The Ultrasensitivity of Living Polymers
NASA Astrophysics Data System (ADS)
O'Shaughnessy, Ben; Vavylonis, Dimitrios
2003-03-01
Synthetic and biological living polymers are self-assembling chains whose chain length distributions (CLDs) are dynamic. We show these dynamics are ultrasensitive: Even a small perturbation (e.g., temperature jump) nonlinearly distorts the CLD, eliminating or massively augmenting short chains. The origin is fast relaxation of mass variables (mean chain length, monomer concentration) which perturbs CLD shape variables before these can relax via slow chain growth rate fluctuations. Viscosity relaxation predictions agree with experiments on the best-studied synthetic system, α-methylstyrene.
Quantifying Short-Chain Chlorinated Paraffin Congener Groups.
Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A; Alsberg, Tomas; de Wit, Cynthia A
2017-09-19
Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are referred to as a "congener group" C n Cl m . Recently, we resolved individual C n Cl m by mathematically deconvolving soft ionization high-resolution mass spectra of SCCP mixtures. Here we extend the method to quantifying C n Cl m by introducing C n Cl m specific response factors (RFs) that are calculated from 17 SCCP chain-length standards with a single carbon chain length and variable chlorination level. The signal pattern of each standard is measured on APCI-QTOF-MS. RFs of each C n Cl m are obtained by pairwise optimization of the normal distribution's fit to the signal patterns of the 17 chain-length standards. The method was verified by quantifying SCCP technical mixtures and spiked environmental samples with accuracies of 82-123% and 76-109%, respectively. The absolute differences between calculated and manufacturer-reported chlorination degrees were -0.9 to 1.0%Cl for SCCP mixtures of 49-71%Cl. The quantification method has been replicated with ECNI magnetic sector MS and ECNI-Q-Orbitrap-MS. C n Cl m concentrations determined with the three instruments were highly correlated (R 2 > 0.90) with each other.
Pan, Jian-Jung; Ramamoorthy, Gurusankar; Poulter, C. Dale
2013-01-01
Long-chain E-polyprenyl diphosphate synthases (E-PDS) catalyze repetitive addition of isopentenyl diphosphate (IPP) to the growing prenyl chain of an allylic diphosphate. The polyprenyl diphosphate products are required for the biosynthesis of ubiquinones and menaquinones required for electron transport during oxidative phosphorylation to generate ATP. In vitro, the long-chain PDSs require addition of phospholipids or detergents to the assay buffer to enhance product release and maintain efficient turnover. During preliminary assays of product chain-length with anionic, zwitterionic, and non-ionic detergents, we discovered considerable variability. Examination of a series of non-ionic PEG detergents with several long-chain E-PDSs from different organisms revealed that in vitro incubations with nonaethylene glycol monododecyl ether or Triton X-100 typically gave chain lengths that corresponded to those of the isoprenoid moieties in respiratory quinones synthesized in vivo. In contrast incubations in buffer with n-butanol, CHAPS, DMSO, n-octyl-β-glucopyranoside, or β-cyclodextrin or in buffer without detergent typically proceeded more slowly and gave a broad range of chain lengths. PMID:23802587
NASA Astrophysics Data System (ADS)
Bush, Rosemary T.; McInerney, Francesca A.
2013-09-01
Long chain (C21 to C37) n-alkanes are among the most long-lived and widely utilized terrestrial plant biomarkers. Dozens of studies have examined the range and variation of n-alkane chain-length abundances in modern plants from around the world, and n-alkane distributions have been used for a variety of purposes in paleoclimatology and paleoecology as well as chemotaxonomy. However, most of the paleoecological applications of n-alkane distributions have been based on a narrow set of modern data that cannot address intra- and inter-plant variability. Here, we present the results of a study using trees from near Chicago, IL, USA, as well as a meta-analysis of published data on modern plant n-alkane distributions. First, we test the conformity of n-alkane distributions in mature leaves across the canopy of 38 individual plants from 24 species as well as across a single growing season and find no significant differences for either canopy position or time of leaf collection. Second, we compile 2093 observations from 86 sources, including the new data here, to examine the generalities of n-alkane parameters such as carbon preference index (CPI), average chain length (ACL), and chain-length ratios for different plant groups. We show that angiosperms generally produce more n-alkanes than do gymnosperms, supporting previous observations, and furthermore that CPI values show such variation in modern plants that it is prudent to discard the use of CPI as a quantitative indicator of n-alkane degradation in sediments. We also test the hypotheses that certain n-alkane chain lengths predominate in and therefore can be representative of particular plant groups, namely, C23 and C25 in Sphagnum mosses, C27 and C29 in woody plants, and C31 in graminoids (grasses). We find that chain-length distributions are highly variable within plant groups, such that chemotaxonomic distinctions between grasses and woody plants are difficult to make based on n-alkane abundances. In contrast, Sphagnum mosses are marked by their predominance of C23 and C25, chain lengths which are largely absent in terrestrial vascular plants. The results here support the use of C23 as a robust proxy for Sphagnum mosses in paleoecological studies, but not the use of C27, C29, and C31 to separate graminoids and woody plants from one another, as both groups produce highly variable but significant amounts of all three chain lengths. In Africa, C33 and C35 chain lengths appear to distinguish graminoids from some woody plants, but this may be a reflection of the differences in rainforest and savanna environments. Indeed, variation in the abundances of long n-alkane chain lengths may be responding in part to local environmental conditions, and this calls for a more directed examination of the effects of temperature and aridity on plant n-alkane distributions in natural environments.
The role of discharge variation in scaling of drainage area and food chain length in rivers
Sabo, John L.; Finlay, Jacques C.; Kennedy, Theodore A.; Post, David M.
2010-01-01
Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.
The role of discharge variation in scaling of drainage area and food chain length in rivers.
Sabo, John L; Finlay, Jacques C; Kennedy, Theodore; Post, David M
2010-11-12
Food chain length (FCL) is a fundamental component of food web structure. Studies in a variety of ecosystems suggest that FCL is determined by energy supply, environmental stability, and/or ecosystem size, but the nature of the relationship between environmental stability and FCL, and the mechanism linking ecosystem size to FCL, remain unclear. Here we show that FCL increases with drainage area and decreases with hydrologic variability and intermittency across 36 North American rivers. Our analysis further suggests that hydrologic variability is the mechanism underlying the correlation between ecosystem size and FCL in rivers. Ecosystem size lengthens river food chains by integrating and attenuating discharge variation through stream networks, thereby enhancing environmental stability in larger river systems.
Wen, Yangming; Lan, Kaijian; Wang, Junjie; Yu, Jingyi; Qu, Yarong; Zhao, Wei; Zhang, Fuchun; Tan, Wanlong; Cao, Hong; Zhou, Chen
2013-06-01
To construct dengue virus-specific full-length fully human antibody libraries using mammalian cell surface display technique. Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) from convalescent patients with dengue fever. The reservoirs of the light chain and heavy chain variable regions (LCκ and VH) of the antibody genes were amplified by RT-PCR and inserted into the vector pDGB-HC-TM separately to construct the light chain and heavy chain libraries. The library DNAs were transfected into CHO cells and the expression of full-length fully human antibodies on the surface of CHO cells was analyzed by flow cytometry. Using 1.2 µg of the total RNA isolated from the PBMCs as the template, the LCκ and VH were amplified and the full-length fully human antibody mammalian display libraries were constructed. The kappa light chain gene library had a size of 1.45×10(4) and the heavy chain gene library had a size of 1.8×10(5). Sequence analysis showed that 8 out of the 10 light chain clones and 7 out of the 10 heavy chain clones randomly picked up from the constructed libraries contained correct open reading frames. FACS analysis demonstrated that all the 15 clones with correct open reading frames expressed full-length antibodies, which could be detected on CHO cell surfaces. After co-transfection of the heavy chain and light chain gene libraries into CHO cells, the expression of full-length antibodies on CHO cell surfaces could be detected by FACS analysis with an expressible diversity of the antibody library reaching 1.46×10(9) [(1.45×10(4)×80%)×(1.8×10(5)×70%)]. Using 1.2 µg of total RNA as template, the LCκ and VH full-length fully human antibody libraries against dengue virus have been successfully constructed with an expressible diversity of 10(9).
Increased Chain Length Promotes Pneumococcal Adherence and Colonization
Rodriguez, Jesse L.; Dalia, Ankur B.
2012-01-01
Streptococcus pneumoniae is a mucosal pathogen that grows in chains of variable lengths. Short-chain forms are less likely to activate complement, and as a consequence they evade opsonophagocytic clearance more effectively during invasive disease. When grown in human nasal airway surface fluid, pneumococci exhibited both short- and long-chain forms. Here, we determined whether longer chains provide an advantage during colonization when the organism is attached to the epithelial surface. Chain-forming mutants and the parental strain grown under conditions to promote chain formation showed increased adherence to human epithelial cells (A549 cells) in vitro. Additionally, adherence to A549 cells selected for longer chains within the wild-type strain. In vivo in a murine model of colonization, chain-forming mutants outcompeted the parental strain. Together, our results demonstrate that morphological heterogeneity in the pneumococcus may promote colonization of the upper respiratory tract by enhancing the ability of the organism to bind to the epithelial surface. PMID:22825449
Temporal variation in pelagic food chain length in response to environmental change
Ruiz-Cooley, Rocio I.; Gerrodette, Tim; Fiedler, Paul C.; Chivers, Susan J.; Danil, Kerri; Ballance, Lisa T.
2017-01-01
Climate variability alters nitrogen cycling, primary productivity, and dissolved oxygen concentration in marine ecosystems. We examined the role of this variability (as measured by six variables) on food chain length (FCL) in the California Current (CC) by reconstructing a time series of amino acid–specific δ15N values derived from common dolphins, an apex pelagic predator, and using two FCL proxies. Strong declines in FCL were observed after the 1997–1999 El Niño Southern Oscillation (ENSO) event. Bayesian models revealed longer FCLs under intermediate conditions for surface temperature, chlorophyll concentration, multivariate ENSO index, and total plankton volume but not for hypoxic depth and nitrate concentration. Our results challenge the prevalent paradigm that suggested long-term stability in the food web structure in the CC and, instead, reveal that pelagic food webs respond strongly to disturbances associated with ENSO events, local oceanography, and ongoing changes in climate. PMID:29057322
USDA-ARS?s Scientific Manuscript database
Channel catfish, Ictalurus punctatus, T cell receptors (TCR) gamma and delta were identified by mining of expressed sequence tag databases and full length sequences were obtained by 5'-RACE and RT-PCR protocols. cDNAs for each of these TCR chains encode typical variable (V), (diversity; D), joining ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berenstein, David; Kavli Institute for Theoretical Physics, University of California at Santa Barbara, California 93106; Correa, Diego H.
We study an XXX open spin chain with variable number of sites, where the variability is introduced only at the boundaries. This model arises naturally in the study of giant gravitons in the anti-de Sitter-space/conformal field-theory correspondence. We show how to quantize the spin chain by mapping its states to a bosonic lattice of finite length with sources and sinks of particles at the boundaries. Using coherent states, we show how the Hamiltonian for the bosonic lattice gives the correct description of semiclassical open strings ending on giant gravitons.
Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.
Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun
2014-08-07
The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.
Driven translocation of Polymer through a nanopore: effect of heterogeneous flexibility
NASA Astrophysics Data System (ADS)
Adhikari, Ramesh; Bhattacharya, Aniket
2014-03-01
We have studied translocation of a model bead-spring polymer through a nanopore whose building blocks consist of alternate stiff and flexible segments and variable elastic bond potentials. For the case of uniform spring potential translocation of a symmetric periodic stiff-flexible chain of contour length N and segment length m (mod(N,2m)=0), we find that the end-to-end distance and the mean first passage time (MFPT) have weak dependence on the length m. The characteristic periodic pattern of the waiting time distribution captures the stiff and flexible segments of the chain with stiff segments taking longer time to translocate. But when we vary both the elastic bond energy, and the bending energy, as well as the length of stiff/flexible segments, we discover novel patterns in the waiting time distribution which brings out structural information of the building blocks of the translocating chain. Partially supported by UCF Office of Research and Commercialization & College of Science SEED grant.
Multilocus Association Mapping Using Variable-Length Markov Chains
Browning, Sharon R.
2006-01-01
I propose a new method for association-based gene mapping that makes powerful use of multilocus data, is computationally efficient, and is straightforward to apply over large genomic regions. The approach is based on the fitting of variable-length Markov chain models, which automatically adapt to the degree of linkage disequilibrium (LD) between markers to create a parsimonious model for the LD structure. Edges of the fitted graph are tested for association with trait status. This approach can be thought of as haplotype testing with sophisticated windowing that accounts for extent of LD to reduce degrees of freedom and number of tests while maximizing information. I present analyses of two published data sets that show that this approach can have better power than single-marker tests or sliding-window haplotypic tests. PMID:16685642
Multilocus association mapping using variable-length Markov chains.
Browning, Sharon R
2006-06-01
I propose a new method for association-based gene mapping that makes powerful use of multilocus data, is computationally efficient, and is straightforward to apply over large genomic regions. The approach is based on the fitting of variable-length Markov chain models, which automatically adapt to the degree of linkage disequilibrium (LD) between markers to create a parsimonious model for the LD structure. Edges of the fitted graph are tested for association with trait status. This approach can be thought of as haplotype testing with sophisticated windowing that accounts for extent of LD to reduce degrees of freedom and number of tests while maximizing information. I present analyses of two published data sets that show that this approach can have better power than single-marker tests or sliding-window haplotypic tests.
Systematic Characterization and Comparative Analysis of the Rabbit Immunoglobulin Repertoire
Lavinder, Jason J.; Hoi, Kam Hon; Reddy, Sai T.; Wine, Yariv; Georgiou, George
2014-01-01
Rabbits have been used extensively as a model system for the elucidation of the mechanism of immunoglobulin diversification and for the production of antibodies. We employed Next Generation Sequencing to analyze Ig germline V and J gene usage, CDR3 length and amino acid composition, and gene conversion frequencies within the functional (transcribed) IgG repertoire of the New Zealand white rabbit (Oryctolagus cuniculus). Several previously unannotated rabbit heavy chain variable (VH) and light chain variable (VL) germline elements were deduced bioinformatically using multidimensional scaling and k-means clustering methods. We estimated the gene conversion frequency in the rabbit at 23% of IgG sequences with a mean gene conversion tract length of 59±36 bp. Sequencing and gene conversion analysis of the chicken, human, and mouse repertoires revealed that gene conversion occurs much more extensively in the chicken (frequency 70%, tract length 79±57 bp), was observed to a small, yet statistically significant extent in humans, but was virtually absent in mice. PMID:24978027
Bacterial Polysaccharide Co-Polymerases Share a Common Framework for Control of Polymer Length
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tocilj,A.; Munger, C.; Proteau, A.
2008-01-01
The chain length distribution of complex polysaccharides present on the bacterial surface is determined by polysaccharide co-polymerases (PCPs) anchored in the inner membrane. We report crystal structures of the periplasmic domains of three PCPs that impart substantially different chain length distributions to surface polysaccharides. Despite very low sequence similarities, they have a common protomer structure with a long central alpha-helix extending 100 Angstroms into the periplasm. The protomers self-assemble into bell-shaped oligomers of variable sizes, with a large internal cavity. Electron microscopy shows that one of the full-length PCPs has a similar organization as that observed in the crystal formore » its periplasmic domain alone. Functional studies suggest that the top of the PCP oligomers is an important region for determining polysaccharide modal length. These structures provide a detailed view of components of the bacterial polysaccharide assembly machinery.« less
Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J.
2013-01-01
Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior. PMID:24062459
Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J
2013-10-08
Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior.
Re-assessing the role of plant community change and climate in the PETM n-alkane record
NASA Astrophysics Data System (ADS)
Bush, R. T.; Baczynski, A. A.; McInerney, F. A.; Chen, D.
2012-12-01
The terrestrial leaf wax n-alkane record of the Paleocene-Eocene Thermal Maximum (PETM) in the Bighorn Basin, Wyoming, shows large excursions in both carbon isotope (δ13C) values and n-alkane average chain length (ACL). At the onset of the PETM, ACL values increase from ~28.5 to ~30.1 while the negative carbon isotope excursion (CIE) is 4-6‰ in magnitude and larger than δ13C records from other materials. It has been hypothesized previously that both the ACL excursion and the large magnitude of the CIE were caused by a concurrent turnover in the local flora from a mixed conifer/angiosperm community before the PETM to a different suite of angiosperm species during the PETM. Here, we present the results of a meta-analysis of data (>2000 data from 89 sources, both published and unpublished) on n-alkane amounts and chain length distributions in modern plants from around the world. We applied the data in two sets of comparisons: 1) within and among plant groups such as herbs and graminoids, and 2) between plants and climate, using reported collection locations for outdoor plants and climate values generated via GIS extraction of WorldClim modeled data. We show that angiosperms, as group, produce more n-alkanes than do gymnosperms by 1-2 orders of magnitude, and this means that the gymnosperm contribution to a mixed soil n-alkane pool would be negligible, even in an ecosystem where gymnosperms dominated (i.e. the pre/post-PETM ecosystems). The modern plant data also demonstrate that turnover of the plant community during the PETM, even among only the angiosperm species, is likely not the source of the observed ACL excursion. First, we constructed "representative" groups of PETM and pre/post-PETM communities using living relative species at the Chicago Botanic Garden and find no significant difference in chain length distributions between the two groups. Second and moreover, the modern plant data reveal that n-alkane chain length distributions are tremendously variable within large vascular plant groups--both functional groups such as woody plants or graminoids as well as phylogenetic groups at the family level or higher. This variability makes it difficult at best to use n-alkane chain lengths to distinguish one vascular group from another, as was previously suggested. Instead, our results suggest that chain length distributions and ACL are driven more by climate, especially temperature. Longer chain lengths, with their increased hydrophobicity, would likely experience favorable selection under warmer or drier conditions where leaf water loss is likely to be a greater stress. Thus, it may be that we can interpret the increase in ACL during the PETM as a direct response by the flora to increased temperature during the hyperthermal event, and n-alkane chain length distributions, properly constrained, may possibly serve as a qualitative paleotemperature proxy.
Robinson, James C; Brown, Timothy T
2014-09-01
To quantify the potential reduction in hospital costs from adoption of best local practices in supply chain management and discharge planning. We performed multivariate statistical analyses of the association between total variable cost per procedure and medical device price and length of stay, controlling for patient and hospital characteristics. Ten hospitals in 1 major metropolitan area supplied patient-level administrative data on 9778 patients undergoing joint replacement, spine fusion, or cardiac rhythm management (CRM) procedures in 2008 and 2010. The impact on each hospital of matching lowest local market device prices and lowest patient length of stay (LOS) was calculated using multivariate regression analysis controlling for patient demographics, diagnoses, comorbidities, and implications. Average variable costs ranged from $11,315 for joint replacement to $16,087 for CRM and $18,413 for spine fusion. Implantable medical devices accounted for a large share of each procedure's variable costs: 44% for joint replacement, 39% for spine fusion, and 59% for CRM. Device prices and patient length-of-stay exhibited wide variation across hospitals. Total potential hospital cost savings from achieving best local practices in device prices and patient length of stay are 14.5% for joint replacement, 18.8% for spine fusion;,and 29.1% for CRM. Hospitals have opportunities for cost reduction from adoption of best local practices in supply chain management and discharge planning.
L-cysteine-derived ambidextrous gelators of aromatic solvents and ethanol/water mixtures.
Pal, Amrita; Dey, Joykrishna
2013-02-19
A series of L-cysteine-derived double hydrocarbon chain amphiphilic gelators L-(3-alkyl-carbamoylsulfanyl)-2-(3-alkylurido)propionic acid with different hydrocarbon chain lengths (C6-C16) was designed and synthesized. These gelators efficiently gelate only aromatic solvents. The gelation ability increased with the increase of chain length up to C14, but then it dropped with further increase of chain length. The C12 and C14 derivatives also gelled ethanol/water mixtures. The gels were characterized by a number of methods, including FT-IR, NMR, and XRD spectroscopy, electron microscopy, and rheology. The amphiphiles were observed to form either flat lamellar or ribbonlike aggregates in aromatic solvents as well as in ethanol/water mixtures. The gelation in all the solvents employed was observed to be thermoreversible. The gel-to-sol transition temperature as well as mechanical strength of the organogels were observed to increase with the hydrocarbon chain length. Both types of gels of C8-C16 amphiphiles have gel-to-sol transition temperatures above the physiological temperature (310 K). FT-IR and variable temperature (1)H NMR measurements suggested that van der Waals interactions have major contribution in the gelation process. The gel-to-sol transition temperature and mechanical strength of the organogels in ethanol/water mixtures was observed to be higher than those of benzene organogel.
Landeira, José M.; Ferron, Bruno; Lunven, Michel; Morin, Pascal; Marié, Louis; Sourisseau, Marc
2014-01-01
Phytoplankton blooms are usually dominated by chain-forming diatom species that can alter food pathways from primary producers to predators by reducing the interactions between intermediate trophic levels. The food-web modifications are determined by the length of the chains; however, the estimation is biased because traditional sampling strategies damage the chains and, therefore, change the phytoplankton size structure. Sedimentological studies around oceanic fronts have shown high concentrations of giant diatom mats (>1 cm in length), suggesting that the size of diatom chains is underestimated in the pelagic realm. Here, we investigate the variability in size and abundance of phytoplankton chains at the Ushant tidal front (NW France) using the Video Fluorescence Analyzer (VFA), a novel and non-invasive system. CTD and Scanfish profiling characterized a strong temperature and chlorophyll front, separating mixed coastal waters from the oceanic-stratified domain. In order to elucidate spring-neap variations in the front, vertical microstructure profiler was used to estimate the turbulence and vertical nitrate flux. Key findings were: (1) the VFA system recorded large diatom chains up to 10.7 mm in length; (2) chains were mainly distributed in the frontal region, with maximum values above the pycnocline in coincidence with the maximum chlorophyll; (3) the diapycnal fluxes of nitrate enabled the maintenance of the bloom in the frontal area throughout the spring-neap tidal cycle; (4) from spring to neap tide the chains length was significantly reduced; (5) during neap tide, the less intense vertical diffusion of nutrients, as well as the lower turbulence around the chains, intensified nutrient-depleted conditions and, thus, very large chains became disadvantageous. To explain this pattern, we suggest that size plasticity is an important ecological trait driving phytoplankton species competition. Although this plasticity behavior is well known from experiments in the laboratory, it has never been reported from observations in the field. PMID:24587384
Hegerle, N; Bose, J; Ramachandran, G; Galen, J E; Levine, M M; Simon, R; Tennant, S M
2018-03-30
O-polysaccharide (OPS) molecules are protective antigens for several bacterial pathogens, and have broad utility as components of glycoconjugate vaccines. Variability in the OPS chain length is one obstacle towards further development of these vaccines. Introduction of sizing steps during purification of OPS molecules of suboptimal or of mixed lengths introduces additional costs and complexity while decreasing the final yield. The overall goal of this study was to demonstrate the utility of engineering Gram-negative bacteria to produce homogenous O-polysaccharide populations that can be used as the basis of carbohydrate vaccines by overexpressing O-polysaccharide chain length regulators of the Wzx-/Wzy-dependent pathway. The O-polysaccharide chain length regulators wzzB and fepE from Salmonella Typhimurium I77 and wzz2 from Pseudomonas aeruginosa PAO1 were cloned and expressed in the homologous organism or in other Gram-negative bacteria. Overexpression of these Wzz proteins in the homologous organism significantly increased the proportion of long or very long chain O-polysaccharides. The same observation was made when wzzB was overexpressed in Salmonella Paratyphi A and Shigella flexneri, and wzz2 was overexpressed in two other strains of P. aeruginosa. Overexpression of Wzz proteins in Gram-negative bacteria using the Wzx/Wzy-dependant pathway for lipopolysaccharide synthesis provides a genetic method to increase the production of an O-polysaccharide population of a defined size. The methods presented herein represent a cost-effective and improved strategy for isolating preferred OPS vaccine haptens, and could facilitate the further use of O-polysaccharides in glycoconjugate vaccine development. © 2018 The Society for Applied Microbiology.
Arcuri, M.; Di Benedetto, R.; Cunningham, A. F.; Saul, A.; MacLennan, C. A.
2017-01-01
In recent years there have been major efforts to develop glycoconjugate vaccines based on the Vi polysaccharide that will protect against Salmonella enterica Typhi infections, particularly typhoid fever, which remains a major public health concern in low-income countries. The design of glycoconjugate vaccines influences the immune responses they elicit. Here we systematically test the response in mice to Vi glycoconjugates that differ in Vi chain length (full-length and fragmented), carrier protein, conjugation chemistry, saccharide to protein ratio and size. We show that the length of Vi chains, but not the ultimate size of the conjugate, has an impact on the anti-Vi IgG immune response induced. Full-length Vi conjugates, independent of the carrier protein, induce peak IgG responses rapidly after just one immunization, and secondary immunization does not enhance the magnitude of these responses. Fragmented Vi linked to CRM197 and diphtheria toxoid, but not to tetanus toxoid, gives lower anti-Vi antibody responses after the first immunization than full-length Vi conjugates, but antibody titres are similar to those induced by full-length Vi conjugates following a second dose. The chemistry to conjugate Vi to the carrier protein, the linker used, and the saccharide to protein ratio do not significantly alter the response. We conclude that Vi length and carrier protein are the variables that influence the anti-Vi IgG response to immunization the most, while other parameters are of lesser importance. PMID:29287062
Unit and internal chain profiles of maca amylopectin.
Zhang, Ling; Li, Guantian; Yao, Weirong; Zhu, Fan
2018-03-01
Unit chain length distributions of amylopectin and its φ, β-limit dextrins, which reflect amylopectin internal structure from three maca starches, were determined by high-performance anion-exchange chromatography with pulsed amperometric detection after debranching, and the samples were compared with maize starch. The amylopectins exhibited average chain lengths ranging from 16.72 to 17.16, with ranges of total internal chain length, external chain length, and internal chain length of the maca amylopectins at 12.49 to 13.68, 11.24 to 11.89, and 4.27 to 4.48. The average chain length, external chain length, internal chain length, and total internal chain length were comparable in three maca amylopectins. Amylopectins of the three maca genotypes studied here presented no significant differences in their unit chain length profiles, but did show significant differences in their internal chain profiles. Additional genetic variations between different maca genotypes need to be studied to provide unit- and internal chain profiles of maca amylopectin. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Steenbakkers, Rudi J. A.; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin; Schieber, Jay D.
2014-01-01
We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi-Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated.
NASA Astrophysics Data System (ADS)
Massa, C.; Beilman, D. W.; Nichols, J. E.; Elison Timm, O.
2016-12-01
Holocene peat deposits from the Hawaiian Islands provide a unique opportunity to resolve millennial to centennial-scale climate variability over the central Pacific region, where data remain scarce. Because both extratropical and tropical modes of climate variability have a strong influence on modern rainfall over the archipelago, hydroclimate proxies from peat would provide valuable information about past Pacific climate changes. The few terrestrial records studied, based on pollen or leaf wax biomarkers, showed evidence for substantial vegetation changes that have been linked to a drying trend over the Holocene. Leaf wax n-alkanes, as well as their stable isotopic compositions (δ13C and δD), are indeed increasingly used to reconstruct past hydroclimate conditions. The interpretation of n-alkanes as biomarkers requires however a thorough knowledge of their distribution in modern plants that contribute to sediments, but in Hawaii the modern vegetation is understudied compared to proxy applications. Here we report results from a preliminary investigation of n-alkanes distributions in dominant modern plant litter collected at a bog site at the summit of the Waianae mountains on the Island of Oahu. We compared n-alkane distributions among species and plant groups in order to test whether taxa or plant functional types (mosses, ferns, woody plants, and sedges) can be discriminated from their n-alkane profiles. Results showed that general plant groups were difficult to distinguish based on individual n-alkanes abundances, chain lengths, or ratios. At the species level, the sedge Machaerina augustifolia, was largely dominated by n-C29 ( 60%), suggesting some chain lengths could be useful as proxies for identifying the contribution of sedges to sedimentary records. Woody plant average chain length was highly variable but overall was not shorter (even slightly higher) than in other terrestrial plants, as it is often assumed. A sedimentary profile from this site shows variation and an overall decrease in n-alkane chain length over the Holocene, but patterns across common modern plants suggest that caution should be exercised when ascribing n-alkane distribution parameters to a specific group of tropical vegetation.
Skvortsov, Alexander M; Klushin, Leonid I; Polotsky, Alexey A; Binder, Kurt
2012-03-01
The phase transition occurring when a single polymer chain adsorbed at a planar solid surface is mechanically desorbed is analyzed in two statistical ensembles. In the force ensemble, a constant force applied to the nongrafted end of the chain (that is grafted at its other end) is used as a given external control variable. In the z-ensemble, the displacement z of this nongrafted end from the surface is taken as the externally controlled variable. Basic thermodynamic parameters, such as the adsorption energy, exhibit a very different behavior as a function of these control parameters. In the thermodynamic limit of infinite chain length the desorption transition with the force as a control parameter clearly is discontinuous, while in the z-ensemble continuous variations are found. However, one should not be misled by a too-naive application of the Ehrenfest criterion to consider the transition as a continuous transition: rather, one traverses a two-phase coexistence region, where part of the chain is still adsorbed and the other part desorbed and stretched. Similarities with and differences from two-phase coexistence at vapor-liquid transitions are pointed out. The rounding of the singularities due to finite chain length is illustrated by exact calculations for the nonreversal random walk model on the simple cubic lattice. A new concept of local order parameter profiles for the description of the mechanical desorption of adsorbed polymers is suggested. This concept give evidence for both the existence of two-phase coexistence within single polymer chains for this transition and the anomalous character of this two-phase coexistence. Consequences for the proper interpretation of experiments performed in different ensembles are briefly mentioned.
Byk, G; Dubertret, C; Escriou, V; Frederic, M; Jaslin, G; Rangara, R; Pitard, B; Crouzet, J; Wils, P; Schwartz, B; Scherman, D
1998-01-15
We have designed and synthesized original cationic lipids for gene delivery. A synthetic method on solid support allowed easy access to unsymmetrically monofunctionalized polyamine building blocks of variable geometries. These polyamine building blocks were introduced into cationic lipids. To optimize the transfection efficiency in the novel series, we have carried out structure-activity relationship studies by introduction of variable-length lipids, of variable-length linkers between lipid and cationic moiety, and of substituted linkers. We introduce the concept of using the linkers within cationic lipids molecules as carriers of side groups harboring various functionalities (side chain entity), as assessed by the introduction of a library composed of cationic entities, additional lipid chains, targeting groups, and finally the molecular probes rhodamine and biotin for cellular traffic studies. The transfection activity of the products was assayed in vitro on Hela carcinoma, on NIH3T3, and on CV1 fibroblasts and in vivo on the Lewis Lung carcinoma model. Products from the series displayed high transfection activities. Results indicated that the introduction of a targeting side chain moiety into the cationic lipid is permitted. A primary physicochemical characterization of the DNA/lipid complexes was demonstrated with this leading compound. Selected products from the series are currently being developed for preclinical studies, and the labeled lipopolyamines can be used to study the intracellular traffic of DNA/cationic lipid complexes.
NASA Astrophysics Data System (ADS)
Mansbach, Rachael A.; Ferguson, Andrew L.
2015-03-01
The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.
Mansbach, Rachael A; Ferguson, Andrew L
2015-03-14
The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.
Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu
2016-11-23
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
Walther, Stefanie; Tietze, Manfred; Czerny, Claus-Peter; König, Sven; Diesterbeck, Ulrike S
2016-01-01
We have developed a new bioinformatics framework for the analysis of rearranged bovine heavy chain immunoglobulin (Ig) variable regions by combining and refining widely used alignment algorithms. This bioinformatics framework allowed us to investigate alignments of heavy chain framework regions (FRHs) and the separate alignments of FRHs and heavy chain complementarity determining regions (CDRHs) to determine their germline origin in the four cattle breeds Aubrac, German Black Pied, German Simmental, and Holstein Friesian. Now it is also possible to specifically analyze Ig heavy chains possessing exceptionally long CDR3Hs. In order to gain more insight into breed specific differences in Ig combinatorial diversity, somatic hypermutations and putative gene conversions of IgG, we compared the dominantly transcribed variable (IGHV), diversity (IGHD), and joining (IGHJ) segments and their recombination in the four cattle breeds. The analysis revealed the use of 15 different IGHV segments, 21 IGHD segments, and two IGHJ segments with significant different transcription levels within the breeds. Furthermore, there are preferred rearrangements within the three groups of CDR3H lengths. In the sequences of group 2 (CDR3H lengths (L) of 11-47 amino acid residues (aa)) a higher number of recombination was observed than in sequences of group 1 (L≤10 aa) and 3 (L≥48 aa). The combinatorial diversity of germline IGHV, IGHD, and IGHJ-segments revealed 162 rearrangements that were significantly different. The few preferably rearranged gene segments within group 3 CDR3H regions may indicate specialized antibodies because this length is unique in cattle. The most important finding of this study, which was enabled by using the bioinformatics framework, is the discovery of strong evidence for gene conversion as a rare event using pseudogenes fulfilling all definitions for this particular diversification mechanism.
Czerny, Claus-Peter; König, Sven; Diesterbeck, Ulrike S.
2016-01-01
We have developed a new bioinformatics framework for the analysis of rearranged bovine heavy chain immunoglobulin (Ig) variable regions by combining and refining widely used alignment algorithms. This bioinformatics framework allowed us to investigate alignments of heavy chain framework regions (FRHs) and the separate alignments of FRHs and heavy chain complementarity determining regions (CDRHs) to determine their germline origin in the four cattle breeds Aubrac, German Black Pied, German Simmental, and Holstein Friesian. Now it is also possible to specifically analyze Ig heavy chains possessing exceptionally long CDR3Hs. In order to gain more insight into breed specific differences in Ig combinatorial diversity, somatic hypermutations and putative gene conversions of IgG, we compared the dominantly transcribed variable (IGHV), diversity (IGHD), and joining (IGHJ) segments and their recombination in the four cattle breeds. The analysis revealed the use of 15 different IGHV segments, 21 IGHD segments, and two IGHJ segments with significant different transcription levels within the breeds. Furthermore, there are preferred rearrangements within the three groups of CDR3H lengths. In the sequences of group 2 (CDR3H lengths (L) of 11–47 amino acid residues (aa)) a higher number of recombination was observed than in sequences of group 1 (L≤10 aa) and 3 (L≥48 aa). The combinatorial diversity of germline IGHV, IGHD, and IGHJ-segments revealed 162 rearrangements that were significantly different. The few preferably rearranged gene segments within group 3 CDR3H regions may indicate specialized antibodies because this length is unique in cattle. The most important finding of this study, which was enabled by using the bioinformatics framework, is the discovery of strong evidence for gene conversion as a rare event using pseudogenes fulfilling all definitions for this particular diversification mechanism. PMID:27828971
Pathak, Jyotsana; Priyadarshini, Eepsita; Rawat, Kamla; Bohidar, H B
2017-12-01
In this review, a number of systems are described to demonstrate the effect of polyelectrolyte chain stiffness (persistence length) on the coacervation phenomena, after we briefly review the field. We consider two specific types of complexation/coacervation: in the first type, DNA is used as a fixed substrate binding to flexible polyions such as gelatin A, bovine serum albumin and chitosan (large persistence length polyelectrolyte binding to low persistence length biopolymer), and in the second case, different substrates such as gelatin A, bovine serum albumin, and chitosan were made to bind to a polyion gelatin B (low persistence length substrate binding to comparable persistence length polyion). Polyelectrolyte chain flexibility was found to have remarkable effect on the polyelectrolyte-protein complex coacervation. The competitive interplay of electrostatic versus surface patch binding (SPB) leading to associative interaction followed by complex coacervation between these biopolymers is elucidated. We modelled the SPB interaction in terms of linear combination of attractive and repulsive Coulombic forces with respect to the solution ionic strength. The aforesaid interactions were established via a universal phase diagram, considering the persistence length of polyion as the sole independent variable. Copyright © 2017 Elsevier B.V. All rights reserved.
Unified description of the slip phenomena in sheared polymer films: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Priezjev, Nikolai
2010-03-01
The dynamic behavior of the slip length in shear flow of polymer melts past atomically smooth surfaces is investigated using MD simulations. The polymer melt was modeled as a collection of FENE-LJ bead-spring chains. We consider shear flow conditions at low pressures and weak wall-fluid interaction energy so that fluid velocity profiles are linear throughout the channel at all shear rates examined. In agreement with earlier studies we confirm that for shear- thinning fluids the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that the rate dependence of the slip length depends on the lattice orientation at high shear rates. The MD results show that the ratio of slip length to viscosity follows a master curve when plotted as a function of a single variable that depends on the structure factor, contact density and temperature of the first fluid layer near the solid wall. The universal dependence of the slip length holds for a number of parameters of the interface: fluid density and structure (chain length), wall-fluid interaction energy, wall density, lattice orientation, thermal or solid walls.
Swelling of biological and semiflexible polyelectrolytes.
Dobrynin, Andrey V; Carrillo, Jan-Michael Y
2009-10-21
We have developed a theoretical model of swelling of semiflexible (biological) polyelectrolytes in salt solutions. Our approach is based on separation of length scales which allowed us to split a chain's electrostatic energy into two parts that describe local and remote electrostatic interactions along the polymer backbone. The local part takes into account interactions between charged monomers that are separated by distances along the polymer backbone shorter than the chain's persistence length. These electrostatic interactions renormalize chain persistence length. The second part includes electrostatic interactions between remote charged pairs along the polymer backbone located at distances larger than the chain persistence length. These interactions are responsible for chain swelling. In the framework of this approach we calculated effective chain persistence length and chain size as a function of the Debye screening length, chain degree of ionization, bare persistence length and chain degree of polymerization. Our crossover expression for the effective chain's persistence length is in good quantitative agreement with the experimental data on DNA. We have been able to fit experimental datasets by using two adjustable parameters: DNA ionization degree (α = 0.15-0.17) and a bare persistence length (l(p) = 40-44 nm).
Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo
2013-03-01
Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.
Kothawala, Dolly N; Köhler, Stephan J; Östlund, Anna; Wiberg, Karin; Ahrens, Lutz
2017-09-15
Drinking water treatment plants (DWTPs) are constantly adapting to a host of emerging threats including the removal of micro-pollutants like perfluoroalkyl substances (PFASs), while concurrently considering how background levels of dissolved organic matter (DOM) influences their removal efficiency. Two adsorbents, namely anion exchange (AE) and granulated active carbon (GAC) have shown particular promise for PFAS removal, yet the influence of background levels of DOM remains poorly explored. Here we considered how the removal efficiency of 13 PFASs are influenced by two contrasting types of DOM at four concentrations, using both AE (Purolite A-600 ® ) and GAC (Filtrasorb 400 ® ). We placed emphasis on the pre-equilibrium conditions to gain better mechanistic insight into the dynamics between DOM, PFASs and adsorbents. We found AE to be very effective at removing both PFASs and DOM, while largely remaining resistant to even high levels of background DOM (8 mg carbon L -1 ) and surprisingly found that smaller PFASs were removed slightly more efficiently than longer chained counterparts, In contrast, PFAS removal efficiency with GAC was highly variable with PFAS chain length, often improving in the presence of DOM, but with variable response based on the type of DOM and PFAS chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.
Giudicelli, Véronique; Duroux, Patrice; Kossida, Sofia; Lefranc, Marie-Paule
2017-06-26
IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino changes). The functionality is generic and can analyse any IG or TR single chain nucleotide sequence containing two V domains, provided that the corresponding species IMGT reference directory is available. The "Analysis of single chain Fragment variable (scFv)" implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST provides the identification and full characterization of the two V domains of full-length scFv (~850 bp) nucleotide sequences from combinatorial libraries. The analysis can also be performed on concatenated paired chains of expressed antigen receptor IG or TR repertoires.
Simulation of Teacher Demand, Demographics, and Mobility: A Preliminary Report.
ERIC Educational Resources Information Center
Baugh, William H.; Stone, Joe A.
A Markov chain is used to construct a simulation model of the educator labor market in Oregon. The variables crucial to this study, drawn from the University of Southern California faculty planning model, include factors such as appointment rate; age; probability of attaining promotion; retirement, resignation and mortality rates; length of…
NASA Astrophysics Data System (ADS)
Panu, U. S.; Ng, W.; Rasmussen, P. F.
2009-12-01
The modeling of weather states (i.e., precipitation occurrences) is critical when the historical data are not long enough for the desired analysis. Stochastic models (e.g., Markov Chain and Alternating Renewal Process (ARP)) of the precipitation occurrence processes generally assume the existence of short-term temporal-dependency between the neighboring states while implying the existence of long-term independency (randomness) of states in precipitation records. Existing temporal-dependent models for the generation of precipitation occurrences are restricted either by the fixed-length memory (e.g., the order of a Markov chain model), or by the reining states in segments (e.g., persistency of homogenous states within dry/wet-spell lengths of an ARP). The modeling of variable segment lengths and states could be an arduous task and a flexible modeling approach is required for the preservation of various segmented patterns of precipitation data series. An innovative Dictionary approach has been developed in the field of genome pattern recognition for the identification of frequently occurring genome segments in DNA sequences. The genome segments delineate the biologically meaningful ``words" (i.e., segments with a specific patterns in a series of discrete states) that can be jointly modeled with variable lengths and states. A meaningful “word”, in hydrology, can be referred to a segment of precipitation occurrence comprising of wet or dry states. Such flexibility would provide a unique advantage over the traditional stochastic models for the generation of precipitation occurrences. Three stochastic models, namely, the alternating renewal process using Geometric distribution, the second-order Markov chain model, and the Dictionary approach have been assessed to evaluate their efficacy for the generation of daily precipitation sequences. Comparisons involved three guiding principles namely (i) the ability of models to preserve the short-term temporal-dependency in data through the concepts of autocorrelation, average mutual information, and Hurst exponent, (ii) the ability of models to preserve the persistency within the homogenous dry/wet weather states through analysis of dry/wet-spell lengths between the observed and generated data, and (iii) the ability to assesses the goodness-of-fit of models through the likelihood estimates (i.e., AIC and BIC). Past 30 years of observed daily precipitation records from 10 Canadian meteorological stations were utilized for comparative analyses of the three models. In general, the Markov chain model performed well. The remainders of the models were found to be competitive from one another depending upon the scope and purpose of the comparison. Although the Markov chain model has a certain advantage in the generation of daily precipitation occurrences, the structural flexibility offered by the Dictionary approach in modeling the varied segment lengths of heterogeneous weather states provides a distinct and powerful advantage in the generation of precipitation sequences.
Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas
2015-06-04
It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.
Dissolution of covalent adaptable network polymers in organic solvent
NASA Astrophysics Data System (ADS)
Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.
2017-12-01
It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.
Singular eigenstates in the even(odd) length Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Ranjan Giri, Pulak; Deguchi, Tetsuo
2015-05-01
We study the implications of the regularization for the singular solutions on the even(odd) length spin-1/2 XXX chains in some specific down-spin sectors. In particular, the analytic expressions of the Bethe eigenstates for three down-spin sector have been obtained along with their numerical forms in some fixed length chains. For an even-length chain if the singular solutions \\{{{λ }α }\\} are invariant under the sign changes of their rapidities \\{{{λ }α }\\}=\\{-{{λ }α }\\}, then the Bethe ansatz equations are reduced to a system of (M-2)/2((M-3)/2) equations in an even (odd) down-spin sector. For an odd N length chain in the three down-spin sector, it has been analytically shown that there exist singular solutions in any finite length of the spin chain of the form N=3(2k+1) with k=1,2,3,\\cdots . It is also shown that there exist no singular solutions in the four down-spin sector for some odd-length spin-1/2 XXX chains.
Zhu, Mo; Riederer, Markus; Hildebrandt, Ulrich
2017-08-01
Asexually produced conidia of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt) are known to perceive cuticular very-long-chain aldehydes as signal substances strongly stimulating germination and differentiation of infection structures in a concentration- and chain-length-dependent manner. Conidial germination and appressorium formation are widely prevented by the presence of free water on the host surface. However, sexually produced ascospores can differentiate immersed in water. Applying a Formvar ® -based in vitro-system showed that ascospore appressorium formation was strongly induced by the presence of wheat leaf cuticular wax. Similar to conidia, ascospore appressorium formation is triggered by the presence of very-long-chain aldehydes in a chain-length-dependent manner with n-octacosanal as the most inducing aldehyde. Surface hydrophobicity positively affected ascospore germination but not appressorium formation. Ascospores required significantly more time to complete the differentiation of appressoria and exhibited a more distinct dependence on the availability of free water than their conidial counterparts. Unlike conidia, ascospores showed a more variable germination and differentiation pattern even with a single germ tube differentiating an appressorium. Despite these differences our results demonstrate that a host surface recognition principle based on cuticular very-long-chain aldehydes is a common feature of B. graminis f. sp. tritici ascospores and conidia. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.
2005-01-01
A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.
Polymer brushes in explicit poor solvents studied using a new variant of the bond fluctuation model
NASA Astrophysics Data System (ADS)
Jentzsch, Christoph; Sommer, Jens-Uwe
2014-09-01
Using a variant of the Bond Fluctuation Model which improves its parallel efficiency in particular running on graphic cards we perform large scale simulations of polymer brushes in poor explicit solvent. Grafting density, solvent quality, and chain length are varied. Different morphological structures in particular octopus micelles are observed for low grafting densities. We reconsider the theoretical model for octopus micelles proposed by Williams using scaling arguments with the relevant scaling variable being σ/σc, and with the characteristic grafting density given by σc ˜ N-4/3. We find that octopus micelles only grow laterally, but not in height and we propose an extension of the model by assuming a cylindrical shape instead of a spherical geometry for the micelle-core. We show that the scaling variable σ/σc can be applied to master plots for the averaged height of the brush, the size of the micelles, and the number of chains per micelle. The exponents in the corresponding power law relations for the grafting density and chain length are in agreement with the model for flat cylindrical micelles. We also investigate the surface roughness and find that polymer brushes in explicit poor solvent at grafting densities higher than the stretching transition are flat and surface rippling can only be observed close to the stretching transition.
NASA Astrophysics Data System (ADS)
Pickman, Yishai; Dunn-Walters, Deborah; Mehr, Ramit
2013-10-01
Complementarity-determining region 3 (CDR3) is the most hyper-variable region in B cell receptor (BCR) and T cell receptor (TCR) genes, and the most critical structure in antigen recognition and thereby in determining the fates of developing and responding lymphocytes. There are millions of different TCR Vβ chain or BCR heavy chain CDR3 sequences in human blood. Even now, when high-throughput sequencing becomes widely used, CDR3 length distributions (also called spectratypes) are still a much quicker and cheaper method of assessing repertoire diversity. However, distribution complexity and the large amount of information per sample (e.g. 32 distributions of the TCRα chain, and 24 of TCRβ) calls for the use of machine learning tools for full exploration. We have examined the ability of supervised machine learning, which uses computational models to find hidden patterns in predefined biological groups, to analyze CDR3 length distributions from various sources, and distinguish between experimental groups. We found that (a) splenic BCR CDR3 length distributions are characterized by low standard deviations and few local maxima, compared to peripheral blood distributions; (b) healthy elderly people's BCR CDR3 length distributions can be distinguished from those of the young; and (c) a machine learning model based on TCR CDR3 distribution features can detect myelodysplastic syndrome with approximately 93% accuracy. Overall, we demonstrate that using supervised machine learning methods can contribute to our understanding of lymphocyte repertoire diversity.
Influence of alkyl chain length compatibility on microemulsion structure and solubilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, V.K.; O'Connell, J.P.; Shah, D.O.
1980-06-01
The water solubilization capacity of water/oil microemulsions is studied as a function of alkyl chain length of oil (C/sub 8/ to C/sub 16/), surfactant (C/sub 14/ and C/sub 18/ fatty acid soaps), and alcohol (C/sub 4/ to C/sub 7/). Sodium stearate and sodium myristate were used as surfactants. For n-butanol microemulsions the maximum amount of water solubilized in the microemulsion decreased continuously with increasing oil chain length; for n-heptanol it increased continuously. For n-pentanol and n-hexanol systems, water solubilization reached a maximum when the oil chain length plus alcohol chain length was equal to that of the surfactant. The electricmore » resistance and dielectric constant of the microemulsions also are measured as a function of alkyl chain length of the oil. 48 references.« less
Side-Chain Effects on the Thermoelectric Properties of Fluorene-Based Copolymers.
Liang, Ansheng; Zhou, Xiaoyan; Zhou, Wenqiao; Wan, Tao; Wang, Luhai; Pan, Chengjun; Wang, Lei
2017-09-01
Three conjugated polymers with alkyl chains of different lengths are designed and synthesized, and their structure-property relationship as organic thermoelectric materials is systematically elucidated. All three polymers show similar photophysical properties, thermal properties, and mechanical properties; however, their thermoelectric performance is influenced by the length of their side chains. The length of the alkyl chain significantly influences the electrical conductivity of the conjugated polymers, and polymers with a short alkyl chain exhibit better conductivity than those with a long alkyl chain. The length of the alkyl chain has little effect on the Seebeck coefficient. Only a slight increase in the Seebeck coefficient is observed with the increasing length of the alkyl chain. The purpose of this study is to provide comprehensive insight into fine-tuning the thermoelectric properties of conjugated polymers as a function of side-chain engineering, thereby providing a novel perspective into the design of high-performance thermoelectric conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using Kalman Filter Chemical Data Assimilation to Study Ozone Catalytic Loss Cycles in January 1992
NASA Technical Reports Server (NTRS)
Lary, David J.
2002-01-01
This paper presents for the first time a global study of the ozone catalytic destruction cycles operating in the stratosphere using a stratospheric analyses for January 1992. The chemical analyses were produced using a Kalman filter data assimilation system. Because a major component of the variability of trace gases is due to the atmospheric motions the analyses have been cast in a flow-tracking coordinate system that moves with the large scale flow pattern. Particular attention is paid to the kinetic aspects of these cycles such as the rate limiting step and chain length. Although it is an important kinetic parameter, the chain length of the various cycles is seldom considered when the various catalytic cycles are discussed. This survey highlights that in the low stratosphere the cycles involving HO2 and halogens (notably bromine) are particularly important. In approximate order of effectiveness the most important ozone loss cycles in the polar lower stratosphere are the BrO/ClO, HO2/BrO, and OH/HO2 cycles. The ClO/ClO cycle clearly delineates the regions of chlorine activation. The chain length of the HO2/ClO, OH/HO2, Br/BrO, and ClO/NO2, clearly delineate the vortex edge region. The chain length of the BrO/NO2 and Cl/NO2 cycles highlight the regions of chemical processing outside the vortex where streamers of chemically processed air are stripped-off and transported away from the vortex. This is also true in the very low stratosphere for the Cl/ClO and BrO/ClO cycles.
Polymer translocation through a nanopore: a showcase of anomalous diffusion.
Milchev, A; Dubbeldam, Johan L A; Rostiashvili, Vakhtang G; Vilgis, Thomas A
2009-04-01
We investigate the translocation dynamics of a polymer chain threaded through a membrane nanopore by a chemical potential gradient that acts on the chain segments inside the pore. By means of diverse methods (scaling theory, fractional calculus, and Monte Carlo and molecular dynamics simulations), we demonstrate that the relevant dynamic variable, the transported number of polymer segments, s(t), displays an anomalous diffusive behavior, both with and without an external driving force being present. We show that in the absence of drag force the time tau, needed for a macromolecule of length N to thread from the cis into the trans side of a cell membrane, scales as tauN(2/alpha) with the chain length. The anomalous dynamics of the translocation process is governed by a universal exponent alpha= 2/(2nu + 2 - gamma(1)), which contains the basic universal exponents of polymer physics, nu (the Flory exponent) and gamma(1) (the surface entropic exponent). A closed analytic expression for the probability to find s translocated segments at time t in terms of chain length N and applied drag force f is derived from the fractional Fokker-Planck equation, and shown to provide analytic results for the time variation of the statistical moments and . It turns out that the average translocation time scales as tau proportional, f(-1)N(2/alpha-1). These results are tested and found to be in perfect agreement with extensive Monte Carlo and molecular dynamics computer simulations.
Opening of DNA chain due to force applied on different locations.
Singh, Amar; Modi, Tushar; Singh, Navin
2016-09-01
We consider a homogeneous DNA molecule and investigate the effect of random force applied on the unzipping profile of the molecule. How the critical force varies as a function of the chain length or number of base pairs is the objective of this study. In general, the ratio of the critical forces that is applied on the middle of the chain to that which is applied on one of the ends is two. Our study shows that this ratio depends on the length of the chain. This means that the force which is applied to a point can be experienced by a section of the chain. Beyond a length, the base pairs have no information about the applied force. In the case when the chain length is shorter than this length, this ratio may vary. Only in the case when the chain length exceeds a critical length, this ratio is found to be two. Based on the de Gennes formulation, we developed a method to calculate these forces at zero temperature. The exact results at zero temperature match numerical calculations.
Constraints on food chain length arising from regional metacommunity dynamics
Calcagno, Vincent; Massol, François; Mouquet, Nicolas; Jarne, Philippe; David, Patrice
2011-01-01
Classical ecological theory has proposed several determinants of food chain length, but the role of metacommunity dynamics has not yet been fully considered. By modelling patchy predator–prey metacommunities with extinction–colonization dynamics, we identify two distinct constraints on food chain length. First, finite colonization rates limit predator occupancy to a subset of prey-occupied sites. Second, intrinsic extinction rates accumulate along trophic chains. We show how both processes concur to decrease maximal and average food chain length in metacommunities. This decrease is mitigated if predators track their prey during colonization (habitat selection) and can be reinforced by top-down control of prey vital rates (especially extinction). Moreover, top-down control of colonization and habitat selection can interact to produce a counterintuitive positive relationship between perturbation rate and food chain length. Our results show how novel limits to food chain length emerge in spatially structured communities. We discuss the connections between these constraints and the ones commonly discussed, and suggest ways to test for metacommunity effects in food webs. PMID:21367786
Electrostatic contribution to the persistence length of a semiflexible dipolar chain.
Podgornik, Rudi
2004-09-01
We investigate the electrostatic contribution to the persistence length of a semiflexible polymer chain whose segments interact via a screened Debye-Hückel dipolar interaction potential. We derive the expressions for the renormalized persistence length on the level of a 1/D-expansion method already successfully used in other contexts of polyelectrolye physics. We investigate different limiting forms of the renormalized persistence length of the dipolar chain and show that, in, general, it depends less strongly on the screening length than in the context of a monopolar chain. We show that for a dipolar chain the electrostatic persistence length in the same regime of the parameter phase space as the original Odijk-Skolnick-Fixman (OSF) form for a monopolar chain depends logarithmically on the screening length rather than quadratically. This can be understood solely on the basis of a swifter decay of the dipolar interactions with separation compared to the monopolar electrostatic interactions. We comment also on the general contribution of higher multipoles to the electrostatic renormalization of the bending rigidity.
DNA compaction by poly (amido amine) dendrimers of ammonia cored and ethylene diamine cored
NASA Astrophysics Data System (ADS)
Qamhieh, K.; Al-Shawwa, J.
2017-06-01
The complexes build-up of DNA and soft particles poly amidoamine (PAMAM) dendrimers of ammonia cored of generations (G1-G6) and ethylenediamine cored of generations (G1-G10) have been studied, using a new theoretical model developed by Qamhieh and coworkers. The model describes the interaction between linear polyelectrolyte (LPE) chain and ion-penetrable spheres. Many factors affecting LPE/dendrimer complex have been investigated such as dendrimer generation, the Bjerrum length, salt concentration, and rigidity of the LPE chain represented by the persistence length. It is found that the wrapping chain length around dendrimer increases by increasing dendrimer`s generation, Bjerrum length, and salt concentration, while decreases by increasing the persistence length of the LPE chain. Also we can conclude that the wrapping length of LPE chain around ethylenediamine cored dendrimers is larger than its length around ammonia cored dendrimers.
Tunable evolutions of shock absorption and energy partitioning in magnetic granular chains
NASA Astrophysics Data System (ADS)
Leng, Dingxin; Liu, Guijie; Sun, Lingyu
2018-01-01
In this paper, we investigate the tunable characteristics of shock waves propagating in one-dimensional magnetic granular chains at various chain lengths and magnetic flux densities. According to the Hertz contact theory and Maxwell principle, a discrete element model with coupling elastic and field-induced interaction potentials of adjacent magnetic grains is proposed. We also present hard-sphere approximation analysis to describe the energy partitioning features of magnetic granular chains. The results demonstrate that, for a fixed magnetic field strength, when the chain length is greater than two times of the wave width of the solitary wave, the chain length has little effect on the output energy of the system; for a fixed chain length, the shock absorption and energy partitioning features of magnetic granular chains are remarkably influenced by varying magnetic flux densities. This study implies that the magnetic granular chain is potential to construct adaptive shock absorption components for impulse mitigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guard-Petter, J.; Parker, C.T.; Asokan, K.
1999-05-01
Twelve human and chicken isolates of Salmonella enterica serovar Enteritidis belonging to phage types 4, 8, 13a, and 23 were characterized for variability in lipopolysaccharide (LPS) composition. Isolates were differentiated into two groups, i.e., those that lacked immunoreactive O-chain, termed rough isolates, and those that had immunoreactive O-chain, termed smooth isolates. Isolates within these groups could be further differentiated by LPS compositional differences as detected by gel electrophoresis and gas liquid chromatography of samples extracted with water, which yielded significantly more LPS in comparison to phenol-chloroform extraction. The rough isolates were of two types, the O-antigen synthesis mutants and themore » O-antigen polymerization (wzy) mutants. Smooth isolates were also of two types, one producing low-molecular-weight (LMW) LPS and the other producing high-molecular-weight (HMW) LPS. To determine the genetic basis for the O-chain variability of the smooth isolates, the authors analyzed the effects of a null mutation in the O-chain length determinant gene, wzz (cld) of serovar Typhimurium. This mutation results in a loss of HMW LPS; however, the LMW LPS of this mutant was longer and more glucosylated than that from clinical isolates of serovar Enteritidis. Cluster analysis of these data and of those from two previously characterized isogenic strains of serovar Enteritidis that had different virulence attributes indicated that glucosylation of HMW LPS (via oafR function) is variable and results in two types of HMW structures, one that is highly glucosylated and one that is minimally glucosylated. These results strongly indicate that naturally occurring variability in wzy, wzz, and oafR function can be used to subtype isolates of serovar Enteritidis during epidemiological investigations.« less
The binding of analogs of porphyrins and chlorins with elongated side chains to albumin
Ben Dror, Shimshon; Bronshtein, Irena; Weitman, Hana; Smith, Kevin M.; O’Neal, William G.; Jacobi, Peter A.; Ehrenberg, Benjamin
2012-01-01
In previous studies, we demonstrated that elongation of side chains of several sensitizers endowed them with higher affinity for artificial and natural membranes and caused their deeper localization in membranes. In the present study, we employed eight hematoporphyrin and protoporphyrin analogs and four groups containing three chlorin analogs each, all synthesized with variable numbers of methylenes in their alkyl carboxylic chains. We show that these tetrapyrroles’ affinity for bovine serum albumin (BSA) and their localization in the binding site are also modulated by chain lengths. The binding constants of the hematoporphyrins and protoporphyrins to BSA increased as the number of methylenes was increased. The binding of the chlorins depended on the substitution at the meso position opposite to the chains. The quenching of the sensitizers’ florescence by external iodide ions decreased as the side chains became longer, indicating to deeper insertion of the molecules into the BSA binding pocket. To corroborate this conclusion, we studied the efficiency of photodamage caused to tryptophan in BSA upon illumination of the bound sensitizers. The efficiency was found to depend on the side-chain lengths of the photosensitizer. We conclude that the protein site that hosts these sensitizers accommodates different analogs at positions that differ slightly from each other. These differences are manifested in the ease of access of iodide from the external aqueous phase, and in the proximity of the photosensitizers to the tryptophan. In the course of this study, we developed the kinetic equations that have to be employed when the sensitizer itself is being destroyed. PMID:19330323
Hoy, Robert S; Foteinopoulou, Katerina; Kröger, Martin
2009-09-01
Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.
Hou, Lei; Wu, Peiyi
2016-06-21
Turbidity, DLS and FTIR measurements in combination with the perturbation correlation moving window (PCMW) technique and 2D correlation spectroscopy (2Dcos) analysis have been utilized to investigate the LCST-type transition of a oligo ethylene glycol acrylate-based copolymer (POEGA) in aqueous solutions in this work. As demonstrated in turbidity and DLS curves, the macroscopic phase separation was sharp and slightly concentration dependent. Moreover, individual chemical groups along polymer chains also display abrupt changes in temperature-variable IR spectra. However, according to conventional IR analysis, the C-H groups present obvious dehydration, whereas C[double bond, length as m-dash]O and C-O-C groups exhibit anomalous "forced hydration" during the steep phase transition. From these analyses together with the PCMW and 2Dcos results, it has been confirmed that the hydrophobic interaction among polymer chains drove the chain collapse and dominated the phase transition. In addition, the unexpected enhanced hydration behavior of C[double bond, length as m-dash]O and C-O-C groups was induced by forced hydrogen bonding between polar groups along polymer chains and entrapped water molecules in the aggregates, which originated from the special chemical structure of POEGA.
NASA Astrophysics Data System (ADS)
Verron, E.; Gros, A.
2017-09-01
Most network models for soft materials, e.g. elastomers and gels, are dedicated to idealized materials: all chains admit the same number of Kuhn segments. Nevertheless, such standard models are not appropriate for materials involving multiple networks, and some specific constitutive equations devoted to these materials have been derived in the last few years. In nearly all cases, idealized networks of different chain lengths are assembled following an equal strain assumption; only few papers adopt an equal stress assumption, although some authors argue that such hypothesis would reflect the equilibrium of the different networks in contact. In this work, a full-network model with an arbitrary chain length distribution is derived by considering that chains of different lengths satisfy the equal force assumption in each direction of the unit sphere. The derivation is restricted to non-Gaussian freely jointed chains and to affine deformation of the sphere. Firstly, after a proper definition of the undeformed configuration of the network, we demonstrate that the equal force assumption leads to the equality of a normalized stretch in chains of different lengths. Secondly, we establish that the network with chain length distribution behaves as an idealized full-network of which both chain length and density of are provided by the chain length distribution. This approach is finally illustrated with two examples: the derivation of a new expression for the Young modulus of bimodal interpenetrated polymer networks, and the prediction of the change in fluorescence during deformation of mechanochemically responsive elastomers.
Knotting probability of a shaken ball-chain.
Hickford, J; Jones, R; du Pont, S Courrech; Eggers, J
2006-11-01
We study the formation of knots on a macroscopic ball chain, which is shaken on a horizontal plate at 12 times the acceleration of gravity. We find that above a certain critical length, the knotting probability is independent of chain length, while the time to shake out a knot increases rapidly with chain length. The probability of finding a knot after a certain time is the result of the balance of these two processes. In particular, the knotting probability tends to a constant for long chains.
