic calculations or high-throughput screening that demand both computational efficiency and sufficient accuracy.

  11. Improved Photoactivity of Pyroxene Silicates by Cation Substitutions.

    PubMed

    Legesse, Merid; Park, Heesoo; El Mellouhi, Fedwa; Rashkeev, Sergey N; Kais, Sabre; Alharbi, Fahhad H

    2018-04-17

    We investigated the possibility of band structure engineering of pyroxene silicates with chemical formula A +1 B +3 Si 2 O 6 by proper cation substitution. Typically, band gaps of naturally formed pyroxene silicates such as NaAlSi 2 O 6 are quite high (≈5 eV). Therefore, it is important to find a way to reduce band gaps for these materials below 3 eV to make them usable for optoelectronic applications operating at visible light range of the spectrum. Using first-principles calculations, we found that appropriate substitutions of both A + and B 3+ cations can reduce the band gaps of these materials to as low as 1.31 eV. We also discuss how the band gap in this class of materials is affected by cation radii, electronegativity of constituent elements, spin-orbit coupling, and structural modifications. In particular, the replacement of Al 3+ in NaAlSi 2 O 6 by another trivalent cation Tl 3+ results in the largest band-gap reduction and emergence of intermediate bands. We also found that all considered materials are still thermodynamically stable. This work provides a design approach for new environmentally benign and abundant materials for use in photovoltaics and optoelectronic devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Significant reduction in NiO band gap upon formation of Lix Ni1-x O alloys: applications to solar energy conversion.

    PubMed

    Alidoust, Nima; Toroker, Maytal Caspary; Keith, John A; Carter, Emily A

    2014-01-01

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ∼ 1.5-2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO's large band gap (∼ 4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ∼ 2.0 eV when NiO is alloyed with Li2O. We show that Lix Ni1-x O alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO's desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural and electro-optical properties of bilayer graphyne like BN sheet

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2016-12-01

    The structural, electronic and optical properties of bilayer graphyne like BN sheet (BNyne) with different stacking manners have been explored by the first-principles calculations. The stabilities of α-BNyne bilayers with different stacking manners are compared. The α-BNyne Bilayers have wide band gaps. Compared to the single α-BNyne, the numbers of energy bands are doubled due to the interlayer interactions and the band gap is reduced. The AB-I configuration has a direct band gap while the band gap becomes indirect for AA-II. The calculated ε2 (ω) of bilayer α-BNyne for (Eǁx) is similar to that of the monolayer α-BNyne, except for the small changes of peak positions and increasing of peak intensities. For (Eǁz), the first absorption peak occures at 3.86 eV, and the prominant peak of monolayer at 9.17 eV becomes broadened. These changes are related to the new transitions resulting from the band splitting.

  14. Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures

    DTIC Science & Technology

    2015-05-01

    ABSTRACT The main objective of this research is to study coherent quantum effects, such as Rabi oscillations in optical spectra of wide- band-gap...field corresponds to the rotation of the B vector about the pseudo field vector, Ω, with components determined by the effective Rabi frequency ( )e...to examine coherent quantum effects, such as Rabi oscillations and quantum entanglement in optical spectra of wide-band-gap materials, and to

  15. Modification in band gap of zirconium complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S.

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  16. Energy band gaps in graphene nanoribbons with corners

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, Dominik; Durajski, Artur P.; Khater, Antoine; Ghader, Doried

    2016-05-01

    In the present paper, we study the relation between the band gap size and the corner-corner length in representative chevron-shaped graphene nanoribbons (CGNRs) with 120° and 150° corner edges. The direct physical insight into the electronic properties of CGNRs is provided within the tight-binding model with phenomenological edge parameters, developed against recent first-principle results. We show that the analyzed CGNRs exhibit inverse relation between their band gaps and corner-corner lengths, and that they do not present a metal-insulator transition when the chemical edge modifications are introduced. Our results also suggest that the band gap width for the CGNRs is predominantly governed by the armchair edge effects, and is tunable through edge modifications with foreign atoms dressing.

  17. A new silicon phase with direct band gap and novel optoelectronic properties

    DOE PAGES

    Guo, Yaguang; Wang, Qian; Kawazoe, Yoshiyuki; ...

    2015-09-23

    Due to the compatibility with the well-developed Si-based semiconductor industry, there is considerable interest in developing silicon structures with direct energy band gaps for effective sunlight harvesting. In this paper, using silicon triangles as the building block, we propose a new silicon allotrope with a direct band gap of 0.61 eV, which is dynamically, thermally and mechanically stable. Symmetry group analysis further suggests that dipole transition at the direct band gap is allowed. Additionally, this new allotrope displays large carrier mobility (~10 4 cm/V · s) at room temperature and a low mass density (1.71 g/cm 3), making it amore » promising material for optoelectronic applications.« less

  18. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts

    PubMed Central

    Zimnyakov, D.A.; Sevrugin, A.V.; Yuvchenko, S.A.; Fedorov, F.S.; Tretyachenko, E.V.; Vikulova, M.A.; Kovaleva, D.S.; Krugova, E.Y.; Gorokhovsky, A.V.

    2016-01-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka–Munk function reveals a presence of local maxima in the regions 0.5–1.5 eV and 1.6–3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654

  19. Electronic structure of graphene- and BN-supported phosphorene

    NASA Astrophysics Data System (ADS)

    Davletshin, Artur R.; Ustiuzhanina, Svetlana V.; Kistanov, Andrey A.; Saadatmand, Danial; Dmitriev, Sergey V.; Zhou, Kun; Korznikova, Elena A.

    2018-04-01

    By using first-principles calculations, the effects of graphene and boron nitride (BN) substrates on the electronic properties of phosphorene are studied. Graphene-supported phosphorene is found to be metallic, while the BN-supported phosphorene is a semiconductor with a moderate band gap of 1.02 eV. Furthermore, the effects of the van der Waals interactions between the phosphorene and graphene or BN layers by means of the interlayer distance change are investigated. It is shown that the interlayer distance change leads to significant band gap size modulations and direct-indirect band gap transitions in the phosphorene-BN heterostructure. The presented band gap engineering of phosphorene may be a powerful technique for the fabrication of high-performance phosphorene-based nanodevices.

  20. Tailoring of optical band gap by varying Zn content in Cd{sub 1-x}Zn{sub x}S thin films prepared by spray pyrolysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vipin, E-mail: vipinkumar28@yahoo.co.in; Sharma, D. K.; Agrawal, Sonalika

    Cd{sub 1-X}Zn{sub X}S thin films (X = 0.2, 0.4, 0.6, 0.8) have been grown on glass substrate by spray pyrolysis technique using equimolar concentration aqueous solution of cadmium chloride, zinc acetate and thiourea. Prepared thin films have been characterized by UV-VIS spectrophotometer. The optical band gap of the films has been studied by transmission spectra in wavelength range 325-600nm. It has been observed that optical band gap increases with increasing zinc concentration. The optical band gap of these thin films varies from 2.59 to 3.20eV with increasing Zn content.

  1. Determination of optical band gap of powder-form nanomaterials with improved accuracy

    NASA Astrophysics Data System (ADS)

    Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul

    2017-10-01

    Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.

  2. Dual Band Notched EBG Structure based UWB MIMO/Diversity Antenna with Reduced Wide Band Electromagnetic Coupling

    NASA Astrophysics Data System (ADS)

    Jaglan, Naveen; Kanaujia, Binod Kumar; Gupta, Samir Dev; Srivastava, Shweta

    2017-10-01

    A dual band-notched MIMO/Diversity antenna is proposed in this paper. The proposed antenna ensures notches in WiMAX band (3.3-3.6 GHz) besides WLAN band (5-6 GHz). Mushroom Electromagnetic Band Gap (EBG) arrangements are employed for discarding interfering frequencies. The procedure followed to attain notches is antenna shape independent with established formulas. The electromagnetic coupling among two narrowly set apart Ultra-Wide Band (UWB) monopoles is reduced by means of decoupling bands and slotted ground plane. Monopoles are 90° angularly parted with steps on the radiator. This aids to diminish mutual coupling and also adds in the direction of impedance matching by long current route. S21 or else mutual coupling of fewer than 15 dB is established over antenna operating range. Two-port envelope correlation coefficient is lower than 0.02 in UWB range of 3.1 GHz-10.6 GHz. The shifting in notch frequencies by varying variables in formulas is also reported. The suggested antenna is designed on low budget FR-4 substrate with measurements as (58 × 45 × 1.6) mm3. Simulated and measured results of fabricated antenna are found to be in close agreement.

  3. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation.

    PubMed

    Bazylewski, Paul F; Nguyen, Van Luan; Bauer, Robert P C; Hunt, Adrian H; McDermott, Eamon J G; Leedahl, Brett D; Kukharenko, Andrey I; Cholakh, Seif O; Kurmaev, Ernst Z; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-10-21

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications.

  4. Selective Area Band Engineering of Graphene using Cobalt-Mediated Oxidation

    PubMed Central

    Bazylewski, Paul F.; Nguyen, Van Luan; Bauer, Robert P.C.; Hunt, Adrian H.; McDermott, Eamon J. G.; Leedahl, Brett D.; Kukharenko, Andrey I.; Cholakh, Seif O.; Kurmaev, Ernst Z.; Blaha, Peter; Moewes, Alexander; Lee, Young Hee; Chang, Gap Soo

    2015-01-01

    This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure. Cobalt/Graphene resulting from this treatment can support a band gap of 0.30 eV, while remaining largely undamaged to preserve its structural and electrical properties. A mechanism of cobalt-mediated band opening is proposed as a two-step process starting with charge transfer from metal to graphene, followed by formation of oxides where cobalt has been deposited. Contributions from the formation of both CoO and oxygen functional groups on graphene affect the electronic structure to open a band gap. This study demonstrates that cobalt-mediated oxidation is a viable method to introduce a band gap into graphene at room temperature that could be applicable in electronics applications. PMID:26486966

  5. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  6. The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, J.; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714; Peng, X.Y.

    2014-06-01

    Highlights: • CVD–PLD co-deposition technique was used. • Better crystalline of the ZnO samples causes the redshift of the optical band gap. • Higher W concentration induces blueshift of the optical band gap. - Abstract: Tungsten-doped (W-doped) zinc oxide (ZnO) nanostructures were synthesized on quartz substrates by pulsed laser and hot filament chemical vapor co-deposition technique under different oxygen pressures and doping levels. We studied in detail the morphological, structural and optical properties of W-doped ZnO by SEM, XPS, Raman scattering, and optical transmission spectra. A close correlation among the oxygen pressure, morphology, W concentrations and the variation of bandmore » gaps were investigated. XPS and Raman measurements show that the sample grown under the oxygen pressure of 2.7 Pa has the maximum tungsten concentration and best crystalline structure, which induces the redshift of the optical band gap. The effect of W concentration on the change of morphology and shift of optical band gap was also studied for the samples grown under the fixed oxygen pressure of 2.7 Pa.« less

  7. Spatial filtering with photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maigyte, Lina; Staliunas, Kestutis; Institució Catalana de Recerca i Estudis Avançats

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., inmore » the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.« less

  8. Microwave emulations and tight-binding calculations of transport in polyacetylene

    NASA Astrophysics Data System (ADS)

    Stegmann, Thomas; Franco-Villafañe, John A.; Ortiz, Yenni P.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.

    2017-01-01

    A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene.

  9. Band gap opening of bilayer graphene by F4-TCNQ molecular doping and externally applied electric field.

    PubMed

    Tian, Xiaoqing; Xu, Jianbin; Wang, Xiaomu

    2010-09-09

    The band gap opening of bilayer graphene with one side surface adsorption of F4-TCNQ is reported. F4-TCNQ doped bilayer graphene shows p-type semiconductor characteristics. With a F4-TCNQ concentration of 1.3 x 10(-10) mol/cm(2), the charge transfer between each F4-TCNQ molecule and graphene is 0.45e, and the built-in electric field, E(bi), between the graphene layers could reach 0.070 V/A. The charge transfer and band gap opening of the F4-TCNQ-doped graphene can be further modulated by an externally applied electric field (E(ext)). At 0.077 V/A, the gap opening at the Dirac point (K), DeltaE(K) = 306 meV, and the band gap, E(g) = 253 meV, are around 71% and 49% larger than those of the pristine bilayer under the same E(ext).

  10. Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study

    NASA Astrophysics Data System (ADS)

    Marsusi, F.; Fedorov, I. A.; Gerivani, S.

    2018-01-01

    Density functional theory and many-body perturbation theory at the G0W0 level are employed to study the electronic properties of polythiophene (PT) adsorbed on the graphene surface. Analysis of the charge density difference shows that substrate-adsorbate interaction leads to a strong physisorption and interfacial electric dipole moment formation. The electrostatic potential displays a  -0.19 eV shift in the graphene work function from its initial value of 4.53 eV, as the result of the interaction. The LDA band gap of the polymer does not show any change. However, the band structure exhibits weak orbital hybridizations resulting from slight overlapping between the polymer and graphene states wave functions. The interfacial polarization effects on the band gap and levels alignment are investigated at the G0W0 level and show a notable reduction of PT band gap compared to that of the isolated chain.

  11. Thermal tuning on band gaps of 2D phononic crystals considering adhesive layers

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoliang; Chen, Jialin; Li, Yuhang; Sun, Yuxin; Xing, Yufeng

    2018-02-01

    Phononic crystals are very attractive in many applications, such as noise reduction, filters and vibration isolation, due to their special forbidden band gap structures. In the present paper, the investigation of tunable band gaps of 2D phononic crystals with adhesive layers based on thermal changing is conducted. Based on the lumped-mass method, an analytical model of 2D phononic crystals with relatively thin adhesive layers is established, in which the in-plane and out-of-plane modes are both in consideration. The adhesive material is sensitive to temperature so that the band structure can be tuned and controlled by temperature variation. As temperature increases from 20 °C-80 °C, the first band gap shifts to the frequency zone around 10 kHz, which is included by the audible frequency range. The results propose an important guideline for applications, such as noise suppression using the 2D phononic crystals.

  12. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites

    PubMed Central

    Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang

    2016-01-01

    The organic–inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley–Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon–electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014

  13. First-principles study of direct and narrow band gap semiconducting β -CuGaO 2

    DOE PAGES

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  14. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.

    PubMed

    Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K

    2008-12-01

    Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.

  15. Diamond /111/ studied by electron energy loss spectroscopy in the characteristic loss region

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1982-01-01

    Unoccupied surface states on diamond (111) annealed at greater than 900 C are studied by electron energy loss spectroscopy with valence band excitation. A feature found at 2.1 eV loss energy is attributed to an excitation from occupied surface states into unoccupied surface states of energy within the bulk band gap. A surface band gap of approximately 1 eV is estimated. This result supports a previous suggestion for unoccupied band gap states based on core level energy loss spectroscopy. Using the valence band excitation energy loss spectrosocpy, it is also suggested that hydrogen is removed from the as-polished diamond surface by a Menzel-Gomer-Redhead mechanism.

  16. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.

    PubMed

    Cheung, W M; Chan, K S

    2017-06-01

    We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index  =  -1 and the valence band with Floquet index  =  +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.

  17. Hole superconductivity in a generalized two-band model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, X.Q.; Hirsch, J.E.

    1992-06-01

    We study superconductivity in a two-band model that generalizes the model introduced by Suhl, Matthias, and Walker: All possible interaction terms coupling both bands are included. The pairing interaction is assumed to originate in the momentum dependence of the intraband interactions that arises in the model of hole superconductivity. The model generically displays a single critical temperature and two gaps, with the larger gap associated with the band with strongest holelike character to the carriers. The dependence of the critical temperature and of the magnitudes of the gaps on the various parameters in the Hamiltonian is studied.

  18. Impurity-Band Model for GaP1-xNx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluegel, B.; Zhang, Y.; Geisz, J. F.

    2005-11-01

    Low-temperature absorption studies on free-standing GaP1-xNx films provide direct experimental evidence that the host conduction-band minimum (CBM) near X1C does not plunge downward with increased nitrogen doping, contrary to what has been suggested recently; rather, it remains stationary for x up to 0.1%. This fact, combined with the results of earlier studies of the CBM at ..GAMMA.. and conduction-band edge near L, confirms that the giant bandgap lowering observed in GaP1-xNx results from a CBM that evolves purely from nitrogen impurity bands.

  19. Optical band gap in a cholesteric elastomer doped by metallic nanospheres

    NASA Astrophysics Data System (ADS)

    Hernández, Julio C.; Reyes, J. Adrián

    2017-12-01

    We analyzed the optical band gaps for axially propagating electromagnetic waves throughout a metallic doped cholesteric elastomer. The composed medium is made of metallic nanospheres (silver) randomly dispersed in a cholesteric elastomer liquid crystal whose dielectric properties can be represented by a resonant effective uniaxial tensor. We found that the band gap properties of the periodic system greatly depend on the volume fraction of nanoparticles in the cholesteric elastomer. In particular, we observed a displacement of the reflection band for quite small fraction volumes whereas for larger values of this fraction there appears a secondary band in the higher frequency region. We also have calculated the transmittance and reflectance spectra for our system. These calculations verify the mentioned band structure and provide additional information about the polarization features of the radiation.

  20. Bands dispersion and charge transfer in β-BeH2

    NASA Astrophysics Data System (ADS)

    Trivedi, D. K.; Galav, K. L.; Joshi, K. B.

    2018-04-01

    Predictive capabilities of ab-initio method are utilised to explore bands dispersion and charge transfer in β-BeH2. Investigations are carried out using the linear combination of atomic orbitals method at the level of density functional theory. The crystal structure and related parameters are settled by coupling total energy calculations with the Murnaghan equation of state. Electronic bands dispersion from PBE-GGA is reported. The PBE-GGA, and PBE0 hybrid functional, show that β-BeH2 is a direct gap semiconductor with 1.18 and 2.40 eV band gap. The band gap slowly decreases with pressure and beyond l00 GPa overlap of conduction and valence bands at the r point is observed. Charge transfer is studied by means of Mullikan population analysis.

  1. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus.

    PubMed

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the mechanisms of tinnitus.

  2. Hierarchical active factors to band gap and nonlinear optical response in Ag-containing quaternary-chalcogenide compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jun-ben; Xinjiang Key Laboratory of Electronic Information Material and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011; Mamat, Mamatrishat, E-mail: mmtrxt@xju.edu.cn

    In this research work, Ag-containing quaternary-chalcogenide compounds KAg{sub 2}TS{sub 4} (T=P, Sb) (I-II) and RbAg{sub 2}SbS{sub 4} (III) have been studied by means of Density Functional Theory as potential IR nonlinear optical materials. The origin of wide band gap, different optical anisotropy and large SHG response is explained via a combination of density of states, electronic density difference and bond population analysis. It is indicated that the different covalent interaction behavior of P-S and Sb-S bonds dominates the band gap and birefringence. Specifically, the Ag-containing chalcogenide compound KAg{sub 2}PS{sub 4} possesses wide band gap and SHG response comparable with thatmore » of AgGaS{sub 2}. By exploring the origin of the band gap and NLO response for compounds KAg{sub 2}TS{sub 4} (T=P, Sb), we found the determination factor to the properties is different, especially the roles of Ag-d orbitals and bonding behavior of P-S or Sb-S. Thus, the compounds KAg{sub 2}TS{sub 4} (T=P, Sb) and RbAg{sub 2}SbS{sub 4} can be used in infrared (IR) region. - Graphical abstract: Metal thiophosphates RbPbPS{sub 4} and KSbP{sub 2}S{sub 6} have a similar band gap with KAg{sub 2}PS{sub 4}. However, based on first principles calculated results it shown that KAg{sub 2}PS{sub 4} possesses wide band gap (3.02 eV) and relatively large SHG response. Display Omitted.« less

  3. The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS₂: A First-Principles Study.

    PubMed

    Wang, Weidong; Bai, Liwen; Yang, Chenguang; Fan, Kangqi; Xie, Yong; Li, Minglin

    2018-01-31

    Based on the density functional theory (DFT), the electronic properties of O-doped pure and sulfur vacancy-defect monolayer WS₂ are investigated by using the first-principles method. For the O-doped pure monolayer WS₂, four sizes (2 × 2 × 1, 3 × 3 × 1, 4 × 4 × 1 and 5 × 5 × 1) of supercell are discussed to probe the effects of O doping concentration on the electronic structure. For the 2 × 2 × 1 supercell with 12.5% O doping concentration, the band gap of O-doped pure WS₂ is reduced by 8.9% displaying an indirect band gap. The band gaps in 3 × 3 × 1 and 4 × 4 × 1 supercells are both opened to some extent, respectively, for 5.55% and 3.13% O doping concentrations, while the band gap in 5 × 5 × 1 supercell with 2.0% O doping concentration is quite close to that of the pure monolayer WS₂. Then, two typical point defects, including sulfur single-vacancy (V S ) and sulfur divacancy (V 2S ), are introduced to probe the influences of O doping on the electronic properties of WS₂ monolayers. The observations from DFT calculations show that O doping can broaden the band gap of monolayer WS₂ with V S defect to a certain degree, but weaken the band gap of monolayer WS₂ with V 2S defect. Doping O element into either pure or sulfur vacancy-defect monolayer WS₂ cannot change their band gaps significantly, however, it still can be regarded as a potential method to slightly tune the electronic properties of monolayer WS₂.

  4. Cobalt (II) oxide and nickel (II) oxide alloys as potential intermediate-band semiconductors: A theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alidoust, Nima; Lessio, Martina; Carter, Emily A., E-mail: eac@princeton.edu

    2016-01-14

    Solar cells based on single pn junctions, employing single-gap semiconductors can ideally achieve efficiencies as high as 34%. Developing solar cells based on intermediate-band semiconductors (IBSCs), which can absorb light across multiple band gaps, is a possible way to defy this theoretical limit and achieve efficiencies as high as 60%. Here, we use first principles quantum mechanics methods and introduce CoO and Co{sub 0.25}Ni{sub 0.75}O as possible IBSCs. We show that the conduction band in both of these materials is divided into two distinct bands separated by a band gap. We further show that the lower conduction band (i.e., themore » intermediate band) is wider in Co{sub 0.25}Ni{sub 0.75}O compared with CoO. This should enhance light absorption from the valence band edge to the intermediate band, making Co{sub 0.25}Ni{sub 0.75}O more appropriate for use as an IBSC. Our findings provide the basis for future attempts to partially populate the intermediate band and to reduce the lower band gap in Co{sub 0.25}Ni{sub 0.75}O in order to enhance the potential of this material for use in IBSC solar cell technologies. Furthermore, with proper identification of heterojunctions and dopants, CoO and Co{sub 0.25}Ni{sub 0.75}O could be used in multi-color light emitting diode and laser technologies.« less

  5. Optical study of the band structure of wurtzite GaP nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assali, S., E-mail: simone.assali@polymtl.ca; Greil, J.; Zardo, I.

    2016-07-28

    We investigated the optical properties of wurtzite (WZ) GaP nanowires by performing photoluminescence (PL) and time-resolved PL measurements in the temperature range from 4 K to 300 K, together with atom probe tomography to identify residual impurities in the nanowires. At low temperature, the WZ GaP luminescence shows donor-acceptor pair emission at 2.115 eV and 2.088 eV, and Burstein-Moss band-filling continuum between 2.180 and 2.253 eV, resulting in a direct band gap above 2.170 eV. Sharp exciton α-β-γ lines are observed at 2.140–2.164–2.252 eV, respectively, showing clear differences in lifetime, presence of phonon replicas, and temperature-dependence. The excitonic nature of those peaks is critically discussed, leading tomore » a direct band gap of ∼2.190 eV and to a resonant state associated with the γ-line ∼80 meV above the Γ{sub 8C} conduction band edge.« less

  6. Anisotropic Effective Mass, Optical Property, and Enhanced Band Gap in BN/Phosphorene/BN Heterostructures.

    PubMed

    Hu, Tao; Hong, Jisang

    2015-10-28

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, the phosphorus has a trouble of degradation due to oxidation. Hereby, we propose that the electrical and optical anisotropic properties can be preserved by encapsulating into hexagonal boron nitride (h-BN). We found that the h-BN contributed to enhancing the band gap of the phosphorene layer. Comparing the band gap of the pristine phosphorene layer, the band gap of the phosphorene/BN(1ML) system was enhanced by 0.15 eV. It was further enhanced by 0.31 eV in the BN(1ML)/phosphorene/BN(1ML) trilayer structure. However, the band gap was not further enhanced when we increased the thickness of the h-BN layers even up to 4 MLs. Interestingly, the anisotropic effective mass and optical property were still preserved in BN/phosphorene/BN heterostructures. Overall, we predict that the capping of phosphorene by the h-BN layers can be an excellent solution to protect the intrinsic properties of the phosphorene.

  7. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Keyan; Kang, Congying; Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1−x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1−x}O and Cd{sub x}Zn{sub 1−x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1−x}O and Ca{sub x}Zn{sub 1−x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereasmore » the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.« less

  8. Modulation of band gap by an applied electric field in BN-based heterostructures

    NASA Astrophysics Data System (ADS)

    Luo, M.; Xu, Y. E.; Zhang, Q. X.

    2018-05-01

    First-principles density functional theory (DFT) calculations are performed on the structural and electronic properties of the SiC/BN van der Waals (vdW) heterostructures under an external electric field (E-field). Our results reveal that the SiC/BN vdW heterostructure has a direct band gap of 2.41 eV in the raw. The results also imply that electrons are likely to transfer from BN to SiC monolayer due to the deeper potential of BN monolayer. It is also observed that, by applying an E-field, ranging from -0.50 to +0.65 V/Å, the band gap decreases from 2.41 eV to zero, which presents a parabola-like relationship around 0.0 V/Å. Through partial density of states (PDOS) plots, it is revealed that, p orbital of Si, C, B, and N atoms are responsible for the significant variations of band gap. These obtained results predict that, the electric field tunable band gap of the SiC/BN vdW heterostructures carries potential applications for nanoelectronics and spintronic device applications.

  9. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  10. Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhash, P. G.; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com

    Metallic copper nano particles are synthesized with citric acid and CTAB (cetyltrimethylammonium bromide) as surfactant and chlorides as precursors. The particle size and surface morphology are analyzed by High Resolution Transmission Electron Microscopy. The average size of the nano particle is found to be 3 - 10 nm. The optical absorption characteristics are done by UV-Visible spectrophotometer. From the Tauc plots, the energy band gaps are calculated and because of their smaller size the particles have much higher band gap than the bulk material. The energy band gap is changed from 3.67 eV to 4.27 eV in citric acid coatedmore » copper quantum dots and 4.17 eV to 4.52 eV in CTAB coated copper quantum dots.« less

  11. Strong interplay between structure and electronic properties in CuIn(S,Se){2}: a first-principles study.

    PubMed

    Vidal, Julien; Botti, Silvana; Olsson, Pär; Guillemoles, Jean-François; Reining, Lucia

    2010-02-05

    We present a first-principles study of the electronic properties of CuIn(S,Se){2} (CIS) using state-of-the-art self-consistent GW and hybrid functionals. The calculated band gap depends strongly on the anion displacement u, an internal structural parameter that measures lattice distortion. This contrasts with the observed stability of the band gap of CIS solar panels under operating conditions, where a relatively large dispersion of values for u occurs. We solve this apparent paradox considering the coupled effect on the band gap of copper vacancies and lattice distortions. The correct treatment of d electrons in these materials requires going beyond density functional theory, and GW self-consistency is critical to evaluate the quasiparticle gap and the valence band maximum.

  12. Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Evans, D. A.; McGlynn, A. G.; Towlson, B. M.; Gunn, M.; Jones, D.; Jenkins, T. E.; Winter, R.; Poolton, N. R. J.

    2008-02-01

    Using synchrotron-based luminescence excitation spectroscopy in the energy range 4-20 eV at 8 K, the indirect Γ-X optical band-gap transition in cubic boron nitride is determined as 6.36 ± 0.03 eV, and the quasi-direct band-gap energy of hexagonal boron nitride is determined as 5.96 ± 0.04 eV. The composition and structure of the materials are self-consistently established by optically detected x-ray absorption spectroscopy, and both x-ray diffraction and Raman measurements on the same samples give independent confirmation of their chemical and structural purity: together, the results are therefore considered as providing definitive measurements of the optical band-gap energies of the two materials.

  13. Electronic and optical properties of the LiCdX (X = N, P, As and Sb) filled-tetrahedral compounds with the Tran–Blaha modified Becke–Johnson density functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhemadou, A., E-mail: a_bouhemadou@yahoo.fr; Bin-Omran, S.; Department of Physics, Faculty of Science & Humanitarian Studies, Salman Bin Abdalaziz University, Alkharj 11942

    Highlights: • Electronic and optical properties of the LiCdX compounds have been predicted. • Tran–Blaha-modified Becke–Johnson functional significantly improves the band gap. • We predict a direct band gap in all of the considered LiCdX compounds. • Origin of the peaks in the optical spectra is determined. - Abstract: The structural, electronic and optical properties of the LiCdN, LiCdP, LiCdAs and LiCdSb filled-tetrahedral compounds have been explored from first-principles. The calculated structural parameters are consistent with the available experimental results. Since DFT with the common LDA and GGA underestimates the band gap, we use a new developed functional able tomore » accurately describe the electronic structure of semiconductors, namely the Tran–Blaha-modified Becke–Johnson potential. The four investigated compounds demonstrate semiconducting behavior with direct band gap ranging from about 0.32 to 1.65 eV. The charge-carrier effective masses are evaluated at the topmost valence band and at the bottommost conduction band. The evolution of the value and nature of the energy band gap under pressure effect is also investigated. The frequency-dependent complex dielectric function and some macroscopic optical constants are estimated. The microscopic origins of the structures in the optical spectra are determined in terms of the calculated energy band structures.« less

  14. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed

    2016-11-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.

  15. Pressure effects on band structures in dense lithium

    NASA Astrophysics Data System (ADS)

    Goto, Naoyuki; Nagara, Hitose

    2012-07-01

    We studied the change of the band structures in some structures of Li predicted at high pressures, using GGA and GW calculations. The width of the 1s band coming from the 1s electron of Li shows broadening by the pressurization, which is the normal behavior of bands at high pressure. The width of the band just below the Fermi level decreases by the pressurization, which is an opposite behavior to the normal bands. The character of this narrowing band is mostly p-like with a little s-like portion. The band gaps in some structures are really observed even by the GGA calculations. The gaps by the GW calculations increase to about 1.5 times the GGA values. Generally the one-shot GW calculation (diagonal only calculations) gives more reliable values than the GGA, but it may fail to predict band gaps for the case where band dispersion shows complex crossing near the Fermi level. There remains some structures for which GW calculations with off-diagonal elements taken into account are needed to identify the phase to be metallic or semiconducting.

  16. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOEpatents

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  17. Electrical, Optical and Structural Studies of INAS/INGASB VLWIR Superlattices

    DTIC Science & Technology

    2013-01-01

    period measured by x-ray diffraction and the optical band gap energy determined by the photoresponse spectra. Sample InAs (Å) GaSb (Å) In (%) IF (Å...8x8 EFA. 22 Temperature-dependent lattice constants, band gap energies , and other physical data for InAs and GaSb are taken from Vurgaftman et al...gallium antimonide to achieve energy band gaps less than 50 meV with a superlattice period on the order of 68 Å. Similar to the work reported on

  18. Electronic and transport properties of zigzag carbon nanotubes with the presence of periodical antidot and boron/nitride doping defects

    NASA Astrophysics Data System (ADS)

    Zoghi, Milad; Yazdanpanah Goharrizi, Arash; Mirjalili, Seyed Mohammad; Kabir, M. Z.

    2018-06-01

    Electronic and transport properties of Carbon nanotubes (CNTs) are affected by the presence of physical or chemical defects in their structures. In this paper, we present novel platforms of defected zigzag CNTs (Z-CNTs) in which two topologies of antidot and Boron/Nitride (BN) doping defects are periodically imposed throughout the length of perfect tubes. Using the tight binding model and the non-equilibrium Green’s function method, it is realized that the quantum confinement of Z-CNTs is modified by the presence of such defects. This new quantum confinement results in the appearance of mini bands and mini gaps in the transmission spectra, as well as a modified band structure and band gap size. The modified band gap could be either larger or smaller than the intrinsic band gap of a perfect tube, which is determined by the category of Z-CNT. The in-depth analysis shows that the size of the modified band gap is the function of several factors consisting of: the radii of tube (D r), the distance between adjacent defects (d d), the utilized defect topology, and the kind of defect (antidot or BN doping). Furthermore, taking advantage of the tunable band gap size of Z-CNT with the presence of periodical defects, new platforms of defect-based Z-CNT resonant tunneling diode (RTD) are proposed for the first time. Our calculations demonstrate the apparition of resonances in transmission spectra and the negative differential resistance in the I-V characteristics for such RTD platforms.

  19. First-principle study of effect of variation of `x' on the band alignment in CZTS1-xSex

    NASA Astrophysics Data System (ADS)

    Ghemud, Vipul; Kshirsagar, Anjali

    2018-04-01

    The present work concentrates on the electronic structure study of CZTS1-xSex alloy with x ranging from 0 to 1. For the alloy study, we have carried out first-principles calculations employing generalized gradient approximation for structural optimization and further hybrid functional approach to compare the optical band gap with that obtained from the experiments. A systematic increase in the lattice parameters with lowering of band gap from 1.52eV to 1.04eV is seen with increasing Se concentration from 0 to 100%, however the lowering of valence band edge and conduction band edge is not linear with the concentration variation. Our results indicate that the lowering of band gap is a result increased Cu:d and Se:p hybridization with increasing `x'.

  20. Widely tunable band gap in a multivalley semiconductor SnSe by potassium doping

    NASA Astrophysics Data System (ADS)

    Zhang, Kenan; Deng, Ke; Li, Jiaheng; Zhang, Haoxiong; Yao, Wei; Denlinger, Jonathan; Wu, Yang; Duan, Wenhui; Zhou, Shuyun

    2018-05-01

    SnSe, a group IV-VI monochalcogenide with layered crystal structure similar to black phosphorus, has recently attracted extensive interest due to its excellent thermoelectric properties and potential device applications. Experimental electronic structure of both the valence and conduction bands is critical for understanding the effects of hole versus electron doping on the thermoelectric properties, and to further reveal possible change of the band gap upon doping. Here, we report the multivalley valence bands with a large effective mass on semiconducting SnSe crystals and reveal single-valley conduction bands through electron doping to provide a complete picture of the thermoelectric physics. Moreover, by electron doping through potassium deposition, the band gap of SnSe can be widely tuned from 1.2 eV to 0.4 eV, providing new opportunities for tunable electronic and optoelectronic devices.

  1. Quasiparticle band structure of rocksalt-CdO determined using maximally localized Wannier functions.

    PubMed

    Dixit, H; Lamoen, D; Partoens, B

    2013-01-23

    CdO in the rocksalt structure is an indirect band gap semiconductor. Thus, in order to determine its band gap one needs to calculate the complete band structure. However, in practice, the exact evaluation of the quasiparticle band structure for the large number of k-points which constitute the different symmetry lines in the Brillouin zone can be an extremely demanding task compared to the standard density functional theory (DFT) calculation. In this paper we report the full quasiparticle band structure of CdO using a plane-wave pseudopotential approach. In order to reduce the computational effort and time, we make use of maximally localized Wannier functions (MLWFs). The MLWFs offer a highly accurate method for interpolation of the DFT or GW band structure from a coarse k-point mesh in the irreducible Brillouin zone, resulting in a much reduced computational effort. The present paper discusses the technical details of the scheme along with the results obtained for the quasiparticle band gap and the electron effective mass.

  2. Optical absorption spectra and energy band gap in manganese containing sodium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Sardarpasha, K. R.; Hanumantharaju, N.; Gowda, V. C. Veeranna

    2018-05-01

    Optical band gap energy in the system 25Na2O-(75-x)[0.6P2O5-0.4ZnO]-xMnO2 (where x = 0.5,1,5,10 and 20 mol.%) have been studied. The intensity of the absorption band found to increase with increase of MnO2 content. The decrease in the optical band gap energy with increase in MnO2 content in the investigated glasses is attributed to shifting of absorption edge to a longer wavelength region. The obtained results were discussed in view of the structure of phosphate glass network.

  3. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  4. Tin monochalcogenide heterostructures as mechanically rigid infrared band gap semiconductors

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Fathi, Mohammad; Azadani, Javad G.; Low, Tony

    2018-05-01

    Based on first-principles density functional calculations, we show that SnS and SnSe layers can form mechanically rigid heterostructures with the constituent puckered or buckled monolayers. Due to the strong interlayer coupling, the electronic wave functions of the conduction and valence band edges are delocalized across the heterostructure. The resultant band gaps of the heterostructures reside in the infrared region. With strain engineering, the heterostructure band gap undergoes a transition from indirect to direct in the puckered phase. Our results show that there is a direct correlation between the electronic wave function and the mechanical rigidity of the layered heterostructure.

  5. Steric engineering of metal-halide perovskites with tunable optical band gaps

    NASA Astrophysics Data System (ADS)

    Filip, Marina R.; Eperon, Giles E.; Snaith, Henry J.; Giustino, Feliciano

    2014-12-01

    Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal-halide-metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. On the basis of these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.

  6. Mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the in-plane biaxial strain

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2017-11-01

    Recently, a new two-dimensional (2D) material, the 2D BC3 crystal, has been synthesized. Here, the mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the biaxial strain is investigated. The electronic structure calculations showed that the strain-free monolayer and bilayer BC3 are indirect band-gap semiconductors with band gap of 0.62 and 0.29 eV, respectively, where the conduction band minimum (CBM) is at the M point whereas the valence band maximum (VBM) is at the Γ point. The doubly degenerated bands in the monolayer BC3 are splitted in the bilayer BC3 due to the interlayer interactions. Both monolayer and bilayer BC3 remain indirect gap semiconductor under biaxial tensile strain and their band gaps increases with strain. On the other hand, by increasing the magnitude of tensile strain, the optical spectra shift to the lower energies and the static dielectric constant increases. These findings suggest the potential of strain-engineered 2D BC3 in electronic and optoelectronic device applications.

  7. A model for the energy band gap of GaSbxAs1-x and InSbxAs1-x in the whole composition range

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Ren, He-Yu; Wei, Tong; Wang, Sha-Sha; Wang, Jun

    2018-04-01

    The band gap evolutions of GaSbxAs1-x and InSbxAs1-x in the whole composition range are investigated. It is found that the band gap evolutions of GaSbxAs1-x and InSbxAs1-x are determined by two factors. One is the impurity-host interaction in the As-rich and Sb-rich composition ranges. The other is the intraband coupling within the conduction band and separately within the valence band in the moderate composition range. Based on the band gap evolutions of GaSbxAs1-x and InSbxAs1-x, a model is established. In addition, it is found that the impurity-host interaction is determined by not only the mismatches in size and electronegativity between the introduced atoms in the host material and the anions of the host material, but also the difference in electronegativity between the introduced atoms in the host material and the cations of the host material.

  8. The effects of the chemical composition and strain on the electronic properties of GaSb/InAs core-shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, Feng; Wang, Dan; Tang, Li-Ming, E-mail: lmtang@hnu.edu.cn

    2014-09-07

    The effects of the chemical composition and strain on the electronic properties of [111] zinc-blende (ZB) and [0001] wurtzite (WZ) GaSb/InAs core-shell nanowires (NWs) with different core diameters and shell thicknesses are studied using first-principles methods. The band structures of the [111] ZB GaSb/InAs core-shell NWs underwent a noticeable type-I/II band alignment transition, associated with a direct-to-indirect band gap transition under a compressive uniaxial strain. The band structures of the [0001] WZ GaSb/InAs core-shell NWs preserved the direct band gap under either compressive or tensile uniaxial strains. In addition, the band gaps and the effective masses of the carriers couldmore » be tuned by their composition. For the core-shell NWs with a fixed GaSb-core size, the band gaps decreased linearly with an increasing InAs-shell thickness, caused by the significant downshift of the conduction bands. For the [111] ZB GaSb/InAs core-shell NWs, the calculated effective masses indicated that the transport properties could be changed from hole-dominated conduction to electron-dominated conduction by changing the InAs-shell thickness.« less

  9. The Temporal and Spatial Variability of the Confined Aquifer Head and Storage Properties in the San Luis Valley, Colorado Inferred From Multiple InSAR Missions

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Knight, Rosemary; Zebker, Howard A.

    2017-11-01

    Interferometric Synthetic Aperture Radar (InSAR) data from multiple satellite missions were combined to study the temporal and spatial variability of head and storage properties in a confined aquifer system on a decadal time scale. The area of study was a 4,500 km2 agricultural basin in the San Luis Valley (SLV), Colorado. We had available previous analyses of C-band ERS-1/2 data from June 1992 to November 2000, and L-band ALOS PALSAR data from October 2009 to March 2011. We used C-band Envisat data to fill in the time period from November 2006 to July 2010. In processing the Envisat data, we successfully employed a phase interpolation between persistent scatterer pixels to reduce the impact of vegetation decorrelation, which can significantly reduce the quality of C-band InSAR data over agricultural basins. In comparing the results from the L-band ALOS data and C-band Envisat data in a 10 month overlapping time period, we found that the shorter wavelength of C-band InSAR allowed us to preserve small deformation signals that were not detectable using L-band ALOS data. A significant result was the finding that the elastic storage properties of the SLV confined aquifer system remained stable over the 20 year time period and vary slowly in space, allowing us to combine InSAR data acquired from multiple missions to fill the temporal and spatial gaps in well data. The InSAR estimated head levels were validated with well measurements, which indicate little permanent water-storage loss over the study time period in the SLV.

  10. Understanding the optical properties of ZnO1-xSx and ZnO1-xSex alloys

    NASA Astrophysics Data System (ADS)

    Baldissera, Gustavo; Persson, Clas

    2016-01-01

    ZnO1-xYx with chalcogen element Y exhibits intriguing optoelectronic properties as the alloying strongly impacts the band-gap energy Eg(x). In this work, we analyze and compare the electronic structures and the dielectric responses of Zn(O,S) and Zn(O,Se) alloys by means of the density functional theory and the partially self-consistent GW approach. We model the crystalline stability from the total energies, and the results indicate that Zn(O,S) is more stable as alloy than Zn(O,Se). We demonstrate also that ion relaxation strongly affects total energies, and that the band-gap bowing depends primarily on local relaxation of the bonds. Moreover, we show that the composition dependent band-gap needs to be analyzed by the band anti-crossing model for small alloying concentration, while the alloying band-bowing model is accurate for strong alloying. We find that the Se-based alloys have a stronger change in the band-gap energy (for instance, ΔEg(0.50) = Eg(ZnO) - Eg(x = 0.50) ≈ 2.2 eV) compared with that of the S-based alloy (ΔEg(0.50) = 1.2 eV), mainly due to a stronger relaxation of the Zn-anion bonds that affects the electronic structure near the band edges. The optical properties of the alloys are discussed in terms of the complex dielectric function ɛ(ω) = ɛ1(ω) + iɛ2(ω) and the absorption coefficient α(ω). While the large band-gap bowing directly impacts the low-energy absorption spectra, the high-frequency dielectric constant ɛ∞ is correlated to the intensity of the dielectric response at energies above 4 eV. Therefore, the dielectric constant is only weakly affected by the non-linear band-gap variation. Despite strong structural relaxation, the high absorption coefficients of the alloys demonstrate that the alloys have well-behaved optoelectronic properties.

  11. First-principles studies of electric field effects on the electronic structure of trilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping

    2016-10-01

    A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.

  12. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  13. Density functional theory calculations of III-N based semiconductors with mBJLDA

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi

    2017-02-01

    In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.

  14. New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings

    NASA Astrophysics Data System (ADS)

    Kong, Xiangru; Li, Linyang; Leenaerts, Ortwin; Liu, Xiong-Jun; Peeters, François M.

    2017-07-01

    Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four- and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.

  15. Thickness dependent band gap of Bi{sub 2-x}Sb{sub x}Te{sub 3} (x = 0, 0.05, 0.1) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, M. M.; Soni, P. H., E-mail: phsoni-msu@yahoo.com; Desai, C. F.

    2016-05-23

    Thin films of Bi{sub 2}Te{sub 3}(Sb) were prepared on alkali halide crystal substrates. Sb content and the film thickness were varied. Bi{sub 2}Te{sub 3} is a narrow gap semiconductor. Bi-Sb is a continuous solid solution of substitutional type and Sb therefore was used to test its effect on the band gap. The film thickness variation was also taken up. The infra-red absorption spectra were used in the wave number range 400 cm{sup −1} to 4000 cm{sup −1}. The band gap obtained from the absorption data was found to increase with decreasing thickness since the thickness range used was from 30more » nm to 170 nm. This is a range corresponding to nanostructures and hence quantum size effect was observed as expected. The band gap also exhibited Sb content dependence. The detail results are have been reported and explained.« less

  16. Variation of crystal structure and optical properties of wurtzite-type oxide semiconductor alloys of β-Cu(Ga,Al)O2

    NASA Astrophysics Data System (ADS)

    Nagatani, Hiraku; Mizuno, Yuki; Suzuki, Issei; Kita, Masao; Ohashi, Naoki; Omata, Takahisa

    2017-06-01

    Band-gap engineering of β-CuGaO2 was demonstrated by the alloying of gallium with aluminum, that is, Cu(Ga1-xAlx)O2. The ternary wurtzite β-NaFeO2-type alloys were obtained in the range 0 ≤ x ≤ 0.7, and γ-LiAlO2-type phase appeared in the range 0.7 ≤ x ≤ 1. The energy band gap of wurtzite β-CuGaO2 was controlled in the range between 1.47 and 2.09 eV. A direct band gap for x < 0.6 and indirect band gap for x ≥ 0.6 were proposed based on the structural distortion in the β-NaFeO2-type phase and density functional theory (DFT) calculation of β-CuAlO2. The DFT calculation also indicated that the γ-LiAlO2-type phases appeared in 0.7 ≤ x ≤ 1 are also indirect-gap semiconductors.

  17. Tunable two-dimensional photonic crystals using liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Leonard, S. W.; Mondia, J. P.; van Driel, H. M.; Toader, O.; John, S.; Busch, K.; Birner, A.; Gösele, U.; Lehmann, V.

    2000-01-01

    The photonic band gap of a two-dimensional photonic crystal is continuously tuned using the temperature dependent refractive index of a liquid crystal. Liquid crystal E7 was infiltrated into the air pores of a macroporous silicon photonic crystal with a triangular lattice pitch of 1.58 μm and a band gap wavelength range of 3.3-5.7 μm. After infiltration, the band gap for the H polarized field shifted dramatically to 4.4-6.0 μm while that of the E-polarized field collapsed. As the sample was heated to the nematic-isotropic phase transition temperature of the liquid crystal (59 °C), the short-wavelength band edge of the H gap shifted by as much as 70 nm while the long-wavelength edge was constant within experimental error. Band structure calculations incorporating the temperature dependence of the liquid crystal birefringence can account for our results and also point to an escaped-radial alignment of the liquid crystal in the nematic phase.

  18. Role of biaxial strain and microscopic ordering for structural and electronic properties of InxGa1 -xN

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Lee, Sangheon; Freysoldt, Christoph; Neugebauer, Jörg

    2015-08-01

    The structural and electronic properties of InxGa1 -xN alloys are studied as a function of c -plane biaxial strain and In ordering by density functional theory with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. A nonlinear variation of the c lattice parameter with In content is observed in biaxial strain and should be taken into account when deducing In content from interplanar distances. From compressive to tensile strain, the character of the top valence-band state changes, leading to a nonlinear variation of the band gap in InxGa1 -xN . Interestingly, the well-known bowing of the InxGa1 -xN band gap is largely removed for alloys grown strictly coherently on GaN, while the actual values for band gaps at x <0.33 are hardly affected by strain. Ordering plays a minor role for lattice constants but may induce changes of the band gap up to 0.15 eV.

  19. Effects of High-Pressure High-Temperature Sintering on the Band Gap and Thermoelectric Properties of PbSe

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Li, Yi; Sun, Zhen-Ya

    2018-06-01

    In this study, PbSe bulk samples were prepared by a high-pressure high-temperature (HPHT) sintering technique, and the phase compositions, band gaps and thermoelectric properties of the samples were systematically investigated. The sintering pressure exerts a significant influence on the preferential orientation, band gap and thermoelectric properties of PbSe. With increasing pressure, the preferential orientation decreases, mainly due to the decreased crystallinity, while the band gap first decreases and then increases. The electrical conductivity and power factor decrease gradually with increasing pressure, mainly attributed to the decreased carrier concentration and mobility. Consequently, the sample prepared by 2 GPa shows the highest thermoelectric figure-of-merit, ZT, of 0.55 at ˜ 475 K. The ZT of the HPHT-sintered PbSe could be further improved by properly doping or optimizing the HPHT parameters. This study further demonstrates that the sintering pressure could be another degree of freedom to manipulate the band structure and thermoelectric properties of materials.

  20. Complete band gaps in a polyvinyl chloride (PVC) phononic plate with cross-like holes: numerical design and experimental verification.

    PubMed

    Miniaci, Marco; Marzani, Alessandro; Testoni, Nicola; De Marchi, Luca

    2015-02-01

    In this work the existence of band gaps in a phononic polyvinyl chloride (PVC) plate with a square lattice of cross-like holes is numerically and experimentally investigated. First, a parametric analysis is carried out to find plate thickness and cross-like holes dimensions capable to nucleate complete band gaps. In this analysis the band structures of the unitary cell in the first Brillouin zone are computed by exploiting the Bloch-Floquet theorem. Next, time transient finite element analyses are performed to highlight the shielding effect of a finite dimension phononic region, formed by unitary cells arranged into four concentric square rings, on the propagation of guided waves. Finally, ultrasonic experimental tests in pitch-catch configuration across the phononic region, machined on a PVC plate, are executed and analyzed. Very good agreement between numerical and experimental results are found confirming the existence of the predicted band gaps. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert J.; Spencer, James E.; /SLAC

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies inmore » the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.« less

  2. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.

    PubMed

    Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A

    2006-12-15

    We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.

  3. Type I band alignment in GaAs{sub 81}Sb{sub 19}/GaAs core-shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, T.; Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072; Wei, M. J.