This paper explains the conventions that are applied to certain listings of chemical substances containing ranges of alkyl chain lengths (i.e., carbon chains of varying lengths) for chemical substances on the Toxic Substances Control Act (TSCA)
Kocsis, E; Trus, B L; Steer, C J; Bisher, M E; Steven, A C
1991-08-01
We have developed computational techniques that allow image averaging to be applied to electron micrographs of filamentous molecules that exhibit tight and variable curvature. These techniques, which involve straightening by cubic-spline interpolation, image classification, and statistical analysis of the molecules' curvature properties, have been applied to purified brain clathrin. This trimeric filamentous protein polymerizes, both in vivo and in vitro, into a wide range of polyhedral structures. Contrasted by low-angle rotary shadowing, dissociated clathrin molecules appear as distinctive three-legged structures, called "triskelions" (E. Ungewickell and D. Branton (1981) Nature 289, 420). We find triskelion legs to vary from 35 to 62 nm in total length, according to an approximately bell-shaped distribution (mu = 51.6 nm). Peaks in averaged curvature profiles mark hinges or sites of enhanced flexibility. Such profiles, calculated for each length class, show that triskelion legs are flexible over their entire lengths. However, three curvature peaks are observed in every case: their locations define a proximal segment of systematically increasing length (14.0-19.0 nm), a mid-segment of fixed length (approximately 12 nm), and a rather variable end-segment (11.6-19.5 nm), terminating in a hinge just before the globular terminal domain (approximately 7.3 nm diameter). Thus, two major factors contribute to the overall variability in leg length: (1) stretching of the proximal segment and (2) stretching of the end-segment and/or scrolling of the terminal domain. The observed elasticity of the proximal segment may reflect phosphorylation of the clathrin light chains.
Rouse mode analysis of chain relaxation in homopolymer melts
Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; ...
2014-09-15
We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inverselymore » with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.« less
Confinement and controlling the effective compressive stiffness of carbyne
NASA Astrophysics Data System (ADS)
Kocsis, Ashley J.; Aditya Reddy Yedama, Neta; Cranford, Steven W.
2014-08-01
Carbyne is a one-dimensional chain of carbon atoms, consisting of repeating sp-hybridized groups, thereby representing a minimalist molecular rod or chain. While exhibiting exemplary mechanical properties in tension (a 1D modulus on the order of 313 nN and a strength on the order of 11 nN), its use as a structural component at the molecular scale is limited due to its relative weakness in compression and the immediate onset of buckling under load. To circumvent this effect, here, we probe the effect of confinement to enhance the mechanical behavior of carbyne chains in compression. Through full atomistic molecular dynamics, we characterize the mechanical properties of a free (unconfined chain) and explore the effect of confinement radius (R), free chain length (L) and temperature (T) on the effective compressive stiffness of carbyne chains and demonstrate that the stiffness can be tuned over an order of magnitude (from approximately 0.54 kcal mol-1 Å2 to 46 kcal mol-1 Å2) by geometric control. Confinement may inherently stabilize the chains, potentially providing a platform for the synthesis of extraordinarily long chains (tens of nanometers) with variable compressive response.
Martínez-Ruiz, Francisco José; Blas, Felipe J; Moreno-Ventas Bravo, A Ignacio; Míguez, José Manuel; MacDowell, Luis G
2017-05-17
The statistical associating fluid theory for attractive potentials of variable range (SAFT-VR) density functional theory (DFT) developed by [Gloor et al., J. Chem. Phys., 2004, 121, 12740-12759] is used to predict the interfacial behaviour of molecules modelled as fully-flexible square-well chains formed from tangentially-bonded monomers of diameter σ and potential range λ = 1.5σ. Four different model systems, comprising 4, 8, 12, and 16 monomers per molecule, are considered. In addition to that, we also compute a number of interfacial properties of molecular chains from direct simulation of the vapour-liquid interface. The simulations are performed in the canonical ensemble, and the vapour-liquid interfacial tension is evaluated using the wandering interface (WIM) method, a technique based on the thermodynamic definition of surface tension. Apart from surface tension, we also obtain density profiles, coexistence densities, vapour pressures, and critical temperature and density, paying particular attention to the effect of the chain length on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapour-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The interfacial thickness and surface tension appear to exhibit an asymptotic limiting behaviour for long chains. A similar behaviour is also observed for the coexistence densities and critical properties. Agreement between theory and simulation results indicates that SAFT-VR DFT is only able to predict qualitatively the interfacial properties of the model. Our results are also compared with simulation data taken from the literature, including the vapour-liquid coexistence densities, vapour pressures, and surface tension.
Tunnel current across linear homocatenated germanium chains
NASA Astrophysics Data System (ADS)
Matsuura, Yukihito
2014-01-01
The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e-βL, of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge-Ge bond length is longer than the Si-Si bond length.
NASA Astrophysics Data System (ADS)
Drenscko, Mihaela
Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. To begin with, we characterize the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained molecular simulation. We next explore the scaling behavior of the collapsed globular shape at the minimum energy configuration, characterized by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behavior of the Solvent Accessible Surface Area (SASA) as a function of chain length, finding a similar exponent for both all-atomistic and coarse-grained simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths. Next, in order to investigate the molecular interactions between single hydrophobic polymer chains and lipids in biological membranes and at lipid membrane/solvent interface, we perform a series of molecular dynamics simulations of small membranes using all atomistic and coarse-grained methods. The molecular interaction between common polymer chains used in biomedical applications and the cell membrane is unknown. This interaction may affect the biocompatibility of the polymer chains. Molecular dynamics simulations offer an emerging tool to characterize the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. We systematically characterize with long-time all-atomistic molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a model phospholipid membrane. We find that the length of polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilize advanced sampling techniques in molecular dynamics to characterize the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. These results can be used to design polymer chain lengths and chemistries to optimize their interaction with cell membranes at the molecular level.
NASA Astrophysics Data System (ADS)
Holtvoeth, J.; Rushworth, D.; Imeri, A.; Cara, M.; Vogel, H.; Wagner, T.; Wolff, G. A.
2015-08-01
We present elemental, lipid biomarker and compound-specific isotope (δ13C, δ2H) data for soils and leaf litter collected in the catchment of Lake Ohrid (Albania, Macedonia), as well as macrophytes, particulate organic matter and sediments from the lake itself. Lake Ohrid provides an outstanding archive of continental environmental change of at least 1.2 M years and the purpose of our study is to ground truth organic geochemical proxies that we developed in order to study past changes in the terrestrial biome. We show that soils dominate the lipid signal of the lake sediments rather than the vegetation or aquatic biomass, while compound-specific isotopes (δ13C, δ2H) determined for n-alkanoic acids confirm a dominant terrestrial source of organic matter to the lake. There is a strong imprint of suberin monomers on the composition of total lipid extracts and chain-length distributions of n-alkanoic acids, n-alcohols, ω-hydroxy acids and α,ω-dicarboxylic acids. Our end-member survey identifies that ratios of mid-chain length suberin-derived to long-chain length cuticular-derived alkyl compounds as well as their average chain length distributions can be used as new molecular proxies of organic matter sources to the lake. We tested these for the 8.2 ka event, a pronounced and widespread Holocene climate fluctuation. In SE Europe climate became drier and cooler in response to the event, as is clearly recognizable in the carbonate and organic carbon records of Lake Ohrid sediments. Our new proxies indicate biome modification in response to hydrological changes, identifying two phases of increased soil OM supply, first from topsoils and then from mineral soils. Our study demonstrates that geochemical fingerprinting of terrestrial OM should focus on the main lipid sources, rather than the living biomass. Both can exhibit climate-controlled variability, but are generally not identical.
NASA Astrophysics Data System (ADS)
Holtvoeth, J.; Rushworth, D.; Copsey, H.; Imeri, A.; Cara, M.; Vogel, H.; Wagner, T.; Wolff, G. A.
2016-02-01
We present elemental, lipid biomarker and, in the supplement, compound-specific isotope (δ13C, δ2H) data for soils and leaf litter collected in the catchment of Lake Ohrid (Albania, Macedonia), as well as macrophytes, particulate organic matter and sediments from the lake itself. Lake Ohrid provides an outstanding archive of continental environmental change of at least 1.2 million years and the purpose of our study is to ground truth organic geochemical proxies that we developed in order to study past changes in the terrestrial biome. We show that soils dominate the lipid signal of the lake sediments rather than the vegetation or aquatic biomass. There is a strong imprint of suberin monomers on the composition of total lipid extracts and chain-length distributions of n-alkanoic acids, n-alcohols, ω-hydroxy acids and α, ω-dicarboxylic acids. Our end-member survey identifies that ratios of mid-chain length suberin-derived to long-chain length cuticular-derived alkyl compounds as well as their average chain length distributions can be used as new molecular proxies of organic matter sources to the lake. We tested these for the 8.2 ka event, a pronounced and widespread Holocene climate fluctuation. In SE Europe climate became drier and cooler in response to the event, as is clearly recognisable in the carbonate and organic carbon records of Lake Ohrid sediments. Our new proxies indicate biome modification in response to hydrological changes, identifying two phases of increased soil organic matter (OM) supply, first from soils with moderately degraded OM and then from more degraded soils. Our study demonstrates that geochemical fingerprinting of terrestrial OM should focus on the main lipid sources, rather than the living biomass. Both can exhibit climate-controlled variability, but are generally not identical.
Size, shape, and diffusivity of a single Debye-Hückel polyelectrolyte chain in solution.
Soysa, W Chamath; Dünweg, B; Prakash, J Ravi
2015-08-14
Brownian dynamics simulations of a coarse-grained bead-spring chain model, with Debye-Hückel electrostatic interactions between the beads, are used to determine the root-mean-square end-to-end vector, the radius of gyration, and various shape functions (defined in terms of eigenvalues of the radius of gyration tensor) of a weakly charged polyelectrolyte chain in solution, in the limit of low polymer concentration. The long-time diffusivity is calculated from the mean square displacement of the centre of mass of the chain, with hydrodynamic interactions taken into account through the incorporation of the Rotne-Prager-Yamakawa tensor. Simulation results are interpreted in the light of the Odjik, Skolnick, Fixman, Khokhlov, and Khachaturian blob scaling theory (Everaers et al., Eur. Phys. J. E 8, 3 (2002)) which predicts that all solution properties are determined by just two scaling variables-the number of electrostatic blobs X and the reduced Debye screening length, Y. We identify three broad regimes, the ideal chain regime at small values of Y, the blob-pole regime at large values of Y, and the crossover regime at intermediate values of Y, within which the mean size, shape, and diffusivity exhibit characteristic behaviours. In particular, when simulation results are recast in terms of blob scaling variables, universal behaviour independent of the choice of bead-spring chain parameters, and the number of blobs X, is observed in the ideal chain regime and in much of the crossover regime, while the existence of logarithmic corrections to scaling in the blob-pole regime leads to non-universal behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jehle, Michael; Dürr, Ines; Fink, Saskia
The new mixed tetrelides Sr{sub 2}PbGe{sub 2} and Yb{sub 2}SnGe{sub 2}, several mixed Ca/Sr (A{sup II}) germanides A{sub 2}{sup II}(Sn,Pb)Ge{sub 2} and two polymorphs of La{sub 2}InSi{sub 2} represent new members of the general structure family of ternary alkaline-earth/lanthanoid main group silicides/germanides A{sub 2}M′M{sub 2}{sup ″}(M′=In,Sn,Pb;M″=Si,Ge). All compounds were synthesized from melts of the elements and their crystal structures have been determined by means of single crystal X-ray diffraction. Sr{sub 2}PbGe{sub 2} (Cmmm, a=402.36(11), b=1542.3(4), c=463.27(10) pm) crystallizes with the Mn{sub 2}AlB{sub 2}-type structure. In exhibiting infinite planar Ge zig-zag chains, it represents one border of the compound series. Themore » other borderline case, where only [Ge{sub 2}] dumbbells are left as Ge building units, is represented by the Ca/Yb tin germanides Ca{sub 2}SnGe{sub 2} and Yb{sub 2}SnGe{sub 2} (Mo{sub 2}FeB{sub 2}-type; P4/mbm, a=748.58(13)/740.27(7), c=445.59(8)/435.26(5) pm). In between these two border structures compounds with variable Si/Ge chain lengths could be obtained by varying the averaged size of the A{sup II} cations: Ca{sub 0.45}Sr{sub 1.55}PbGe{sub 2} (new structure type; Pbam, a=791.64(5), b=2311.2(2), c=458.53(3) pm) contains planar six-membered chain segments [Ge{sub 6}]. Tetrameric pieces [Ge{sub 4}] are the conspicuous structure elements in Ca{sub 1.16}Sr{sub 0.84}SnGe{sub 2} and La{sub 2}InSi{sub 2} (La{sub 2}InNi{sub 2}-type; Pbam, a=781.01(2)/762.01(13), b=1477.95(3)/1494.38(6), c=457.004(9)/442.1(3) pm). The tetragonal form of ’La{sub 2}InSi{sub 2}{sup ′} (exact composition: La{sub 2}In{sub 1.07}Si{sub 1.93}, P4/mbm, a=1309.11(12), c=443.32(4) pm) also crystallizes in a new structure type, containing only [Si{sub 3}] trimers as cutouts of the planar chains. In all structures the Si/Ge zig-zag chains/chain segments are connected by In/Sn/Pb atoms to form planar M layers, which are separated by pure A layers. Band structure calculations within the FP-LAPW DFT approach together with the Zintl formalism, extended by the presence of hypervalent bonding of the heavier M′ elements, give insight into the chemical bonding of this series of p-block metallides. An analysis of the band structure for the border phases Sr{sub 2}PbGe{sub 2} and Ca{sub 2}SnGe{sub 2} shows the considerable π bonding contributions within the Ge building units, which also become apparent from the short Ge–Ge bond lengths. - Graphical abstract: Example of one of the mixed metallides A{sub 2}(In/Sn/Pb)(Si/Ge){sub 2} with planar Si/Ge zig-zag chain segments of variable lengths. - Highlights: • Mixed metallides A{sub 2}(In/Sn/Pb)(Si/Ge){sub 2} were prepared for A=Ca, Sr, Yb, La. • The structures exhibit planar Si/Ge zig-zag chain segments of variable lengths. • In, Sn and Pb atoms are connecting the Si/Ge anions to planar nets. • Atomic size effects are investigated by the synthesis of mixed Ca/Sr germanides. • Bandstructure calculations indicate Si/Ge–Si/Ge π bonding contributions.« less
Quantum communication beyond the localization length in disordered spin chains.
Allcock, Jonathan; Linden, Noah
2009-03-20
We study the effects of localization on quantum state transfer in spin chains. We show how to use quantum error correction and multiple parallel spin chains to send a qubit with high fidelity over arbitrary distances, in particular, distances much greater than the localization length of the chain.
Crossover transition in flowing granular chains
NASA Astrophysics Data System (ADS)
Ulrich, Xialing; Fried, Eliot; Shen, Amy Q.
2009-09-01
We report on the dynamical and statistical behavior of flowing collections of granular chains confined two-dimensionally (2D) within a rotating tumbler. Experiments are conducted with systems of chains of fixed length, but various lengths are considered. The dynamics are punctuated by cascades of chains along a free-surface cascades, which drive the development of mixed porous/laminar packing arrangements in bulk. We investigate the conformation of the system, as characterized by the porosity of the flow region occupied by the chains and the mean-square end-to-end distance of the chains during flow. Both of these measures show crossover transitions from a 2D self-avoiding walk to a 2D random walk when the chain length becomes long enough to allow self-contact.
Kalynych, Sergei; Ruan, Xiang; Valvano, Miguel A; Cygler, Miroslaw
2011-08-01
The O-antigen component of the lipopolysaccharide (LPS) represents a population of polysaccharide molecules with nonrandom (modal) chain length distribution. The number of the repeat O units in each individual O-antigen polymer depends on the Wzz chain length regulator, an inner membrane protein belonging to the polysaccharide copolymerase (PCP) family. Different Wzz proteins confer vastly different ranges of modal lengths (4 to >100 repeat units), despite having remarkably conserved structural folds. The molecular mechanism responsible for the selective preference for a certain number of O units is unknown. Guided by the three-dimensional structures of PCPs, we constructed a panel of chimeric molecules containing parts of two closely related Wzz proteins from Salmonella enterica and Shigella flexneri which confer different O-antigen chain length distributions. Analysis of the O-antigen length distribution imparted by each chimera revealed the region spanning amino acids 67 to 95 (region 67 to 95), region 200 to 255, and region 269 to 274 as primarily affecting the length distribution. We also showed that there is no synergy between these regions. In particular, region 269 to 274 also influenced chain length distribution mediated by two distantly related PCPs, WzzB and FepE. Furthermore, from the 3 regions uncovered in this study, region 269 to 274 appeared to be critical for the stability of the oligomeric form of Wzz, as determined by cross-linking experiments. Together, our data suggest that chain length determination depends on regions that likely contribute to stabilize a supramolecular complex.
Majorana bound states in the finite-length chain
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2015-08-01
Recent experiments investigating edge states in ferromagnetic atomic chains on superconducting substrate are analyzed. In particular, finite size effects are considered. It is shown how the energy of the Majorana bound state depends on the length of the chain, as well as on the parameters of the model. Oscillations of the energy of the bound edge state in the chain as a function of the length of the chain, and as a function of the applied voltage (or the chemical potential) are studied. In particular, it has been shown that oscillations can exist only for some values of the effective potential.
Pinault, Michelle; Guimaraes, Cyrille; Couthon, Hélène; Thibonnet, Jérôme; Fontaine, Delphine; Chantôme, Aurélie; Chevalier, Stephan; Jaffrès, Paul-Alain; Vandier, Christophe
2018-01-01
Natural O-alkyl-glycerolipids, also known as alkyl-ether-lipids (AEL), feature a long fatty alkyl chain linked to the glycerol unit by an ether bond. AEL are ubiquitously found in different tissues but, are abundant in shark liver oil, breast milk, red blood cells, blood plasma, and bone marrow. Only a few AEL are commercially available, while many others with saturated or mono-unsaturated alkyl chains of variable length are not available. These compounds are, however, necessary as standards for analytical methods. Here, we investigated different reported procedures and we adapted some of them to prepare a series of 1-O-alkyl-glycerols featuring mainly saturated alkyl chains of various lengths (14:0, 16:0, 17:0, 19:0, 20:0, 22:0) and two monounsaturated chains (16:1, 18:1). All of these standards were fully characterized by NMR and GC-MS. Finally, we used these standards to identify the AEL subtypes in shark and chimera liver oils. The distribution of the identified AEL were: 14:0 (20–24%), 16:0 (42–54%) and 18:1 (6–16%) and, to a lesser extent, (0.2–2%) for each of the following: 16:1, 17:0, 18:0, and 20:0. These standards open the possibilities to identify AEL subtypes in tumours and compare their composition to those of non-tumour tissues. PMID:29570630
Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk.
Alemán, Mercedes; Bou, Ricard; Guardiola, Francesc; Durand, Erwann; Villeneuve, Pierre; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke
2015-01-15
The antioxidative effect of lipophilized caffeic acid was assessed in two different fish oil enriched food products: mayonnaise and milk. In both emulsion systems, caffeic acid esterified with fatty alcohols of different chain lengths (C1-C20) were better antioxidants than the original phenolic compound. The optimal chain length with respect to protection against oxidation was, however, different for the two food systems. Fish oil enriched mayonnaise with caffeates of medium alkyl chain length (butyl, octyl and dodecyl) added resulted in a better oxidative stability than caffeates with shorter (methyl) or longer (octadecyl) alkyl chains. Whereas in fish oil enriched milk emulsions the most effective caffeates were those with shorter alkyl chains (methyl and butyl) rather than the ones with medium and long chains (octyl, dodecyl, hexadecyl and eicosyl). These results demonstrate that there might be an optimum alkyl chain length for each phenolipid in each type of emulsion systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Xiaohua; Zhang, Yan; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Si, Shuxin; Wang, Jinping
2018-04-01
Carbon dots (CDs) have attracted increasing attention due to their high performances and potential applications in wide range of areas. However, their emission mechanism is not clear so far. In order to reveal more factors contributing to the emission of CDs, the effect of carbon chain length of starting materials on the formation of CDs and their optical properties was experimentally investigated in this work. In order to focus on the effect of carbon chain length, the starting materials with C, O, N in fully identical forms and only carbon chain lengths being different were selected for synthesizing CDs, including citric acid (CA) and adipic acid (AA) as carbon sources, and diamines with different carbon chain lengths (H2N(CH2)nNH2, n = 2, 4, 6) as nitrogen sources, as well as ethylenediamine (EDA) as nitrogen source and diacids with different carbon chain lengths (HOOC(CH2)nCOOH, n = 0, 2, 4, 6) as carbon sources. Therefore, the effect of carbon chain length of starting materials on the formation and optical properties of CDs can be systematically investigated by characterizing and comparing the structures and optical properties of as-prepared nine types of CDs. Moreover, the density of –NH2 on the surface of the CDs was quantitatively detected by a spectrophotometry so as to elucidate the relationship between the –NH2 related surface state and the optical properties.
Unit and internal chain profile of African rice (Oryza glaberrima) amylopectin.
Gayin, Joseph; Abdel-Aal, El-Sayed M; Manful, John; Bertoft, Eric
2016-02-10
High-performance anion-exchange chromatography was used to study the unit chain profiles of amylopectins and their φ,β-limit dextrins from two African rice (Oryza glaberrima) accessions-TOG 12440 and IRGC 103759. The samples were compared with two Asian rice (Oryza sativa) samples (cv Koshihikari and cv WITA 4) and one O. sativa × O. glaberrima cross (NERICA 4). The ratio of short:long chains ranged between 12.1 and 13.8, and the ratio of A:B-chains was ∼ 1.0 in all samples. A significant difference was observed in the distribution of internal chains with regards to the proportion of short "fingerprint" B-chains (Bfp-chains), which in the φ,β-limit dextrins have a degree of polymerization (DP) 3-7. The African rice starches and NERICA 4 had higher levels of Bfp-chains, but the major group of short B-chains (DP 8-25) was similar to that of the Asian rice samples. The average chain length (CL), internal chain length (ICL), and total internal chain length (TICL) were similar in all samples. However, the external chain length (ECL) was longer in the African rice samples and NERICA 4. ECL correlated positively and significantly (p<0.05) with gelatinization transition temperatures and enthalpy suggesting differences between the two rice types in cooking properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pan, Zhicheng; Fang, Danxuan; Song, Yuanqing; Song, Nijia; Ding, Mingming; Li, Jiehua; Luo, Feng; Li, Jianshu; Tan, Hong; Fu, Qiang
2018-06-06
Cationic gemini quaternary ammonium (GQA) has been used as a cell internalization promoter to improve the permeability of the cell membrane and enhance the cellular uptake. However, the effect of the alkyl chain length on the cellular properties of nanocarriers has not been elucidated yet. In this study, we developed a series of polyurethane micelles containing GQAs with various alkyl chain lengths. The alteration of the gemini alkyl chain length was found to change the distribution of GQA surfactants in the micellar structure and affect the surface charge exposure, stability, and the protein absorption properties of nanocarriers. Moreover, we also clarified the role of the alkyl chain length in tumor cell internalization and macrophage uptake of polyurethane micelles. This work provides a new understanding on the effect of the GQA alkyl chain length on the physicochemical and biological properties of nanomedicines, and offers guidance on the rational design of effective drug delivery systems where the issue of functional group exposure at the micellar surface should be considered.
Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence.
Sun, W J; Tristram-Nagle, S; Suter, R M; Nagle, J F
1996-01-01
Systematic low-angle and wide-angle x-ray scattering studies have been performed on fully hydrated unoriented multilamamellar vesicles of saturated lecithins with even chain lengths N = 16, 18, 20, 22, and 24 as a function of temperature T in the normal gel (L beta') phase. For all N, the area per chain Ac increases linearly with T with an average slope dAc/dT = 0.027 A2/degree C, and the lamellar D-spacings also increase linearly with an average slope dD/dT = 0.040 A/degree C. At the same T, longer chain length lecithins have more densely packed chains, i.e., smaller Ac's, than shorter chain lengths. The chain packing of longer chain lengths is found to be more distorted from hexagonal packing than that of smaller N, and the distortion epsilon of all N approaches the same value at the respective transition temperatures. The thermal volume expansion of these lipids is accounted for by the expansion in the hydrocarbon chain region. Electron density profiles are constructed using four orders of low-angle lamellar peaks. These show that most of the increase in D with increasing T is due to thickening of the bilayers that is consistent with a decrease in tilt angle theta and with little change in water spacing with either T or N. Because of the opposing effects of temperature on area per chain Ac and tilt angle 0, the area expansivity alpha A is quite small. A qualitative theoretical model based on competing head and chain interactions accounts for our results. PMID:8842227
Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.
2014-01-01
Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071
Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo
2017-09-01
The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chang, Yanjiao; Yang, Jingde; Ren, Lili; Zhou, Jiang
2018-08-15
The influence of chain length distribution of amylose on size and structure of the amylose nanoparticles (ANPs) prepared through nanoprecipitation was investigated. Amylose with different chain length distributions was obtained by β-amylase treating amylose paste for different times and measured by size exclusion chromatography (SEC) and fluorophore-assisted carbohydrate electrophoresis (FACE). ANPs prepared via precipitation were characterized by using dynamic light scattering (DLS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results showed that the β-amylase treatments led to decrease in chain length of amylose, and it was the most important factor affecting size of ANPs. When hydrolysis degree of amylose was 52.8%, mean size of ANPs decreased from 206.4 nm to 102.7 nm. All the ANPs displayed a V-type crystalline structure and the effect of amylose chain length on crystallinity of the precipitated ANPs was negligible in the investigated range. Copyright © 2018 Elsevier Ltd. All rights reserved.
Exploring the impact of the side-chain length on peptide/RNA binding events.
Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia
2017-07-19
The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.
Diversity of immunoglobulin lambda light chain gene usage over developmental stages in the horse.
Tallmadge, Rebecca L; Tseng, Chia T; Felippe, M Julia B
2014-10-01
To further studies of neonatal immune responses to pathogens and vaccination, we investigated the dynamics of B lymphocyte development and immunoglobulin (Ig) gene diversity. Previously we demonstrated that equine fetal Ig VDJ sequences exhibit combinatorial and junctional diversity levels comparable to those of adult Ig VDJ sequences. Herein, RACE clones from fetal, neonatal, foal, and adult lymphoid tissue were assessed for Ig lambda light chain combinatorial, junctional, and sequence diversity. Remarkably, more lambda variable genes (IGLV) were used during fetal life than later stages and IGLV gene usage differed significantly with time, in contrast to the Ig heavy chain. Junctional diversity measured by CDR3L length was constant over time. Comparison of Ig lambda transcripts to germline revealed significant increases in nucleotide diversity over time, even during fetal life. These results suggest that the Ig lambda light chain provides an additional dimension of diversity to the equine Ig repertoire. Copyright © 2014 Elsevier Ltd. All rights reserved.
Laso, Manuel; Karayiannis, Nikos Ch
2008-05-07
We present predictions for the static scaling exponents and for the cross-over polymer volumetric fractions in the marginal and concentrated solution regimes. Corrections for finite chain length are made. Predictions are based on an analysis of correlated fluctuations in density and chain length, in a semigrand ensemble in which mers and solvent sites exchange identities. Cross-over volumetric fractions are found to be chain length independent to first order, although reciprocal-N corrections are also estimated. Predicted scaling exponents and cross-over regimes are compared with available data from extensive off-lattice Monte Carlo simulations [Karayiannis and Laso, Phys. Rev. Lett. 100, 050602 (2008)] on freely jointed, hard-sphere chains of average lengths from N=12-500 and at packing densities from dilute ones up to the maximally random jammed state.
n-Alkane adsorption to polar silica surfaces.
Brindza, Michael R; Ding, Feng; Fourkas, John T; Walker, Robert A
2010-03-21
The structures of medium-length n-alkane species (C(8)-C(11)) adsorbed to a hydrophilic silica/vapor interface were examined using vibrational sum frequency spectroscopy. Experiments sampling out-of-plane orientation show a clear pattern in vibrational band intensities that implies chains having primarily all-trans conformations lying flat along the interface. Further analysis shows that the methylene groups of the alkane chains have their local symmetry axes directed into and away from the surface. Spectra acquired under different polarization conditions interlock to reinforce this picture of interfacial structure and organization. Variation in signal intensities with chain length suggests that correlation between adsorbed monomers weakens with increasing chain length. This result stands in contrast with alkane behavior at neat liquid/vapor interfaces where longer length alkanes show considerably more surface induced ordering than short chain alkanes.
NASA Astrophysics Data System (ADS)
Hemingway, Jordon D.; Schefuß, Enno; Dinga, Bienvenu Jean; Pryer, Helena; Galy, Valier V.
2016-07-01
The concentrations, distributions, and stable carbon isotopes (δ13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and δ13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7‰ (±1σ standard deviation) spread in δ13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted δ13C values (individual homologues average ⩽-31.3‰ and -30.8‰, respectively), with lower δ13C variability across chain-lengths (2.6 ± 0.6‰ and 2.0 ± 1.1‰, respectively). All individual plant-wax lipids show little temporal δ13C variability throughout the time-series (1σ ⩽ 0.9‰), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.
Excess entropy scaling for the segmental and global dynamics of polyethylene melts.
Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C
2014-11-28
The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.
FACTORS AFFECTING THE CHAIN LENGTH OF GROUP A STREPTOCOCCI
Ekstedt, Richard D.; Stollerman, Gene H.
1960-01-01
Group A streptococci which grew in long chains in the presence of homologous anti-M antibody were split into their original length by the addition of an excess of homologous M protein to the culture. The chain-splitting reaction showed temperature and pH optima (37°C., 7.5) and was completely inhibited at 0°C. or by heat-killing the long chains at 56°C. prior to the addition of M protein. Addition of sublethal doses of HgCl2, or of penicillin, inhibited the chain-splitting reaction. Pneumococci behaved in entirely comparable fashion to streptococci in similar experiments. Virulent strains of streptococci formed the shortest chains when broth media was enriched with serum. The chain-shortening effect of serum enrichment of the media was most apparent with encapsulated strains and under cultural conditions that favored capsule formation. Loss of capsules by mutation or by unfavorable growth conditions resulted in increase in chain length. The activity of the chain-splitting mechanism seemed to be independent of M protein, however, since encapsulated M-negative variants also formed very short chain in serum-enriched media. The physical presence of the capsule was not essential for chain shortening since enzymatic removal of the capsule with hyaluronidase during growth did not affect chain length. These results strongly suggest that chain-splitting of streptococci and pneumococci occurs by an active metabolic mechanism, presumably enzymatic, which is inhibited by the union of surface antigens with specific antibody. PMID:13726267
Molecular Order and Mesophase Investigation of Thiophene-Based Forked Mesogens.
Reddy, K Rajasekhar; Lobo, Nitin P; Narasimhaswamy, T
2016-07-14
Thiophene-based rodlike molecules constructed from a three phenyl ring core and terminal dialkoxy chains recognized as forked mesogens are synthesized, and their mesophase properties as well as the molecular order are investigated. The synthesized forked mesogens would serve as model compounds for tetracatenar or biforked mesogens. On the basis of the position of the thiophene link with the rest of the core, 2-substituted and 3-substituted mesogens are realized in which the length of the terminal alkoxy chains is varied. The mesophase properties are evaluated using a hot-stage polarizing microscope and differential scanning calorimetry. For both homologues, the appearance of either nematic phase alone or in conjunction with smectic C phase is noticed depending on the length of the terminal alkoxy chains. The existence of layer ordering characteristic of the smectic C phase is confirmed for a representative mesogen using variable-temperature powder X-ray diffraction. High-resolution solid-state (13)C NMR measurements of C12 homologues of the two series reveal orientational order parameters of all rings of the core as well as terminal chains in the liquid crystalline phase. For both homologues, because of the asymmetry of ring I, the order parameter value is higher in contrast to ring II, ring III, and the thiophene ring. The chemical shifts and (13)C-(1)H dipolar couplings of OCH2 carbons of the terminal dodecyloxy chains provide contrasting conformations, reflecting the orientational constraints. Furthermore, the investigations also reveal that the mesophase range and the tendency for layer ordering are higher for 3-substituted mesogens compared to 2-substituted homologues.
Yoshimura, Tomokazu; Okada, Mari; Matsuoka, Keisuke
2016-10-01
Quaternary ammonium salt-type cationic surfactants with an adamantyl group (hydrocarbon-type; C n AdAB, fluorocarbon-type; C m F C 3 AdAB, bola-type; Ad-s-Ad, where n, m and s represent hydrocarbon chain lengths of 8-16, fluorocarbon chain lengths of 4-8, and spacer chain length of 10-12) were synthesized via quaternization of N, N-dimethylaminoadamantane and n-alkyl bromide or 1, n-dibromoalkane. Conductivity and surface tension were measured to characterize the solution properties of the synthesized adamantyl group-containing cationic surfactants. In addition, the effects of hydrocarbon and fluorocarbon chain lengths and spacer chain length between headgroups on the measured properties were evaluated by comparison with those of conventional cationic surfactants. The critical micelle concentration (CMC) of C n AdAB and Ad-s-Ad was 2/5 of that for the corresponding conventional surfactants C n TAB and bola-type surfactants with similar number of carbons in the alkyl or alkylene chain; this was because of the increased hydrophobicity due to the adamantyl group. A linear relationship between the logarithm of CMC and the hydrocarbon chain length for C n AdAB was observed, as well as for C n TAB. The slope of the linear correlation for both surfactants was almost the same, indicating that the adamantyl group does not affect the CMC with variations in the hydrocarbon chain length. Similar to conventional surfactants C n TAB, the hydrocarbon-type C n AdAB is highly efficient in reducing the surface tension of water, despite the large occupied area per molecule resulting from the relatively bulky structure of the adamantane skeleton. On the other hand, the bola-type Ad-s-Ad resulted in increased surface tension compared to C n AdAB, indicating that the curved chain between adamantyl groups leads to poor adsorption and orientation at the air-water interface.
Alcohol's Effects on Lipid Bilayer Properties
Ingólfsson, Helgi I.; Andersen, Olaf S.
2011-01-01
Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket. PMID:21843475
Study on the photo-induced oxygen reordering in YBa2Cu3O6+x
NASA Astrophysics Data System (ADS)
Milić, M. M.; Lazarov, N. Dj.; Cucić, D. A.
2012-05-01
Effect of the long term illumination of the YBa2Cu3O6+x with visible light or ultraviolet irradiation on its superconducting properties was studied in the frame of a simple theoretical model, which assumes that photodoping triggers rearrangement of oxygen monomers in the chain layers thus causing the enhancement of the average chain length, lav. Since, according to the model of charge transfer mechanism, long CuO chains are better electronic hole donors than the short ones, increase of the average chain length induces additional holes transfer from chain layers to the superconducting CuO2 planes which in turn leads to the increase of the superconducting transition temperature Tc. By the use of the expression for the chain length probability distribution and numerically calculated values for the average chain length in the non-excited system, we were able to estimate the doping p (number of holes per one Cu atom in the superconducting CuO2 planes) and Tc enhancement due to photo-induced oxygen reordering. The theoretical results are compared with available experimental data.
Smaller predator-prey body size ratios in longer food chains.
Jennings, Simon; Warr, Karema J
2003-01-01
Maximum food-chain length has been correlated with resource availability, ecosystem size, environmental stability and colonization history. Some of these correlations may result from environmental effects on predator-prey body size ratios. We investigate relationships between maximum food-chain length, predator-prey mass ratios, primary production and environmental stability in marine food webs with a natural history of community assembly. Our analyses provide empirical evidence that smaller mean predator-prey body size ratios are characteristic of more stable environments and that food chains are longer when mean predator-prey body size ratios are small. We conclude that environmental effects on predator-prey body size ratios contribute to observed differences in maximum food-chain length. PMID:12965034
Novel odd/even effect of alkylene chain length on the photopolymerizability of organogelators.
Aoki, Ken'ichi; Kudo, Masabumi; Tamaoki, Nobuyuki
2004-10-28
[reaction: see text] Starting from diactylene diacarboxylic acids, we have synthesized a series of photopolymerizable organogelators that possess simple amide structures, different alkylene chain lengths, and either optically active or racemic 3,7-dimethyl-1-octylamine units. The alkylene chain length of these compounds exhibits a prominent odd/even effect with respect to the photopolymerization in the gel state and is accompanied by a stereostructural effect on the gelation ability.
Yadav, P Jaya Prakash; Ghosh, Goutam; Maiti, Biswajit; Aswal, Vinod K; Goyal, P S; Maiti, Pralay
2008-04-17
Thermoreversible gelation of poly(vinylidene fluoride) (PVDF) has been studied in a new series of solvents (phthalates), for example, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and dihexyl phthalate (DHP) as a function of temperature and polymer concentration, both by test tube tilting and dynamic light scattering (DLS) method. The effect of aliphatic chain length (n) of diesters on the gelation kinetics, structure/microstructure and morphology of PVDF gels has been examined. Gelation rate was found to increase with increasing aliphatic chain length of diester. DLS results indicate that the sol-gel transformation proceeds via two-steps: first, microgel domains were formed, and then the infinite three-dimensional (3D) network is established by connecting microgels through polymer chains. The crystallites are responsible for 3D network for gelation in phthalates, and alpha-polymorph is formed during gelation producing higher amount of crystallinity with increasing aliphatic chain length of diester. Morphology of the networks of dried gels in different phthalates showed that fibril thickness and lateral dimensions decrease with higher homologues of phthalates. The scattering intensity is fitted with Debye-Bueche model in small-angle neutron scattering and suggested that both the correlation length and interlamellar spacing increases with n. A model has been proposed, based on electronic structure calculations, to explain the conformation of PVDF chain in presence of various phthalates and their complexes, which offer the cause of higher gelation rate for longer aliphatic chain length.
ToF-SIMS PCA analysis of Myrtus communis L.
NASA Astrophysics Data System (ADS)
Piras, F. M.; Dettori, M. F.; Magnani, A.
2009-06-01
Nowadays there is a growing interest of researchers for the application of sophisticated analytical techniques in conjunction with statistical data analysis methods to the characterization of natural products to assure their authenticity and quality, and for the possibility of direct analysis of food to obtain maximum information. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) in conjunction with principal components analysis (PCA) are applied to study the chemical composition and variability of Sardinian myrtle ( Myrtus communis L.) through the analysis of both berries alcoholic extracts and berries epicarp. ToF-SIMS spectra of berries epicarp show that the epicuticular waxes consist mainly of carboxylic acids with chain length ranging from C20 to C30, or identical species formed from fragmentation of long-chain esters. PCA of ToF-SIMS data from myrtle berries epicarp distinguishes two groups characterized by a different surface concentration of triacontanoic acid. Variability in antocyanins, flavonols, α-tocopherol, and myrtucommulone contents is showed by ToF-SIMS PCA analysis of myrtle berries alcoholic extracts.
Kensche, Tobias; Tokunaga, Fuminori; Ikeda, Fumiyo; Goto, Eiji; Iwai, Kazuhiro; Dikic, Ivan
2012-01-01
Nuclear factor-κB (NF-κB) essential modulator (NEMO), a component of the inhibitor of κB kinase (IKK) complex, controls NF-κB signaling by binding to ubiquitin chains. Structural studies of NEMO provided a rationale for the specific binding between the UBAN (ubiquitin binding in ABIN and NEMO) domain of NEMO and linear (Met-1-linked) di-ubiquitin chains. Full-length NEMO can also interact with Lys-11-, Lys-48-, and Lys-63-linked ubiquitin chains of varying length in cells. Here, we show that purified full-length NEMO binds preferentially to linear ubiquitin chains in competition with lysine-linked ubiquitin chains of defined length, including long Lys-63-linked deca-ubiquitins. Linear di-ubiquitins were sufficient to activate both the IKK complex in vitro and to trigger maximal NF-κB activation in cells. In TNFα-stimulated cells, NEMO chimeras engineered to bind exclusively to Lys-63-linked ubiquitin chains mediated partial NF-κB activation compared with cells expressing NEMO that binds to linear ubiquitin chains. We propose that NEMO functions as a high affinity receptor for linear ubiquitin chains and a low affinity receptor for long lysine-linked ubiquitin chains. This phenomenon could explain quantitatively distinct NF-κB activation patterns in response to numerous cell stimuli. PMID:22605335
Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart
2014-01-01
Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems. PMID:24676331
Branching, Chain Scission, and Solution Stability of Worm-Like Micelles
NASA Astrophysics Data System (ADS)
Beaucage, Greg; Vogtt, Karsten; Jiang, Hanqui
As salt is added to a simple micelle solution such as SDS or SLES, the zero shear rate specific viscosity rises rapidly followed by a maximum and decay. The rapid rise in viscosity is associated with formation of elliptical and extended chain worm-like micelles, WLMs. Entanglement of these long chain micelles leads to the viscoelastic behavior we associate with shampoo and body wash. The plateau and drop in viscosity at high salt concentrations is caused by a special type of topological branching where the branch points have no energy penalty to motion along the chain according to Cates theory. These have some similarity to catenane crosslinks. Predictive dynamic theories for WLMs rely on structural details; the diameter, persistence length, contour length, branch length, segment length between branch points, and mesh size. Further, since the contour length and other large scale features are in kinetic equilibrium, with frequent chain breakage and formation, the thermodynamics of these long chain structures are of interest both in terms of chain scission as well as in terms of the stability of the colloidal solution as a whole. Recent structural studies of WLMs using static neutron scattering based on new scattering models will be presented demonstrating that these input parameters for dynamic models of complex topological systems are quantitatively and directly available. In this context it is important to consider a comparison between dynamic features, for instance entanglement, and their static analogs, chain overlap.
Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy.
Barrow, Steven J; Rossouw, David; Funston, Alison M; Botton, Gianluigi A; Mulvaney, Paul
2014-07-09
We present a scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) investigation of gold nanosphere chains with lengths varying from 1 to 5 particles. We show localized EELS signals from the chains and identify energy-loss peaks arising due to l = 1, 2, 3, 4, and 5 plasmon modes through the use of EELS mapping. We also show the evolution of the energy of these modes as the length of a given chain increases, and we find that a chain containing N particles can accommodate at least N experimentally observable modes, in addition to the transverse mode. As the chain length is increased by the addition of one more gold particle to the chain, the new N + 1 mode becomes the highest energy mode, while the existing modes lower their energy and eventually asymptote as they delocalize along the chain. We also show that modes become increasingly difficult to detect with the EELS technique as l approaches N. The data are compared to numerical simulations.
Tang, Rupei; Palumbo, R Noelle; Nagarajan, Lakshmi; Krogstad, Emily; Wang, Chun
2010-03-03
The development of safe and efficient polymer carriers for DNA vaccine delivery requires mechanistic understanding of structure-function relationship of the polymer carriers and their interaction with antigen-presenting cells. Here we have synthesized a series of diblock copolymers with well-defined chain-length using atom transfer radical polymerization and characterized the influence of polycation chain-length on the physico-chemical properties of the polymer/DNA complexes as well as the interaction with dendritic cells. The copolymers consist of a hydrophilic poly(ethylene glycol) block and a cationic poly(aminoethyl methacrylate) (PAEM) block. The average degree of polymerization (DP) of the PAEM block was varied among 19, 39, and 75, with nearly uniform distribution. With increasing PAEM chain-length, polyplexes formed by the diblock copolymers and plasmid DNA had smaller average particle size and showed higher stability against electrostatic destabilization by salt and heparin. The polymers were not toxic to mouse dendritic cells (DCs) and only displayed chain-length-dependent toxicity at a high concentration (1mg/mL). In vitro gene transfection efficiency and polyplex uptake in DCs were also found to correlate with chain-length of the PAEM block with the longer polymer chain favoring transfection and cellular uptake. The polyplexes induced a modest up-regulation of surface markers for DC maturation that was not significantly dependent on PAEM chain-length. Finally, the polyplex prepared from the longest PAEM block (DP of 75) achieved an average of 20% enhancement over non-condensed anionic dextran in terms of uptake by DCs in the draining lymph nodes 24h after subcutaneous injection into mice. Insights gained from studying such structurally well-defined polymer carriers and their interaction with dendritic cells may contribute to improved design of practically useful DNA vaccine delivery systems. Copyright 2009 Elsevier B.V. All rights reserved.
Carbachol dimers as homobivalent modulators of muscarinic receptors.
Matucci, Rosanna; Nesi, Marta; Martino, Maria Vittoria; Bellucci, Cristina; Manetti, Dina; Ciuti, Elisa; Mazzolari, Angelica; Dei, Silvia; Guandalini, Luca; Teodori, Elisabetta; Vistoli, Giulio; Romanelli, Maria Novella
2016-05-15
A series of homodimers of the well-known cholinergic agonist carbachol have been synthesized, showing the two agonist units symmetrically connected through a methylene chain of variable length. The new compounds have been tested on the five cloned muscarinic receptors (hM1-5) expressed in CHO cells by means of equilibrium binding studies, showing an increase in affinity by rising the number of methylene units up to 7 and 9. Functional experiments on guinea-pig ileum and assessment of ERK1/2 phosphorylation on hM1, hM2 and hM3 on CHO cells have shown that the new compounds are endowed with muscarinic antagonistic properties. Kinetic binding studies have revealed that some of the tested compounds are able to slow the rate of dissociation of NMS, suggesting a bitopic behavior. Docking simulations, performed on the hM1 and hM2 receptors, give a sound rationalization of the experimental data revealing how these compounds are able to interact with both orthosteric and allosteric binding sites depending on the length of their connecting chain. Copyright © 2016 Elsevier Inc. All rights reserved.
Muehler, Denise; Sommer, Kerstin; Wennige, Sara; Hiller, Karl-Anton; Cieplik, Fabian; Maisch, Tim; Späth, Andreas
2017-11-01
Five photoactive compounds with variable elongated alkyl-substituents in a phenalen-1-one structure were examined in view of structural similarity to the antimicrobial agent benzalkonium chloride (BAC). All phenalen-1-ones and BAC were evaluated for their antimicrobial properties against Staphylococcus aureus, methicillin-resistant S. aureus, Escherichia coli, Pseudomonas aeruginosa and for their eukaryotic toxicity against normal human epidermal keratinocyte (NHEK) cells to narrow down the BAC-like effect and the photodynamic effect depending on the chemical structure. All compounds were investigated for effective concentration ranges, where a bacterial reduction of 5 log 10 is achieved, while an NHEK survival of 80% is ensured. Effective concentration ranges were found for four out of five photoactive compounds, but not for BAC and the compound with BAC-like alkyl chain length. Chain length size and polar area of the respective head-groups of phenalen-1-one compounds or BAC showed an influence on the incorporation inside lipid membranes and thus, head-groups may have an impact on the toxicity of antimicrobials.
A Motor-Driven Mechanism for Cell-Length Sensing
Rishal, Ida; Kam, Naaman; Perry, Rotem Ben-Tov; Shinder, Vera; Fisher, Elizabeth M.C.; Schiavo, Giampietro; Fainzilber, Mike
2012-01-01
Summary Size homeostasis is fundamental in cell biology, but it is not clear how large cells such as neurons can assess their own size or length. We examined a role for molecular motors in intracellular length sensing. Computational simulations suggest that spatial information can be encoded by the frequency of an oscillating retrograde signal arising from a composite negative feedback loop between bidirectional motor-dependent signals. The model predicts that decreasing either or both anterograde or retrograde signals should increase cell length, and this prediction was confirmed upon application of siRNAs for specific kinesin and/or dynein heavy chains in adult sensory neurons. Heterozygous dynein heavy chain 1 mutant sensory neurons also exhibited increased lengths both in vitro and during embryonic development. Moreover, similar length increases were observed in mouse embryonic fibroblasts upon partial downregulation of dynein heavy chain 1. Thus, molecular motors critically influence cell-length sensing and growth control. PMID:22773964
NASA Astrophysics Data System (ADS)
Malekzadeh Moghani, Mahdy; Khomami, Bamin
2016-01-01
Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.
Malekzadeh Moghani, Mahdy; Khomami, Bamin
2016-01-14
Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ∼ cs (-0.5) as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.
NASA Astrophysics Data System (ADS)
Abbott, J. B., III; Tick, G. R.; Greenberg, R. R.; Carroll, K. C.
2017-12-01
The remediation of nonaqueous liquid (NAPL) contamination sources in groundwater has been shown to be challenging and have limited success in the field. The presence of multicomponent NAPL sources further complicates the remediation due to variability of mass-transfer (dissolution) behavior as a result of compositional and molecular structure variations between the different compounds within the NAPL phase. This study investigates the effects of the contaminant of concern (COC) composition and the bulk-NAPL components molecular structure (i.e. carbon chain length, aliphatic and aromatic) on dissolution and aqueous phase concentrations in groundwater. The specific COCs tested include trichloroethene (TCE), toluene (TOL), and perfluorooctanoic acid (PFOA). Each COC was tested in a series of binary batch experiments using insoluble bulk NAPL including n-hexane (HEX), n-decane (DEC), and n-hexadecane (HEXDEC). These equilibrium batch tests were performed to understand how different carbon-chain-length (NAPL) systems affect resulting COC aqueous phase concentrations. The experiments were conducted with four different COC mole fractions mixed within the bulk-NAPL derivatives (0.1:0.9, 0.05:0.95, 0.01:0.99, 0.001:0.999). Raoult's Law was used to assess the relative ideality of the mass transfer processes for each binary equilibrium dissolution experiment. Preliminary results indicate that as mole fraction of the COC decreases (composition effects), greater deviance from dissolution ideality occurs. It was also shown that greater variation in molecular structure (i.e. greater carbon chain length of bulk-NAPL with COC and aromatic COC presence) exhibited greater dissolution nonideality via Raoult's Law analysis. For instance, TOL (aromatic structure) showed greater nonideality than TCE (aliphatic structure) in the presence of the different bulk-NAPL derivatives (i.e. of various aliphatic carbon chains lengths). The results suggest that the prediction of aqueous phase concentration, from complex multicomponent NAPL sources, is highly dependent upon both composition and molecular structure variations of COC-NAPL mixtures, and such impacts should be taken into account when designing and evaluating a remediation strategy and/or predicting COC concentrations from a source zone region.
Savidor, Alon; Barzilay, Rotem; Elinger, Dalia; Yarden, Yosef; Lindzen, Moshit; Gabashvili, Alexandra; Adiv Tal, Ophir; Levin, Yishai
2017-06-01
Traditional "bottom-up" proteomic approaches use proteolytic digestion, LC-MS/MS, and database searching to elucidate peptide identities and their parent proteins. Protein sequences absent from the database cannot be identified, and even if present in the database, complete sequence coverage is rarely achieved even for the most abundant proteins in the sample. Thus, sequencing of unknown proteins such as antibodies or constituents of metaproteomes remains a challenging problem. To date, there is no available method for full-length protein sequencing, independent of a reference database, in high throughput. Here, we present Database-independent Protein Sequencing, a method for unambiguous, rapid, database-independent, full-length protein sequencing. The method is a novel combination of non-enzymatic, semi-random cleavage of the protein, LC-MS/MS analysis, peptide de novo sequencing, extraction of peptide tags, and their assembly into a consensus sequence using an algorithm named "Peptide Tag Assembler." As proof-of-concept, the method was applied to samples of three known proteins representing three size classes and to a previously un-sequenced, clinically relevant monoclonal antibody. Excluding leucine/isoleucine and glutamic acid/deamidated glutamine ambiguities, end-to-end full-length de novo sequencing was achieved with 99-100% accuracy for all benchmarking proteins and the antibody light chain. Accuracy of the sequenced antibody heavy chain, including the entire variable region, was also 100%, but there was a 23-residue gap in the constant region sequence. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Lang; Wang, Zheng; Jiang, Run; Yin, Yuhua; Li, Baohui
2017-03-15
The thermodynamic behaviors of a strongly charged polyelectrolyte chain in a poor solvent are studied using replica-exchange Monte-Carlo simulations on a lattice model, focusing on the effects of finite chain length and the solvent quality on the chain conformation and conformation transitions. The neutralizing counterions and solvent molecules are considered explicitly. The thermodynamic quantities that vary continuously with temperature over a wide range are computed using the multiple histogram reweighting method. Our results suggest that the strength of the short-range hydrophobic interaction, the chain length, and the temperature of the system, characterized by ε, N, and T, respectively, are important parameters that control the conformations of a charged chain. When ε is moderate, the competition between the electrostatic energy and the short-range hydrophobic interaction leads to rich conformations and conformation transitions for a longer chain with a fixed length. Our results have unambiguously demonstrated the stability of the n-pearl-necklace structures, where n has a maximum value and decreases with decreasing temperature. The maximum n value increases with increasing chain length. Our results have also demonstrated the first-order nature of the conformation transitions between the m-pearl and the (m-1)-pearl necklaces. With the increase of ε, the transition temperature increases and the first-order feature becomes more pronounced. It is deduced that at the thermodynamic limit of infinitely long chain length, the conformational transitions between the m-pearl and the (m-1)-pearl necklaces may remain first order when ε > 0 and m = 2 or 3. Pearl-necklace conformations cannot be observed when either ε is too large or N is too small. To observe a pearl-necklace conformation, the T value needs to be carefully chosen for simulations performed at only a single temperature.
Dickman, Elizabeth M.; Newell, Jennifer M.; González, María J.; Vanni, Michael J.
2008-01-01
The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types. PMID:19011082
cDNA cloning and characterization of Type I procollagen alpha1 chain in the skate Raja kenojei.
Hwang, Jae-Ho; Yokoyama, Yoshihiro; Mizuta, Shoshi; Yoshinaka, Reiji
2006-05-01
A full-length cDNA of the Type I procollagen alpha1 [pro-alpha1(I)] chain (4388 bp), coding for 1463 amino acid residues in the total length, was determined by RACE PCR using a cDNA library constructed from 4-week embryo of the skate Raja kenojei. The helical region of the skate pro-alpha1(I) chain consisted of 1014 amino acid residues - the same as other fibrillar collagen alpha chains from higher vertebrates. Comparison on denaturation temperatures of Type I collagens from the skate, rainbow trout (Oncorhynchus mykiss) and rat (Rattus norvegicus) revealed that the number of Gly-Pro-Pro and Gly-Gly in the alpha1(I) chains could be directly related to the thermal stability of the helix. The expression property of the skate pro-alpha1(I) chain mRNA and phylogenetic analysis with other vertebrate pro-alpha1(I) chains suggested that skate pro-alpha1(I) chain could be a precursor form of the skate Type I collagen alpha1 chain. The present study is the first evidence for the primary structure of full-length pro-alpha1(I) chain in an elasmobranch.
An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435.
Sánchez, Daniel Alberto; Tonetto, Gabriela Marta; Ferreira, María Luján
2016-02-20
In this work, the ethanolysis of triglycerides catalyzed by immobilized lipase was studied, focusing on the secondary reaction of acyl migration. The catalytic tests were performed in a solvent-free reaction medium using Novozym 435 as biocatalyst. The selected experimental variables were biocatalyst loading (5-20mg), reaction time (30-90min), and chain length of the fatty acids in triglycerides with and without unsaturation (short (triacetin), medium (tricaprylin) and long (tripalmitin/triolein)). The formation of 2-monoglyceride by ethanolysis of triglycerides was favored by long reaction times and large biocatalyst loading with saturated short- to medium-chain triglycerides. In the case of long-chain triglycerides, the formation of this monoglyceride was widely limited by acyl migration. In turn, acyl migration increased the yield of ethyl esters and minimized the content of monoglycerides and diglycerides. Thus, the enzymatic synthesis of biodiesel was favored by long-chain triglycerides (which favor the acyl migration), long reaction times and large biocatalyst loading. The conversion of acylglycerides made from long-chain fatty acids with unsaturation was relatively low due to limitations in their access to the active site of the lipase. Copyright © 2016 Elsevier B.V. All rights reserved.
Broken Chains and Reneging: A Review of 1748 Kidney Paired Donation Transplants.
Cowan, N; Gritsch, H A; Nassiri, N; Sinacore, J; Veale, J
2017-09-01
Concerns regarding the potential for broken chains and "reneges" within kidney paired donation (KPD) and its effect on chain length have been raised previously. Although these concerns have been tested in simulation studies, real-world data have yet to be evaluated. The purpose of this study was to evaluate the actual rate and causes of broken chains within a large KPD program. All patients undergoing renal transplantation through the National Kidney Registry from 2008 through May 2016 were included for analysis. Broken chains and loops were identified. A total of 344 chains and 78 loops were completed during the study period, yielding a total of 1748 transplants. Twenty broken chains and one broken loop were identified. The mean chain length (number of transplants) within broken chains was 4.8 compared with 4.6 of completed chains (p = 0.78). The most common causes of a broken chain were donor medical issues incurred while acting as a bridge donor (n = 8), donors electing not to proceed (n = 6), and kidneys being declined by the recipient surgeon (n = 4). All recipients involved in a broken chain subsequently received a transplant. Based on the results, broken chains are infrequent, are rarely due to lack of donor motivation, and have no significant impact on chain length. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Holland, Brendan J; Adcock, Jacqui L; Nesterenko, Pavel N; Peristyy, Anton; Stevenson, Paul G; Barnett, Neil W; Conlan, Xavier A; Francis, Paul S
2014-09-09
Sodium polyphosphate is commonly used to enhance chemiluminescence reactions with acidic potassium permanganate through a dual enhancement mechanism, but commercially available polyphosphates vary greatly in composition. We have examined the influence of polyphosphate composition and concentration on both the dual enhancement mechanism of chemiluminescence intensity and the stability of the reagent under analytically useful conditions. The average chain length (n) provides a convenient characterisation, but materials with similar values can exhibit markedly different distributions of phosphate oligomers. There is a minimum polyphosphate chain length (∼6) required for a large enhancement of the emission intensity, but no further advantage was obtained using polyphosphate materials with much longer average chain lengths. Providing there is a sufficient average chain length, the optimum concentration of polyphosphate is dependent on the analyte and in some cases, may be lower than the quantities previously used in routine detection. However, the concentration of polyphosphate should not be lowered in permanganate reagents that have been partially reduced to form high concentrations of the key manganese(III) co-reactant, as this intermediate needs to be stabilised to prevent formation of insoluble manganese(IV). Copyright © 2014 Elsevier B.V. All rights reserved.
Chain length effects of p-oligophenyls with comparison of benzene by Raman scattering
NASA Astrophysics Data System (ADS)
Zhang, Kai; Chen, Xiao-Jia
2018-02-01
Raman scattering measurements are performed on benzene and a number of p-oligophenyls including biphenyl, p-terphenyl, p-quaterphenyl, p-quinquephenyl, and p-sexiphenyl at ambient conditions. The vibrational modes of the intra- and intermolecular terms in these materials are analyzed and compared. Chain length effects on the vibrational properties are examined for the C-H in-plane bending mode and the inter-ring C-C stretching mode at around 1200 cm-1 and 1280 cm-1, respectively, and the C-C stretching modes at around 1600 cm-1. The complex and fluctuating properties of these modes result in an imprecise estimation of the chain length of these molecules. Meanwhile, the obtained ratio of the intensities of the 1200 cm-1 mode and 1280 cm-1 mode is sensitive to the applied lasers. A librational motion mode with the lowest energy is found to have a monotonous change with the increase in the chain length. This mode is simply relevant to the c axis of the unit cell. Such an obvious trend makes it a better indicator for determining the chain length effects on the physical and chemical properties in these molecules.
Subsampled Numerical Experiments as a Guide for Field Deployment of Thermistor Chains
NASA Astrophysics Data System (ADS)
Shaw, Justin; Stastna, Marek
2017-11-01
Thermistor chains are a standard tool for recording temperature profiles in geophysical flows. Density values can be inferred from readings and the resulting density field analyzed for the passage of internal waves, Kelvin-Helmholtz billows, and other dynamic events. The number and spacing of the thermistors, both on and between chains, determines which events can be identified in the dataset. We examine the effect of changing these variables by subsampling a set of numerical experiments to simulate thermistor chain locations. A pseudo spectral method was used to solve the incompressible Navier-Stokes equations under the Boussinesq approximation. The resulting flows are a set of high resolution seiches where the depth was held constant across experiments, and the length was varied. Sampling a known, commonly occurring flow with relatively simple geometry allows for a clear analysis of the effects of thermistor placement in the capture of dynamic events. We will discuss three dimensional deployment strategies, as well as EOF and DMD analyses if there is time. Funded by a Grant from the National Sciences and Engineering Research Council of Canada.
Carter, Javier A; Jiménez, Juan C; Zaldívar, Mercedes; Alvarez, Sergio A; Marolda, Cristina L; Valvano, Miguel A; Contreras, Inés
2009-10-01
The lipopolysaccharide O antigen of Shigella flexneri 2a has two preferred chain lengths, a short (S-OAg) composed of an average of 17 repeated units and a very long (VL-OAg) of about 90 repeated units. These chain length distributions are controlled by the chromosomally encoded WzzB and the plasmid-encoded Wzz(pHS-2) proteins, respectively. In this study, genes wzzB, wzz(pHS-2) and wzy (encoding the O-antigen polymerase) were cloned under the control of arabinose- and rhamnose-inducible promoters to investigate the effect of varying their relative expression levels on O antigen polysaccharide chain length distribution. Controlled expression of the chain length regulators wzzB and wzz(pHS-2) revealed a dose-dependent production of each modal length. Increase in one mode resulted in a parallel decrease in the other, indicating that chain length regulators compete to control the degree of O antigen polymerization. Also, when expression of the wzy gene is low, S-OAg but not VL-OAg is produced. Production of VL-OAg requires high induction levels of wzy. Thus, the level of expression of wzy is critical in determining O antigen modal distribution. Western blot analyses of membrane proteins showed comparable high levels of the WzzB and Wzz(pHS-2) proteins, but very low levels of Wzy. In vivo cross-linking experiments and immunoprecipitation of membrane proteins did not detect any direct interaction between Wzy and WzzB, suggesting the possibility that these two proteins may not interact physically but rather by other means such as via translocated O antigen precursors.
Kito, Naoko; Kita, Akihiro; Imokawa, Yuuki; Yamanaka, Kazuya; Maruyama, Chitose; Katano, Hajime
2014-01-01
ε-Poly-l-lysine (ε-PL), consisting of 25 to 35 l-lysine residues with linkages between the α-carboxyl groups and ε-amino groups, is produced by Streptomyces albulus NBRC14147. ε-PL synthetase (Pls) is a membrane protein with six transmembrane domains (TM1 to TM6) as well as both an adenylation domain and a thiolation domain, characteristic of the nonribosomal peptide synthetases. Pls directly generates ε-PL chain length diversity (25- to 35-mer), but the processes that control the chain length of ε-PL during the polymerization reaction are still not fully understood. Here, we report on the identification of Pls amino acid residues involved in the regulation of the ε-PL chain length. From approximately 12,000 variants generated by random mutagenesis, we found 8 Pls variants that produced shorter chains of ε-PL. These variants have one or more mutations in two linker regions connecting the TM1 and TM2 domains and the TM3 and TM4 domains. In the Pls catalytic mechanism, the growing chain of ε-PL is not tethered to the enzyme, implying that the enzyme must hold the growing chain until the polymerization reaction is complete. Our findings reveal that the linker regions are important contributors to grasp the growing chain of ε-PL. PMID:24907331
Monte Carlo simulations of lattice models for single polymer systems
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping
2014-10-01
Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N ˜ O(10^4). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and sqrt{10}, we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.
Microphase separation of comb copolymers with two different lengths of side chains
NASA Astrophysics Data System (ADS)
Aliev, M. A.; Kuzminyh, N. Yu.
2009-10-01
The phase behavior of the monodisperse AB comb copolymer melt contained the macromolecules of special architecture is discussed. Each macromolecule is assumed to be composed of two comb blocks which differ in numbers of side chains and numbers of monomer units in these chains. It is shown (by analysis of the structure factor of the melt) that microphase separation at two different length scales in the melt is possible. The large and small length scales correspond to separation between comb blocks and separation between monomer units in repeating fragments of blocks, respectively. The classification diagrams indicated which length scale is favored for a given parameters of chemical structure of macromolecules are constructed.