    2015-09-14

    The composition and band gap of the shell that formed during the growth of axial GaAs/GaAs{sub 81}Sb{sub 19}/ GaAs heterostructure nanowires have been investigated by transmission electron microscopy combined with energy dispersion spectroscopy, scanning tunneling spectroscopy, and density functional theory calculations. On the GaAs{sub 81}Sb{sub 19} intermediate segment, the shell is found to be free of Sb (pure GaAs shell) and transparent to the tunneling electrons, despite the (110) biaxial strain that affects its band gap. As a result, a direct measurement of the core band gap allows the quantitative determination of the band offset between the GaAs{sub 81}Sb{sub 19}more » core and the GaAs shell and identifies it as a type I band alignment.« less

  4. Probing the density of trap states in the middle of the bandgap using ambipolar organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Häusermann, Roger; Chauvin, Sophie; Facchetti, Antonio; Chen, Zhihua; Takeya, Jun; Batlogg, Bertram

    2018-04-01

    The number of trap states in the band gap of organic semiconductors directly influences the charge transport as well as the threshold and turn-on voltage. Direct charge transport measurements have been used until now to probe the trap states rather close to the transport level, whereas their number in the middle of the band gap has been elusive. In this study, we use PDIF-CN2, a well known n-type semiconductor, together with vanadium pentoxide electrodes to build ambipolar field-effect transistors. Employing three different methods, we study the density of trap states in the band gap of the semiconductor. These methods give consistent results, and no pool of defect states was found. Additionally, we show first evidence that the number of trap states close to the transport level is correlated with the number of traps in the middle of the band-gap, meaning that a high number of trap states close to the transport level also implies a high number of trap states in the middle of the band gap. This points to a common origin of the trap states over a wide energy range.

  5. 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong

    2014-05-01

    Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c

  6. High-Pressure Study of Perovskite-Like Organometal Halide: Band-Gap Narrowing and Structural Evolution of [NH 3 -(CH 2 ) 4 -NH 3 ]CuCl 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qian; Li, Shourui; Wang, Kai

    Searching for nontoxic and stable perovskite-like alternatives to lead-based halide perovskites for photovoltaic application is one urgent issue in photoelectricity science. Such exploration inevitably requires an effective method to accurately control both the crystalline and electronic structures. This work applies high pressure to narrow the band gap of perovskite-like organometal halide, [NH 3-(CH 2) 4-NH 3]CuCl 4 (DABCuCl4), through the crystalline-structure tuning. The band gap keeps decreasing below ~12 GPa, involving the shrinkage and distortion of CuCl 4 2–. Inorganic distortion determines both band-gap narrowing and phase transition between 6.4 and 10.5 GPa, and organic chains function as the springmore » cushion, evidenced by the structural transition at ~0.8 GPa. The supporting function of organic chains protects DABCuCl 4 from phase transition and amorphization, which also contributes to the sustaining band-gap narrowing. This work combines crystal structure and macroscopic property together and offers new strategies for the further design and synthesis of hybrid perovskite-like alternatives.« less

  7. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.

    PubMed

    Jin, Sung Hwan; Kim, Da Hye; Jun, Gwang Hoon; Hong, Soon Hyung; Jeon, Seokwoo

    2013-02-26

    The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.

  8. Influence of the ``second gap'' on the optical absorption of transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy

    Transparent conducting oxides (TCOs) are critical to many technologies (e.g., thin-film solar cells, flat-panel displays or organic light-emitting diodes). TCOs are heavily doped (n or p-type) oxides that satisfy many design criteria such as high transparency to visible light (i.e., a band gap > 3 eV), high concentration and mobility of carriers (leading to high conductivity), ... In such (highly doped) systems, optical transitions from the conduction band minimum to higher energy bands in n-type or from lower energy bands to the valence band maximum in p-type are possible and can degrade transparency. In fact, it has been claimed that a high energy (> 3eV) for any of these transitions made possible by doping, commonly referred as a high ``second gap'', is a necessary design criterion for high performance TCOs. Here, we study the influence of this second gap on the transparency of doped TCOs by using ab initio calculations within the random phase approximation (RPA) for several well-known p-type and n-type TCOs. Our work highlights how the second gap affects the transparency of doped TCOs, shining light on more accurate design criteria for high performance TCOs.

  9. A self-sacrifice template route to iodine modified BiOIO3: band gap engineering and highly boosted visible-light active photoreactivity.

    PubMed

    Feng, Jingwen; Huang, Hongwei; Yu, Shixin; Dong, Fan; Zhang, Yihe

    2016-03-21

    The development of high-performance visible-light photocatalysts with a tunable band gap has great significance for enabling wide-band-gap (WBG) semiconductors visible-light sensitive activity and precisely tailoring their optical properties and photocatalytic performance. In this work we demonstrate the continuously adjustable band gap and visible-light photocatalysis activation of WBG BiOIO3via iodine surface modification. The iodine modified BiOIO3 was developed through a facile in situ reduction route by applying BiOIO3 as the self-sacrifice template and glucose as the reducing agent. By manipulating the glucose concentration, the band gap of the as-prepared modified BiOIO3 could be orderly narrowed by generation of the impurity or defect energy level close to the conduction band, thus endowing it with a visible light activity. The photocatalytic assessments uncovered that, in contrast to pristine BiOIO3, the modified BiOIO3 presents significantly boosted photocatalytic properties for the degradation of both liquid and gaseous contaminants, including Rhodamine B (RhB), methyl orange (MO), and ppb-level NO under visible light. Additionally, the band structure evolution as well as photocatalysis mechanism triggered by the iodine surface modification is investigated in detail. This study not only provides a novel iodine surface-modified BiOIO3 for environmental application, but also provides a facile and general way to develop highly efficient visible-light photocatalysts.

  10. Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gap semiconductor alloys: a first-principles study

    NASA Astrophysics Data System (ADS)

    Shi, H.-L.; Duan, Y.

    2008-12-01

    Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p- d repulsion. The NO acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

  11. Active tuning of vibration and wave propagation in elastic beams with periodically placed piezoelectric actuator/sensor pairs

    NASA Astrophysics Data System (ADS)

    Li, Fengming; Zhang, Chuanzeng; Liu, Chunchuan

    2017-04-01

    A novel strategy is proposed to actively tune the vibration and wave propagation properties in elastic beams. By periodically placing the piezoelectric actuator/sensor pairs along the beam axis, an active periodic beam structure which exhibits special vibration and wave propagation properties such as the frequency pass-bands and stop-bands (or band-gaps) is developed. Hamilton's principle is applied to establish the equations of motion of the sub-beam elements i.e. the unit-cells, bonded by the piezoelectric patches. A negative proportional feedback control strategy is employed to design the controllers which can provide a positive active stiffness to the beam for a positive feedback control gain, which can increase the stability of the structural system. By means of the added positive active stiffness, the periodicity or the band-gap property of the beam with periodically placed piezoelectric patches can be actively tuned. From the investigation, it is shown that better band-gap characteristics can be achieved by using the negative proportional feedback control. The band-gaps can be obviously broadened by properly increasing the control gain, and they can also be greatly enlarged by appropriately designing the structural sizes of the controllers. The control voltages applied on the piezoelectric actuators are in reasonable and controllable ranges, especially, they are very low in the band-gaps. Thus, the vibration and wave propagation behaviors of the elastic beam can be actively controlled by the periodically placed piezoelectric patches.

  12. Doping induced carrier and band-gap modulation in bulk versus nano for topological insulators: A test case of Stibnite

    NASA Astrophysics Data System (ADS)

    Maji, Tuhin Kumar; Pal, Samir Kumar; Karmakar, Debjani

    2018-04-01

    We aim at comparing the electronic properties of topological insulator Sb2S3 in bulk and Nanorod using density-functional scheme and investigating the effects of Se-doping at chalcogen-site. While going from bulk to nano, there is a drastic change in the band gap due to surface-induced strain. However, the trend of band gap modulation with increased Se doping is more prominent in bulk. Interestingly, Se-doping introduces different type of carriers in bulk and nano.

  13. In-situ, Gate Bias Dependent Study of Neutron Irradiation Effects on AlGaN/GaN HFETs

    DTIC Science & Technology

    2010-03-01

    band gap and high breakdown field, AlGaN devices can operate at very high temperature and operating frequency. AlGaN/GaN based structures, have been...stable under ambient conditions [3]. GaN has a wide, direct band gap of 3.4 eV. It is therefore suitable for high temperature devices. Its high...also be grown with a wurtzite crystal structure and has a band - gap of 6.1 eV. Aluminum, due to having smaller atoms than gallium, forms a smaller

  14. Structural studies and band gap tuning of Cr doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinet, Gunjan, E-mail: gunjansrinet@gmail.com; Kumar, Ravindra, E-mail: gunjansrinet@gmail.com; Sajal, Vivek, E-mail: gunjansrinet@gmail.com

    2014-04-24

    Structural and optical properties of Cr doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Cr on Zn sites without changing the wurtzite structure of ZnO. Modified form of W-H equations was used to calculate various physical parameters and their variation with Cr doping is discussed. Significant red shift was observed in band gap, i.e., a band gap tuning is achieved by Cr doping which could eventually be useful for optoelectronic applications.

  15. Band gap and conductivity variations of ZnO nano structured thin films annealed under Vacuum

    NASA Astrophysics Data System (ADS)

    Vattappalam, Sunil C.; Thomas, Deepu; T, Raju Mathew; Augustine, Simon; Mathew, Sunny

    2015-02-01

    Zinc Oxide thin films were prepared by Successive Ionic layer adsorption and reaction technique(SILAR). The samples were annealed under vacuum and conductivity of the samples were taken at different temperatures. UV Spectrograph of the samples were taken and the band gap of each sample was found from the data. All the results were compared with that of the sample annealed under air. It was observed that the band gap decreases and concequently conductivity of the samples increases when the samples are annealed under vacuum.

  16. Band gap and conductivity variations of ZnO thin films by doping with Aluminium

    NASA Astrophysics Data System (ADS)

    Vattappalam, Sunil C.; Thomas, Deepu; T, Raju Mathew; Augustine, Simon; Mathew, Sunny

    2015-02-01

    Zinc Oxide thin films were prepared by Successive Ionic layer adsorption and reaction technique(SILAR). Aluminium was doped for different doping concentrations from 3 at.% to 12 at.% in steps of 3 at.%. Conductivity of the samples were taken at different temperatures. UV Spectrograph of the samples were taken and the band gap of each sample was found from the data. It was observed that as the doping concentration of Aluminium increases, the band gap of the samples decreases and concequently conductivity of the samples increases.

  17. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. Itmore » was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the procedure. It is believed that most critical for fabrication of high quality samples is control of the temperature of the sample during and after infiltration, and the rate and amount of time spent applying epoxy to the PDMS.« less

  18. Density functional theory calculations for the band gap and formation energy of Pr4-xCaxSi12O3+xN18-x; a highly disordered compound with low symmetry and a large cell size.

    PubMed

    Hong, Sung Un; Singh, Satendra Pal; Pyo, Myoungho; Park, Woon Bae; Sohn, Kee-Sun

    2017-06-28

    A novel oxynitride compound, Pr 4-x Ca x Si 12 O 3+x N 18-x , synthesized using a solid-state route has been characterized as a monoclinic structure in the C2 space group using Rietveld refinement on synchrotron powder X-ray diffraction data. The crystal structure of this compound was disordered due to the random distribution of Ca/Pr and N/O ions at various Wyckoff sites. A pragmatic approach for an ab initio calculation based on density function theory (DFT) for this disordered compound has been implemented to calculate an acceptable value of the band gap and formation energy. In general, for the DFT calculation of a disordered compound, a sufficiently large super cell and infinite variety of ensemble configurations is adopted to simulate the random distribution of ions; however, such an approach is time consuming and cost ineffective. Even a single unit cell model gave rise to 43 008 independent configurations as an input model for the DFT calculations. Since it was nearly impossible to calculate the formation energy and the band gap energy for all 43 008 configurations, an elitist non-dominated sorting genetic algorithm (NSGA-II) was employed to find the plausible configurations. In the NSGA-II, all 43 008 configurations were mathematically treated as genomes and the calculated band gap and the formation energy as the objective (fitness) function. Generalized gradient approximation (GGA) was first employed in the preliminary screening using NSGA-II, and thereafter a hybrid functional calculation (HSE06) was executed only for the most plausible GGA-relaxed configurations with lower formation and higher band gap energies. The final band gap energy (3.62 eV) obtained after averaging over the selected configurations, resembles closely the experimental band gap value (4.11 eV).

  19. High throughput light absorber discovery, Part 1: An algorithm for automated tauc analysis

    DOE PAGES

    Suram, Santosh K.; Newhouse, Paul F.; Gregoire, John M.

    2016-09-23

    High-throughput experimentation provides efficient mapping of composition-property relationships, and its implementation for the discovery of optical materials enables advancements in solar energy and other technologies. In a high throughput pipeline, automated data processing algorithms are often required to match experimental throughput, and we present an automated Tauc analysis algorithm for estimating band gap energies from optical spectroscopy data. The algorithm mimics the judgment of an expert scientist, which is demonstrated through its application to a variety of high throughput spectroscopy data, including the identification of indirect or direct band gaps in Fe 2O 3, Cu 2V 2O 7, and BiVOmore » 4. Here, the applicability of the algorithm to estimate a range of band gap energies for various materials is demonstrated by a comparison of direct-allowed band gaps estimated by expert scientists and by automated algorithm for 60 optical spectra.« less

  20. InGaP Heterojunction Barrier Solar Cells

    NASA Technical Reports Server (NTRS)

    Welser, Roger E. (Inventor)

    2014-01-01

    A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.

  1. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  2. High-Pressure Band-Gap Engineering in Lead-Free Cs 2 AgBiBr 6 Double Perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qian; Wang, Yonggang; Pan, Weicheng

    Novel inorganic lead-free double perovskites with improved stability are regarded as alternatives to state-of-art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–propertymore » relationship in lead-free double perovskites, but also offers new strategies for further development of advanced perovskite devices.« less

  3. Band gaps in periodically magnetized homogeneous anisotropic media

    NASA Astrophysics Data System (ADS)

    Merzlikin, A. M.; Levy, M.; Vinogradov, A. P.; Wu, Z.; Jalali, A. A.

    2010-11-01

    In [A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, A. B. Granovsky, Physica B 394 (2007) 277] it is shown that in anisotropic magnetophotonic crystal made of anisotropic dielectric layers and isotropic magneto-optical layers the magnetization leads to formation of additional band gaps (BG) inside the Brillouin zones. Due to the weakness of the magneto-optical effects the width of these BG is much smaller than that of usual BG forming on the boundaries of Brillouin zones. In the present communication we show that though the anisotropy suppresses magneto-optical effects. An anisotropic magnetophotonic crystal made of anisotropic dielectric layers and anisotropic magneto-optical; the width of additional BG may be much greater than the width of the usual Brillouin BG. Anisotropy tends to suppress Brillouin zone boundary band gap formation because the anisotropy suppresses magneto-optical properties, while degenerate band gap formation occurs around points of effective isotropy and is not suppressed.

  4. Fabrication of wide-band-gap Mg{sub x}Zn{sub 1-x}O quasi-ternary alloys by molecular-beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Hiroshi; Fujita, Shigeo; Fujita, Shizuo

    2005-05-09

    A series of wurtzite MgZnO quasi-ternary alloys, which consist of wurtzite MgO/ZnO superlattices, were grown by molecular-beam epitaxy on sapphire substrates. By changing the thicknesses of ZnO layers and/or of MgO layers of the superlattice, the band-gap energy was artificially tuned from 3.30 to 4.65 eV. The highest band gap, consequently realized by the quasi-ternary alloy, was larger than that of the single MgZnO layer, we have ever reported, keeping the wurtzite structure. The band gap of quasi-ternary alloys was well analyzed by the Kronig-Penny model supposing the effective masses of wurtzite MgO as 0.30m{sub 0} and (1-2)m{sub 0} formore » electrons and holes, respectively.« less

  5. Perovskite-perovskite tandem photovoltaics with optimized band gaps

    NASA Astrophysics Data System (ADS)

    Eperon, Giles E.; Leijtens, Tomas; Bush, Kevin A.; Prasanna, Rohit; Green, Thomas; Wang, Jacob Tse-Wei; McMeekin, David P.; Volonakis, George; Milot, Rebecca L.; May, Richard; Palmstrom, Axel; Slotcavage, Daniel J.; Belisle, Rebecca A.; Patel, Jay B.; Parrott, Elizabeth S.; Sutton, Rebecca J.; Ma, Wen; Moghadam, Farhad; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Bent, Stacey; Giustino, Feliciano; Herz, Laura M.; Johnston, Michael B.; McGehee, Michael D.; Snaith, Henry J.

    2016-11-01

    We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

  6. Simultaneous localization of photons and phonons in defect-free dodecagonal phoxonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Xu, Bihang; Wang, Zhong; Tan, Yixiang; Yu, Tianbao

    2018-03-01

    In dodecagonal phoxonic quasicrytals (PhXQCs) with a very high rotational symmetry, we demonstrate numerically large phoxonic band gaps (PhXBGs, the coexistence of photonic and phononic band gaps). By computing the existence and dependence of PhXBGs on the choice of radius of holes, we find that PhXQCs can possess simultaneous photonic and phononic band gaps over a rather wide range of geometric parameters. Furthermore, localized modes of THz photons and tens of MHz phonons may exist inside and outside band gaps in defect-free PhXQCs. The electromagnetic and elastic field can be confined simultaneously around the quasicrytals center and decay in a length scale of several basic cells. As a kind of quasiperiodic structures, 12-fold PhXQCs provide a good candidate for simultaneously tailoring electromagnetic and elastic waves. Moreover, these structures exhibit some interesting characteristics due to the very high symmetry.

  7. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    NASA Astrophysics Data System (ADS)

    Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.

    2013-10-01

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.

  8. Orbitals, Occupation Numbers, and Band Structure of Short One-Dimensional Cadmium Telluride Polymers.

    PubMed

    Valentine, Andrew J S; Talapin, Dmitri V; Mazziotti, David A

    2017-04-27

    Recent work found that soldering CdTe quantum dots together with a molecular CdTe polymer yielded field-effect transistors with much greater electron mobility than quantum dots alone. We present a computational study of the CdTe polymer using the active-space variational two-electron reduced density matrix (2-RDM) method. While analogous complete active-space self-consistent field (CASSCF) methods scale exponentially with the number of active orbitals, the active-space variational 2-RDM method exhibits polynomial scaling. A CASSCF calculation using the (48o,64e) active space studied in this paper requires 10 24 determinants and is therefore intractable, while the variational 2-RDM method in the same active space requires only 2.1 × 10 7 variables. Natural orbitals, natural-orbital occupations, charge gaps, and Mulliken charges are reported as a function of polymer length. The polymer, we find, is strongly correlated, despite possessing a simple sp 3 -hybridized bonding scheme. Calculations reveal the formation of a nearly saturated valence band as the polymer grows and a charge gap that decreases sharply with polymer length.

  9. Optical parameters of Ge15Sb5Se80 and Ge15Sb5Te80 from ellipsometric measurements

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, F.; Ashraf, I. M.; Alomairy, S. E.

    2018-02-01

    The optical properties of Ge15Sb5Se80 (GSS) and Ge15Sb5Te80 (GST) films prepared by thermal evaporation method were investigated in the photon energy range from 0.9 eV to 5 eV by using a variable-angle spectroscopic ellipsometer. Combinations of multiple Gaussian, and Tauc-Lorentz or Cody-Lorentz dispersion functions are used to fit the experimental data. The models' parameters (Lorentz oscillator amplitude, resonance energy, oscillator width, optical band gap, and Urbach energy) of both GSS and GST films were calculated. Refractive indices and extinction coefficients of the films were determined. Analysis of the absorption coefficient shows that the optical absorption edge of GSS and GST films to be 1.6 eV and 0.89 eV, respectively. Manca's relation based on mean bond energy and the bond statistics of chemically ordered model (COM) and random covalent network model (CRNM) is applied for the estimation of the optical band gap (Eg) of the investigated films. A good agreement between experimental and calculated Eg is obtained.

  10. Effect of band gap engineering in anionic-doped TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee

    2017-01-01

    A simple yet promising strategy to modify TiO2 band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO2 was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti3+ impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti3+ ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO2 shows better optical properties relative to single N and F doped TiO2 with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO2 uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO2. This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  11. Wind tunnel tests of modified cross, hemisflo, and disk-gap-band parachutes with emphasis in the transonic range

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Alexander, W. C.

    1974-01-01

    Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.

  12. Edge effects on the electronic properties of phosphorene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xihong, E-mail: xihong.peng@asu.edu; Copple, Andrew; Wei, Qun

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs)more » show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.« less

  13. Effects of the impurity-host interactions on the nonradiative processes in ZnS:Cr

    NASA Astrophysics Data System (ADS)

    Tablero, C.

    2010-11-01

    There is a great deal of controversy about whether the behavior of an intermediate band in the gap of semiconductors is similar or not to the deep-gap levels. It can have significant consequences, for example, on the nonradiative recombination. In order to analyze the behavior of an intermediate band, we have considered the effect of the inward and outward displacements corresponding to breathing and longitudinal modes of Cr-doped ZnS and on the charge density for different processes involved in the nonradiative recombination using first-principles. This metal-doped zinc chalcogenide has a partially filled band within the host semiconductor gap. In contrast to the properties exhibited by deep-gap levels in other systems, we find small variations in the equilibrium configurations, forces, and electronic density around the Cr when the nonradiative recombination mechanisms modify the intermediate band charge. The charge density around the impurity is equilibrated in response to the perturbations in the equilibrium nuclear configuration and the charge of the intermediate band. The equilibration follows a Le Chatelier principle through the modification of the contribution from the impurity to the intermediate band and to the valence band. The intermediate band introduced by Cr in ZnS for the concentrations analyzed makes the electronic capture difficult and later multiphonon emission in the charge-transfer processes, in accordance with experimental results.

  14. Graphene Calisthenics: Modeling the Polymer-induced Graphene Stretching for Next Generation Electronics

    NASA Astrophysics Data System (ADS)

    Huo, Mandy; Meaker, Kacey; Chong, Su-Ann; Crommie, Michael

    2014-03-01

    Graphene is one atomic layer of graphite. It is stronger than steel yet very elastic. Although graphene is a semiconductor with no band gap, we can introduce a gap using various methods in order to make it useful in next-generation electronics. One way to do this is to strain graphene. While we can easily strain graphene uniaxially, this type of strain does not produce appreciable band gaps until relatively high strain percentages close to the fracture point of graphene. However, with a special strain geometry we can produce band gaps well before reaching the breaking point of graphene. This has been done experimentally, but not in a controlled manner. From previous research, strain percentages around 10 percent produce appreciable band gaps. Increasing the strain will increase the size of these gaps, but graphene breaks at around 20 percent strain. We propose to control the amount by which we strain graphene by placing it on a special polymer which expands when light is shone on it. In this project we use COMSOL, a finite element analysis software, to estimate the strain resulting in graphene due to stretching it with a given polymer geometry to find the shapes which will produce the specified strain.

  15. Visualizing Current Flow at the Mesoscale in Disordered Assemblies of Touching Semiconductor Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qinyi; Guest, Jeffrey R.; Thimsen, Elijah

    2017-07-12

    The transport of electrons through assemblies of nanocrystals is important to performance in optoelectronic applications for these materials. Previous work has primarily focused on single nanocrystals or transitions between pairs of nanocrystals. There is a gap in knowledge of how large numbers of nanocrystals in an assembly behave collectively, and how this collective behavior manifests at the mesoscale. In this work, the variable range hopping (VRH) transport of electrons in disordered assemblies of touching, heavily doped ZnO nanocrystals was visualized at the mesoscale as a function of temperature both theoretically, using the model of Skinner, Chen and Shklovskii (SCS), andmore » experimentally, with conductive atomic force microscopy on ultrathin films only a few particle layers thick. Agreement was obtained between the model and experiments, with a few notable exceptions. The SCS model predicts that a single network within the nanocrystal assembly, comprised of sites connected by small resistances, dominates conduction - namely the optimum band from variable range hopping theory. However, our experiments revealed that in addition to the optimum band, there are subnetworks that appear as additional peaks in the resistance histogram of conductive atomic force microscopy (CAFM) maps. Furthermore, the connections of these subnetworks to the optimum band change in time, such that some subnetworks become connected to the optimum band while others become disconnected and isolated from the optimum band; this observation appears to be an experimental manifestation of the ‘blinking’ phenomenon in our images of mesoscale transport.« less

  16. A first-principles study of impurity effects on monolayer MoS2: bandgap dominated by donor impurities

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Zhou, Wenzhe; Yang, Zhixiong; Wu, Shoujian; Ouyang, Fangping; Xu, Hui

    2017-12-01

    Based on the first principles calculation, the electrical properties and optical properties of monolayer molybdenum disulfide (MoS2) substitutionally doped by the VB and VIIB transition metal atoms (V, Nb, Ta, Mn, Tc, Re) were investigated. It is found that n-type doping or p-type doping tunes the Fermi level into the conduction band or the valence band respectively, leading to the degenerate semiconductor, while the compensatorily doped systems where the number of valence electrons is not alerted remain direct band gap ranging from 0.958 eV to 1.414 eV. According to the analysis on densities of states, the LUMO orbitals of donor impurities play the crucial role in band gap tuning. Hence, the band gap and optical properties of doped MoS2 are dominated by the species of the donor. Due to the reduction of the band gap, doped MoS2 have a lower threshold energy of photon absorption and an enhanced absorption in near infrared region. These results provide a significant guidance for the design of new 2D optoelectronic materials based on transition metal disulfide.

  17. Sub-band-gap absorption in Ga2O3

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Van de Walle, Chris G.

    2017-10-01

    β-Ga2O3 is a transparent conducting oxide that, due to its large bandgap of 4.8 eV, exhibits transparency into the UV. However, the free carriers that enable the conductivity can absorb light. We study the effect of free carriers on the properties of Ga2O3 using hybrid density functional theory. The presence of free carriers leads to sub-band-gap absorption and a Burstein-Moss shift in the onset of absorption. We find that for a concentration of 1020 carriers, the Fermi level is located 0.23 eV above the conduction-band minimum. This leads to an increase in the electron effective mass from 0.27-0.28 me to 0.35-0.37 me and a sub-band-gap absorption band with a peak value of 0.6 × 103 cm-1 at 3.37 eV for light polarized along the x or z direction. Both across-the-gap and free-carrier absorption depend strongly on the polarization of the incoming light. We also provide parametrizations of the conduction-band shape and the effective mass as a function of the Fermi level.

  18. Electron elevator: Excitations across the band gap via a dynamical gap state

    DOE PAGES

    Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...

    2016-01-27

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less

  19. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.

    PubMed

    Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A

    2016-01-29

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

  20. Modulating the band gap of a boron nitride bilayer with an external electric field for photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Y. R.; Cao, J. X., E-mail: jxcao@xtu.edu.cn; Zhang, Y.

    2016-05-21

    By virtue of first principle calculations, we propose an approach to reduce the band gap of layered semiconductors through the application of external electric fields for photocatalysis. As a typical example, the band gap of a boron nitride (BN) bilayer was reduced in the range from 4.45 eV to 0.3 eV by varying the external electric field strength. More interestingly, it is found that the uppermost valence band and the lowest conduction band are dominated by the N-p{sub z} and B-p{sub z} from different layers of the BN sheet, which suggests a wonderful photoexcited electron and hole separation system for photocatalysis. Ourmore » results imply that the strong external electric field can present an abrupt polarized surface.« less

  1. Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Nakamura, Toru; Endo, Masaru; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2014-03-01

    We studied the near-band-edge optical responses of solution-processed CH3NH3PbI3 on mesoporous TiO2 electrodes, which is utilized in mesoscopic heterojunction solar cells. Photoluminescence (PL) and PL excitation spectra peaks appear at 1.60 and 1.64 eV, respectively. The transient absorption spectrum shows a negative peak at 1.61 eV owing to photobleaching at the band-gap energy, indicating a direct band-gap semiconductor. On the basis of the temperature-dependent PL and diffuse reflectance spectra, we clarified that the absorption tail at room temperature is explained in terms of an Urbach tail and consistently determined the band-gap energy to be ˜1.61 eV at room temperature.

  2. Visible light photoreduction of CO.sub.2 using heterostructured catalysts

    DOEpatents

    Matranga, Christopher; Thompson, Robert L; Wang, Congjun

    2015-03-24

    The method provides for use of sensitized photocatalyst for the photocatalytic reduction of CO.sub.2 under visible light illumination. The photosensitized catalyst is comprised of a wide band gap semiconductor material, a transition metal co-catalyst, and a semiconductor sensitizer. The semiconductor sensitizer is photoexcited by visible light and forms a Type II band alignment with the wide band gap semiconductor material. The wide band gap semiconductor material and the semiconductor sensitizer may be a plurality of particles, and the particle diameters may be selected to accomplish desired band widths and optimize charge injection under visible light illumination by utilizing quantum size effects. In a particular embodiment, CO.sub.2 is reduced under visible light illumination using a CdSe/Pt/TiO2 sensitized photocatalyst with H.sub.2O as a hydrogen source.

  3. Further improvements in program to calculate electronic properties of narrow band gap materials

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1991-01-01

    Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.

  4. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    NASA Astrophysics Data System (ADS)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  5. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  6. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.

    PubMed

    Villegas, Cesar E P; Rocha, A R; Marini, Andrea

    2016-08-10

    Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).

  7. Investigations of the Nonlinear Optical Response of Composite and Photonic Band Gap Materials

    DTIC Science & Technology

    1998-11-01

    M. J. Bloemer, M. Scalora , J. P. Dowling, and C. M. Bowden, "Measurement of spontaneous-emission enhancement near the one-dimensional photonic band...with applications to photonic band structures," Phys. Rev. A 46, 612 (1992). 5. M. Scalora , J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and...J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57 (1995). 6. J. P. Dowling, M. Scalora , M. J

  8. Novel band structures in silicene on monolayer zinc sulfide substrate.

    PubMed

    Li, Sheng-shi; Zhang, Chang-wen; Yan, Shi-shen; Hu, Shu-jun; Ji, Wei-xiao; Wang, Pei-ji; Li, Ping

    2014-10-01

    Opening a sizable band gap in the zero-gap silicene without lowering the carrier mobility is a key issue for its application in nanoelectronics. Based on first-principles calculations, we find that the interaction energies are in the range of -0.09‒0.3 eV per Si atom, indicating a weak interaction between silicene and ZnS monolayer and the ABZn stacking is the most stable pattern. The band gap of silicene can be effectively tuned ranging from 0.025 to 1.05 eV in silicene and ZnS heterobilayer (Si/ZnS HBL). An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern, interlayer spacing and external strain effects on silicene. Interestingly, the characteristics of Dirac cone with a nearly linear band dispersion relation of silicene can be preserved in the ABS pattern which is a metastable state, accompanied by a small electron effective mass and thus the carrier mobility is expected not to degrade much. These provide a possible way to design effective FETs out of silicene on a ZnS monolayer.

  9. Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering.

    PubMed

    Wu, Lihua; Yang, Jiong; Zhang, Tiansong; Wang, Shanyu; Wei, Ping; Zhang, Wenqing; Chen, Lidong; Yang, Jihui

    2016-03-02

    Rashba semiconductors are of great interest in spintronics, superconducting electronics and thermoelectrics. Bulk BiTeI is a new Rashba system with a giant spin-split band structure. 2D-like thermoelectric response has been found in BiTeI. However, as optimizing the carrier concentration, the bipolar effect occurs at elevated temperature and deteriorates the thermoelectric performance of BiTeI. In this paper, band gap engineering in Rashba semiconductor BiTeI through Br-substitution successfully reduces the bipolar effect and improves the thermoelectric properties. By utilizing the optical absorption and Burstein-Moss-effect analysis, we find that the band gap in Rashba semiconductor BiTeI increases upon bromine substitution, which is consistent with theoretical predictions. Bipolar transport is mitigated due to the larger band gap, as the thermally-activated minority carriers diminish. Consequently, the Seebeck coefficient keeps increasing with a corresponding rise in temperature, and thermoelectric performance can thus be enhanced with a ZT  =  0.5 at 570 K for BiTeI0.88Br0.12.

  10. Synthesis of Cyclobutadienoid-Fused Phenazines with Strongly Modulated Degrees of Antiaromaticity.

    PubMed

    Teo, Yew Chin; Jin, Zexin; Xia, Yan

    2018-06-01

    The streamlined synthesis of a series of regioisomeric azaacene analogues containing fused phenazine and antiaromatic cyclobutadienoids (CBDs), using a catalytic arene-oxanorbornene annulation, followed by aromatization is reported. Controlling the fusion patterns allowed strong modulation of local antiaromaticity. Enhancing antiaromaticity in these regioisomeric azaacenes led to stabilized LUMO, reduced band gap, and quenched fluorescence. This synthetic strategy provides a facile means to fuse CBDs with variable degrees of antiaromaticity onto N-heteroarenes to tune their optoelectronic properties.

  11. Electronic structure modifications and band gap narrowing in Zn0.95V0.05O

    NASA Astrophysics Data System (ADS)

    Ahad, Abdul; Majid, S. S.; Rahman, F.; Shukla, D. K.; Phase, D. M.

    2018-04-01

    We present here, structural, optical and electronic structure studies on Zn0.95V0.05O, synthesized using solid state method. Rietveld refinement of x-ray diffraction pattern indicates no considerable change in the lattice of doped ZnO. The band gap of doped sample, as calculated by Kubelka-Munk transformed reflectance spectra, has been found reduced compared to pure ZnO. Considerable changes in absorbance in UV-Vis range is observed in doped sample. V doping induced decrease in band gap is supported by x-ray absorption spectroscopy measurements. It is experimentally confirmed that conduction band edge in Zn0.95V0.05O has shifted towards Fermi level than in pure ZnO.

  12. Quasiparticle and optical properties of strained stanene and stanane.

    PubMed

    Lu, Pengfei; Wu, Liyuan; Yang, Chuanghua; Liang, Dan; Quhe, Ruge; Guan, Pengfei; Wang, Shumin

    2017-06-20

    Quasiparticle band structures and optical properties of two dimensional stanene and stanane (fully hydrogenated stanene) are studied by the GW and GW plus Bethe-Salpeter equation (GW-BSE) approaches, with inclusion of the spin-orbit coupling (SOC). The SOC effect is significant for the electronic and optical properties in both stanene and stanane, compared with their group IV-enes and IV-anes counterparts. Stanene is a semiconductor with a quasiparticle band gap of 0.10 eV. Stanane has a sizable band gap of 1.63 eV and strongly binding exciton with binding energy of 0.10 eV. Under strain, the quasiparticle band gap and optical spectrum of both stanene and stanane are tunable.

  13. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  14. Band gaps and Brekhovskikh attenuation of laser-generated surface acoustic waves in a patterned thin film structure on silicon

    NASA Astrophysics Data System (ADS)

    Maznev, A. A.

    2008-10-01

    Surface acoustic modes of a periodic array of copper and SiO2 lines on a silicon substrate are studied using a laser-induced transient grating technique. It is found that the band gap formed inside the Brillouin zone due to “avoided crossing” of Rayleigh and Sezawa modes is much greater than the band gap in the Rayleigh wave dispersion formed at the zone boundary. Another unexpected finding is that a very strong periodicity-induced attenuation is observed above the longitudinal threshold rather than above the transverse threshold.

  15. Intra-band gap in Lamb modes propagating in a periodic solid structure

    NASA Astrophysics Data System (ADS)

    Pierre, J.; Rénier, M.; Bonello, B.; Hladky-Hennion, A.-C.

    2012-05-01

    A laser ultrasonic technique is used to measure the dispersion of Lamb waves at a few MHz, propagating in phononic crystals made of dissymmetric air inclusions drilled throughout silicon plates. It is shown that the specific shape of the inclusions is at the origin of the intra-band gap that opens within the second Brillouin zone, at the crossing of both flexural and dilatational zero-order modes. The magnitude of the intra-band gap is measured as a function of the dissymmetry rate of the inclusions. Experimental data and the computed dispersion curves are in very good agreement.

  16. Polarization-induced Zener tunnel junctions in wide-band-gap heterostructures.

    PubMed

    Simon, John; Zhang, Ze; Goodman, Kevin; Xing, Huili; Kosel, Thomas; Fay, Patrick; Jena, Debdeep

    2009-07-10

    The large electronic polarization in III-V nitrides allows for novel physics not possible in other semiconductor families. In this work, interband Zener tunneling in wide-band-gap GaN heterojunctions is demonstrated by using polarization-induced electric fields. The resulting tunnel diodes are more conductive under reverse bias, which has applications for zero-bias rectification and mm-wave imaging. Since interband tunneling is traditionally prohibitive in wide-band-gap semiconductors, these polarization-induced structures and their variants can enable a number of devices such as multijunction solar cells that can operate under elevated temperatures and high fields.

  17. Analysis of photonic band gap in novel piezoelectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Malar Kodi, A.; Doni Pon, V.; Joseph Wilson, K. S.

    2018-03-01

    The transmission properties of one-dimensional novel photonic crystal having silver-doped novel piezoelectric superlattice and air as the two constituent layers have been investigated by means of transfer matrix method. By changing the appropriate thickness of the layers and filling factor of nanocomposite system, the variation in the photonic band gap can be studied. It is found that the photonic band gap increases with the filling factor of the metal nanocomposite and with the thickness of the layer. These structures possess unique characteristics enabling one to operate as optical waveguides, selective filters, optical switches, integrated piezoelectric microactuators, etc.

  18. Optical phonon effect in quasi-one-dimensional semiconductor quantum wires: Band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Dan, Nguyen Trung; Bechstedt, F.

    1996-02-01

    We present theoretical studies of dynamical screening in quasi-one-dimensional semiconductor quantum wires including electron-electron and electron-LO-phonon interactions. Within the random-phase approximation we obtain analytical expressions for screened interaction potentials. These expressions can be used to calculate the band-gap renormalization of quantum wires, which depends on the free-carrier density and temperature. We find that the optical phonon interaction effect plays a significant role in band-gap renormalization of quantum wires. The numerical results are compared with some recent experiment measurements as well as available theories.

  19. Band gaps and the possible effect on impact sensitivity for some nitro aromatic explosive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Cheung, Frankie; Zhao, Feng; Cheng, Xin-Lu

    The first principle density functional theory method SIESTA has been used to compute the band gap of several polynitroaromatic explosives, such as TATB, DATB, TNT, and picric acid. In these systems, the weakest bond is the one between an NO2 group and the aromatic ring. The bond dissociation energy (BDE) alone cannot predicate the relative sensitivity to impact of these four systems correctly. It was found that their relative impact sensitivity could be explained by considering the BDE and the band gap value of the crystal state together.

  20. Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Garwood, T.; Modine, N. A.; Krishna, S.

    2017-03-01

    The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. Developing a procedure to accurately predict band gaps using hybrid density functional theory lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.

  1. Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Bertola, M.; Tovbis, A.

    2017-09-01

    Finite-gap (algebro-geometric) solutions to the focusing Nonlinear Schrödinger Equation (fNLS) i ψ_t + ψ_{xx} + 2|ψ|^2ψ=0, are quasi-periodic solutions that represent nonlinear multi-phase waves. In general, a finite-gap solution for (0-1) is defined by a collection of Schwarz symmetrical spectral bands and of real constants (initial phases), associated with the corresponding bands. In this paper we prove an interesting new formula for the maximal amplitude of a finite-gap solution to the focusing Nonlinear Schrödinger equation with given spectral bands: the amplitude does not exceed the sum of the imaginary parts of all the endpoints in the upper half plane. In the case of the straight vertical bands, that amounts to the half of the sum of the length of all the bands. The maximal amplitude will be attained for certain choices of the initial phases. This result is an important part of a criterion for the potential presence of the rogue waves in finite-gap solutions with a given set of spectral endpoints, obtained in Bertola et al. (Proc R Soc A, 2016. doi: 10.1098/rspa.2016.0340). A similar result was also obtained for the defocusing Nonlinear Schrödinger equation.

  2. Proximity induced ferromagnetism, superconductivity, and finite-size effects on the surface states of topological insulator nanostructures

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Klimeck, Gerhard

    2015-01-01

    Bi2Te3 and Bi2Se3 are well known 3D-topological insulators (TI). Films made of these materials exhibit metal-like surface states with a Dirac dispersion and possess high mobility. The high mobility metal-like surface states can serve as building blocks for a variety of applications that involve tuning their dispersion relationship and opening a band gap. A band gap can be opened either by breaking time reversal symmetry, the proximity effect of a superconductor or ferromagnet or adjusting the dimensionality of the TI material. In this work, methods that can be employed to easily open a band gap for the TI surface states are assessed. Two approaches are described: (1) Coating the surface states with a ferromagnet which has a controllable magnetization axis. The magnetization strength of the ferromagnet is incorporated as an exchange interaction term in the Hamiltonian. (2) An s-wave superconductor, because of the proximity effect, when coupled to a 3D-TI opens a band gap on the surface. Finally, the hybridization of the surface Dirac cones can be controlled by reducing the thickness of the topological insulator film. It is shown that this alters the band gap significantly.

  3. Two-dimensional wide-band-gap nitride semiconductors: Single-layer 1 T -X N2 (X =S ,Se , and Te )

    NASA Astrophysics Data System (ADS)

    Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki

    2016-11-01

    Recently, the two-dimensional (2D) semiconductors arsenene and antimonene, with band gaps larger than 2.0 eV, have attracted tremendous interest, especially for potential applications in optoelectronic devices with a photoresponse in the blue and UV range. Motivated by this exciting discovery, types of highly stable wide-band-gap 2D nitride semiconductors were theoretically designed. We propose single-layer 1 T -X N2 (X =S , Se, and Te) via first-principles simulations. We compute 1 T -X N2 (X =S , Se, and Te) with indirect band gaps of 2.825, 2.351, and 2.336 eV, respectively. By applying biaxial strain, they are able to induce the transition from a wide-band-gap semiconductor to a metal, and the range of absorption spectra of 1 T -X N2 (X =S , Se, and Te) obviously extend from the ultraviolet region to the blue-purple light region. With an underlying graphene, we find that 1 T -X N2 can completely shield the light absorption of graphene in the range of 1-1.6 eV. Our research paves the way for optoelectronic devices working under blue or UV light, and mechanical sensors based on these 2D crystals.

  4. Band gap and mobility of epitaxial perovskite BaSn1 -xHfxO3 thin films

    NASA Astrophysics Data System (ADS)

    Shin, Juyeon; Lim, Jinyoung; Ha, Taewoo; Kim, Young Mo; Park, Chulkwon; Yu, Jaejun; Kim, Jae Hoon; Char, Kookrin

    2018-02-01

    A wide band-gap perovskite oxide BaSn O3 is attracting much attention due to its high electron mobility and oxygen stability. On the other hand, BaHf O3 was recently reported to be an effective high-k gate oxide. Here, we investigate the band gap and mobility of solid solutions of BaS n1 -xH fxO3 (x =0 -1 ) (BSHO) as a basis to build advanced perovskite oxide heterostructures. All the films were epitaxially grown on MgO substrates using pulsed laser deposition. Density functional theory calculations confirmed that Hf substitution does not create midgap states while increasing the band gap. From x-ray diffraction and optical transmittance measurements, the lattice constants and the band-gap values are significantly modified by Hf substitution. We also measured the transport properties of n -type La-doped BSHO films [(Ba ,La ) (Sn ,Hf ) O3 ] , investigating the feasibility of modulation doping in the BaSn O3/BSHO heterostructures. The Hall measurement data revealed that, as the Hf content increases, the activation rate of the La dopant decreases and the scattering rate of the electrons sharply increases. These properties of BSHO films may be useful for applications in various heterostructures based on the BaSn O3 system.

  5. Photocatalytic hydrogen generation enhanced by band gap narrowing and improved charge carrier mobility in AgTaO3 by compensated co-doping.

    PubMed

    Li, Min; Zhang, Junying; Dang, Wenqiang; Cushing, Scott K; Guo, Dong; Wu, Nianqiang; Yin, Penggang

    2013-10-14

    The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.

  6. Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garwood, Tristan; Modine, Normand A.; Krishna, S.

    2016-12-18

    The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. By developing a procedure to accurately predict band gaps using hybrid density functional theory, it lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structuresmore » calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.« less

  7. Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment.

    PubMed

    Hasan, Md Tanvir; Senger, Brian J; Ryan, Conor; Culp, Marais; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery L; Naumov, Anton V

    2017-07-25

    Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties. Concomitantly it leads to an initial increase in GO fluorescence intensity and significant (100 nm) blue shifts in emission maxima. Based on the model of GO fluorescence originating from sp 2 graphitic islands confined by oxygenated addends, we propose that ozone-induced functionalization decreases the size of graphitic islands affecting the GO band gap and emission energies. TEM analyses of GO flakes confirm the size decrease of ordered sp 2 domains with ozone treatment, whereas semi-empirical PM3 calculations on model addend-confined graphitic clusters predict the inverse dependence of the band gap energies on sp 2 cluster size. This model explains ozone-induced increase in emission energies yielding fluorescence blue shifts and helps develop an understanding of the origins of GO fluorescence emission. Furthermore, ozone treatment provides a versatile approach to controllably alter GO band gap for optoelectronics and bio-sensing applications.

  8. Optical band gap determination of calcium doped lanthanum manganite nano particle tailored with polypyrrole

    NASA Astrophysics Data System (ADS)

    Gopalakrishna, Smitha Mysore; Murugendrappa, Malalkere Veerappa

    2018-05-01

    In this paper we bring forth the effect of La0.7Ca0.3MnO3 (LCM) perovskite nano particle on the optical band gap in composition with conducting Polypyrrole (PPy) prepared by chemical oxidation method. The morphology and crystalline phase were determined by SEM, TEM and X-Ray diffraction studies. The Optical band gap studies were analyzed using the UV-VIS spectrometer scanned in the range 200 nm to 600 nm for pure PPy and PPy/LCM composites. There is a characteristic peak observed for the composites situated around 315 nm for pure PPy, PPy/LCM10 and PPy/LCM50. But for higher compositions of LCM weight percentage like 30%, 40% and 50% the peak shift slightly to higher wavelength side. The peak shifts to 320 nm, 325 nm and 335 nm respectively. The optical band gap increased for Pure PPy, PPy/LCM10 and PPy/LCM20 and found to decrease gradually for PPy/LCM30, PPy/LCM40 and PPy/LCM50. The studies suggest that LCM composition in the PPy chain has a role in modifying the wavelength and in turn its band gap. The study may find application in organic devices working at high frequency and voltage.

  9. Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics.

    PubMed

    Kou, Liangzhi; Hu, Feiming; Yan, Binghai; Frauenheim, Thomas; Chen, Changfeng

    2014-07-07

    Developing graphene-based nanoelectronics hinges on opening a band gap in the electronic structure of graphene, which is commonly achieved by breaking the inversion symmetry of the graphene lattice via an electric field (gate bias) or asymmetric doping of graphene layers. Here we introduce a new design strategy that places a bilayer graphene sheet sandwiched between two cladding layers of materials that possess strong spin-orbit coupling (e.g., Bi2Te3). Our ab initio and tight-binding calculations show that a proximity enhanced spin-orbit coupling effect opens a large (44 meV) band gap in bilayer graphene without breaking its lattice symmetry, and the band gap can be effectively tuned by an interlayer stacking pattern and significantly enhanced by interlayer compression. The feasibility of this quantum-well structure is demonstrated by recent experimental realization of high-quality heterojunctions between graphene and Bi2Te3, and this design also conforms to existing fabrication techniques in the semiconductor industry. The proposed quantum-well structure is expected to be especially robust since it does not require an external power supply to open and maintain a band gap, and the cladding layers provide protection against environmental degradation of the graphene layer in its device applications.

  10. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus

    PubMed Central

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R.

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the mechanisms of tinnitus. PMID:27582696

  11. Observations of Heavy Rainfall in a Post Wildland Fire Area Using X-Band Polarimetric Radar

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Matrosov, S. Y.; Gochis, D. J.; Kennedy, P.; Moody, J. A.

    2011-12-01

    Polarimetric X-band radar systems have been used increasingly over the last decade for rainfall measurements. Since X-band radar systems are generally less costly, more mobile, and have narrower beam widths (for same antenna sizes) than those operating at lower frequencies (e.g., C and S-bands), they can be used for the "gap-filling" purposes for the areas when high resolution rainfall measurements are needed and existing operational radars systems lack adequate coverage and/or resolution for accurate quantitative precipitation estimation (QPE). The main drawback of X-band systems is attenuation of radar signals, which is significantly stronger compared to frequencies used by "traditional" precipitation radars operating at lower frequencies. The use of different correction schemes based on polarimetric data can, to a certain degree, overcome this drawback when attenuation does not cause total signal extinction. This presentation will focus on examining the use of high-resolution data from the NOAA Earth System Research Laboratory (ESRL) mobile X-band dual polarimetric radar for the purpose of estimating precipitation in a post-wildland fire area. The NOAA radar was deployed in the summer of 2011 to examine the impact of gap-fill radar on QPE and the resulting hydrologic response during heavy rain events in the Colorado Front Range in collaboration with colleagues from the National Center for Atmospheric Research (NCAR), Colorado State University (CSU), and the U.S. Geological Survey (USGS). A network of rain gauges installed by NCAR, the Denver Urban Drainage Flood Control District (UDFCD), and the USGS are used to compare with the radar estimates. Supplemental data from NEXRAD and the CSU-CHILL dual polarimetric radar are also used to compare with the NOAA X-band and rain gauges. It will be shown that rainfall rates and accumulations estimated from specific differential phase measurements (KDP) at X-band are in good agreement with the measurements from the gauge network during heavy rain and rain/hail mixture events. The X-band radar measurements also were generally successful in capturing the high spatial variability in convective rainfall, which caused post-fire debris flows.

  12. Low temperature absorption edge and photoluminescence study in TlIn(Se1-xSx)2 layered mixed crystals

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.

    2018-02-01

    Transmission on TlIn(Se1-xSx)2 mixed crystals (0.25 ≤ x ≤ 1) were carried out in the 400-800 nm wavelength range at T = 10 K. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance. The compositional dependence of direct band gap energy at T = 10 K revealed that as sulfur composition is increased in the mixed crystals, the direct band gap energy rises from 2.26 eV (x = 0.25) to 2.56 eV (x = 1). Photoluminescence spectra of TlIn(Se1-xSx)2 mixed crystals were studied in the wavelength region of 400-620 nm at T = 10 K. The observed bands were attributed to the transitions of electrons from shallow donor levels to the valence band. The shift of the PL bands to higher energies with elevating sulfur content was revealed. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements.

  13. Emergence of topological semimetals in gap closing in semiconductors without inversion symmetry.

    PubMed

    Murakami, Shuichi; Hirayama, Motoaki; Okugawa, Ryo; Miyake, Takashi

    2017-05-01

    A band gap for electronic states in crystals governs various properties of solids, such as transport, optical, and magnetic properties. Its estimation and control have been an important issue in solid-state physics. The band gap can be controlled externally by various parameters, such as pressure, atomic compositions, and external field. Sometimes, the gap even collapses by tuning some parameter. In the field of topological insulators, this closing of the gap at a time-reversal invariant momentum indicates a band inversion, that is, it leads to a topological phase transition from a normal insulator to a topological insulator. We show, through an exhaustive study on possible space groups, that the gap closing in inversion-asymmetric crystals is universal, in the sense that the gap closing always leads either to a Weyl semimetal or to a nodal-line semimetal. We consider three-dimensional spinful systems with time-reversal symmetry. The space group of the system and the wave vector at the gap closing uniquely determine which possibility occurs and where the gap-closing points or lines lie in the wave vector space after the closing of the gap. In particular, we show that an insulator-to-insulator transition never happens, which is in sharp contrast to inversion-symmetric systems.