Kozik, A V; Matvienko, M A; Men', A E; Zalenskiĭ, A O; Tikhonovich, I A
1992-01-01
We have determined the length of early noduline gene ENOD12 in various varieties and lines of pea (Pisum sativum) using the polymerase chain reaction (PCR). It was demonstrated that promoter regions of ENOD12A and ENOD12B genes in line 2150 (Afghanistan) are longer than these in variety "Feltham first". The disparity is 14 bp. When studying these genes in 7 different lines and varieties of pea it was found that ENOD12A gene is more variable in size than the ENOD12B gene. We showed the possibility to analyze the heritage of ENOD12 gene's alleles by using the PCR method.
Paulo Coelho, Joao; Osío Barcina, José; Aicart, Emilio; Tardajos, Gloria; Cruz-Gil, Pablo; Salgado, Cástor; Díaz-Núñez, Pablo
2018-01-01
Amphiphilic nonionic ligands, synthesized with a fixed hydrophobic moiety formed by a thiolated alkyl chain and an aromatic ring, and with a hydrophilic tail composed of a variable number of oxyethylene units, were used to functionalize spherical gold nanoparticles (AuNPs) in water. Steady-state and time-resolved fluorescence measurements of the AuNPs in the presence of α-cyclodextrin (α-CD) revealed the formation of supramolecular complexes between the ligand and macrocycle at the surface of the nanocrystals. The addition of α-CD induced the formation of inclusion complexes with a high apparent binding constant that decreased with the increasing oxyethylene chain length. The formation of polyrotaxanes at the surface of AuNPs, in which many α-CDs are trapped as hosts on the long and linear ligands, was demonstrated by the formation of large and homogeneous arrays of self-assembled AuNPs with hexagonal close packing, where the interparticle distance increased with the length of the oxyethylene chain. The estimated number of α-CDs per polyrotaxane suggests a high rigidization of the ligand upon complexation, allowing for nearly perfect control of the interparticle distance in the arrays. This degree of supramolecular control was extended to arrays formed by AuNPs stabilized with polyethylene glycol and even to binary arrays. Electromagnetic simulations showed that the enhancement and distribution of the electric field can be finely controlled in these plasmonic arrays. PMID:29547539
Twist-writhe partitioning in a coarse-grained DNA minicircle model
NASA Astrophysics Data System (ADS)
Sayar, Mehmet; Avşaroǧlu, Barış; Kabakçıoǧlu, Alkan
2010-04-01
Here we present a systematic study of supercoil formation in DNA minicircles under varying linking number by using molecular-dynamics simulations of a two-bead coarse-grained model. Our model is designed with the purpose of simulating long chains without sacrificing the characteristic structural properties of the DNA molecule, such as its helicity, backbone directionality, and the presence of major and minor grooves. The model parameters are extracted directly from full-atomistic simulations of DNA oligomers via Boltzmann inversion; therefore, our results can be interpreted as an extrapolation of those simulations to presently inaccessible chain lengths and simulation times. Using this model, we measure the twist/writhe partitioning in DNA minicircles, in particular its dependence on the chain length and excess linking number. We observe an asymmetric supercoiling transition consistent with experiments. Our results suggest that the fraction of the linking number absorbed as twist and writhe is nontrivially dependent on chain length and excess linking number. Beyond the supercoiling transition, chains of the order of one persistence length carry equal amounts of twist and writhe. For longer chains, an increasing fraction of the linking number is absorbed by the writhe.
Fujita, Naoko; Toyosawa, Yoshiko; Utsumi, Yoshinori
2012-01-01
The relationship between the solubility, crystallinity, and length of the unit chains of plant storage α-glucan was investigated by manipulating the chain length of α-glucans accumulated in a rice mutant. Transgenic lines were produced by introducing a cDNA for starch synthase IIa (SSIIa) from an indica cultivar (SSIIa I, coding for active SSIIa) into an isoamylase1 (ISA1)-deficient mutant (isa1) that was derived from a japonica cultivar (bearing inactive SSIIa proteins). The water-soluble fraction accounted for >95% of the total α-glucan in the isa1 mutant, whereas it was only 35–70% in the transgenic SSIIa I /isa1 lines. Thus, the α-glucans from the SSIIa I /isa1 lines were fractionated into soluble and insoluble fractions prior to the following characterizations. X-ray diffraction analysis revealed a weak B-type crystallinity for the α-glucans of the insoluble fraction, while no crystallinity was confirmed for α-glucans in isa1. Concerning the degree of polymerization (DP) ≤30, the chain lengths of these α-glucans differed significantly in the order of SSIIa I /isa1 insoluble > SSIIa I /isa1 soluble > α-glucans in isa1. The amount of long chains with DP ≥33 was higher in the insoluble fraction α-glucans than in the other two α-glucans. No difference was observed in the chain length distributions of the β-amylase limit dextrins among these α-glucans. These results suggest that in the SSIIa I /isa1 transgenic lines, the unit chains of α-glucans were elongated by SSIIaI, whereas the expression of SSIIaI did not affect the branch positions. Thus, the observed insolubility and crystallinity of the insoluble fraction can be attributed to the elongated length of the outer chains due to SSIIaI. PMID:23048127
Evaristi, Maria Francesca; Caubère, Céline; Harmancey, Romain; Desmoulin, Franck; Peacock, William Frank; Berry, Matthieu; Turkieh, Annie; Barutaut, Manon; Galinier, Michel; Dambrin, Camille; Polidori, Carlo; Miceli, Cristina; Chamontin, Bernard; Koukoui, François; Roncalli, Jerôme; Massabuau, Pierre; Smih, Fatima; Rouet, Philippe
2016-11-01
About 77.9 million (1 in 4) American adults have high blood pressure. High blood pressure is the primary cause of left ventricular hypertrophy (LVH), which represents a strong predictor of future heart failure and cardiovascular mortality. Previous studies have shown an altered metabolic profile in hypertensive patients with LVH. The goal of this study was to identify blood metabolomic LVH biomarkers by H NMR to provide novel diagnostic tools for rapid LVH detection in populations of hypertensive individuals. This cross-sectional study included 48 hypertensive patients with LVH matched with 48 hypertensive patients with normal LV size, and 24 healthy controls. Two-dimensional targeted M-mode echocardiography was performed to measure left ventricular mass index. Partial least squares discriminant analysis was used for the multivariate analysis of the H NMR spectral data. From the H NMR-based metabolomic profiling, signals coming from methylene (-CH2-) and methyl (-CH3) moieties of aliphatic chains from plasma lipids were identified as discriminant variables. The -CH2-/-CH3 ratio, an indicator of the mean length of the aliphatic lipid chains, was significantly higher (P < 0.001) in the LVH group than in the hypertensive group without LVH and controls. Receiver operating characteristic curve showed that a cutoff of 2.34 provided a 52.08% sensitivity and 85.42% specificity for discriminating LVH (AUC = 0.703, P-value < 0.001). We propose the -CH2-/-CH3 ratio from plasma aliphatic lipid chains as a biomarker for the diagnosis of left ventricular remodeling in hypertension.
The electrostatic persistence length of polymers beyond the OSF limit.
Everaers, R; Milchev, A; Yamakov, V
2002-05-01
We use large-scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length l(e) of isolated, uniformly charged polymers with Debye-Hückel intrachain interactions in the limit where the screening length kappa(-1) exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction l(e) proportional to kappa(-2) by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theories of electrostatic bending rigidity and electrostatically excluded volume to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We show that previous results pointing into this direction are due to a combination of excluded-volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data.
Garg, Hari G; Mrabat, Hicham; Yu, Lunyin; Hales, Charles A; Li, Boyangzi; Moore, Casey N; Zhang, Fuming; Linhardt, Robert J
2011-08-01
Heparin (HP) inhibits the growth of several cell types in vitro including bovine pulmonary artery (BPA) smooth muscle cells (SMCs). In initial studies we discovered that an O-hexanoylated low-molecular-weight (LMW) HP derivative having acyl groups with 6-carbon chain length was more potent inhibitor of BPA-SMCs than the starting HP. We prepared several O-acylated LMWHP derivatives having 4-, 6-, 8-, 10-, 12-, and 18- carbon acyl chain lengths to determine the optimal acyl chain length for maximum anti-proliferative properties of BPA-SMCs. The starting LMWHP was prepared from unfractionated HP by sodium periodate treatment followed by sodium borohydride reduction. The tri-n-butylammonium salt of this LMWHP was O-acylated with butanoic, hexanoic, octanoic, decanoic, dodecanoic, and stearyl anhydrides separately to give respective O-acylated LMWHP derivatives. Gradient polyacrylamide gel electrophoresis (PAGE) was used to examine the average molecular weights of those O-acylated LMWHP derivatives. NMR analysis indicated the presence of one O-acyl group per disaccharide residue. Measurement of the inhibition of BPA-SMCS as a function of O-acyl chain length shows two optima, at a carbon chain length of 6 (O-hexanoylated LMWHP) and at a carbon chain length 12-18 (O-dodecanoyl and O-stearyl LMWHPs). A solution competition SPR study was performed to test the ability of different O-acylated LMWHP derivatives to inhibit fibroblast growth factor (FGF) 1 and FGF2 binding to surface-immobilized heparin. All the LMWHP derivatives bound to FGF1 and FGF2 but each exhibited slightly different binding affinity.
Note: A simple picture of subdiffusive polymer motion from stochastic simulations
NASA Astrophysics Data System (ADS)
Gniewek, Pawel; Kolinski, Andrzej
2011-02-01
Entangled polymer solutions and melts exhibit unusual frictional properties. In the entanglement limit self-diffusion coefficient of long flexible polymers decays with the second power of chain length and viscosity increases with 3-3.5 power of chain length.1 It is very difficult to provide detailed molecular-level explanation of the entanglement effect.2 Perhaps, the problem of many entangled polymer chains is the most complex multibody issue of classical physics. There are different approaches to polymer melt dynamics. Some of these recognize hydrodynamic interactions as a dominant term, while topological constraints for polymer chains are assumed as a secondary factor. Other theories consider the topological constraints as the most important factors controlling polymer dynamics. Herman and co-workers describe polymer dynamics in melts, as a lateral sliding of a chain along other chains until complete mutual disentanglement. Despite the success in explaining the power-laws for viscosity, the model has some limitations. First of all, memory effects are ignored, that is, polymer segments are treated independently. Also, each entanglement/obstacle is treated as a separate entity, which is certainly a simplification of the memory effect problem. In addition to that, correlated motions of segments are addressed within the framework of renormalized Rouse-chain theory,7 without calling any topological entanglements in advance. This approach leads to the generalized Langevin equation characterized by distinct memory kernels describing local and nonlocal segment correlations or to the Smoluchowski equation in which the segments' mobility is treated as a stochastic variable.11 Both models describe the polymer segments motion at a microscopic level. An interesting alternative is to solve the integrodifferential equation for the chain relaxation with a sophisticated kernel function.12 The design of the kernel function is based on a mesoscopic description of the polymer melt. These theories explain some experimental data, although the description of the crossover between the Rouse and non-Rouse behavior is not satisfactory. Obviously, within the scope of a short note we cannot review all theoretical concepts of the polymer melt dynamics. Here we focus just on the interpretation of the observed single segment autocorrelation function.
Greaves, Tamar L; Broomhall, Hayden; Weerawardena, Asoka; Osborne, Dale A; Canonge, Bastien A; Drummond, Calum J
2017-12-14
The phase behaviour of n-alkylammonium (C6 to C16) nitrates and formates has been characterised using synchrotron small angle and wide angle X-ray scattering (SAXS/WAXS), differential scanning calorimetry (DSC), cross polarised optical microscopy (CPOM) and Fourier transform infrared spectroscopy (FTIR). The protic salts may exist as crystalline, liquid crystalline or ionic liquid materials depending on the alkyl chain length and temperature. n-Alkylammonium nitrates with n ≥ 6 form thermotropic liquid crystalline (LC) lamellar phases, whereas n ≥ 8 was required for the formate series to form this LC phase. The protic ionic liquid phase showed an intermediate length scale nanostructure resulting from the segregation of the polar and nonpolar components of the ionic liquid. This segregation was enhanced for longer n-alkyl chains, with a corresponding increase in the correlation length scale. The crystalline and liquid crystalline phases were both lamellar. Phase transition temperatures, lamellar d-spacings, and liquid correlation lengths for the n-alkylammonium nitrates and formates were compared with those for n-alkylammonium chlorides and n-alkylamines. Plateau regions in the liquid crystalline to liquid phase transition temperatures as a function of n for the n-alkylammonium nitrates and formates are consistent with hydrogen-bonding and cation-anion interactions between the ionic species dominating alkyl chain-chain van der Waals interactions, with the exception of the mid chained hexyl- and heptylammonium formates. The d-spacings of the lamellar phases for both the n-alkylammonium nitrates and formates were consistent with an increase in chain-chain layer interdigitation within the bilayer-based lamellae with increasing alkyl chain length, and they were comparable to the n-alkylammonium chlorides.
Kuo, Hsiou-Ting; Liu, Shing-Lung; Chiu, Wen-Chieh; Fang, Chun-Jen; Chang, Hsien-Chen; Wang, Wei-Ren; Yang, Po-An; Li, Jhe-Hao; Huang, Shing-Jong; Huang, Shou-Ling; Cheng, Richard P
2015-05-01
β-Sheet is one of the major protein secondary structures. Oppositely charged residues are frequently observed across neighboring strands in antiparallel sheets, suggesting the importance of cross-strand ion pairing interactions. The charged amino acids Asp, Glu, Arg, and Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on lateral cross-strand ion pairing interactions at non-hydrogen-bonded positions, β-hairpin peptides containing Zbb-Agx (Zbb = Asp, Glu, Aad in increasing length; Agx = Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by NMR methods. The fraction folded population and folding energy were derived from the chemical shift deviation data. Peptides with high fraction folded populations involved charged residue side chain lengths that supported high strand propensity. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Minimal interaction was observed between residues with short side chains, most likely due to the diffused positive charge on the guanidinium group, which weakened cross-strand electrostatic interactions with the carboxylate side chain. Only the Aad-Arg/Agh interactions with long side chains clearly exhibited stabilizing energetics, possibly relying on hydrophobics. A survey of a non-redundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Arg < Glu-Arg, implying the need for matching long side chains. This suggested the need for long side chains on both guanidinium-bearing and carboxylate-bearing residues to stabilize the β-hairpin motif.
Kniss, Andreas; Schuetz, Denise; Kazemi, Sina; Pluska, Lukas; Spindler, Philipp E; Rogov, Vladimir V; Husnjak, Koraljka; Dikic, Ivan; Güntert, Peter; Sommer, Thomas; Prisner, Thomas F; Dötsch, Volker
2018-02-06
Ubiquitination is the most versatile posttranslational modification. The information is encoded by linkage type as well as chain length, which are translated by ubiquitin binding domains into specific signaling events. Chain topology determines the conformational space of a ubiquitin chain and adds an additional regulatory layer to this ubiquitin code. In particular, processes that modify chain length will be affected by chain conformations as they require access to the elongation or cleavage sites. We investigated conformational distributions in the context of chain elongation and disassembly using pulsed electron-electron double resonance spectroscopy in combination with molecular modeling. Analysis of the conformational space of diubiquitin revealed conformational selection or remodeling as mechanisms for chain recognition during elongation or hydrolysis, respectively. Chain elongation to tetraubiquitin increases the sampled conformational space, suggesting that a high intrinsic flexibility of K48-linked chains may contribute to efficient proteasomal degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lin, Jiaqi; Zhang, Heng; Morovati, Vahid; Dargazany, Roozbeh
2017-10-15
PEGylation on nanoparticles (NPs) is widely used to prevent aggregation and to mask NPs from the fast clearance system in the body. Understanding the molecular details of the PEG layer could facilitate rational design of PEGylated NPs that maximize their solubility and stealth ability without significantly compromising the targeting efficiency and cellular uptake. Here, we use molecular dynamics (MD) simulation to understand the structural and dynamic the PEG coating of mixed monolayer gold NPs. Specifically, we modeled gold NPs with PEG grafting densities ranging from 0-2.76chain/nm 2 , chain length with 0-10 PEG monomers, NP core diameter from 5nm to 500nm. It is found that the area accessed by individual PEG chains gradually transits from a "mushroom" to a "brush" conformation as NP surface curvature become flatter, whereas such a transition is not evident on small NPs when grafting density increases. It is shown that moderate grafting density (∼1.0chain/nm 2 ) and short chain length are sufficient enough to prevent NPs from aggregating in an aqueous medium. The effect of grafting density on solubility is also validated by dynamic light scattering measurements of PEGylated 5nm gold NPs. With respect to the shielding ability, simulations predict that increase either grafting density, chain length, or NP diameter will reduce the accessibility of the protected content to a certain size molecule. Interestingly, reducing NP surface curvature is estimated to be most effective in promoting shielding ability. For shielding against small molecules, increasing PEG grafting density is more effective than increasing chain length. A simple model that includes these three investigated parameters is developed based on the simulations to roughly estimate the shielding ability of the PEG layer with respect to molecules of different sizes. The findings can help expand our current understanding of the PEG layer and guide rational design of PEGylated gold NPs for a particular application by tuning the PEG grafting density, chain length, and particle size. Copyright © 2017 Elsevier Inc. All rights reserved.
Kharakoz, Dmitry P; Panchelyuga, Maria S; Tiktopulo, Elizaveta I; Shlyapnikova, Elena A
2007-12-01
Chain-ordering/melting transition in a series of saturated diacylphosphatidylcholines (PCs) in aqueous dispersions have been studied experimentally (calorimetric and ultrasonic techniques) and theoretically (an Ising-like lattice model). The shape of the calorimetric curves was compared with the theoretical data and interpreted in terms of the lateral interactions and critical temperatures determined for each lipid studied. A critical chain length has been found (between 16 and 17 C-atoms per chain) which subdivides PCs into two classes with different phase behavior. In shorter lipids, the transition takes place above their critical temperatures meaning that this is an intrinsically continuous transition. In longer lipids, the transition occurs below the critical temperatures of the lipids, meaning that the transition is intrinsically discontinuous (first-order). This conclusion was supported independently by the ultrasonic relaxation sensitive to density fluctuations. Interestingly, it is this length that is the most abundant among the saturated chains in biological membranes.
Molecular structure of quinoa starch.
Li, Guantian; Zhu, Fan
2017-02-20
Quinoa starch has very small granules with unique properties. However, the molecular structure of quinoa starch remains largely unknown. In this study, composition and amylopectin molecular structure of 9 quinoa starch samples were characterised by chromatographic techniques. In particular, the amylopectin internal molecular structure, represented by φ, β-limit dextrins (LDs), was explored. Great variations in the composition and molecular structures were recorded among samples. Compared with other amylopectins, quinoa amylopectin showed a high ratio of short chain to long chains (mean:14.6) and a high percentage of fingerprint A-chains (A fp ) (mean:10.4%). The average chain length, external chain length, and internal chain length of quinoa amylopectin were 16.6, 10.6, and 5.00 glucosyl residues, respectively. Pearson correlation and principal component analysis revealed some inherent correlations among structural parameters and a similarity of different samples. Overall, quinoa amylopectins are structurally similar to that from starches with A-type polymorph such as oat and amaranth starches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Tae-Woo; Kim, Woojae; Park, Kyu Hyung; Kim, Pyosang; Cho, Jae-Won; Shimizu, Hideyuki; Iyoda, Masahiko; Kim, Dongho
2016-02-04
Exciton dynamics in π-conjugated molecular systems is highly susceptible to conformational disorder. Using time-resolved and single-molecule spectroscopic techniques, the effect of chain length on the exciton dynamics in a series of linear oligothiophenes, for which the conformational disorder increased with increasing chain length, was investigated. As a result, extraordinary features of the exciton dynamics in longer-chain oligothiophene were revealed. Ultrafast fluorescence depolarization processes were observed due to exciton self-trapping in longer and bent chains. Increase in exciton delocalization during dynamic planarization processes was also observed in the linear oligothiophenes via time-resolved fluorescence spectra but was restricted in L-10T because of its considerable conformational disorder. Exciton delocalization was also unexpectedly observed in a bent chain using single-molecule fluorescence spectroscopy. Such delocalization modulates the fluorescence spectral shape by attenuating the 0-0 peak intensity. Collectively, these results provide significant insights into the exciton dynamics in conjugated polymers.
Cloud point phenomena for POE-type nonionic surfactants in a model room temperature ionic liquid.
Inoue, Tohru; Misono, Takeshi
2008-10-15
The cloud point phenomenon has been investigated for the solutions of polyoxyethylene (POE)-type nonionic surfactants (C(12)E(5), C(12)E(6), C(12)E(7), C(10)E(6), and C(14)E(6)) in 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), a typical room temperature ionic liquid (RTIL). The cloud point, T(c), increases with the elongation of the POE chain, while decreases with the increase in the hydrocarbon chain length. This demonstrates that the solvophilicity/solvophobicity of the surfactants in RTIL comes from POE chain/hydrocarbon chain. When compared with an aqueous system, the chain length dependence of T(c) is larger for the RTIL system regarding both POE and hydrocarbon chains; in particular, hydrocarbon chain length affects T(c) much more strongly in the RTIL system than in equivalent aqueous systems. In a similar fashion to the much-studied aqueous systems, the micellar growth is also observed in this RTIL solvent as the temperature approaches T(c). The cloud point curves have been analyzed using a Flory-Huggins-type model based on phase separation in polymer solutions.
A kinetic theory description of the viscosity of dense fluids consisting of chain molecules.
de Wijn, Astrid S; Vesovic, Velisa; Jackson, George; Trusler, J P Martin
2008-05-28
An expression for the viscosity of a dense fluid is presented that includes the effect of molecular shape. The molecules of the fluid are approximated by chains of equal-sized, tangentially jointed, rigid spheres. It is assumed that the collision dynamics in such a fluid can be approximated by instantaneous collisions between two rigid spheres belonging to different chains. The approach is thus analogous to that of Enskog for a fluid consisting of rigid spheres. The description is developed in terms of two molecular parameters, the diameter sigma of the spherical segment and the chain length (number of segments) m. It is demonstrated that an analysis of viscosity data of a particular pure fluid alone cannot be used to obtain independently effective values of both sigma and m. Nevertheless, the chain lengths of n-alkanes are determined by assuming that the diameter of each rigid sphere making up the chain can be represented by the diameter of a methane molecule. The effective chain lengths of n-alkanes are found to increase linearly with the number C of carbon atoms present. The dependence can be approximated by a simple relationship m=1+(C-1)3. The same relationship was reported within the context of a statistical associating fluid theory equation of state treatment of the fluid, indicating that both the equilibrium thermodynamic properties and viscosity yield the same value for the chain lengths of n-alkanes.
Hamano, Yoshimitsu; Kito, Naoko; Kita, Akihiro; Imokawa, Yuuki; Yamanaka, Kazuya; Maruyama, Chitose; Katano, Hajime
2014-08-01
ε-Poly-l-lysine (ε-PL), consisting of 25 to 35 l-lysine residues with linkages between the α-carboxyl groups and ε-amino groups, is produced by Streptomyces albulus NBRC14147. ε-PL synthetase (Pls) is a membrane protein with six transmembrane domains (TM1 to TM6) as well as both an adenylation domain and a thiolation domain, characteristic of the nonribosomal peptide synthetases. Pls directly generates ε-PL chain length diversity (25- to 35-mer), but the processes that control the chain length of ε-PL during the polymerization reaction are still not fully understood. Here, we report on the identification of Pls amino acid residues involved in the regulation of the ε-PL chain length. From approximately 12,000 variants generated by random mutagenesis, we found 8 Pls variants that produced shorter chains of ε-PL. These variants have one or more mutations in two linker regions connecting the TM1 and TM2 domains and the TM3 and TM4 domains. In the Pls catalytic mechanism, the growing chain of ε-PL is not tethered to the enzyme, implying that the enzyme must hold the growing chain until the polymerization reaction is complete. Our findings reveal that the linker regions are important contributors to grasp the growing chain of ε-PL. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, N.A.; Wood, H.G.
1986-05-01
Polyphosphate (poly(P)) kinase, isolated from Propionibacterium shermanii, catalyzes the following reaction: poly(P/sub n/) + ATPin equilibriumpoly(P/sub n+1/) + ADP. The authors have purified this enzyme to 90% homogeneity and have shown it to be composed of 2-3 identical subunits of M/sub r/ 80,000. Investigation of the reaction mechanism by product analysis has revealed that the elongation phase is processive whereby successive elongation occurs without release of intermediate sizes until very long chains are formed. The initiation phase of synthesis has been investigated using (/sup 32/P) poly(P) primer of chain length 11-60. It is incorporated into long chain poly(P) and themore » /sup 32/P has been shown, by use of poly(P) glucokinase, to be localized at the end of the molecule. Calculation of average chain length based upon the incorporation of /sup 32/P, however, yields a value approx.3 fold higher than the value calculated by another method using poly(P) glucokinase. This result indicates that initiation of poly(P) synthesis occurs by at least one other route which does not involve short chain poly(P) primers. The effect of temperature and concentration of poly(P) primer upon the average chain length of poly(P) synthesized was also investigated. A general trend was observed in which the chain length of the synthesized poly(P) decreased as either temperature or concentration or primer was increased.« less
Generalized theory of semiflexible polymers.
Wiggins, Paul A; Nelson, Philip C
2006-03-01
DNA bending on length scales shorter than a persistence length plays an integral role in the translation of genetic information from DNA to cellular function. Quantitative experimental studies of these biological systems have led to a renewed interest in the polymer mechanics relevant for describing the conformational free energy of DNA bending induced by protein-DNA complexes. Recent experimental results from DNA cyclization studies have cast doubt on the applicability of the canonical semiflexible polymer theory, the wormlike chain (WLC) model, to DNA bending on biologically relevant length scales. This paper develops a theory of the chain statistics of a class of generalized semiflexible polymer models. Our focus is on the theoretical development of these models and the calculation of experimental observables. To illustrate our methods, we focus on a specific, illustrative model of DNA bending. We show that the WLC model generically describes the long-length-scale chain statistics of semiflexible polymers, as predicted by renormalization group arguments. In particular, we show that either the WLC or our present model adequately describes force-extension, solution scattering, and long-contour-length cyclization experiments, regardless of the details of DNA bend elasticity. In contrast, experiments sensitive to short-length-scale chain behavior can in principle reveal dramatic departures from the linear elastic behavior assumed in the WLC model. We demonstrate this explicitly by showing that our toy model can reproduce the anomalously large short-contour-length cyclization factors recently measured by Cloutier and Widom. Finally, we discuss the applicability of these models to DNA chain statistics in the context of future experiments.
Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred
2012-07-01
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilar, Kartik; Rua, Armando; Suarez, Sophia N.
A comprehensive variable temperature, pressure and frequency multinuclear ( 1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T 1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T 1 measurements reveal site-dependent interactions in the cation withmore » strengths in the order MD 3 > CD 3 > CD 2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD 2 sites having the largest gradient. Additionally, the α saturation effect in T 1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T 1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.« less
Pilar, Kartik; Rua, Armando; Suarez, Sophia N.; ...
2017-05-11
A comprehensive variable temperature, pressure and frequency multinuclear ( 1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T 1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T 1 measurements reveal site-dependent interactions in the cation withmore » strengths in the order MD 3 > CD 3 > CD 2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD 2 sites having the largest gradient. Additionally, the α saturation effect in T 1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T 1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.« less
Theory of polyelectrolytes in solvents.
Chitanvis, Shirish M
2003-12-01
Using a continuum description, we account for fluctuations in the ionic solvent surrounding a Gaussian, charged chain and derive an effective short-ranged potential between the charges on the chain. This potential is repulsive at short separations and attractive at longer distances. The chemical potential can be derived from this potential. When the chemical potential is positive, it leads to a meltlike state. For a vanishingly low concentration of segments, this state exhibits scaling behavior for long chains. The Flory exponent characterizing the radius of gyration for long chains is calculated to be approximately 0.63, close to the classical value obtained for second order phase transitions. For short chains, the radius of gyration varies linearly with N, the chain length, and is sensitive to the parameters in the interaction potential. The linear dependence on the chain length N indicates a stiff behavior. The chemical potential associated with this interaction changes sign, when the screening length in the ionic solvent exceeds a critical value. This leads to condensation when the chemical potential is negative. In this state, it is shown using the mean-field approximation that spherical and toroidal condensed shapes can be obtained. The thickness of the toroidal polyelectrolyte is studied as a function of the parameters of the model, such as the ionic screening length. The predictions of this theory should be amenable to experimental verification.
Perceptual and Neural Olfactory Similarity in Honeybees
Sandoz, Jean-Christophe
2005-01-01
The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones) and in their carbon-chain length (from six to nine carbons).The results obtained by presentation of a total of 16 × 16 odour pairs show that (i) all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii) generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii) for some odour pairs, cross-generalisation between odorants was asymmetric; (iv) a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v) perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours. PMID:15736975
Rast, Walter; Sutton, J.E.
1989-01-01
To assess one potential cause for the decline of the striped bass fishery in the Sacramento-San Joaquin Estuary, stable carbon and nitrogen isotope ratios were used to examine the trophic structures of the larval striped bass food chain, and to trace the flux of these elements through the food chain components. Study results generally confirm a food chain consisting of the elements, phytoplankton/detritus-->zooplankton/Neomysis shrimp-->larval striped bass. The stable isotope ratios generally become more positive as one progresses from the lower to the higher trophic level food chain components, and no unusual trophic structure was found in the food chain. However, the data indicate an unidentified consumer organism occupying an intermediate position between the lower and higher trophic levels of the larval striped bass food chain. Based on expected trophic interactions, this unidentified consumer would have a stable carbon isotope ratio of about 28/mil and a stable nitrogen isotope ratio of about 8/mi. Three possible feeding stages for larval striped bass also were identified, based on their lengths. The smallest length fish seem to subsist on their yolk sac remnants, and the largest length fish subsist on Neomysis shrimp and zooplankton. The intermediate-length fish represent a transition stage between primary food sources and/or use of a mixture of food sources. (USGS)
Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo
2015-02-03
We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.
Parvari, R; Avivi, A; Lentner, F; Ziv, E; Tel-Or, S; Burstein, Y; Schechter, I
1988-03-01
cDNA clones encoding the variable and constant regions of chicken immunoglobulin (Ig) gamma-chains were obtained from spleen cDNA libraries. Southern blots of kidney DNA show that the variable region sequences of eight cDNA clones reveal the same set of bands corresponding to approximately 30 cross-hybridizing VH genes of one subgroup. Since the VH clones were randomly selected, it is likely that the bulk of chicken H-chains are encoded by a single VH subgroup. Nucleotide sequence determinations of two cDNA clones reveal VH, D, JH and the constant region. The VH segments are closely related to each other (83% homology) as expected for VH or the same subgroup. The JHs are 15 residues long and differ by one amino acid. The Ds differ markedly in sequence (20% homology) and size (10 and 20 residues). These findings strongly indicate multiple (at least two) D genes which by a combinatorial joining mechanism diversify the H-chains, a mechanism which is not operative in the chicken L-chain locus. The most notable among the chicken Igs is the so-called 7S IgG because its H-chain differs in many important aspects from any mammalian IgG. The sequence of the C gamma cDNA reported here resolves this issue. The chicken C gamma is 426 residues long with four CH domains (unlike mammalian C gamma which has three CH domains) and it shows 25% homology to the chicken C mu. The chicken C gamma is most related to the mammalian C epsilon in length, the presence of four CH domains and the distribution of cysteines in the CH1 and CH2 domains. We propose that the unique chicken C gamma is the ancestor of the mammalian C epsilon and C gamma subclasses, and discuss the evolution of the H-chain locus from that of chicken with presumably three genes (mu, gamma, alpha) to the mammalian loci with 8-10 H-chain genes.
Chen, Liwei; Yu, Guangtao; Chen, Wei; Tu, Chunyun; Zhao, Xingang; Huang, Xuri
2014-06-14
Using density functional theory computations, employing the concept of a mixed π-conjugated bridge can effectively improve the first hyperpolarizability (β0) of Möbius cyclacene (MC)-based systems with a D-π-A framework. This mixed π-conjugated bridge is constructed by applying a -(CH=CH)x-NH2 or -(CH=CH)x-NO2 chain to modify [8]MC, which can lead to a considerable β0 value (e.g. [8]MC-(CH=CH)12-NO2 (9.87 × 10(5) au) with only a certain chain length), much larger than the sole [8]MC (261 au) and the corresponding NH2/NO2-modified polyethylene chain with the same π-conjugated length. It is revealed that the substituent sites and the chain length can play a crucial role in improving β0 values of these MC-chain systems, where the β0 value can monotonically increase with increasing -(CH=CH)x- length, and the substituent electron-withdrawing -(CH=CH)x-NO2 chain is superior to the parallel electron-donating -(CH=CH)x-NH2. These appealing findings can provide valuable insights into the design of novel NLO materials based on MC.
Adsorption of poly(ethylene succinate) chain onto graphene nanosheets: A molecular simulation.
Kelich, Payam; Asadinezhad, Ahmad
2016-09-01
Understanding the interaction between single polymer chain and graphene nanosheets at local and global length scales is essential for it underlies the mesoscopic properties of polymer nanocomposites. A computational attempt was then performed using atomistic molecular dynamics simulation to gain physical insights into behavior of a model aliphatic polyester, poly(ethylene succinate), single chain near graphene nanosheets, where the effects of the polymer chain length, graphene functionalization, and temperature on conformational properties of the polymer were studied comparatively. Graphene functionalization was carried out through extending the parameters set of an all-atom force field. The results showed a significant conformational transition of the polymer chain from three-dimensional statistical coil, in initial state, to two-dimensional fold, in final state, during adsorption on graphene. The conformational order, overall shape, end-to-end separation statistics, and mobility of the polymer chain were found to be influenced by the graphene functionalization, temperature, and polymer chain length. Furthermore, the polymer chain dynamics mode during adsorption on graphene was observed to transit from normal diffusive to slow subdiffusive mode. The findings from this computational study could shed light on the physics of the early stages of aliphatic polyester chain organization induced by graphene. Copyright © 2016 Elsevier Inc. All rights reserved.
Understanding the length dependence of molecular junction thermopower.
Karlström, Olov; Strange, Mikkel; Solomon, Gemma C
2014-01-28
Thermopower of molecular junctions is sensitive to details in the junction and may increase, decrease, or saturate with increasing chain length, depending on the system. Using McConnell's theory for exponentially suppressed transport together with a simple and easily interpretable tight binding model, we show how these different behaviors depend on the molecular backbone and its binding to the contacts. We distinguish between resonances from binding groups or undercoordinated electrode atoms, and those from the periodic backbone. It is demonstrated that while the former gives a length-independent contribution to the thermopower, possibly changing its sign, the latter determines its length dependence. This means that the question of which orbitals from the periodic chain that dominate the transport should not be inferred from the sign of the thermopower but from its length dependence. We find that the same molecular backbone can, in principle, show four qualitatively different thermopower trends depending on the binding group: It can be positive or negative for short chains, and it can either increase or decrease with length.
Mansour, Maged P
2005-12-02
A preparative reversed-phase (RP; C(18)) high-performance liquid chromatography (HPLC) method with gradient elution using acetonitrile (MeCN)-chloroform (CHCl(3)) (or dichloromethane (DCM)) and evaporative light-scattering detection (ELSD) with automatic multiple injection and fraction collection was used to purify milligram quantities of microalgal polyunsaturated fatty acids (PUFA), separated as methyl esters (ME). PUFA-ME purified included methyl esters of docosahexaenoic acid (DHA; 22:6(n-3)), eicosapentaenoic acid (EPA; 20:5(n-3)) and the unusual very long-chain (C(28)) highly unsaturated fatty acid (VLC-HUFA), octacosaoctaenoic acid [28:8(n-3)(4, 7, 10, 13, 16, 19, 22, 25)] from the marine dinoflagellate Scrippsiella sp. CS-295/c. Other PUFA purified from various microalgae using this RP-HPLC method to greater than 95% purity included 16:3(n-4), 16:4(n-3), 16:4(n-1) and 18:5(n-3). The number of injections required was variable and depended on the abundance of the desired PUFA-ME, and resolution from closely eluting PUFA-ME, which determined the maximum loading. The purity of these fatty acids was determined by electron impact (EI) GC-MS and the chain length and location of double bonds was determined by EI GC-MS of 4,4-dimethyl oxazoline (DMOX) derivatives formed using a low temperature method. Advantages over silver-ion HPLC for purifying PUFA-ME is that separation occurs according to chain length as well as degree of unsaturation enabling separation of PUFA-ME with the same degree of unsaturation but different chain length (i.e. between 18:5(n-3) and 20:5(n-3)). In addition, PUFA-ME are not strongly adsorbed, but elute earlier than their more saturated corresponding FAME of the same chain length. This method is robust, simple, and requires only a short re-equilibration time. It is a useful tool for preparing milligram quantities of pure PUFA-ME for bioactive screening (as free fatty acids), although many multiple injections may be required for minor PUFA-ME. It also enabled dose-response and structure-activity studies to be carried out. It can be used for the enrichment of low levels of VLC-HUFA-ME to facilitate elucidation of their chemical structure and so is a useful adjunct to EI GC-MS of DMOX derivatives and other techniques such as NMR, which requires milligram quantities of purified compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oksenberg, J.R.; Cavalli-Sforza, L.L.; Steinman, L.
1989-02-01
Polymorphic markers in genes encoding the {alpha} chain of the human T-cell receptor (TcR) have been detected by Southern blot analysis in Pss I digests. Polymorphic bands were observed at 6.3 and 2.0 kilobases (kb) with frequencies of 0.30 and 0.44, respectively, in the general population. Using the polymerase chain reaction (PCR) method, the authors amplified selected sequences derived from the full-length TcR {alpha} cDNA probe. These PcR products were used as specific probes to demonstrate that the 6.3-kb polymorphic fragment hybridizes to the variable (V)-region probe and the 2.0-kb fragment hybridizes to the constant (C)-region probe. Segregation of themore » polymorphic bands was analyzed in family studies. To look for associations between these markers and autoimmune diseases, the authors have studied the restriction fragment length polymorphism distribution of the Pss I markers in patients with multiple sclerosis, myasthenia gravis, and Graves disease. Significant differences in the frequency of the polymorphic V{sub {alpha}} and C{sub {alpha}} markers were identified between patients and healthy individuals.« less
Whisman, Mark A.; Robustelli, Briana L.; Sbarra, David A.
2016-01-01
Rationale Marital disruption (i.e., marital separation, divorce) is associated with a wide range of poor mental and physical health outcomes, including increased risk for all-cause mortality. One biological intermediary that may help explain the association between marital disruption and poor health is accelerated cellular aging. Objective This study examines the association between marital disruption and salivary telomere length in a United States probability sample of adults ≥ 50 years of age. Method Participants were 3,526 individuals who participated in the 2008 wave of the Health and Retirement Study. Telomere length assays were performed using quantitative real-time polymerase chain reaction (qPCR) on DNA extracted from saliva samples. Health and lifestyle factors, traumatic and stressful life events, and neuroticism were assessed via self-report. Linear regression analyses were conducted to examine the associations between predictor variables and salivary telomere length. Results Based on their marital status data in the 2006 wave, people who were separated or divorced had shorter salivary telomeres than people who were continuously married or had never been married, and the association between marital disruption and salivary telomere length was not moderated by gender or neuroticism. Furthermore, the association between marital disruption and salivary telomere length remained statistically significant after adjusting for demographic and socioeconomic variables, neuroticism, cigarette use, body mass, traumatic life events, and other stressful life events. Additionally, results revealed that currently married adults with a history of divorce evidenced shorter salivary telomeres than people who were continuously married or never married. Conclusion Accelerated cellular aging, as indexed by telomere shortening, may be one pathway through which marital disruption is associated with morbidity and mortality. PMID:27062452
Whisman, Mark A; Robustelli, Briana L; Sbarra, David A
2016-05-01
Marital disruption (i.e., marital separation, divorce) is associated with a wide range of poor mental and physical health outcomes, including increased risk for all-cause mortality. One biological intermediary that may help explain the association between marital disruption and poor health is accelerated cellular aging. This study examines the association between marital disruption and salivary telomere length in a United States probability sample of adults ≥50 years of age. Participants were 3526 individuals who participated in the 2008 wave of the Health and Retirement Study. Telomere length assays were performed using quantitative real-time polymerase chain reaction (qPCR) on DNA extracted from saliva samples. Health and lifestyle factors, traumatic and stressful life events, and neuroticism were assessed via self-report. Linear regression analyses were conducted to examine the associations between predictor variables and salivary telomere length. Based on their marital status data in the 2006 wave, people who were separated or divorced had shorter salivary telomeres than people who were continuously married or had never been married, and the association between marital disruption and salivary telomere length was not moderated by gender or neuroticism. Furthermore, the association between marital disruption and salivary telomere length remained statistically significant after adjusting for demographic and socioeconomic variables, neuroticism, cigarette use, body mass, traumatic life events, and other stressful life events. Additionally, results revealed that currently married adults with a history of divorce evidenced shorter salivary telomeres than people who were continuously married or never married. Accelerated cellular aging, as indexed by telomere shortening, may be one pathway through which marital disruption is associated with morbidity and mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synthesis and Crystallization Behavior of Surfactants with Hexamolybdate as the Polar Headgroup
Zhu, Li; Chen, Kun; Hao, Jian; ...
2015-06-12
For this paper, alkyl chains with different lengths were covalently grafted onto the surface of hexamolybdate through the postfunctionalization protocol of polyoxometalates. The obtained compounds represent typical structures of the so-called giant surfactants. Unexpectedly, those surfactants with hexamolybdates as polar headgroups are able to crystallize, while single-crystal X-ray diffraction reveals that the crystallization behavior of the surfactants is highly dependent on the length of the alkyl chains. For surfactants with comparatively short alkyl chains (C6 and C10), the alkyl chains prefer to interact with tetrabutylammonium, the countercation of hexamolybdate. However, the alkyl chains tend to pack with each other tomore » form a domain of alkyl chains in the surfactant with a longer alkyl chain (C18). Finally, the possible mechanism is that a long alkyl chain cannot be fully compatible with the short chain (C4) of tetrabutylammonium.« less
NASA Astrophysics Data System (ADS)
Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Ozeki, Eiichi; Togashi, Kaori; Kimura, Shunsaku
2017-07-01
Four kinds of A3B-type amphiphilic polydepsipeptides, (poly(sarcosine))3- b-poly( l-lactic acid) (the degree of polymerization of poly(sarcosine) are 10, 33, 55, and 85; S10 3 , S33 3 , S55 3 , and S85 3 ) were synthesized to prepare core-shell type polymeric micelles. Their in vivo dispositions and stimulations to trigger immune system to produce IgM upon multiple administrations to mice were examined. With increasing poly(sarcosine) chain lengths, the hydrophilic shell became thicker and the surface density at the most outer surface decreased on the basis of dynamic and static light scattering measurements. These two physical elements of polymeric micelles elicited opposite effects on the immune response in light of the chain length therefore to show an optimized poly(sarcosine) chain length existing between 33mer and 55mer to suppress the accelerated blood clearance phenomenon associated with polymeric micelles.
Chemotaxonomy in some Mediterranean plants and implications for fossil biomarker records
NASA Astrophysics Data System (ADS)
Norström, Elin; Katrantsiotis, Christos; Smittenberg, Rienk H.; Kouli, Katerina
2017-12-01
The increasing utilization of n-alkanes as plant-derived paleo-environmental proxies calls for improved chemotaxonomic control of the modern flora in order to calibrate fossil sediment records to modern analogues. Several recent studies have investigated long-chain n-alkane concentrations and chain-length distributions in species from various vegetation biomes, but up to date, the Mediterranean flora is relatively unexplored in this respect. Here, we analyse the n-alkane concentrations and chain-length distributions in some of the most common species of the modern macchia and phrygana vegetation in south western Peloponnese, Greece. We show that the drought adapted phrygana herbs and shrubs, as well as some of the sclerophyll and gymnosperm macchia components, produce high concentrations of n-alkanes, on average more than double n-alkane production in local wetland reed vegetation. Furthermore, the chain-length distribution in the analysed plants is related to plant functionality, with longer chain lengths associated with higher drought adaptive capacities, probably as a response to long-term evolutionary processes in a moisture limited environment. Furthermore, species with relatively higher average chain lengths (ACL) showed more enriched carbon isotope composition in their tissues (δ13Cplant), suggesting a dual imprint from both physiological and biochemical drought adaptation. The findings have bearings on interpretation of fossil sedimentary biomarker records in the Mediterranean region, which is discussed in relation to a case study from Agios Floros fen, Messenian plain, Peloponnese. The 6000 year long n-alkane record from Agios Floros (ACL, δ13Cwax) is linked to the modern analogue and then evaluated through a comparison with other regional-wide as well as local climate and vegetation proxy-data. The high concentration of long chain n-alkanes in phrygana vegetation suggests a dominating imprint from this vegetation type in sedimentary archives from this ecotone.
Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John
2015-10-01
Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine. Published by Elsevier B.V.
Dielectric dispersion for short double-strand DNA.
Omori, Shinji; Katsumoto, Yoichi; Yasuda, Akio; Asami, Koji
2006-05-01
A complex dielectric constant for double-strand DNA molecules with a length of not greater than 120 base pairs in an aqueous solution containing 30 mM NaCl was systematically measured as a function of chain length in such a way that experimental uncertainties associated with the molecular-weight distribution of specimens were virtually excluded. In contrast to the past experimental and theoretical studies for much longer DNA molecules, both the molar specific dielectric increment and the relaxation time are proportional to the chain length. These scaling rules cannot be accounted for by any theory so far proposed that gives analytical expressions for those two quantities in the long-chain limit.
De Nolf, Kim; Capek, Richard K; Abe, Sofie; Sluydts, Michael; Jang, Youngjin; Martins, José C; Cottenier, Stefaan; Lifshitz, Efrat; Hens, Zeger
2015-02-25
We investigate the relation between the chain length of ligands used and the size of the nanocrystals formed in the hot injection synthesis. With two different CdSe nanocrystal syntheses, we consistently find that longer chain carboxylic acids result in smaller nanocrystals with improved size dispersions. By combining a more in-depth experimental investigation with kinetic reaction simulations, we come to the conclusion that this size tuning is due to a change in the diffusion coefficient and the solubility of the solute. The relation between size tuning by the ligand chain length and the coordination of the solute by the ligands is further explored by expanding the study to amines and phosphine oxides. In line with the weak coordination of CdSe nanocrystals by amines, no influence of the chain length on the nanocrystals is found, whereas the size tuning brought about by phosphine oxides can be attributed to a solubility change. We conclude that the ligand chain length provides a practical handle to optimize the outcome of a hot injection synthesis in terms of size and size dispersion and can be used to probe the interaction between ligands and the actual solute.
Wu, Chi; Xie, Zuowei; Zhang, Guangzhao; Zi, Guofu; Tu, Yingfeng; Yang, Yali; Cai, Ping; Nie, Ting
2002-12-07
A combination of polymer physics and synthetic chemistry has enabled us to develop self-assembly assisted polymerization (SAAP), leading to the preparation of long multi-block copolymers with an ordered chain sequence and controllable block lengths.
Weak polyelectrolyte complexation driven by associative charging.
Rathee, Vikramjit S; Zervoudakis, Aristotle J; Sidky, Hythem; Sikora, Benjamin J; Whitmer, Jonathan K
2018-03-21
Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.
Weak polyelectrolyte complexation driven by associative charging
NASA Astrophysics Data System (ADS)
Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.
2018-03-01
Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.
NASA Astrophysics Data System (ADS)
Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu
2015-07-01
The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.
Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu
2015-07-07
The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.
Chuah, Jo-Ann; Tomizawa, Satoshi; Yamada, Miwa; Tsuge, Takeharu; Doi, Yoshiharu
2013-01-01
Saturation point mutagenesis was carried out at position 479 in the polyhydroxyalkanoate (PHA) synthase from Chromobacterium sp. strain USM2 (PhaCCs) with specificities for short-chain-length (SCL) [(R)-3-hydroxybutyrate (3HB) and (R)-3-hydroxyvalerate (3HV)] and medium-chain-length (MCL) [(R)-3-hydroxyhexanoate (3HHx)] monomers in an effort to enhance the specificity of the enzyme for 3HHx. A maximum 4-fold increase in 3HHx incorporation and a 1.6-fold increase in PHA biosynthesis, more than the wild-type synthase, was achieved using selected mutant synthases. These increases were subsequently correlated with improved synthase activity and increased preference of PhaCCs for 3HHx monomers. We found that substitutions with uncharged residues were beneficial, as they resulted in enhanced PHA production and/or 3HHx incorporation. Further analysis led to postulations that the size and geometry of the substrate-binding pocket are determinants of PHA accumulation, 3HHx fraction, and chain length specificity. In vitro activities for polymerization of 3HV and 3HHx monomers were consistent with in vivo substrate specificities. Ultimately, the preference shown by wild-type and mutant synthases for either SCL (C4 and C5) or MCL (C6) substrates substantiates the fundamental classification of PHA synthases. PMID:23584780
Xiao, Xiaodong; Douthwaite, Julie A; Chen, Yan; Kemp, Ben; Kidd, Sara; Percival-Alwyn, Jennifer; Smith, Alison; Goode, Kate; Swerdlow, Bonnie; Lowe, David; Wu, Herren; Dall'Acqua, William F; Chowdhury, Partha S
Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.
The Twilight Zone between Protein Order and Disorder
Szilágyi, A.; Györffy, D.; Závodszky, P.
2008-01-01
The amino acid composition of intrinsically disordered proteins and protein segments characteristically differs from that of ordered proteins. This observation forms the basis of several disorder prediction methods. These, however, usually perform worse for smaller proteins (or segments) than for larger ones. We show that the regions of amino acid composition space corresponding to ordered and disordered proteins overlap with each other, and the extent of the overlap (the “twilight zone”) is larger for short than for long chains. To explain this finding, we used two-dimensional lattice model proteins containing hydrophobic, polar, and charged monomers and revealed the relation among chain length, amino acid composition, and disorder. Because the number of chain configurations exponentially grows with chain length, a larger fraction of longer chains can reach a low-energy, ordered state than do shorter chains. The amount of information carried by the amino acid composition about whether a protein or segment is (dis)ordered grows with increasing chain length. Smaller proteins rely more on specific interactions for stability, which limits the possible accuracy of disorder prediction methods. For proteins in the “twilight zone”, size can determine order, as illustrated by the example of two-state homodimers. PMID:18441033
The twilight zone between protein order and disorder.
Szilágyi, A; Györffy, D; Závodszky, P
2008-08-01
The amino acid composition of intrinsically disordered proteins and protein segments characteristically differs from that of ordered proteins. This observation forms the basis of several disorder prediction methods. These, however, usually perform worse for smaller proteins (or segments) than for larger ones. We show that the regions of amino acid composition space corresponding to ordered and disordered proteins overlap with each other, and the extent of the overlap (the "twilight zone") is larger for short than for long chains. To explain this finding, we used two-dimensional lattice model proteins containing hydrophobic, polar, and charged monomers and revealed the relation among chain length, amino acid composition, and disorder. Because the number of chain configurations exponentially grows with chain length, a larger fraction of longer chains can reach a low-energy, ordered state than do shorter chains. The amount of information carried by the amino acid composition about whether a protein or segment is (dis)ordered grows with increasing chain length. Smaller proteins rely more on specific interactions for stability, which limits the possible accuracy of disorder prediction methods. For proteins in the "twilight zone", size can determine order, as illustrated by the example of two-state homodimers.
Triazolium based ionic liquid crystals: Effect of asymmetric substitution
Stappert, K.; Mudring, A. -V.
2015-01-27
A new series of ten different asymmetrical 1-dodecyl-3-alkyl-triazolium bromides, [C 12C nTr][Br], has been synthesized and their mesomorphic behavior studied by DSC (differential scanning calorimetry), POM (polarizing optical microscopy) and SAXS (small angle X-ray scattering). The influence of the chain length of the triazolium salts is investigated to explore the effect of asymmetric substitution on the phase behaviour of these compounds. For that reason, the length of one alkyl chain was varied from 14 to 1 carbon atoms (n = 14, 12, 10, 8–4, 2, 1) while the other alkyl chain was kept at 12 carbon. Single crystal X-ray structuremore » analysis of compounds [C 12C 12Tr][Br] and [C 12C 5Tr][Br] reveal that the cations adopt a U-shaped conformation with head-to-head arranged triazolium cores. In contrast, for [C 12C 1Tr][Br], a rod like shape of the cation with interdigitated alkyl chains is found. All investigated compounds are thermotropic liquid crystals. Higher ordered smectic phases, smectic C as well as smectic A phases were found depending on the chain length of the cation. Moreover, the clearing point temperature decreases with decreasing chain length with exception for the n-dodecyl-3-alkyltrizoliumbromides with the two shortest alkyl chains, [C 12C 2Tr][Br] and [C 12C 1Tr][Br], which present higher clearing temperatures (86 and 156 °C) and are structurally distinctly different.« less
Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.; Du, Yang; Nielsen, Anne K.; Byrne, Bernadette; Kobilka, Brian K.; Loland, Claus J.; Guan, Lan
2017-01-01
Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. PMID:27981750
Forced reptation revealed by chain pull-out simulations.
Bulacu, Monica; van der Giessen, Erik
2009-08-14
We report computation results obtained from extensive molecular dynamics simulations of tensile disentanglement of connector chains placed at the interface between two polymer bulks. Each polymer chain (either belonging to the bulks or being a connector) is treated as a sequence of beads interconnected by springs, using a coarse-grained representation based on the Kremer-Grest model, extended to account for stiffness along the chain backbone. Forced reptation of the connectors was observed during their disentanglement from the bulk chains. The extracted chains are clearly seen following an imaginary "tube" inside the bulks as they are pulled out. The entropic and energetic responses to the external deformation are investigated by monitoring the connector conformation tensor and the modifications of the internal parameters (bonds, bending, and torsion angles along the connectors). The work needed to separate the two bulks is computed from the tensile force induced during debonding in the connector chains. The value of the work reached at total separation is considered as the debonding energy G. The most important parameters controlling G are the length (n) of the chains placed at the interface and their areal density. Our in silico experiments are performed at relatively low areal density and are disregarded if chain scission occurs during disentanglement. As predicted by the reptation theory, for this pure pull-out regime, the power exponent from the scaling G proportional, variant n(a) is a approximately 2, irrespective of chain stiffness. Small variations are found when the connectors form different number of stitches at the interface, or when their length is randomly distributed in between the two bulks. Our results show that the effects of the number of stitches and of the randomness of the block lengths have to be considered together, especially when comparing with experiments where they cannot be controlled rigorously. These results may be significant for industrial applications, such reinforcement of polymer-polymer adhesion by connector chains, when incorporated as constitutive laws at higher time/length scales in finite element calculations.
Tao, Ran; Umeyama, Tomokazu; Kurotobi, Kei; Imahori, Hiroshi
2014-10-08
A series of alkoxycarbonyl-substituted dihydronaphthyl-based [60]fullerene bis-adduct derivatives (denoted as C2BA, C4BA, and C6BA with the alkyl chain of ethyl, n-butyl, and n-hexyl, respectively) have been synthesized to investigate the effects of alkyl chain length and substituent pattern of fullerene bis-adducts on the film structures and photovoltaic properties of bulk heterojunction polymer solar cells. The shorter alkyl chain length caused lower solubility of the fullerene bis-adducts (C6BA > C4BA > C2BA), thereby resulting in the increased separation difficulty of respective bis-adduct isomers. The device performance based on poly(3-hexylthiophene) (P3HT) and the fullerene bis-adduct regioisomer mixtures was enhanced by shortening the alkyl chain length. When using the regioisomerically separated fullerene bis-adducts, the devices based on trans-2 and a mixture of trans-4 and e of C4BA exhibited the highest power conversion efficiencies of ca. 2.4%, which are considerably higher than those of the C6BA counterparts (ca. 1.4%) and the C4BA regioisomer mixture (1.10%). The film morphologies as well as electron mobilities of the P3HT:bis-adduct blend films were found to affect the photovoltaic properties considerably. These results reveal that the alkyl chain length and substituent pattern of fullerene bis-adducts significantly influence the photovoltaic properties as well as the film structures of bulk heterojunction solar cells.
Thermal conductivity of the Lennard-Jones chain fluid model.
Galliero, Guillaume; Boned, Christian
2009-12-01
Nonequilibrium molecular dynamics simulations have been performed to estimate, analyze, and correlate the thermal conductivity of a fluid composed of short Lennard-Jones chains (up to 16 segments) over a large range of thermodynamic conditions. It is shown that the dilute gas contribution to the thermal conductivity decreases when the chain length increases for a given temperature. In dense states, simulation results indicate that the residual thermal conductivity of the monomer increases strongly with density, but is weakly dependent on the temperature. Compared to the monomer value, it has been noted that the residual thermal conductivity of the chain was slightly decreasing with its length. Using these results, an empirical relation, including a contribution due to the critical enhancement, is proposed to provide an accurate estimation of the thermal conductivity of the Lennard-Jones chain fluid model (up to 16 segments) over the domain 0.8
Chain Dynamics in a Dilute Magnetorheological Fluid
NASA Technical Reports Server (NTRS)
Liu, Jing; Hagenbuchle, Martin
1996-01-01
The structure, formation, and dynamics of dilute, mono-dispersive ferrofluid emulsions in an external magnetic field have been investigated using dynamic light scattering techniques. In the absence of the magnetic field, the emulsion particles are randomly distributed and behave like hard spheres in Brownian motion. An applied magnetic field induces a magnetic dipole moment in each particle. Dipolar interactions between particles align them into chains where correlation functions show two decay processes. The short-time decay shows the motion of straight chains as a whole where the apparent chain length increases with the applied magnetic field and the particle volume fraction. Good scaling results are obtained showing that the apparent chain length grows with time following a power law with exponent of 0.6 and depends on the applied field, particle volume fraction, and diffusion constant of the particles. The long-time decay in the correlation function shows oscillation when the chains reach a certain length with time and stiffness with threshold field This result shows that chains not only fluctuate, but move in a periodic motion with a frequency of 364 Hz at lambda = 15. It may suggest the existence of phonons. This work is the first step in the understanding of the structure formation, especially chain coarsening mechanism, of magnetorheological (MR) fluids at higher volume fractions.
USDA-ARS?s Scientific Manuscript database
The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...
Liu, Yan Fang; Yang, Hua; Zhang, Hui
2018-05-31
Chain folding is an important step during polymer crystallization. In order to study the effects of the surface on chain folding, molecular dynamics simulations of the folding of different alkane chains on three kinds of single-walled carbon nanotubes (SWCNTs) and graphene were performed. The folding behaviors of the single alkane chains on these surfaces were found to be different from their folding behaviors in vacuum. The end-to-end distances of the chains were calculated to explore the chain folding. An increasing tendency to fold into two or more stems with increasing alkane chain length was observed. This result indicates that the occurrence and the stability of chain folding are related to the surface curvature, the diameter of the SWCNT, and surface texture. In addition, the angle between the direction of the alkane chain segment and the direction of the surface texture was measured on different surfaces.
Maximally reliable Markov chains under energy constraints.
Escola, Sean; Eisele, Michael; Miller, Kenneth; Paninski, Liam
2009-07-01
Signal-to-noise ratios in physical systems can be significantly degraded if the outputs of the systems are highly variable. Biological processes for which highly stereotyped signal generations are necessary features appear to have reduced their signal variabilities by employing multiple processing steps. To better understand why this multistep cascade structure might be desirable, we prove that the reliability of a signal generated by a multistate system with no memory (i.e., a Markov chain) is maximal if and only if the system topology is such that the process steps irreversibly through each state, with transition rates chosen such that an equal fraction of the total signal is generated in each state. Furthermore, our result indicates that by increasing the number of states, it is possible to arbitrarily increase the reliability of the system. In a physical system, however, an energy cost is associated with maintaining irreversible transitions, and this cost increases with the number of such transitions (i.e., the number of states). Thus, an infinite-length chain, which would be perfectly reliable, is infeasible. To model the effects of energy demands on the maximally reliable solution, we numerically optimize the topology under two distinct energy functions that penalize either irreversible transitions or incommunicability between states, respectively. In both cases, the solutions are essentially irreversible linear chains, but with upper bounds on the number of states set by the amount of available energy. We therefore conclude that a physical system for which signal reliability is important should employ a linear architecture, with the number of states (and thus the reliability) determined by the intrinsic energy constraints of the system.
Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal
2016-01-01
Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.
Berstein, R M; Schluter, S F; Shen, S; Marchalonis, J J
1996-04-16
All immunoglobulins and T-cell receptors throughout phylogeny share regions of highly conserved amino acid sequence. To identify possible primitive immunoglobulins and immunoglobulin-like molecules, we utilized 3' RACE (rapid amplification of cDNA ends) and a highly conserved constant region consensus amino acid sequence to isolate a new immunoglobulin class from the sandbar shark Carcharhinus plumbeus. The immunoglobulin, termed IgW, in its secreted form consists of 782 amino acids and is expressed in both the thymus and the spleen. The molecule overall most closely resembles mu chains of the skate and human and a new putative antigen binding molecule isolated from the nurse shark (NAR). The full-length IgW chain has a variable region resembling human and shark heavy-chain (VH) sequences and a novel joining segment containing the WGXGT motif characteristic of H chains. However, unlike any other H-chain-type molecule, it contains six constant (C) domains. The first C domain contains the cysteine residue characteristic of C mu1 that would allow dimerization with a light (L) chain. The fourth and sixth domains also contain comparable cysteines that would enable dimerization with other H chains or homodimerization. Comparison of the sequences of IgW V and C domains shows homology greater than that found in comparisons among VH and C mu or VL, or CL thereby suggesting that IgW may retain features of the primordial immunoglobulin in evolution.
Formation and structural phase transition in Co atomic chains on a Cu(775) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.
The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomicmore » spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.« less
Han, Qi; Li, Bolei; Zhou, Xuedong; Ge, Yang; Wang, Suping; Li, Mingyun; Ren, Biao; Wang, Haohao; Zhang, Keke; Xu, Hockin H. K.; Peng, Xian; Feng, Mingye; Weir, Michael D.; Chen, Yu; Cheng, Lei
2017-01-01
The objectives of this study were to investigate the effects of dental adhesives containing quaternary ammonium methacrylates (QAMs) with different alkyl chain lengths (CL) on ecological caries prevention in vitro. Five QAMs were synthesized with a CL = 3, 6, 9, 12, and 16 and incorporated into adhesives. Micro-tensile bond strength and surface charge density were used to measure the physical properties of the adhesives. The proportion change in three-species biofilms consisting of Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii was tested using the TaqMan real-time polymerase chain reaction. Lactic acid assay, MTT [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, exopolysaccharide staining, live/dead staining, scanning electron microscopy (SEM), and transverse microradiography (TMR) were performed to study the anti-biofilm and anti-demineralization effects of the dental adhesives. The results showed that incorporating QAMs with different alkyl chain lengths into the adhesives had no obvious effect on the dentin bond strength. The adhesives containing QAMs with a longer alkyl chain developed healthier biofilms. The surface charge density, anti-biofilm, and anti-demineralization effects of the adhesives increased with a CL of the QAMs from 3 to 12, but decreased slightly with a CL from 12 to 16. In conclusion, adhesives containing QAMs with a tailored chain length are promising for preventing secondary caries in an “ecological way”. PMID:28773004
The snakelike chain character of unstructured RNA.