  14. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics.

    PubMed

    Woo, Jungwook; Yun, Kyung-Han; Chung, Yong-Chae

    2016-04-27

    The geometries and electronic characteristics of the graphene monoxide (GMO) bilayer are predicted via density functional theory (DFT) calculations. All the possible sequences of the GMO bilayer show the typical interlayer bonding characteristics of two-dimensional bilayer systems with a weak van der Waals interaction. The band gap energies of the GMO bilayers are predicted to be adequate for electronic device application, indicating slightly smaller energy gaps (0.418-0.448 eV) compared to the energy gap of the monolayer (0.536 eV). Above all, in light of the band gap engineering, the band gap of the GMO bilayer responds to the external electric field sensitively. As a result, a semiconductor-metal transition occurs at a small critical electric field (EC = 0.22-0.30 V/Å). It is therefore confirmed that the GMO bilayer is a strong candidate for nanoelectronics.

  15. Electronic and spin structure of the wide-band-gap topological insulator: Nearly stoichiometric Bi2Te2S

    NASA Astrophysics Data System (ADS)

    Annese, E.; Okuda, T.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Natamane, M.; Taniguchi, M.; Rusinov, I. P.; Eremeev, S. V.; Kokh, K. A.; Golyashov, V. A.; Tereshchenko, O. E.; Chulkov, E. V.; Kimura, A.

    2018-05-01

    We have grown the phase-homogeneous ternary compound with composition Bi2Te1.85S1.15 very close to the stoichiometric Bi2Te2S . The measurements performed with spin- and angle-resolved photoelectron spectroscopy as well as density functional theory and G W calculations revealed a wide-band-gap three-dimensional topological insulator phase. The surface electronic spectrum is characterized by the topological surface state (TSS) with Dirac point located above the valence band and Fermi level lying in the band gap. TSS band dispersion and constant energy contour manifest a weak warping effect near the Fermi level along with in-plane and out-of-plane spin polarization along the Γ ¯-K ¯ line. We identified four additional states at deeper binding energies with high in-plane spin polarization.

  16. Ultrawide low frequency band gap of phononic crystal in nacreous composite material

    NASA Astrophysics Data System (ADS)

    Yin, J.; Huang, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2014-06-01

    The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results.

  17. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    NASA Astrophysics Data System (ADS)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  18. Low-frequency band gap of locally resonant phononic crystals with a dual-base plate.

    PubMed

    Zuo, Shuguang; Huang, Haidong; Wu, Xudong; Zhang, Minghai; Ni, Tianxin

    2018-03-01

    To achieve a wider band gap and a lower cut-on frequency, a locally resonant phononic crystal (LRPC) with a dual-base plate is investigated in this paper. Compared with the LRPC with a single plate, the band structure of the LRPC with a dual-base plate is calculated using the method of plane wave expansion and verified by the finite element method. According to the analysis of the band curves of the LRPC with a dual-base plate, the mechanisms are explained. Next, the influences of the thickness of the plates, the stiffness of the springs, the mass of resonators, and the lattice constant are also investigated. The results show that the structural asymmetry between the upper and the lower plate is conducive to reducing the cut-on frequency and broadening the band gap effectively. The results indicate a different approach for the application of LRPC in vibration and noise control.

  19. New insights into the opening band gap of graphene oxides

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc Thanh Thuy; Lin, Shih-Yang; Lin, Ming-Fa

    Electronic properties of oxygen absorbed few-layer graphenes are investigated using first-principle calculations. They are very sensitive to the changes in the oxygen concentration, number of graphene layer, and stacking configuration. The feature-rich band structures exhibit the destruction or distortion of the Dirac cone, opening of band gap, anisotropic energy dispersions, O- and (C,O)-dominated energy dispersions, and extra critical points. The band decomposed charge distributions reveal the π-bonding dominated energy gap. The orbital-projected density of states (DOS) have many special structures mainly coming from a composite energy band, the parabolic and partially flat ones. The DOS and spatial charge distributions clearly indicate the critical orbital hybridizations in O-O, C-O and C-C bonds, being responsible for the diversified properties. All of the few-layer graphene oxides are semi-metals except for the semiconducting monolayer ones.

  20. Design and analysis of novel photocatalytic materials

    NASA Astrophysics Data System (ADS)

    Boppana, Venkata Bharat Ram

    The development of sustainable sources of energy to decrease our dependence on non-renewable fossil fuels and the reduction of emissions causing global warming are important technological challenges of the 21st century. Production of solar fuels by photocatalysis is one potential route to reduce the impact of those problems. The most widely applied photocatalyst is TiO2 because it is stable, non-toxic and inexpensive. Still, it cannot utilize the solar spectrum efficiently as its band gap is 3.2 eV thus able to absorb only 3% of sun light. This thesis therefore explores multiple avenues towards improving the light absorption capability of semiconductor materials without loss in activity. To achieve this objective, the valence band hybridization method of band gap reduction was utilized. This technique is based on introducing new orbitals at the top of valence band of the semiconductor that can then hybridize with existing orbitals. The hybridization then raises the maximum of the valence band thereby reducing the band gap. This technique has the added advantage of increasing the mobility of oxidizing holes in the now dispersed valence band. In practice, this can be achieved by introducing N 2p or Sn 5s orbitals in the valence band of an oxide. We initially designed novel zinc gallium oxy-nitrides, with the spinel structure and band gaps in the visible region of the solar spectrum, by nitridation of a zinc gallate precursor produced by sol-gel synthesis. These spinel oxy-nitrides have band gaps of 2.5 to 2.7 eV, surface areas of 16 to 36 m 2/g, and nitrogen content less than 1.5%. They are active towards degradation of organic molecules in visible light. Density functional theory calculations show that this band gap reduction in part is associated with hybridization between the dopant N 2p states with Zn 3d orbitals at the top of the valence band. While spinel oxy-nitrides are produced under nitridation at 550°C, at higher temperatures they are consumed to form wurzitic oxy-nitrides. The wurzite materials also have band gaps less than 3 eV but their surface areas are 2 to 5 m2/g. The thesis explores in detail the changes associated with the gallium coordination as the spinel zinc gallate precursor transforms into the spinel oxy-nitride at 550°C, and further changes into the wurzite oxy-nitride at 850°C are studied through X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, neutron powder diffraction, X-ray absorption spectroscopy and other techniques. We believe that the protocol developed in this thesis opens an avenue for the synthesis of semiconductors having the spinel crystal structure and band gaps engineered to the visible region with potential applications for opto-electronic devices and photocatalytic processes. Though these spinel oxynitrides are interesting, they suffer from vacancies and low surface areas from the high temperature nitridation step. This could be overcome by synthesizing photocatalysts hydrothermally. We proceeded to explore the interactions of Sn2+ 5s orbitals with O 2p orbitals towards hybridizing the valence band. This led to the development of novel visible-light-active Sn2+ - TiO2 and SnOx -- ZnGa2O4 materials. The former catalysts are prepared from the reaction of titanium butoxide and several tin precursors at 80°C in aqueous solutions. Samples synthesized with SnCl2 have lower band gaps (red-shifted to the visible region) with respect to anatase TiO2. The catalysts are isostructural with anatase TiO2 even at the highest loadings of Sn2+. When the precursor is changed to SnCl4, rutile is the predominant phase obtained but no reduction in the band gap is observed. The experiments also indicate the presence of chlorine in the samples, also influencing the optical and catalytic properties as confirmed by comparison to materials prepared using bromide precursors. These catalysts are photocatalytically active for the degradation of organic molecules with rates higher than the standard (P25 TiO2) and also evidenced from the generation of hydroxyl radicals using visible light. This protocol could be extended to incorporate Sn2+ 5s orbitals into other oxide semiconductors to prepare photocatalysts with interesting electronic properties.

  1. Effects of ligand functionalization on the photocatalytic properties of titanium-based MOF: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Li, Yi; Fu, Yuqing; Ni, Bilian; Ding, Kaining; Chen, Wenkai; Wu, Kechen; Huang, Xin; Zhang, Yongfan

    2018-03-01

    The first principle calculations have been performed to investigate the geometries, band structures and optical absorptions of a series of MIL-125 MOFs, in which the 1,4-benzenedicarboxylate (BDC) linkers are modified by different types and amounts of chemical groups, including NH2, OH, and NO2. Our results indicate that new energy bands will appear in the band gap of pristine MIL-125 after introducing new group into BDC linker, but the components of these band gap states and the valence band edge position are sensitive to the type of functional group as well as the corresponding amount. Especially, only the incorporation of amino group can obviously decrease the band gap of MIL-125, and the further reduction of the band gap can be observed if the amount of NH2 is increased. Although MIL-125 functionalized by NH2 group exhibits relatively weak or no activity for the photocatalytic O2 evolution by splitting water, such ligand modification can effectively improve the efficiency in H2 production because now the optical absorption in the visible light region is significantly enhanced. Furthermore, the adsorption of water molecule becomes more favorable after introducing of amino group, which is also beneficial for the water-splitting reaction. The present study can provide theoretical insights to design new photocatalysts based on MIL-125.

  2. Optical properties of BaO added bioactive Na2O-CaO-P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-04-01

    This paper deals with the effect of BaO addition on the optical properties of bioactive Na2O-CaO-P2O5 glasses for biomedical optics applications. The phosphate glasses with composition (26-x)Na2O-xBaO-29CaO-45P2O5 (x = 0, 5, 10, 15 mol%) have been prepared by melt-quenching technique at 1100°C. The refractive index of glasses increased with BaO content. The optical band gap and Urbach energy of synthesized glasses were derived from the optical absorption spectra by using UV-Visible spectrometer. The addition of 5 mol% of BaO increased the band gap energy of glasses due to the formation of ionic cross-links in the glass structure. The defect and interstitial bonds formation in theglasses decreased with BaO additions as indicated by reductions in the Urbach energy values. No such variations in the band gap and Urbach energy values of glasses were observed with BaO content from 5 to 15 mol%. The molar and oxide ion polarizability values were calculated from the band gap and molar volume of glasses. The increase in the calculated optical basicity and metallization criteria of glasses supported the rise in band gap energy values with BaO additions. As the melting temperature of glasses decreased from 1200 to 1100°C, the refractive index increased as supported by the measured density values. The band gap energy is not changed with melting temperature. The Urbach energy decreased with decrease in melting temperature in case of BaO-free Na2O-CaO-P2O5 glasses, whereas it increased in case of BaO added glasses due to the role of BaO as modifying oxide.

  3. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronicmore » devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.« less

  4. Exploring single-layered SnSe honeycomb polymorphs for optoelectronic and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Shkir, Mohd.

    2018-02-01

    Single-layered tin selenide that shares the same structure with phosphorene and possesses intriguing optoelectronic properties has received great interest as a two-dimensional material beyond graphene and phosphorene. Herein, we explore the optoelectronic response of the newly discovered stable honeycomb derivatives (such as α , β , γ , δ , and ɛ ) of single-layered SnSe in the framework of density functional theory. The α , β , γ , and δ derivatives of a SnSe monolayer have been found to exhibit an indirect band gap, however, the dispersion of their band-gap edges demonstrates multiple direct band gaps at a relatively high energy. The ɛ -SnSe, however, features an intrinsic direct band gap at the high-symmetry Γ point. Their energy band gaps (0.53, 2.32, 1.52, 1.56, and 1.76 eV for α -, β -, γ -, δ -, and ɛ -SnSe, respectively), calculated at the level of the Tran-Blaha modified Becke-Johnson approach, mostly fall right in the visible range of the electromagnetic spectrum and are in good agreement with the available literature. The optical spectra of these two-dimensional (2D) SnSe polymorphs (besides β -SnSe) are highly anisotropic and possess strictly different optical band gaps along independent diagonal components. They show high absorption in the visible and UV ranges. Similarly, the reflectivity, refraction, and optical conductivities inherit strong anisotropy from the dielectric functions as well and are highly visible-UV polarized along the cartesian coordinates, showing them to be suitable for optical filters, polarizers, and shields against UV radiation. Our investigations suggest these single-layered SnSe allotropes as a promising 2D material for next-generation nanoscale optoelectronic and photovoltaic applications beyond graphene and phosphorene.

  5. Bipolar doping and band-gap anomalies in delafossite transparent conductive oxides.

    PubMed

    Nie, Xiliang; Wei, Su-Huai; Zhang, S B

    2002-02-11

    Doping wide-gap materials p type is highly desirable but often difficult. This makes the recent discovery of p-type delafossite oxides, CuM(III)O2, very attractive. The CuM(III)O2 also show unique and unexplained physical properties: Increasing band gap from M(III) = Al,Ga, to In, not seen in conventional semiconductors. The largest gap CuInO2 can be mysteriously doped both n and p type but not the smaller gaps CuAlO2 and CuGaO2. Here, we show that both properties are results of a large disparity between the fundamental gap and the apparent optical gap, a finding that could lead to a breakthrough in the study of bipolarly dopable wide-gap semiconductor oxides.

  6. Electron transport in high aspect ratio semiconductor nanowires and metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Sun, Zhuting

    We are facing variability problems for modern semiconductor transistors due to the fact that the performances of nominally identical devices in the scale of 10 100 nm could be dramatically different attributed to the small manufacturing variations. Different doping strategies give statistical variations in the number of dopant atom density ND in the channel. The material size gives variations in wire diameter dW. And the immediate environment of the material leads to an additional level of variability. E.g. vacuum-semiconductor interface causes variations in surface state density Ds, metal-semiconductor interface causes variations in Schottky barrier and dielectric semiconductor interface induces dielectric confinement at small scales. To approach these variability problems, I choose Si-doped GaAs nanowires as an example. I investigate transport in Si-doped GaAs nanowire (NW) samples contacted by lithographically patterned Gold-Titanium films as function of temperature T. I find a drastically different temperature dependence between the wire resistance RW, which is relatively weak, and the zero bias resistance RC, which is strong. I show that the data are consistent with a model based on a sharp donor energy level slightly above the bottom of the semiconductor conduction band and develop a simple method for using transport measurements for estimates of the doping density after nanowire growth. I discuss the predictions of effective free carrier density n eff as function of the surface state density Ds and wire size dW. I also describe a correction to the widely used model of Schottky contacts that improves thermodynamic consistency of the Schottky tunnel barrier profile and show that the original theory may underestimate the barrier conductance under certain conditions. I also provide analytical calculations for shallow silicon dopant energy in GaAs crystals, and find the presence of dielectrics (dielectric screening) and free carriers (Coulomb screening) cause a reduction of ionization energy and shift the donor energy level ED upward, accompanying conduction band EC shift downward due to band gap narrowing for doped semiconductor material. The theoretical results are in a reasonable agreement with previous experimental data. I also find that when the material reduces to nanoscale, dielectric confinement and surface depletion compete with both Coulomb screening and dielectric screening that shift the donor level ED down towards the band gap. The calculation should be appropriate for all types of semiconductors and dopant species.

  7. Electronic Band Structure Tuning of Highly-Mismatched-Alloys for Energy Conversion Applications

    NASA Astrophysics Data System (ADS)

    Ting, Min

    Highly-mismatched alloys: ZnO1-xTe x and GaN1-xSb x are discussed within the context of finding the suitable material for a cost-effective Si-based tandem solar cell (SBTSC). SBTSC is an attractive concept for breaking through the energy conversion efficiency theoretical limit of a single junction solar cell. Combining with a material of 1.8 eV band gap, SBTSC can theoretically achieve energy conversion efficiency > 45%. ZnO and GaN are wide band gap semiconductors. Alloying Te in ZnO and alloying Sb in GaN result in large band gap reduction to < 2 eV from 3.3 eV and 3.4 eV respectively. The band gap reduction is majorly achieved by the upward shift of valence band (VB). Incorporating Te in ZnO modifies the VB of ZnO through the valence-band anticrossing (VBAC) interaction between localized Te states and ZnO VB delocalized states, which forms a Te-derived VB at 1 eV above the host VB. Similar band structure modification is resulted from alloying Sb in GaN. Zn1-xTex and GaN 1-xSbx thin films are synthesized across the whole composition range by pulsed laser deposition (PLD) and low temperature molecular beam epitaxy (LT-MBE) respectively. The electronic band edges of these alloys are measured by synchrotron X-ray absorption, emission, and the X-ray photoelectron spectroscopies. Modeling the optical absorption coefficient with the band anticrossing (BAC) model revealed that the Te and Sb defect levels to be at 0.99 eV and 1.2 eV above the VB of ZnO and GaN respectively. Electrically, Zn1-xTex is readily n-type conductive and GaN1-xSbx is strongly p-type conductive. A heterojunction device of p-type GaN 0.93Sb0.07 with n-type ZnO0.77Te0.93 upper cell (band gap at 1.8 eV) on Si bottom cell is proposed as a promising SBTSC device.

  8. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting.

    PubMed

    Amat, Anna; Mosconi, Edoardo; Ronca, Enrico; Quarti, Claudio; Umari, Paolo; Nazeeruddin, Md K; Grätzel, Michael; De Angelis, Filippo

    2014-06-11

    Organohalide lead perovskites have revolutionized the scenario of emerging photovoltaic technologies. The prototype MAPbI3 perovskite (MA = CH3NH3(+)) has dominated the field, despite only harvesting photons above 750 nm (∼1.6 eV). Intensive research efforts are being devoted to find new perovskites with red-shifted absorption onset, along with good charge transport properties. Recently, a new perovskite based on the formamidinium cation ((NH2)2CH(+) = FA) has shown potentially superior properties in terms of band gap and charge transport compared to MAPbI3. The results have been interpreted in terms of the cation size, with the larger FA cation expectedly delivering reduced band-gaps in Pb-based perovskites. To provide a full understanding of the interplay among size, structure, and organic/inorganic interactions in determining the properties of APbI3 perovskites, in view of designing new materials and fully exploiting them for solar cells applications, we report a fully first-principles investigation on APbI3 perovskites with A = Cs(+), MA, and FA. Our results evidence that the tetragonal-to-quasi cubic structural evolution observed when moving from MA to FA is due to the interplay of size effects and enhanced hydrogen bonding between the FA cations and the inorganic matrix altering the covalent/ionic character of Pb-I bonds. Most notably, the observed cation-induced structural variability promotes markedly different electronic and optical properties in the MAPbI3 and FAPbI3 perovskites, mediated by the different spin-orbit coupling, leading to improved charge transport and red-shifted absorption in FAPbI3 and in general in pseudocubic structures. Our theoretical model constitutes the basis for the rationale design of new and more efficient organohalide perovskites for solar cells applications.

  9. Ionothermal synthesis of discrete supertetrahedral Tn (n = 4, 5) clusters with tunable components, band gaps, and fluorescence properties.

    PubMed

    Yang, Dan-Dan; Li, Wei; Xiong, Wei-Wei; Li, Jian-Rong; Huang, Xiao-Ying

    2018-05-01

    The preparation of crystalline molecularly supertetrahedral Tn clusters with variable sizes and components is of vital importance for the fundamental study of their physicochemical properties. However, setting up an efficient method to stabilize large discrete Tn clusters is a challenge due to their high negative charges and polymerization nature. In this work, we report on the ionothermal synthesis of three discrete T4 cluster compounds, namely [Bmmim]5[(CH3)2NH2]4[NH4][M4In16S31(SH)4]·6H2O (M = Mn (1), Zn (2), Cd (3), Bmmim = 1-buty-2,3-dimethyl-imidazolium), and four discrete T5 cluster compounds, namely [Bmmim]10[NH4]3[Cu5Ga30-xInxS52(SH)4] (x = 6.6 (5), 14.5 (6), 23.8 (7), and 30 (8)). The compound [Bmmim]10[NH4]3[Cu5Ga30S52(SH)4] (4) previously reported by us features a discrete T5 cluster. The steep UV-Vis absorption edges indicate band gaps of 2.20 eV for 1, 2.64 eV for 2, 2.69 eV for 3, 3.04 eV for 4, 2.65 eV for 5, 2.48 eV for 6, 2.32 eV for 7, and 2.30 eV for 8. The compositions of T5 clusters could be varied with the ratios of Ga : In in the starting reagents, providing an opportunity to systematically control the band gaps and fluorescence performances of T5 cluster-based compounds. This research might advance the understanding of the ionothermal preparation and functionality tuning of crystalline chalcogenides.

  10. Probing the Band Structure of Ultrathin MoTe2 via Strain

    NASA Astrophysics Data System (ADS)

    Aslan, Burak; Datye, Isha; Kuo, Hsueh-Hui; Mleczko, Michal; Fisher, Ian; Pop, Eric; Heinz, Tony

    Molybdenum ditelluride (MoTe2) is a semiconducting layered group VI transition metal dichalcogenide with an optical band gap of 1.1 and 0.9 eV in the monolayer and bulk, respectively. The bulk crystal possesses an indirect gap whereas the monolayer has a direct one. It is still under debate whether the direct-to-indirect gap crossover occurs at the monolayer or bilayer limit at room temperature, resulting from the fact that the two gaps are very close to one another in ultrathin crystals. We take advantage of this closeness by tuning the two gaps with in-plane tensile strain. In particular, we employ photoluminescence and absorption spectroscopy to probe the near-band-edge optical transitions and study their line-shapes to distinguish the direct and indirect gaps in few-layer MoTe2. We observe that the applied strain redshifts the direct and indirect gaps at different rates and strongly affects the spectral widths of the optical transitions. Our observations help us understand what contributes to the broadening of the A exciton peak in ultrathin MoTe2 and how the direct-to-indirect gap crossover occurs with decreasing thickness.

  11. Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures

    DOE PAGES

    LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.; ...

    2017-06-05

    The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.

  12. Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.

    The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.

  13. Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

    PubMed Central

    Mesa, Fredy; Chamorro, William; Vallejo, William; Baier, Robert; Dittrich, Thomas; Grimm, Alexander; Lux-Steiner, Martha C

    2012-01-01

    Summary Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased. PMID:22497001

  14. Junction formation of Cu(3)BiS(3) investigated by Kelvin probe force microscopy and surface photovoltage measurements.

    PubMed

    Mesa, Fredy; Chamorro, William; Vallejo, William; Baier, Robert; Dittrich, Thomas; Grimm, Alexander; Lux-Steiner, Martha C; Sadewasser, Sascha

    2012-01-01

    Recently, the compound semiconductor Cu(3)BiS(3) has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu(3)BiS(3) absorber layer and the junction formation with CdS, ZnS and In(2)S(3) buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20-100 nm, and a considerably smaller work-function distribution for In(2)S(3) compared to that of CdS and ZnS. For In(2)S(3) and CdS buffer layers the KPFM experiments indicate negatively charged Cu(3)BiS(3) grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In(2)S(3) buffer layer. Our findings indicate that Cu(3)BiS(3) may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased.

  15. Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap.

    PubMed

    Hu, Xing-Kai; Lyu, Ji-Kai; Zhang, Chang-Wen; Wang, Pei-Ji; Ji, Wei-Xiao; Li, Ping

    2018-05-16

    A large bulk band gap is critical for the application of two-dimensional topological insulators (TIs) in spintronic devices operating at room temperature. On the basis of first-principles calculations, we predict BiXH (X = OH, SH) monolayers as TIs with an extraordinarily large bulk gap of 820 meV for BiOH and 850 meV for BiSH, and propose a tight-binding model considering spin-orbit coupling to describe the electronic properties of BiXH. These large gaps are entirely due to the strong spin-orbit interaction related to the pxy orbitals of the Bi atoms of the honeycomb lattice. The orbital filtering mechanism can be used to understand the topological properties of BiXH. The XH groups simply remove one branch of orbitals (pz of Bi) and reduce the trivial 6-band lattice into a 4-band, which is topologically non-trivial. The topological characteristics of BiXH monolayers are confirmed by nonzero topological invariant Z2 and a single pair of gapless helical edge states in the bulk gap. Owing to these features, the BiXH monolayers of the large-gap TIs are an ideal platform to realize many exotic phenomena and fabricate new quantum devices working at room temperature.

  16. Thermoreflectance characterization of beta-Ga2O3 thin-film nanostrips.

    PubMed

    Ho, Ching-Hwa; Tseng, Chiao-Yeh; Tien, Li-Chia

    2010-08-02

    Nanostructure of beta-Ga(2)O(3) is wide-band-gap material with white-light-emission function because of its abundance in gap states. In this study, the gap states and near-band-edge transitions in beta-Ga(2)O(3) nanostrips have been characterized using temperature-dependent thermoreflectance (TR) measurements in the temperature range between 30 and 320 K. Photoluminescence (PL) measurements were carried to identify the gap-state transitions in the beta-Ga(2)O(3) nanostrips. Experimental analysis of the TR spectra revealed that the direct gap (E(0)) of beta-Ga(2)O(3) is 4.656 eV at 300 K. There are a lot of gap-state and near-band-edge (GSNBE) transitions denoted as E(D3), E(W1), E(W2), E(W3), E(D2), EDBex, E(DB), E(D1), E(0), and E(0)' can be detected in the TR and PL spectra at 30 K. Transition origins for the GSNBE features in the beta-Ga(2)O(3) nanostrips are respectively evaluated. Temperature dependences of transition energies of the GSNBE transitions in the beta-Ga(2)O(3) nanostrips are analyzed. The probable band scheme for the GSNBE transitions in the beta-Ga(2)O(3) nanostrips is constructed.

  17. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals.

    PubMed

    Theocharis, G; Boechler, N; Kevrekidis, P G; Job, S; Porter, Mason A; Daraio, C

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  18. Germanene on single-layer ZnSe substrate: novel electronic and optical properties.

    PubMed

    Ye, H Y; Hu, F F; Tang, H Y; Yang, L W; Chen, X P; Wang, L G; Zhang, G Q

    2018-06-01

    In this work, the structural, electronic and optical properties of germanene and ZnSe substrate nanocomposites have been investigated using first-principles calculations. We found that the large direct-gap ZnSe semiconductors and zero-gap germanene form a typical orbital hybridization heterostructure with a strong binding energy, which shows a moderate direct band gap of 0.503 eV in the most stable pattern. Furthermore, the heterostructure undergoes semiconductor-to-metal band gap transition when subjected to external out-of-plane electric field. We also found that applying external strain and compressing the interlayer distance are two simple ways of tuning the electronic structure. An unexpected indirect-direct band gap transition is also observed in the AAII pattern via adjusting the interlayer distance. Quite interestingly, the calculated results exhibit that the germanene/ZnSe heterobilayer structure has perfect optical absorption in the solar spectrum as well as the infrared and UV light zones, which is superior to that of the individual ZnSe substrate and germanene. The staggered interfacial gap and tunability of the energy band structure via interlayer distance and external electric field and strain thus make the germanene/ZnSe heterostructure a promising candidate for field effect transistors (FETs) and nanoelectronic applications.

  19. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals

    NASA Astrophysics Data System (ADS)

    Theocharis, G.; Boechler, N.; Kevrekidis, P. G.; Job, S.; Porter, Mason A.; Daraio, C.

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  20. A simplified approach to the band gap correction of defect formation energies: Al, Ga, and In-doped ZnO

    NASA Astrophysics Data System (ADS)

    Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B.

    2013-01-01

    The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.

  1. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.

    PubMed

    Umari, P; Petrenko, O; Taioli, S; De Souza, M M

    2012-05-14

    Electronic band gaps for optically allowed transitions are calculated for a series of semiconducting single-walled zig-zag carbon nanotubes of increasing diameter within the many-body perturbation theory GW method. The dependence of the evaluated gaps with respect to tube diameters is then compared with those found from previous experimental data for optical gaps combined with theoretical estimations of exciton binding energies. We find that our GW gaps confirm the behavior inferred from experiment. The relationship between the electronic gap and the diameter extrapolated from the GW values is also in excellent agreement with a direct measurement recently performed through scanning tunneling spectroscopy.

  2. First-principles studies of a photovoltaic material based on silicon heavily codoped with sulfur and nitrogen

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Wang, Yongyong; Song, Xiaohui; Yang, Feng

    2018-03-01

    In silicon co-hyperdoped with nitrogen and sulfur, dopant atoms tend to form dimers in the near-equilibrium process. The dimer that contains substitutional N and S atoms has the lowest formation energy and can form an impurity band that overlaps with the conduction band (CB). When separating the two atoms far apart from each other, the impurity band is clearly isolated from the CB and becomes an intermediate band (IB). The sub-band-gap absorption decreases with the decrease in the substitutional atom distance. The sub-band-gap absorption of the material is the combined effect of the configurations with different N-S distances.

  3. Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory.

    PubMed

    Tran, Fabien; Blaha, Peter

    2017-05-04

    Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.

  4. The infrared bands Pechan prism axis parallel detection method

    NASA Astrophysics Data System (ADS)

    Qiang, Hua; Ji, Ming; He, Yu-lan; Wang, Nan-xi; Chang, Wei-jun; Wang, Ling; Liu, Li

    2017-02-01

    In this paper, we put forward a new method to adjust the air gap of the total reflection air gap of the infrared Pechan prism. The adjustment of the air gap in the air gap of the Pechan prism directly affects the parallelism of the optical axis, so as to affect the consistency of the optical axis of the infrared system. The method solves the contradiction between the total reflection and the high transmission of the infrared wave band, and promotes the engineering of the infrared wave band. This paper puts forward the method of adjusting and controlling, which can ensure the full reflection and high penetration of the light, and also can accurately measure the optical axis of the optical axis of the different Pechan prism, and can achieve the precision of the level of the sec. For Pechan prism used in the infrared band image de rotation, make the product to realize miniaturization, lightweight plays an important significance.

  5. Thermally Strained Band Gap Engineering of Transition-Metal Dichalcogenide Bilayers with Enhanced Light-Matter Interaction toward Excellent Photodetectors.

    PubMed

    Wang, Sheng-Wen; Medina, Henry; Hong, Kuo-Bin; Wu, Chun-Chia; Qu, Yindong; Manikandan, Arumugam; Su, Teng-Yu; Lee, Po-Tsung; Huang, Zhi-Quan; Wang, Zhiming; Chuang, Feng-Chuan; Kuo, Hao-Chung; Chueh, Yu-Lun

    2017-09-26

    Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS 2 bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS 2 bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS 2 bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS 2 on cone- and pyramid-patterned sapphire substrates were demonstrated, respectively.

  6. Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2

    PubMed Central

    Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.

    2013-01-01

    Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability. PMID:24108361

  7. Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells.

    PubMed

    Sohn, So Hyeong; Han, Noh Soo; Park, Yong Jin; Park, Seung Min; An, Hee Sang; Kim, Dong-Wook; Min, Byoung Koun; Song, Jae Kyu

    2014-12-28

    The photophysical properties of CuInxGa1-xS2 (CIGS) thin films, prepared by solution-based coating methods, are investigated to understand the correlation between the optical properties of these films and the electrical characteristics of solar cells fabricated using these films. Photophysical properties, such as the depth-dependent band gap and carrier lifetime, turn out to be at play in determining the energy conversion efficiency of solar cells. A double grading of the band gap in CIGS films enhances solar cell efficiency, even when defect states disturb carrier collection by non-radiative decay. The combinational stacking of different density films leads to improved solar cell performance as well as efficient fabrication because a graded band gap and reduced shunt current increase carrier collection efficiency. The photodynamics of minority-carriers suggests that the suppression of defect states is a primary area of improvement in CIGS thin films prepared by solution-based methods.

  8. Spherical silicon-shell photonic band gap structures fabricated by laser-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, H.; Yang, Z. Y.; Lu, Y. F.

    2007-02-01

    Laser-assisted chemical vapor deposition was applied in fabricating three-dimensional (3D) spherical-shell photonic band gap (PBG) structures by depositing silicon shells covering silica particles, which had been self-assembled into 3D colloidal crystals. The colloidal crystals of self-assembled silica particles were formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave Nd:YAG laser (1064nm wavelength) was used to deposit silicon shells by thermally decomposing disilane gas. Periodic silicon-shell/silica-particle PBG structures were obtained. By removing the silica particles enclosed in the silicon shells using hydrofluoric acid, hollow spherical silicon-shell arrays were produced. This technique is capable of fabricating structures with complete photonic band gaps, which is predicted by simulations with the plane wave method. The techniques developed in this study have the potential to flexibly engineer the positions of the PBGs by varying both the silica particle size and the silicon-shell thickness. Ellipsometry was used to investigate the specific photonic band gaps for both structures.

  9. Gallium nitride based logpile photonic crystals.

    PubMed

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  10. Electronic materials with a wide band gap: recent developments

    PubMed Central

    Klimm, Detlef

    2014-01-01

    The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap E g = 0.66 eV) after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (E g = 1.12 eV). This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider E g were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity. PMID:25295170

  11. Effect of potassium doping on electronic structure and thermoelectric properties of topological crystalline insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roychowdhury, Subhajit; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in; Sandhya Shenoy, U.

    2016-05-09

    Topological crystalline insulator (TCI), Pb{sub 0.6}Sn{sub 0.4}Te, exhibits metallic surface states protected by crystal mirror symmetry with negligibly small band gap. Enhancement of its thermoelectric performances needs tuning of its electronic structure particularly through engineering of its band gap. While physical perturbations tune the electronic structure of TCI by breaking of the crystal mirror symmetry, chemical means such as doping have been more attractive recently as they result in better thermoelectric performance in TCIs. Here, we demonstrate that K doping in TCI, Pb{sub 0.6}Sn{sub 0.4}Te, breaks the crystal mirror symmetry locally and widens electronic band gap, which is confirmed bymore » direct electronic absorption spectroscopy and electronic structure calculations. K doping in Pb{sub 0.6}Sn{sub 0.4}Te increases p-type carrier concentration and suppresses the bipolar conduction via widening a band gap, which collectively boosts the thermoelectric figure of merit (ZT) to 1 at 708 K.« less

  12. Direct graphene growth on MgO: origin of the band gap.

    PubMed

    Gaddam, Sneha; Bjelkevig, Cameron; Ge, Siping; Fukutani, Keisuke; Dowben, Peter A; Kelber, Jeffry A

    2011-02-23

    A 2.5 monolayer (ML) thick graphene film grown by chemical vapor deposition of thermally dissociated C(2)H(4) on MgO(111), displays a significant band gap. The apparent six-fold low energy electron diffraction (LEED) pattern actually consists of two three-fold patterns with different 'A' and 'B' site diffraction intensities. Similar effects are observed for the LEED patterns of a 1 ML carbon film derived from annealing adventitious carbon on MgO(111), and for a 1.5 ML thick graphene film grown by sputter deposition on the 1 ML film. The LEED data indicate different electron densities at the A and B sites of the graphene lattice, suggesting that the observed band gap results from lifting the graphene HOMO/LUMO degeneracy at the Dirac point. The data also indicate that disparities in A site/B site LEED intensities decrease with increasing carbon overlayer thickness, suggesting that the graphene band gap size decreases with increasing number of graphene layers on MgO(111). © 2011 IOP Publishing Ltd

  13. Experimental and theoretical investigation of relative optical band gaps in graphene generations

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Deepika; Singh, Sukhbir; Yadav, Sriniwas; Kumar, Ashok; Kaur, Inderpreet

    2017-01-01

    Size and chemical functionalization dependant optical band gaps in graphene family nanomaterials were investigated by experimental and theoretical study using Tauc plot and density functional theory (DFT). We have synthesized graphene oxide through a modified Hummer’s method using graphene nanoplatelets and sequentially graphene quantum dots through hydrothermal reduction. The experimental results indicate that the optical band gap in graphene generations was altered by reducing the size of graphene sheets and attachment of chemical functionalities like epoxy, hydroxyl and carboxyl groups plays a crucial role in varying optical band gaps. It is further confirmed by DFT calculations that the π orbitals were more dominatingly participating in transitions shown by projected density of states and the molecular energy spectrum represented the effect of attached functional groups along with discreteness in energy levels. Theoretical results were found to be in good agreement with experimental results. All of the above different variants of graphene can be used in native or modified form for sensor design and optoelectronic applications.

  14. Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride.

    PubMed

    Wang, Lingrui; Wang, Kai; Xiao, Guanjun; Zeng, Qiaoshi; Zou, Bo

    2016-12-15

    Organometal halide perovskites are promising materials for optoelectronic devices. Further development of these devices requires a deep understanding of their fundamental structure-property relationships. The effect of pressure on the structural evolution and band gap shifts of methylammonium lead chloride (MAPbCl 3 ) was investigated systematically. Synchrotron X-ray diffraction and Raman experiments provided structural information on the shrinkage, tilting distortion, and amorphization of the primitive cubic unit cell. In situ high pressure optical absorption and photoluminescence spectra manifested that the band gap of MAPbCl 3 could be fine-tuned to the ultraviolet region by pressure. The optical changes are correlated with pressure-induced structural evolution of MAPbCl 3 , as evidenced by band gap shifts. Comparisons between Pb-hybrid perovskites and inorganic octahedra provided insights on the effects of halogens on pressure-induced transition sequences of these compounds. Our results improve the understanding of the structural and optical properties of organometal halide perovskites.

  15. Strain, stabilities and electronic properties of hexagonal BN bilayers

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yoshitaka; Saito, Susumu

    Hexagonal boron nitride (h-BN) atomic layers have been regarded as fascinating materials both scientifically and technologically due to the sizable band gap. This sizable band-gap nature of the h-BN atomic layers would provide not only new physical properties but also novel nano- and/or opto-electronics applications. Here, we study the first-principles density-functional study that clarifies the biaxial strain effects on the energetics and the electronic properties of h-BN bilayers. We show that the band gaps of the h-BN bilayers are tunable by applying strains. Furthermore, we show that the biaxial strains can produce a transition from indirect to direct band gaps of the h-BN bilayer. We also discuss that both AA and AB stacking patterns of h-BN bilayer become feasible structures because h-BN bilayers possess two different directions in the stacking patterns. Supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005.

  16. Tuning the band gap in silicene by oxidation.

    PubMed

    Du, Yi; Zhuang, Jincheng; Liu, Hongsheng; Xu, Xun; Eilers, Stefan; Wu, Kehui; Cheng, Peng; Zhao, Jijun; Pi, Xiaodong; See, Khay Wai; Peleckis, Germanas; Wang, Xiaolin; Dou, Shi Xue

    2014-10-28

    Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. With the use of low-temperature scanning tunneling microscopy, we find that the adsorption configurations and amounts of oxygen adatoms on the silicene surface are critical for band gap engineering, which is dominated by different buckled structures in √13 × √13, 4 × 4, and 2√3 × 2√3 silicene layers. The Si-O-Si bonds are the most energy-favored species formed on √13 × √13, 4 × 4, and 2√3 × 2√3 structures under oxidation, which is verified by in situ Raman spectroscopy as well as first-principles calculations. The silicene monolayers retain their structures when fully covered by oxygen adatoms. Our work demonstrates the feasibility of tuning the band gap of silicene with oxygen adatoms, which, in turn, expands the base of available two-dimensional electronic materials for devices with properties that is hardly achieved with graphene oxide.

  17. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  18. Effect of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Xueyong; Li Hongfan; Lv Zhensu

    Based on the mode-coupling method, numerical analysis is presented to demonstrate the influence of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency. Results show that the interval between the band-gaps of the competing mode and the desired working mode is narrowed by use of positive-taper ripples, but is expanded if negative-taper ripples are employed, and the influence of the negative-taper ripples is obviously more advantageous than the positive-taper ripples; the band-gap overlap of modes can be efficiently separated by use of negative-taper ripples. The residual side-lobes of the frequency response in a coaxial Braggmore » structure with ripple taper also can be effectively suppressed by employing the windowing-function technique. These peculiarities provide potential advantage in constructing a coaxial Bragg cavity with high quality factor for single higher-order-mode operation of a high-power free-electron maser in the terahertz frequency range.« less

  19. Origin of multiple band gap values in single width nanoribbons

    PubMed Central

    Goyal, Deepika; Kumar, Shailesh; Shukla, Alok; Kumar, Rakesh

    2016-01-01

    Deterministic band gap in quasi-one-dimensional nanoribbons is prerequisite for their integrated functionalities in high performance molecular-electronics based devices. However, multiple band gaps commonly observed in graphene nanoribbons of the same width, fabricated in same slot of experiments, remain unresolved, and raise a critical concern over scalable production of pristine and/or hetero-structure nanoribbons with deterministic properties and functionalities for plethora of applications. Here, we show that a modification in the depth of potential wells in the periodic direction of a supercell on relative shifting of passivating atoms at the edges is the origin of multiple band gap values in nanoribbons of the same width in a crystallographic orientation, although they carry practically the same ground state energy. The results are similar when calculations are extended from planar graphene to buckled silicene nanoribbons. Thus, the findings facilitate tuning of the electronic properties of quasi-one-dimensional materials such as bio-molecular chains, organic and inorganic nanoribbons by performing edge engineering. PMID:27808172

  20. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  1. Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-12-01

    Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.

  2. First principles investigation of nitrogenated holey graphene

    NASA Astrophysics Data System (ADS)

    Xu, Cui-Yan; Dong, Hai-Kuan; Shi, Li-Bin

    2018-04-01

    The zero band gap problem limits the application of graphene in the field of electronic devices. Opening the band gap of graphene has become a research issue. Nitrogenated holey graphene (NHG) has attracted much attention because of its semiconducting properties. However, the stacking orders and defect properties have not been investigated. In this letter, the structural and stacking properties of NHG are first investigated. We obtain the most stable stacking structure. Then, the band structures for bulk and multilayer NHG are studied. Impact of the strain on the band gaps and bond characteristics is discussed. In addition, we investigate formation mechanism of native defects of carbon vacancy (VC), carbon interstitial (Ci), nitrogen vacancy (VN), and nitrogen interstitial (Ni) in bulk NHG. Formation energies and transition levels of these native defects are assessed.

  3. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi

    2012-06-01

    Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.

  4. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Thi Dep, E-mail: hathidep@yahoo.com; Faculty of Electronic Technology, Industrial University of Ho Chi Minh City, Hochiminh City; Bao, JingFu, E-mail: baojingfu@uestc.edu.cn

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics tomore » examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.« less

  5. Optoelectronic properties of candidate photovoltaic Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nhalil, Hariharan; Han, Dan; Du, Mao-Hua

    High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less

  6. Designer Disordered Complex Media: Hyperuniform Photonic and Phononic Band Gap Materials

    NASA Astrophysics Data System (ADS)

    Amoah, Timothy

    In this thesis we investigate designer disordered complex media for photonics and phononics applications. Initially we focus on the photonic properties and we analyse hyperuniform disordered structures (HUDS) using numerical simulations. Photonic HUDS are a new class of photonic solids, which display large, isotropic photonic band gaps (PBG) comparable in size to the ones found in photonic crystals (PC). We review their complex interference properties, including the origin of PBGs and potential applications. HUDS combine advantages of both isotropy due to disorder (absence of long-range order) and controlled scattering properties from uniform local topology due to hyperuniformity (constrained disorder). The existence of large band gaps in HUDS contradicts the longstanding intuition that Bragg scattering and long-range translational order is required in PBG formation, and demonstrates that interactions between Mie-like local resonances and multiple scattering can induce on their own PBGs. The discussion is extended to finite height effects of planar architectures such as pseudo-band-gaps in photonic slabs as well as the vertical confinement in the presence of disorder. The particular case of a silicon-on-insulator compatible hyperuniform disordered network structure is considered for TE polarised light. We address technologically realisable designs of HUDS including localisation of light in point-defect-like optical cavities and the guiding of light in freeform PC waveguide analogues. Using finite-difference time domain and band structure computer simulations, we show that it is possible to construct optical cavities in planar hyperuniform disordered solids with isotropic band gaps that effciently confine TE polarised radiation. We thus demonstrate that HUDS are a promising general-purpose design platform for integrated optical micro-circuitry. After analysing HUDS for photonic applications we investigate them in the context of elastic waves towards phononics applications. We demonstrate the first phononic band gaps (PnBG) for HUDS. We find that PnBGs in phononic HUDS can confine and guide elastic waves similar to photonic HUDS for EM radiation.

  7. Optoelectronic properties of candidate photovoltaic Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors

    DOE PAGES

    Nhalil, Hariharan; Han, Dan; Du, Mao-Hua; ...

    2018-03-01

    High temperature synthesis and optical band gaps are reported for three candidate photovoltaic earth-abundant Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 semiconductors. The reported synthesis method is found to be more advantageous for KAg 2SbS 4 compared to the literature reported synthesis utilizing supercritical ammonia as a reaction medium, which produces a mixture of chalcogenide products. Based on optical diffuse reflectance data, Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 have band gaps in the 1.6–1.8 eV range, and are shown to be stable in ambient air for a period of 6 weeks, making themmore » attractive candidates for solar cell applications. Density functional theory (DFT) calculations indicate indirect band gaps for Cu 2PbSiS 4 and KAg 2SbS 4, and a nearly direct band gap for Ag 2PbGeS 4 with the calculated difference between indirect and direct gaps of only 30 meV. The p-type semiconducting behavior of Cu 2PbSiS 4, Ag 2PbGeS 4 is also verified by the transport measurments. The 3D connectivity of the polyanionic networks in these compounds results in dispersive valence and conduction bands, which is especially noticeable for KAg 2SbS 4. This fact is in part attributed to the presence of formally pentavalent SbV in this compound leading to empty Sb 5s orbitals in the conduction band. Finally, we discuss the potential of Cu 2PbSiS 4, Ag 2PbGeS 4 and KAg 2SbS 4 for photovoltaic applications based on synthesis, stability, band gap and electronic structure considerations.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying-Jie, E-mail: qfyingjie@iphy.ac.cn; Institute of Physics, Chinese Academy of Sciences, Beijing, 100190; Han, Wei

    In this paper, we propose a scheme to enhance trapping of entanglement of two qubits in the environment of a photonic band gap material. Our entanglement trapping promotion scheme makes use of combined weak measurements and quantum measurement reversals. The optimal promotion of entanglement trapping can be acquired with a reasonable finite success probability by adjusting measurement strengths. - Highlights: • Propose a scheme to enhance entanglement trapping in photonic band gap material. • Weak measurement and its reversal are performed locally on individual qubits. • Obtain an optimal condition for maximizing the concurrence of entanglement trapping. • Entanglement suddenmore » death can be prevented by weak measurement in photonic band gap.« less

  9. The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene

    NASA Astrophysics Data System (ADS)

    Zhu, Ziqing; Chen, Changpeng; Liu, Jiayi; Han, Lu

    2018-01-01

    The electronic properties and optical properties of single and double Au-doped phosphorene have been comparatively investigated using the first-principles plane-wave pseudopotential method based on density functional theory. The decrease from direct band gap 0.78 eV to indirect band gap 0.22 and 0.11 eV are observed in the single and double Au-doped phosphorene, respectively. The red shifts of absorbing edge occur in both doped systems, which consequently enhance the absorbing of infrared light in phosphorene. Band gap engineering can, therefore, be used to directly tune the optical absorption of phosphorene system by substitutional Au doping.

  10. Finite-size Scaling of the Density of States in Photonic Band Gap Crystals

    NASA Astrophysics Data System (ADS)

    Hasan, Shakeeb Bin; Mosk, Allard P.; Vos, Willem L.; Lagendijk, Ad

    2018-06-01

    The famous vanishing of the density of states (DOS) in a band gap, be it photonic or electronic, pertains to the infinite-crystal limit. In contrast, all experiments and device applications refer to finite crystals, which raises the question: Upon increasing the linear size L of a crystal, how fast does the DOS approach the infinite-crystal limit? We present a theory for finite crystals that includes Bloch-mode broadening due to the presence of crystal boundaries. Our results demonstrate that the DOS for frequencies inside a band gap has a 1 /L scale dependence for crystals in one, two and three dimensions.

  11. Special purpose modes in photonic band gap fibers

    DOEpatents

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  12. Diluted magnetic semiconductors with narrow band gaps

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Maekawa, Sadamichi

    2016-10-01

    We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.

  13. A new approach to high-efficiency multi-band-gap solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnham, K.W.J.; Duggan, G.

    1990-04-01

    The advantages of using multi-quantum-well or superlattice systems as the absorbers in concentrator solar cells are discussed. By adjusting the quantum-well width, an effective band-gap variation that covers the high-efficiency region of the solar spectrum can be obtained. Higher efficiencies should result from the ability to optimize separately current and voltage generating factors. Suitable structures to ensure good carrier separation and collection and to obtain higher open-circuit voltages are presented using the (AlGa)As/GaAs/(InGa)As system. Efficiencies above existing single-band-gap limits should be achievable, with upper limits in excess of 40%.

  14. Microscopic Distributions of Defect Luminescence From Subgrain Boundaries in Multicrystalline Silicon Wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hieu T.; Jensen, Mallory A.; Li, Li

    We investigate the microscopic distributions of sub-band-gap luminescence emission (the so-called D-lines D1/D2/D3/D4) and the band-to-band luminescence intensity, near recombination-active sub-grain boundaries in multicrystalline silicon wafers for solar cells. We find that the sub-band-gap luminescence from decorating defects/impurities (D1/D2) and from intrinsic dislocations (D3/D4) have distinctly different spatial distributions, and are asymmetric across the sub-grain boundaries. The presence of D1/D2 is correlated with a strong reduction in the band-to-band luminescence, indicating a higher recombination activity. In contrast, D3/D4 emissions are not strongly correlated with the band-to-band intensity. Based on spatially-resolved, synchrotron-based micro-X-ray fluorescence measurements of metal impurities, we confirm thatmore » high densities of metal impurities are present at locations with strong D1/D2 emission but low D3/D4 emission. Finally, we show that the observed asymmetry of the sub-band-gap luminescence across the sub-grain boundaries is due to their inclination below the wafer surface. Based on the luminescence asymmetries, the sub-grain boundaries are shown to share a common inclination locally, rather than be orientated randomly.« less

  15. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less

  16. Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal.

    PubMed

    Göncü, F; Luding, S; Bertoldi, K

    2012-06-01

    The band structure of a two-dimensional granular crystal composed of silicone rubber and polytetrafluoroethylene (PTFE) cylinders is investigated numerically. This system was previously shown to undergo a pattern transformation with uniaxial compression by Göncü et al. [Soft Matter 7, 2321 (2011)]. The dispersion relations of the crystal are computed at different levels of deformation to demonstrate the tunability of the band structure, which is strongly affected by the pattern transformation that induces new band gaps. Replacement of PTFE particles with rubber ones reveals that the change of the band structure is essentially governed by pattern transformation rather than particles' mechanical properties.

  17. Non-native Co-, Mn-, and Ti-oxyhydroxide nanocrystals in ferritin for high efficiency solar energy conversion

    NASA Astrophysics Data System (ADS)

    Erickson, S. D.; Smith, T. J.; Moses, L. M.; Watt, R. K.; Colton, J. S.