Jacobson, David R; McIntosh, Dustin B; Saleh, Omar A
2013-12-03
In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod "wormlike chain" (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a "snakelike chain," characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Waltari, Eric; Jia, Manxue; Jiang, Caroline S; Lu, Hong; Huang, Jing; Fernandez, Cristina; Finzi, Andrés; Kaufmann, Daniel E; Markowitz, Martin; Tsuji, Moriya; Wu, Xueling
2018-01-01
Using 5' rapid amplification of cDNA ends, Illumina MiSeq, and basic flow cytometry, we systematically analyzed the expressed B cell receptor (BCR) repertoire in 14 healthy adult PBMCs, 5 HIV-1+ adult PBMCs, 5 cord blood samples, and 3 HIS-CD4/B mice, examining the full-length variable region of μ, γ, α, κ, and λ chains for V-gene usage, somatic hypermutation (SHM), and CDR3 length. Adding to the known repertoire of healthy adults, Illumina MiSeq consistently detected small fractions of reads with high mutation frequencies including hypermutated μ reads, and reads with long CDR3s. Additionally, the less studied IgA repertoire displayed similar characteristics to that of IgG. Compared to healthy adults, the five HIV-1 chronically infected adults displayed elevated mutation frequencies for all μ, γ, α, κ, and λ chains examined and slightly longer CDR3 lengths for γ, α, and λ. To evaluate the reconstituted human BCR sequences in a humanized mouse model, we analyzed cord blood and HIS-CD4/B mice, which all lacked the typical SHM seen in the adult reference. Furthermore, MiSeq revealed identical unmutated IgM sequences derived from separate cell aliquots, thus for the first time demonstrating rare clonal members of unmutated IgM B cells by sequencing.
NASA Astrophysics Data System (ADS)
Nelson, Peter N.; Ellis, Henry A.; White, Nicole A. S.
2015-06-01
A comparative study of the molecular packing, lattice structures and phase behaviors of the homologous series of some mono-valent metal carboxylates (Li, Na, K and Ag) is carried out via solid state FT-infrared and 13C-NMR spectroscopes, X-rays powder diffraction, density measurements, differential scanning calorimetry, polarizing light microscopy and variable temperature infrared spectroscopy. It is proposed that, for lithium, sodium and potassium carboxylates, metal-carboxyl coordination is via asymmetric chelating bidentate bonding with extensive intermolecular interactions to form tetrahedral metal centers, irrespective of chain length. However, for silver n-alkanoates, carboxyl moieties are bound to silver ions via syn-syn type bridging bidentate coordination to form dimeric units held together by extensive head group inter-molecular interactions. Furthermore, the fully extended hydrocarbon chains which are crystallized in the all-trans conformation are tilted at ca. 30°, 27°, 15° and 31° with respect to a normal to the metal plane, for lithium, sodium, silver and potassium carboxylates, respectively. All compounds are packed as lamellar bilayer structures, however, lithium compounds are crystallized in a triclinic crystal system whilst silver, sodium and potassium n-alkanoates are all monoclinic with possible P1 bravais lattice. Odd-even alternation observed in various physical features is associated with different inter-planar spacing between closely packed layers in the bilayer which are not in the same plane; a phenomenon controlled by lattice packing symmetry requirements. All compounds, except silver carboxylates, show partially reversibly first order pre-melting transitions; the number of which increases with increasing chain length. These transitions are associated, for the most part, with lamellar collapse followed by increased gauche-trans isomerism in the methylene group assembly, irrespective of chain length. It is proposed that the absence of mesomorphic transitions in their phase sequences is due to a lack of sufficient balance between attractive and repulsive electrostatic and van der Waals forces during phase change. The evidence presented in this study shows that phase behaviors of mono-valent metal carboxylates are controlled, mainly, by head group bonding.
Ramstedt, B; Slotte, J P
1999-01-01
In this study we have synthesized sphingomyelins (SM) and phosphatidylcholines (PC) with amide-linked or sn-2 linked acyl chains with lengths from 14 to 24 carbons. The purpose was to examine how the chain length and degree of unsaturation affected the interaction of cholesterol with these phospholipids in model membrane systems. Monolayers of saturated SMs and PCs with acyl chain lengths above 14 carbons were condensed and displayed a high collapse pressure ( approximately 70 mN/m). Monolayers of N-14:0-SM and 1(16:0)-2(14:0)-PC had a much lower collapse pressure (58-60 mN/m) and monounsaturated SMs collapsed at approximately 50 mN/m. The relative interaction of cholesterol with these phospholipids was determined at 22 degreesC by measuring the rate of cholesterol desorption from mixed monolayers (50 mol % cholesterol; 20 mN/m) to beta-cyclodextrin in the subphase (1.7 mM). The rate of cholesterol desorption was lower from saturated SM monolayers than from chain-matched PC monolayers. In SM monolayers, the rate of cholesterol desorption was very slow for all N-linked chains, whereas for PC monolayers we could observe higher desorption rates from monolayers of longer PCs. These results show that cholesterol interacts favorably with SMs (low rate of desorption), whereas its interaction (or miscibility) with long chain PCs is weaker. Introduction of a single cis-unsaturation in the N-linked acyl chain of SMs led to faster rates of cholesterol desorption as compared with saturated SMs. The exception was monolayers of N-22:1-SM and N-24:1-SM from which cholesterol desorbed almost as slowly as from the corresponding saturated SM monolayers. The results of this study suggest that cholesterol is most likely capable of interacting with all physiologically relevant (including long-chain) SMs present in the plasma membrane of cells. PMID:9929492
MacDonald, Gordon A; Veneman, P Alexander; Placencia, Diogenes; Armstrong, Neal R
2012-11-27
We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.
29 CFR 1915.112 - Ropes, chains and slings.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., defective welds, deformation and increase in length or stretch. (3) Employers must note interlink wear, not accompanied by stretch in excess of 5 percent, and remove the chain from service when maximum allowable wear... shall be removed from service when, due to stretch, the increase in length of a measured section exceeds...
29 CFR 1915.112 - Ropes, chains and slings.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., defective welds, deformation and increase in length or stretch. (3) Employers must note interlink wear, not accompanied by stretch in excess of 5 percent, and remove the chain from service when maximum allowable wear... shall be removed from service when, due to stretch, the increase in length of a measured section exceeds...
29 CFR 1915.112 - Ropes, chains and slings.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., defective welds, deformation and increase in length or stretch. (3) Employers must note interlink wear, not accompanied by stretch in excess of 5 percent, and remove the chain from service when maximum allowable wear... shall be removed from service when, due to stretch, the increase in length of a measured section exceeds...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A; Mayfield, Kirsty
2010-01-01
The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by p-p interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weightmore » aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.« less
Rydholm, Amber E.; Held, Nicole L.; Bowman, Christopher N.; Anseth, Kristi S.
2008-01-01
Crosslinked, degradable networks formed from the photopolymerization of thiol and acrylate monomers are explored as potential biomaterials. The degradation behavior and material properties of these networks are influenced by the molecular weight of the nondegradable thiol-polyacrylate backbone chains that form during photopolymerization. Here, gel permeation chromatography was used to characterize the thiol-polyacrylate backbone chain lengths in degraded thiol-acrylate networks. Increasing thiol functionality from 1 to 4 increased the backbone molecular weight (M̄w = 2.3 ± 0.07 × 104 Da for monothiol and 3.6 ± 0.1 × 104 Da for tetrathiol networks). Decreasing thiol functional group concentration from 30 to 10 mol% also increased the backbone lengths (M̄w = 7.3 ± 1.1 × 104 Da for the networks containing 10 mol% thiol groups as compared to 3.6 ± 0.1 × 104 Da for 30 mol% thiol). Finally, the backbone chain lengths were probed at various stages of degradation and an increase in backbone molecular weight was observed as mass loss progressed from 10 to 70%. PMID:19079733
Zushi, Yasuyuki; Masunaga, Shigeki
2009-08-01
Worldwide environmental pollution by perfluorinated compounds (PFCs) has been reported. PFCs have also been reported to have nonpoint sources (NPSs). A fixed-point hourly monitoring in the river was conducted during a storm event using an automatic sampler to estimate the impact of the first-flush of PFCs from NPS in this study. Perfluorocarboxylates (PFCAs) and perfluoroalkyl sulfonates (PFASs) with different chain lengths were monitored. The concentrations of short- to medium-chain-length PFCAs such as PFHpA, PFOA and PFNA, and PFASs such as PFBS, PFPeS, PFHxS, PFHpS and PFOS showed no marked increase with the storm-runoff event. However, in contrast to this, concentrations of long-chain-length PFCAs such as PFDA and PFUnA increased markedly. The concentrations of PFDA and PFUnA increased 3.4 (1.5-5.0 ng L(-1))- and 2.0 (3.3-6.7 ng L(-1))-fold, respectively. This study demonstrates that large loads of long-chain-length PFCAs are discharged to the Hayabuchi River during the first-flush after the rain event.
NASA Astrophysics Data System (ADS)
Vaia, Ruggero
2018-04-01
Almost-dispersionless pulse transfer between the extremal masses of a uniform harmonic spring-mass chain of arbitrary length can be induced by suitably modifying two masses and their spring's elastic constant at both extrema of the chain. It is shown that a deviation (or a pulse) imposed to the first mass gives rise to a wave packet that, after a time of the order of the chain length, almost perfectly reproduces the same deviation (pulse) at the opposite end, with an amplitude loss that is as small as 1.3% in the infinite-length limit; such a dynamics can continue back and forth again for several times before dispersion cleared the effect. The underlying coherence mechanism is that the initial condition excites a bunch of normal modes with almost equal frequency spacing. This constitutes a possible mechanism for efficient energy transfer, e.g., in nanofabricated structures.
Infinite coherence time of edge spins in finite-length chains
NASA Astrophysics Data System (ADS)
Maceira, Ivo A.; Mila, Frédéric
2018-02-01
Motivated by the recent observation that exponentially long coherence times can be achieved for edge spins in models with strong zero modes, we study the impact of level crossings in finite-length spin chains on the dynamics of the edge spins. Focusing on the X Y spin-1 /2 chain with a transverse or longitudinal magnetic field, two models relevant to understanding recent experimental results on cobalt adatoms, we show that the edge spins can remain coherent for an infinite time even for a finite-length chain if the magnetic field is tuned to a value at which there is a level crossing. Furthermore, we show that the edge spins remain coherent for any initial state for the integrable case of a transverse field because all states have level crossings at the same value of the field, while the coherence time is increasingly large for lower temperatures in the case of a longitudinal field, which is nonintegrable.
Schulze, Thies; Weldon, Paul J; Schulz, Stefan
2017-07-14
Analysis by gas chromatography/mass spectrometry of the scent gland secretions of male and female Middle American burrowing pythons (Loxocemus bicolor) revealed the presence of over 300 components including cholesterol, fatty acids, glyceryl monoalkyl ethers, and alcohols. The fatty acids, over 100 of which were identified, constitute most of the compounds in the secretions and show the greatest structural diversity. They include saturated and unsaturated, unbranched and mono-, di-, and trimethyl-branched compounds ranging in carbon-chain length from 13 to 24. The glyceryl monoethers possess saturated or unsaturated, straight or methyl-branched alkyl chains ranging in carbon-chain length from 13 to 24. Alcohols, which have not previously been reported from the scent glands, possess straight, chiefly saturated carbon chains ranging in length from 13 to 24. Sex or individual differences in secretion composition were not observed. Compounds in the scent gland secretions of L. bicolor may deter offending arthropods, such as ants.
From single Debye-Hückel chains to polyelectrolyte solutions: Simulation results
NASA Astrophysics Data System (ADS)
Kremer, Kurt
1996-03-01
This lecture will present results from simulations of single weakly charged flexible chains, where the electrostatic part of the interaction is modeled by a Debye-Hückel potential,( with U. Micka, IFF, Forschungszentrum Jülich, 52425 Jülich, Germany) as well as simulations of polyelectrolyte solutions, where the counterions are explicitly taken into account( with M. J. Stevens, Sandia Nat. Lab., Albuquerque, NM 87185-1111) ( M. J. Stevens, K. Kremer, JCP 103), 1669 (1995). The first set of the simulations is meant to clear a recent contoversy on the dependency of the persistence length LP on the screening length Γ. While the analytic theories give Lp ~ Γ^x with either x=1 or x=2, the simulations find for all experimentally accessible chain lengths a varying exponent, which is significantly smaller than 1. This causes serious doubts on the applicability of this model for weakly charged polyelectrolytes in general. The second part deals with strongly charged flexible polyelectrolytes in salt free solution. These simulations are performed for multichain systems. The full Coulomb interactions of the monomers and counterions are treated explicitly. Experimental measurements of the osmotic pressure and the structure factor are reproduced and extended. The simulations reveal a new picture of the chain structure based on calculations of the structure factor, persistence length, end-to-end distance, etc. Even at very low density, the chains show significant bending. Furthermore, the chains contract significantly before they start to overlap. We also show that counterion condensation dramatically alters the chain structure, even for a good solvent backbone.
Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L
2015-12-15
We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. Copyright © 2015 the American Physiological Society.
Berntsen, Hanne Friis; Bjørklund, Cesilie Granum; Audinot, Jean-Nicolas; Hofer, Tim; Verhaegen, Steven; Lentzen, Esther; Gutleb, Arno Christian; Ropstad, Erik
2017-12-01
The toxicity of long chained perfluoroalkyl acids (PFAAs) has previously been reported to be related to the length of the perfluorinated carbon chain and functional group attached. In the present study, we compared the cytotoxicity of six PFAAs, using primary cultures of rat cerebellar granule neurons (CGNs). Two perfluoroalkyl sulfonic acids (PFSAs, chain length C 6 and C 8 ) and four perfluoroalkyl carboxylic acids (PFCAs, chain length C 8 -C 11 ) were studied. These PFAAs have been detected in human blood and the brain tissue of mammals. The cell viability trypan blue and MTT assays were used to determine toxicity potencies (based on LC 50 values) after 24h exposure (in descending order): perfluoroundecanoic acid (PFUnDA)≥perfluorodecanoic acid (PFDA)>perfluorooctanesulfonic acid potassium salt (PFOS)>perfluorononanoic acid (PFNA)>perfluorooctanoic acid (PFOA)>perfluorohexanesulfonic acid potassium salt (PFHxS). Concentrations of the six PFAAs that produced equipotent effects after 24h exposure were used to further explore the dynamics of viability changes during this period. Therefore viability was assessed at 10, 30, 60, 90, 120 and 180min as well as 6, 12, 18 and 24h. A difference in the onset of reduction in viability was observed, occurring relatively quickly (30-60min) for PFOS, PFDA and PFUnDA, and much slower (12-24h) for PFHxS, PFOA and PFNA. A slight protective effect of vitamin E against PFOA, PFNA and PFOS-induced reduction in viability indicated a possible involvement of oxidative stress. PFOA and PFOS did not induce lipid peroxidation on their own, but significantly accelerated cumene hydroperoxide-induced lipid peroxidation. When distribution of the six PFAAs in the CGN-membrane was investigated using NanoSIMS50 imaging, two distinct patterns appeared. Whereas PFHxS, PFOS and PFUnDA aggregated in large hotspots, PFOA, PFNA and PFDA showed a more dispersed distribution pattern. In conclusion, the toxicity of the investigated PFAAs increased with increasing carbon chain length. For molecules with a similar chain length, a sulfonate functional group led to greater toxicity than a carboxyl group. Copyright © 2017 Elsevier B.V. All rights reserved.
Kurnia, Kiki A; Neves, Catarina M S S; Freire, Mara G; Santos, Luís M N B F; Coutinho, João A P
2015-10-01
A comprehensive study on the phase behaviour of two sets of ionic liquids (ILs) and their interactions with water is here presented through combining experimental and theoretical approaches. The impact of the alkyl side chain length and the cation symmetry on the water solubility in the asymmetric [C N- 1 C 1 im][NTf 2 ] and symmetric [C N- 1 C N- 1 im][NTf 2 ] series of ILs ( N up to 22), from 288.15 K to 318.15 K and at atmospheric pressure, was studied. The experimental data reveal that the solubility of water in ILs with an asymmetric cation is higher than in those with the symmetric isomer. Several trend shifts on the water solubility as a function of the alkyl side chain length were identified, namely at [C 6 C 1 im][NTf 2 ] for asymmetric ILs and at [C 4 C 4 im][NTf 2 ] and [C 7 C 7 im][NTf 2 ] for the symmetric ILs. To complement the experimental data and to further investigate the molecular-level mechanisms behind the dissolution process, Density Functional Theory calculations, using the Conductor-like Screening Model for Real Solvents (COSMO-RS) and the Electrostatic potential-derived CHelpG, were performed. The COSMO-RS model is able to qualitatively predict water solubility as function of temperature and alkyl chain lengths of both symmetric and asymmetric cations. Furthermore, the model is also capable to predict the somewhat higher water solubility in the asymmetric cation, as well as the trend shift as function of alkyl chain lengths experimentally observed. Both COSMO-RS and the electrostatic potential-derived CHelpG show that the interactions of water and the IL cation take place on the IL polar region, namely on the aromatic head and adjacent methylene groups what explains the differences in water solubility observed for cations with different chain lengths. Furthermore, the CHelpG calculations for the isolated cations in the gas phase indicates that the trend shift of water solubility as function of alkyl chain lengths and the difference of water solubility in symmetric may also result from the partial positive charge distribution/contribution of the cation.
The Effect of Lengthening Cation Ether Tails on Ionic Liquid Properties
Lall-Ramnarine, S.; Rodriguez, C.; Fernandez, R.; ...
2016-08-30
In order to explore the effect of multiple ether functionalities on ionic liquid properties, a series of ten pyrrolidinium ionic liquids and ten imidazolium ionic liquids bearing ether and alkyl side chains of varying lengths (4 to 10 atoms in length) were prepared for this study. Their physical properties, such as viscosity, conductivity and thermal profile were measured and compared. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILs increases there is hardly any increase inmore » the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. These results provide significant insight on the choice of starting materials for researchers designing ILs for specific applications.« less
Self-Assemblies of novel molecules, VECAR
NASA Astrophysics Data System (ADS)
Shrestha, Bijay; Kim, Hye-Young; Lee, Soojin; Novak, Brian; Moldovan, Dorel
2015-03-01
VECAR is a newly synthesized molecule, which is an amphiphilic antioxidant molecule that consists of two molecular groups, vitamin-E and Carnosine, linked by a hydrocarbon chain. The hydrocarbon chain is hydrophobic and both vitamin-E and Carnosine ends are hydrophilic. In the synthesis process, the length of the hydrophobic chain of VECAR molecules can vary from the shortest (n =0) to the longest (n =18), where n indicates the number of carbon atoms in the chain. We conducted MD simulation studies of self-assembly of VECAR molecules in water using GROMACS on LONI HPC resources. Our study shows that there is a strong correlation between the shape and atomistic structure of the self-assembled nano-structures (SANs) and the chain-length (n) of VECAR molecules. We will report the results of data analyses including the atomistic structure of each SANs and the dynamic and energetic mechanisms of their formation as function of time. In summary, both VECAR molecules of chain-length n =18 and 9 form worm-like micelles, which may be used as a drug delivery system. This research is supported by the Louisiana Board of Regents-RCS Grant (LEQSF(2012-15)-RD-A-19).
Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok
2016-12-14
Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of Variable Resistance Using Chains on Bench Throw Performance in Trained Rugby Players.
Godwin, Mark S; Fernandes, John F T; Twist, Craig
2018-04-01
Godwin, MS, Fernandes, JFT, and Twist, C. Effects of variable resistance using chains on bench throw performance in trained rugby players. J Strength Cond Res 32(4): 950-954, 2018-This study sought to determine the effects of variable resistance using chain resistance on bench throw performance. Eight male rugby union players (19.4 ± 2.3 years, 88.8 ± 6.0 kg, 1RM 105.6 ± 17.0 kg) were recruited from a national league team. In a randomized crossover design, participant's performed 3 bench throws at 45% one repetition maximum (1RM) at a constant load (no chains) or a variable load (30% 1RM constant load and 15% 1RM variable load; chains) with 7 days between conditions. For each repetition, the peak and mean velocity, peak power, peak acceleration, and time to peak velocity were recorded. Differences in peak and mean power were very likely trivial and unclear between the chain and no chain conditions, respectively. Possibly greater peak and likely greater mean bar velocity were accompanied by likely to most likely greater bar velocity between 50 and 400 ms from initiation of bench press in the chain condition compared with the no chain condition. Accordingly, bar acceleration was very likely greater in the chain condition compared with the no chain condition. In conclusion, these results show that the inclusion of chain resistance can acutely enhance several variables in the bench press throw and gives support to this type of training.
Smalø, Hans S; Astrand, Per-Olof; Jensen, Lasse
2009-07-28
The electronegativity equalization model (EEM) has been combined with a point-dipole interaction model to obtain a molecular mechanics model consisting of atomic charges, atomic dipole moments, and two-atom relay tensors to describe molecular dipole moments and molecular dipole-dipole polarizabilities. The EEM has been phrased as an atom-atom charge-transfer model allowing for a modification of the charge-transfer terms to avoid that the polarizability approaches infinity for two particles at infinite distance and for long chains. In the present work, these shortcomings have been resolved by adding an energy term for transporting charges through individual atoms. A Gaussian distribution is adopted for the atomic charge distributions, resulting in a damping of the electrostatic interactions at short distances. Assuming that an interatomic exchange term may be described as the overlap between two electronic charge distributions, the EEM has also been extended by a short-range exchange term. The result is a molecular mechanics model where the difference of charge transfer in insulating and metallic systems is modeled regarding the difference in bond length between different types of system. For example, the model is capable of modeling charge transfer in both alkanes and alkenes with alternating double bonds with the same set of carbon parameters only relying on the difference in bond length between carbon sigma- and pi-bonds. Analytical results have been obtained for the polarizability of a long linear chain. These results show that the model is capable of describing the polarizability scaling both linearly and nonlinearly with the size of the system. Similarly, a linear chain with an end atom with a high electronegativity has been analyzed analytically. The dipole moment of this model system can either be independent of the length or increase linearly with the length of the chain. In addition, the model has been parametrized for alkane and alkene chains with data from density functional theory calculations, where the polarizability behaves differently with the chain length. For the molecular dipole moment, the same two systems have been studied with an aldehyde end group. Both the molecular polarizability and the dipole moment are well described as a function of the chain length for both alkane and alkene chains demonstrating the power of the presented model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Kunyue; Chatterjee, Sabornie; Saito, Tomonori
Dielectric spectroscopy, rheology, and differential scanning calorimetry were employed to study the effect of chain-end hydrogen bonding on the dynamics of hydroxylterminated polydimethylsiloxane. We demonstrate that hydrogen bonding has a strong influence on both segmental and slower dynamics in the systems with low molecular weights. In particular, the decrease in the chain length leads to an increase of the glass transition temperature, viscosity, and fragility index, at variance with the usual behavior of nonassociating polymers. The supramolecular association of hydroxylterminated chains leads to the emergence in dielectric and mechanical relaxation spectra of the so-called Debye process traditionally observed in monohydroxymore » alcohols. Our analysis suggests that the hydroxyl-terminated PDMS oligomers may associate in brush-like or chain-like structures, depending on the size of their covalent chains. Finally, the effective length of the linear-associated chains was estimated from the rheological measurements.« less
Tuning the thermal conductivity of solar cell polymers through side chain engineering.
Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei
2014-05-07
Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.
Surface vibrational structure at alkane liquid/vapor interfaces
NASA Astrophysics Data System (ADS)
Esenturk, Okan; Walker, Robert A.
2006-11-01
Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C9H20) to n-heptadecane (C17H36), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.
Lipophilization of somatostatin analog RC-160 improves its bioactivity and stability.
Dasgupta, P; Singh, A T; Mukherjee, R
1999-07-01
Acromegaly is a symptomatically disabling condition, resulting from a growth hormone (GH) secreting pituitary tumor. The somatostatin analog RC- 160 is known to potently inhibit hypersecretion of GH, from pituitary adenomas. However, the therapeutic potential of RC-160, is limited by its short serum half life. To overcome this limitation, fatty acids with carbon chain lengths ranging from 4 to 18 were conjugated to RC-160. The GH-inhibitory activity of these lipopeptides, as well as their binding profile to somatostatin receptors, on the rat pituitary adenoma cell line GH3 was studied in vitro. The relative stability of lipophilized RC-160 towards degradation by crude papaya protease was also determined. The long chain lipopeptides, like myristoyl-RC-160 (carbon chain length = 14) were found to exhibit greater receptor affinity and GH-inhibitory activity, as compared to their counterparts of lower chain lengths. However, the receptor affinity and GH-inhibitory activity of stearoyl-RC-160 (carbon chain length = 18), was found to lower than RC-160 and its lipophilized derivatives. Unlike RC-160, the myristoylated derivative was found to have significantly greater resistance to protease and serum degradation (p < 0.01). Lipophilization of RC-160 with long chain fatty acids improves its stability and GH-inhibitory activity. The activity of lipophilized RC-160 seems to increase with increasing hydrophobicity of the lipopeptide, and reaches a maxima at myristoyl-RC-160 for GH3. Hence, optimizing the hydrophobicity should be an important consideration governing the design and synthesis of bioactive lipopeptides.
Honey, Denise M.; Best, Annie; Qiu, Huawei
2018-01-01
ABSTRACT Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies. PMID:29333938
Stability of vertical magnetic chains
2017-01-01
A linear stability analysis is performed for a pair of coaxial vertical chains made from permanently magnetized balls under the influence of gravity. While one chain rises from the ground, the other hangs from above, with the remaining ends separated by a gap of prescribed length. Various boundary conditions are considered, as are situations in which the magnetic dipole moments in the two chains are parallel or antiparallel. The case of a single chain attached to the ground is also discussed. The stability of the system is examined with respect to three quantities: the number of balls in each chain, the length of the gap between the chains, and a single dimensionless parameter which embodies the competition between magnetic and gravitational forces. Asymptotic scaling laws involving these parameters are provided. The Hessian matrix is computed in exact form, allowing the critical parameter values at which the system loses stability and the respective eigenmodes to be determined up to machine precision. A comparison with simple experiments for a single chain attached to the ground shows good agreement. PMID:28293135
Stability of vertical magnetic chains
NASA Astrophysics Data System (ADS)
Schönke, Johannes; Fried, Eliot
2017-02-01
A linear stability analysis is performed for a pair of coaxial vertical chains made from permanently magnetized balls under the influence of gravity. While one chain rises from the ground, the other hangs from above, with the remaining ends separated by a gap of prescribed length. Various boundary conditions are considered, as are situations in which the magnetic dipole moments in the two chains are parallel or antiparallel. The case of a single chain attached to the ground is also discussed. The stability of the system is examined with respect to three quantities: the number of balls in each chain, the length of the gap between the chains, and a single dimensionless parameter which embodies the competition between magnetic and gravitational forces. Asymptotic scaling laws involving these parameters are provided. The Hessian matrix is computed in exact form, allowing the critical parameter values at which the system loses stability and the respective eigenmodes to be determined up to machine precision. A comparison with simple experiments for a single chain attached to the ground shows good agreement.
Beating of grafted chains induced by active Brownian particles
NASA Astrophysics Data System (ADS)
Yang, Qiu-song; Fan, Qing-wei; Shen, Zhuang-lin; Xia, Yi-qi; Tian, Wen-de; Chen, Kang
2018-06-01
We study the interplay between active Brownian particles (ABPs) and a "hairy" surface in two-dimensional geometry. We find that the increase of propelling force leads to and enhances inhomogeneous accumulation of ABPs inside the brush region. Oscillation of chain bundles (beating like cilia) is found in company with the formation and disassembly of a dynamic cluster of ABPs at large propelling forces. Meanwhile chains are stretched and pushed down due to the effective shear force by ABPs. The decrease of the average brush thickness with propelling force reflects the growth of the beating amplitude of chain bundles. Furthermore, the beating phenomenon is investigated in a simple single-chain system. We find that the chain swings regularly with a major oscillatory period, which increases with chain length and decreases with the increase of propelling force. We build a theory to describe the phenomenon and the predictions on the relationship between the period and amplitude for various chain lengths, and propelling forces agree very well with simulation data.
Effects of the internal friction and the solvent quality on the dynamics of a polymer chain closure.
Yu, Wancheng; Luo, Kaifu
2015-03-28
Using 3D Langevin dynamics simulations, we investigate the effects of the internal friction and the solvent quality on the dynamics of a polymer chain closure. We show that the chain closure in good solvents is a purely diffusive process. By extrapolation to zero solvent viscosity, we find that the internal friction of a chain plays a non-ignorable role in the dynamics of the chain closure. When the solvent quality changes from good to poor, the mean closure time τc decreases by about 1 order of magnitude for the chain length 20 ≤ N ≤ 100. Furthermore, τc has a minimum as a function of the solvent quality. With increasing the chain length N, the minimum of τc occurs at a better solvent. Finally, the single exponential distributions of the closure time in poor solvents suggest that the negative excluded volume of segments does not alter the nearly Poisson statistical characteristics of the process of the chain closure.
Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 microm.
Seol, Yeonee; Li, Jinyu; Nelson, Philip C; Perkins, Thomas T; Betterton, M D
2007-12-15
The wormlike chain (WLC) model currently provides the best description of double-stranded DNA elasticity for micron-sized molecules. This theory requires two intrinsic material parameters-the contour length L and the persistence length p. We measured and then analyzed the elasticity of double-stranded DNA as a function of L (632 nm-7.03 microm) using the classic solution to the WLC model. When the elasticity data were analyzed using this solution, the resulting fitted value for the persistence length p(wlc) depended on L; even for moderately long DNA molecules (L = 1300 nm), this apparent persistence length was 10% smaller than its limiting value for long DNA. Because p is a material parameter, and cannot depend on length, we sought a new solution to the WLC model, which we call the "finite wormlike chain (FWLC)," to account for effects not considered in the classic solution. Specifically we accounted for the finite chain length, the chain-end boundary conditions, and the bead rotational fluctuations inherent in optical trapping assays where beads are used to apply the force. After incorporating these corrections, we used our FWLC solution to generate force-extension curves, and then fit those curves with the classic WLC solution, as done in the standard experimental analysis. These results qualitatively reproduced the apparent dependence of p(wlc) on L seen in experimental data when analyzed with the classic WLC solution. Directly fitting experimental data to the FWLC solution reduces the apparent dependence of p(fwlc) on L by a factor of 3. Thus, the FWLC solution provides a significantly improved theoretical framework in which to analyze single-molecule experiments over a broad range of experimentally accessible DNA lengths, including both short (a few hundred nanometers in contour length) and very long (microns in contour length) molecules.
Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers
NASA Astrophysics Data System (ADS)
Wu, David
At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration with: Renfeng Hu, Colorado School of Mines, and Mark Foster, University of Akron. This work was supported by NSF Grants No. CBET- 0730692 and No. CBET-0731319.
NASA Astrophysics Data System (ADS)
Ge, Hui
This Ph. D. thesis presents our study on the ultrafiltration of polymers with different configurations and conformations; namly, theoretically, the passing of polymer chains through a nanopore under an elongational flow filed has been studied for years, but experimental studies are rare because of two following reasons: (1) lacks a precise method to investigate how individual single polymer chain pass through a nanopore; (2) it is difficult, if not impossible, to obtain a set of polymer samples with a narrow molar mass distribution and a uniform structures; except for linear chains. The central question in this study is to find the critical (minimum) flow rate (qc) for each kind of chains, at which the chains can pass through a given nanopore. A comparison of the measured and calculated qc leads to a better understanding how different chains are deformed, stretched and pulled through a nanopore. We have developed a novel method of combinating static and dynamic laser light scattering (LLS) to precisely measure the relative retention concentration ((C0 - C)/C0). Chapter 1 briefly introduces the theoretical background of how applications and lists some of resent research progresses in this area. Polymer with various configurations and conformations pass through nanopores; including polymer linear chains, stars polymer, branched polymers, polymer micelles are introduced. Among them, the de Gennes and Brochard-Wyart's predictions of polymer linear and star chains passing through nanopores are emphasized, in which they predicted that qc of linear chain is qc ≃ kBT/(3pieta), where kB, T and eta are the Boltzmann constant, the absolutely temperature, and the viscosity of solvent, respectively, independent of both the chain length and the pore size; and for star chains passing through nanopores, there exist a optimal entering arm numbers, namely, the star chains passing through nanopores. Chapter 2 details basic theory of static and dynamic laser light scattering (LLS), including its instrumentation and our ultrafiltration setup. Chapter 3 briefly introduces the sample preparation, including the history and mechanism of anionic living polymerization, as well as how we used a novel home-made set-up to prepare linear polystyrene with different chain lengths and star polystyrene with various arm numbers and lengths. Chapter 4 summarizes our measured critical flow rates (qc) of linear polymer chains with different lengths for nanopores with different sizes, since the flow rate is directly related to the hydrodynamic force, we have developed a sensitive method (down to tens fN) to directly assess how much the hydrodynamic force (Fh) is required to overcome the weak entropy elasticity and stretch individual coiled chains in solution. Our method is completely different from the using existing optical tweezers or AFM, because they measure the relatively stronger enthalpy elasticity. Our results confirm that qc is indeed independent of the chain length, but decreases as the pore size increases. The value of qc is ˜10--200 times smaller than kBT/(3pieta). Such a discrepancy has been attributed to the rough assumption made by de Gennes and his coworkers; namely, each chain segment "blob" confined inside the pore is not a hard sphere so that the effective length along the flow direction is much longer than the pore diameter. Finally, using the solution temperature, we varied the chain conformation, our result shows that q c has a minimum which is near, but not exactly located at the theta temperature, might leading to a better way to determine the true ideal state of a polymer solution, at which all viral coefficients, not only the second vanish. Chapter 5 uses polymer solutions made of different mixtures of linear and star chains, we have demonstrated that flushing these solution mixtures through a nanopore with a properly chosen flow rate can effectively and cleanly separate linear and star chains no matter whether linear chains are larger or smaller than star chains. Chapter 6 further investigates how star-like polystyrene pass through a given nanopore under the flow field. Star polystyrene chains with different arm lengths (LA) and numbers (f) passing through a nanopore (20 nm) under an elongational flow field was investigated in terms of the flow-rate dependent relative retention ((C0 - C)/C0), where C 0 and C are the polymer concentrations before and after the ultrafiltration. Our results reveal that for a given arm length (LA), the critical flow rate (qc,star), below which star chains are blocked, dramatically increases with the total arm numbers (f); but for a given f, is nearly independent on LA, contradictory to the previous prediction made by de Gennes and Brochard-Wyart. We have revised their theory in the region fin < fout and also accounted for the effective length of each blob, where fin and fout are the numbers of arms inside and outside the pore, respectively. In the revision, we show that qc,star is indeed independent of LA but related to f and f in in two different ways, depending on whether fin ≤ f/2 or ≥ f/2. A comparison of our experimental and calculated results reveals that most of star chains pass through the nanopores with fin ˜ f/2. Further study of the temperature dependent (C0 - C)/C 0 of polystyrene in cyclohexane reveals that there exists a minimum of qc,star at ˜38 °C, close to its theta temperature (-34.5 °C).
Skvortsov, A M; Leermakers, F A M; Fleer, G J
2013-08-07
In the melt polymer conformations are nearly ideal according to Flory's ideality hypothesis. Silberberg generalized this statement for chains in the interfacial region. We check the Silberberg argument by analyzing the conformations of a probe chain end-grafted at a solid surface in a sea of floating free chains of concentration φ by the self-consistent field (SCF) method. Apart from the grafting, probe chain and floating chains are identical. Most of the results were obtained for a standard SCF model with freely jointed chains on a six-choice lattice, where immediate step reversals are allowed. A few data were generated for a five-choice lattice, where such step reversals are forbidden. These coarse-grained models describe the equilibrium properties of flexible atactic polymer chains at the scale of the segment length. The concentration was varied over the whole range from φ = 0 (single grafted chain) to φ = 1 (probe chain in the melt). The number of contacts with the surface, average height of the free end and its dispersion, average loop and train length, tail size distribution, end-point and overall segment distributions were calculated for a grafted probe chain as a function of φ, for several chain lengths and substrate∕polymer interactions, which were varied from strong repulsion to strong adsorption. The computations show that the conformations of the probe chain in the melt do not depend on substrate∕polymer interactions and are very similar to the conformations of a single end-grafted chain under critical conditions, and can thus be described analytically. When the substrate∕polymer interaction is fixed at the value corresponding to critical conditions, all equilibrium properties of a probe chain are independent of φ, over the whole range from a dilute solution to the melt. We believe that the conformations of all flexible chains in the surface region of the melt are close to those of an appropriate single chain in critical conditions, provided that one end of the single chain is fixed at the same point as a chain in the melt.
Connecting Structural and Transport Properties of Ionic Liquids with Cationic Oligoether Chains
Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele; ...
2017-06-01
We used X-ray diffraction and molecular dynamics simulations to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Furthermore, their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidiniummore » ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. Our results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less
Phase separation of comb polymer nanocomposite melts.
Xu, Qinzhi; Feng, Yancong; Chen, Lan
2016-02-07
In this work, the spinodal phase demixing of branched comb polymer nanocomposite (PNC) melts is systematically investigated using the polymer reference interaction site model (PRISM) theory. To verify the reliability of the present method in characterizing the phase behavior of comb PNCs, the intermolecular correlation functions of the system for nonzero particle volume fractions are compared with our molecular dynamics simulation data. After verifying the model and discussing the structure of the comb PNCs in the dilute nanoparticle limit, the interference among the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions between the comb polymer and nanoparticles in spinodal demixing curves is analyzed and discussed in detail. The results predict two kinds of distinct phase separation behaviors. One is called classic fluid phase boundary, which is mediated by the entropic depletion attraction and contact aggregation of nanoparticles at relatively low nanoparticle-monomer attraction strength. The second demixing transition occurs at relatively high attraction strength and involves the formation of an equilibrium physical network phase with local bridging of nanoparticles. The phase boundaries are found to be sensitive to the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions. As the side chain length is fixed, the side chain number has a large effect on the phase behavior of comb PNCs; with increasing side chain number, the miscibility window first widens and then shrinks. When the side chain number is lower than a threshold value, the phase boundaries undergo a process from enlarging the miscibility window to narrowing as side chain length increases. Once the side chain number overtakes this threshold value, the phase boundary shifts towards less miscibility. With increasing nanoparticle-monomer size ratio, a crossover of particle size occurs, above which the phase separation is consistent with that of chain PNCs. The miscibility window for this condition gradually narrows while the other parameters of the PNCs system are held constant. These results indicate that the present PRISM theory can give molecular-level details of the underlying mechanisms of the comb PNCs. It is hoped that the results can be used to provide useful guidance for the future design control of novel, thermodynamically stable comb PNCs.
Immunoglobulin from Antarctic fish species of Rajidae family.
Coscia, Maria Rosaria; Cocca, Ennio; Giacomelli, Stefano; Cuccaro, Fausta; Oreste, Umberto
2012-03-01
Immunoglobulins (Ig) of Chondroichthyes have been extensively studied in sharks; in contrast, in skates investigations on Ig remain scarce and fragmentary despite the high occurrence of skates in all of the major oceans of the world. To focus on Rajidae Igμ, the most abundant heavy chain isotype, we have chosen the Antarctic species Bathyraja eatonii, Bathyraja albomaculata, Bathyraja brachyurops, and Amblyraja georgiana which live at high latitudes in the Southern Ocean, and at very low temperatures. We prepared mRNA from the spleen of individuals of each species and performed RT-PCR experiments using two oligonucleotides designed on the alignment of various elasmobranch Igμ heavy chain sequences available in GenBank. The PCR products, about 1400-nt long, were cloned and sequenced. Nucleotide sequence identities calculated for the constant region domains ranged from 88.5% to 97.5% between species, and from 91.1% to 99.7% within species. In a distance tree, including also Raja erinacea sequences, two major branches were obtained, one containing Arhynchobatinae sequences, the other one Rajinae sequences. Four presumptive D gene segments were identified in the region of the VH/D/JH recombination; two different D segments were often found in the same sequence. Moreover, 5-15 genomic fragments of different lengths, carrying the gene locus encoding Igμ chain were revealed by Southern blotting analysis. B. eatonii amino acid sequences were analyzed for the positional diversity by Shannon entropy analysis, showing CH4 as the most conserved domain, and CH3 as the most variable one. B. eatonii CDR3 region length varied between 11 and 15 amino acid residues; the mean length (13.4 aa) was greater than that of Leucoraja eglanteria sequences (7.7 aa). An alignment of representative sequences of Antarctic species and R. erinacea showed that more cysteine residues not involved in the intradomain disulfide bridges were present in Antarctic species. Copyright © 2011 Elsevier B.V. All rights reserved.
Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy.
Pergamenshchik, V M; Vozniak, A B
2017-01-01
Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N+1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b/T. The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b/T, the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b/T→∞: While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T/(N+1). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.
Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy
NASA Astrophysics Data System (ADS)
Pergamenshchik, V. M.; Vozniak, A. B.
2017-01-01
Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N +1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b /T . The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b /T , the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b /T →∞ : While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T /(N +1 ). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.
Mwogi, Thomas S.; Biondich, Paul G.; Grannis, Shaun J.
2014-01-01
Motivated by the need for readily available data for testing an open-source health information exchange platform, we developed and evaluated two methods for generating synthetic messages. The methods used HL7 version 2 messages obtained from the Indiana Network for Patient Care. Data from both methods were analyzed to assess how effectively the output reflected original ‘real-world’ data. The Markov Chain method (MCM) used an algorithm based on transitional probability matrix while the Music Box model (MBM) randomly selected messages of particular trigger type from the original data to generate new messages. The MBM was faster, generated shorter messages and exhibited less variation in message length. The MCM required more computational power, generated longer messages with more message length variability. Both methods exhibited adequate coverage, producing a high proportion of messages consistent with original messages. Both methods yielded similar rates of valid messages. PMID:25954458
Nonsimultaneous chains and dominos in kidney- paired donation-revisited.
Ashlagi, I; Gilchrist, D S; Roth, A E; Rees, M A
2011-05-01
Since 2008, kidney exchange in America has grown in part from the incorporation of nondirected donors in transplant chains rather than simple exchanges. It is controversial whether these chains should be performed simultaneously 'domino-paired donation', (DPD) or nonsimultaneously 'nonsimultaneous extended altruistic donor, chains (NEAD). NEAD chains create 'bridge donors' whose incompatible recipients receive kidneys before the bridge donor donates, and so risk reneging by bridge donors, but offer the opportunity to create more transplants by overcoming logistical barriers inherent in simultaneous chains. Gentry et al. simulated whether DPD or NEAD chains would produce more transplants when chain segment length was limited to three transplants, and reported that DPD performed at least as well as NEAD chains. As this finding contrasts with the experience of several groups involved in kidney-paired donation, we performed simulations that allowed for longer chain segments and used actual patient data from the Alliance for Paired Donation. When chain segments of 4-6 transplants are allowed in the simulations, NEAD chains produce more transplants than DPD. Our simulations showed not only more transplants as chain length increased, but also that NEAD chains produced more transplants for highly sensitized and blood type O recipients. ©2011 The Authors Journal compilation©2011 The American Society of Transplantation and the American Society of Transplant Surgeons.
Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.
Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner
2013-02-26
In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.
Das, Sudhir Kumar; Sarkar, Moloy
2012-08-06
Steady-state and time-resolved fluorescence behavior of coumarin 153 (C153) is investigated in a series of 1-ethyl-3-methylimidazolium alkylsulfate ([C(2)mim][C(n)OSO(3)]) ionic liquids differing only in the length of the linear alkyl chain (n = 4, 6, and 8) in the anion. The aim of the present study is to understand the role of alkyl chain length in solute rotation and solvation dynamics of C153 in these ionic liquids. The blueshift observed in the steady-state absorption and emission maxima of C153 on going from the C(4)OSO(3) to the C(8)OSO(3) system indicates increasing nonpolar character of the microenvironment of the solute with increasing length of the alkyl side chain of the anion of the ionic liquids. The average solvation time is also found to increase on changing the substituent from butyl to octyl, and this is attributed to the increase in the bulk viscosity of the ILs. A steady blueshift of the time-zero maximum of the fluorescence spectrum with increasing alkyl chain length also indicates that the probe molecule experiences a less polar environment in the early part of the dynamics. Rotational dynamics of C153 are also analyzed by using the Stokes-Einstein-Debye (SED), Gierer-Wirtz (GW), and Dote-Kivelson-Schwartz (DKS) theories. Analyses of the results seem to suggest decoupling of the rotational motion of the probe from solvent viscosity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Visualizing Key Hinges and a Potential Major Source of Compliance in the Lever Arm of Myosin
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Brown; V Senthil Kumar; E ONeall-Hennessey
2011-12-31
We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during themore » contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.« less
Visualizing key hinges and a potential major source of compliance in the lever arm of myosin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.H.; Robinson, H.; Senthil Kumar, V. S.
2011-01-04
We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during themore » contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.« less
Tandem catalysis for the preparation of cylindrical polypeptide brushes.
Rhodes, Allison J; Deming, Timothy J
2012-11-28
Here, we report a method for synthesis of cylindrical copolypeptide brushes via N-carboxyanhydride (NCA) polymerization utilizing a new tandem catalysis approach that allows preparation of brushes with controlled segment lengths in a straightforward, one-pot procedure requiring no intermediate isolation or purification steps. To obtain high-density brush copolypeptides, we used a "grafting from" approach where alloc-α-aminoamide groups were installed onto the side chains of NCAs to serve as masked initiators. These groups were inert during cobalt-initiated NCA polymerization and gave allyloxycarbonyl-α-aminoamide-substituted polypeptide main chains. The alloc-α-aminoamide groups were then activated in situ using nickel to generate initiators for growth of side-chain brush segments. This use of stepwise tandem cobalt and nickel catalysis was found to be an efficient method for preparation of high-chain-density, cylindrical copolypeptide brushes, where both the main chains and side chains can be prepared with controlled segment lengths.
Impact of hydrogen bonding on dynamics of hydroxyl-terminated polydimethylsiloxane
Xing, Kunyue; Chatterjee, Sabornie; Saito, Tomonori; ...
2016-04-06
Dielectric spectroscopy, rheology, and differential scanning calorimetry were employed to study the effect of chain-end hydrogen bonding on the dynamics of hydroxylterminated polydimethylsiloxane. We demonstrate that hydrogen bonding has a strong influence on both segmental and slower dynamics in the systems with low molecular weights. In particular, the decrease in the chain length leads to an increase of the glass transition temperature, viscosity, and fragility index, at variance with the usual behavior of nonassociating polymers. The supramolecular association of hydroxylterminated chains leads to the emergence in dielectric and mechanical relaxation spectra of the so-called Debye process traditionally observed in monohydroxymore » alcohols. Our analysis suggests that the hydroxyl-terminated PDMS oligomers may associate in brush-like or chain-like structures, depending on the size of their covalent chains. Finally, the effective length of the linear-associated chains was estimated from the rheological measurements.« less
Quantum conductance oscillation in linear monatomic silicon chains
NASA Astrophysics Data System (ADS)
Liu, Fu-Ti; Cheng, Yan; Yang, Fu-Bin; Chen, Xiang-Rong
2014-02-01
The conductance of linear silicon atomic chains with n=1-8 atoms sandwiched between Au electrodes is investigated by using the density functional theory combined with non-equilibrium Green's function. The results show that the conductance oscillates with a period of two atoms as the number of atoms in the chain is varied. We optimize the geometric structure of nanoscale junctions in different distances, and obtain that the average bond-length of silicon atoms in each chain at equilibrium positions is 2.15±0.03 Å. The oscillation of average Si-Si bond-length can explain the conductance oscillation from the geometric structure of atomic chains. We calculate the transmission spectrum of the chains in the equilibrium positions, and explain the conductance oscillation from the electronic structure. The transport channel is mainly contributed by px and py orbital electrons of silicon atoms. The even-odd oscillation is robust under external voltage up to 1.2 V.
Inulin-enriched dairy desserts: physicochemical and sensory aspects.
González-Tomás, L; Bayarri, S; Costell, E
2009-09-01
The aim of this work was to study how adding inulin of different average chain lengths (long-chain, native, and short-chain inulin) at a concentration of 7.5% (wt/wt) would affect the physicochemical and sensory characteristics of starch-based dairy desserts formulated with either skim or whole milk. The results have shown that the effect of adding 7.5% inulin of different average chain length can give rise to products with different rheological behavior and different sensory characteristics. The skim milk sample with long-chain inulin and the whole milk sample without inulin showed similar flow behavior. Both samples were perceived to have the same creaminess and consistency intensity, but addition of long-chain inulin increased roughness intensity and, consequently, the sensory quality could be negatively affected. The information obtained may be of great interest in designing new products with nutritional and sensory characteristics that meet consumer demands.
Cardinali-Rezende, Juliana; Alexandrino, Paulo Moises Raduan; Nahat, Rafael Augusto Theodoro Pereira de Souza; Sant’Ana, Débora Parrine Vieira; Silva, Luiziana Ferreira; Gomez, José Gregório Cabrera
2015-01-01
Pseudomonas sp. LFM046 is a medium-chain-length polyhydroxyalkanoate (PHAMCL) producer capable of using various carbon sources (carbohydrates, organic acids, and vegetable oils) and was first isolated from sugarcane cultivation soil in Brazil. The genome sequence was found to be 5.97 Mb long with a G+C content of 66%. PMID:26294616
This study is part of a larger project for the development of bacterial indicators of stream sanitary and ecological condition. Here we report preliminary research on the use of Length Heterogeneity Polymerase Chain Reaction (LH-PCR), which discriminates among 16S rRNA genes bas...
Zheng, Zhiqiang; Xu, Qiming; Guo, Jiangna; Qin, Jing; Mao, Hailei; Wang, Bin; Yan, Feng
2016-05-25
The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.
Crazing of nanocomposites with polymer-tethered nanoparticles
Meng, Dong; Kumar, Sanat K.; Ge, Ting; ...
2016-09-07
The crazing behavior of polymer nanocomposites formed by blending polymer grafted nanoparticles with an entangled polymer melt is studied by molecular dynamics simulations. We focus on the three key differences in the crazing behavior of a composite relative to the pure homopolymer matrix, namely, a lower yield stress, a smaller extension ratio, and a grafted chain length dependent failure stress. The yield behavior is found to be mostly controlled by the local nanoparticle-grafted polymer interfacial energy, with the grafted polymer-polymer matrix interfacial structure being of little to no relevance. Increasing the attraction between nanoparticle core and the grafted polymer inhibitsmore » void nucleation and leads to a higher yield stress. In the craze growth regime, the presence of “grafted chain” sections of ≈100 monomers alters the mechanical response of composite samples, giving rise to smaller extension ratios and higher drawing stresses than for the homopolymer matrix. As a result, the dominant failure mechanism of composite samples depends strongly on the length of the grafted chains, with disentanglement being the dominant mechanism for short chains, while bond breaking is the failure mode for chain lengths >10N e, where N e is the entanglement length.« less
Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging
NASA Astrophysics Data System (ADS)
McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.
2017-10-01
Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte ("Fe-PolyM3") assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.
Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes
NASA Astrophysics Data System (ADS)
Storm, Ingeborg M.; Stuart, Martien A. Cohen; de Vries, Renko; Leermakers, Frans A. M.
2018-03-01
A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an electrostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.
Whisman, Mark A; Richardson, Emily D
To examine the association between depressive symptoms and salivary telomere length in a probability sample of middle-aged and older adults, and to evaluate age and sex as potential moderators of this association and test whether this association was incremental to potential confounds. Participants were 3,609 individuals from the 2008 wave of the Health and Retirement Study. Telomere length assays were performed using quantitative real-time polymerase chain reaction on DNA extracted from saliva samples. Depressive symptoms were assessed via interview, and health and lifestyle factors, traumatic life events, and neuroticism were assessed via self-report. Regression analyses were conducted to examine the associations between predictor variables and salivary telomere length. After adjusting for demographics, depressive symptoms were negatively associated with salivary telomere length (b = -.003; p = .014). Furthermore, this association was moderated by sex (b = .005; p = .011), such that depressive symptoms were significantly and negatively associated with salivary telomere length for men (b = - .006; p < .001) but not for women (b = - .001; p = .644). The negative association between depressive symptoms and salivary telomere length in men remained statistically significant after additionally adjusting for cigarette smoking, body mass index, chronic health conditions, childhood and lifetime exposure to traumatic life events, and neuroticism. Higher levels of depressive symptoms were associated with shorter salivary telomeres in men, and this association was incremental to several potential confounds. Shortened telomeres may help account for the association between depression and poor physical health and mortality.
Oh, Myoung Jin; Cho, Young Hoon; Cha, So Yoon; Lee, Eun Ok; Kim, Jin Wook; Kim, Sun Ki; Park, Chang Seo
2017-01-01
Ceramides in the human stratum corneum (SC) are a mixture of diverse N -acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N -acylated FAs and compare them with C18-ceramide N -stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer.
NASA Astrophysics Data System (ADS)
Gu, Cunchang; Mu, Yundong
2013-03-01
In this paper, we consider a single machine on-line scheduling problem with the special chains precedence and delivery time. All jobs arrive over time. The chains chainsi arrive at time ri , it is known that the processing and delivery time of each job on the chain satisfy one special condition CD a forehand: if the job J(i)j is the predecessor of the job J(i)k on the chain chaini, then they satisfy p(i)j = p(i)k = p >= qj >= qk , i = 1,2, ---,n , where pj and qj denote the processing time and the delivery time of the job Jj respectively. Obviously, if the arrival jobs have no chains precedence, it shows that the length of the corresponding chain is 1. The objective is to minimize the time by which all jobs have been delivered. We provide an on-line algorithm with a competitive ratio of √2 , and the result is the best possible.
Polyphenol fatty acid esters as serine protease inhibitors: a quantum-chemical QSAR analysis.
Viskupicova, Jana; Danihelova, Martina; Majekova, Magdalena; Liptaj, Tibor; Sturdik, Ernest
2012-12-01
We investigated the ability of polyphenol fatty acid esters to inhibit the activity of serine proteases trypsin, thrombin, elastase and urokinase. Potent protease inhibition in micromolar range was displayed by rutin and rutin derivatives esterified with medium and long chain, mono- and polyunsaturated fatty acids (1e-m), followed by phloridzin and esculin esters with medium and long fatty acid chain length (2a-d, 3a-d), while unmodified compounds showed only little or no effect. QSAR study of the compounds tested provided the most significant parameters for individual inhibition activities, i.e. number of hydrogen bond donors for urokinase, molecular volume for thrombin, and solvation energy for elastase. According to the statistical analysis, the action of elastase inhibitors is opposed to those of urokinase and thrombin. Cluster analysis showed two groups of compounds: original polyphenols together with rutin esters with short fatty acid chain length and rutin esters with long fatty acid chain length.
Liu, Ming-Hsu; Chen, Yi-Jr; Lee, Chia-Yin
2018-03-01
Polyhydroxyalkanoates (PHAs) are biopolyesters produced by microorganisms that are environmentally friendly. PHAs can be used to replace traditional plastic to reduce environmental pollution in various fields. PHA production costs are high because PHA must be produced from a carbon substrate. The purpose of this study was to find the strain that can used the BDF by-product as the sole carbon source to produce high amounts of medium-chain-length PHA. Three isolates were evaluated for potential PHA production by using biodiesel-derived crude glycerol as the sole carbon source. Among them, Pseudomonas mosselii TO7 yielded high PHA content. The PHA produced from P. mosselii TO7 were medium-chain-length-PHAs. The PHA content of 48% cell dry weight in 48 h with a maximum PHA productivity of 13.16 mg PHAs L -1 h -1 . The narrow polydispersity index value of 1.3 reflected the homogeneity of the polymer chain, which was conducive to industrial applications.
Natarajan, Jayakumar K.; Alumasa, John; Yearick, Kimberly; Ekoue-Kovi, Kekeli A.; Casabianca, Leah B.; de Dios, Angel C.; Wolf, Christian; Roepe, Paul D.
2009-01-01
Using predictions from heme – quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure – function principles. We vary side chain length for both monoethyl and diethyl 4N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position, and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4N, 4S and 4O derivatives vs. μ-oxo dimeric heme, measure binding constants for monomeric vs. dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs. CQR malaria. PMID:18512900
Natarajan, Jayakumar K; Alumasa, John N; Yearick, Kimberly; Ekoue-Kovi, Kekeli A; Casabianca, Leah B; de Dios, Angel C; Wolf, Christian; Roepe, Paul D
2008-06-26
Using predictions from heme-quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure-function principles. We vary side chain length for both monoethyl and diethyl 4-N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4-O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4-N, 4-S, and 4-O derivatives vs mu-oxo dimeric heme, measure binding constants for monomeric vs dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs CQR malaria.
Kobayashi, Shinya; Fujii, Sotaro; Koga, Aya; Wakai, Satoshi; Matubayasi, Nobuyuki; Sambongi, Yoshihiro
2017-07-01
Reversible denaturation of Pseudomonas aeruginosa cytochrome c 551 (PAc 551 ) could be followed using five systematic urea derivatives that differ in the alkyl chain length, i.e. urea, N-methylurea (MU), N-ethylurea (EU), N-propylurea (PU), and N-butylurea (BU). The BU concentration was the lowest required for the PAc 551 denaturation, those of PU, EU, MU, and urea being gradually higher. Furthermore, the accessible surface area difference upon PAc 551 denaturation caused by BU was found to be the highest, those by PU, EU, MU, and urea being gradually lower. These findings indicate that urea derivatives with longer alkyl chains are stronger denaturants. In this study, as many as five systematic urea derivatives could be applied for the reversible denaturation of a single protein, PAc 551 , for the first time, and the effects of the alkyl chain length on protein denaturation were systematically verified by means of thermodynamic parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Franklin L.; Farimani, Amir Barati; Gu, Kevin L.
Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent withmore » a globule-like conformation in a poor solvent. Altogether, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models.« less
Lee, Franklin L.; Farimani, Amir Barati; Gu, Kevin L.; ...
2017-10-25
Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent withmore » a globule-like conformation in a poor solvent. Altogether, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models.« less
Biological and surface-active properties of double-chain cationic amino acid-based surfactants.
Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy
2014-08-01
Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.
Zappone, Bruno; Patil, Navinkumar J; Madsen, Jan B; Pakkanen, Kirsi I; Lee, Seunghwan
2015-04-21
By combining dynamic light scattering, circular dichroism spectroscopy, atomic force microscopy, and surface force apparatus, the conformation of bovine submaxillary mucin in dilute solution and nanomechanical properties of mucin layers adsorbed on mica have been investigated. The samples were prepared by additional chromatographic purification of commercially available products. The mucin molecule was found to have a z-average hydrodynamic diameter of ca. 35 nm in phosphate buffered solution, without any particular secondary or tertiary structure. The contour length of the mucin is larger than, yet of the same order of magnitude as the diameter, indicating that the molecule can be modeled as a relatively rigid polymeric chain due to the large persistence length of the central glycosylated domain. Mucin molecules adsorbed abundantly onto mica from saline buffer, generating polymer-like, long-ranged, repulsive, and nonhysteretic forces upon compression of the adsorbed layers. Detailed analysis of such forces suggests that adsorbed mucins had an elongated conformation favored by the stiffness of the central domain. Acidification of aqueous media was chosen as means to reduce mucin-mucin and mucin-substrate electrostatic interactions. The hydrodynamic diameter in solution did not significantly change when the pH was lowered, showing that the large persistence length of the mucin molecule is due to steric hindrance between sugar chains, rather than electrostatic interactions. Remarkably, the force generated by an adsorbed layer with a fixed surface coverage also remained unaltered upon acidification. This observation can be linked to the surface-protective, pH-resistant role of bovine submaxillary mucin in the variable environmental conditions of the oral cavity.
Shi, Yali; Vestergren, Robin; Nost, Therese Haugdahl; Zhou, Zhen; Cai, Yaqi
2018-04-17
Understanding the bioaccumulation mechanisms of per- and polyfluoroalkyl substances (PFASs) across different chain-lengths, isomers and functional groups represents a monumental scientific challenge with implications for chemical regulation. Here, we investigate how the differential tissue distribution and bioaccumulation behavior of 25 PFASs in crucian carp from two field sites impacted by point sources can provide information about the processes governing uptake, distribution and elimination of PFASs. Median tissue/blood ratios (TBRs) were consistently <1 for all PFASs and tissues except bile which displayed a distinct distribution pattern and enrichment of several perfluoroalkyl sulfonic acids. Transformation of concentration data into relative body burdens (RBBs) demonstrated that blood, gonads, and muscle together accounted for >90% of the amount of PFASs in the organism. Principal component analyses of TBRs and RBBs showed that the functional group was a relatively more important predictor of internal distribution than chain-length for PFASs. Whole body bioaccumulation factors (BAFs) for short-chain PFASs deviated from the positive relationship with hydrophobicity observed for longer-chain homologues. Overall, our results suggest that TBR, RBB, and BAF patterns were most consistent with protein binding mechanisms although partitioning to phospholipids may contribute to the accumulation of long-chain PFASs in specific tissues.
NASA Astrophysics Data System (ADS)
Gardella, Joseph A.; Mahoney, Christine M.
2004-06-01
While many XPS and SIMS studies of polymers have detected and quantified segregation of low surface energy blocks or components in copolymers and polymer blends [D. Briggs, in: D.R. Clarke, S. Suresh, I.M. Ward (Eds.), Surface Analysis of Polymers by XPS and Static SIMS, Cambridge University Press, Cambridge, 1998 (Chapter 5).], this paper reports ToF-SIMS studies of direct measurement of the segment length distribution at the surface of siloxane copolymers. These data allow insight into the segregation of particular portions of the oligomeric distribution; specifically, in this study, longer PDMS oligomers segregated at the expense of shorter PDMS chains. We have reported XPS analysis of competitive segregation effects for short PDMS chains [Macromolecules 35 (13) (2002) 5256]. In this study, a series of poly(ureaurethane)-poly(dimethylsiloxane) (PUU-PDMS) copolymers have been synthesized containing varying ratios of G-3 and G-9 (G- X describes the average segment length of the PDMS added), while maintaining a constant overall siloxane weight percentage (10, 30, and 60%). These copolymers were utilized as model systems to study the preferential segregation of certain siloxane segment lengths to the surface over others. ToF-SIMS analysis of PUU-PDMS copolymers has yielded high-mass range copolymer fragmentation patterns containing intact PDMS segments. For the first time, this information is utilized to determine PDMS segment length distributions at the copolymer surface as compared to the bulk. The results show that longer siloxane segment lengths are preferentially segregating to the surface over shorter chain lengths. These results also show the importance of ToF-SIMS and mass spectrometry in the development of new materials containing low molecular weight amino-propyl-terminated siloxanes.
ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals.
Coller, Janet K; Barratt, Daniel T; Dahlen, Karianne; Loennechen, Morten H; Somogyi, Andrew A
2006-12-01
The most common treatment for opioid dependence is substitution therapy with another opioid such as methadone. The methadone dosage is individualized but highly variable, and program retention rates are low due in part to nonoptimal dosing resulting in withdrawal symptoms and further heroin craving and use. Methadone is a substrate for the P-glycoprotein transporter, encoded by the ABCB1 gene, which regulates central nervous system exposure. This retrospective study aimed to investigate the influence of ABCB1 genetic variability on methadone dose requirements. Genomic deoxyribonucleic acid was isolated from opioid-dependent subjects (n = 60) and non-opioid-dependent control subjects (n = 60), and polymerase chain reaction-restriction fragment length polymorphism and allele-specific polymerase chain reaction were used to determine the presence of single nucleotide polymorphisms at positions 61, 1199, 1236, 2677, and 3435. ABCB1 haplotypes were inferred with PHASE software (version 2.1). There were no significant differences in the allele or genotype frequencies of the individual single nucleotide polymorphisms or haplotypes between the 2 populations. ABCB1 genetic variability influenced daily methadone dose requirements, such that subjects carrying 2 copies of the wild-type haplotype required higher doses compared with those with 1 copy and those with no copies (98.3 +/- 10.4, 58.6 +/- 20.9, and 55.4 +/- 26.1 mg/d, respectively; P = .029). In addition, carriers of the AGCTT haplotype required significantly lower doses than noncarriers (38.0 +/- 16.8 and 61.3 +/- 24.6 mg/d, respectively; P = .04). Although ABCB1 genetic variability is not related to the development of opioid dependence, identification of variant haplotypes may, after larger prospective studies have been performed, provide clinicians with a tool for methadone dosage individualization.
Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers.
ten Grotenhuis, E; Demel, R A; Ponec, M; Boer, D R; van Miltenburg, J C; Bouwstra, J A
1996-01-01
The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8874014
Li, Zhenbao; Han, Xiaopeng; Zhai, Yinglei; Lian, He; Zhang, Dong; Zhang, Wenjuan; Wang, Yongjun; He, Zhonggui; Liu, Zheng; Sun, Jin
2015-06-01
Pegylation method is widely used to prolong the blood circulation time of proteins and nanoparticles after intravenous administration, but the effect of surface poly (ethylene glycol) (PEG) chain length on oral absorption of the pegylated nanoparticles is poorly reported. The aim of our study was to investigate the influence of PEG corona chain length on membrane permeability and oral bioavailability of the amphiphilic pegylated prodrug-based nanomicelles, taking all trans-retinoic acid (ATRA) as a model drug. The amphiphilic ATRA-PEG conjugates were synthesized by esterification reaction between all trans-retinoic acid and mPEGs (mPEG500, mPEG1000, mPEG2000, and mPEG5000). The conjugates could self-assemble in aqueous medium to form nanomicelles by emulsion-solvent evaporation method. The resultant nanomicelles were in spherical shape with an average diameter of 13-20 nm. The drug loading efficiency of ATRA-PEG500, ATRA-PEG1000, ATRA-PEG2000, and ATRA-PEG5000 was about 38.4, 26.6, 13.1, and 5.68 wt%, respectively. With PEG chain length ranging from 500 to 5000, ATRA-PEG nanomicelles exhibited a bell shape of chemical stability in different pH buffers, intestinal homogenate and plasma. More importantly, they were all rapidly hydrolyzed into the parent drug in hepatic homogenate, with the half-time values being 0.3-0.4h. In comparison to ATRA solution and ATRA prodrug-based nanomicelles, ATRA-PEG1000 showed the highest intestinal permeability. After oral administration, ATRA-PEG2000 and ATRA-PEG5000 nanomicelles were not nearly absorbed, while the oral bioavailability of ATRA-PEG500 and ATRA-PEG1000 demonstrated about 1.2- and 2.0-fold higher than ATRA solution. Our results indicated that PEG1000 chain length of ATRA-PEG prodrug nanomicelles has the optimal oral bioavailability probably due to improved stability and balanced mucus penetration capability and cell binding, and that the PEG chain length on a surface of nanoparticles cannot exceed a key threshold with the purpose of enhancement in oral bioavailability. Copyright © 2015. Published by Elsevier B.V.
Role of hyaluronan chain length in buffering interstitial flow across synovium in rabbits
Coleman, P J; Scott, D; Mason, R M; Levick, J R
2000-01-01
Synovial fluid drains out of joints through an interstitial pathway. Hyaluronan, the major polysaccharide of synovial fluid, attenuates this fluid drainage; it creates a graded opposition to outflow that increases with pressure (outflow ‘buffering’). This has been attributed to size-related molecular reflection at the interstitium-fluid interface. Chain length is reduced in inflammatory arthritis. We therefore investigated the dependence of outflow buffering on hyaluronan chain length.Hyaluronan molecules of mean molecular mass ≈2200, 530, 300 and 90 kDa and concentration 3.6 mg ml−1 were infused into the knees of anaesthetized rabbits, with Ringer solution as control in the contralateral joint. Trans-synovial drainage rate was recorded at known joint pressures. Pressure was raised in steps every 30–60 min (range 2–24 cmH2O).With hyaluronan-90 and hyaluronan-300 the fluid drainage rate was reduced relative to Ringer solution (P < 0.001, ANOVA) but increased steeply with pressure. The opposition to outflow, defined as the pressure required to drive unit outflow, did not increase with pressure, i.e. there was no outflow buffering.With hyaluronan-530 and hyaluronan-2000 the fluid drainage rate became relatively insensitive to pressure, causing a near plateau of flow. Opposition to outflow increased markedly with pressure, by up to 3.3 times over the explored pressures.Hyaluronan concentration in the joint cavity increased over the drainage period, indicating partial reflection of hyaluronan by synovial interstitium. Reflected fractions were 0.12, 0.33, 0.25 and 0.79 for hyaluronan-90, -300, -530 and -2200, respectively.Thus the flow-buffering effect of hyaluronan depended on chain length, and shortening the chains reduced the degree of molecular reflection. The latter should reduce the concentration polarization at the tissue interface, and hence the local osmotic pressure opposing fluid drainage. In rheumatoid arthritis the reduced chain length will facilitate the escape of hyaluronan and fluid. PMID:10896731
Bakre, Pratibha V; Volvoikar, Prajesh S; Vernekar, Amit A; Tilve, S G
2016-07-15
Nano-sized titanium dioxide photocatalysts were synthesized by hybrid hydrolytic nonhydrolytic sol-gel method using aliphatic organic acid templates to study the effect of chain length on their properties. X-ray diffraction pattern indicated crystalline anatase phase. The Barrett-Joyner-Halenda surface area measurement gave surface area ranging from 98.4 to 205.5m(2)/g and was found to be dependent on the chain length of the aliphatic acid. The longer chain acids rendered the material with high surface area. The organic acids acted as bidentate ligand and a surfactant in controlling the size and the mesoporosity. The size of the TiO2 nanoparticulate was found to be in the range of 10-18nm. The catalyst prepared by employing long chain acids octanoic acid and palmitic acid had smaller size, narrow pore radius, higher surface area and showed better photocatalytic activity than the commercially available Degussa P25 catalyst for the degradation of methylene blue dye. A new intermediate was identified by tandem liquid chromatography mass spectrometry studies during the degradation of methylene blue solution. Copyright © 2016 Elsevier Inc. All rights reserved.
Molecular Design of Antifouling Polymer Brushes Using Sequence-Specific Peptoids.
Lau, King Hang Aaron; Sileika, Tadas S; Park, Sung Hyun; Sousa, Ana Maria Leal; Burch, Patrick; Szleifer, Igal; Messersmith, Phillip B
2015-01-07
Material systems that can be used to flexibly and precisely define the chemical nature and molecular arrangement of a surface would be invaluable for the control of complex biointerfacial interactions. For example, progress in antifouling polymer biointerfaces that prevent non-specific protein adsorption and cell attachment, which can significantly improve the performance of an array of biomedical and industrial applications, is hampered by a lack of chemical models to identify the molecular features conferring their properties. Poly(N-substituted glycine) "peptoids" are peptidomimetic polymers that can be conveniently synthesized with specific monomer sequences and chain lengths, and are presented as a versatile platform for investigating the molecular design of antifouling polymer brushes. Zwitterionic antifouling polymer brushes have captured significant recent attention, and a targeted library of zwitterionic peptoid brushes with a different charge densities, hydration, separations between charged groups, chain lengths, and grafted chain densities, is quantitatively evaluated for their antifouling properties through a range of protein adsorption and cell attachment assays. Specific zwitterionic brush designs were found to give rise to distinct but subtle differences in properties. The results also point to the dominant roles of the grafted chain density and chain length in determining the performance of antifouling polymer brushes.
NASA Astrophysics Data System (ADS)
Putra, Edy Giri Rachman; Patriati, Arum
2015-04-01
Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2-10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30-50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.
NASA Astrophysics Data System (ADS)
Shimizu, Yoshitaka; Ohte, Yoko; Yamamura, Yasuhisa; Saito, Kazuya
2009-03-01
To establish the alkyl-chain-length dependences of thermodynamic properties of typical ionic liquids [C nmim][Tf 2N], the heat capacities of compounds with n = 2 and 18 were measured by adiabatic calorimetry. The comparison with other ionic liquids and typical molecular substances reveals that the low melting point of [C nmim][Tf 2N] with a short alkyl chain mainly originate in the large fusion entropy arising from the low entropy of the crystalline phase.
Pulsed flows, tributary inputs, and food web structure in a highly regulated river
Sabo, John; Caron, Melanie; Doucett, Richard R.; Dibble, Kimberly L.; Ruhi, Albert; Marks, Jane; Hungate, Bruce; Kennedy, Theodore A.
2018-01-01
1.Dams disrupt the river continuum, altering hydrology, biodiversity, and energy flow. Although research indicates that tributary inputs have the potential to dilute these effects, knowledge at the food web level is still scarce.2.Here we examined the riverine food web structure of the Colorado River below Glen Canyon Dam, focusing on organic matter sources, trophic diversity, and food chain length. We asked how these components respond to pulsed flows from tributaries following monsoon thunderstorms that seasonally increase streamflow in the American Southwest.3.Tributaries increased the relative importance of terrestrial organic matter, particularly during the wet season below junctures of key tributaries. This contrasted with the algal-based food web present immediately below Glen Canyon Dam.4.Tributary inputs during the monsoon also increased trophic diversity and food chain length: food chain length peaked below the confluence with the largest tributary (by discharge) in Grand Canyon, increasing by >1 trophic level over a 4-5 kilometre reach possibly due to aquatic prey being flushed into the mainstem during heavy rain events.5.Our results illustrate that large tributaries can create seasonal discontinuities, influencing riverine food web structure in terms of allochthony, food web diversity, and food chain length.6.Synthesis and applications. Pulsed flows from unregulated tributaries following seasonal monsoon rains increase the importance of terrestrially-derived organic matter in large, regulated river food webs, increasing food chain length and trophic diversity downstream of tributary inputs. Protecting unregulated tributaries within hydropower cascades may be important if we are to mitigate food web structure alteration due to flow regulation by large dams. This is critical in the light of global hydropower development, especially in megadiverse, developing countries where dam placement (including completed and planned structures) is in tributaries.
Fundamental Characterization of the Micellar Self-Assembly of Sophorolipid Esters.
Koh, Amanda; Todd, Katherine; Sherbourne, Ezekiel; Gross, Richard A
2017-06-13
Surfactants are ubiquitous constituents of commercial and biological systems that function based on complex structure-dependent interactions. Sophorolipid (SL) n-alkyl esters (SL-esters) comprise a group of modified naturally derived glycolipids from Candida bombicola. Herein, micellar self-assembly behavior as a function of SL-ester chain length was studied. Surface tensions as low as 31.2 mN/m and critical micelle concentrations (CMCs) as low as 1.1 μM were attained for diacetylated SL-decyl ester (dASL-DE) and SL-octyl ester, respectively. For deacetylated SL-esters, CMC values reach a lower limit at SL-ester chains above n-butyl (SL-BE, 1-3 μM). This behavior of SL-esters with increasing hydrophobic tail length is unlike other known surfactants. Diffusion-ordered spectroscopy (DOSY) and T 1 relaxation NMR experiments indicate this behavior is due to a change in intramolecular interactions, which impedes the self-assembly of SL-esters with chain lengths above SL-BE. This hypothesis is supported by micellar thermodynamics where a disruption in trends occurs at n-alkyl ester chain lengths above those of SL-BE and SL-hexyl ester (SL-HE). Diacetylated (dA) SL-esters exhibit an even more unusual trend in that CMC increases from 1.75 to 815 μM for SL-ester chain lengths of dASL-BE and dASL-DE, respectively. Foaming studies, performed to reveal the macroscopic implications of SL-ester micellar behavior, show that the observed instability in foams formed using SL-esters are due to coalescence, which highlights the importance of understanding intermicellar interactions. This work reveals that SL-esters are an important new family of green high-performing surfactants with unique structure-property relationships that can be tuned to optimize micellar characteristics.
[Study on anti-bacterium activity of ginkgolic acids and their momomers].
Yang, Xiaoming; Zhu, Wei; Chen, Jun; Qian, Zhiyu; Xie, Jimin
2004-09-01
Ginkgolic acids and their three monomers were separated from ginkgo sarcotestas. The anti-bacterium activity of ginkgolic acids were tested. The relation between the anti-bacterium activity and side chain of ginkgolic acid were studied. The MIC of ginkgolic acids and their three monomers and salicylic acid were tested. Ginkgolic acid has strong inhibitive effect on G+-bacterium. Salicylic acid has no side chain, so no anti-bacterial activity. When the length of gingkolic acid side chain is C13:0, it has the strongest anti-bacterial activity in three monomers. The side chain of ginkgolic acid is the key functional group that possessed anti-bacterial activity. The length of Ginkgolic acid was the main effective factor of anti-bacterial activity.
Initial stages of aggregation in aqueous solutions of ionic liquids: molecular dynamics studies.
Bhargava, B L; Klein, Michael L
2009-07-16
Structures formed by 1-alkyl-3-methylimidazolium bromide aqueous solutions with decyl, dodecyl, tetradecyl, and hexadecyl chains have been studied using molecular dynamics (MD) simulations. Spontaneous self-assembly of the amphiphilic cations to form quasi-spherical polydisperse aggregates has been observed in all of the systems, with the size and nature of the aggregates varying with chain length. In all systems, the cation alkyl tails are buried deep inside the aggregates with the polar imidazolium group exposed to exploit the favorable interactions with water. Aggregation numbers steadily increase with the chain length. The hexadecyl aggregates have the most ordered internal structure of the systems studied, and the alkyl chains in these cations show the least number of gauche defects.
Chain Length Dependence of Energies of Electron and Triplet Polarons in Oligofluorenes
Chen, Hung Cheng; Sreearunothai, Paiboon; Cook, Andrew R.; ...
2017-03-01
Bimolecular equilibria measured the one-electron reduction potentials and triplet free energies (ΔG° T) of oligo(9,9-dihexyl)fluorenes and a polymer with lengths of n = 1–10 and 57 repeat units. We can accurately measure one-electron potentials electrochemically only for the shorter oligomers. Starting at n = 1 the free energies change rapidly with increasing length and become constant for lengths longer than the delocalization length. Both the reduction potentials and triplet energies can be understood as the sum of a free energy for a fixed polaron and a positional entropy. Furthermore, the positional entropy increases gradually with length beyond the delocalization lengthmore » due to the possible occupation sites of the charge or the triplet exciton. Our results reinforce the view that charges and triplet excitons in conjugated chains exist as polarons and find that positional entropy can replace a popular empirical model of the energetics.« less
The Snakelike Chain Character of Unstructured RNA
Jacobson, David R.; McIntosh, Dustin B.; Saleh, Omar A.
2013-01-01
In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod “wormlike chain” (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a “snakelike chain,” characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. PMID:24314087
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, S.; Grasty, K; Hernandez-Cuebas, L
2009-01-01
The covalent attachment of different types of poly-ubiquitin chains signal different outcomes for the proteins so targeted. For example, a protein modified with Lys-48-linked poly-ubiquitin chains is targeted for proteasomal degradation, whereas Lys-63-linked chains encode nondegradative signals. The structural features that enable these different types of chains to encode different signals have not yet been fully elucidated. We report here the X-ray crystal structures of Lys-63-linked tri- and di-ubiquitin at resolutions of 2.3 and 1.9 {angstrom}, respectively. The tri- and di-ubiquitin species adopt essentially identical structures. In both instances, the ubiquitin chain assumes a highly extended conformation with a left-handedmore » helical twist; the helical chain contains four ubiquitin monomers per turn and has a repeat length of {approx}110 {angstrom}. Interestingly, Lys-48 ubiquitin chains also adopt a left-handed helical structure with a similar repeat length. However, the Lys-63 architecture is much more open than that of Lys-48 chains and exposes much more of the ubiquitin surface for potential recognition events. These new crystal structures are consistent with the results of solution studies of Lys-63 chain conformation, and reveal the structural basis for differential recognition of Lys-63 versus Lys-48 chains.« less
Raust, Jacques-Antoine; Bruell, Adele; Sinha, Pritish; Hiller, Wolf; Pasch, Harald
2010-09-01
A comprehensive two-dimensional liquid chromatography system was developed to precisely describe the molecular heterogeneity of fatty alcohol ethoxylates. The end-group functionality was analyzed by gradient HPLC while ethylene oxide oligomer distributions were characterized by liquid adsorption chromatography. A baseline separation of all functionality fractions irrespective of the ethylene oxide oligomer chain length was achieved on nonpolar X-Terra(®) C(18) with a methanol-water gradient, whereas an isocratic flow of isopropanol-water on a polar Chromolith(®) Si column gave a separation according to the oligomer chain length without interference of the end-group distribution. The combination of these two methods to conduct online two-dimensional liquid chromatography experiments resulted in a comprehensive two-dimensional picture on the molecular heterogeneity of the sample.
Lee, Sun Hee; Kim, Jae Hee; Chung, Chung-Wook; Kim, Do Young; Rhee, Young Ha
2018-04-01
Analysis of mixed microbial populations responsible for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) under periodic substrate feeding in a sequencing batch reactor (SBR) was conducted. Regardless of activated sludge samples and the different MCL alkanoic acids used as the sole external carbon substrate, denaturing gradient gel electrophoresis analysis indicated that Pseudomonas aeruginosa was the dominant bacterium enriched during the SBR process. Several P. aeruginosa strains were isolated from the enriched activated sludge samples. The isolates were subdivided into two groups, one that produced only MCL-PHAs and another that produced both MCL- and short-chain-length PHAs. The SBR periodic feeding experiments with five representative MCL-PHA-producing Pseudomonas species revealed that P. aeruginosa has an advantage over other species that enables it to become dominant in the bacterial community.
Design of multi-phase dynamic chemical networks
NASA Astrophysics Data System (ADS)
Chen, Chenrui; Tan, Junjun; Hsieh, Ming-Chien; Pan, Ting; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.
2017-08-01
Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.
Pappu, Venkata K S; Kanyi, Victor; Santhanakrishnan, Arati; Lira, Carl T; Miller, Dennis J
2013-02-01
The liquid phase esterification of butyric acid with a series of linear and branched alcohols is examined. Four strong cation exchange resins, Amberlyst™ 15, Amberlyst™ 36, Amberlyst™ BD 20, and Amberlyst™ 70, were used along with para-toluenesulfonic acid as a homogeneous catalyst. The effect of increasing alcohol carbon chain length and branching on esterification rate at 60°C is presented. For all catalysts, the decrease in turnover frequency (TOF) with increasing carbon chain length of the alcohol is described in terms of steric hindrance, alcohol polarity, and hydroxyl group concentration. The kinetics of butyric acid esterification with 2-ethylhexanol using Amberlyst™ 70 catalyst is described with an activity-based, pseudo-homogeneous kinetic model that includes autocatalysis by butyric acid. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wells, Craig; Hulings, Zachery; Melnikov, Dmitriy; Gracheva, Maria
We study a nanopore inside a silicon dioxide membrane submerged in a KCl solution with a negatively charged polymer chain of varying lengths whose movement is described using Brownian dynamics. The polymer is attached to a molecule with a radius larger than that of the nanopore's which acts as a molecular stop, allowing the chain to thread the nanopore but preventing it from translocating. We found that the polymer chain's variation of movement along the nanopore decreased when increasing applied biases and chain lengths for portions of the chain closest to the molecular stop. The chain displacement within the pore is also compared to a freely translocating polymer where preliminary results show the free polymer having a greater variation in the radial direction. Overall, our preliminary results indicate that the radial direction of the polymer chain is dominated by the confinement in the narrow nanopore with restrictions imposed by the molecular stop and bias playing a lesser role. Understanding the interaction behavior of the polymer chain-stop molecule may lead to methods that decrease movement variation, facilitating an improvement on characterizing and identification of molecules. NSF DMR and CBET Grant No. 1352218.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagayama, Gyoko, E-mail: nagayama@mech.kyutech.ac.jp; Takematsu, Masaki; Mizuguchi, Hirotaka
2015-07-07
The structure and thermodynamic properties of the liquid–vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid–vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain lengthmore » of the molecules affects the condensation/evaporation behavior at the liquid–vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid–vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid–vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.« less
Battersby, J E; Snedecor, B; Chen, C; Champion, K M; Riddle, L; Vanderlaan, M
2001-08-24
An automated dual-column liquid chromatography assay comprised of affinity and reversed-phase separations that quantifies the majority of antibody-related protein species found in crude cell extracts of recombinant origin is described. Although potentially applicable to any antibody preparation, we here use samples of anti-CD18 (Fab'2LZ) and a full-length antibody, anti-tissue factor (anti-TF), from various stages throughout a biopharmaceutical production process to describe the assay details. The targeted proteins were captured on an affinity column containing an anti-light-chain (kappa) Fab antibody (AME5) immobilized on controlled pore glass. The affinity column was placed in-line with a reversed-phase column and the captured components were transferred by elution with dilute acid and subsequently resolved by eluting the reversed-phase column with a shallow acetonitrile gradient. Characterization of the resolved components showed that most antibody fragment preparations contained a light-chain fragment, free light chain, light-chain dimer and multiple forms of Fab'. Analysis of full-length antibody preparations also resolved these fragments as well as a completely assembled form. Co-eluting with the full-length antibody were high-molecular-mass variants that were missing one or both light chains. Resolved components were quantified by comparison with peak areas of similarly treated standards. By comparing the two-dimensional polyacrylamide gel electrophoresis patterns of an Escherichia coli blank run, a production run and the material affinity captured (AME5) from a production run, it was determined that the AME5 antibody captured isoforms of light chain, light chain covalently attached to heavy chain, and truncated light chain isoforms. These forms comprise the bulk of the soluble product-related fragments found in E. coli cell extracts of recombinantly produced antibody fragments.
Electrostatic persistence length.
Fixman, Marshall
2010-03-11
The persistence length is calculated for polyelectrolyte chains with fixed bond lengths and bond angles (pi-theta), and a potential energy consisting of the screened Coulomb interaction between beads, potential wells alpha phi(i)2 for the dihedral angles phi(i), and coupling terms beta phi(i) phi(i+/-1). This model defines a librating chain that reduces in appropriate limits to the freely rotating or wormlike chains, it can accommodate local crumpling or extreme stiffness, and it is easy to simulate. A planar-quadratic (pq), analytic approximation is based on an expansion of the electrostatic energy in eigenfunctions of the quadratic form that describes the backbone energy, and on the assumption that the quadratic form not only is positive but also adequately confines the chain in an infinite phase space of dihedral angles to the physically unique part with all |phi(i)| < pi. The pq approximation is available under these weak constraints, but the simulations confirm its quantitative accuracy only under the expected condition that alpha is large, that is, for very stiff chains. Stiff chains can also be simulated with small alpha and small theta and compared to an OSF approximation suitably generalized to chains with finite rather than vanishing theta, and increasing agreement with OSF is found the smaller is theta. The two approximations, one becoming exact as alpha --> infinity with fixed theta, the other as theta --> 0 with fixed alpha, are quantitatively similar in behavior, both giving a persistence length P = P0 + aD2 for stiff chains, where D is the Debye length. However, the coefficient apq is about twice the value of aOSF. Under other conditions the simulations show that P may or not be linear in D2 at small or moderate D, depending on the magnitudes of alpha, beta, theta, and the charge density but always becomes linear at large D. Even at a moderately low charge density, corresponding to fewer than 20% of the beads being charged, and with strong crumpling induced by large beta, increasing D dissolves blobs and recovers a linear dependence of P on D2, although a lower power of D gives an adequate fit at moderate D. For the class of models considered, it is concluded that the only universal feature is the asymptotic linearity of P in D2, regardless of flexibility or stiffness.
Kondo length in bosonic lattices
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Allen, Mary T.
1992-06-01
Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains high even when rms diffusion lengths are as long as 1500 angstroms. The information content of a standing wave is shown to decrease with increasing diffusion length, with essentially all standing wave information being lost at diffusion lengths greater than 450 angstroms. A unique mechanism for self-contrast enhancement and high resolution in AHR resist is proposed.
Cardinali-Rezende, Juliana; Alexandrino, Paulo Moises Raduan; Nahat, Rafael Augusto Theodoro Pereira de Souza; Sant'Ana, Débora Parrine Vieira; Silva, Luiziana Ferreira; Gomez, José Gregório Cabrera; Taciro, Marilda Keico
2015-08-20
Pseudomonas sp. LFM046 is a medium-chain-length polyhydroxyalkanoate (PHAMCL) producer capable of using various carbon sources (carbohydrates, organic acids, and vegetable oils) and was first isolated from sugarcane cultivation soil in Brazil. The genome sequence was found to be 5.97 Mb long with a G+C content of 66%. Copyright © 2015 Cardinali-Rezende et al.
Peñuelas-Urquides, Katia; Martínez-Rodríguez, Herminia Guadalupe; Enciso-Moreno, José Antonio; Molina-Salinas, Gloria María; Silva-Ramírez, Beatriz; Padilla-Rivas, Gerardo Raymundo; Vera-Cabrera, Lucio; Torres-de-la-Cruz, Víctor Manuel; Martínez-Martínez, Yazmin Berenice; Ortega-García, Jorge Luis; Garza-Treviño, Elsa Nancy; Enciso-Moreno, Leonor; Saucedo-Cárdenas, Odila; Becerril-Montes, Pola; Said-Fernández, Salvador
2014-09-01
The characteristics of tuberculosis (TB) patients related to a chain of recent TB transmissions were investigated. Mycobacterium tuberculosis (MTB) isolates (120) were genotyped using the restriction fragment length polymorphism-IS6110 (R), spacer oligotyping (S) and mycobacterial interspersed repetitive units-variable number of tandem repeats (M) methods. The MTB isolates were clustered and the clusters were grouped according to the similarities of their genotypes. Spearman's rank correlation coefficients between the groups of MTB isolates with similar genotypes and those patient characteristics indicating a risk for a pulmonary TB (PTB) chain transmission were ana- lysed. The isolates showing similar genotypes were distributed as follows: SMR (5%), SM (12.5%), SR (1.67%), MR (0%), S (46.67%), M (5%) and R (0%). The remaining 35 cases were orphans. SMR exhibited a significant correlation (p < 0.05) with visits to clinics, municipalities and comorbidities (primarily diabetes mellitus). S correlated with drug consumption and M with comorbidities. SMR is needed to identify a social network in metropolitan areas for PTB transmission and S and M are able to detect risk factors as secondary components of a transmission chain of TB.
Peñuelas-Urquides, Katia; Martínez-Rodríguez, Herminia Guadalupe; Enciso-Moreno, José Antonio; Molina-Salinas, Gloria María; Silva-Ramírez, Beatriz; Padilla-Rivas, Gerardo Raymundo; Vera-Cabrera, Lucio; Torres-de-la-Cruz, Víctor Manuel; Martínez-Martínez, Yazmin Berenice; Ortega-García, Jorge Luis; Garza-Treviño, Elsa Nancy; Enciso-Moreno, Leonor; Saucedo-Cárdenas, Odila; Becerril-Montes, Pola; Said-Fernández/, Salvador
2014-01-01
The characteristics of tuberculosis (TB) patients related to a chain of recent TB transmissions were investigated. Mycobacterium tuberculosis (MTB) isolates (120) were genotyped using the restriction fragment length polymorphism-IS6110 (R), spacer oligotyping (S) and mycobacterial interspersed repetitive units-variable number of tandem repeats (M) methods. The MTB isolates were clustered and the clusters were grouped according to the similarities of their genotypes. Spearman’s rank correlation coefficients between the groups of MTB isolates with similar genotypes and those patient characteristics indicating a risk for a pulmonary TB (PTB) chain transmission were ana- lysed. The isolates showing similar genotypes were distributed as follows: SMR (5%), SM (12.5%), SR (1.67%), MR (0%), S (46.67%), M (5%) and R (0%). The remaining 35 cases were orphans. SMR exhibited a significant correlation (p < 0.05) with visits to clinics, municipalities and comorbidities (primarily diabetes mellitus). S correlated with drug consumption and M with comorbidities. SMR is needed to identify a social network in metropolitan areas for PTB transmission and S and M are able to detect risk factors as secondary components of a transmission chain of TB. PMID:25317710
Acetanilide mediated reversible assembly and disassembly of Au nanoparticles.
Murugadoss, A; Kar, Manoranjan; Chattopadhyay, Arun
2008-08-01
Herein we report the generation of Au nanoparticles (NPs) by sparingly soluble acetanilide in water. We also report the formation of linear chain-like superstructures of self-assembled Au NPs, in the presence of excess acetanilide. This was achieved in two different ways. In the first method, acetanilide was added, with increasing concentration, into aqueous HAuCl(4) to produce Au NPs as well as for the formation of assembly, which varied according to the concentration of acetanilide. The other route involved formation of spherical Au NPs at the lowest concentration of acetanilide, which was followed by the formation of assembly of various lengths upon further addition of variable amount of acetanilide. The assemblies were stable in aqueous solution for days with characteristic UV-vis absorption spectra consisting of two peaks. While the wavelength of the first peak remained the same, the position of the second peak changed to longer wavelength with increasing acetanilide concentration. Interestingly, the linear chain-like arrays could be broken into individual particles by first dilution of the solution concentration followed by treatment with ultrasonic waves. The individual Au NPs again formed linear chain-like arrays upon addition of excess acetanilide.
Abnormal glycogen chain length pattern, not hyperphosphorylation, is critical in Lafora disease.
Nitschke, Felix; Sullivan, Mitchell A; Wang, Peixiang; Zhao, Xiaochu; Chown, Erin E; Perri, Ami M; Israelian, Lori; Juana-López, Lucia; Bovolenta, Paola; Rodríguez de Córdoba, Santiago; Steup, Martin; Minassian, Berge A
2017-07-01
Lafora disease (LD) is a fatal progressive epilepsy essentially caused by loss-of-function mutations in the glycogen phosphatase laforin or the ubiquitin E3 ligase malin. Glycogen in LD is hyperphosphorylated and poorly hydrosoluble. It precipitates and accumulates into neurotoxic Lafora bodies (LBs). The leading LD hypothesis that hyperphosphorylation causes the insolubility was recently challenged by the observation that phosphatase-inactive laforin rescues the laforin-deficient LD mouse model, apparently through correction of a general autophagy impairment. We were for the first time able to quantify brain glycogen phosphate. We also measured glycogen content and chain lengths, LBs, and autophagy markers in several laforin- or malin-deficient mouse lines expressing phosphatase-inactive laforin. We find that: (i) in laforin-deficient mice, phosphatase-inactive laforin corrects glycogen chain lengths, and not hyperphosphorylation, which leads to correction of glycogen amounts and prevention of LBs; (ii) in malin-deficient mice, phosphatase-inactive laforin confers no correction; (iii) general impairment of autophagy is not necessary in LD We conclude that laforin's principle function is to control glycogen chain lengths, in a malin-dependent fashion, and that loss of this control underlies LD. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
NASA Astrophysics Data System (ADS)
Zhang, Mengyue; Wang, Ying; Zhang, Hongmei; Cao, Jian; Fei, Zhenghao; Wang, Yanqing
2018-05-01
The effects of six imidazolium-based ionic liquids (ILs) with different alkyl chain length ([CnMim]Cl, n = 2, 4, 6, 8, 10, 12) on the structure and functions of bovine serum albumin (BSA) were studied by multi-spectral methods and molecular docking. ILs with the longer alkyl chain length have the stronger binding interaction with BSA and the greater conformational damage to protein. The effects of ILs on the functional properties of BSA were further studied by the determination of non-enzyme esterase activity, β-fibrosis and other properties of BSA. The thermal stability of BSA was reduced, the rate of the formation of beta sheet structures of BSA was lowered, and the esterase-like activity of BSA were decreased with the increase of ILs concentration. Simultaneous molecular modeling technique revealed the favorable binding sites of ILs on protein. The hydrophobic force and polar interactions were the mainly binding forces of them. The calculated results are in a good agreement with the spectroscopic experiments. These studies on the impact of the alkyl chain length on binding of imidazolium-based ionic liquids to BSA are of great significance for understanding and developing the application of ionic liquid in life and physiological system.
Dumitrescu, Dan; Legrand, Yves-Marie; Petit, Eddy; van der Lee, Arie
2015-01-01
Guest molecules confined inside hollow molecular assemblies and thus protected from their environment can show unexpected structural behavior or special reactivity compared to their behavior in a bulk, unprotected environment. A special case is the coiling behavior of variable-length alkane chains in rigid hydrogen-bonded molecular cages. It has been found before that coiling may occur in such circumstances, but no experimental evidence concerning the exact conformation of the chains has yet been presented. We reveal in this study the self-assembly of a molecular cage in water and the crystalline state from three distinct components in which linear 1,ω-diammonium-alkanes chains are confined with different degrees of compression. The exact coiling behavior is determined from atomic resolution X-ray diffraction showing crenel-like conformations in the compressed state. Chemical selection can be obtained from mixtures of alkane chains via the encapsulation of kinetically stable conformations observed during the encapsulation of pure components. Moreover, it was found that uncompressed and compressed chains can be competitively trapped inside the capsule. These findings may provide insight in areas to a better understanding of biological processes, such as the fatty acid metabolism. PMID:29142675
Marafino, John N; Gallagher, Tara M; Barragan, Jhosdyn; Volkers, Brandi L; LaDow, Jade E; Bonifer, Kyle; Fitzgerald, Gabriel; Floyd, Jason L; McKenna, Kristin; Minahan, Nicholas T; Walsh, Brenna; Seifert, Kyle; Caran, Kevin L
2015-07-01
Two novel series of tris-cationic, tripled-headed, double-tailed amphiphiles were synthesized and the effects of tail length and head group composition on the critical aggregation concentration (CAC), thermodynamic parameters, and minimum inhibitory concentration (MIC) against six bacterial strains were investigated. Synergistic antibacterial combinations of these amphiphiles were also identified. Amphiphiles in this study are composed of a benzene core with three benzylic ammonium bromide groups, two of which have alkyl chains, each 8-16 carbons in length. The third head group is a trimethylammonium or pyridinium. Log of critical aggregation concentration (log[CAC]) and heat of aggregation (ΔHagg) were both inversely proportional to the length of the linear hydrocarbon chains. Antibacterial activity increases with tail length until an optimal tail length of 12 carbons per chain, above which, activity decreased. The derivatives with two 12 carbon chains had the best antibacterial activity, killing all tested strains at concentrations of 1-2μM for Gram-positive and 4-16μM for Gram-negative bacteria. The identity of the third head group (trimethylammonium or pyridinium) had minimal effect on colloidal and antibacterial activity. The antibacterial activity of several binary combinations of amphiphiles from this study was higher than activity of individual amphiphiles, indicating that these combinations are synergistic. These amphiphiles show promise as novel antibacterial agents that could be used in a variety of applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oh, Myoung Jin; Cho, Young Hoon; Cha, So Yoon; Lee, Eun Ok; Kim, Jin Wook; Kim, Sun Ki; Park, Chang Seo
2017-01-01
Ceramides in the human stratum corneum (SC) are a mixture of diverse N-acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N-acylated FAs and compare them with C18-ceramide N-stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer. PMID:28979153
Nelson, Peter N; Ellis, Henry A; White, Nicole A S
2015-06-15
A comparative study of the molecular packing, lattice structures and phase behaviors of the homologous series of some mono-valent metal carboxylates (Li, Na, K and Ag) is carried out via solid state FT-infrared and (13)C-NMR spectroscopes, X-rays powder diffraction, density measurements, differential scanning calorimetry, polarizing light microscopy and variable temperature infrared spectroscopy. It is proposed that, for lithium, sodium and potassium carboxylates, metal-carboxyl coordination is via asymmetric chelating bidentate bonding with extensive intermolecular interactions to form tetrahedral metal centers, irrespective of chain length. However, for silver n-alkanoates, carboxyl moieties are bound to silver ions via syn-syn type bridging bidentate coordination to form dimeric units held together by extensive head group inter-molecular interactions. Furthermore, the fully extended hydrocarbon chains which are crystallized in the all-trans conformation are tilted at ca. 30°, 27°, 15° and 31° with respect to a normal to the metal plane, for lithium, sodium, silver and potassium carboxylates, respectively. All compounds are packed as lamellar bilayer structures, however, lithium compounds are crystallized in a triclinic crystal system whilst silver, sodium and potassium n-alkanoates are all monoclinic with possible P1 bravais lattice. Odd-even alternation observed in various physical features is associated with different inter-planar spacing between closely packed layers in the bilayer which are not in the same plane; a phenomenon controlled by lattice packing symmetry requirements. All compounds, except silver carboxylates, show partially reversibly first order pre-melting transitions; the number of which increases with increasing chain length. These transitions are associated, for the most part, with lamellar collapse followed by increased gauche-trans isomerism in the methylene group assembly, irrespective of chain length. It is proposed that the absence of mesomorphic transitions in their phase sequences is due to a lack of sufficient balance between attractive and repulsive electrostatic and van der Waals forces during phase change. The evidence presented in this study shows that phase behaviors of mono-valent metal carboxylates are controlled, mainly, by head group bonding. Copyright © 2015 Elsevier B.V. All rights reserved.
Santos, Cherry S; Baldelli, Steven
2009-01-29
The gas-liquid interface of halide-free 1,3-dialkylimidazolium alkyl sulfates [RMIM][R-OSO(3)] with R chain length from C(1)-C(4) and C(8) has been studied systematically using the surface-specific sum frequency generation (SFG) vibrational spectroscopy and surface tension measurements. From the SFG spectra, vibrational modes from the methyl group of both cation and anion are observed for all ionic liquid samples considered in the present study. These results suggest the presence of both ions at the gas-liquid interface, which is further supported by surface tension measurements. Surface tension data show a decreasing trend as the alkyl chain in the imidazolium cation is varied from methyl to butyl chain, with a specific anion. A similar trend is observed when the alkyl chain of the anion is modified and the cation is fixed.
Peroxy radical detection by chemical amplification (PERCA)
NASA Technical Reports Server (NTRS)
Stedman, D. H.
1986-01-01
Important reactions of atmospheric free radicals are the chain oxidation of NO and CO. Thus: H2O + NO yields OH + NO2; OH + CO yields H + CO2; H + O2 + M yields HO2 + M. In most models, the need to know the free radical concentration could also be described as the need to know the rate of the above oxidation chain in the atmosphere. It is the total rate of this chain (also carried by RO2 and RO) which was measured using the PERCA. The PERCA is thus essentially a RO sub X meter. The PERCA works by adding excess CO (10%) and NO (5ppm) to a stream of air and measuring the NO2 produced after 3s of reaction time. Since other processes produce NO2, the chain reaction is modulated by switching the CO for N2. The chain length is limited by the reaction OH + NO yields HONO and is modeled to be somewhat over 1000. Measured chain lengths agree with the modeled numbers.
A potential bioactive hard-stock fat replacer comprised of a molecular gel.
Rogers, Michael A; Spagnuolo, Paul A; Wang, Tzu-Min; Angka, Leonard
2017-05-01
Short-chain ceramides, such as N -acetoyl-d-erythro-sphingosine (C2), have a remarkable ability to structure edible oils, such as canola oil, into self-standing organogels without any added saturated or trans fats. These short-chain ceramides are ubiquitously found in foods ranging from eggs to soybeans. As the ceramide fatty acid chain length increases, there is an increase in the melting temperature of the organogel and a decrease in the elastic modulus. Gelation ability is lost at 2 wt% when the fatty acid chain length increases to six carbons; however, organogels form at 5 wt% up to 18 carbons. Short-chain ceramides, C2, decrease cell viability of colon, prostate, ovarian, and leukemia cell lines, while ceramides with long-chain fatty acids, C18, do not affect the viability of these cancer cell lines. This suggests that a bioactive spreadable fat, with no trans or added saturated fat, with the potential to alter the viability of cancer cell growth, is possible.
Interaction of cationic surfactants with DNA: a single-molecule study
Husale, Sudhir; Grange, Wilfried; Karle, Marc; Bürgi, Stephan; Hegner, Martin
2008-01-01
The interaction of cationic surfactants with single dsDNA molecules has been studied using force-measuring optical tweezers. For hydrophobic chains of length 12 and greater, pulling experiments show characteristic features (e.g. hysteresis between the pulling and relaxation curves, force-plateau along the force curves), typical of a condensed phase (compaction of a long DNA into a micron-sized particle). Depending on the length of the hydrophobic chain of the surfactant, we observe different mechanical behaviours of the complex (DNA-surfactants), which provide evidence for different binding modes. Taken together, our measurements suggest that short-chain surfactants, which do not induce any condensation, could lie down on the DNA surface and directly interact with the DNA grooves through hydrophobic–hydrophobic interactions. In contrast, long-chain surfactants could have their aliphatic tails pointing away from the DNA surface, which could promote inter-molecular interactions between hydrophobic chains and subsequently favour DNA condensation. PMID:18203749
Desert bird associations with broad-scale boundary length: Applications in avian conservation
Gutzwiller, K.J.; Barrow, W.C.
2008-01-01
1. Current understanding regarding the effects of boundaries on bird communities has originated largely from studies of forest-non-forest boundaries in mesic systems. To assess whether broad-scale boundary length can affect bird community structure in deserts, and to identify patterns and predictors of species' associations useful in avian conservation, we studied relations between birds and boundary-length variables in Chihuahuan Desert landscapes. Operationally, a boundary was the border between two adjoining land covers, and broad-scale boundary length was the total length of such borders in a large area. 2. Within 2-km radius areas, we measured six boundary-length variables. We analysed bird-boundary relations for 26 species, tested for assemblage-level patterns in species' associations with boundary-length variables, and assessed whether body size, dispersal ability and cowbird-host status were correlates of these associations. 3. The abundances or occurrences of a significant majority of species were associated with boundary-length variables, and similar numbers of species were related positively and negatively to boundary-length variables. 4. Disproportionately small numbers of species were correlated with total boundary length, land-cover boundary length and shrubland-grassland boundary length (variables responsible for large proportions of boundary length). Disproportionately large numbers of species were correlated with roadside boundary length and riparian vegetation-grassland boundary length (variables responsible for small proportions of boundary length). Roadside boundary length was associated (positively and negatively) with the most species. 5. Species' associations with boundary-length variables were not correlated with body size, dispersal ability or cowbird-host status. 6. Synthesis and applications. For the species we studied, conservationists can use the regressions we report as working models to anticipate influences of boundary-length changes on bird abundance and occurrence, and to assess avifaunal composition for areas under consideration for protection. Boundary-length variables associated with a disproportionate or large number of species can be used as foci for landscape management. Assessing the underlying causes of bird-boundary relations may improve the prediction accuracy of associated models. We therefore advocate local- and broad-scale manipulative experiments involving the boundary types with which species were correlated, as indicated by the regressions. ?? 2008 The Authors.
Chlorinated paraffins wrapping of carbon nanotubes: A theoretical investigation
NASA Astrophysics Data System (ADS)
Ding, Qiuyue; Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence
2018-04-01
How nanomaterials interact with pollutants is the central for understanding their environmental behavior and practical application. In this work, molecular dynamics (MD) and density functional theoretical (DFT) methods were used to investigated the influence of carbon chain length, degree of chlorination, chain configuration, and chirality of chlorinated paraffin (CP) and diameter of single-walled carbon nanotubes (SWNTs) on the interaction between CPs and SWNTs. The simulation results demonstrated that CP chain length and chlorination degree played considerably important roles in determining interaction strength between SWNTs and CPs. The interaction energies increased with increasing chain length and chlorination degree. The chirality of SWNT exerted negligible influence on the interaction energy between SWNTs and CPs. On the contrary, interaction energy increased with increasing radius of SWNTs due to the surface curvatures. This result was rationalized by considering the decrease in SWNT curvature with increasing radius, which resulted in plane-like CNT wall. The negligible influence of CP chain configurations was attributed to relative flexibility of CP carbon chains, which can wrap on tubes through conformational changes with low-energy barriers. MD results indicated that CPs could adsorb on SWNT surface rapidly in aqueous environment. Charge transfer and electronic density results indicated that the interaction between CPs and SWNTs was physisorption in nature. This work provides fundamental information regarding SWNTs as sorbents for CPs extraction and adsorptive removal from environmental water system.
Structural classification of CDR-H3 revisited: a lesson in antibody modeling.
Kuroda, Daisuke; Shirai, Hiroki; Kobori, Masato; Nakamura, Haruki
2008-11-15
Among the six complementarity-determining regions (CDRs) in the variable domains of an antibody, the third CDR of the heavy chain (CDR-H3), which lies in the center of the antigen-binding site, plays a particularly important role in antigen recognition. CDR-H3 shows significant variability in its length, sequence, and structure. Although difficult, model building of this segment is the most critical step in antibody modeling. Since our first proposal of the "H3-rules," which classify CDR-H3 structure based on amino acid sequence, the number of experimentally determined antibody structures has increased. Here, we revise these H3-rules and propose an improved classification scheme for CDR-H3 structure modeling. In addition, we determine the common features of CDR-H3 in antibody drugs as well as discuss the concept of "antibody druggability," which can be applied as an indicator of antibody evaluation during drug discovery.
Poree, Dawanne E; Zablocki, Kyle; Faig, Allison; Moghe, Prabhas V; Uhrich, Kathryn E
2013-08-12
Amphiphilic macromolecules (AMs) based on carbohydrate domains functionalized with poly(ethylene glycol) can inhibit the uptake of oxidized low density lipoprotein (oxLDL) and counteract foam cell formation, a key characteristic of early atherogenesis. To investigate the influence of lipophilicity and stereochemistry on the AMs' physicochemical and biological properties, mucic acid-based AMs bearing four aliphatic chains (2a) and tartaric acid-based AMs bearing two (2b and 2l) and four aliphatic chains (2g and 2k) were synthesized and evaluated. Solution aggregation studies suggested that both the number of hydrophobic arms and the length of the hydrophobic domain impact AM micelle sizes, whereas stereochemistry impacts micelle stability. 2l, the meso analogue of 2b, elicited the highest reported oxLDL uptake inhibition values (89%), highlighting the crucial effect of stereochemistry on biological properties. This study suggests that stereochemistry plays a critical role in modulating oxLDL uptake and must be considered when designing biomaterials for potential cardiovascular therapies.
Nagaoka, Shuhei; Matsumoto, Takeshi; Okada, Eiji; Mitsui, Masaaki; Nakajima, Atsushi
2006-08-17
The adsorption state and thermal stability of V(benzene)2 sandwich clusters soft-landed onto a self-assembled monolayer of different chain-length n-alkanethiols (Cn-SAM, n = 8, 12, 16, 18, and 22) were studied by means of infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). The IRAS measurement confirmed that V(benzene)2 clusters are molecularly adsorbed and maintain a sandwich structure on all of the SAM substrates. In addition, the clusters supported on the SAM substrates are oriented with their molecular axes tilted 70-80 degrees off the surface normal. An Arrhenius analysis of the TPD spectra reveals that the activation energy for the desorption of the supported clusters increases linearly with the chain length of the SAMs. For the longest chain C22-SAM, the activation energy reaches approximately 150 kJ/mol, and the thermal desorption of the supported clusters can be considerably suppressed near room temperature. The clear chain-length-dependent thermal stability of the supported clusters observed here can be explained well in terms of the cluster penetration into the SAM matrixes.
Structural propensities and entropy effects in peptide helix-coil transitions
NASA Astrophysics Data System (ADS)
Chemmama, Ilan E.; Pelea, Adam Colt; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.
2012-09-01
The helix-coil transition in peptides is a critical structural transition leading to functioning proteins. Peptide chains have a large number of possible configurations that must be accounted for in statistical mechanical investigations. Using hydrogen bond and local helix propensity interaction terms, we develop a method for obtaining and incorporating the degeneracy factor that allows the exact calculation of the partition function for a peptide as a function of chain length. The partition function is used in calculations for engineered peptide chains of various lengths that allow comparison with a variety of different types of experimentally measured quantities, such as fraction of helicity as a function of both temperature and chain length, heat capacity, and denaturation studies. When experimental sensitivity in helicity measurements is properly accounted for in the calculations, the calculated curves fit well with the experimental curves. We determine values of interaction energies for comparison with known biochemical interactions, as well as quantify the difference in the number of configurations available to an amino acid in a random coil configuration compared to a helical configuration.
Braga, Marina Vianna; Pinto, Zeneida Teixeira; de Carvalho Queiroz, Margareth Maria; Matsumoto, Nana; Blomquist, Gary James
2013-01-01
The external surface of all insects is covered by a species-specific complex mixture of highly stable, very long chain cuticular hydrocarbons (CHCs). Gas chromatography coupled to mass spectrometry was used to identify CHCs from four species of Sarcophagidae, Peckia (Peckia) chrysostoma, Peckia (Pattonella) intermutans, Sarcophaga (Liopygia) ruficornis and Sarcodexia lambens. The identified CHCs were mostly a mixture of n-alkanes, monomethylalkanes and dimethylalkanes with linear chain lengths varying from 23 to 33 carbons. Only two alkenes were found in all four species. S. lambens had a composition of CHCs with linear chain lengths varying from C23 to C33, while the other three species linear chain lengths from 24 to 31 carbons. n-Heptacosane, n-nonacosane and 3-methylnonacosane, n-triacontane and n-hentriacontane occurred in all four species. The results show that these hydrocarbon profiles may be used for the taxonomic differentiation of insect species and are a useful additional tool for taxonomic classification, especially when only parts of the insect specimen are available. PMID:23932943
Shanklin, John; Cahoon, Edgar B.
2004-02-03
The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele
We used X-ray diffraction and molecular dynamics simulations to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Furthermore, their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidiniummore » ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. Our results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele
X-ray diffraction and molecular dynamics simulations were used to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILsmore » increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. The results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less
Computational Design of High-χ Block Oligomers for Accessing 1 nm Domains.
Chen, Qile P; Barreda, Leonel; Oquendo, Luis E; Hillmyer, Marc A; Lodge, Timothy P; Siepmann, J Ilja
2018-05-22
Molecular dynamics simulations are used to design a series of high-χ block oligomers (HCBOs) that can self-assemble into a variety of mesophases with domain sizes as small as 1 nm. The exploration of these oligomers with various chain lengths, volume fractions, and chain architectures at multiple temperatures reveals the presence of ordered lamellae, perforated lamellae, and hexagonally packed cylinders. The achieved periods are as small as 3.0 and 2.1 nm for lamellae and cylinders, respectively, which correspond to polar domains of approximately 1 nm. Interestingly, the detailed phase behavior of these oligomers is distinct from that of either solvent-free surfactants or block polymers. The simulations reveal that the behavior of these HCBOs is a product of an interplay between both "surfactant factors" (headgroup interactions, chain flexibility, and interfacial curvature) and "block polymer factors" (χ, chain length N, and volume fraction f). This insight promotes the understanding of molecular features pivotal for mesophase formation at the sub-5 nm length scale, which facilitates the design of HCBOs tailored toward particular desired morphologies.
NASA Astrophysics Data System (ADS)
Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy
2017-02-01
Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.
Barlow, R. B.; Zoller, Anne
1964-01-01
A survey has been made of the effects on junctional transmission of the complete series of polymethylene bis-trimethylammonium (BTM) and bis-triethylammonium (BTE) salts from the decamethylene compounds (BTM 10 and BTE 10) to those with twenty-one methylene groups in the chain. These were tested for their ability to cause contracture of the isolated chick biventer cervicis preparation, and for their ability to block the twitch responses of this preparation, those of the rat isolated diaphragm preparation, and those of the cat tibialis anterior preparation. They were also tested for their ability to block transmission in the cat superior cervical ganglion, to block the actions of acetylcholine on the guinea-pig isolated ileum, and for ability to inhibit the hydrolysis of acetylcholine by acetylcholinesterase. Their electrical conductivity has been measured in aqueous solution. Ability to cause contracture of the chick biventer cervicis is confined to the compounds BTM 10 to 15; BTE 10, 11 and 12 have some weak activity but the other BTE compounds, and the BTM compounds with more than fifteen methylene groups, have virtually no activity. In the BTE series both neuromuscular blocking and ganglion-blocking activities increase with chain length up to a maximum in the region of BTE 15 to 17 and then decline. In the BTM series ganglion-blocking activity increases with chain length in much the same way as in the BTE series, though the maximum activity is at a slightly longer chain length. At the neuromuscular junction an increase in chain length beyond BTM 10 leads to a decline in activity but this returns to some extent at longer chain lengths, reaching a second maximum at BTM 18, above which it declines further. At the ganglion BTE 16 is only slightly more active than BTM 16 and about five-times as active as hexamethonium; at the neuromuscular junction in the cat BTE 16 is about five-times as active as BTM 16 and about eight-times as active as (+)-tubocurarine. The affinity of the BTE compounds for the postganglionic acetylcholine receptors of the guinea-pig ileum reaches a maximum at BTE 14 but does not decline significantly with further increase in chain length. Anticholinesterase activity, likewise, does not alter significantly between BTM 12 and BTM 21 and the activity of the compounds in the BTE series appears to be similar. This property could conceivably be modifying the actions of some of the intermediate compounds but is not likely to be affecting those of the more active ones. The conductivity experiments indicate that micelle formation could be limiting the actions of the compounds with 20 or 21 methylene groups, but is not likely to be affecting those of the other compounds. The results suggest that there is a regular increase with chain length of the affinity of these compounds for the receptors in the ganglia and at the neuromuscular junction but that efficacy in causing contracture is limited to compounds with three methyl groups in the cationic head and a chain of about ten methylene groups. The connexion between this ability to depolarize and the ability to block transmission by desensitization is discussed. PMID:14208190
Self-Assembled Monolayers of Dithiophosphinic Acids on Gold
NASA Astrophysics Data System (ADS)
San Juan, Ronan Roca
This dissertation reports the synthesis of derivatives of dithiophosphinic acids (R1R2DTPAs), and the formation and characterization of DTPA SAMs on gold to build a knowledge base on their nature of binding, organization of the alkyl chains and electrochemical barrier properties. The binding of DTPA molecules on gold depends on the morphology of the gold film: They bind in a mixed monodentate and bidentate modes on standard as-deposited (As-Dep) gold, while they fully chelate on smoother template-stripped (TS) gold. Chapter 2 focuses on van der Waals interactions of various alkyl chain lengths of symmetrical R2DTPA SAMs, which increase with increasing chain lengths similar to those of the analogous n-alkanethiol SAMs, but with alkyl chains that are generally less dense than those of n-alkanethiol SAMs. Chapter 3 addresses why the DTPA compounds do not chelate on the standard As-Dep gold by comparing (C16)2DTPA SAM to (C16 )2DDP SAM. Here, side chain crystallinity stabilizes DTPA SAM structure at the expense of chelation of the DTPA molecules, which leads to a mixture of bidentate and monodentate DTPA molecules, whereas the increased flexibility of the chains in DDP due to the oxygen atoms retains chelation of the DDP molecules. Chapter 4 focuses on the SAMs formed from RlongRshort DTPAs, which shows that the length of the short chain spacer affects SAM packing density and thickness. The SAMs of these molecules also show homogeneous mixing of Rlong and Rshort chains. Chapter 5 investigates PhRDTPA SAMs in preparation for molecular junction studies. The chelation of PhRDTPA molecules on TS gold allows the PhRDTPAs to act as molecular alligator clips. The length of the alkyl chains controls the density of the phenyl group and they fill in the voids between adsorbates to prevent electrical shorting. Finally, Chapter 6 incorporates OH tail group(s) to control the wettability of DTPA SAMs. The presence of OH groups in DTPAs forms hydrophilic SAMs. The symmetrical OH-terminated DTPA forms a SAM with similar packing density to that of an analogous CH3-terminated DTPA SAM, while the OH/CH 3-terminated DTPA forms a thin SAM with low molecular packing, however, the chains of this SAM are homogeneously mixed.
ERIC Educational Resources Information Center
Huo, Yan
2009-01-01
Variable-length computerized adaptive testing (CAT) can provide examinees with tailored test lengths. With the fixed standard error of measurement ("SEM") termination rule, variable-length CAT can achieve predetermined measurement precision by using relatively shorter tests compared to fixed-length CAT. To explore the application of…
Whisman, Mark A.; Richardson, Emily D.
2016-01-01
Objective To examine the association between depressive symptoms and salivary telomere length in a probability sample of middle-aged and older adults, evaluate age and sex as potential moderators of this association, and test whether this association was incremental to potential confounds. Methods Participants were 3,609 individuals from the 2008 wave of the Health and Retirement Study. Telomere length assays were performed using quantitative real-time polymerase chain reaction (qPCR) on DNA extracted from saliva samples. Depressive symptoms were assessed via interview, and health and lifestyle factors, traumatic life events, and neuroticism were assessed via self-report. Regression analyses were conducted to examine the associations between predictor variables and salivary telomere length. Results After adjusting for demographics, depressive symptoms were negatively associated with salivary telomere length (b = −.003, p = .014). Furthermore, this association was moderated by sex (b = .005, p = .011), such that depressive symptoms were significantly and negatively associated with salivary telomere length for men (b = −.006, p < .001) but not for women (b = −.001, p = .644). The negative association between depressive symptoms and salivary telomere length in men remained statistically significant after additionally adjusting for cigarette smoking, body mass index, chronic health conditions, childhood and lifetime exposure to traumatic life events, and neuroticism. Conclusions Higher levels of depressive symptoms were associated with shorter salivary telomeres in men and this association was incremental to several potential confounds. Shortened telomeres may help account for the association between depression and poor physical health and mortality. PMID:28029664
Montejano, Rocio; Stella-Ascariz, Natalia; Monge, Susana; Bernardino, José I; Pérez-Valero, Ignacio; Montes, María L; Valencia, Eulalia; Martín-Carbonero, Luz; Moreno, Victoria; González-García, Juan; Arnalich, Francisco; Mingorance, Jesús; Pintado Berniches, Laura; Perona, Rosario; Arribas, José R
2017-09-01
To evaluate the in vivo relevance of the inhibitory effect of tenofovir on telomerase activity observed in vitro. Cross-sectional study of HIV-infected patients with suppressed virological replication (HIV RNA <50 copies/mL for more than 1 year). Telomere length in whole blood was measured by quantitative real-time polymerase chain reaction. We performed a multivariate analysis to elucidate variables associated with telomere length and also evaluated the association between telomere length and use of tenofovir difumarate (TDF) adjusted by significant confounders. 200 patients included, 72% men, median age 49 (IQR 45-54.5), 103 with exposure to a TDF containing antiretroviral treatment (ART) regimen (69.9% for more than 5 years) and 97 never exposed to a TDF containing ART regimen. In the multivariate analysis, significant predictors of shorter telomere length were older age (P = 0.008), parental age at birth (P = 0.038), white race (P = 0.048), and longer time of known HIV infection (10-20 and ≥20 years compared with <10 years, P = 0.003 and P = 0.056, respectively). There was no association between TDF exposure and telomere length after adjusting for possible confounding factors (age, parental age at birth, race, and time of HIV infection). Total time receiving ART and duration of treatment with nucleoside reverse transcriptase inhibitors were associated with shorter telomere length, but these associations were explained by time of known HIV infection. Our data do not suggest that telomerase activity inhibition caused by TDF in vitro leads to telomere shortening in peripheral blood of HIV-infected patients.
van der Walle, G A; Buisman, G J; Weusthuis, R A; Eggink, G
1999-01-01
Unsaturated medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHAs) produced by Pseudomonas putida from linseed oil fatty acids (LOFA) and tall oil fatty acids (TOFA), were used as the polymer binder in the formulation of high solid alkyd-like paints. The relatively high concentration of unsaturated alkyl side chains incorporated into the PHA resins resulted in oxidative drying PHA paints having excellent coating properties. The homogeneously pigmented PHA coatings yielded high-gloss, smooth and strong films upon curing and showed an excellent flexibility, a good adhesion to different substrates, cohesive film properties and resistance to chipping.
Small Subunits of Serine Palmitoyltransferase (ssSPTs) and Their Physiological Roles
2014-02-12
showing that organisms also have unique sphingoid base chain lengths. In insects, such as Drosophila melanogaster , the predominant chain lengths of the ... Drosophila melanogaster mutant defective in male meiotic cytokinesis (‘Ghiberti’) has a mutation in a gene with low homology to the ssSPT subunits of...INTRODUCTION: Sphingolipid metabolism in Drosophila melanogaster (fly) is an active area of research. It is a good model system to study the roles of
The scent of mixtures: rules of odour processing in ants
Perez, Margot; Giurfa, Martin; d'Ettorre, Patrizia
2015-01-01
Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects. PMID:25726692
Effects of Nanoparticle Morphology and Acyl Chain Length on Spontaneous Lipid Transfer Rates
Xia, Yan; Li, Ming; Charubin, Kamil; ...
2015-11-05
In this paper, we report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C 14, DMPC) in discoidal “bicelles” (0.156 h –1) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.1 × 10 –3 h –1). For both bicellar and ULV morphologies, increasing the acyl chain length by two carbons [going from di-C 14 DMPC to di-C 16, dipalmitoylphosphatidylcholine (DPPC)] causes lipid transfer rates to decrease by more than 2 orders of magnitude. Results from small angle neutron scattering (SANS), differentialmore » scanning calorimetry (DSC), and fluorescence correlation spectroscopy (FCS) are in good agreement. Finally, the present studies highlight the importance of lipid dynamic processes taking place in different morphology biomimetic membranes.« less
Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne
NASA Astrophysics Data System (ADS)
Shi, Lei; Rohringer, Philip; Wanko, Marius; Rubio, Angel; Waßerroth, Sören; Reich, Stephanie; Cambré, Sofie; Wenseleers, Wim; Ayala, Paola; Pichler, Thomas
2017-12-01
Ultralong linear carbon chains of more than 6000 carbon atoms have recently been synthesized within double-walled carbon nanotubes (DWCNTs), and they show a promising route to one-atom-wide semiconductors with a direct band gap. Theoretical studies predicted that this band gap can be tuned by the length of the chains, the end groups, and their interactions with the environment. However, different density functionals lead to very different values of the band gap of infinitely long carbyne. In this work, we applied resonant Raman excitation spectroscopy with more than 50 laser wavelengths to determine the band gap of long carbon chains encapsulated inside DWCNTs. The experimentally determined band gaps ranging from 2.253 to 1.848 eV follow a linear relation with Raman frequency. This lower bound is the smallest band gap of linear carbon chains observed so far. The comparison with experimental data obtained for short chains in gas phase or in solution demonstrates the effect of the DWCNT encapsulation, leading to an essential downshift of the band gap. This is explained by the interaction between the carbon chain and the host tube, which greatly modifies the chain's bond-length alternation.
NASA Astrophysics Data System (ADS)
van Westen, Thijs; Oyarzún, Bernardo; Vlugt, Thijs J. H.; Gross, Joachim
2015-06-01
We develop an equation of state (EoS) for describing isotropic-nematic (IN) phase equilibria of Lennard-Jones (LJ) chain fluids. The EoS is developed by applying a second order Barker-Henderson perturbation theory to a reference fluid of hard chain molecules. The chain molecules consist of tangentially bonded spherical segments and are allowed to be fully flexible, partially flexible (rod-coil), or rigid linear. The hard-chain reference contribution to the EoS is obtained from a Vega-Lago rescaled Onsager theory. For the description of the (attractive) dispersion interactions between molecules, we adopt a segment-segment approach. We show that the perturbation contribution for describing these interactions can be divided into an "isotropic" part, which depends only implicitly on orientational ordering of molecules (through density), and an "anisotropic" part, for which an explicit dependence on orientational ordering is included (through an expansion in the nematic order parameter). The perturbation theory is used to study the effect of chain length, molecular flexibility, and attractive interactions on IN phase equilibria of pure LJ chain fluids. Theoretical results for the IN phase equilibrium of rigid linear LJ 10-mers are compared to results obtained from Monte Carlo simulations in the isobaric-isothermal (NPT) ensemble, and an expanded formulation of the Gibbs-ensemble. Our results show that the anisotropic contribution to the dispersion attractions is irrelevant for LJ chain fluids. Using the isotropic (density-dependent) contribution only (i.e., using a zeroth order expansion of the attractive Helmholtz energy contribution in the nematic order parameter), excellent agreement between theory and simulations is observed. These results suggest that an EoS contribution for describing the attractive part of the dispersion interactions in real LCs can be obtained from conventional theoretical approaches designed for isotropic fluids, such as a Perturbed-Chain Statistical Associating Fluid Theory approach.
Finding the Missing Physics: Simulating Polydisperse Polymer Melts
NASA Astrophysics Data System (ADS)
Rorrer, Nichoals; Dorgan, John
2014-03-01
A Monte Carlo algorithm has been developed to model polydisperse polymer melts. For the first time, this enables the specification of a predetermined molecular weight distribution for lattice based simulations. It is demonstrated how to map an arbitrary probability distributions onto a discrete number of chains residing on an fcc lattice. The resulting algorithm is able to simulate a wide variety of behaviors for polydisperse systems including confinement effects, shear flow, and parabolic flow. The dynamic version of the algorithm accurately captures Rouse dynamics for short polymer chains, and reptation-like dynamics for longer chain lengths.1 When polydispersity is introduced, smaller Rouse times and broadened the transition between different scaling regimes are observed. Rouse times also decrease under confinement for both polydisperse and monodisperse systems and chain length dependent migration effects are observed. The steady-state version of the algorithm enables the simulation of flow and when polydisperse systems are subject to parabolic (Poiseulle) flow, a migration phenomenon based on chain length is again present. These and other phenomena highlight the importance of including polydispersity in obtaining physically realistic simulations of polymeric melts. 1. Dorgan, J.R.; Rorrer, N.A.; Maupin, C.M., Macromolecules 2012, 45(21), 8833-8840. Work funded by the Fluid Dynamics program of the National Science Foundation under grant CBET-1067707.
Goldstein, Avi; Annor, George; Blennow, Andreas; Bertoft, Eric
2017-09-01
The impact of diurnal photosynthetic activity on the fine structure of the amylopectin fraction of starch synthesized by normal barley (NBS) and waxy barley (WBS), the latter completely devoid of amylose biosynthesis, was determined following the cultivation under normal diurnal or constant light growing conditions. The amylopectin fine structures were analysed by characterizing its unit chain length profiles after enzymatic debranching as well as its φ,β-limit dextrins and its clusters and building blocks after their partial and complete hydrolysis with α-amylase from Bacillus amyloliquefaciens, respectively. Regardless of lighting conditions, no structural effects were found when comparing both the amylopectin side-chain distribution and the internal chain fragments of these amylopectins. However, the diurnally grown NBS and WBS both showed larger amylopectin clusters and these had lower branching density and longer average chain lengths than clusters derived from plants grown under constant light conditions. Amylopectin clusters from diurnally grown plants also consisted of a greater number of building blocks, and shorter inter-block chain lengths compared to clusters derived from plants grown under constant light. Our data demonstrate that the diurnal light regime influences the fine structure of the amylopectin component both in amylose and non-amylose starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.
Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R
2009-03-20
Particle-based simulations using the configurational-bias and Gibbs ensemble Monte Carlo techniques are carried out to probe the effects of various chromatographic parameters on bonded-phase chain conformation, solvent penetration, and retention in reversed-phase liquid chromatography (RPLC). Specifically, we investigate the effects due to the length of the bonded-phase chains (C(18), C(8), and C(1)), the inclusion of embedded polar groups (amide and ether) near the base of the bonded-phase chains, the column pressure (1, 400, and 1000 atm), and the pore shape (planar slit pore versus cylindrical pore with a 60A diameter). These simulations utilize a bonded-phase coverage of 2.9 micromol/m(2)and a mobile phase containing methanol at a molfraction of 33% (about 50% by volume). The simulations show that chain length, embedded polar groups, and pore shape significantly alter structural and retentive properties of the model RPLC system, whereas the column pressure has a relatively small effect. The simulation results are extensively compared to retention measurements. A molecular view of the RPLC retention mechanism emerges that is more complex than can be inferred from thermodynamic measurements.
Molecular Design of Antifouling Polymer Brushes Using Sequence-Specific Peptoids
Lau, King Hang Aaron; Sileika, Tadas S.; Park, Sung Hyun; ...
2014-11-26
Material systems that can be used to flexibly and precisely define the chemical nature and molecular arrangement of a surface would be invaluable for the control of complex biointerfacial interactions. For example, progress in antifouling polymer biointerfaces that prevents nonspecific protein adsorption and cell attachment, which can significantly improve the performance of an array of biomedical and industrial applications, is hampered by a lack of chemical models to identify the molecular features conferring their properties. Poly(N-substituted glycine) “peptoids” are peptidomimetic polymers that can be conveniently synthesized with specific monomer sequences and chain lengths, and are presented as a versatile platformmore » for investigating the molecular design of antifouling polymer brushes. Zwitterionic antifouling polymer brushes have captured significant recent attention, and a targeted library of zwitterionic peptoid brushes with different charge densities, hydration, separations between charged groups, chain lengths, and grafted chain densities, is quantitatively evaluated for their antifouling properties through a range of protein adsorption and cell attachment assays. Specific zwitterionic brush designs are found to give rise to distinct but subtle differences in properties. In conclusion, the results also point to the dominant roles of the grafted chain density and chain length in determining the performance of antifouling polymer brushes.« less
Softening of the stiffness of bottle-brush polymers by mutual interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolisetty, S.; Airaud, C.; Rosenfeldt, S.
2007-04-15
We study bottle-brush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side chains with approximately 60 monomer units. The SLS and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a wormlike chain with a contour length of 380 nm and a persistence length of 17.5 nm.more » An analysis of the DLS data confirms these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottle-brush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5 nm down to 5 nm upon increasing the concentration from dilute solution to the highest concentration (40.59 g/l) under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putra, Edy Giri Rachman; Patriati, Arum; Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id
2015-04-16
Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol,more » octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.« less
Influence of the molecular architecture on the adsorption onto solid surfaces: comb-like polymers.
Guzmán, Eduardo; Ortega, Francisco; Prolongo, Margarita G; Starov, Victor M; Rubio, Ramón G
2011-09-28
The processes of adsorption of grafted copolymers onto negatively charged surfaces were studied using a dissipative quartz crystal microbalance (D-QCM) and ellipsometry. The control parameters in the study of the adsorption are the existence or absence on the molecular architecture of grafted polyethyleneglycol (PEG) chains with different lengths and the chemical nature of the main chain, poly(allylamine) (PAH) or poly(L-lysine) (PLL). It was found out that the adsorption kinetics of the polymers showed a complex behavior. The total adsorbed amount depends on the architecture of the polymer chains (length of the PEG chains), on the polymer concentration and on the chemical nature of the main chain. The comparison of the thicknesses of the adsorbed layers obtained from D-QCM and from ellipsometry allowed calculation of the water content of the layers that is intimately related to the grafting length. The analysis of D-QCM results also provides information about the shear modulus of the layers, whose values have been found to be typical of a rubber-like polymer system. It is shown that the adsorption of polymers with a charged backbone is not driven exclusively by the electrostatic interactions, but the entropic contributions as a result of the trapping of water in the layer structure are of fundamental importance.
Molecular dynamics modeling of PPTA crystallite mechanical properties in the presence of defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercer, Brian; Zywicz, Edward; Papadopoulos, Panayiotis
Here, the mechanical properties of PPTA crystallites, the fundamental building blocks of aramid polymer fibers such as Kevlar® and Twaron®, are studied here using molecular dynamics simulations. The ReaxFF interatomic potential is employed to study crystallite failure via covalent and hydrogen bond rupture in constant strain-rate tensile loading simulations. Emphasis is placed on analyzing how chain-end defects in the crystallite influence its mechanical response and fracture strength. Chain-end defects are found to affect the behavior of nearby chains in a region of the PPTA crystallite that is small relative to the typical crystallite size in manufactured aramid fibers. The centralmore » Csingle bondN bond along the backbone chain is identified as the weakest in the PPTA polymer chain backbone in dynamic strain-to-failure simulations of the crystallite. It is found that clustering of chain-ends leads to reduced crystallite strength and crystallite failure via hydrogen bond rupture and chain sliding, whereas randomly scattered defects impact the strength less and failure is by covalent bond rupture and chain scission. The axial crystallite modulus increases with increasing chain length and is independent of chain-end defect locations. On the basis of these findings, a theoretical model is proposed to predict the axial modulus as a function of chain length.« less
Molecular dynamics modeling of PPTA crystallite mechanical properties in the presence of defects
Mercer, Brian; Zywicz, Edward; Papadopoulos, Panayiotis
2017-03-11
Here, the mechanical properties of PPTA crystallites, the fundamental building blocks of aramid polymer fibers such as Kevlar® and Twaron®, are studied here using molecular dynamics simulations. The ReaxFF interatomic potential is employed to study crystallite failure via covalent and hydrogen bond rupture in constant strain-rate tensile loading simulations. Emphasis is placed on analyzing how chain-end defects in the crystallite influence its mechanical response and fracture strength. Chain-end defects are found to affect the behavior of nearby chains in a region of the PPTA crystallite that is small relative to the typical crystallite size in manufactured aramid fibers. The centralmore » Csingle bondN bond along the backbone chain is identified as the weakest in the PPTA polymer chain backbone in dynamic strain-to-failure simulations of the crystallite. It is found that clustering of chain-ends leads to reduced crystallite strength and crystallite failure via hydrogen bond rupture and chain sliding, whereas randomly scattered defects impact the strength less and failure is by covalent bond rupture and chain scission. The axial crystallite modulus increases with increasing chain length and is independent of chain-end defect locations. On the basis of these findings, a theoretical model is proposed to predict the axial modulus as a function of chain length.« less
Using Games to Teach Markov Chains
ERIC Educational Resources Information Center
Johnson, Roger W.
2003-01-01
Games are promoted as examples for classroom discussion of stationary Markov chains. In a game context Markov chain terminology and results are made concrete, interesting, and entertaining. Game length for several-player games such as "Hi Ho! Cherry-O" and "Chutes and Ladders" is investigated and new, simple formulas are given. Slight…
Side-chain-side-chain interactions and stability of the helical state
NASA Astrophysics Data System (ADS)
Zangi, Ronen
2014-01-01
Understanding the driving forces that lead to the stability of the secondary motifs found in proteins, namely α-helix and β-sheet, is a major goal in structural biology. The thermodynamic stability of these repetitive units is a result of a delicate balance between many factors, which in addition to the peptide chain involves also the solvent. Despite the fact that the backbones of all amino acids are the same (except of that of proline), there are large differences in the propensity of the different amino acids to promote the helical structure. In this paper, we investigate by explicit-solvent molecular dynamics simulations the role of the side chains (modeled as coarse-grained single sites) in stabilizing α helices in an aqueous solution. Our model systems include four (six-mer-nine-mer) peptide lengths in which the magnitude of the effective attraction between the side chains is systematically increased. We find that these interactions between the side chains can induce (for the nine-mer almost completely) a transition from a coil to a helical state. This transition is found to be characterized by three states in which the intermediate state is a partially folded α-helical conformation. In the absence of any interactions between the side chains the free energy change for helix formation has a small positive value indicating that favorable contributions from the side chains are necessary to stabilize the helical conformation. Thus, the helix-coil transition is controlled by the effective potentials between the side-chain residues and the magnitude of the required attraction per residue, which is on the order of the thermal energy, reduces with the length of the peptide. Surprisingly, the plots of the population of the helical state (or the change in the free energy for helix formation) as a function of the total effective interactions between the side chains in the helical state for all peptide lengths fall on the same curve.
Free fatty acids chain length distribution affects the permeability of skin lipid model membranes.
Uchiyama, Masayuki; Oguri, Masashi; Mojumdar, Enamul H; Gooris, Gert S; Bouwstra, Joke A
2016-09-01
The lipid matrix in the stratum corneum (SC) plays an important role in the barrier function of the skin. The main lipid classes in this lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to determine whether a variation in CER subclass composition and chain length distribution of FFAs affect the permeability of this matrix. To examine this, we make use of lipid model membranes, referred to as stratum corneum substitute (SCS). We prepared SCS containing i) single CER subclass with either a single FFA or a mixture of FFAs and CHOL, or ii) a mixture of various CER subclasses with either a single FFA or a mixture of FFAs and CHOL. In vitro permeation studies were performed using ethyl-p-aminobenzoic acid (E-PABA) as a model drug. The flux of E-PABA across the SCS containing the mixture of FFAs was higher than that across the SCS containing a single FA with a chain length of 24 C atoms (FA C24), while the E-PABA flux was not effected by the CER composition. To select the underlying factors for the changes in permeability, the SCSs were examined by Fourier transform infrared spectroscopy (FTIR) and Small angle X-ray scattering (SAXS). All lipid models demonstrated a similar phase behavior. However, when focusing on the conformational ordering of the individual FFA chains, the shorter chain FFA (with a chain length of 16, 18 or 20 C atoms forming only 11m/m% of the total FFA level) had a higher conformational disordering, while the conformational ordering of the chains of the CER and FA C24 and FA C22 hardly did not change irrespective of the composition of the SCS. In conclusion, the conformational mobility of the short chain FFAs present only at low levels in the model SC lipid membranes has a great impact on the permeability of E-PABA. Copyright © 2016 Elsevier B.V. All rights reserved.
Carpenter, Margaret A; Shaw, Martin; Cooper, Rebecca D; Frew, Tonya J; Butler, Ruth C; Murray, Sarah R; Moya, Leire; Coyne, Clarice J; Timmerman-Vaughan, Gail M
2017-08-01
Although starch consists of large macromolecules composed of glucose units linked by α-1,4-glycosidic linkages with α-1,6-glycosidic branchpoints, variation in starch structural and functional properties is found both within and between species. Interest in starch genetics is based on the importance of starch in food and industrial processes, with the potential of genetics to provide novel starches. The starch metabolic pathway is complex but has been characterized in diverse plant species, including pea. To understand how allelic variation in the pea starch metabolic pathway affects starch structure and percent amylose, partial sequences of 25 candidate genes were characterized for polymorphisms using a panel of 92 diverse pea lines. Variation in the percent amylose composition of extracted seed starch and (amylopectin) chain length distribution, one measure of starch structure, were characterized for these lines. Association mapping was undertaken to identify polymorphisms associated with the variation in starch chain length distribution and percent amylose, using a mixed linear model that incorporated population structure and kinship. Associations were found for polymorphisms in seven candidate genes plus Mendel's r locus (which conditions the round versus wrinkled seed phenotype). The genes with associated polymorphisms are involved in the substrate supply, chain elongation and branching stages of the pea carbohydrate and starch metabolic pathways. The association of polymorphisms in carbohydrate and starch metabolic genes with variation in amylopectin chain length distribution and percent amylose may help to guide manipulation of pea seed starch structural and functional properties through plant breeding.
Kinetics of interior loop formation in semiflexible chains.
Hyeon, Changbong; Thirumalai, D
2006-03-14
Loop formation between monomers in the interior of semiflexible chains describes elementary events in biomolecular folding and DNA bending. We calculate analytically the interior distance distribution function for semiflexible chains using a mean field approach. Using the potential of mean force derived from the distance distribution function we present a simple expression for the kinetics of interior looping by adopting Kramers theory. For the parameters, that are appropriate for DNA, the theoretical predictions in comparison with the case are in excellent agreement with explicit Brownian dynamics simulations of wormlike chain (WLC) model. The interior looping times (tauIC) can be greatly altered in the cases when the stiffness of the loop differs from that of the dangling ends. If the dangling end is stiffer than the loop then tauIC increases for the case of the WLC with uniform persistence length. In contrast, attachment of flexible dangling ends enhances rate of interior loop formation. The theory also shows that if the monomers are charged and interact via screened Coulomb potential then both the cyclization (tauc) and interior looping (tauIC) times greatly increase at low ionic concentration. Because both tauc and tauIC are determined essentially by the effective persistence length [lp(R)] we computed lp(R) by varying the range of the repulsive interaction between the monomers. For short range interactions lp(R) nearly coincides with the bare persistence length which is determined largely by the backbone chain connectivity. This finding rationalizes the efficacy of describing a number of experimental observations (response of biopolymers to force and cyclization kinetics) in biomolecules using WLC model with an effective persistence length.
Multiple scales and phases in discrete chains with application to folded proteins
NASA Astrophysics Data System (ADS)
Sinelnikova, A.; Niemi, A. J.; Nilsson, Johan; Ulybyshev, M.
2018-05-01
Chiral heteropolymers such as large globular proteins can simultaneously support multiple length scales. The interplay between the different scales brings about conformational diversity, determines the phase properties of the polymer chain, and governs the structure of the energy landscape. Most importantly, multiple scales produce complex dynamics that enable proteins to sustain live matter. However, at the moment there is incomplete understanding of how to identify and distinguish the various scales that determine the structure and dynamics of a complex protein. Here we address this impending problem. We develop a methodology with the potential to systematically identify different length scales, in the general case of a linear polymer chain. For this we introduce and analyze the properties of an order parameter that can both reveal the presence of different length scales and can also probe the phase structure. We first develop our concepts in the case of chiral homopolymers. We introduce a variant of Kadanoff's block-spin transformation to coarse grain piecewise linear chains, such as the C α backbone of a protein. We derive analytically, and then verify numerically, a number of properties that the order parameter can display, in the case of a chiral polymer chain. In particular, we propose that in the case of a chiral heteropolymer the order parameter can reveal traits of several different phases, contingent on the length scale at which it is scrutinized. We confirm that this is the case with crystallographic protein structures in the Protein Data Bank. Thus our results suggest relations between the scales, the phases, and the complexity of folding pathways.
Ren, Xiao-Min; Cao, Lin-Ying; Zhang, Jing; Qin, Wei-Ping; Yang, Yu; Wan, Bin; Guo, Liang-Hong
2016-04-05
Human G protein-coupled receptor 40 (hGPR40), with medium- and long-chain free fatty acids (FFAs) as its natural ligands, plays an important role in the enhancement of glucose-dependent insulin secretion. To date, information about the direct binding of FFAs to hGPR40 is very limited, and how carbon-chain length affects the activities of FFAs on hGPR40 is not yet understood. In this study, a fluorescein-fasiglifam analogue (F-TAK-875A) conjugate was designed and synthesized as a site-specific fluorescence probe to study the interaction of FFAs with hGPR40. hGPR40 was expressed in human embryonic kidney 293 cells and labeled with F-TAK-875A. By using flow cytometry, competitive binding of FFA and F-TAK-875A to hGPR40-expressed cells was measured. Binding affinities of 18 saturated FFAs, with carbon-chain lengths ranging from C6 to C23, were analyzed. The results showed that the binding potencies of FFAs to hGPR40 were dependent on carbon length. There was a positive correlation between length and binding potency for seven FFAs (C9-C15), with myristic acid (C15) showing the highest potency, 0.2% relative to TAK-875. For FFAs with a length of fewer than C9 or more than C15, they had very weak or no binding. Molecular docking results showed that the binding pocket of TAK-875 in hGPR40 could enclose FFAs with lengths of C15 or fewer. However, for FFAs with lengths longer than C15, part of the alkyl chain extended out of the binding pocket. This study provided insights into the structural dependence of FFAs binding to and activation of hGPR40.
Wang, Liang; Regina, Ahmed; Butardo, Vito M; Kosar-Hashemi, Behjat; Larroque, Oscar; Kahler, Charlene M; Wise, Michael J
2015-05-07
Glycogen average chain length (ACL) has been linked with bacterial durability, but this was on the basis of observations across different species. We therefore wished to investigate the relationship between bacterial durability and glycogen ACL by varying glycogen average chain length in a single species. It has been shown that progressive shortening of the N-terminus of glycogen branching enzyme (GBE) leads to a lengthening of oligosaccharide inter-α-1,6-glycosidic chain lengths, so we sought to harness this to create a set of Escherichia coli DH5α strains with a range of glycogen average chain lengths, and assess these strains for durability related attributes, such as starvation, cold and desiccation stress resistance, and biofilm formation. A series of Escherichia coli DH5α mutants were created with glgB genes that were in situ progressively N-terminus truncated. N-terminal truncation shifted the distribution of glycogen chain lengths from 5-11 DP toward 13-50 DP, but the relationship between glgB length and glycogen ACL was not linear. Surprisingly, removal of the first 270 nucleotides of glgB (glgBΔ270) resulted in comparatively high glycogen accumulation, with the glycogen having short ACL. Complete knockout of glgB led to the formation of amylose-like glycogen containing long, linear α1,4-glucan chains with significantly reduced branching frequency. Physiologically, the set of mutant strains had reduced bacterial starvation resistance, while minimally increasing bacterial desiccation resistance. Finally, although there were no obvious changes in cold stress resistance or biofilm forming ability, one strain (glgBΔ180) had significantly increased biofilm formation in favourable media. Despite glgB being the first gene of an operon, it is clear that in situ mutation is a viable means to create more biologically relevant mutant strains. Secondly, there was the suggestion in the data that impairments of starvation, cold and desiccation resistance were worse for the strain lacking glgB, though the first of these was not statistically significant. The results provide prima facie evidence linking abiotic stress tolerance with shorter glycogen ACL. However, further work needs to be done, perhaps in a less labile species. Further work is also required to tease out the complex relationship between glycogen abundance and glycogen structure.
NASA Astrophysics Data System (ADS)
Svenšek, Daniel; Podgornik, Rudolf
2015-09-01
We present and analyze correlation functions of a main-chain polymer nematic in a continuum worm-like chain description for two types of constraints formalized by the tensorial and vectorial conservation laws, both originating in the microscopic chain integrity, i.e., the connectivity of the polymer chains. In particular, our aim is to identify the features of the correlation functions that are most susceptible to the differences between the two constraints. Besides the density and director autocorrelations in both the tensorial and vectorial cases, we calculate also the density-director correlation functions, the latter being a direct signature of the presence of a specific constraint. Its amplitude is connected to the strength of the constraint and is zero if none of the constraints are present, i.e., for a standard non-polymeric nematic. Generally, the correlation functions with the constraints differ substantially from the correlation functions in the non-polymeric case, if the constraints are strong which in practice requires long chains. Moreover, for the tensorial conservation law to be well distinguishable from the vectorial one, the chain persistence length should be much smaller than the total length of the chain, so that hairpins (chain backfolding) are numerous and the polar order is small.
Molecular structure of starches from maize mutants deficient in starch synthase III.
Zhu, Fan; Bertoft, Eric; Källman, Anna; Myers, Alan M; Seetharaman, Koushik
2013-10-16
Molecular structures of starches from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Amylose content with altered structure was higher in the nonwaxy mutants (25.4-30.2%) compared to the wild type maize (21.5%) as revealed by gel permeation chromatography. Superlong chains of the amylopectin component were found in all nonwaxy samples. Unit chain length distribution of amylopectins and their φ,β-limit dextrins (reflecting amylopectin internal structure) from dull1 mutants were also characterized by anion-exchange chromatography after debranching. Deficiency of SSIII led to an increased amount of short chains (DP ≤36 in amylopectin), whereas the content of long chains decreased from 8.4% to between 3.1 and 3.7% in both amylopectin and φ,β-limit dextrins. Moreover, both the external and internal chain lengths decreased, suggesting a difference in their cluster structures. Whereas the molar ratio of A:B-chains was similar in all samples (1.1-1.2), some ratios of chain categories were affected by the absence of SSIII, notably the ratio of "fingerprint" A-chains to "clustered" A-chains. This study highlighted the relationship between SSIII and the internal molecular structure of maize starch.
NASA Astrophysics Data System (ADS)
Oh, Seungjun; Hayakawa, Ryoma; Pan, Chengjun; Sugiyasu, Kazunori; Wakayama, Yutaka
2016-08-01
Nanowires of semiconducting poly(3-hexylthiophene) (P3HT) were produced by a nanochannel-template technique. Polymer chain alignment in P3HT nanowires was investigated as a function of nanochannel widths (W) and polymer chain lengths (L). We found that the ratio between chain length and channel width (L/W) was a key parameter as regards promoting polymer chain alignment. Clear dichroism was observed in polarized ultraviolet-visible (UV-Vis) absorption spectra only at a ratio of approximately L/W = 2, indicating that the L/W ratio must be optimized to achieve uniaxial chain alignment in the nanochannel direction. We speculate that an appropriate L/W ratio is effective in confining the geometries and conformations of polymer chains. This discussion was supported by theoretical simulations based on molecular dynamics. That is, the geometry of the polymer chains, including the distance and tilting angles of the chains in relation to the nanochannel surface, was dominant in determining the longitudinal alignment along the nanochannels. Thus prepared highly aligned polymer nanowire is advantageous for electrical carrier transport and has great potential for improving the device performance of field-effect transistors. In fact, a one-order improvement in carrier mobility was observed in a P3HT nanowire transistor.
René, Céline; Prat, Nathalie; Thuizat, Audrey; Broctawik, Mélanie; Avinens, Odile; Eliaou, Jean-François
2014-01-01
Previous studies have suggested a geographical pattern of immunoglobulin rearrangement in chronic lymphocytic leukaemia (CLL), which could be as a result of a genetic background or an environmental antigen. However, the characteristics of Ig rearrangements in the population from the South of France have not yet been established. Here, we studied CLL B-cell repertoire and mutational pattern in a Southern French cohort of patients using an in-house protocol for whole sequencing of the rearranged immunoglobulin heavy-chain genes. Described biased usage of variable, diversity and joining genes between the mutated and unmutated groups was found in our population. However, variable gene frequencies are more in accordance with those observed in the Mediterranean patients. We found that the third complementary-determining region (CDR) length was higher in unmutated sequences, because of bias in the diversity and joining genes usage and not due to the N diversity. Mutations found in CLL followed the features of canonical somatic hypermutation mechanism: preference of targeting for activation-induced cytidine deaminase and polymerase motifs, base change bias for transitions and more replacement mutations occurring in CDRs than in framework regions. Surprisingly, localization of activation-induced cytidine deaminase motifs onto the variable gene showed a preference for framework regions. The study of the characteristics at the age of diagnosis showed no difference in clinical outcome, but suggested a tendency of increased replacement and transition-over-transversion mutations and a longer third CDR length in older patients. PMID:24725733
Diffusion on an Ising chain with kinks
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Mansour, Toufik; Severini, Simone
2009-07-01
We count the number of histories between the two degenerate minimum energy configurations of the Ising model on a chain, as a function of the length n and the number d of kinks that appear above the critical temperature. This is equivalent to count permutations of length n avoiding certain subsequences depending on d. We give explicit generating functions and compute the asymptotics. The setting considered has a role when describing dynamics induced by quantum Hamiltonians with deconfined quasi-particles.
The dynamics of complex formation between amylose brushes on gold and fatty acids by QCM-D.
Cao, Zheng; Tsoufis, Theodoros; Svaldo-Lanero, Tiziana; Duwez, Anne-Sophie; Rudolf, Petra; Loos, Katja
2013-10-14
Amylose brushes were synthesized by enzymatic polymerization with glucose-1-phosphate as monomer and rabbit muscle phosphorylase b as catalyst on gold-covered surfaces of a quartz crystal microbalance. Fourier transform infrared (FT-IR) spectra confirmed the presence of the characteristic absorption peaks of amylose between 3100 cm(-1) and 3500 cm(-1). The thickness of the amylose brushes-measured by Spectroscopic Ellipsometry--can be tailored from 4 to 20 nm, depending on the reaction time. The contour length of the stretched amylose chains on gold surfaces has been evaluated by single molecule force spectroscopy, and a total chain length of about 20 nm for 16.2 nm thick amylose brushes was estimated. X-ray photoelectron spectroscopy (XPS) was employed to characterize the amylose brushes before and after the adsorption of fatty acids. The dynamics of inclusion complex formation between amylose brushes and two fatty acids (octanoic acid and myristic acid) with different chain length was investigated as a function of time using a quartz crystal microbalance with dissipation monitoring (QCM-D) immersed in the liquid phase. QCM-D signals including the frequency and dissipation shifts elucidated the effects of the fatty acid concentration, the solvent types, the chain length of the fatty acids and the thickness of the amylose brushes on the dynamics of fatty acid molecule adsorption on the amylose brush-modified sensor surfaces.
Analysis and design of a six-degree-of-freedom Stewart platform-based robotic wrist
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami; Zhou, Zhen-Lei
1991-01-01
The kinematic analysis and implementation of a six degree of freedom robotic wrist which is mounted to a general open-kinetic chain manipulator to serve as a restbed for studying precision robotic assembly in space is discussed. The wrist design is based on the Stewart Platform mechanism and consists mainly of two platforms and six linear actuators driven by DC motors. Position feedback is achieved by linear displacement transducers mounted along the actuators and force feedback is obtained by a 6 degree of freedom force sensor mounted between the gripper and the payload platform. The robot wrist inverse kinematics which computes the required actuator lengths corresponding to Cartesian variables has a closed-form solution. The forward kinematics is solved iteratively using the Newton-Ralphson method which simultaneously provides a modified Jacobian Matrix which relates length velocities to Cartesian translational velocities and time rates of change of roll-pitch-yaw angles. Results of computer simulation conducted to evaluate the efficiency of the forward kinematics and Modified Jacobian Matrix are discussed.
All-zigzag graphene nanoribbons for planar interconnect application
NASA Astrophysics Data System (ADS)
Chen, Po-An; Chiang, Meng-Hsueh; Hsu, Wei-Chou
2017-07-01
A feasible "lightning-shaped" zigzag graphene nanoribbon (ZGNR) structure for planar interconnects is proposed. Based on the density functional theory and non-equilibrium Green's function, the electron transport properties are evaluated. The lightning-shaped structure increases significantly the conductance of the graphene interconnect with an odd number of zigzag chains. This proposed technique can effectively utilize the linear I-V characteristic of asymmetric ZGNRs for interconnect application. Variability study accounting for width/length variation and the edge effect is also included. The transmission spectra, transmission eigenstates, and transmission pathways are analyzed to gain the physical insights. This lightning-shaped ZGNR enables all 2D material-based devices and circuits on flexible and transparent substrates.
Ogawa, Hiroyasu; Hatano, Sonoko; Sugiura, Nobuo; Nagai, Naoko; Sato, Takashi; Shimizu, Katsuji; Kimata, Koji; Narimatsu, Hisashi; Watanabe, Hideto
2012-01-01
Chondroitin sulfate (CS) is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/-) mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/-) chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.
Huang, Aiqun; Hsu, Hsiao-Ping; Bhattacharya, Aniket; Binder, Kurt
2015-12-28
The conformations of semiflexible polymers in two dimensions confined in a strip of width D are studied by computer simulations, investigating two different models for the mechanism by which chain stiffness is realized. One model (studied by molecular dynamics) is a bead-spring model in the continuum, where stiffness is controlled by a bond angle potential allowing for arbitrary bond angles. The other model (studied by Monte Carlo) is a self-avoiding walk chain on the square lattice, where only discrete bond angles (0° and ±90°) are possible, and the bond angle potential then controls the density of kinks along the chain contour. The first model is a crude description of DNA-like biopolymers, while the second model (roughly) describes synthetic polymers like alkane chains. It is first demonstrated that in the bulk the crossover from rods to self-avoiding walks for both models is very similar, when one studies average chain linear dimensions, transverse fluctuations, etc., despite their differences in local conformations. However, in quasi-one-dimensional confinement two significant differences between both models occur: (i) The persistence length (extracted from the average cosine of the bond angle) gets renormalized for the lattice model when D gets less than the bulk persistence length, while in the continuum model it stays unchanged. (ii) The monomer density near the repulsive walls for semiflexible polymers is compatible with a power law predicted for the Kratky-Porod model in the case of the bead-spring model, while for the lattice case it tends to a nonzero constant across the strip. However, for the density of chain ends, such a constant behavior seems to occur for both models, unlike the power law observed for flexible polymers. In the regime where the bulk persistence length ℓp is comparable to D, hairpin conformations are detected, and the chain linear dimensions are discussed in terms of a crossover from the Daoud/De Gennes "string of blobs"-picture to the flexible rod picture when D decreases and/or the chain stiffness increases. Introducing a suitable further coarse-graining of the chain contours of the continuum model, direct estimates for the deflection length and its distribution could be obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Liang; Akgun, Bulent; Narayanan, Suresh
Swollen polymer brushes are found in many systems where the brush is intended to mediate interactions with the surroundings. The surface height fluctuations of planar polystyrene brushes (0.04 – 0.63 chains/nm2) highly swollen in toluene vapor are so strongly slowed by the tethering of the chains that they are unobservable in the current experimental window of length and time. This is the case despite the fact that the segmental dynamics of the brush chains should be very fast due to the substantial plasticization by the solvent. With respect to thermally stimulated fluctuations, the surfaces of these swollen brushes are solid-likemore » on time scales and length scales pertinent to many practical applications.« less
Small Angle Neutron Scattering Observation of Chain Retraction after a Large Step Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, A.; Heinrich, M.; Pyckhout-Hintzen, W.
The process of retraction in entangled linear chains after a fast nonlinear stretch was detected from time-resolved but quenched small angle neutron scattering (SANS) experiments on long, well-entangled polyisoprene chains. The statically obtained SANS data cover the relevant time regime for retraction, and they provide a direct, microscopic verification of this nonlinear process as predicted by the tube model. Clear, quantitative agreement is found with recent theories of contour length fluctuations and convective constraint release, using parameters obtained mainly from linear rheology. The theory captures the full range of scattering vectors once the crossover to fluctuations on length scales belowmore » the tube diameter is accounted for.« less
Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E
2013-09-01
The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.
Effect of chain length on binding of fatty acids to Pluronics in microemulsions.
James-Smith, Monica A; Shekhawat, Dushyant; Cheung, Sally; Moudgil, Brij M; Shah, Dinesh O
2008-03-15
We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.
Odd-even chain packing, molecular and thermal models for some long chain sodium(I) n-alkanoates
NASA Astrophysics Data System (ADS)
Nelson, Peter N.; Ellis, Henry A.
2014-10-01
A homologous series of sodium(I) n-alkanoates, NaCnH2n-1O2, with chain lengths n = 8-18, inclusive, have been synthesized and their structural and thermal properties investigated via Fourier Transform Infrared and Solid State 13C NMR spectroscopies, X-ray powder diffraction, Thermogravimetry, Differential Scanning Calorimetry, Polarizing light microscopy and variable temperature Infrared spectroscopy. The measurements show that metal-carboxylate coordination is via asymmetric chelating bidentate bonding with extensive carboxyl group inter-molecular interactions in which four oxygen atoms are bonded tetrahedrally to a sodium atom. Furthermore, the compounds crystallize in a monoclinic crystal system with the hydrocarbon chains in the fully extended all-trans conformation, advancing along the c-axis. Moreover, the chains are packed as tilted (θ ∼ 63°), non-overlapping, tail-to-tail lamellar bilayers that are not in the same plane, within a lamellar. Though these compounds are nearly isostructural, there are subtle differences in the packing of the hydrocarbon chains in the crystal lattice, resulting in odd-even alternation in the terminal methyl group asymmetric stretching vibration and chemical shift. These differences arise from the relative vertical distances between hydrocarbon planes within the lamellar; such that, for odd-chain compounds, larger inter-planar distances result in less efficient packing in the crystal lattice and hence, lower inter-planar van der Waals interactions between hydrocarbon chains. Thermal traces, for all compounds, show several partially reversible solid-solid pre-melting transitions associated with different degrees of gauche conformers in the alkyl chains. The reversible gauche-trans isomerism, of the methylene groups, is kinetically controlled; hence, super-cooling of the melt and other transitions, are observed for all compounds. The kinetics of chain reversion follow the exponential law of nucleation, though complicated by competing processes. Thermogravimetric data show that all compounds decompose at temperatures in excess of 690 K; therefore, free radical thermal cracking of the hydrocarbon chains, in conjunction with decarboxylation is proposed for their non-oxidative degradation mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Short, Mark; Chliquete, Carlos
2011-01-20
The pulsating dynamics of gaseous detonations with a model two-step chain-branching kinetic mechanism are studied both numerically and asymptotically. The model studied here was also used in [4], [3] and [2] and mimics the attributes of some chain-branching reaction mechanisms. Specifically, the model comprises a chain-initiationlbranching zone with an Arrhenius temperature-sensitive rate behind the detonation shock where fuel is converted into chain-radical with no heat release. This is followed by a chain-termination zone having a temperature insensitive rate where the exothermic heat of reaction is released. The lengths of these two zones depend on the relative rates of each stage.more » It was determined in [4] and [3] via asymptotic and numerical analysis that the ratio of the length of the chain-branching zone to that of the chain-initation zone relative to the size of the von Neumann state scaled activation energy in the chain initiation/branching zone has a primary influence of the stability of one-dimensional pulsating instability behavior for this model. In [2], the notion of a specific stability parameter related to this ratio was proposed that determines the boundary between stable and unstable waves. In [4], a slow-time varying asymptotic study was conducted of pulsating instability of Chapman-Jouguet (CJ) detonations with the above two-step rate model, assuming a large activation energy for the chain-initiation zone and a chain-termination zone longer than the chain-initiation zone. Deviations D{sub n}{sup (1)} ({tau}) of the detonation velocity from Chapman-Jouguet were of the order of the non-dimensional activation energy. Solutions were sought for a pulsation timescale of the order of the non-dimensional activation energy times the particle transit time through the induction zone. On this time-scale, the evolution of the chain-initation zone is quasi-steady. In [4], a time-dependent non-linear evolution equation for D{sub n}{sup (1)} ({tau}) was then constructed via a perturbation procedure for cases where the ratio of the length of the chain-termination zone to chain-initiation zone was less than the non-dimensional activation energy. To leading order, the steady CJ detonation was found to be unstable; higher-order corrections lead to the construction of a stability limit between stable and unsteady pulsating solutions. One conclusion from this study is that for a stability limit to occur at leading order, the period of pulsation of the detonation must occur on the time scale of particle passage through the longer chain-termination zone, while the length of the chain-termination zone must be of order of the non-dimensional activation energy longer than the chain-initiation zone. The relevance of these suggested scalings was verified via numerical solutions of the full Euler system in [3], and formed the basis of the stability parameter criteria suggested in [2]. In the following, we formulate an asymptotic study based on these new suggested scales, studying the implications for describing pulsating behavior in gaseous chain-branching detonations. Specifically, we find that the chain-induction zone structure is the same as that studied in [4]. However, the study of unsteady evolution in the chain-termination region is now governed by a set of asymptotically derived nonlinear POEs. Equations for the linear stablity behavior of this set of POE's is obtained, while the nonlinear POEs are solved numerically using a shock-attached, shock-fitting method developed by Henrick et aJ. [1]. The results thus far show that the stability threshold calculated using the new ratio of the chain-termination zone length to that of the chain-initiation zone yields a marked improvement over [2]. Additionally, solutions will be compared with predictions obtained from the solution of the full Euler system. Finally, the evolution equation previously derived in [4] has been generalized to consider both arbitrary reaction orders and any degree of overdrive.« less
Sato, Hisako; Yajima, Tomoko; Yamagishi, Akihiko
2016-05-01
Vibrational circular dichroism (VCD) spectroscopy was applied to gelation by a chiral low-molecular mass weight gelator, N,N'-diperfluoroalkanoyl-1,2-trans-diaminocyclohexane. Attention was focused on the winding effects of (-CF2 )n chains on the gelating ability. For this purpose, a series of gelators were synthesized with perfluoroalkyl chains of different length (n = 6-8). When gelation was studied using acetonitrile as a solvent, the fibrils took different morphologies, depending on the chain length: twisted saddle-like ribbon or helical ribbon from fibril (n = 6) and a helical ribbon from platelet (n = 8). The signs of VCD peaks assigned to the couplet of C=O stretching and to the C-F stretching were also dependent on n, indicating that a gelator molecule changed conformation on elongating perfluoroalkyl chains. A model is proposed for the aggregation modes in fibrils. Chirality 28:361-364, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chocholáč, Jan; Průša, Petr
2016-12-01
The bullwhip effect generally refers to the phenomenon where order variability increases as the orders move upstream in the supply chain. It is serious problem for every member of the supply chain. This effect begins at customers and passes through the chain to producers, which are at the end of the logistic chain. Especially food supply chains are affected by this issue. These chains are unique for problems of expiration of goods (particularly perishable goods), variable demand, orders with quantity discounts and effort to maximize the customer satisfaction. This paper will present the problem of the bullwhip effect in the real supply chain in the food industry. This supply chain consists of approximately 350 stores, four central warehouses and more than 1000 suppliers, but the case study will examine 87 stores, one central warehouse and one supplier in 2015. The aim of this paper is the analysis of the order variability between the various links in this chain and confirmation of the bullwhip effect in this chain. The subject of the analysis will be perishable goods.
Kato, Kayoko; Kalathil, Akil A; Patel, Ayesha M; Ye, Xiaoyun; Calafat, Antonia M
2018-06-14
Per- and polyfluoroalkyl substances (PFAS), man-made chemicals with variable length carbon chains containing the perfluoroalkyl moiety (C n F 2n+1 -), are used in many commercial applications. Since 1999-2000, several long-chain PFAS, including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), have been detected at trace levels in the blood of most participants of the National Health and Nutrition Examination Survey (NHANES)-representative samples of the U.S. general population-while short-chain PFAS have not. Lower detection frequencies and concentration ranges may reflect lower exposure to short-chain PFAS than to PFOS or PFOA or that, in humans, short-chain PFAS efficiently eliminate in urine. We developed on-line solid phase extraction-HPLC-isotope dilution-MS/MS methods for the quantification in 50 μL of urine or serum of 15 C 3 -C 11 PFAS (C 3 only in urine), and three fluorinated alternatives used as PFOA or PFOS replacements: GenX (ammonium salt of 2,3,3,3,-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoate, also known as HFPO-DA), ADONA (ammonium salt of 4,8-dioxa-3H-perfluorononanoate), and 9Cl-PF3ONS (9-chlorohexadecafluoro-3-oxanonane-1-sulfonate), main component of F53-B. Limit of detection for all analytes was 0.1 ng/mL. To validate the method, we analyzed 50 commercial urine/serum paired samples collected in 2016 from U.S. volunteers with no known exposure to the chemicals. In serum, detection frequency and concentration patterns agreed well with those from NHANES. By contrast, except for perfluorobutanoate, we did not detect long-chain or short-chain PFAS in urine. Also, we did not detect fluorinated alternatives in either urine or serum. Together, these results suggest limited exposure to both short-chain PFAS and select fluorinated alternatives in this convenience population. Copyright © 2018. Published by Elsevier Ltd.
Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V
2016-11-01
Polymer adsorption is a ubiquitous phenomenon with numerous technological and healthcare applications. The mechanisms of polymer adsorption on surfaces and in pores are complex owing to a competition between various entropic and enthalpic factors. Due to adsorption of monomers to the surface, the chain gains in enthalpy yet loses in entropy because of confining effects. This competition leads to the existence of critical conditions of adsorption when enthalpy gain and entropy loss are in balance. The critical conditions are controlled by the confining geometry and effective adsorption energy, which depends on the solvent composition and temperature. This phenomenon has important implications in polymer chromatography, since the retention at the critical point of adsorption (CPA) is chain length independent. However, the mechanisms of polymer adsorption in pores are poorly understood and there is an ongoing discussion in the theoretical literature about the very existence of CPA for polymer adsorption on porous substrates. In this work, we examine the mechanisms of chain adsorption on a model porous substrate using Monte Carlo (MC) simulations. We distinguish three adsorption mechanisms depending on the chain location: on external surface, completely confined in pores, and also partially confined in pores in so-called "flower" conformations. The free energies of different conformations of adsorbed chains are calculated by the incremental gauge cell MC method that allows one to determine the partition coefficient as a function of the adsorption potential, pore size, and chain length. We confirm the existence of the CPA for chain length independent separation on porous substrates, which is explained by the dominant contributions of the chain adsorption at the external surface, in particular in flower conformations. Moreover, we show that the critical conditions for porous and nonporous substrates are identical and depend only on the surface chemistry. The theoretical results are confirmed by comparison with experimental data on chromatographic separation of a series of linear polystyrenes. Copyright © 2016 Elsevier Inc. All rights reserved.
2012-08-01
paper, we will first briefly discuss our recent results, using coarse-grained bead - spring model , on the dependence of failure stress and failure...length of the resin strands. In the coarse-grained model used here the polymer network is treated as a bead - spring system. To create highly cross...simulations of Thermosets We have used a coarse-grained bead - spring model to study the dependence of the mechanical properties of thermosets on chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niwa, Masazo; Hayashi, Takehiro; Higashi, Nobuyuki
1990-01-01
Amphiphilic block polymers (2,3) composed of poly(acrylic acid) (PAA) or poly(oxyethylene) (POE) and chain length controlled poly(styrene) (PSt) have been prepared by using a catalytic system of tribromomethyl-terminated oligomer and manganese carbonyl. All the amphiphilic materials formed well-behaved surface monolayers, and the II-A curves for them expanded systematically with an increase of the PSt chain length.
End-monomer Dynamics in Semiflexible Polymers
Hinczewski, Michael; Schlagberger, Xaver; Rubinstein, Michael; Krichevsky, Oleg; Netz, Roland R.
2009-01-01
Spurred by an experimental controversy in the literature, we investigate the end-monomer dynamics of semiflexible polymers through Brownian hydrodynamic simulations and dynamic mean-field theory. Precise experimental observations over the last few years of end-monomer dynamics in the diffusion of double-stranded DNA have given conflicting results: one study indicated an unexpected Rouse-like scaling of the mean squared displacement (MSD) 〈r2(t)〉 ~ t1/2 at intermediate times, corresponding to fluctuations at length scales larger than the persistence length but smaller than the coil size; another study claimed the more conventional Zimm scaling 〈r2(t)〉 ~ t2/3 in the same time range. Using hydrodynamic simulations, analytical and scaling theories, we find a novel intermediate dynamical regime where the effective local exponent of the end-monomer MSD, α(t) = d log〈r2(t)〉/d log t, drops below the Zimm value of 2/3 for sufficiently long chains. The deviation from the Zimm prediction increases with chain length, though it does not reach the Rouse limit of 1/2. The qualitative features of this intermediate regime, found in simulations and in an improved mean-field theory for semiflexible polymers, in particular the variation of α(t) with chain and persistence lengths, can be reproduced through a heuristic scaling argument. Anomalously low values of the effective exponent α are explained by hydrodynamic effects related to the slow crossover from dynamics on length scales smaller than the persistence length to dynamics on larger length scales. PMID:21359118
VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture.
Wang, Fengfeng; Dijksterhuis, Jan; Wyatt, Timon; Wösten, Han A B; Bleichrodt, Robert-Jan
2015-01-01
Aspergillus species are highly abundant fungi worldwide. Their conidia are among the most dominant fungal spores in the air. Conidia are formed in chains on the vesicle of the asexual reproductive structure called the conidiophore. Here, it is shown that the velvet protein VeA of Aspergillus niger maximizes the diameter of the vesicle and the spore chain length. The length and width of the conidiophore stalk and vesicle were reduced nearly twofold in a ΔveA strain. The latter implies a fourfold reduced surface area to develop chains of spores. Over and above this, the conidial chain length was approximately fivefold reduced. The calculated 20-fold reduction in formation of conidia by ΔveA fits the 8- to 17-fold decrease in counted spore numbers. Notably, morphology of the ΔveA conidiophores of A. niger was very similar to that of wild-type Aspergillus sydowii. This suggests that VeA is key in conidiophore architecture diversity in the fungal kingdom. The finding that biomass formation of the A. niger ΔveA strain was reduced twofold shows that VeA not only impacts dispersion capacity but also colonization capacity of A. niger.
Dynamics and order-disorder transitions in bidisperse diblock copolymer blends
NASA Astrophysics Data System (ADS)
Wang, Yueqiang; Li, Xuan; Tang, Ping; Yang, Yuliang
2011-03-01
We employ the dynamic extension of self-consistent field theory (DSCFT) to study dynamics and order-disorder transitions (ODT) in AB diblock copolymer binary mixtures of two different monodisperse chain lengths by imitating the dynamic storage modulus G‧ corresponding to any given morphology in the oscillatory shear measurements. The different polydispersity index (PDI) is introduced by binary blending AB diblock copolymers with variations in chain lengths and chain number fractions. The simulation results show that the increase of polydispersity in the minority or symmetric block introduces a decrease in the segregation strength at the ODT, ( χN) ODT, whereas the increase of polydispersity in the majority block results in a decrease, then increase and final decrease again in ( χN) ODT. To the best of our knowledge, our DSCFT simulations, for the first time, predict an increase in ( χN) ODT with the PDI in the majority block, which produces the experimental results. The simulations by previous SCFT, which generally speaking, is capable of describing equilibrium morphologies, however, contradict the experimental data. The polydispersity acquired by properly tuning the chain lengths and number fractions of binary diblock copolymer blends should be a convenient and efficient way to control the microphase separation strength at the ODT.
Hilger, Bettina; Fromme, Hermann; Völkel, Wolfgang; Coelhan, Mehmet
2011-04-01
Log octanol-water partition coefficients (log Kow) of 40 synthesized polychlorinated n-alkanes (PCAs) with different chlorination degrees were determined using reversed-phase high performance liquid chromatography (RP-HPLC). In addition, log Kow values of a technical mixture namely Cereclor 63L as well as 15 individual in house synthesized C10, C11, and C12 chloroalkanes with known chlorine positions were estimated. Based on these results, the effects of chain length, chlorination degree, and structure were explored. The estimated log Kow values ranged from 4.10 (polychlorinated n-decanes with 50.2% chlorine content) to 11.34 (polychlorinated n-octacosanes with 54.8% chlorine content) for PCAs and from 3.82 (1,2,5,6,9,10-hexachlorodecane) to 7.75 (1,1,1,3,9,11,11,11-octachlorododecane) for the individual chloroalkanes studied. The results showed that log Kow value was influenced linearly at a given chlorine content by chain length, while a polynominal effect was observed in dependence on the chlorination degree of an alkane chain. Chlorine substitution pattern influenced markedly the log Kow value of chloroalkanes.
Nakamura, Issei
2014-05-29
We studied the thermodynamic properties of ion solvation in polymer blends and block copolymer melts and developed a dipolar self-consistent field theory for polymer mixtures. Our theory accounts for the chain connectivity of polymerized monomers, the compressibility of the liquid mixtures under electrostriction, the permanent and induced dipole moments of monomers, and the resultant dielectric contrast among species. In our coarse-grained model, dipoles are attached to the monomers and allowed to rotate freely in response to electrostatic fields. We demonstrate that a strong electrostatic field near an ion reorganizes dipolar monomers, resulting in nonmonotonic changes in the volume fraction profile and the dielectric function of the polymers with respect to those of simple liquid mixtures. For the parameter sets used, the spatial variations near an ion can be in the range of 1 nm or larger, producing significant differences in the solvation energy among simple liquid mixtures, polymer blends, and block copolymers. The solvation energy of an ion depends substantially on the chain length in block copolymers; thus, our theory predicts the preferential solvation of ions arising from differences in chain length.
Newtonian Analysis of a Folded Chain Drop
ERIC Educational Resources Information Center
Mungan, Carl E.
2018-01-01
Consider a chain of length L that hangs in a U shape with end A fixed to a rigid support and free end E released from rest starting from the same initial height (call it y = 0) as A. Figure 1 sketches the chain after end E has fallen a distance y. Points O and A are assumed to be close enough to each other and the chain flexible enough that the…
Collapse kinetics of vibrated granular chains
NASA Astrophysics Data System (ADS)
Jeng, Pei-Ren; Chen, Kuan Hua; Hwang, Gwo-jen; Lien, Chenhsin; To, Kiwing; Chou, Y. C.
2011-12-01
The kinetics of the collapse of the coil state into condensed states is studied with vibrated granular chain composed of N metal beads partially immersed in water. The radius of gyration of the chain, Rg is measured. For short chains (N < 140), disk-like condensed state is formed and Rg decreases with time such that the function ΔRg2 (≡ Rg2 - Rg2(∞)) = A e-t/τ, where the relaxation time τ follows a power-law dependence on the chain length N with an exponent γ = 1.9 ± 0.2. For the chains with length N ≥ 300, rod-like clusters are observed during the initial stage of collapse and Rg2 = Rg2(0) - Btβ, with β = 0.6 ± 0.1. In the coarsening stage, the exponential dependence of ΔRg2 on time still holds, however, the relaxation time τ fluctuates and has no simple dependence on N. Furthermore, the time dependence of the averaged radius of gyration of the individual clusters, Rg,cl can be described by the theory of Lifshitz and Slyozov. A peak in the structure function of long chains is observed in the initial stage of the collapse transition. The collapse transition in the bead chains is a first order phase transition. However, features of the spinodal decomposition are also observed.
The Impact of Ownership on Hospice Service Use, 2005–2011
Stevenson, David G.; Grabowski, David C.; Keating, Nancy L.; Huskamp, Haiden A.
2016-01-01
Background/Objectives For-profit agencies comprise the majority of all United States hospice agencies, prompting concerns about aggressive enrollment practices and deficient care. Using detailed administrative data from 2005–2011, we sought to assess differences in patient populations and service use by hospice ownership, chain status, and agency size. Design/Participants Retrospective cohort study of 5,405,526 Medicare beneficiaries age 65+ enrolled in hospice during 2005–2011. Hospice use by ownership category (for-profit non-chain and chain, not-for-profit non-chain and chain, government) and agency size (0–50 patients, 51–200, 201–400, 401+). Mean length-of-use, stays ≤3 days, stays ending with live discharge, and decedents receiving no general inpatient care (GIP) or continuous home care (CHC) level hospice in the last 7 days of life. Results After adjusting for patient and geographic differences, for-profit non-chain and chain agencies had longer mean lengths-of-use (84.5 and 91.2 days, respectively) than other agency types (66.3–72.5 days); higher rates of live discharge (21.0% and 20.2% versus 14.6%–15.9%); and lower proportions of stays of ≤3 days (13.9% and 14.7% versus 16.6%–17.5%) (all p-values<0.001). The proportion of decedents not receiving GIP/CHC level care before death was highest among for-profit chains (75.9%) and lowest among not-for-profit non-chains (63.2%). Across ownership categories, smaller agencies had longer mean lengths-of-use, higher live discharge rates, lower rates of stays ≤3 days, and higher rates of patients receiving no GIP/CHC level care. Considerable variation in patient traits and unadjusted service use existed among the nation’s largest chains. Conclusion Although for-profit and not-for-profit hospice agencies differ along key dimensions, our results convey substantial heterogeneity within these categories, highlighting the need to consider factors such as agency size and chain affiliation in understanding variations in Medicare beneficiaries’ hospice care. PMID:27131344
Acelam, Philip A
2015-01-01
To determine and verify how anthropometric variables correlate to ureteric lengths and how well statistical models approximate the actual ureteric lengths. In this work, 129 charts of endourological patients (71 females and 58 males) were studied retrospectively. Data were gathered from various research centers from North and South America. Continuous data were studied using descriptive statistics. Anthropometric variables (age, body surface area, body weight, obesity, and stature) were utilized as predictors of ureteric lengths. Linear regressions and correlations were used for studying relationships between the predictors and the outcome variables (ureteric lengths); P-value was set at 0.05. To assess how well statistical models were capable of predicting the actual ureteric lengths, percentages (or ratios of matched to mismatched results) were employed. The results of the study show that anthropometric variables do not correlate well to ureteric lengths. Statistical models can partially estimate ureteric lengths. Out of the five anthropometric variables studied, three of them: body frame, stature, and weight, each with a P<0.0001, were significant. Two of the variables: age (R (2)=0.01; P=0.20) and obesity (R (2)=0.03; P=0.06), were found to be poor estimators of ureteric lengths. None of the predictors reached the expected (match:above:below) ratio of 1:0:0 to qualify as reliable predictors of ureteric lengths. There is not sufficient evidence to conclude that anthropometric variables can reliably predict ureteric lengths. These variables appear to lack adequate specificity as they failed to reach the expected (match:above:below) ratio of 1:0:0. Consequently, selections of ureteral stents continue to remain a challenge. However, height (R (2)=0.68) with the (match:above:below) ratio of 3:3:4 appears suited for use as estimator, but on the basis of decision rule. Additional research is recommended for stent improvements and ureteric length determinations.
Acelam, Philip A
2015-01-01
Objective To determine and verify how anthropometric variables correlate to ureteric lengths and how well statistical models approximate the actual ureteric lengths. Materials and methods In this work, 129 charts of endourological patients (71 females and 58 males) were studied retrospectively. Data were gathered from various research centers from North and South America. Continuous data were studied using descriptive statistics. Anthropometric variables (age, body surface area, body weight, obesity, and stature) were utilized as predictors of ureteric lengths. Linear regressions and correlations were used for studying relationships between the predictors and the outcome variables (ureteric lengths); P-value was set at 0.05. To assess how well statistical models were capable of predicting the actual ureteric lengths, percentages (or ratios of matched to mismatched results) were employed. Results The results of the study show that anthropometric variables do not correlate well to ureteric lengths. Statistical models can partially estimate ureteric lengths. Out of the five anthropometric variables studied, three of them: body frame, stature, and weight, each with a P<0.0001, were significant. Two of the variables: age (R2=0.01; P=0.20) and obesity (R2=0.03; P=0.06), were found to be poor estimators of ureteric lengths. None of the predictors reached the expected (match:above:below) ratio of 1:0:0 to qualify as reliable predictors of ureteric lengths. Conclusion There is not sufficient evidence to conclude that anthropometric variables can reliably predict ureteric lengths. These variables appear to lack adequate specificity as they failed to reach the expected (match:above:below) ratio of 1:0:0. Consequently, selections of ureteral stents continue to remain a challenge. However, height (R2=0.68) with the (match:above:below) ratio of 3:3:4 appears suited for use as estimator, but on the basis of decision rule. Additional research is recommended for stent improvements and ureteric length determinations. PMID:26317082
1985-01-01
Previous studies (21) have shown that two mouse kappa light (L) chain variable (V) region polymorphisms, the IB-peptide and Efla markers, reflect expression of a characteristic group of V kappa regions, called V kappa Ser, by some inbred strains and not others. Expression of V kappa Ser is controlled by a locus on chromosome 6, the chromosome that contains the kappa locus. To further characterize this V kappa group and begin to analyze the basis for its strain-specific expression, full- length complementary DNA (cDNA) copies were produced of L chain mRNA from the M75 myeloma that had been induced in the C.C58 strain of mice, and which produces a V kappa Ser L chain. The C.C58 strain is congenic with BALB/cAn, differing in the region of chromosome 6 that controls expression of the V kappa polymorphisms and the Lyt-2 and Lyt-3 T cell alloantigens. The complete nucleotide sequence of this cloned cDNA was determined and compared with the nucleotide sequences the most closely related BALB/c myeloma L chains known. Results indicated significant differences throughout the variable region, but particularly toward the 5' portion of the sequence. A probe corresponding to 200 bp of the 5' end of the cloned V kappa Ser cDNA was used in Southern hybridizations of restriction digests of liver DNA from a number of inbred, recombinant, and recombinant inbred strains. Under stringent hybridization conditions, one strongly-hybridizing fragment was observed in Bam HI, Hind III, and Eco RI digests, and based on the size of the fragments, strains could be organized into two groups. The presence of strongly hybridizing Bam HI, Hind III, and Eco RI fragments of 3.2, 2.8, and 2.1 kb, respectively, was found to correlate completely with expression by the strain of the IB-peptide and Efla markers. All nonexpressor strains yielded hybridizing fragments of 7.8, 8.4, and 2.8 kb, respectively. Possible explanations for strain- specific expression of V kappa Ser-associated phenotypic markers are discussed. PMID:3926938
Školová, Barbora; Kováčik, Andrej; Tesař, Ondřej; Opálka, Lukáš; Vávrová, Kateřina
2017-05-01
Ceramides based on phytosphingosine, sphingosine and dihydrosphingosine are essential constituents of the skin lipid barrier that protects the body from excessive water loss. The roles of the individual ceramide subclasses in regulating skin permeability and the reasons for C4-hydroxylation of these sphingolipids are not completely understood. We investigated the chain length-dependent effects of dihydroceramides, sphingosine ceramides (with C4-unsaturation) and phytoceramides (with C4-hydroxyl) on the permeability, lipid organization and thermotropic behavior of model stratum corneum lipid membranes composed of ceramide/lignoceric acid/cholesterol/cholesteryl sulfate. Phytoceramides with very long C24 acyl chains increased the permeability of the model lipid membranes compared to dihydroceramides or sphingosine ceramides with the same chain lengths. Either unsaturation or C4-hydroxylation of dihydroceramides induced chain length-dependent increases in membrane permeability. Infrared spectroscopy showed that C4-hydroxylation of the sphingoid base decreased the relative ratio of orthorhombic chain packing in the membrane and lowered the miscibility of C24 phytoceramide with lignoceric acid. The phase separation in phytoceramide membranes was confirmed by X-ray diffraction. In contrast, phytoceramides formed strong hydrogen bonds and highly thermostable domains. Thus, the large heterogeneity in ceramide structures and in their aggregation mechanisms may confer resistance towards the heterogeneous external stressors that are constantly faced by the skin barrier. Copyright © 2017 Elsevier B.V. All rights reserved.
Brownian Dynamics Simulations of Polyelectrolyte Adsorption in Shear Flow
NASA Astrophysics Data System (ADS)
Panwar, Ajay
2005-03-01
The adsorption of polyelectrolytes onto charged surfaces often occurs in microfludic devices and can influence their operation. We employ Brownian dynamics simulations to investigate the effect of a simple shear flow on the adsorption of an isolated polyelectrolyte molecule onto an oppositely charged surface. The polyelectrolyte is modeled as a freely-jointed bead-rod chain where the total charge is distributed uniformly among all the beads, and the beads are allowed to interact with one another and the charged surface through screened Coulombic interactions. The simulations are performed by placing the chain some distance above the surface, and the adsorption behavior is studied as a function of the screening length. Specifically, we look at the components of the radius of gyration, normal and parallel to the adsorbing surface, as functions of the screening length, both in the absence and presence of the flow. We find that in the absence of flow, the chain lies flat and stretched on the adsorbing surface in the limit of weak screening, but attains free solution behavior in the limit of strong screening. In the presence of a shear flow, the chain orientation in the direction of the flow increases with increasing Weissenberg number over the entire range of screening lengths studied. We also find that increasing the strength of the shear flow leads to an increased contact of the chain with the surface compared to the case when no flow is present.
Optimal choice of word length when comparing two Markov sequences using a χ 2-statistic.
Bai, Xin; Tang, Kujin; Ren, Jie; Waterman, Michael; Sun, Fengzhu
2017-10-03
Alignment-free sequence comparison using counts of word patterns (grams, k-tuples) has become an active research topic due to the large amount of sequence data from the new sequencing technologies. Genome sequences are frequently modelled by Markov chains and the likelihood ratio test or the corresponding approximate χ 2 -statistic has been suggested to compare two sequences. However, it is not known how to best choose the word length k in such studies. We develop an optimal strategy to choose k by maximizing the statistical power of detecting differences between two sequences. Let the orders of the Markov chains for the two sequences be r 1 and r 2 , respectively. We show through both simulations and theoretical studies that the optimal k= max(r 1 ,r 2 )+1 for both long sequences and next generation sequencing (NGS) read data. The orders of the Markov chains may be unknown and several methods have been developed to estimate the orders of Markov chains based on both long sequences and NGS reads. We study the power loss of the statistics when the estimated orders are used. It is shown that the power loss is minimal for some of the estimators of the orders of Markov chains. Our studies provide guidelines on choosing the optimal word length for the comparison of Markov sequences.