    2015-01-01

    Quantum dot solar cells seek to surpass the solar energy conversion efficiencies achieved by bulk semiconductors. This new field requires a broad selection of materials to achieve its full potential. The 12 nm spherical protein ferritin can be used as a template for uniform and controlled nanocrystal growth, and to then house the nanocrystals for use in solar energy conversion. In this study, precise band gaps of titanium, cobalt, and manganese oxyhydroxide nanocrystals within ferritin were measured, and a change in band gap due to quantum confinement effects was observed. The range of band gaps obtainable from these three types of nanocrystals is 2.19-2.29 eV, 1.93-2.15 eV, and 1.60-1.65 eV respectively. From these measured band gaps, theoretical efficiency limits for a multi-junction solar cell using these ferritin-enclosed nanocrystals are calculated and found to be 38.0% for unconcentrated sunlight and 44.9% for maximally concentrated sunlight. If a ferritin-based nanocrystal with a band gap similar to silicon can be found (i.e. 1.12 eV), the theoretical efficiency limits are raised to 51.3% and 63.1%, respectively. For a current matched cell, these latter efficiencies become 41.6% (with an operating voltage of 5.49 V), and 50.0% (with an operating voltage of 6.59 V), for unconcentrated and maximally concentrated sunlight respectively.

  18. Energy band-gap calculations of short-period (ZnTe)m(ZnSe)n and (ZnS)m(ZnSe)n strained-layer superlattices

    NASA Astrophysics Data System (ADS)

    Wu, Yi-hong; Fujita, Shizuo; Fujita, Shigeo

    1990-01-01

    We report on the calculations of energy band gaps based on the semiempirical tight-binding model for short-period (ZnTe)m(ZnSe)n and (ZnS)m(ZnSe)n strained-layer superlattices (SLSs). During the calculation, much attention has been paid to the modeling of strain effect. It is found that (ZnTe)m(ZnSe)n superlattices grown on InAs, InP, and GaAs substrates show very different electronic properties from each other, which is consistent with experimental results now available. Assuming that the emission observed for (ZnTe)m(ZnSe)n SLS originates from intrinsic luminescence, we obtain an unstrained valence-band offset of 1.136±0.1 eV for this superlattice. On the other hand, the band gap of (ZnS)m(ZnSe)n superlattice grown coherently on GaP is found to exhibit a much stronger structure dependence than that grown coherently on GaAs. The difference of energy gap between superlattice with equal monolayers (m=n) and the corresponding alloy with equal chalcogenide composition is also discussed.

  19. Organic Electronic Devices Using Crosslinked Polyelectrolyte Multilayers as an Ultra-Thin Dielectric Material

    DTIC Science & Technology

    2006-09-01

    energy band diagram illustrating the allowed energies for valence and conducting electrons. The dashes within the band gap (Eg) represent localized ...allowed energies for valence and conducting electrons. The dashes within the band gap (Eg) represent localized electron energy states, or traps, that...been observed with the formation of alternating bond lengths along the backbone.43 The localization of the π-electrons while forming the shorter double

  20. Theoretical studies on band structure and optical gain of GaInAsN/GaAs /GaAs cylindrical quantum dot

    NASA Astrophysics Data System (ADS)

    Mal, Indranil; Samajdar, Dip Prakash; John Peter, A.

    2018-07-01

    Electronic band structure, effective masses, band offsets and optical gain of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot systems are investigated using 10 band k·p Hamiltonian for various nitrogen and indium concentrations. The calculations include the effects of strain generated due to the lattice mismatch and the effective band gap of GaInAsN/GaAs heterostructures. The variation of conduction band, light hole and heavy hole band offsets with indium and nitrogen compositions in the alloy are obtained. The band structure of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot is found in the crystal directions Δ (100) and Λ (111) using 10 band k·p Hamiltonian. The optical gain of the cylindrical quantum dot structures as functions of surface carrier concentration and the dot radius is investigated. Our results show that the tensile strain of 1.34% generates a band gap of 0.59 eV and the compressive strain of 2.2% produces a band gap of 1.28 eV and the introduction of N atoms has no effect on the spin orbit split off band. The variation of optical gain with the dot size and the carrier concentration indicates that the optical gain increases with the decrease in the radius of the quantum dot. The results may be useful for the potential applications in optical devices.

  1. Composition dependent band offsets of ZnO and its ternary alloys

    NASA Astrophysics Data System (ADS)

    Yin, Haitao; Chen, Junli; Wang, Yin; Wang, Jian; Guo, Hong

    2017-01-01

    We report the calculated fundamental band gaps of wurtzite ternary alloys Zn1-xMxO (M = Mg, Cd) and the band offsets of the ZnO/Zn1-xMxO heterojunctions, these II-VI materials are important for electronics and optoelectronics. Our calculation is based on density functional theory within the linear muffin-tin orbital (LMTO) approach where the modified Becke-Johnson (MBJ) semi-local exchange is used to accurately produce the band gaps, and the coherent potential approximation (CPA) is applied to deal with configurational average for the ternary alloys. The combined LMTO-MBJ-CPA approach allows one to simultaneously determine both the conduction band and valence band offsets of the heterojunctions. The calculated band gap data of the ZnO alloys scale as Eg = 3.35 + 2.33x and Eg = 3.36 - 2.33x + 1.77x2 for Zn1-xMgxO and Zn1-xCdxO, respectively, where x being the impurity concentration. These scaling as well as the composition dependent band offsets are quantitatively compared to the available experimental data. The capability of predicting the band parameters and band alignments of ZnO and its ternary alloys with the LMTO-CPA-MBJ approach indicate the promising application of this method in the design of emerging electronics and optoelectronics.

  2. Multi-band gap and new solar cell options workshop

    NASA Technical Reports Server (NTRS)

    Hutchby, J.; Timmons, M.; Olson, J. M.

    1993-01-01

    Discussions of the multi-band gap (MBG) and new solar cell options workshop are presented. Topics discussed include: greater than 2 terminal cells; radiation damage preventing development of MBG cells for space; lattice matching; measurement of true performance; future of II-VI materials in MBG devices; and quaternaries.

  3. A new method for the determination of optical band gap and the nature of optical transitions in semiconductors

    NASA Astrophysics Data System (ADS)

    Souri, Dariush; Tahan, Zahra Esmaeili

    2015-05-01

    A new method (named as DASF: Derivation of absorption spectrum fitting) is proposed for the determination of optical band gap and the nature of optical transitions in semiconductors; this method only requires the measurement of the absorbance spectrum of the sample, avoiding any needs to film thickness or any other parameters. In this approach, starting from absorption spectrum fitting (ASF) procedure and by the first derivation of the absorbance spectrum, the optical band gap and then the type of optical transition can be determined without any presumption about the nature of transition. DASF method was employed on (60-x)V2O5-40TeO2-xAg2O glassy systems (hereafter named as TVAgx), in order to confirm the validity of this new method. For the present glasses, the DASF results were compared with the results of ASF procedure for, confirming a very good agreement between these approaches. These glasses were prepared by using the melt quenching and blowing methods to obtain bulk and film samples, respectively. Results show that the optical band gap variation for TVAgx glasses can be divided into two regions, 0 ≤ x ≤ 20 and 20 ≤ x ≤ 40 mol%. The optical band gap has a maximum value equal to 2.72 eV for x = 40 and the minimum value equal to 2.19 eV for x = 40. Also, some physical quantities such as the width of the band tails (Urbach energy), glass density, molar volume, and optical basicity were reported for the under studied glasses.

  4. Dynamical electron-phonon coupling, G W self-consistency, and vertex effect on the electronic band gap of ice and liquid water

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2017-06-01

    We study the impact of dynamical electron-phonon (el-ph) effects on the electronic band gap of ice and liquid water by accounting for frequency-dependent Fan contributions in the el-ph mediated self-energy within the many-body perturbation theory (MBPT). We find that the dynamical el-ph coupling effects greatly reduce the static el-ph band-gap correction of the hydrogen-rich molecular ice crystal from-2.46 to -0.23 eV in great contrast to the result of Monserrat et al. [Phys. Rev. B 92, 140302 (2015), 10.1103/PhysRevB.92.140302]. This is of particular importance as otherwise the static el-ph gap correction would considerably reduce the electronic band gap, leading to considerable underestimation of the intense peaks of optical absorption spectra of ice which would be in great disagreement to experimental references. By contrast, the static el-ph gap correction of liquid water is very moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap correction to -0.19 eV. Further, we determine the diverse sensitivity of ice and liquid water to the G W self-consistency and show that the energy-only self-consistent approach (GnWn ) exhibits large implicit vertex character in comparison to the quasiparticle self-consistent approach, for which an explicit calculation of vertex corrections is necessary for good agreement with experiment.

  5. Effects of quantum confinement and shape on band gap of core/shell quantum dots and nanowires

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2011-05-01

    A quantum confinement model for nanocrystals developed is extended to study for the optical gap shifts in core/shell quantum dots and nanowires. The chemical bond properties and gap shifts in the InP/ZnS, CdSe/CdS, CdSe/ZnS, and CdTe/ZnS core/shell quantum dots are calculated in detail. The calculated band gaps are in excellent agreement with experimental values. The effects of structural taping and twinning on quantum confinement of InP and Si nanowires are elucidated. It is found theoretically that a competition between the positive Kubo energy-gap shift and the negative surface energy shift plays the crucial role in the optical gaps of these nanosystems.

  6. Topological Band Theory for Non-Hermitian Hamiltonians

    NASA Astrophysics Data System (ADS)

    Shen, Huitao; Zhen, Bo; Fu, Liang

    2018-04-01

    We develop the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex. After generalizing the notion of gapped band structures to the non-Hermitian case, we classify "gapped" bands in one and two dimensions by explicitly finding their topological invariants. We find nontrivial generalizations of the Chern number in two dimensions, and a new classification in one dimension, whose topology is determined by the energy dispersion rather than the energy eigenstates. We then study the bulk-edge correspondence and the topological phase transition in two dimensions. Different from the Hermitian case, the transition generically involves an extended intermediate phase with complex-energy band degeneracies at isolated "exceptional points" in momentum space. We also systematically classify all types of band degeneracies.

  7. Magnetic field tuning of an excitonic insulator between the weak and strong coupling regimes in quantum limit graphite [Tunable excitonic insulator in quantum limit graphite

    DOE PAGES

    Zhu, Zengwei; McDonald, R. D.; Shekhter, A.; ...

    2017-05-04

    Here, the excitonic insulator phase has long been predicted to form in proximity to a band gap opening in the underlying band structure. The character of the pairing is conjectured to crossover from weak (BCS-like) to strong coupling (BEC-like) as the underlying band structure is tuned from the metallic to the insulating side of the gap opening. Here we report the high-magnetic field phase diagram of graphite to exhibit just such a crossover. By way of comprehensive angle-resolved magnetoresistance measurements, we demonstrate that the underlying band gap opening occurs inside the magnetic field-induced phase, paving the way for a systematicmore » study of the BCS-BEC-like crossover by means of conventional condensed matter probes.« less

  8. Electronic properties of BN-doped bilayer graphene and graphyne in the presence of electric field

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2013-11-01

    In the present paper, we have used density functional theory to study electronic properties of bilayer graphene and graphyne doped with B and N impurities in the presence of electric field. It has been demonstrated that a band gap is opened in the band structures of the bilayer graphene and graphyne by B and N doping. We have also investigated influence of electric field on the electronic properties of BN-doped bilayer graphene and graphyne. It is found that the band gaps induced by B and N impurities are increased by applying electric field. Our results reveal that doping with B and N, and applying electric field are an effective method to open and control a band gap which is useful to design carbon-based next-generation electronic devices.

  9. Continuously controlled optical band gap in oxide semiconductor thin films

    DOE PAGES

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO 2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion,more » charge density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Lingping; Liu, Gang; Gong, Jue

    The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to -100% increase) under mild pressures at -0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing anymore » adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.« less

  11. Density Functional Theory and Beyond for Band-Gap Screening: Performance for Transition-Metal Oxides and Dichalcogenides.

    PubMed

    Li, Wenqing; Walther, Christian F J; Kuc, Agnieszka; Heine, Thomas

    2013-07-09

    The performance of a wide variety of commonly used density functionals, as well as two screened hybrid functionals (HSE06 and TB-mBJ), on predicting electronic structures of a large class of en vogue materials, such as metal oxides, chalcogenides, and nitrides, is discussed in terms of band gaps, band structures, and projected electronic densities of states. Contrary to GGA, hybrid functionals and GGA+U, both HSE06 and TB-mBJ are able to predict band gaps with an appreciable accuracy of 25% and thus allow the screening of various classes of transition-metal-based compounds, i.e., mixed or doped materials, at modest computational cost. The calculated electronic structures are largely unaffected by the choice of basis functions and software implementation, however, might be subject to the treatment of the core electrons.

  12. Magnetic field tuning of an excitonic insulator between the weak and strong coupling regimes in quantum limit graphite [Tunable excitonic insulator in quantum limit graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zengwei; McDonald, R. D.; Shekhter, A.

    Here, the excitonic insulator phase has long been predicted to form in proximity to a band gap opening in the underlying band structure. The character of the pairing is conjectured to crossover from weak (BCS-like) to strong coupling (BEC-like) as the underlying band structure is tuned from the metallic to the insulating side of the gap opening. Here we report the high-magnetic field phase diagram of graphite to exhibit just such a crossover. By way of comprehensive angle-resolved magnetoresistance measurements, we demonstrate that the underlying band gap opening occurs inside the magnetic field-induced phase, paving the way for a systematicmore » study of the BCS-BEC-like crossover by means of conventional condensed matter probes.« less

  13. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE PAGES

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    2016-05-11

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  14. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  15. The Pseudogap in Multiband Superconductivity

    NASA Astrophysics Data System (ADS)

    Kristoffel, N.; Rubin, P.

    2012-11-01

    The pseudogap (PG) excitation is analyzed as a natural event in multiband superconductivity. It corresponds to minimal quasiparticle excitation energy of an electron band not touched by the chemical potential. The critical points of the phase diagram are determined by vanishing conditions for normal state pseudogaps (NPG). For two bands (gapped or overlapping) these are positioned on edges of the superconducting dome. Theoretical background for a three-band system with two interband pairing channels is developed. There are three independent superconducting gaps (SCG). The PG is associated with the band component possessing a bare gap which can be quenched by doping. At low doping the PG and the SCG of another band component coexist. The critical point is not fixed in respect of the transition temperature (Tc) dome background. The depletion of the PG associated states is restored here. This effect can also be indirect by the participation of these states in determining the chemical potential position. At the critical point the PG looses its normal state contribution and continues as the SCG of the same band. Illustrative examples on the doping scale have been calculated.

  16. Microscopic theory of the superconducting gap in the quasi-one-dimensional organic conductor (TMTSF) 2ClO4 : Model derivation and two-particle self-consistent analysis

    NASA Astrophysics Data System (ADS)

    Aizawa, Hirohito; Kuroki, Kazuhiko

    2018-03-01

    We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.

  17. Effect of electronic structure of the diamond surface on the strength of the diamond-metal interface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1981-01-01

    A diamond surface undergoes a transformation in its electronic structure by a vacuum anneal at approximately 900 C. The polished surface has no electronic states in the band gap, whereas the annealed surface has both occupied and unoccupied states in the and gap and exhibits some electrical conductivity. The effect of this transformation on the strength of the diamond metal interface was investigated by measuring the static friction force of an atomically clean meta sphere on a diamond flat in ultrahigh vacuum. It was found that low friction (weak bonding) is associated with the diamond surface devoid of gap states whereas high friction (strong bonding) is associated with the diamond surface with gap states. Exposure of the annealed surface to excited hydrogen also leads to weak bonding. The interfacial bond is discussed in terms of interaction of the metal conduction band electrons with the band gap states on the diamond surface. Effects of surface electrical conductivity on the interfacial bond are also be considered.

  18. Giant Hall Photoconductivity in Narrow-Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.; Kats, Mikhail A.

    2016-12-01

    Carrier dynamics acquire a new character in the presence of Bloch-band Berry curvature, which naturally arises in gapped Dirac materials (GDMs). Here we argue that photoresponse in GDMs with small band gaps is dramatically enhanced by Berry curvature. This manifests in a giant and saturable Hall photoconductivity when illuminated by circularly polarized light. Unlike Hall motion arising from a Lorentz force in a magnetic field, which impedes longitudinal carrier motion, Hall photoconductivity arising from Berry curvature can boost longitudinal carrier transport. In GDMs, this results in a helicity-dependent photoresponse in the Hall regime, where photoconductivity is dominated by its Hall component. We find that the induced Hall conductivity per incident irradiance is enhanced by up to six orders of magnitude when moving from the visible regime (with corresponding band gaps) to the far infrared. These results suggest that narrow-gap GDMs are an ideal test-bed for the unique physics that arise in the presence of Berry curvature, and open a new avenue for infrared and terahertz optoelectronics.

  19. Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuan; Liao, Tianjun; Zhang, Yanchao

    2016-01-28

    A new model of the photon-enhanced thermionic emission (PETE) device with a nanoscale vacuum gap is established by introducing the quantum tunneling effect and the image force correction. Analytic expressions for both the thermionic emission and tunneling currents are derived. The electron concentration and the temperature of the cathode are determined by the particle conservation and energy balance equations. The effects of the operating voltage on the maximum potential barrier, cathode temperature, electron concentration and equilibrium electron concentration of the conduction band, and efficiency of the PETE device are discussed in detail for different given values of the vacuum gapmore » length. The influence of the band gap of the cathode and flux concentration on the efficiency is further analyzed. The maximum efficiency of the PETE and the corresponding optimum values of the band gap and the operating voltage are determined. The results obtained here show that the efficiency of the PETE device can be significantly improved by employing a nanoscale vacuum gap.« less

  20. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Kryshtal, R. G.; Medved, A. V.

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW - magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW - magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW - magnonic crystals are promising for signal processing in the GHz range.

  1. Three-dimensional nature of the band structure of ZrTe 5 measured by high-momentum-resolution photoemission spectroscopy [3D nature ZrTe 5 band structure measured by high-momentum-resolution photoemission spectroscopy

    DOE PAGES

    Xiong, H.; Sobota, J. A.; Yang, S. -L.; ...

    2017-05-10

    Here, we have performed a systematic high-momentum-resolution photoemission study on ZrTe 5 using 6-eV photon energy. We have measured the band structure near the Γ point, and quantified the gap between the conduction and valence band as 18 ≤ Δ ≤ 29 meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the three-dimensional (3D) nature of the material's band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe 5 is not a 3D strong topologicalmore » insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe 5 being a 3D weak topological insulator.« less

  2. Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method

    NASA Astrophysics Data System (ADS)

    Wu, Zhijing; Li, Fengming; Zhang, Chuanzeng

    2018-05-01

    Inspired by the hierarchical structures of butterfly wing surfaces, a new kind of lattice structures with a two-order hierarchical periodicity is proposed and designed, and the band-gap properties are investigated by the spectral element method (SEM). The equations of motion of the whole structure are established considering the macro and micro periodicities of the system. The efficiency of the SEM is exploited in the modeling process and validated by comparing the results with that of the finite element method (FEM). Based on the highly accurate results in the frequency domain, the dynamic behaviors of the proposed two-order hierarchical structures are analyzed. An original and interesting finding is the existence of the distinct macro and micro stop-bands in the given frequency domain. The mechanisms for these two types of band-gaps are also explored. Finally, the relations between the hierarchical periodicities and the different types of the stop-bands are investigated by analyzing the parametrical influences.

  3. AB INITIO STUDY OF OPTOELECTRONIC PROPERTIES OF SPINEL ZnAl2O4 BEYOND GGA AND LDA

    NASA Astrophysics Data System (ADS)

    Yousaf, Masood; Saeed, M. A.; Isa, Ahmad Radzi Mat; Rahnamaye Aliabad, H. A.; Noor, N. A.

    2012-12-01

    Electronic band structure and optical parameters of ZnAl2O4 are investigated by first-principles technique based on a new potential approximation, known as modified Becke-Johnson (mBJ). This method describes the excited states of insulators and semiconductors more accurately The recent direct band gap result by EV-GGA is underestimated by about 15% compared to our band gap value using mBJ-GGA. The value of the band gap of ZnAl2O4 decreases as follows: Eg(mBJ-GGA/LDA) > Eg(GGA) > Eg(LDA). The band structure base optical parametric quantities (dielectric constant, index of refraction, reflectivity and optical conductivity) are also calculated, and their variations with energy range are discussed. The first critical point (optical absorption's edge) in ZnAl2O4 occurs at about 5.26 eV in case of mBJ. This study about the optoelectronic properties indicates that ZnAl2O4 can be used in optical devices.

  4. Three-dimensional nature of the band structure of ZrTe 5 measured by high-momentum-resolution photoemission spectroscopy [3D nature ZrTe 5 band structure measured by high-momentum-resolution photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, H.; Sobota, J. A.; Yang, S. -L.

    Here, we have performed a systematic high-momentum-resolution photoemission study on ZrTe 5 using 6-eV photon energy. We have measured the band structure near the Γ point, and quantified the gap between the conduction and valence band as 18 ≤ Δ ≤ 29 meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the three-dimensional (3D) nature of the material's band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe 5 is not a 3D strong topologicalmore » insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe 5 being a 3D weak topological insulator.« less

  5. Layered Halide Double Perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for Photovoltaic Applications.

    PubMed

    Tang, Gang; Xiao, Zewen; Hosono, Hideo; Kamiya, Toshio; Fang, Daining; Hong, Jiawang

    2018-01-04

    Over the past few years, the development of lead-free and stable perovskite absorbers with excellent performance has attracted extensive attention. Much effort has been devoted to screening and synthesizing this type of solar cell absorbers. Here, we present a general design strategy for designing the layered halide double perovskites Cs 3+n M(II) n Sb 2 X 9+3n (M = Sn, Ge) with desired photovoltaic-relevant properties by inserting [MX 6 ] octahedral layers, based on the principles of increased electronic dimensionality. Compared to Cs 3 Sb 2 I 9 , more suitable band gaps, smaller carrier effective masses, larger dielectric constants, lower exciton binding energies, and higher optical absorption can be achieved by inserting variable [SnI 6 ] or [GeI 6 ] octahedral layers into the [Sb 2 I 9 ] bilayers. Moreover, our results show that adjusting the thickness of inserted octahedral layers is an effective approach to tune the band gaps and carrier effective masses in a large range. Our work provides useful guidance for designing the promising layered antimony halide double perovskite absorbers for photovoltaic applications.

  6. Atmospheric nanoparticles in photocatalytic and thermal production of atmospheric pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chianelli, R.R.; Yacaman, M.J.

    1997-12-31

    Atmospheric aerosols which occur above heavily polluted areas such as Mexico City are characterized and found to be complex materials which have the potential to accelerate important ozone-forming reactions photocatalytically and thermocatalytically. In addition, because the particles are respirable, they represent a considerable health hazard. The aerosols consist of two intermixed components. The first component consists of amorphous carbonaceous materials of variable composition with fullerene like materials dispersed throughout. The second component is an inorganic material consisting of nanoparticles of oxides and sulfides supported on clay minerals. This inorganic component has all of the characteristics of an airborne photocatalyst. Nanoparticlesmore » of Fe{sub 2}O{sub 3}, MnO{sub 2} and FeS{sub 2} have demonstrated catalytic properties, particularly when occurring in the nanoparticle range as they do in the subject aerosol materials. These materials have band-gaps which occur in the broad solar spectrum enhancing the photocatalytic adsorption of solar radiation beyond that of the wider band-gap aluminosilicate and titanate materials which also occur in the aerosols. In addition, the materials are acidic and probably are coated with moisture when suspended in air, further enhancing the catalytic ability to crack hydrocarbons and create free radicals.« less

  7. Topological Valley Transport at Bilayer Graphene Domain Walls

    DTIC Science & Technology

    2015-04-22

    2015. Published online 22 April 2015. 1. McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene . Phys. Rev. B 74, 161403 (2006...6. Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene : from gapped flat- band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009). 7...induced in bilayer graphene by an external electric field1–5, and such gapped bilayer graphene is predicted to be a topo- logical insulating phase

  8. Tuning the Electronic and Optical Properties of Two-Dimensional Graphene-like C_2N Nanosheet by Strain Engineering

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh V.; Tuan, Vu V.; Hieu, Nguyen N.; Ilyasov, Victor V.; Fedorov, Igor A.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Feddi, Elmustapha; Nguyen, Chuong V.

    2018-05-01

    Using density functional theory, we have studied the structural, electronic and optical properties of two-dimensional graphene-like C_2N nanosheet under in-plane strains. Our results indicate that the C_2N nanosheet is a semiconductor with a direct band gap of 1.70 eV at the equilibrium state opening between the highest valence band and lowest conduction band located at the Γ point. The band gap of the C_2N nanosheet decreases with the increasing of both uniaxial/biaxial strains. In the presence of the strain, we found band shift and band splitting of the occupied and unoccupied energy states of the valence and conduction bands, resulting in a decrease of the band gap. Furthermore, the absorption and reflectance spectra for the C_2N nanosheet have a broad peak around 2.6 eV, where a maximum absorption value is up to 3.2 × 10^{-5} cm^{-1} and reflectance is about 0.27%. Moreover, our calculations also show that the optical properties of the C_2N nanosheets can be controlled by applying the biaxial and uniaxial strains. The obtained results might provide potential applications for the C_2N nanosheets in nanoelectronics and optoelectronics.