Computer Simulations of Bottlebrush Melts and Soft Networks
NASA Astrophysics Data System (ADS)
Cao, Zhen; Carrillo, Jan-Michael; Sheiko, Sergei; Dobrynin, Andrey
We have studied dense bottlebrush systems in a melt and network state using a combination of the molecular dynamics simulations and analytical calculations. Our simulations show that the bottlebrush macromolecules in a melt behave as ideal chains with the effective Kuhn length bK. The bottlebrush induced bending rigidity is due to redistribution of the side chains upon backbone bending. Kuhn length of the bottlebrushes increases with increasing the side-chain degree of polymerization nsc as bK ~nsc0 . 46 . This model of bottlebrush macromolecules is extended to describe mechanical properties of bottlebrush networks in linear and nonlinear deformation regimes. In the linear deformation regime, the network shear modulus scales with the degree of polymerization of the side chains as G0 ~
Primary alcohols activate human TRPA1 channel in a carbon chain length-dependent manner.
Komatsu, Tomoko; Uchida, Kunitoshi; Fujita, Fumitaka; Zhou, Yiming; Tominaga, Makoto
2012-04-01
Transient receptor potential ankyrin 1 (TRPA1) is a calcium-permeable non-selective cation channel that is mainly expressed in primary nociceptive neurons. TRPA1 is activated by a variety of noxious stimuli, including cold temperatures, pungent compounds such as mustard oil and cinnamaldehyde, and intracellular alkalization. Here, we show that primary alcohols, which have been reported to cause skin, eye or nasal irritation, activate human TRPA1 (hTRPA1). We measured intracellular Ca(2+) changes in HEK293 cells expressing hTRPA1 induced by 1 mM primary alcohols. Higher alcohols (1-butanol to 1-octanol) showed Ca(2+) increases proportional to the carbon chain length. In whole-cell patch-clamp recordings, higher alcohols (1-hexanol to 1-octanol) activated hTRPA1 and the potency increased with the carbon chain length. Higher alcohols evoked single-channel opening of hTRPA1 in an inside-out configuration. In addition, cysteine at 665 in the N terminus and histidine at 983 in the C terminus were important for hTRPA1 activation by primary alcohols. Furthermore, straight-chain secondary alcohols increased intracellular Ca(2+) concentrations in HEK293 cells expressing hTRPA1, and both primary and secondary alcohols showed hTRPA1 activation activities that correlated highly with their octanol/water partition coefficients. On the other hand, mouse TRPA1 did not show a strong response to 1-hexanol or 1-octanol, nor did these alcohols evoke significant pain in mice. We conclude that primary and secondary alcohols activate hTRPA1 in a carbon chain length-dependent manner. TRPA1 could be a sensor of alcohols inducing skin, eye and nasal irritation in human.
Das, Sudhir Kumar; Sarkar, Moloy
2012-01-12
Rotational dynamics of two neutral organic solutes, coumarin-153 (C-153) and 4-aminophthalimide (AP), with only the latter having hydrogen-bond-donating ability, has been investigated in a series of 1-ethyl-3-methylimidazolium alkyl sulfate ionic liquids as a function of temperature. The ionic liquids differ only in the length of the linear alkyl side chain (alkyl = ethyl, butyl, hexyl, and octyl) on the anionic moiety. The present study has been undertaken to examine the role of alkyl side chains on the rotational dynamics of the two solutes in these ionic liquids. Analysis of the results using Stokes-Einstein-Debye hydrodynamic theory indicates that the rotational dynamics of C-153 lies between the stick and slip boundary condition in the ethyl analogue and finally reaches subslip condition as in case of the octyl substituent. The observed rotational behavior of C-153 has been explained on the basis of an increase in the size of the solvent, which offers lower friction for solute rotation. On the other hand, AP shows superstick behavior in the ethyl system and exceeds the stick limit in the octyl derivative. Superstick behavior of AP has been attributed to the specific hydrogen-bonding interaction between AP and the sulfate moiety. Proton NMR investigation confirms the hydrogen-bonding interaction between the N-H hydrogen of AP and the ionic liquid. The decrease in rotational coupling constant values for AP with increasing length of alkyl side chains has been attributed to the decrease in the solute-solvent-specific interaction with an increase in the alkyl side chain length on the sulfate moiety.
Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Łukasz; Heipieper, Hermann J
2017-01-01
Combination of the hydrophilic herbicidal anion with hydrophobic, antimicrobial ammonium cation allows to obtain compounds in ionic liquid form with better properties then conventional herbicides. Both cation and anion can be modified by selection of herbicide and the length of alkyl chains in cation structure. However the knowledge of their potential toxic effects are still limited. Furthermore, the relation between hydrophobicity associated with the length of alkyl chains and toxicity for ionic liquids has not been thoroughly studied. Therefore we investigated toxic effects of herbicidal ionic liquid forms on growth inhibition, given as EC 50, of the common soil bacterium Pseudomonas putida. We thereby concentrated on quaternary ammonium salts. Analyzed compounds were composed of dicamba or MCPP moieties and cation with various alkyl chain lengths (n = 6,8,10) We compared them with commercial herbicides, and ammonium-based ionic liquids with neutral anion (Br - ). In addition, cis-trans isomerisation of unsaturated membrane fatty acids in Pseudomonas putida was applied as the proxy for toxicity and membrane activity. We showed that toxicity increased with the length of alkyl chains. However, this correlation is only valid for six and eight carbon atom in alkyl chains, where for n = 10 the EC 50 values rise by one order of magnitude. In our studies, the herbicidal ionic liquids [C 10 ,C 10 ,C 1 ,C 1 N][MCPP] and [C 10 ,C 10 ,C 1 ,C 1 N][dicamba] showed the lowest toxicity among analyzed quaternary ammonium salts and comparable toxicity with corresponding herbicides. No clear increase in toxicity could be followed by changing the anion moieties for ammonium-based ionic liquid forms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sayari, Adel; Mosbah, Habib; Gargouri, Youssef
2007-05-01
In addition to their physiological importance, microbial lipases, like staphylococcal ones, are of considerable commercial interest for biotechnological applications such as detergents, food production, and pharmaceuticals and industrial synthesis of fine chemicals. The gene encoding the extracellular lipase of Staphylococcus simulans (SSL) was subcloned in the pET-14b expression vector and expressed in Esherichia coli BL21 (DE3). The wild-type SSL was expressed as amino terminal His6-tagged recombinant protein. One-step purification of the recombinant lipase was achieved with nickel metal affinity column. The purified His-tagged SSL (His6-SSL) is able to hydrolyse triacylglycerols without chain length selectivity. The major differences among lipases are reflected in their chemical specificity in the hydrolysis of peculiar ester bonds, and their respective capacity to hydrolyse substrates having different physico-chemical properties. It has been proposed, using homology alignment, that the region around the residue 290 of Staphylococcus hyicus lipase could be involved in the selection of the substrate. To evaluate the importance of this environment, the residue Asp290 of Staphylococcus simulans lipase was mutated to Ala using site-directed mutagenesis. The mutant expression plasmid was also overexpressed in Esherichia coli and purified with a nickel metal affinity column. The substitution of Asp290 by Ala was accompanied by a significant shift of the acyl-chain length specificity of the mutant towards short chain fatty acid esters. Kinetic studies of wild-type SSL and its mutant D290A were carried out, and show essentially that the catalytic efficiency (k cat /K M ) of the mutant was affected. Our results confirmed that Asp290 is important for the chain length selectivity and catalytic efficiency of Staphylococcus simulans lipase.
Bansal, Sunil; Durrett, Timothy P
2016-09-01
Acetyl-triacylglycerols (acetyl-TAG) possess an sn-3 acetate group, which confers useful chemical and physical properties to these unusual triacylglycerols (TAG). Current methods for quantification of acetyl-TAG are time consuming and do not provide any information on the molecular species profile. Electrospray ionization mass spectrometry (ESI-MS)-based methods can overcome these drawbacks. However, the ESI-MS signal intensity for TAG depends on the aliphatic chain length and unsaturation index of the molecule. Therefore response factors for different molecular species need to be determined before any quantification. The effects of the chain length and the number of double-bonds of the sn-1/2 acyl groups on the signal intensity for the neutral loss of short chain length sn-3 groups were quantified using a series of synthesized sn-3 specific structured TAG. The signal intensity for the neutral loss of the sn-3 acyl group was found to negatively correlated with the aliphatic chain length and unsaturation index of the sn-1/2 acyl groups. The signal intensity of the neutral loss of the sn-3 acyl group was also negatively correlated with the size of that chain. Further, the position of the group undergoing neutral loss was also important, with the signal from an sn-2 acyl group much lower than that from one located at sn-3. Response factors obtained from these analyses were used to develop a method for the absolute quantification of acetyl-TAG. The increased sensitivity of this ESI-MS-based approach allowed successful quantification of acetyl-TAG in various biological settings, including the products of in vitro enzyme activity assays.
Xiang, T X; Anderson, B D
1997-01-01
Solubility-diffusion theory, which treats the lipid bilayer membrane as a bulk lipid solvent into which permeants must partition and diffuse across, fails to account for the effects of lipid bilayer chain order on the permeability coefficient of any given permeant. This study addresses the scaling factor that must be applied to predictions from solubility-diffusion theory to correct for chain ordering. The effects of bilayer chemical composition, temperature, and phase structure on the permeability coefficient (Pm) of acetic acid were investigated in large unilamellar vesicles by a combined method of NMR line broadening and dynamic light scattering. Permeability values were obtained in distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, and dilauroylphosphatidylcholine bilayers, and their mixtures with cholesterol, at various temperatures both above and below the gel-->liquid-crystalline phase transition temperatures (Tm). A new scaling factor, the permeability decrement f, is introduced to account for the decrease in permeability coefficient from that predicted by solubility-diffusion theory owing to chain ordering in lipid bilayers. Values of f were obtained by division of the observed Pm by the permeability coefficient predicted from a bulk solubility-diffusion model. In liquid-crystalline phases, a strong correlation (r = 0.94) between f and the normalized surface density sigma was obtained: in f = 5.3 - 10.6 sigma. Activation energies (Ea) for the permeability of acetic acid decreased with decreasing phospholipid chain length and correlated with the sensitivity of chain ordering to temperature, [symbol: see text] sigma/[symbol: see text](1/T), as chain length was varied. Pm values decreased abruptly at temperatures below the main phase transition temperatures in pure dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine bilayers (30-60-fold) and below the pretransition in dipalmitoylphosphatidylcholine bilayers (8-fold), and the linear relationship between in f and sigma established for liquid-crystalline bilayers was no longer followed. However, in both gel and liquid-crystalline phases in f was found to exhibit an inverse correlation with free surface area (in f = -0.31 - 29.1/af, where af is the average free area (in square angstroms) per lipid molecule). Thus, the lipid bilayer permeability of acetic acid can be predicted from the relevant chain-packing properties in the bilayer (free surface area), regardless of whether chain ordering is varied by changes in temperature, lipid chain length, cholesterol concentration, or bilayer phase structure, provided that temperature effects on permeant dehydration and diffusion and the chain-length effects on bilayer barrier thickness are properly taken into account. PMID:8994607
Hezaveh, Samira; Samanta, Susruta; Milano, Giuseppe; Roccatano, Danilo
2012-03-28
In this paper, the conformation and dynamics properties of polyethylene oxide (PEO) and polypropylene oxide (PPO) polymer chains at 298 K have been studied in the melt and at infinite dilution condition in water, methanol, chloroform, carbon tetrachloride, and n-heptane using molecular dynamics simulations. The calculated density of PEO melt with chain lengths of n = 2, 3, 4, 5 and, for PPO, n = 7 are in good agreement with the available experimental data. The conformational properties of PEO and PPO show an increasing gauche preference for the O-C-C-O dihedral in the following order water>methanol>chloroform>carbon tetrachloride = n-heptane. On the contrary, the preference for trans conformation has a maximum in carbon tetrachloride and n-heptane followed in the order by chloroform, methanol, and water. The PEO conformational preferences are in qualitative agreement with results of NMR studies. PEO chains formed different types of hydrogen bonds with polar solvent molecules. In particular, the occurrence of bifurcated hydrogen bonding in chloroform was also observed. Radii of gyration of PEO chains of length larger than n = 9 monomers showed a good agreement with light scattering data in water and in methanol. For the shorter chains the observed deviations are probably due to the enhanced hydrophobic effects caused by the terminal methyl groups. For PEO the fitting of end-to-end distance distributions with the semi-flexible chain model at 298 K provided persistence lengths of 0.375 and 0.387 nm in water and methanol, respectively. Finally, the radius of gyration of Pluronic P85 turned out to be 2.25 ± 0.4 nm at 293 K in water in agreement with experimental data.
NASA Astrophysics Data System (ADS)
Hezaveh, Samira; Samanta, Susruta; Milano, Giuseppe; Roccatano, Danilo
2012-03-01
In this paper, the conformation and dynamics properties of polyethylene oxide (PEO) and polypropylene oxide (PPO) polymer chains at 298 K have been studied in the melt and at infinite dilution condition in water, methanol, chloroform, carbon tetrachloride, and n-heptane using molecular dynamics simulations. The calculated density of PEO melt with chain lengths of n = 2, 3, 4, 5 and, for PPO, n = 7 are in good agreement with the available experimental data. The conformational properties of PEO and PPO show an increasing gauche preference for the O-C-C-O dihedral in the following order water>methanol>chloroform>carbon tetrachloride = n-heptane. On the contrary, the preference for trans conformation has a maximum in carbon tetrachloride and n-heptane followed in the order by chloroform, methanol, and water. The PEO conformational preferences are in qualitative agreement with results of NMR studies. PEO chains formed different types of hydrogen bonds with polar solvent molecules. In particular, the occurrence of bifurcated hydrogen bonding in chloroform was also observed. Radii of gyration of PEO chains of length larger than n = 9 monomers showed a good agreement with light scattering data in water and in methanol. For the shorter chains the observed deviations are probably due to the enhanced hydrophobic effects caused by the terminal methyl groups. For PEO the fitting of end-to-end distance distributions with the semi-flexible chain model at 298 K provided persistence lengths of 0.375 and 0.387 nm in water and methanol, respectively. Finally, the radius of gyration of Pluronic P85 turned out to be 2.25 ± 0.4 nm at 293 K in water in agreement with experimental data.
Jeon, Jonggu; Chun, Myung-Suk
2007-04-21
Understanding the behavior of a polyelectrolyte in confined spaces has direct relevance in design and manipulation of microfluidic devices, as well as transport in living organisms. In this paper, a coarse-grained model of anionic semiflexible polyelectrolyte is applied, and its structure and dynamics are fully examined with Brownian dynamics (BD) simulations both in bulk solution and under confinement between two negatively charged parallel plates. The modeling is based on the nonlinear bead-spring discretization of a continuous chain with additional long-range electrostatic, Lennard-Jones, and hydrodynamic interactions between pairs of beads. The authors also consider the steric and electrostatic interactions between the bead and the confining wall. Relevant model parameters are determined from experimental rheology data on the anionic polysaccharide xanthan reported previously. For comparison, both flexible and semiflexible models are developed accompanying zero and finite intrinsic persistence lengths, respectively. The conformational changes of the polyelectrolyte chain induced by confinements and their dependence on the screening effect of the electrolyte solution are faithfully characterized with BD simulations. Depending on the intrinsic rigidity and the medium ionic strength, the polyelectrolyte can be classified as flexible, semiflexible, or rigid. Confined flexible and semiflexible chains exhibit a nonmonotonic variation in size, as measured by the radius of gyration and end-to-end distance, with changing slit width. For the semiflexible chain, this is coupled to the variations in long-range bond vector correlation. The rigid chain, realized at low ionic strength, does not have minima in size but exhibits a sigmoidal transition. The size of confined semiflexible and rigid polyelectrolytes can be well described by the wormlike chain model once the electrostatic effects are taken into account by the persistence length measured at long length scale.
Rosenmai, Anna Kjerstine; Ahrens, Lutz; le Godec, Théo; Lundqvist, Johan; Oskarsson, Agneta
2018-02-01
Peroxisome proliferator-activated receptor alpha (PPARα) is a molecular target for perfluoroalkyl substances (PFASs). Little is known about the cellular uptake of PFASs and how it affects the PPARα activity. We investigated the relationship between PPARα activity and cellular concentration in HepG2 cells of 14 PFASs, including perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates and perfluorooctane sulfonamide (FOSA). Cellular concentrations were determined by high-performance liquid chromatography-tandem mass spectrometry and PPARα activity was determined in transiently transfected cells by reporter gene assay. Cellular uptake of the PFASs was low (0.04-4.1%) with absolute cellular concentrations in the range 4-2500 ng mg -1 protein. Cellular concentration of PFCAs increased with perfluorocarbon chain length up to perfluorododecanoate. PPARα activity of PFCAs increased with chain length up to perfluorooctanoate. The maximum induction of PPARα activity was similar for short-chain (perfluorobutanoate and perfluoropentanoate) and long-chain PFCAs (perfluorododecanoate and perfluorotetradecanoate) (approximately twofold). However, PPARα activities were induced at lower cellular concentrations for the short-chain homologs compared to the long-chain homologs. Perfluorohexanoate, perfluoroheptanoate, perfluorooctanoate, perfluorononanoate (PFNA) and perfluorodecanoate induced PPARα activities >2.5-fold compared to controls. The concentration-response relationships were positive for all the tested compounds, except perfluorooctane sulfonate PFOS and FOSA, and were compound-specific, as demonstrated by differences in the estimated slopes. The relationships were steeper for PFCAs with chain lengths up to and including PFNA than for the other studied PFASs. To our knowledge, this is the first report establishing relationships between PPARα activity and cellular concentration of a broad range of PFASs. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Modi, Nisarg
Rheological characterization of pharmaceutical gel is of importance as it provides fundamental information required for the assessment of some of the final properties of a product such as viscosity, elasticity, quality and physical storage stability. The effect of formulation and process variables on product characteristics such as consistency, drug release, and physical stability can also be attained. Moreover, some of the transdermal patch problems such as leaking from reservoir patch or cold flow in matrix patch can also be estimated using rheological characterization. During this research, various tests were employed to characterize the mechanical properties of gel such as oscillation test (Frequency and Amplitude Sweep), flow and viscosity curves and yield point measurements, as well as temperature sweep and temperature ramp test. The present studies evaluate rheological properties of hydroxypropyl cellulose (Klucel HF) gels prepared containing fatty acids with different carbon chain length at different homogenization speed. A controlled stress rheometer was used to study the effect of different number of carbon chain fatty acids, homogenization speed and storage period on the rheological properties and microstructure of transdermal gels. The studies demonstrated that as the carbon chain length increased (C10-C 18) the thixotropic area decreased, which suggested that the stability of gel structure was increased with increase in carbon chain of fatty acids. Cohesive Energy was affected by the homogenization speed and carbon chain of fatty acids. There was decreased in cohesive energy as increase in carbon chain of fatty acids. Temperature sweep data revealed that gels prepared with oleic acid (C18) at 25000 RPM gave the best thermal stability after the longest storage period (60-Days) compare to the capric(C10) acid and Lauirc (C12) acid. There was only 31% decreased in temperature loop area for oleic (C18) acid as compare to 54% and 86% for capric (C10) acid and lauric acid (C12) respectively. During different mixing speeds at initial time period (t=0), oleic acid showed lowest temperature loop area, which was not affected by storage period. Furthermore, by applying power law model to frequency sweep data, mechanical propereties of transdermal gels were evaluated. Transdermal gels are "physical gels" in nature which showed both frequency dependency and also had a cross-over point. Moreover, the value of n is less than 1. Time Temperature superposition principle can apply to the rheological data of Transdermal gels to obtain the thermal properties of formulations. Thermal properties of transdermal gels are very difficult to measure using traditional DSC equipment. By applying TTS principle, frequency sweep data were obtained between 5-50 °C and extrapolated to achieve the glass transition temperature, free volume and thermal expansion co-efficient of the formulations. Last but not least, In-vitro studies using human cadaver skin showed that Capric acid is the best permeability enhancing agent for escitalopram oxalate in current formulations. Furthermore, increase in carbon chain length of fatty acids decreased the permeability enhancing effect of Escitalopram Oxalate through human cadaver skin during In-vitro diffusion studies.
NASA Astrophysics Data System (ADS)
Geng, Xiang F.; Hu, Xing Q.; Xia, Ji J.; Jia, Xue C.
2013-04-01
A series of novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants of 1,2-bis[N-ethyl-N-(2-hydroxyl-3-sulfopropyl)-alkylammonium] alkyl betaines (DBAs-n, where s and n represent the spacer length of 2, 4 and 6 and the hydrocarbon chain length of 8, 12, 14, 16 and 18, respectively) were synthesized by reacting alkylamine with sodium 3-chloro-2-hydroxypropanesulfonate (the alternative sulphonated agent), followed by the reactions with а,ω-dibromoalkyl and then ethyl bromide. Their adsorption and aggregation properties were investigated by means of equilibrium surface tension, dynamic light-scattering (DLS) and transmission electron microscopy (TEM). DBAs-n gemini surfactants showed excellent surface activities and packed tightly at the interface. For example, the minimum CMC value for DBAs-n series was of the order of 10-5 M and the surface tension of water can be decreased as low as 22.2 mN/m. It was also found that the aggregates of DBAs-n solutions were significantly dependent on their hydrocarbon chain lengths. The aggregates changed from vesicles to entangled fiber-like micelles as the chain length increased from dodecyl to tetradecyl.
Longo, Edoardo; Moretto, Alessandro; Formaggio, Fernando; Toniolo, Claudio
2011-10-01
Critical main-chain length for peptide helix formation in the crystal (solid) state and in organic solvents has been already reported. In this short communication, we describe our results aiming at assessing the aforementioned parameter in water solution. To this goal, we synthesized step-by-step by solution procedures a complete series of N-terminally acetylated, C-terminally methoxylated oligopeptides, characterized only by alternating Aib and Ala residues, from the dimer to the nonamer level. All these compounds were investigated by electronic circular dichroism in the far-UV region in water solution as a function of chemical structure, namely presence/absence of an ester moiety or a negative charge at the C-terminus, and temperature. We find that the critical main-chain lengths for 3(10)- and α-helices, although still formed to a limited extent, in aqueous solution are six and eight residues, respectively. © 2011 Wiley-Liss, Inc.
Oleogustus: The Unique Taste of Fat.
Running, Cordelia A; Craig, Bruce A; Mattes, Richard D
2015-09-01
Considerable mechanistic data indicate there may be a sixth basic taste: fat. However, evidence demonstrating that the sensation of nonesterified fatty acids (NEFA, the proposed stimuli for "fat taste") differs qualitatively from other tastes is lacking. Using perceptual mapping, we demonstrate that medium and long-chain NEFA have a taste sensation that is distinct from other basic tastes (sweet, sour, salty, and bitter). Although some overlap was observed between these NEFA and umami taste, this overlap is likely due to unfamiliarity with umami sensations rather than true similarity. Shorter chain fatty acids stimulate a sensation similar to sour, but as chain length increases this sensation changes. Fat taste oral signaling, and the different signals caused by different alkyl chain lengths, may hold implications for food product development, clinical practice, and public health policy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Umari, P; Marzari, Nicola
2009-09-07
We calculate the linear and nonlinear susceptibilities of periodic longitudinal chains of hydrogen dimers with different bond-length alternations using a diffusion quantum Monte Carlo approach. These quantities are derived from the changes in electronic polarization as a function of applied finite electric field--an approach we recently introduced and made possible by the use of a Berry-phase, many-body electric-enthalpy functional. Calculated susceptibilities and hypersusceptibilities are found to be in excellent agreement with the best estimates available from quantum chemistry--usually extrapolations to the infinite-chain limit of calculations for chains of finite length. It is found that while exchange effects dominate the proper description of the susceptibilities, second hypersusceptibilities are greatly affected by electronic correlations. We also assess how different approximations to the nodal surface of the many-body wave function affect the accuracy of the calculated susceptibilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeev, A. V.; Maltseva, D. V.; Ivanov, V. A., E-mail: ivanov@polly.phys.msu.ru
We study force-extension curves of a single semiflexible chain consisting of several rigid rods connected by flexible spacers. The atomic force microscopy and laser optical or magnetic tweezers apparatus stretching these rod-coil macromolecules are discussed. In addition, the stretching by external isotropic force is analyzed. The main attention is focused on computer simulation and analytical results. We demonstrate that the force-extension curves for rod-coil chains composed of two or three rods of equal length differ not only quantitatively but also qualitatively in different probe methods. These curves have an anomalous shape for a chain of two rods. End-to-end distributions ofmore » rod-coil chains are calculated by Monte Carlo method and compared with analytical equations. The influence of the spacer’s length on the force-extension curves in different probe methods is analyzed. The results can be useful for interpreting experiments on the stretching of rod-coil block-copolymers.« less
Self-Assembly of Narrowly Dispersed Brush Diblock Copolymers with Domain Spacing more than 100 nm
NASA Astrophysics Data System (ADS)
Gu, Weiyin; Sveinbjornsson, Benjamin; Hong, Sung Woo; Grubbs, Robert; Russell, Thomas
2012-02-01
Self-assembled structures of high molecular weight (MW), narrow molecular weight distribution brush block copolymers containing polylactic acid (PLA) and polystyrene (PS) side chains with similar MWs were studied in both the melt and thin films. The polynorbornene-backbone-based brush diblock copolymers containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing over 100 nm, as revealed by SAXS, GISAXS and AFM. The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. The length of side chains also played a significant role in terms of controlling the domain size. As the degree of polymerization (DP) increased, the symmetric brush diblock copolymers with longer side chains tended to form larger lamellar microdomains in comparison to those that have the same DP but shorter side chains.
Hydrodynamic radius fluctuations in model DNA-grafted nanoparticles
NASA Astrophysics Data System (ADS)
Vargas-Lara, Fernando; Starr, Francis W.; Douglas, Jack F.
2016-05-01
We utilize molecular dynamics simulations (MD) and the path-integration program ZENO to quantify hydrodynamic radius (Rh) fluctuations of spherical symmetric gold nanoparticles (NPs) decorated with single-stranded DNA chains (ssDNA). These results are relevant to understanding fluctuation-induced interactions among these NPs and macromolecules such as proteins. In particular, we explore the effect of varying the ssDNA-grafted NPs structural parameters, such as the chain length (L), chain persistence length (lp), NP core size (R), and the number of chains (N) attached to the nanoparticle core. We determine Rh fluctuations by calculating its standard deviation (σRh) of an ensemble of ssDNA-grafted NPs configurations generated by MD. For the parameter space explored in this manuscript, σR h shows a peak value as a function of N, the amplitude of which depends on L, lp and R, while the broadness depends on R.
NASA Astrophysics Data System (ADS)
Chen, Hua; Li, Yingjun; Zhou, Yuanlin; Wang, Shanqiang; Zheng, Jian; He, Jiacai
2017-12-01
Recently, polymeric materials have been filled with synthetic or natural inorganic compounds in order to improve their properties. Especially, polymer clay nanocomposites have attracted both academic and industrial attention. Currently, the structure and physical phenomena of organoclays at molecular level are difficultly explained by existing experimental techniques. In this work, molecular dynamics (MD) simulation was executed using the CLAYFF and CHARMM force fields to evaluate the structural properties of organoclay such as basal spacing, interlayer density, energy and the arrangement of alkyl chains in the interlayer spacing. Our results are in good agreement with available experimental or other simulation data. The effects of interlayer cations (Na+, K+, Ca2+), the cation exchange capacity, and the alkyl chain length on the basal spacing and the structural properties are estimated. These simulations are expected to presage the microstructure of organo-montmorillonite and lead relevant engineering applications.
The Effect of Causal Chain Length on Counterfactual Conditional Reasoning
ERIC Educational Resources Information Center
Beck, Sarah R.; Riggs, Kevin J.; Gorniak, Sarah L.
2010-01-01
We investigated German and Nichols' finding that 3-year-olds could answer counterfactual conditional questions about short causal chains of events, but not long. In four experiments (N = 192), we compared 3- and 4-year-olds' performance on short and long causal chain questions, manipulating whether the child could draw on general knowledge to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Caitlyn Christian
An evaporation barrier is required to enhance the lifetime of electrophoretic deposition (EPD) displays. As EPD functions on the basis of reversible deposition and resuspension of colloids suspended in a solvent, evaporation of the solvent ultimately leads to device failure. Incorporation of a thiol-polybutadiene elastomer into EPD displays enabled display lifetime surpassing six months in counting and catalyzed rigid display transition into a flexible package. Final flexible display transition to mass production compels an electronic-ink approach to encapsulate display suspension within an elastomer shell. Final thiol-polybutadiene photosensitive resin network microstructure was idealized to be dense, homogeneous, and expose an elasticmore » response to deformation. Research at hand details an approach to understanding microstructural change within display elastomers. Polybutadiene-based resin properties are modified via polymer chain structure, with and without added aromatic urethane methacrylate difunctionality, and in measuring network response to variation in thiol and initiator concentration. Dynamic mechanical analysis results signify that cross-linked segments within a difunctionalized polybutadiene network were on average eight times more elastically active than that of linked segments within a non-functionalized polybutadiene network. Difunctionalized polybutadiene samples also showed a 2.5 times greater maximum elastic modulus than non-functionalized samples. Hybrid polymer composed of both polybutadiene chains encompassed TE-2000 stiffness and B-1000 elasticity for use in encapsulating display suspension. Later experiments measured kinetic and rheological response due to alteration in dithiol cross-linker chain length via real time Fourier transform infrared spectroscopy and real-time dynamic rheology. Distinct differences were discovered between dithiol resin systems, as maximum thiol conversion achieved in short and long chain length dithiols was 86% and 11%, respectively. Oscillatory real-time rheological experiments confirmed a more uniform network to better dissipate applied shear in short chain length dithiol systems, as long chain length dithiols relayed a steep internal stress build-up due to less cross-links and chain entanglements. Thorough understanding of network formation aids the production of a stronger and impermeable elastomeric barrier for preservation of EPD displays.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, Marisa A. A., E-mail: lbsantos@fc.up.pt, E-mail: marisa.alexandra.rocha@gmail.com; Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven; Coutinho, João A. P.
2014-10-07
This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids.more » The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.« less
Stoops, Janelle; Byrd, Samantha; Hasegawa, Haruki
2012-10-01
Russell bodies are intracellular aggregates of immunoglobulins. Although the mechanism of Russell body biogenesis has been extensively studied by using truncated mutant heavy chains, the importance of the variable domain sequences in this process and in immunoglobulin biosynthesis remains largely unknown. Using a panel of structurally and functionally normal human immunoglobulin Gs, we show that individual immunoglobulin G clones possess distinctive Russell body inducing propensities that can surface differently under normal and abnormal cellular conditions. Russell body inducing predisposition unique to each immunoglobulin G clone was corroborated by the intrinsic physicochemical properties encoded in the heavy chain variable domain/light chain variable domain sequence combinations that define each immunoglobulin G clone. While the sequence based intrinsic factors predispose certain immunoglobulin G clones to be more prone to induce Russell bodies, extrinsic factors such as stressful cell culture conditions also play roles in unmasking Russell body propensity from immunoglobulin G clones that are normally refractory to developing Russell bodies. By taking advantage of heterologous expression systems, we dissected the roles of individual subunit chains in Russell body formation and examined the effect of non-cognate subunit chain pair co-expression on Russell body forming propensity. The results suggest that the properties embedded in the variable domain of individual light chain clones and their compatibility with the partnering heavy chain variable domain sequences underscore the efficiency of immunoglobulin G biosynthesis, the threshold for Russell body induction, and the level of immunoglobulin G secretion. We propose that an interplay between the unique properties encoded in variable domain sequences and the state of protein homeostasis determines whether an immunoglobulin G expressing cell will develop the Russell body phenotype in a dynamic cellular setting. Copyright © 2012 Elsevier B.V. All rights reserved.
Kim, Sangkyu; Park, Insoo; Park, Seung Gu; Cho, Seulki; Kim, Jin Hong; Ipper, Nagesh S.; Choi, Sun Shim; Lee, Eung Suk; Hong, Hyo Jeong
2017-01-01
We constructed a large naïve human Fab library (3 × 1010 colonies) from the lymphocytes of 809 human donors, assessed available diversities of the heavy-chain variable (VH) and κ light-chain variable (VK) domain repertoires, and validated the library by selecting Fabs against 10 therapeutically relevant antigens by phage display. We obtained a database of unique 7,373 VH and 41,804 VK sequences by 454 pyrosequencing, and analyzed the repertoires. The distribution of VH and VK subfamilies and germline genes in our antibody repertoires slightly differed from those in earlier published natural antibody libraries. The frequency of somatic hypermutations (SHMs) in heavy-chain complementarity determining region (HCDR)1 and HCDR2 are higher compared with the natural IgM repertoire. Analysis of position-specific SHMs in CDRs indicates that asparagine, threonine, arginine, aspartate and phenylalanine are the most frequent non-germline residues on the antibody-antigen interface and are converted mostly from the germline residues, which are highly represented in germline SHM hotspots. The amino acid composition and length-dependent changes in amino acid frequencies of HCDR3 are similar to those in previous reports, except that frequencies of aspartate and phenylalanine are a little higher in our repertoire. Taken together, the results show that this antibody library shares common features of natural antibody repertoires and also has unique features. The antibody library will be useful in the generation of human antibodies against diverse antigens, and the information about the diversity of natural antibody repertoires will be valuable in the future design of synthetic human antibody libraries with high functional diversity. PMID:28927259
Kim, Sangkyu; Park, Insoo; Park, Seung Gu; Cho, Seulki; Kim, Jin Hong; Ipper, Nagesh S; Choi, Sun Shim; Lee, Eung Suk; Hong, Hyo Jeong
2017-09-30
We constructed a large naïve human Fab library (3 × 10 10 colonies) from the lymphocytes of 809 human donors, assessed available diversities of the heavy-chain variable (VH) and κ light-chain variable (VK) domain repertoires, and validated the library by selecting Fabs against 10 therapeutically relevant antigens by phage display. We obtained a database of unique 7,373 VH and 41,804 VK sequences by 454 pyrosequencing, and analyzed the repertoires. The distribution of VH and VK subfamilies and germline genes in our antibody repertoires slightly differed from those in earlier published natural antibody libraries. The frequency of somatic hypermutations (SHMs) in heavy-chain complementarity determining region (HCDR)1 and HCDR2 are higher compared with the natural IgM repertoire. Analysis of position-specific SHMs in CDRs indicates that asparagine, threonine, arginine, aspartate and phenylalanine are the most frequent non-germline residues on the antibody-antigen interface and are converted mostly from the germline residues, which are highly represented in germline SHM hotspots. The amino acid composition and length-dependent changes in amino acid frequencies of HCDR3 are similar to those in previous reports, except that frequencies of aspartate and phenylalanine are a little higher in our repertoire. Taken together, the results show that this antibody library shares common features of natural antibody repertoires and also has unique features. The antibody library will be useful in the generation of human antibodies against diverse antigens, and the information about the diversity of natural antibody repertoires will be valuable in the future design of synthetic human antibody libraries with high functional diversity.
Hematopoiesis In The Equine Fetal Liver Suggests Immune Preparedness
Battista, JM; Tallmadge, RL; Stokol, T; Felippe, MJB
2014-01-01
We investigated how the equine fetus prepares its pre-immune humoral repertoire for an imminent exposure to pathogens in the neonatal period, particularly how the primary hematopoietic organs are equipped to support B cell hematopoiesis and immunoglobulin (Ig) diversity. We demonstrated that the liver and the bone marrow at approximately 100 days of gestation (DG) are active sites of hematopoiesis based on the expression of signature mRNA (c-KIT, CD34, IL7R, CXCL12, IRF8, PU.1, PAX5, NOTCH1, GATA1, CEBPA) and protein markers (CD34, CD19, IgM, CD3, CD4, CD5, CD8, CD11b, CD172A) of hematopoietic development and leukocyte differentiation molecules, respectively. To verify Ig diversity achieved during the production of B cells, V(D)J segments were sequenced in primary lymphoid organs of the equine fetus and adult horse, revealing that similar heavy chain VDJ segments and CDR3 lengths were most frequently used independent of life stage. In contrast, different lambda light chain segments were predominant in equine fetal compared to adult stage and, surprisingly, the fetus had less restricted use of variable gene segments to construct the lambda chain. Fetal Igs also contained elements of sequence diversity, albeit to a smaller degree than that of the adult horse. Our data suggest that the B cells produced in the liver and bone marrow of the equine fetus generate a wide repertoire of pre-immune Igs for protection, and the more diverse use of different lambda variable gene segments in fetal life may provide the neonate an opportunity to respond to a wider range of antigens at birth. PMID:25179685
NASA Astrophysics Data System (ADS)
Galves, A.; Löcherbach, E.
2013-06-01
We consider a new class of non Markovian processes with a countable number of interacting components. At each time unit, each component can take two values, indicating if it has a spike or not at this precise moment. The system evolves as follows. For each component, the probability of having a spike at the next time unit depends on the entire time evolution of the system after the last spike time of the component. This class of systems extends in a non trivial way both the interacting particle systems, which are Markovian (Spitzer in Adv. Math. 5:246-290, 1970) and the stochastic chains with memory of variable length which have finite state space (Rissanen in IEEE Trans. Inf. Theory 29(5):656-664, 1983). These features make it suitable to describe the time evolution of biological neural systems. We construct a stationary version of the process by using a probabilistic tool which is a Kalikow-type decomposition either in random environment or in space-time. This construction implies uniqueness of the stationary process. Finally we consider the case where the interactions between components are given by a critical directed Erdös-Rényi-type random graph with a large but finite number of components. In this framework we obtain an explicit upper-bound for the correlation between successive inter-spike intervals which is compatible with previous empirical findings.
Kidney transplant chains amplify benefit of nondirected donors.
Melcher, Marc L; Veale, Jeffrey L; Javaid, Basit; Leeser, David B; Davis, Connie L; Hil, Garet; Milner, John E
2013-02-01
Despite the potential for altruistic nondirected donors (NDDs) to trigger multiple transplants through nonsimultaneous transplant chains, concerns exist that these chains siphon NDDs from the deceased donor wait list and that donors within chains might not donate after their partner receives a transplant. To determine the number of transplantations NDDs trigger through chains. Retrospective review of large, multicenter living donor-recipient database. Fifty-seven US transplant centers contributing donor-recipient pairs to the database. The NDDs initiating chain transplantation. Number of transplants per NDD. Seventy-seven NDDs enabled 373 transplantations during 46 months starting February 2008. Mean chain length initiated by NDDs was 4.8 transplants (median, 3; range, 1-30). The 40 blood type O NDDs triggered a mean chain length of 6.0 (median, 4; range, 2-30). During the interval, 66 of 77 chains were closed to the wait list, 4 of 77 were ongoing, and 7 of 77 were broken because bridge donors became unavailable. No chains were broken in the last 15 months, and every recipient whose incompatible donor donated received a kidney. One hundred thirty-three blood type O recipients were transplanted. This large series demonstrates that NDDs trigger almost 5 transplants on average, more if the NDD is blood type O. There were more blood type O recipients than blood type O NDDs participating. The benefits of transplanting 373 patients and enabling others without living donors to advance outweigh the risk of broken chains that is decreasing with experience. Even 66 patients on the wait list without living donors underwent transplantation with living-donor grafts at the end of these chains.
Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan
2016-04-14
Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.
Mechanical heterogeneity in ionic liquids
NASA Astrophysics Data System (ADS)
Veldhorst, Arno A.; Ribeiro, Mauro C. C.
2018-05-01
Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [CnC1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [CnC1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K∞ and G∞, depend on the alkyl chain length because of a density effect. Both K∞ and G∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [CnC1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.
Warfe, Danielle M; Jardine, Timothy D; Pettit, Neil E; Hamilton, Stephen K; Pusey, Bradley J; Bunn, Stuart E; Davies, Peter M; Douglas, Michael M
2013-01-01
The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions.
Warfe, Danielle M.; Jardine, Timothy D.; Pettit, Neil E.; Hamilton, Stephen K.; Pusey, Bradley J.; Bunn, Stuart E.; Davies, Peter M.; Douglas, Michael M.
2013-01-01
The food web is one of the oldest and most central organising concepts in ecology and for decades, food chain length has been hypothesised to be controlled by productivity, disturbance, and/or ecosystem size; each of which may be mediated by the functional trophic role of the top predator. We characterised aquatic food webs using carbon and nitrogen stable isotopes from 66 river and floodplain sites across the wet-dry tropics of northern Australia to determine the relative importance of productivity (indicated by nutrient concentrations), disturbance (indicated by hydrological isolation) and ecosystem size, and how they may be affected by food web architecture. We show that variation in food chain length was unrelated to these classic environmental determinants, and unrelated to the trophic role of the top predator. This finding is a striking exception to the literature and is the first published example of food chain length being unaffected by any of these determinants. We suggest the distinctive seasonal hydrology of northern Australia allows the movement of fish predators, linking isolated food webs and potentially creating a regional food web that overrides local effects of productivity, disturbance and ecosystem size. This finding supports ecological theory suggesting that mobile consumers promote more stable food webs. It also illustrates how food webs, and energy transfer, may function in the absence of the human modifications to landscape hydrological connectivity that are ubiquitous in more populated regions. PMID:23776641
Induced sensitivity of Bacillus subtilis colony morphology to mechanical media compression
Polka, Jessica K.
2014-01-01
Bacteria from several taxa, including Kurthia zopfii, Myxococcus xanthus, and Bacillus mycoides, have been reported to align growth of their colonies to small features on the surface of solid media, including anisotropies created by compression. While the function of this phenomenon is unclear, it may help organisms navigate on solid phases, such as soil. The origin of this behavior is also unknown: it may be biological (that is, dependent on components that sense the environment and regulate growth accordingly) or merely physical. Here we show that B. subtilis, an organism that typically does not respond to media compression, can be induced to do so with two simple and synergistic perturbations: a mutation that maintains cells in the swarming (chained) state, and the addition of EDTA to the growth media, which further increases chain length. EDTA apparently increases chain length by inducing defects in cell separation, as the treatment has only marginal effects on the length of individual cells. These results lead us to three conclusions. First, the wealth of genetic tools available to B. subtilis will provide a new, tractable chassis for engineering compression sensitive organisms. Second, the sensitivity of colony morphology to media compression in Bacillus can be modulated by altering a simple physical property of rod-shaped cells. And third, colony morphology under compression holds promise as a rapid, simple, and low-cost way to screen for changes in the length of rod-shaped cells or chains thereof. PMID:25289183
NASA Astrophysics Data System (ADS)
Julie, Hongki; Pasaribu, Udjianna S.; Pancoro, Adi
2015-12-01
This paper will allow Markov Chain's application in genome shared identical by descent by two individual at full sibs model. The full sibs model was a continuous time Markov Chain with three state. In the full sibs model, we look for the cumulative distribution function of the number of sub segment which have 2 IBD haplotypes from a segment of the chromosome which the length is t Morgan and the cumulative distribution function of the number of sub segment which have at least 1 IBD haplotypes from a segment of the chromosome which the length is t Morgan. This cumulative distribution function will be developed by the moment generating function.
Sherblom, P.M.; Gschwend, P.M.; Eganhouse, R.P.
1992-01-01
Measurements and estimates of aqueous solubilities, 1-octanol-water partition coefficients (Kow), and vapor pressures were made for 29 linear alkylbenzenes having alkyl chain lengths of 9-14 carbons. The ranges of values observed were vapor pressures from 0.002 to 0.418 Pa, log Kow, from 6.83 to 9.95, and aqueous solubilities from 4 to 38 nmol??L-1. Measured values exhibited a relationship to both the alkyl chain length and the position of phenyl substitution on the alkyl chain. Measurement of the aqueous concentrations resulting from equilibration of a mixture of alkylbenzenes yielded higher than expected values, indicating cosolute or other interactive effects caused enhanced aqueous concentrations of these compounds. ?? 1992 American Chemical Society.
Driven, underdamped Frenkel-Kontorova model on a quasiperiodic substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanossi, A.; Ro''der, J.; Bishop, A. R.
2001-01-01
We consider the underdamped dynamics of a chain of atoms subject to a dc driving force and a quasiperiodic substrate potential. The system has three inherent length scales which we take to be mutually incommensurate. We find that when the length scales are related by the spiral mean (a cubic irrational) there exists a value of the interparticle interaction strength above which the static friction is zero. When the length scales are related by the golden mean (a quadratic irrational) the static friction is always nonzero. >From considerations based on the connection of this problem to standard map theory, wemore » postulate that zero static friction is generally possible for incommensurate ratios of the length scales involved. However, when the length scales are quadratic irrationals, or have some commensurability with each other, the static friction will be nonzero for all choices of interaction parameters. We also comment on the nature of the depinning mechanisms and the steady states achieved by the moving chain.« less
Bussmann, Bianca M.; Horn, Susanne; Sieg, Michael; Jassoy, Christian
2015-01-01
The diversity of virus-specific antibodies and of B cells among different individuals is unknown. Using single-cell cloning of antibody genes, we generated recombinant human monoclonal antibodies from influenza nucleoprotein-specific memory B cells in four adult humans with and without preceding influenza vaccination. We examined the diversity of the antibody repertoires and found that NP-specific B cells used numerous immunoglobulin genes. The heavy chains (HCs) originated from 26 and the kappa light chains (LCs) from 19 different germ line genes. Matching HC and LC chains gave rise to 43 genetically distinct antibodies that bound influenza NP. The median lengths of the CDR3 of the HC, kappa and lambda LC were 14, 9 and 11 amino acids, respectively. We identified changes at 13.6% of the amino acid positions in the V gene of the antibody heavy chain, at 8.4 % in the kappa and at 10.6 % in the lambda V gene. We identified somatic insertions or deletions in 8.1% of the variable genes. We also found several small groups of clonal relatives that were highly diversified. Our findings demonstrate broadly diverse memory B cell repertoires for the influenza nucleoprotein. We found extensive variation within individuals with a high number of point mutations, insertions, and deletions, and extensive clonal diversification. Thus, structurally conserved proteins can elicit broadly diverse and highly mutated B-cell responses. PMID:26086076
Zhang, B; Evans, J S
2001-01-01
Molecular elasticity is associated with a select number of polypeptides and proteins, such as titin, Lustrin A, silk fibroin, and spider silk dragline protein. In the case of titin, the globular (Ig) and non-globular (PEVK) regions act as extensible springs under stretch; however, their unfolding behavior and force extension characteristics are different. Using our time-dependent macroscopic method for simulating AFM-induced titin Ig domain unfolding and refolding, we simulate the extension and relaxation of hypothetical titin chains containing Ig domains and a PEVK region. Two different models are explored: 1) a series-linked WLC expression that treats the PEVK region as a distinct entropic spring, and 2) a summation of N single WLC expressions that simulates the extension and release of a discrete number of parallel titin chains containing constant or variable amounts of PEVK. In addition to these simulations, we also modeled the extension of a hypothetical PEVK domain using a linear Hooke's spring model to account for "enthalpic" contributions to PEVK elasticity. We find that the modified WLC simulations feature chain length compensation, Ig domain unfolding/refolding, and force-extension behavior that more closely approximate AFM, laser tweezer, and immunolocalization experimental data. In addition, our simulations reveal the following: 1) PEVK extension overlaps with the onset of Ig domain unfolding, and 2) variations in PEVK content within a titin chain ensemble lead to elastic diversity within that ensemble. PMID:11159428
NASA Astrophysics Data System (ADS)
Hu, Guanyu; Fang, Zhou; Liu, Bilin; Chen, Xinjun; Staples, Kevin; Chen, Yong
2018-04-01
The cephalopod beak is a vital hard structure with a stable configuration and has been widely used for the identification of cephalopod species. This study was conducted to determine the best standardization method for identifying different species by measuring 12 morphological variables of the beaks of Illex argentinus, Ommastrephes bartramii, and Dosidicus gigas that were collected by Chinese jigging vessels. To remove the effects of size, these morphometric variables were standardized using three methods. The average ratios of the upper beak morphological variables and upper crest length of O. bartramii and D. gigas were found to be greater than those of I. argentinus. However, for lower beaks, only the average of LRL (lower rostrum length)/ LCL (lower crest length), LRW (lower rostrum width)/ LCL, and LLWL (lower lateral wall length)/ LCL of O. bartramii and D. gigas were greater than those of I. argentinus. The ratios of beak morphological variables and crest length were found to be all significantly different among the three species ( P < 0.001). Among the three standardization methods, the correct classification rate of stepwise discriminant analysis (SDA) was the highest using the ratios of beak morphological variables and crest length. Compared with hood length, the correct classification rate was slightly higher when using beak variables standardized by crest length using an allometric model. The correct classification rate of the lower beak was also found to be greater than that of the upper beak. This study indicates that the ratios of beak morphological variables to crest length could be used for interspecies and intraspecies identification. Meanwhile, the lower beak variables were found to be more effective than upper beak variables in classifying beaks found in the stomachs of predators.
SCit: web tools for protein side chain conformation analysis.
Gautier, R; Camproux, A-C; Tufféry, P
2004-07-01
SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.
NASA Astrophysics Data System (ADS)
Nelson, Peter N.; Ellis, Henry A.; Taylor, Richard A.
2014-01-01
Lattice structures and thermal behaviours for some long chain potassium carboxylates (nc = 8-18, inclusive) are investigated using Fourier Transform Infrared spectroscopy, X-ray Powder Diffraction, Solid State spin decoupled 13C NMR spectroscopy, Differential Scanning Calorimetry and Thermogravimetry. The measurements show that the carboxyl groups are coordinated to potassium atoms via asymmetric chelating bidentate bonding, with extensive carboxyl intermolecular interactions to yield tetrahedral metal centers, irrespective of chain length. Furthermore, the hydrocarbon chains are crystallized in the fully extended all-trans configuration and are arranged as non-overlapping lamellar bilayer structures with closely packed methyl groups from opposite layers. Additionally, odd-even alternation, observed in density and methyl group chemical shift, is ascribed to the relative vertical distances between layers in the bilayer, that are not in the same plane. Therefore, for even chain homologues, where this distances is less than for odd chain adducts, more intimate packing is indicated. The phase sequences for all compounds show several reversible crystal-crystal transition associated with kinetically controlled gauche-trans isomerism of the polymethylene chains which undergo incomplete fusion when heated to the melt. The compounds degrade above 785 K to yield carbon dioxide, water, potassium oxide and an alkene.
Newtonian Analysis of a Folded Chain Drop
NASA Astrophysics Data System (ADS)
Mungan, Carl E.
2018-05-01
Consider a chain of length L that hangs in a U shape with end A fixed to a rigid support and free end E released from rest starting from the same initial height (call it y = 0) as A. Figure 1 sketches the chain after end E has fallen a distance y. Points O and A are assumed to be close enough to each other and the chain flexible enough that the radius of curvature r at the bottom point C can be taken to be negligibly small (compared to the length of the chain). The problem is to compare the speed of descent v(y) = dy/dt of the free end E of the chain to the speed vfree(y )=√{2 g y } of a free-falling point mass that has descended the same distance y. If v(y) > vfree (y) for all y > 0, then, in a race to fall any arbitrary distance Y (where 0 < Y < L), the chain end E will always beat a simultaneously released point mass, because the fall time t for E will be shorter than tfree for the point mass, t = ∫0 Y d/y v (y )
Chain hexagonal cacti with the extremal eccentric distance sum.
Qu, Hui; Yu, Guihai
2014-01-01
Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.
Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes
NASA Astrophysics Data System (ADS)
Zhu, Liang; Yu, Xuedi; Hickner, Michael A.
2018-01-01
In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.
Hydrolysis of short-chain phosphatidylcholines by bee venom phospholipase A2.
Raykova, D; Blagoev, B
1986-01-01
In order to find out the aggregation state of the substrate, preferred by bee venom phospholipase A2 (EC 3.1.1.4), its action on short-chain phosphatidylcholines with two identical (C6-C10) fatty acids has been tested. The rate of hydrolysis as a function of acyl chain length showed a maximum at dioctanoylphosphatidylcholine. The effects of alcohols, NaCl and Triton X-100, which affect the aggregation state of phospholipids in water, were also studied. The addition of n-alcohol led to a significant inhibition of the hydrolysis of the substrates present in micellar form and activated the hydrolysis of substrates which form liposomes. The inhibitory effect increased with increasing length of the aliphatic carbon chain of the alcohol. Triton X-100 at low Triton/phospholipid molar ratios enhanced enzyme activity. These results do not agree with the accepted idea that bee venom phospholipase A2 hydrolyzes short-chain lecithins in their molecularly dispersed form and that micelles cannot act as substrates. The data indicate that short-chain lecithins in the aggregated state are hydrolyzed and that the requirements of bee venom phospholipase A2 for the aggregation state of the substrate are not strict.
Optimal dephasing for ballistic energy transfer in disordered linear chains
NASA Astrophysics Data System (ADS)
Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev
2017-11-01
We study the interplay between dephasing, disorder, and coupling to a sink on transport efficiency in a one-dimensional chain of finite length N , and in particular the beneficial or detrimental effect of dephasing on transport. The excitation moves along the chain by coherent nearest-neighbor hopping Ω , under the action of static disorder W and dephasing γ . The last site is coupled to an external acceptor system (sink), where the excitation can be trapped with a rate Γtrap. While it is known that dephasing can help transport in the localized regime, here we show that dephasing can enhance energy transfer even in the ballistic regime. Specifically, in the localized regime we recover previous results, where the optimal dephasing is independent of the chain length and proportional to W or W2/Ω . In the ballistic regime, the optimal dephasing decreases as 1 /N or 1 /√{N } , respectively, for weak and moderate static disorder. When focusing on the excitation starting at the beginning of the chain, dephasing can help excitation transfer only above a critical value of disorder Wcr, which strongly depends on the sink coupling strength Γtrap. Analytic solutions are obtained for short chains.
Shifting stroke care from the hospital to the nursing home: explaining the outcomes of a Dutch case.
van Raak, Arno; Groothuis, Siebren; van der Aa, Robert; Limburg, Martien; Vos, Leti
2010-12-01
Supply chains can contribute to better care for stroke patients and more efficiency. However, such outcomes are hampered when links in the chain are weak. The article aims to further the knowledge about the causes and possible improvements of weak links thereby using theory about rules for action and routines (action patterns). We executed a single case study of a chain of service delivery to stroke patients by a university hospital and a nursing home in the city of Maastricht, the Netherlands. Methods included document study, interviews, observations, process mapping, use of data matrices and performance of t-tests. In the case, the care delivery process in the chain was redesigned to improve the flow of patients and to reduce the length of hospital stay. Length of stay was reduced. However, transfer of patients from the hospital to the nursing home was hampered. At this weak link in the chain, the redesign clashed with the routines of hospital paramedics who did not want to work according to the redesign. The applied theory is useful to understand why a link in a supply chain is weak. Negotiations can be used to strengthen a link. © 2010 Blackwell Publishing Ltd.
Acculturation Predicts Negative Affect and Shortened Telomere Length.
Ruiz, R Jeanne; Trzeciakowski, Jerome; Moore, Tiffany; Ayers, Kimberly S; Pickler, Rita H
2016-10-12
Chronic stress may accelerate cellular aging. Telomeres, protective "caps" at the end of chromosomes, modulate cellular aging and may be good biomarkers for the effects of chronic stress, including that associated with acculturation. The purpose of this analysis was to examine telomere length (TL) in acculturating Hispanic Mexican American women and to determine the associations among TL, acculturation, and psychological factors. As part of a larger cross-sectional study of 516 pregnant Hispanic Mexican American women, we analyzed DNA in blood samples (N = 56) collected at 22-24 weeks gestation for TL as an exploratory measure using monochrome multiplex quantitative telomere polymerase chain reaction (PCR). We measured acculturation with the Acculturation Rating Scale for Mexican Americans, depression with the Beck Depression Inventory, discrimination with the Experiences of Discrimination Scale, and stress with the Perceived Stress Scale. TL was negatively moderately correlated with two variables of acculturation: Anglo orientation and greater acculturation-level scores. We combined these scores for a latent variable, acculturation, and we combined depression, stress, and discrimination scores in another latent variable, "negative affectivity." Acculturation and negative affectivity were bidirectionally correlated. Acculturation significantly negatively predicted TL. Using structural equation modeling, we found the model had an excellent fit with the root mean square error of approximation estimate = .0001, comparative fit index = 1.0, Tucker-Lewis index = 1.0, and standardized root mean square residual = .05. The negative effects of acculturation on the health of Hispanic women have been previously demonstrated. Findings from this analysis suggest a link between acculturation and TL, which may indicate accelerated cellular aging associated with overall poor health outcomes. © The Author(s) 2016.
Genetic analysis of groups of mid-infrared predicted fatty acids in milk.
Narayana, S G; Schenkel, F S; Fleming, A; Koeck, A; Malchiodi, F; Jamrozik, J; Johnston, J; Sargolzaei, M; Miglior, F
2017-06-01
The objective of this study was to investigate genetic variability of mid-infrared predicted fatty acid groups in Canadian Holstein cattle. Genetic parameters were estimated for 5 groups of fatty acids: short-chain (4 to 10 carbons), medium-chain (11 to 16 carbons), long-chain (17 to 22 carbons), saturated, and unsaturated fatty acids. The data set included 49,127 test-day records from 10,029 first-lactation Holstein cows in 810 herds. The random regression animal test-day model included days in milk, herd-test date, and age-season of calving (polynomial regression) as fixed effects, herd-year of calving, animal additive genetic effect, and permanent environment effects as random polynomial regressions, and random residual effect. Legendre polynomials of the third degree were selected for the fixed regression for age-season of calving effect and Legendre polynomials of the fourth degree were selected for the random regression for animal additive genetic, permanent environment, and herd-year effect. The average daily heritability over the lactation for the medium-chain fatty acid group (0.32) was higher than for the short-chain (0.24) and long-chain (0.23) fatty acid groups. The average daily heritability for the saturated fatty acid group (0.33) was greater than for the unsaturated fatty acid group (0.21). Estimated average daily genetic correlations were positive among all fatty acid groups and ranged from moderate to high (0.63-0.96). The genetic correlations illustrated similarities and differences in their origin and the makeup of the groupings based on chain length and saturation. These results provide evidence for the existence of genetic variation in mid-infrared predicted fatty acid groups, and the possibility of improving milk fatty acid profile through genetic selection in Canadian dairy cattle. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srienc, Friedrich; Jackson, John K.; Somers, David A.
A genetically engineered Pseudomonas oleovorans phaC1 polyhydroxyalkanoate (PHA) polymerase having tailored substrate specificity is provided. The modified PHA polymerase is preferably a "bispecific" PHA polymerase capable of copolymerizing a short chain length monomer and a medium chain length monomer is provided. Methods for making the modified PHA polymerase and for making nucleic acids encoding the modified PHA polymerase are also disclosed, as are methods of producing PHA using the modified PHA polymerase. The invention further includes methods to assay for altered substrate specificity.
Chain decomposition of aqueous triethanolamine. [Gamma Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, H.A.
A radiation-induced chain decomposition of aqueous triethanolamine into acetaldehyde and diethanolamine is reported. Chain lengths over 1000 have been observed, depending on pH, concentration, and radiation intensity. The chain propagation steps include OH group migration in the 2-hydroxy-1-(diethanolamino)ethyl radical and NR/sub 2/ migration in 1-hydroxy-2(diethanolamine)ethyl radical, each producing a 2-hydroxy-2-(diethanolamine)ethyl radical. Free-radical spectra and rate constants are given. Studies of diethanolamine and diethylethanolamine solutions gave similar free-radical spectra but much shorter chains.
Linkage mapping of a mouse gene, iv, that controls left-right asymmetry of the heart and viscera.
Brueckner, M; D'Eustachio, P; Horwich, A L
1989-01-01
Inherited single gene defects have been identified in both humans and mice that lead to loss of developmental control over the left-right asymmetry of the heart and viscera. In mice the recessively inherited mutation iv leads to such apparent loss of control over situs: 50% of iv/iv mice exhibit situs inversus and 50% exhibit normal situs. The affected gene product has not been identified in these animals. To study the normal function of iv, we have taken an approach directed to the gene itself. As a first step, we have mapped iv genetically, by examining its segregation in backcrosses with respect to markers defined by restriction fragment length polymorphisms. The iv locus lies 3 centimorgans (cM) from the immunoglobulin heavy-chain constant-region gene complex (Igh-C) on chromosome 12. A multilocus map of the region suggests the gene order centromere-Aat (alpha 1-antitrypsin gene complex)-(11 cM)-iv-(3 cM)-Igh-C-(1 cM)-Igh-V (immunoglobulin heavy-chain variable-region gene complex). Images PMID:2740340
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei-Min, E-mail: chm_zhangwm@ujn.edu.cn; Jiang, Yao-Quan; Cao, Xiao-Yan
2013-10-15
Graphical abstract: - Highlights: • Self-templated synthesis of tubular CdS. • Cadmium complexes of aliphatic acids sustain the network of mesoporous structures. • Aliphatic acids affect the phase composition and particle size. • Pore size and volume vary with aliphatic acids having different hydrocarbonyl. - Abstract: In this study, mesoporous CdS polycrystallites have been synthesized using aliphatic acids of hexanoic acid, octanoic acid, and oleic acid as coordinating and capping agents, respectively. The fibrous Cd–fatty acid salts act as a template to form the tubular CdS. The organic species are found to be necessary for maintaining the network of mesoporousmore » CdS. The characterization results indicate that the shorter carbon chain length in aliphatic acids favors the wurtzite phase and particle size growth the specific surface area, pore diameter and pore volume show a monotonic raise with increasing carbon chain. The photocatalytic activities of mesoporous CdS tubes exhibit much higher efficiency than those of nanosized CdS powders in decolorizing methylene blue under simulated visible light.« less
Effect of Molecular Flexibility upon Ice Adhesion Shear Strength
NASA Technical Reports Server (NTRS)
Smith, Joseph G.; Wohl, Christopher J.; Kreeger, Richard E.; Palacios, Jose; Knuth, Taylor; Hadley, Kevin
2016-01-01
Ice formation on aircraft surfaces effects aircraft performance by increasing weight and drag leading to loss of lift. Current active alleviation strategies involve pneumatic boots, heated surfaces, and usage of glycol based de-icing fluids. Mitigation or reduction of in-flight icing by means of a passive approach may enable retention of aircraft capabilities, i.e., no reduction in lift, while reducing the aircraft weight and mechanical complexity. Under a NASA Aeronautics Research Institute Seedling activity, the effect of end group functionality and chain length upon ice adhesion shear strength (IASS) was evaluated with the results indicating that chemical functionality and chain length (i.e. molecular flexibility) affected IASS. Based on experimental and modeling results, diamine monomers incorporating molecular flexibility as either a side chain or in between diamine functionalities were prepared, incorporated into epoxy resins that were subsequently used to fabricate coatings on aluminum substrates, and tested in a simulated icing environment. The IASS was found to be lower when molecular flexibility was incorporated in the polymer chain as opposed to a side chain.
Light-responsive expansion-contraction of spherical nanoparticle grafted with azopolymers
NASA Astrophysics Data System (ADS)
Fu, Jie; Zhang, Xinghua; Miao, Bing; Yan, Dadong
2017-04-01
Due to the very importance for both fundamental research and technological applications, smart materials with stimuli-responsive properties have been studied intensively. Theoretical investigation contributes to this endeavor through constructing and analyzing a model system which captures main features of the corresponding complex material, wherefrom useful insight can be provided to the trial-and-error experiments. We here report a theoretical study on the smart spherical nanoparticle grafted with light-responsive azobenzene-containing polymers. Utilizing the photoisomerization ability of the azobenzene group, nanoparticles can undergo a light-induced expansion-contraction transition. The wormlike chain based single chain in mean field theory, which has been developed by us recently, is used to investigate this transition in detail. Exploring a large parameter space, our results definitely determine the parameters, including the chain length and effective Kuhn length of grafted chain, nanoparticle radius, grafting density, and position of the azobenzene group along the chain contour, to admit optimum light-responsive behavior of the smart nanoparticle, which provides a guide for experimentalists to design this type of material in a rational manner.
Molecular mechanism and structure of Trigger Factor bound to the translating ribosome
Merz, Frieder; Boehringer, Daniel; Schaffitzel, Christiane; Preissler, Steffen; Hoffmann, Anja; Maier, Timm; Rutkowska, Anna; Lozza, Jasmin; Ban, Nenad; Bukau, Bernd; Deuerling, Elke
2008-01-01
Ribosome-associated chaperone Trigger Factor (TF) initiates folding of newly synthesized proteins in bacteria. Here, we pinpoint by site-specific crosslinking the sequence of molecular interactions of Escherichia coli TF and nascent chains during translation. Furthermore, we provide the first full-length structure of TF associated with ribosome–nascent chain complexes by using cryo-electron microscopy. In its active state, TF arches over the ribosomal exit tunnel accepting nascent chains in a protective void. The growing nascent chain initially follows a predefined path through the entire interior of TF in an unfolded conformation, and even after folding into a domain it remains accommodated inside the protective cavity of ribosome-bound TF. The adaptability to accept nascent chains of different length and folding states may explain how TF is able to assist co-translational folding of all kinds of nascent polypeptides during ongoing synthesis. Moreover, we suggest a model of how TF's chaperoning function can be coordinated with the co-translational processing and membrane targeting of nascent polypeptides by other ribosome-associated factors. PMID:18497744
Solubilization of cyclohexane in aqueous solutions of sodium. cap alpha. -alkyl alkanoates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagitani, H.; Suzuki, T.; Nagai, M.
1982-01-01
The effect of branched alkyl chain length and the position of the COONa group on the solubilizing power of n-alkane sodium carboxylates was studied. The lipophilic property and the amount of solubilized cyclohexane increased with the branched chain length of branched soaps, and with the change of the position of the -COONa group from 3 to 7 in the alkyl chain of pentadecane -3, -5, and -7 sodium carboxylates. Alpha-branched soaps having proper branched alkyl chains were better solubilizers for cyclohexane than straight chain compounds. The amount of cyclohexane solublized by C/sub 10/ H/sub 21/ CH(C/sub 6/H/sub 13/) COONa wasmore » about three times greater than the amount solubilized by C/sub 17/ H/sub 35/ COONa. There was a marked increase in the solubilization of cyclohexane replacing ..cap alpha..-branched fatty acid soaps with optimum amount of cosurfactants such as C/sub 8/H/sub 17/ (OCH/sub 2/CH/sub 2/)/sub 2/OH. Namely, solubilization increased markedly at the optimum hydrophile-lipophile balance of mixed surfactant. 21 references.« less
Role of short-range correlation in facilitation of wave propagation in a long-range ladder chain
NASA Astrophysics Data System (ADS)
Farzadian, O.; Niry, M. D.
2018-09-01
We extend a new method for generating a random chain, which has a kind of short-range correlation induced by a repeated sequence while retaining long-range correlation. Three distinct methods are considered to study the localization-delocalization transition of mechanical waves in one-dimensional disordered media with simultaneous existence of short and long-range correlation. First, a transfer-matrix method was used to calculate numerically the localization length of a wave in a binary chain. We found that the existence of short-range correlation in a long-range correlated chain can increase the localization length at the resonance frequency Ωc. Then, we carried out an analytical study of the delocalization properties of the waves in correlated disordered media around Ωc. Finally, we apply a dynamical method based on the direct numerical simulation of the wave equation to study the propagation of waves in the correlated chain. Imposing short-range correlation on the long-range background will lead the propagation to super-diffusive transport. The results obtained with all three methods are in agreement with each other.
NASA Astrophysics Data System (ADS)
O'Brien, Edward; Vendruscolo, Michele; Dobson, Christopher
2010-03-01
In vitro experiments examining cotranslational folding utilize ribosome-nascent chain complexes (RNCs) in which the nascent chain is stalled at different points of its biosynthesis on the ribosome. We investigate the thermodynamics, kinetics, and structural properties of RNCs containing five different globular and repeat proteins stalled at ten different nascent chain lengths using coarse grained replica exchange simulations. We find that when the proteins are stalled near the ribosome exit tunnel opening they exhibit altered folding coopserativity, quantified by the van't Hoff enthalpy criterion; a significantly altered denatured state ensemble, in terms of Rg and shape parameters (Rg tensor); and the appearance of partially folded intermediates during cotranslation, evidenced by the appearance of a third basin in the free energy profile. These trends are due in part to excluded volume (crowding) interactions between the ribosome and nascent chain. We perform in silico temperature-jump experiments on the RNCs and examine nascent chain folding kinetics and structural changes in the transition state ensemble at various stall lengths.
Ardhaoui, M; Falcimaigne, A; Ognier, S; Engasser, J M; Moussou, P; Pauly, G; Ghoul, M
2004-06-10
Rutin and esculin were enzymatically acylated with different aliphatic acids as acyl donors (fatty acids, dicarboxylic acids and omega-substituted fatty acids) by an immobilized lipase from Candida antarctica. The effect of the water content and the acyl donors pattern on the flavonoid initial acylation rate and conversion yield were investigated. The obtained results indicated that the water content of the medium has a strong effect on the performance of these reactions. The best conversion yields were reached when the water content was kept lower than 200 ppm. At low water content of the medium, these syntheses are influenced by carbon chain length and substitution pattern of the acyl donors. Higher conversion yields of esculin and rutin (>70%) were obtained with aliphatic acids having high carbon chain length (>12). Moreover, it has been found that the amine and thiol groups on omega-substituted fatty acid chain were unfavourable to these reactions. The 1H NMR and 13C NMR analyses of some synthesized esters (esculin and rutin palmitate) show that only monoesters were produced and that the esterification takes place on the primary OH of glucose moiety of the esculin and on the secondary 4"'-OH of the rhamnose residue of rutin. Copyright 2004 Elsevier B.V.
Han, Lingyu; Ratcliffe, I; Williams, P A
2017-12-15
A series of inulin derivatives were synthesized in aqueous solution using acyl chlorides with varying alkyl chain length (C10-C16). They were characterised using a number of techniques including MALDI TOF-MS, 1 H NMR and FTIR and their degree of substitution determined. The solution properties of the hydrophobically modified inulins were investigated using dye solubilisation and surface tension and it was confirmed that the molecules aggregated in solution above a critical concentration (critical aggregation concentration, CAC). The value of the CAC was found to be reasonably consistent between the different techniques and was shown to decrease with increasing hydrophobe chain length. It was found that the C10, C12 and C14 derivatives formed stable oil-in-water emulsions and the emulsion droplet size decreased with increasing alkyl chain length. The C16 derivative was not able to produce stable oil-in-water emulsions; however, it was able to form stable water-in-oil emulsions. The fact that the derivatives are able to form micellar-like aggregates and stabilise emulsions makes them suitable candidates for the encapsulation and delivery of active compounds with potential application in food, cosmetic, personal care and pharmaceutical formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl
NASA Astrophysics Data System (ADS)
Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen
2017-09-01
A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.
Morita, Clara; Tanuma, Hiromitsu; Kawai, Chika; Ito, Yuki; Imura, Yoshiro; Kawai, Takeshi
2013-02-05
A series of long-chain amidoamine derivatives with different alkyl chain lengths (CnAA where n is 12, 14, 16, or 18) were synthesized and studied with regard to their ability to form organogels and to act as soft templates for the production of Au nanomaterials. These compounds were found to self-assemble into lamellar structures and exhibited gelation ability in some apolar solvents. The gelation concentration, gel-sol phase transition temperature, and lattice spacing of the lamellar structures in organic solvent all varied on the basis of the alkyl chain length of the particular CnAA compound employed. The potential for these molecules to function as templates was evaluated through the synthesis of Au nanowires (NWs) in their organogels. Ultrathin Au NWs were obtained from all CnAA/toluene gel systems, each within an optimal temperature range. Interestingly, in the case of C12AA and C14AA, it was possible to fabricate ultrathin Au NWs at room temperature. In addition, two-dimensional parallel arrays of ultrathin Au NWs were self-assembled onto TEM copper grids as a result of the drying of dispersion solutions of these NWs. The use of CnAA compounds with differing alkyl chain lengths enabled precise tuning of the distance between the Au NWs in these arrays.
Vieira Ferreira, Luís F.; Ferreira, Diana P.; Duarte, Paulo; Oliveira, A. S.; Torres, E.; Machado, I. Ferreira; Almeida, P.; Reis, Lucinda V.; Santos, Paulo F.
2012-01-01
In this work, thia and selenocarbocyanines with n-alkyl chains of different length, namely with methyl, ethyl, propyl, hexyl and decyl substituents, were studied in homogeneous and heterogeneous media for comparison purposes. For both carbocyanine dyes adsorbed onto microcrystalline cellulose, a remarkable increase in the fluorescence quantum yields and lifetimes were detected, when compared with solution. Contrary to the solution behaviour, where the increase in the n-alkyl chains length increases to a certain extent the fluorescence emission ΦF and τF, on powdered solid samples a decrease of ΦF and τF was observed. The use of an integrating sphere enabled us to obtain absolute ΦF’s for all the powdered samples. The main difference for liquid homogeneous samples is that the increase of the alkyl chain strongly decreases the ΦF values, both for thiacarbocyanines and selenocarbocyanines. A lifetime distribution analysis for the fluorescence of these dyes adsorbed onto microcrystalline cellulose, evidenced location on the ordered and crystalline part of the substrate, as well as on the more disordered region where the lifetime is smaller. The increase of the n-alkyl chains length decreases the photoisomer emission for the dyes adsorbed onto microcrystalline cellulose, as detected for high fluences of the laser excitation, for most samples. PMID:22312274
Diffusive transport in the presence of stochastically gated absorption
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; Karamched, Bhargav R.; Lawley, Sean D.; Levien, Ethan
2017-08-01
We analyze a population of Brownian particles moving in a spatially uniform environment with stochastically gated absorption. The state of the environment at time t is represented by a discrete stochastic variable k (t )∈{0 ,1 } such that the rate of absorption is γ [1 -k (t )] , with γ a positive constant. The variable k (t ) evolves according to a two-state Markov chain. We focus on how stochastic gating affects the attenuation of particle absorption with distance from a localized source in a one-dimensional domain. In the static case (no gating), the steady-state attenuation is given by an exponential with length constant √{D /γ }, where D is the diffusivity. We show that gating leads to slower, nonexponential attenuation. We also explore statistical correlations between particles due to the fact that they all diffuse in the same switching environment. Such correlations can be determined in terms of moments of the solution to a corresponding stochastic Fokker-Planck equation.
First report of genotype #65 of Toxoplasma gondii in pigs.
Samico-Fernandes, Erika Fernanda Torres; de Melo, Renata Pimentel Bandeira; de Cássia Peixoto Kim, Pomy; de Almeida, Jonatas Campos; de Barros, Luiz Daniel; Garcia, João Luis; da Silva, Jean Carlos Ramos; Mota, Rinaldo Aparecido
2015-10-01
The aim of the present study was to isolate and genotype Toxoplasma gondii from pigs slaughtered for human consumption in northeastern Brazil. Indirect immunofluorescence antibody test (IFAT) was used to screen positive pigs. Tissues samples of animals with antibody titers ≥64 were submitted to bioassay in mice. One isolate of T. gondii was obtained, and the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique, using 11 markers (SAG1, SAG2, altSAG2, SAG3, BTUB, GRA6, c228, c292, L358, PK1, and APICO), was applied to evaluate the genetic variability. DNA from reference strains was used as a positive control. By means of genetic analysis, genotype ToxoDB #65 was identified, which is considered an atypical strain. This is the first record of genotype #65 in pigs. Thus, further studies in this region are necessary to determine the genetic variability of T. gondii in pigs and possible impact on public health.
Structure-activity relationships between sterols and their thermal stability in oil matrix.
Hu, Yinzhou; Xu, Junli; Huang, Weisu; Zhao, Yajing; Li, Maiquan; Wang, Mengmeng; Zheng, Lufei; Lu, Baiyi
2018-08-30
Structure-activity relationships between 20 sterols and their thermal stabilities were studied in a model oil system. All sterol degradations were found to be consistent with a first-order kinetic model with determination of coefficient (R 2 ) higher than 0.9444. The number of double bonds in the sterol structure was negatively correlated with the thermal stability of sterol, whereas the length of the branch chain was positively correlated with the thermal stability of sterol. A quantitative structure-activity relationship (QSAR) model to predict thermal stability of sterol was developed by using partial least squares regression (PLSR) combined with genetic algorithm (GA). A regression model was built with R 2 of 0.806. Almost all sterol degradation constants can be predicted accurately with R 2 of cross-validation equals to 0.680. Four important variables were selected in optimal QSAR model and the selected variables were observed to be related with information indices, RDF descriptors, and 3D-MoRSE descriptors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Haslam, Tegan M; Haslam, Richard; Thoraval, Didier; Pascal, Stéphanie; Delude, Camille; Domergue, Frédéric; Fernández, Aurora Mañas; Beaudoin, Frédéric; Napier, Johnathan A; Kunst, Ljerka; Joubès, Jérôme
2015-03-01
The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function. © 2015 American Society of Plant Biologists. All Rights Reserved.
Haslam, Tegan M.; Haslam, Richard; Thoraval, Didier; Pascal, Stéphanie; Delude, Camille; Domergue, Frédéric; Fernández, Aurora Mañas; Beaudoin, Frédéric; Napier, Johnathan A.; Kunst, Ljerka; Joubès, Jérôme
2015-01-01
The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function. PMID:25596184
Role of special cross-links in structure formation of bacterial DNA polymer
NASA Astrophysics Data System (ADS)
Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim
2018-01-01
Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.
Abraham, Alex; Chatterji, Apratim
2018-04-21
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions
NASA Astrophysics Data System (ADS)
Abraham, Alex; Chatterji, Apratim
2018-04-01
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Bagheri, Salman; Yousefi, Mehdi; Safaie Qamsari, Elmira; Riazi-Rad, Farhad; Abolhassani, Mohsen; Younesi, Vahid; Dorostkar, Ruhollah; Movassaghpour, Ali Akbar; Sharifzadeh, Zahra
2017-03-01
The 4-1BB is a surface glycoprotein that pertains to the tumor necrosis factor-receptor family. There is compelling evidence suggesting important roles for 4-1BB in the immune response, including cell activation and proliferation and also cytokine induction. Because of encouraging results of different agonistic monoclonal antibodies against 4-1BB in the treatment of cancer, infectious, and autoimmune diseases, 4-1BB has been suggested as an attractive target for immunotherapy. In this study, single chain variable fragment phage display libraries, Tomlinson I+J, were screened against specific synthetic oligopeptides (peptides I and II) designed from 4-1BB extracellular domain. Five rounds of panning led to selection of four 4-1BB specific single chain variable fragments (PI.12, PI.42, PII.16, and PII.29) which showed specific reaction to relevant peptides in phage enzyme-linked immunosorbent assay. The selected clones were successfully expressed in Escherichia coli Rosetta-gami 2, and their expression was confirmed by western blot analysis. Enzyme-linked immunosorbent assay experiments indicated that these antibodies were able to specifically recognize 4-1BB without any cross-reactivity with other antigens. Flow cytometry analysis demonstrated an acceptable specific binding of the single chain variable fragments to 4-1BB expressed on CCRF-CEM cells, while no binding was observed with an irrelevant antibody. Anti-4-1BB single chain variable fragments enhanced surface CD69 expression and interleukin-2 production in stimulated CCRF-CEM cells which confirmed the agonistic effect of the selected single chain variable fragments. The data from this study have provided a rationale for further experiments involving the biological functions of anti-4-1BB single chain variable fragments in future studies.
Wormlike Chain Theory and Bending of Short DNA
NASA Astrophysics Data System (ADS)
Mazur, Alexey K.
2007-05-01
The probability distributions for bending angles in double helical DNA obtained in all-atom molecular dynamics simulations are compared with theoretical predictions. The computed distributions remarkably agree with the wormlike chain theory and qualitatively differ from predictions of the subelastic chain model. The computed data exhibit only small anomalies in the apparent flexibility of short DNA and cannot account for the recently reported AFM data. It is possible that the current atomistic DNA models miss some essential mechanisms of DNA bending on intermediate length scales. Analysis of bent DNA structures reveal, however, that the bending motion is structurally heterogeneous and directionally anisotropic on the length scales where the experimental anomalies were detected. These effects are essential for interpretation of the experimental data and they also can be responsible for the apparent discrepancy.
Zaidi, A; Gainer, J L; Carta, G; Mrani, A; Kadiri, T; Belarbi, Y; Mir, A
2002-02-28
The esterification of long-chain fatty acids in n-hexane catalyzed by nylon-immobilized lipase from Candida rugosa has been investigated. Butyl oleate (22 carbon atoms), oleyl butyrate (22 carbon atoms) and oleyl oleate (36 carbon atoms) were produced at maximum reaction rates of approximately equal to 60 mmol h(-1) g(-1) immobilized enzyme when the substrates were present in equimolar proportions at an initial concentration of 0.6 mol l(-1). The observed kinetic behavior of all the esterification reactions is found to follow a ping-pong bi-bi mechanism with competitive inhibition by both substrates. The effect of the chain-length of the fatty acids and the alcohols could be correlated to some mechanistic models, in accordance with the calculated kinetic parameters.
Current Understanding of Perfluoroalkyl Acid Toxicology ...
The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-14 carbons in length) and an anionic head group (sulfonate, carboxylate or phosphonate). These compounds have excellent surface-tension reducing properties and have numerous industrial and consumer applications. However, they are chemically stable, persistent in the environment, ubiquitously distributed, and present in humans and wildlife. Two issues must be considered regarding PFAA toxicology: pharmacokinetics and potency of the chemicals. The rates of PFAA clearance and their body burden accumulation are dependent on carbon-chain length and animal species. In general, the serum half-life of PFAAs increases with chain length in both rodents and humans, but the estimates in humans are markedly higher than those in laboratory animals. Recent studies with laboratory animal models have indicated a number of toxic effects of PFAAs, including tumor induction, hepatotoxicity, developmental toxicity, immunotoxicity, neurotoxicity and endocrine disruption. The modes of PFAA actions are not well understood, but are thought to involve, in part, activation of nuclear receptor signals (such as peroxisome proliferator-activated receptor-a, PPARa). Based on PPARa activation, potency of PFAAs increases with carbon-chain length, carboxylates are stronger than sulfonates, and mouse receptor is more reactive than human receptor. Adverse effects of perfluorophospho
Guo, Zongxia; Wang, Kun; Yu, Ping; Wang, Xiangnan; Lan, Shusha; Sun, Kai; Yi, Yuanping; Li, Zhibo
2017-11-02
The effect of the length of linear alkyl chains substituted at imine positions on the assembly of tetrachlorinated perylene bisimides (1: PBI with -C 6 H 13 ; 2: PBI with -C 12 H 25 ) has been investigated. Solvent-induced assembly was performed in solutions of THF and methanol with varying volume ratios. Morphological (SEM, AFM, and TEM) and spectral (UV/Vis, fluorescence, FTIR, and XRD) methods were used to characterize the assembled nanostructures and the molecular arrangement in the aggregates. It was found that uniform structures could be obtained for both molecules in solutions with a high ratio of methanol. PBI 1 formed rigid nanosheets, whereas 2 assembled into longer nanostripes with a high ratio of length to width. On combining the morphological data with the spectral data, it was suggested that π-π stacking predominated in assemblies of 1, and the synergetic effect of van der Waals interactions from the long alkyl chains and π-π stacking between neighboring building blocks facilitated the growth of the long-range-ordered nanostructures of 2. By changing the linear chain length, the hierarchical assembly of PBIs modified on bay positions could be manipulated effectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure and Dynamics of Polymers in Cylindrical Nanoconfinement: A Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Pressly, James; Riggleman, Robert; Winey, Karen
The structure and dynamics of polymers under nanoconfinement is critical for understanding how polymers behave in applications from hydraulic fracking to fabricating integrated circuits. We previously used simulations to explore the effect of the diameter of cylindrical pores (d = 10-40 σ, where σ is the unit length in reduced units) on polymer end-to-end distance (Ree,perp, Ree,par) , entanglement density, melt diffusion coefficient (D), and local relaxation time (τperp, τpar) at fixed polymer chain length (N = 350). These studies found D, Ree,par, and τperp increased with increasing confinement while entanglement density, Ree,perp, and τpar decreased. Experiments also found that D increased but to a lesser extent. Here, we examine the molecular weight dependence of these properties using N = 25, 50, 100, 200, 350, and 500 confined to pores of diameter 14 σ to examine a range of confinements. Our preliminary results show that as N increases D and Ree,par, increase as well, relative to the unconfined state, while entanglement density and Ree,perp decrease, consistent with our previous work. Interestingly, τ is shown to be independent of chain length indicating the impact of confinement imposed by reducing pore diameter is distinct from that imposed by increasing chain length.
Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus
USDA-ARS?s Scientific Manuscript database
Transgenic plants of Gladiolus ‘Peter Pears’ or ‘Jenny Lee’ were developed that contain single-chain variable fragments (scFv) to Cucumber mosaic virus (CMV) subgroup I or II. The CMV subgroup I heavy and light chain scFv fragments were placed under control of either the duplicated CaMV 35S or suga...
Falling Chains as Variable-Mass Systems: Theoretical Model and Experimental Analysis
ERIC Educational Resources Information Center
de Sousa, Celia A.; Gordo, Paulo M.; Costa, Pedro
2012-01-01
In this paper, we revisit, theoretically and experimentally, the fall of a folded U-chain and of a pile-chain. The model calculation implies the division of the whole system into two subsystems of variable mass, allowing us to explore the role of tensional contact forces at the boundary of the subsystems. This justifies, for instance, that the…
Adler, Adam S; Bedinger, Daniel; Adams, Matthew S; Asensio, Michael A; Edgar, Robert C; Leong, Renee; Leong, Jackson; Mizrahi, Rena A; Spindler, Matthew J; Bandi, Srinivasa Rao; Huang, Haichun; Tawde, Pallavi; Brams, Peter; Johnson, David S
2018-04-01
Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of "randomly paired" scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs.
Adler, Adam S.; Bedinger, Daniel; Adams, Matthew S.; Asensio, Michael A.; Edgar, Robert C.; Leong, Renee; Leong, Jackson; Mizrahi, Rena A.; Spindler, Matthew J.; Bandi, Srinivasa Rao; Huang, Haichun; Brams, Peter; Johnson, David S.
2018-01-01
ABSTRACT Deep sequencing and single-chain variable fragment (scFv) yeast display methods are becoming more popular for discovery of therapeutic antibody candidates in mouse B cell repertoires. In this study, we compare a deep sequencing and scFv display method that retains native heavy and light chain pairing with a related method that randomly pairs heavy and light chain. We performed the studies in a humanized mouse, using interleukin 21 receptor (IL-21R) as a test immunogen. We identified 44 high-affinity binder scFv with the native pairing method and 100 high-affinity binder scFv with the random pairing method. 30% of the natively paired scFv binders were also discovered with the randomly paired method, and 13% of the randomly paired binders were also discovered with the natively paired method. Additionally, 33% of the scFv binders discovered only in the randomly paired library were initially present in the natively paired pre-sort library. Thus, a significant proportion of “randomly paired” scFv were actually natively paired. We synthesized and produced 46 of the candidates as full-length antibodies and subjected them to a panel of binding assays to characterize their therapeutic potential. 87% of the antibodies were verified as binding IL-21R by at least one assay. We found that antibodies with native light chains were more likely to bind IL-21R than antibodies with non-native light chains, suggesting a higher false positive rate for antibodies from the randomly paired library. Additionally, the randomly paired method failed to identify nearly half of the true natively paired binders, suggesting a higher false negative rate. We conclude that natively paired libraries have critical advantages in sensitivity and specificity for antibody discovery programs. PMID:29376776
Using spiral chain models for study of nanoscroll structures
NASA Astrophysics Data System (ADS)
Savin, Alexander V.; Sakovich, Ruslan A.; Mazo, Mikhail A.
2018-04-01
Molecular nanoribbons with different chemical structures can form scrolled packings possessing outstanding properties and application perspectives due to their morphology. Here, we propose a simplified two-dimensional model of the molecular chain that allows us to describe the molecular nanoribbon's scrolled packings of various structures as a spiral packaging chain. The model allows us to obtain the possible stationary states of single-layer nanoribbon scrolls of graphene, graphane, fluorographene, fluorographane (graphene hydrogenated on one side and fluorinated on the other side), graphone C4H (graphene partially hydrogenated on one side), and fluorographone C4F . The obtained states and the states of the scrolls found through all-atomic models coincide with good accuracy. We show the stability of scrolled packings and calculate the dependence of energy, the number of coils, and the inner and outer radius of the scrolled packing on the nanoribbon length. It is shown that a scrolled packing is the most energetically favorable conformation for nanoribbons of graphene, graphane, fluorographene, and fluorographane at large lengths. A double-scrolled packing when the nanoribbon is symmetrically rolled into a scroll from opposite ends is more advantageous for longer length nanoribbons of graphone and fluorographone. We show the possibility of the existence of scrolled packings for nanoribbons of fluorographene and the existence of two different types of scrolls for nanoribbons of fluorographane, which correspond to the left and right Archimedean spirals of the chain model. The simplicity of the proposed model allows us to consider the dynamics of molecular nanoribbon scrolls of sufficiently large lengths and at sufficiently large time intervals.
Gangamallaiah, V; Dutt, G B
2012-10-25
In an attempt to find out whether the length of the alkyl chain on the imidazolium cation has a bearing on solute rotation, temperature-dependent fluorescence anisotropies of three structurally similar solutes have been measured in a series of 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides. Solute-solvent coupling constants obtained from the experimentally measured reorientation times with the aid of Stokes-Einstein-Debye hydrodynamic theory indicate that there is no influence of the length of the alkyl chain on the rotation of nonpolar, anionic, and cationic solutes 9-phenylanthracene (9-PA), fluorescein (FL), and rhodamine 110 (R110), respectively. It has also been noticed that the rotational diffusion of 9-PA is closer to the predictions of slip hydrodynamics, whereas the rotation of negatively charged FL and positively charged R110 is almost identical and follows stick hydrodynamics in these ionic liquids. Despite having similar shape and size, ionic solutes rotate slower by a factor of 3-4 compared to the nonpolar solute. Interplay of specific and electrostatic interactions between FL and the imidazolium cation of the ionic liquids, and between R110 and the bis(trifluoromethylsulfonyl)imide anion, appear to be responsible for the observed behavior. These results are an indication that the length of the alkyl chain on the imidazolium cation does not alter their physical properties in a manner that has an effect on solute rotation.
Tripathi, Lakshmi; Wu, Lin-Ping; Chen, Jinchun; Chen, Guo-Qiang
2012-04-05
Block polyhydroxyalkanoates (PHA) were reported to be resistant against polymer aging that negatively affects polymer properties. Recently, more and more attempts have been directed to make PHA block copolymers. Diblock copolymers PHB-b-PHHx consisting of poly-3-hydroxybutyrate (PHB) block covalently bonded with poly-3-hydroxyhexanoate (PHHx) block were for the first time produced successfully by a recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. The chloroform extracted polymers were characterized by nuclear magnetic resonance (NMR), thermo- and mechanical analysis. NMR confirmed the existence of diblock copolymers consisting of 58 mol% PHB as the short chain length block with 42 mol% PHHx as the medium chain length block. The block copolymers had two glass transition temperatures (Tg) at 2.7°C and -16.4°C, one melting temperature (Tm) at 172.1°C and one cool crystallization temperature (Tc) at 69.1°C as revealed by differential scanning calorimetry (DSC), respectively. This is the first microbial short-chain-length (scl) and medium-chain-length (mcl) PHA block copolymer reported. It is possible to produce PHA block copolymers of various kinds using the recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. In comparison to a random copolymer poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (P(HB-co-HHx)) and a blend sample of PHB and PHHx, the PHB-b-PHHx showed improved structural related mechanical properties.
Scale-Dependent Stiffness and Internal Tension of a Model Brush Polymer
NASA Astrophysics Data System (ADS)
Berezney, John P.; Marciel, Amanda B.; Schroeder, Charles M.; Saleh, Omar A.
2017-09-01
Bottle-brush polymers exhibit closely grafted side chains that interact by steric repulsion, thereby causing stiffening of the main polymer chain. We use single-molecule elasticity measurements of model brush polymers to quantify this effect. We find that stiffening is only significant on long length scales, with the main chain retaining flexibility on short scales. From the elasticity data, we extract an estimate of the internal tension generated by side-chain repulsion; this estimate is consistent with the predictions of blob-based scaling theories.
Supramolecular Polymers Based on Non-Coplanar AAA-DDD Hydrogen-Bonded Complexes.
Mendez, Iamnica J Linares; Wang, Hong-Bo; Yuan, Ying-Xue; Wisner, James A
2018-03-01
Non-coplanar triple-hydrogen-bond arrays are connected as telechelic groups to alkyl chains and their properties as AA/BB type supramolecular polymers are examined. Viscosity studies at three temperatures are used to study the ring-chain equilibrium and determine the critical concentrations where polymer chains are formed. It is observed that neither the temperature range studied nor the alkyl chain length of one component significantly affect the polymerization properties in this system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Finding Minimal Addition Chains with a Particle Swarm Optimization Algorithm
NASA Astrophysics Data System (ADS)
León-Javier, Alejandro; Cruz-Cortés, Nareli; Moreno-Armendáriz, Marco A.; Orantes-Jiménez, Sandra
The addition chains with minimal length are the basic block to the optimal computation of finite field exponentiations. It has very important applications in the areas of error-correcting codes and cryptography. However, obtaining the shortest addition chains for a given exponent is a NP-hard problem. In this work we propose the adaptation of a Particle Swarm Optimization algorithm to deal with this problem. Our proposal is tested on several exponents whose addition chains are considered hard to find. We obtained very promising results.
Closed loop supply chain network design with fuzzy tactical decisions
NASA Astrophysics Data System (ADS)
Sherafati, Mahtab; Bashiri, Mahdi
2016-09-01
One of the most strategic and the most significant decisions in supply chain management is reconfiguration of the structure and design of the supply chain network. In this paper, a closed loop supply chain network design model is presented to select the best tactical and strategic decision levels simultaneously considering the appropriate transportation mode in activated links. The strategic decisions are made for a long term; thus, it is more satisfactory and more appropriate when the decision variables are considered uncertain and fuzzy, because it is more flexible and near to the real world. This paper is the first research which considers fuzzy decision variables in the supply chain network design model. Moreover, in this study a new fuzzy optimization approach is proposed to solve a supply chain network design problem with fuzzy tactical decision variables. Finally, the proposed approach and model are verified using several numerical examples. The comparison of the results with other existing approaches confirms efficiency of the proposed approach. Moreover the results confirms that by considering the vagueness of tactical decisions some properties of the supply chain network will be improved.
Rivera-Hernandez, Tania; Pandey, Manisha; Henningham, Anna; Cole, Jason; Choudhury, Biswa; Cork, Amanda J; Gillen, Christine M; Ghaffar, Khairunnisa Abdul; West, Nicholas P; Silvestri, Guido; Good, Michael F; Moyle, Peter M; Toth, Istvan; Nizet, Victor; Batzloff, Michael R; Walker, Mark J
2016-06-14
Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a "gold standard" for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. This set of experiments demonstrates the inherent variability of mouse models for the characterization of GAS vaccine candidate protective efficacy. Such variability poses an important challenge for GAS vaccine development, as advancement of candidates to human clinical trials requires strong evidence of efficacy. This study highlights the need for an open discussion within the field regarding standardization of animal models for GAS vaccine development. Copyright © 2016 Rivera-Hernandez et al.
Whitehead, Shawn N; Chan, Kenneth H N; Gangaraju, Sandhya; Slinn, Jacqueline; Li, Jianjun; Hou, Sheng T
2011-01-01
Gangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse. IMS is a powerful method to not only discriminate gangliosides by their oligosaccharide components, but also by their carbon length within their sphingosine base. Mice were subjected to a 30 min unilateral MCAO followed by long-term survival (up to 28 days of reperfusion). Brain sections were sprayed with the matrix 5-Chloro-2-mercaptobenzothiazole, scanned and analyzed for a series of ganglioside molecules using an Applied Biosystems 4800 MALDI TOF/TOF. Traditional histological and immunofluorescence techniques were performed to assess brain tissue damage and verification of the expression of gangliosides of interest. Results revealed a unique anatomical profile of GM1, GD1 and GT1b (d18:1, d20:1 as well as other members of the glycosphingolipid family). There was marked variability in the ratio of expression between ipsilateral and contralateral cortices for the various detected ganglioside species following MCAO-reperfusion injury. Most interestingly, MCAO resulted in the transient induction of both GM2 and GM3 signals within the ipsilateral hemisphere; at the border of the infarcted tissue. Taken together, the data suggest that brain region specific expression of gangliosides, particularly with respect to hydrocarbon length, may play a role in neuronal responses to injury.
Measuring the influence of industry sector membership on supply chain disruption reporting.
Alcantara, Patrick
2015-01-01
The global Supply Chain Resilience Survey by the Business Continuity Institute and Zurich Insurance is a comprehensive study on the state of supply chains in different organisations worldwide. As a benchmarking tool, it also contains data about business continuity arrangements in place to ensure supply chain resilience. Given this study's historically qualitative approach to reporting, this paper aims to introduce quantitative analysis. In this paper, responses that report membership in Standard Industrial Classification 2007 industry sectors from the 2013 Supply Chain Resilience Survey were disaggregated and related to supply chain disruption reporting. A chi-square test of independence reveals that membership in a particular industry sector influences reporting of supply chain disruption. Nonetheless, the relationship between these variables is weak. This study demonstrates interesting differences between industry sectors in terms of supply chain resilience. Further research is required in terms of other variables in order to provide granularity and relevant findings to supply chain planners.
Lee, Nam-Kyung; Bidlingmaier, Scott; Su, Yang; Liu, Bin
2018-01-01
Monoclonal antibodies and antibody-derived therapeutics have emerged as a rapidly growing class of biological drugs for the treatment of cancer, autoimmunity, infection, and neurological diseases. To support the development of human antibodies, various display techniques based on antibody gene repertoires have been constructed over the last two decades. In particular, scFv-antibody phage display has been extensively utilized to select lead antibodies against a variety of target antigens. To construct a scFv phage display that enables efficient antibody discovery, and optimization, it is desirable to develop a system that allows modular assembly of highly diverse variable heavy chain and light chain (Vκ and Vλ) repertoires. Here, we describe modular construction of large non-immune human antibody phage-display libraries built on variable gene cassettes from heavy chain and light chain repertoires (Vκ- and Vλ-light can be made into independent cassettes). We describe utility of such libraries in antibody discovery and optimization through chain shuffling.
Photoionization mass spectrometry of ω -phenylalkylamines: Role of radical cation-π interaction
NASA Astrophysics Data System (ADS)
Corinti, Davide; Catone, Daniele; Turchini, Stefano; Rondino, Flaminia; Crestoni, Maria Elisa; Fornarini, Simonetta
2018-04-01
Linear ω-phenylalkylamines of increasing alkyl chain length have been investigated employing synchrotron radiation in the photon energy range from 7 to 15 eV. These molecules have received considerable interest because they bear the skeleton of biologically relevant compounds including neurotransmitters and because of the possible interaction between the amino moiety and the phenyl ring. Recently, the contribution of this interaction has been assayed in both neutral and protonated species, pointing to a role of the polymethylene chain length. In this work, the ionization energy (IE) values of benzylamine (BA), 2-phenylethylamine (2-PEA), 3-phenylpropylamine (3-PPA), and 4-phenylbutylamine (4-PBA) were investigated in order to ascertain the impact of the different alkyl chain lengths and to verify an amino radical cation-π interaction. The IEs obtained experimentally, 8.54, 8.37, 8.29, and 8.31 eV for BA, 2-PEA, 3-PPA and 4-PBA, respectively, show a decreasing trend that is discussed employing calculations at the CBS-QB3 level. Moreover, the appearance energy values for major fragments produced by the photofragmentation process are reported.
Chain length effect on the structure and stability of antimicrobial peptides of the (RW)n series.
Phambu, Nsoki; Almarwani, Bashiyar; Garcia, Arlette M; Hamza, Nafisa S; Muhsen, Amira; Baidoo, Jacqueline E; Sunda-Meya, Anderson
2017-08-01
Three peptides containing (RW) n -NH 2 units (where n=4, 6, and 8) have been chosen to study the effect of the chain length on the structure and stability of the peptide using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. Their interactions with Escherichia coli (E. coli) membrane mimetic vesicles are discussed. Infrared results indicate that addition of (RW) n -NH 2 units increases intermolecular H bonds with antiparallel orientation. TGA and DSC results reveal that (RW) 6 -NH 2 shows the optimal chain length in terms of stability and all three peptides show a preferential interaction with one of the anionic lipids in E. coli membranes. SEM images of (RW) 4 -NH 2 present large aggregates while those of (RW) 6 -NH 2 and (RW) 8 -NH 2 present layers of sheet-like structure. In the presence of model membranes, (RW) n -NH 2 show fibrillar peptide superstructures. This study suggests that repeating structures of (RW) n -NH 2 promotes lateral assembly. Copyright © 2017 Elsevier B.V. All rights reserved.
Surfactant mediated polyelectrolyte self-assembly
Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...
2015-11-25
Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less
NASA Astrophysics Data System (ADS)
Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens
2018-05-01
We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.
Sano, Masami; Shan, Feng; Hara, Mitsuo; Nagano, Shusaku; Shinohara, Yuya; Amemiya, Yoshiyuki; Seki, Takahiro
2015-08-07
A series of block copolymers composed of an amorphous poly(butyl methacrylate) (PBMA) block connected with an azobenzene (Az)-containing liquid crystalline (PAz) block were synthesized by changing the chain length and polymer architecture. With these block copolymer films, the dynamic realignment process of microphase separated (MPS) cylinder arrays of PBMA in the PAz matrix induced by irradiation with linearly polarized light was studied by UV-visible absorption spectroscopy, and time-resolved grazing incidence small angle X-ray scattering (GI-SAXS) measurements using a synchrotron beam. Unexpectedly, the change in the chain length hardly affected the realignment rate. In contrast, the architecture of the AB-type diblock or the ABA-type triblock essentially altered the realignment feature. The strongly cooperative motion with an induction period before realignment was characteristic only for the diblock copolymer series, and the LPL-induced alignment change immediately started for triblock copolymers and the PAz homopolymer. Additionally, a marked acceleration in the photoinduced dynamic motions was unveiled in comparison with a thermal randomization process.
SCit: web tools for protein side chain conformation analysis
Gautier, R.; Camproux, A.-C.; Tufféry, P.
2004-01-01
SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit. PMID:15215438
Switching effect of the side chain on quantum walks on triple graphs
NASA Astrophysics Data System (ADS)
Du, Yi-Mu; Lu, Li-Hua; Li, You-Quan
2015-07-01
We consider a continuous-time quantum walk on a triple graph and investigate the influence of the side chain on propagation in the main chain. Calculating the interchange of the probabilities between the two parts of the main chain, we find that a switching effect appears if there is an odd number of points in the side chain when concrete conditions between the length of the main chain and the position of the side chain are satisfied. However, such an effect does not occur if there is an even number of points in the side chain. We also suggest two proposals for experiments to demonstrate this effect, which may be employed to design a new type of switching device.
Cuticular wax coverage and composition differ among organs of Taraxacum officinale.
Guo, Yanjun; Busta, Lucas; Jetter, Reinhard
2017-06-01
Primary plant surfaces are coated with hydrophobic cuticular waxes to minimize non-stomatal water loss. Wax compositions differ greatly between plant species and, in the few species studied systematically so far, also between organs, tissues, and developmental stages. However, the wax mixtures of more species in diverse plant families must be investigated to assess overall wax variability, and ultimately to correlate organ-specific composition with local water barrier properties. Here, we present comprehensive analyses of the waxes covering five organs of Taraxacum officinale (dandelion), to help close a gap in our understanding of wax chemistry in the Asteraceae family. First, novel wax constituents of the petal wax were identified as C 25 6,8- and 8,10-ketols as well as C 27 6,8- and 8,10-ketols. Nine other component classes (fatty acids, primary alcohols, esters, aldehydes, alkanes, triterpenols, triterpene acetates, sterols, and tocopherols) were detected in the wax mixtures covering leaves, peduncles, and petals, as well as fruit beaks and pappi. Wax coverages varied from 5 μg/cm 2 on peduncles to 37 μg/cm 2 on petals. Alcohols predominated in leaf wax, while both alcohols and alkanes were found in similar amounts on peduncles and petals, and mainly alkanes on the fruit beaks and pappi. Chain length distributions within the wax compound classes were similar between organs, centered around C 26 for fatty acids, alcohols, and aldehydes, and C 29 for alkanes. However, the quantities of homologs with longer chain lengths varied substantially between organs, reaching well beyond C 30 on all surfaces except leaves, suggesting differences in elongation enzymes determining the alkyl chain structures. The detailed wax profiles presented here will serve as basis for future investigations into wax biosynthesis in the Asteraceae and into wax functions on different dandelion organs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Wang, Kai; Wambugu, Peterson W; Zhang, Bin; Wu, Alex Chi; Henry, Robert J; Gilbert, Robert G
2015-09-20
The molecular structure and gelatinization properties of starches from domesticated African rice (Oryza glaberrima) and its wild progenitor (Oryza barthii) are determined and comparison made with Asian domesticated rice (Oryza sativa), the commonest commercial rice. This suggests possible enzymatic processes contributing to the unique traits of the African varieties. These have similar starch structures, including smaller amylose molecules, but larger amounts of amylose chains across the whole amylose chain-length distribution, and higher amylose contents, than O. sativa. They also show a higher proportion of two- and three-lamellae spanning amylopectin branch chains (degree of polymerization 34-100) than O. sativa, which contributes to their higher gelatinization temperatures. Fitting amylopectin chain-length distribution with a biosynthesis-based mathematical model suggests that the reason for this difference might be because O. glaberrima and O. barthii have more active SSIIIa and/or less active SBEIIb enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao
2016-02-07
The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.
Branquinho, Luis C.; Carrião, Marcus S.; Costa, Anderson S.; Zufelato, Nicholas; Sousa, Marcelo H.; Miotto, Ronei; Ivkov, Robert; Bakuzis, Andris F.
2013-01-01
Nanostructured magnetic systems have many applications, including potential use in cancer therapy deriving from their ability to heat in alternating magnetic fields. In this work we explore the influence of particle chain formation on the normalized heating properties, or specific loss power (SLP) of both low- (spherical) and high- (parallelepiped) anisotropy ferrite-based magnetic fluids. Analysis of ferromagnetic resonance (FMR) data shows that high particle concentrations correlate with increasing chain length producing decreasing SLP. Monte Carlo simulations corroborate the FMR results. We propose a theoretical model describing dipole interactions valid for the linear response regime to explain the observed trends. This model predicts optimum particle sizes for hyperthermia to about 30% smaller than those previously predicted, depending on the nanoparticle parameters and chain size. Also, optimum chain lengths depended on nanoparticle surface-to-surface distance. Our results might have important implications to cancer treatment and could motivate new strategies to optimize magnetic hyperthermia. PMID:24096272
Thermodynamics of Inozemtsev's elliptic spin chain
NASA Astrophysics Data System (ADS)
Klabbers, Rob
2016-06-01
We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.
The high-throughput synthesis and phase characterisation of amphiphiles: a sweet case study.
Feast, George C; Hutt, Oliver E; Mulet, Xavier; Conn, Charlotte E; Drummond, Calum J; Savage, G Paul
2014-03-03
A new method for the discovery of amphiphiles by using high-throughput (HT) methods to synthesise and characterise a library of galactose- and glucose-containing amphiphilic compounds is presented. The copper-catalysed azide–alkyne cycloaddition (CuAAC) “click” reaction between azide-tethered simple sugars and alkyne-substituted hydrophobic tails was employed to synthesise a library of compounds with systematic variations in chain length and unsaturation in a 24-vial array format. The liquid–crystalline phase behaviour was characterised in a HT manner by using synchrotron small-angle X-ray scattering (SSAXS). The observed structural variation with respect to chain parameters, including chain length and degree of unsaturation, is discussed, as well as hydration effects and degree of hydrogen bonding between head groups. The validity of our HT screening approach was verified by resynthesising a short-chain glucose amphiphile. A separate phase analysis of this compound confirmed the presence of numerous lyotropic liquid–crystalline phases.
Paniagua, Candelas; Kirby, Andrew R; Gunning, A Patrick; Morris, Victor J; Matas, Antonio J; Quesada, Miguel A; Mercado, José A
2017-06-01
Pectins analysed by AFM are visualized as individual chains, branched or unbranched, and aggregates. To investigate the nature of these structures, sodium carbonate soluble pectins from strawberry fruits were digested with endo-polygalacturonase M2 from Aspergillus aculeatus and visualized by AFM. A gradual decrease in the length of chains was observed as result of the treatment, reaching a minimum L N value of 22nm. The branches were not visible after 2h of enzymatic incubation. The size of complexes also diminished significantly with the enzymatic digestion. A treatment to hydrolyse rhamnogalacturonan II borate diester bonds neither affected chains length or branching nor complex size but reduced the density of aggregates. These results suggest that chains are formed by a mixture of homogalacturonan and more complex molecules composed by a homogalacturonan unit linked to an endo-PG resistant unit. Homogalacturonan is a structural component of the complexes and rhamnogalacturonan II could be involved in their formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Configurations and Dynamics of Semi-Flexible Polymers in Good and Poor Solvents
NASA Astrophysics Data System (ADS)
Larson, Ronald
We develop coarse-graining procedures for determining the conformational and dynamic behavior of semi-flexible chains with and without flow using Brownian dynamics (BD) simulations that are insensitive to the degree of coarse-graining. In the absence of flow, in a poor solvent, we find three main collapsed states: torus, bundle, and globule over a range of dimensionless ratios of the three energy parameters, namely solvent-polymer surface energy, energy of polymer folds, and polymer bending energy or persistence length. A theoretical phase diagram, confirmed by BD simulations, captures the general phase behavior of a single long chain (>10 Kuhn lengths) at moderately high (order unity) dimensionless temperature, which is the ratio of thermal energy to the attractive interaction between neighboring monomers. We also find converged results for polymer conformations in shear or extensional flow in solvents of various qualities and determine scaling laws for chain dimensions for low, moderate, and high Weissenberg numbers Wi. We also derive scaling laws to describe chains dimensions and tumbling rates in these regimes.
Food chain transfer of selenium in lentic and lotic habitats of a western Canadian watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orr, P.L.; Guiguer, K.R.; Russel, C.K.
2006-02-15
Selenium (Se) is an essential micronutrient, exhibiting a narrow margin between nutritionally optimal and potentially toxic concentrations. Egg-laying vertebrates at the top of aquatic food chains are most at risk in environments with elevated aqueous Se concentrations. The Elk River watershed in British Columbia, Canada receives effluents containing Se from five coal mine operations. This study tested three hypotheses that might account for higher Se concentrations in fish from lentic compared to lotic habitats in the watershed: (1) enhanced uptake by aquatic primary producers, (2) longer food chain length, or (3) greater food web accumulation through sediment-detrital pathways. Stable isotopemore » and Se concentration data demonstrated that Se concentrations in aquatic primary producers and food chain lengths were comparable in lentic and lotic habitats. Enhanced formation of organoselenium and subsequent uptake and cycling via sediment detrital pathways likely account for higher fish tissue Se concentrations in lentic than in lotic areas.« less
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Huang, Aiqun; Bhattacharya, Aniket; Binder, Kurt
2015-03-01
In this talk we compare the results obtained from Monte Carlo (MC) and Brownian dynamics (BD) simulation for the universal properties of a semi-flexible chain. Specifically we compare MC results obtained using pruned-enriched Rosenbluth method (PERM) with those obtained from BD simulation. We find that the scaled plot of root-mean-square (RMS) end-to-end distance
Kumar, Vikash; Chatterjee, Amrita; Kumar, Nupur; Ganguly, Anasuya; Chakraborty, Indranil; Banerjee, Mainak
2014-10-09
Four new D-glucose derived m-s-m type gemini surfactants with variable spacer and tail length have been synthesized by a simple and efficient synthetic methodology utilizing the free C-3 hydroxy group of diisopropylidene glucose. The synthetic route to these gemini surfactants with a quaternary ammonium group as polar head group involves a sequence of simple reactions including alkylation, imine formation, quaternization of amine etc. The surface properties of the new geminis were evaluated by surface tension and conductivity measurements. These gemini surfactants showed low cytotoxicity by MTT assay on HeLa cell line. The DNA binding capabilities of these surfactants were determined by agarose gel electrophoresis, fluorescence titration, and DLS experiments. The preliminary studies by agarose gel electrophoresis indicated chain length dependent DNA binding abilities, further supported by ethidium bromide exclusion experiments. Two of the D-glucose derived gemini surfactants showed effective binding with pET-28a plasmid DNA (pDNA) at relatively low N/P ratio (i.e., cationic nitrogen/DNA phosphate molar ratio). Copyright © 2014 Elsevier Ltd. All rights reserved.
Studies conducted as a search for physical mechanisms relating solar variability and the troposphere
NASA Technical Reports Server (NTRS)
Wu, S. T. (Editor)
1981-01-01
Chains of causative mechanisms that are hypothesized to relate solar variability to the behavior of the Earth's lower atmosphere were assessed. Solar variations believed most likely to constitute the forcing functions in hypothesized solar terrestrial atmosphere chain, changes in the Earth's atmospheric electrical characteristics due to solar variability, and the observed variations in atmospheric behavior that are influenced by solar variability were also examined.
Skeletal muscle ceramide species in men with abdominal obesity.
de la Maza, M P; Rodriguez, J M; Hirsch, S; Leiva, L; Barrera, G; Bunout, D
2015-04-01
Obesity is a risk factor for diabetes and its consequences, including accelerated ageing and mortality. The underlying factor could be accumulation of certain lipid moieties, such as ceramides (CER) and diacylgycerol (DAG) within muscle tissue, which are known to promote insulin resistance (IR), induce inflammation and oxidative injury, ultimately altering muscle function. First, to study the relationship between body composition and age (independent variables) with skeletal muscle accumulation of lipid species, oxidative injury and strength. Second, to analyze the relationship between muscle tissue metabolites and insulin resistance, inflammation and lymphocyte telomere length, the latter as an indicator of ageing. The sample included 56 healthy sedentary males, scheduled for inguinal hernia surgery, aged 27 to 80 y. Each individual was subject to anthropometric measurements, body composition assessment through radiologic densitometry (DEXA), measurement of handgrip and quadriceps strength, serum biochemical parameters (lipoproteins, creatinine, high sensitivity C reactive protein [hsCRP], fasting and post glucose insulin and glucose concentrations for calculation of IR through the Matsuda and HOMA-IR indexes), and extraction of peripheral leukocytes for measurement of telomere length. During the surgical procedure, a sample of muscle tissue was obtained (anterior abdominal oblique) in order to measure CER and DAG (and sub species according to chain length and saturation) by mass spectrometry, 4 hydroxy-2-nonenal adducts (4-HNE) using electron microscopy immunohistochemistry, and carboxymethyl-lisine (CML) by immunohistochemistry, the latter as indicators of oxidative stress (OS). Body mass index (BMI) of twenty six individuals was > 25 k/m2, while BMI of 7 was > 30 k/m2. Overweight/obese individuals, did not exhibit differences in skeletal muscle lipid metabolites, however total CER and specific long chain CER sub-species (20 and 22 carbon) increased significantly among individuals with a central fat distribution (n = 14) as well as in glucose intolerant subjects (n =23). A negative association was found between mononuclear leukocyte telomere length and 20 and 22 carbon CER (rho = - 0.4 and -0.5 0 p < 0.05). Muscle strength was not associated with any of the measured muscle metabolites or markers of OS. A multiple regression analysis accepted central abdominal fat and telomere length as significant predictors of CER (R2 = 0.28). An association was found between accumulation of specific ceramide species in muscle tissue and abdominal obesity, glucose intolerance and shortening of leukocyte telomeres, although not with muscle oxidative injury or dysfunction.
Osmotic load from glucose polymers.
Koo, W W; Poh, D; Leong, M; Tam, Y K; Succop, P; Checkland, E G
1991-01-01
Glucose polymer is a carbohydrate source with variable chain lengths of glucose units which may result in variable osmolality. The osmolality of two commercial glucose polymers was measured in reconstituted powder infant formulas, and the change in osmolality of infant milk formulas at the same increases in energy density (67 kcal/dL to 81 and 97 kcal/dL) from the use of additional milk powder or glucose polymers was compared. All samples were prepared from powders (to nearest 0.1 mg), and osmolality was measured by freezing point depression. For both glucose polymers the within-batch variability of the measured osmolality was less than 3.5%, and between-batch variability of the measured osmolality was less than 9.6%. The measured osmolality varies linearly with energy density (p less than 0.001) and was highest in infant formula reconstituted from milk powder alone. However, there exist significant differences in the measured osmolality between different glucose polymer preparations. At high energy densities (greater than or equal to 97 kcal/dL), infant milk formulas prepared with milk powder alone or with the addition of certain glucose polymer preparation may have high osmolality (greater than or equal to 450 mosm/kg) and theoretically predispose the infant to complications of hyperosmotic feeds.
Liu, Jason J; Crous-Bou, Marta; Giovannucci, Edward; De Vivo, Immaculata
2016-01-01
Background: Coffee is an important source of antioxidants, and consumption of this beverage is associated with many health conditions and a lower mortality risk. However, no study, to our knowledge, has examined whether varying coffee or caffeine consumption levels are associated with telomere length, a biomarker of aging whose shortening can be accelerated by oxidative stress. Objective: We performed a large comprehensive study on how coffee consumption is associated with telomere length. Methods: We used data from the Nurses’ Health Study (NHS), a prospective cohort study of female nurses that began in 1976. We examined the cross-sectional association between coffee consumption and telomere length in 4780 women from the NHS. Coffee consumption information was obtained from validated food-frequency questionnaires, and relative telomere length was measured in peripheral blood leukocytes by the quantitative real-time polymerase chain reaction. Unconditional logistic regression was used to obtain ORs when the telomere length outcome was dichotomized at the median. Linear regression was used for tests of trend with coffee consumption and telomere length as continuous variables. Results: Higher total coffee consumption was significantly associated with longer telomeres after potential confounding adjustment. Compared with non-coffee drinkers, multivariable ORs for those drinking 2 to <3 and ≥3 cups of coffee/d were, respectively, 1.29 (95% CI: 0.99, 1.68) and 1.36 (95% CI: 1.04, 1.78) (P-trend = 0.02). We found a significant linear association between caffeine consumption from all dietary sources and telomere length (P-trend = 0.02) after adjusting for potential confounders, but not after additionally adjusting for total coffee consumption (P-trend = 0.37). Conclusions: We found that higher coffee consumption is associated with longer telomeres among female nurses. Future studies are needed to better understand the influence of coffee consumption on telomeres, which may uncover new knowledge of how coffee consumption affects health and longevity. PMID:27281805
Joint modelling rationale for chained equations
2014-01-01
Background Chained equations imputation is widely used in medical research. It uses a set of conditional models, so is more flexible than joint modelling imputation for the imputation of different types of variables (e.g. binary, ordinal or unordered categorical). However, chained equations imputation does not correspond to drawing from a joint distribution when the conditional models are incompatible. Concurrently with our work, other authors have shown the equivalence of the two imputation methods in finite samples. Methods Taking a different approach, we prove, in finite samples, sufficient conditions for chained equations and joint modelling to yield imputations from the same predictive distribution. Further, we apply this proof in four specific cases and conduct a simulation study which explores the consequences when the conditional models are compatible but the conditions otherwise are not satisfied. Results We provide an additional “non-informative margins” condition which, together with compatibility, is sufficient. We show that the non-informative margins condition is not satisfied, despite compatible conditional models, in a situation as simple as two continuous variables and one binary variable. Our simulation study demonstrates that as a consequence of this violation order effects can occur; that is, systematic differences depending upon the ordering of the variables in the chained equations algorithm. However, the order effects appear to be small, especially when associations between variables are weak. Conclusions Since chained equations is typically used in medical research for datasets with different types of variables, researchers must be aware that order effects are likely to be ubiquitous, but our results suggest they may be small enough to be negligible. PMID:24559129
Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos
2014-11-11
Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future miniaturized electronic and sensor devices. Understanding the roles played by the nature of the linking group and the chain length on the adsorption structures and stabilities of these assemblies is vital to advance this technology. This paper presents a density functional theory (DFT) study of the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si-(CH2)n-CH2 and H:Si-X-(CH2)n-CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)-hexane and (X)-dodecane functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0-3, n = 5-7, and n = 9-11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length.
Koley, Shyamal; Pal Kaur, Satinder
2011-01-01
Purpose The purpose of this study was to estimate the dominant handgrip strength and its correlations with some hand and arm anthropometric variables in 101 randomly selected Indian inter-university female volleyball players aged 18-25 years (mean age 20.52±1.40) from six Indian universities. Methods Three anthropometric variables, i.e. height, weight, BMI, two hand anthropometric variables, viz. right and left hand width and length, four arm anthropometric variables, i.e. upper arm length, lower arm length, upper extremity length, upper arm circumference and dominant right and non-dominant handgrip strength were measured among Indian inter-university female volleyball players by standard anthropometric techniques. Results The findings of the present study indicated that Indian female volleyball players had higher mean values in eleven variables and lesser mean values in two variables than their control counterparts, showing significant differences (P<0.032-0.001) in height (t=2.63), weight (t=8.66), left hand width (t=2.10), left and right hand length (t=9.99 and 10.40 respectively), right upper arm length (t=8.48), right forearm length (t=5.41), dominant (right) and non-dominant (left) handgrip strength (t=9.37 and 6.76 respectively). In female volleyball players, dominant handgrip strength had significantly positive correlations (P=0.01) with all the variables studied. Conclusion It may be concluded that dominant handgrip strength had strong positive correlations with all the variables studied in Indian inter-university female volleyball players. PMID:22375242
Linear rheology and structure of molecular bottlebrushes with short side chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com; Brant, Patrick; Crowther, Donna J.
We investigate the microstructure and linear viscoelasticity of model molecular bottlebrushes (BBs) using rheological and small-angle X-ray and neutron scattering measurements. Our polymers have short atactic polypropylene (aPP) side chains of molecular weight ranging from 119 g/mol to 259 g/mol and narrow molecular weight distribution (M{sub w}/M{sub n} 1.02–1.05). The side chain molecular weights are a small fraction of the entanglement molecular weight of the corresponding linear polymer (M{sub e,aPP}= 7.05 kg/mol), and as such, they are unentangled. The morphology of the aPP BBs is characterized as semiflexible thick chains with small side chain interdigitation. Their dynamic master curves, obtained by time-temperature superposition,more » reveal two sequential relaxation processes corresponding to the segmental relaxation and the relaxation of the BB backbone. Due to the short length of the side chains, their fast relaxation could not be distinguished from the glassy relaxation. The fractional free volume is an increasing function of the side chain length (N{sub SC}). Therefore, the glassy behavior of these polymers as well as their molecular friction and dynamic properties are influenced by their N{sub SC} values. The apparent flow activation energies are a decreasing function of N{sub SC}, and their values explain the differences in zero-shear viscosity measured at different temperatures.« less
Ness, H; Stella, L; Lorenz, C D; Kantorovich, L
2017-04-28
We use a generalised Langevin equation scheme to study the thermal transport of low dimensional systems. In this approach, the central classical region is connected to two realistic thermal baths kept at two different temperatures [H. Ness et al., Phys. Rev. B 93, 174303 (2016)]. We consider model Al systems, i.e., one-dimensional atomic chains connected to three-dimensional baths. The thermal transport properties are studied as a function of the chain length N and the temperature difference ΔT between the baths. We calculate the transport properties both in the linear response regime and in the non-linear regime. Two different laws are obtained for the linear conductance versus the length of the chains. For large temperatures (T≳500 K) and temperature differences (ΔT≳500 K), the chains, with N>18 atoms, present a diffusive transport regime with the presence of a temperature gradient across the system. For lower temperatures (T≲500 K) and temperature differences (ΔT≲400 K), a regime similar to the ballistic regime is observed. Such a ballistic-like regime is also obtained for shorter chains (N≤15). Our detailed analysis suggests that the behaviour at higher temperatures and temperature differences is mainly due to anharmonic effects within the long chains.
Engineering acyl carrier protein to enhance production of shortened fatty acids.
Liu, Xueliang; Hicks, Wade M; Silver, Pamela A; Way, Jeffrey C
2016-01-01
The acyl carrier protein (ACP) is an essential and ubiquitous component of microbial synthesis of fatty acids, the natural precursor to biofuels. Natural fatty acids usually contain long chains of 16 or more carbon atoms. Shorter carbon chains, with increased fuel volatility, are desired for internal combustion engines. Engineering the length specificity of key proteins in fatty acid metabolism, such as ACP, may enable microbial synthesis of these shorter chain fatty acids. We constructed a homology model of the Synechococcus elongatus ACP, showing a hydrophobic pocket harboring the growing acyl chain. Amino acids within the pocket were mutated to increase steric hindrance to the acyl chain. Certain mutant ACPs, when over-expressed in Escherichia coli, increased the proportion of shorter chain lipids; I75 W and I75Y showed the strongest effects. Expression of I75 W and I75Y mutant ACPs also increased production of lauric acid in E. coli that expressed the C12-specific acyl-ACP thioesterase from Cuphea palustris. We engineered the specificity of the ACP, an essential protein of fatty acid metabolism, to alter the E. coli lipid pool and enhance production of medium-chain fatty acids as biofuel precursors. These results indicate that modification of ACP itself could be combined with enzymes affecting length specificity in fatty acid synthesis to enhance production of commodity chemicals based on fatty acids.
Armitage, James M; Macleod, Matthew; Cousins, Ian T
2009-08-01
A global-scale multispecies mass balance model was used to simulate the long-term fate and transport of perfluorocarboxylic acids (PFCAs) with eight to thirteen carbons (C8-C13) and their conjugate bases, the perfluorocarboxylates (PFCs). The main purpose of this study was to assess the relative long-range transport (LRT) potential of each conjugate pair, collectively termed PFC(A)s, considering emissions from direct sources (i.e., manufacturing and use) only. Overall LRT potential (atmospheric + oceanic) varied as a function of chain length and depended on assumptions regarding pKa and mode of entry. Atmospheric transport makes a relatively higher contribution to overall LRT potential for PFC(A)s with longer chain length, which reflects the increasing trend in the air-water partition coefficient (K(AW)) of the neutral PFCA species with chain length. Model scenarios using estimated direct emissions of the C8, C9, and C11 PFC(A)s indicate that the mass fluxes to the Arctic marine environment associated with oceanic transport are in excess of mass fluxes from indirect sources (i.e., atmospheric transport of precursor substances such as fluorotelomer alcohols and subsequent degradation to PFCAs). Modeled concentrations of C8 and C9 in the abiotic environment are broadly consistent with available monitoring data in surface ocean waters. Furthermore, the modeled concentration ratios of C8 to C9 are reconcilable with the homologue pattern frequently observed in biota, assuming a positive correlation between bioaccumulation potential and chain length. Modeled concentration ratios of C11 to C10 are more difficult to reconcile with monitoring data in both source and remote regions. Our model results for C11 and C10 therefore imply that either (i) indirect sources are dominant or (ii) estimates of direct emission are not accurate for these homologues.