  9. From the Kohn-Sham band gap to the fundamental gap in solids. An integer electron approach.

    PubMed

    Baerends, E J

    2017-06-21

    It is often stated that the Kohn-Sham occupied-unoccupied gap in both molecules and solids is "wrong". We argue that this is not a correct statement. The KS theory does not allow to interpret the exact KS HOMO-LUMO gap as the fundamental gap (difference (I - A) of electron affinity (A) and ionization energy (I), twice the chemical hardness), from which it indeed differs, strongly in molecules and moderately in solids. The exact Kohn-Sham HOMO-LUMO gap in molecules is much below the fundamental gap and very close to the much smaller optical gap (first excitation energy), and LDA/GGA yield very similar gaps. In solids the situation is different: the excitation energy to delocalized excited states and the fundamental gap (I - A) are very similar, not so disparate as in molecules. Again the Kohn-Sham and LDA/GGA band gaps do not represent (I - A) but are significantly smaller. However, the special properties of an extended system like a solid make it very easy to calculate the fundamental gap from the ground state (neutral system) band structure calculations entirely within a density functional framework. The correction Δ from the KS gap to the fundamental gap originates from the response part v resp of the exchange-correlation potential and can be calculated very simply using an approximation to v resp . This affords a calculation of the fundamental gap at the same level of accuracy as other properties of crystals at little extra cost beyond the ground state bandstructure calculation. The method is based on integer electron systems, fractional electron systems (an ensemble of N- and (N + 1)-electron systems) and the derivative discontinuity are not invoked.

  10. Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2

    NASA Astrophysics Data System (ADS)

    Deng, Shuo; Li, Lijie; Li, Min

    2018-07-01

    Single layer transition-metal dichalcogenides materials (MoS2, MoSe2, WS2 and WSe2) are investigated using the first-principles method with the emphasis on their responses to mechanical strains. All these materials display the direct band gap under a certain range of strains from compressive to tensile (stable range). We have found that this stable range is different for these materials. Through studying on their mechanical properties again using the first-principles approach, it is unveiled that this stable strain range is determined by the Young's modulus. More analysis on strains induced electronic band gap properties have also been conducted.

  11. Color centers of a borosilicate glass induced by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray

    NASA Astrophysics Data System (ADS)

    Du, Jishi; Wu, Jiehua; Zhao, Lili; Song, Lixin

    2013-05-01

    Optical absorption spectra, electron paramagnetic resonance (EPR) spectra, Raman spectra of a borosilicate glass after irradiation by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray were studied. The process of irradiation inducing color centers in the glass was discussed. The band gap of the glass before and after 60Co-γ ray irradiation was studied using Mott and Davis's theory, and it was found that calculated change of the band gap introduced a paradox, because Mott and Davis's theory on the band gap cannot be adopted in the study on the irradiated glass.

  12. Theoretical study on strain induced variations in electronic properties of 2H-MoS{sub 2} bilayer sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Liang; Dongare, Avinash M., E-mail: dongare@uconn.edu; Namburu, Raju R.

    2014-02-03

    The strain dependence of the electronic properties of bilayer sheets of 2H-MoS{sub 2} is studied using ab initio simulations based on density functional theory. An indirect band gap for bilayer MoS{sub 2} is observed for all variations of strain along the basal plane. Several transitions for the indirect band gap are observed for various strains for the bilayer structure. The variation of the band gap and the carrier effective masses for the holes and the electrons for the bilayer MoS{sub 2} structure under conditions of uniaxial strain, biaxial strain, as well as uniaxial stress is investigated.

  13. Nature of the abnormal band gap narrowing in highly crystalline Zn1-xCoxO nanorods

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoqing; Li, Liping; Li, Guangshe

    2006-03-01

    Highly crystalline Zn1-xCoxO nanorods were prepared using a hydrothermal method. With increasing Co2+ dopant concentration, the lattice volume enlarged considerably, which is associated with the enhanced repulsive interactions of defect dipole moments on the wall surfaces. This lattice modification produced a significant decrease in band gap energies with its magnitude that followed the relationship, ΔEg=ΔE0•(e-x/B-1), where x and B are Co2+ dopant concentration and a constant, respectively. The abnormal band gap energies were indicated to originate from the sp-d exchange interactions that are proportional to the square of lattice volume.

  14. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S.; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J.; Schuck, P. James

    2017-08-01

    Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena—critical to both many-body physics exploration and device applications—presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  15. Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals.

    PubMed

    Toader, O; John, S

    2001-05-11

    We present a blueprint for a three-dimensional photonic band gap (PBG) material that is amenable to large-scale microfabrication on the optical scale using glancing angle deposition methods. The proposed chiral crystal consists of square spiral posts on a tetragonal lattice. In the case of silicon posts in air (direct structure), the full PBG can be as large as 15% of the gap center frequency, whereas for air posts in a silicon background (inverted structure) the maximum PBG is 24% of the center frequency. This PBG occurs between the fourth and fifth bands of the photon dispersion relation and is very robust to variations (disorder) in the geometrical parameters of the crystal.

  16. Multiband frequency-reconfigurable antenna using metamaterial structure of electromagnetic band gap

    NASA Astrophysics Data System (ADS)

    Dewan, Raimi; Rahim, M. K. A.; Himdi, Mohamed; Hamid, M. R.; Majid, H. A.; Jalil, M. E.

    2017-01-01

    A metamaterial of electromagnetic band gap (EBG) is incorporated to an antenna for frequency reconfigurability is proposed. The EBG consists of two identical unit cells that provide multiple band gaps at 1.88-1.94, 2.25-2.44, 2.67-2.94, 3.52-3.54, and 5.04-5.70 GHz with different EBG configurations. Subsequently, the antenna is incorporated with EBG. The corresponding incorporated structure successfully achieves various reconfigurable frequencies at 1.60, 1.91, 2.41, 3.26, 2.87, 5.21, and 5.54 GHz. The antenna has the potential to be implemented for Bluetooth, Wi-Fi, WiMAX, LTE, and cognitive radio applications.

  17. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.

    PubMed

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J; Schuck, P James

    2017-08-25

    Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  18. Structural and electronic properties of GaAs and GaP semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Anita; Kumar, Ranjan

    2015-05-15

    The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.

  19. The tight binding model study of the role of band filling on the charge gap in graphene-on-substrate in paramagnetic state

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.

    2017-05-01

    We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ < na > -< nb > ] is calculated and computed numerically. The results are reported.

  20. A new hybrid model for filling gaps and forecast in sea level: application to the eastern English Channel and the North Atlantic Sea (western France)

    NASA Astrophysics Data System (ADS)

    Turki, Imen; Laignel, Benoit; Kakeh, Nabil; Chevalier, Laetitia; Costa, Stephane

    2015-04-01

    This research is carried out in the framework of the program Surface Water and Ocean Topography (SWOT) which is a partnership between NASA and CNES. Here, a new hybrid model is implemented for filling gaps and forecasting the hourly sea level variability by combining classical harmonic analyses to high statistical methods to reproduce the deterministic and stochastic processes, respectively. After simulating the mean trend sea level and astronomical tides, the nontidal residual surges are investigated using an autoregressive moving average (ARMA) methods by two ways: (1) applying a purely statistical approach and (2) introducing the SLP in ARMA as a main physical process driving the residual sea level. The new hybrid model is applied to the western Atlantic sea and the eastern English Channel. Using ARMA model and considering the SLP, results show that the hourly sea level observations of gauges with are well reproduced with a root mean square error (RMSE) ranging between 4.5 and 7 cm for 1 to 30 days of gaps and an explained variance more than 80 %. For larger gaps of months, the RMSE reaches 9 cm. The negative and the positive extreme values of sea levels are also well reproduced with a mean explained variance between 70 and 85 %. The statistical behavior of 1-year modeled residual components shows good agreements with observations. The frequency analysis using the discrete wavelet transform illustrate strong correlations between observed and modeled energy spectrum and the bands of variability. Accordingly, the proposed model presents a coherent, simple, and easy tool to estimate the total sea level at timescales from days to months. The ARMA model seems to be more promising for filling gaps and estimating the sea level at larger scales of years by introducing more physical processes driving its stochastic variability.

  1. Electronic structure and optical band gap determination of NiFe2O4.

    PubMed

    Meinert, Markus; Reiss, Günter

    2014-03-19

    In a theoretical study we investigate the electronic structure and band gap of the inverse spinel ferrite NiFe2O4. The experimental optical absorption spectrum is accurately reproduced by fitting the Tran-Blaha parameter in the modified Becke-Johnson potential. The accuracy of the commonly applied Tauc plot to find the optical gap is assessed based on the computed spectra and we find that this approach can lead to a misinterpretation of the experimental data. The minimum gap of NiFe2O4 is found to be a 1.53 eV wide indirect gap, which is located in the minority spin channel.

  2. Effect of U on the electronic properties of neodymium gallate (NdGaO3): theoretical and experimental studies.

    PubMed

    Reshak, Ali Hussain; Piasecki, M; Auluck, S; Kityk, I V; Khenata, R; Andriyevsky, B; Cobet, C; Esser, N; Majchrowski, A; Swirkowicz, M; Diduszko, R; Szyrski, W

    2009-11-19

    We have performed a density functional calculation for the centrosymmetric neodymium gallate using a full-potential linear augmented plane wave method with the LDA and LDA+U exchange correlation. In particular, we explored the influence of U on the band dispersion and optical transitions. Our calculations show that U = 0.55 Ry gives the best agreement with our ellipsometry data taken in the VUV spectral range with a synchrotron source. Our LDA+U (U = 0.55) calculation shows that the valence band maximum (VBM) is located at T and the conduction band minimum (CBM) is located at the center of the Brillouin zone, resulting in a wide indirect energy band gap of about 3.8 eV in excellent agreement with our experiment. The partial density of states show that the upper valence band originates predominantly from Nd-f and O-p states, with a small admixture of Nd-s/p and Ga-p B-p states, while the lower conduction band prevailingly originates from the Nd-f and Nd-d terms with a small contribution of O-p-Ga-s/p states. The Nd-f states in the upper valence band and lower conduction band have a significant influence on the energy band gap dispersion which is illustrated by our calculations. The calculated frequency dependent optical properties show a small positive uniaxial anisotropy.

  3. Transparent, conducting films based on metal/dielectric photonic band gaps

    NASA Astrophysics Data System (ADS)

    Bloemer, Mark J.; Scalora, Michael; D'Aguanno, G.; Bowden, Charles M.; Baglio, Salvatore; Sibilia, Concita; Centini, Marco; Bertolotti, Mario

    1999-07-01

    A transparent conductor has been developed based on 1D metal/dielectric photonic band gap structures. Laminated metal/dielectric filters containing 100 nm of silver have been fabricated with > 50% transmittance. Applications for transparent, conducting films include antennas embedded in windshields, electrodes on flat panel displays, electromagnetic shielding, and solar window panes.

  4. Enhanced Photoelectrochemical Water Splitting Behaviour of Tuned Band Gap CdSe QDs Sensitized LaB₆.

    PubMed

    Babu, M Soban; Sivanantham, A; Chakravarthi, B Barath; Kannan, R Sujith; Panda, Subhendu K; Berchmans, L John; Arya, S B; Sreedhar, Gosipathala

    2017-01-01

    We report the fabrication of tuned band gap quantum dots sensitized LaB₆ hybrid nanostructures and their application as a photoanode for photoelectrochemical water splitting. The lanthanum hexaboride (LaB₆) obtained by molten salt electrolysis method is sensitized with different sized CdSe quantum dots, which form a multiple-level hierarchical heterostructure and such design enhance the light absorption and charge carrier separation, which in turn showed higher photocurrent density compared to that of pristine LaB₆. When LaB₆ is sensitized with CdSe quantum dots of different band gaps, which have the absorption in the green and red (530 and 605 nm) regions in visible light, developed a ten times higher photocurrent density (11.0 mA cm(−2)) compared to that of pristine LaB6 (0.5 mA cm(−2) at 0.75 V vs. Ag/AgCl) in 1 M Na₂S electrolyte under illumination. These results prove that the tuned band gap quantum dots sensitized LaB₆ heterostructures are an ideal candidate for a photoanode in solar water splitting applications.

  5. Impurity-induced anisotropic semiconductor-semimetal transition in monolayer biased black phosphorus

    NASA Astrophysics Data System (ADS)

    Bui, D. H.; Yarmohammadi, Mohsen

    2018-07-01

    Taking into account the electron-impurity interaction within the continuum approximation of tight-binding model, the Born approximation, and the Green's function method, the main features of anisotropic electronic phase transition are investigated in monolayer biased black phosphorus (BP). To this end, we concentrated on the disordered electronic density of states (DOS), which gives useful information for electro-optical devices. Increasing the impurity concentration in both unbiased and biased impurity-infected single-layer BP, in addition to the decrease of the band gap, independent of the direction, leads to the midgap states and an extra Van Hove singularity inside and outside of the band gap, respectively. Furthermore, strong impurity scattering potentials lead to a semiconductor-semimetal transition and one more Van Hove singularity in x-direction of unbiased BP and surprisingly, this transition does not occur in biased BP. We found that there is no phase transition in y-direction. Since real applications require structures with modulated band gaps, we have studied the influence of different bias voltages on the disordered DOS in both directions, resulting in the increase of the band gap.

  6. Properties of the ferroelectric visible light absorbing semiconductors: Sn 2 P 2 S 6 and Sn 2 P 2 Se 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuwei; Singh, David J.

    Ferroelectrics with suitable band gaps have recently attracted attention as candidate solar absorbing materials for photovoltaics. The inversion symmetry breaking may promote the separation of photoexcited carriers and allow voltages higher than the band gap. However, these effects are not fully understood, in part because of a lack of suitable model systems for studying these effects in detail. Here, we report properties of ferroelectric Sn 2P 2S 6 and Sn 2P 2Se 6 using first principles calculations. Results are given for the electronic structure, carrier pocket shapes, optical absorption, and transport.We find indirect band gaps of 2.20 eV and 1.55more » eV, respectively, and favorable band structures for carrier transport, including both holes and electrons. Strong absorption is found above the direct gaps of 2.43 eV and 1.76 eV. Furthermore these compounds may serve as useful model systems for understanding photovoltaic effects in ferroelectric semiconductors.« less

  7. Enhanced Photocatalytic Activity of Diamond Thin Films Using Embedded Ag Nanoparticles.

    PubMed

    Li, Shuo; Bandy, Jason A; Hamers, Robert J

    2018-02-14

    Silver nanoparticles embedded into the diamond thin films enhance the optical absorption and the photocatalytic activity toward the solvated electron-initiated reduction of N 2 to NH 3 in water. Here, we demonstrate the formation of diamond films with embedded Ag nanoparticles <100 nm in diameter. Cross-sectional scanning electron microscopy (SEM), energy-dependent SEM, and energy-dispersive X-ray analysis demonstrate the formation of encapsulated nanoparticles. Optical absorption measurements in the visible and ultraviolet region show that the resulting films exhibit plasmonic resonances in the visible and near-ultraviolet region. Measurements of photocatalytic activity using supraband gap (λ < 225 nm) and sub-band gap (λ > 225 nm) excitation show significantly enhanced ability to convert N 2 to NH 3 . Incorporation of Ag nanoparticles induces a nearly 5-fold increase in activity using a sub-band gap excitation with λ > 225 nm. Our results suggest that internal photoemission, in which electrons are excited from Ag into diamond's conduction band, is an important process that extends the wavelength region beyond diamond's band gap. Other factors, including Ag-induced optical scattering and formation of graphitic impurities are also discussed.

  8. Properties of the ferroelectric visible light absorbing semiconductors: Sn 2 P 2 S 6 and Sn 2 P 2 Se 6

    DOE PAGES

    Li, Yuwei; Singh, David J.

    2017-12-05

    Ferroelectrics with suitable band gaps have recently attracted attention as candidate solar absorbing materials for photovoltaics. The inversion symmetry breaking may promote the separation of photoexcited carriers and allow voltages higher than the band gap. However, these effects are not fully understood, in part because of a lack of suitable model systems for studying these effects in detail. Here, we report properties of ferroelectric Sn 2P 2S 6 and Sn 2P 2Se 6 using first principles calculations. Results are given for the electronic structure, carrier pocket shapes, optical absorption, and transport.We find indirect band gaps of 2.20 eV and 1.55more » eV, respectively, and favorable band structures for carrier transport, including both holes and electrons. Strong absorption is found above the direct gaps of 2.43 eV and 1.76 eV. Furthermore these compounds may serve as useful model systems for understanding photovoltaic effects in ferroelectric semiconductors.« less

  9. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn H.; Bauhofer, Anton; Krödel, Sebastian; Palermo, Antonio; Daraio, Chiara

    2016-07-01

    Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.

  10. Ab initio studies of Th3N4, Th2N3 and Th2N2(NH)

    NASA Astrophysics Data System (ADS)

    Obodo, K. O.; Chetty, N.

    2014-09-01

    Using density functional theory within the Perdew-Burke-Ernzerhof generalized gradient approximation [GGA (PBE)] implemented in the VASP codes, we investigate the structural, elastic and electronic properties of Th3N4, Th2N3 and Th2N2(NH). The calculated structural properties of these thorium-based nitrides are in good agreement with experimental data. We observe that all the Th-N based compounds that we considered are energetically favorable and elastically stable. We find that Th3N4 is semiconducting with a band gap of 1.59 eV, which compares well with the experimental band gap of 1.7 eV and we find Th2N3 to be metallic. Th2N2(NH), which is crystallographically equivalent to Th2N3, is insulating with a band gap of 2.12 eV. This is due to the -(NH) group that effects a shifting of the energy bands that results in the opening of a gap at the Fermi-level. The Th-N based compounds that we considered are predominantly ionic.

  11. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    PubMed

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  12. Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study

    NASA Astrophysics Data System (ADS)

    Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour

    2018-01-01

    Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.

  13. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe

    DOE PAGES

    Li, Jin; He, Chaoyu; Meng, Lijun; ...

    2015-09-14

    Here, we report that two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tunedmore » up to large values (0.2 eV for HgTe and 0.05 eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature.« less

  14. Edge waves and resonances in two-dimensional phononic crystal plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Jin-Chen, E-mail: hsujc@yuntech.edu.tw; Hsu, Chih-Hsun

    2015-05-07

    We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. Wemore » design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.« less

  15. Systematic study of the effect of HSE functional internal parameters on the electronic structure and band gap of a representative set of metal oxides.

    PubMed

    Viñes, Francesc; Lamiel-García, Oriol; Chul Ko, Kyoung; Yong Lee, Jin; Illas, Francesc

    2017-04-30

    The effect of the amount of Hartree-Fock mixing parameter (α) and of the screening parameter (w) defining the range separated HSE type hybrid functional is systematically studied for a series of seven metal oxides: TiO 2 , ZrO 2 , CuO 2 , ZnO, MgO, SnO 2 , and SrTiO 3 . First, reliable band gap values were determined by comparing the optimal α reproducing the experiment with the inverse of the experimental dielectric constant. Then, the effect of the w in the HSE functional on the calculated band gap was explored in detail. Results evidence the existence of a virtually infinite number of combinations of the two parameters which are able to reproduce the experimental band gap, without a unique pair able to describe the full studied set of materials. Nevertheless, the results point out the possibility of describing the electronic structure of these materials through a functional including a screened HF exchange and an appropriate correlation contribution. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Dispersion Corrected Structural Properties and Quasiparticle Band Gaps of Several Organic Energetic Solids.

    PubMed

    Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S

    2015-06-18

    We have performed ab initio calculations for a series of energetic solids to explore their structural and electronic properties. To evaluate the ground state volume of these molecular solids, different dispersion correction methods were accounted in DFT, namely the Tkatchenko-Scheffler method (with and without self-consistent screening), Grimme's methods (D2, D3(BJ)), and the vdW-DF method. Our results reveal that dispersion correction methods are essential in understanding these complex structures with van der Waals interactions and hydrogen bonding. The calculated ground state volumes and bulk moduli show that the performance of each method is not unique, and therefore a careful examination is mandatory for interpreting theoretical predictions. This work also emphasizes the importance of quasiparticle calculations in predicting the band gap, which is obtained here with the GW approximation. We find that the obtained band gaps are ranging from 4 to 7 eV for the different compounds, indicating their insulating nature. In addition, we show the essential role of quasiparticle band structure calculations to correlate the gap with the energetic properties.

  17. Measuring the band structures of periodic beams using the wave superposition method

    NASA Astrophysics Data System (ADS)

    Junyi, L.; Ruffini, V.; Balint, D.

    2016-11-01

    Phononic crystals and elastic metamaterials are artificially engineered periodic structures that have several interesting properties, such as negative effective stiffness in certain frequency ranges. An interesting property of phononic crystals and elastic metamaterials is the presence of band gaps, which are bands of frequencies where elastic waves cannot propagate. The presence of band gaps gives this class of materials the potential to be used as vibration isolators. In many studies, the band structures were used to evaluate the band gaps. The presence of band gaps in a finite structure is commonly validated by measuring the frequency response as there are no direct methods of measuring the band structures. In this study, an experiment was conducted to determine the band structure of one dimension phononic crystals with two wave modes, such as a bi-material beam, using the frequency response at only 6 points to validate the wave superposition method (WSM) introduced in a previous study. A bi-material beam and an aluminium beam with varying geometry were studied. The experiment was performed by hanging the beams freely, exciting one end of the beams, and measuring the acceleration at consecutive unit cells. The measured transfer function of the beams agrees with the analytical solutions but minor discrepancies. The band structure was then determined using WSM and the band structure of one set of the waves was found to agree well with the analytical solutions. The measurements taken for the other set of waves, which are the evanescent waves in the bi-material beams, were inaccurate and noisy. The transfer functions at additional points of one of the beams were calculated from the measured band structure using WSM. The calculated transfer function agrees with the measured results except at the frequencies where the band structure was inaccurate. Lastly, a study of the potential sources of errors was also conducted using finite element modelling and the errors in the dispersion curve measured from the experiments were deduced to be a result of a combination of measurement noise, the different placement of the accelerometer with finite mass, and the torsional mode.

  18. Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Webb, James L.; Hart, Lewis S.; Wolverson, Daniel; Chen, Chaoyu; Avila, Jose; Asensio, Maria C.

    2017-09-01

    The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two-dimensional heterostructure devices. The nature of the band gap (direct or indirect) for bulk, few-, and single-layer forms of ReS2 is of particular interest, due to its comparatively weak interplanar interaction. However, the degree of interlayer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS2 using high-resolution angle-resolved photoemission spectroscopy. We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 me ) than along them (1.6 me ). An appreciable interplane interaction results in an experimentally measured difference of ≈100 -200 meV between the valence band maxima at the Z point (0,0,1/2 ) and the Γ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at Γ , implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the nature of the band gap in this material.

  19. Characteristic optimization of 1.55-μm InGaAsP/InP high-power diode laser

    NASA Astrophysics Data System (ADS)

    Ke, Qing; Tan, Shaoyang; Zhai, Teng; Zhang, Ruikang; Lu, Dan; Ji, Chen

    2014-11-01

    A comprehensive design optimization of 1.55-μm high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (IQE) while maintaing a low internal loss of the device as well. The P-doping profile and separate confinement heterostructure (SCH) layer band gap are optimized respectively with commercial software Crosslight. Analysis of lasers with different p-doping profiles shows that, although heavy doping in P-cladding layer increases the internal loss of the device, it ensures a high IQE because higher energy barrier at the SCH/P-cladding interface as a result of heavy doping helps reduce the carrier leakage from the waveguide to the InP-cladding layer. The band gap of the SCH layer are also optimized for high slope efficiency. Smaller band gap helps reduce the vertical carrier leakage from the waveguide to the P-cladding layer, but the corresponding higher carrier concentration in SCH layer will cause some radiative recombination, thus influencing the IQE. And as the injection current increases, the carrier concentration increases faster with smaller band gap, therefore, the output power saturates sooner. An optimized band gap in SCH layer of approximately 1.127eV and heavy doping up to 1e18/cm3 at the SCH/P-cladding interface are identified for our high power laser design, and we achieved a high IQE of 94% and internal loss of 2.99/cm for our design.

  20. Electronic Structure and Band Gap of Fullerenes on Tungsten Surfaces: Transition from a Semiconductor to a Metal Triggered by Annealing.

    PubMed

    Monazami, Ehsan; McClimon, John B; Rondinelli, James; Reinke, Petra

    2016-12-21

    The understanding and control of molecule-metal interfaces is critical to the performance of molecular electronics and photovoltaics devices. We present a study of the interface between C 60 and W, which is a carbide-forming transition metal. The complex solid-state reaction at the interface can be exploited to adjust the electronic properties of the molecule layer. Scanning tunneling microscopy/spectroscopy measurements demonstrate the progression of this reaction from wide band gap (>2.5 eV) to metallic molecular surface during annealing from 300 to 800 K. Differential conduction maps with 10 4 scanning tunneling spectra are used to quantify the transition in the density of states and the reduction of the band gap during annealing with nanometer spatial resolution. The electronic transition is spatially homogeneous, and the surface band gap can therefore be adjusted by a targeted annealing step. The modified molecules, which we call nanospheres, are quite resistant to ripening and coalescence, unlike any other metallic nanoparticle of the same size. Densely packed C 60 and isolated C 60 molecules show the same transition in electronic structure, which confirms that the transformation is controlled by the reaction at the C 60 -W interface. Density functional theory calculations are used to develop possible reaction pathways in agreement with experimentally observed electronic structure modulation. Control of the band gap by the choice of annealing temperature is a unique route to tailoring molecular-layer electronic properties.

Top