Sample records for variable charge soil

  1. VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew

    2016-09-19

    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate mineralsmore » such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.« less

  2. Adsorption properties of subtropical and tropical variable charge soils: Implications from climate change and biochar amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ren-Kou; Qafoku, Nikolla; Van Ranst, Eric

    2016-01-25

    This review paper attempts to summarize the progress made in research efforts conducted over the last years to study the surface chemical properties of the tropical and subtropical soils, usually called variable charge soils, and the way they response to different management practices. The paper is composed of an introductory section that provides a brief discussion on the surface chemical properties of these soils, and five other review sections. The focus of these sections is on the evolution of surface chemical properties during the development of the variable charge properties (second section), interactions between oppositely charged particles and the resultingmore » effects on the soil properties and especially on soil acidity (third section), the surface effects of low molecular weight organic acids sorbed to mineral surfaces and the chemical behavior of aluminum (fourth section), and the crop straw derived biochar induced changes of the surface chemical properties of these soils (fifth section). A discussion on the effect of climate change variables on the properties of the variable charge soils is included at the end of this review paper (sixth section).« less

  3. Variable Charge Soils: Mineralogy and Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nik; Van Ranst, Eric; Noble, Andrew

    2003-11-01

    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered variable charge soils (2). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH, ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, andmore » hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid. Highly weathered soils usually undergo isoeletric weathering and reach a “zero net charge” stage during their development. They have a slightly acidic to acidic soil solution pH, which is close to either point of zero net charge (PZNC) (3) or point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems. The coexistence and interactions of oppositely charged surfaces or particles confers a different pattern of physical and chemical behavior on the soil, relatively to a homogeneously charged system of temperate regions. In some variable charge soils (Oxisols and some Ultisols developed on ferromagnesian-rich parent materials) the surfaces of phyllosilicates are coated to a lesser or greater extent by amorphous or crystalline, oppositely charged nanoparticles of Fe and Al oxides. These coatings exhibit a high reactive surface area and help cementing larger particles with one another. As a result of these electrostatic interactions, stable microaggregates that are difficult to disperse are formed in variable charge soils. Most of highly weathered soils have reached the “advanced stage” of Jackson-Sherman weathering sequence that is characterized by the removal of Na, K, Ca, Mg, and Fe(II), the presence of Fe and Al polymers, and very dilute soil solutions with an ionic strength (IS) of less than 1 mmol L-1. The inter-penetration or overlapping of the diffuse double layers on oppositely charged surfaces may occur in these dilute systems. These diffuse layer interactions may affect the magnitude of the effective charge, i.e., the counter-ion charge (4). In addition, salt adsorption, which is defined as the simultaneous adsorption in equivalent amounts of the cation and anion of an electrolyte with no net release of other ions into the soil solution, appears to be a common phenomenon in these soils. They act as cation- and anion-exchangers and as salt-sorbers. The magnitude of salt adsorption depends strongly on initial IS in the soil solution and the presence in appreciable amounts of oppositely charged surfaces. Among the authors that have made illustrious contributions towards a better understanding of these fascinating soil systems are S. Matson, R.K. Schofield, van Olphen, M.E. Sumner, G.W. Thomas, G.P. Gillman, G. Uehara, B.K.G. Theng, K. Wada, N.J. Barrow, J.W. Bowden, R.J. Hunter and G. Sposito. This entry is mainly based on publications by these authors.« less

  4. Adsorption of phthalic acid and salicylic acid and their effect on exchangeable Al capacity of variable-charge soils.

    PubMed

    Li, Jiuyu; Xu, Renkou

    2007-02-01

    Low-molecular-weight (LMW) organic acids may be adsorbed by soils and the adsorption could affect their biodegradation and efficiency in many soil processes. In the present study, the adsorption of phthalic acid and salicylic acid and their effect on the exchangeable Al capacity of variable-charge soils were investigated. The results indicated that phthalic acid and salicylic acid were adsorbed by four variable-charge soils to some extent, oxisols showed a greater adsorption capacity for organic acids than ultisols, and the ability of the four variable-charge soils to adsorb the organic acids at different pH generally followed the order Kunming oxisol > Xuwen oxisol > Jinxian ultisol > Lechang ultisol, which was closely related to their content of free iron oxides and amorphous iron and aluminum oxides. The adsorption of organic acids induced a decrease in the zeta potentials of soils and oxides. Goethite has greater adsorption capacity for organic acid than Xuwen oxisol and the adsorption of organic acids resulted in a bigger decrease in the zeta potential of goethite suspensions. After free iron oxides were removed, less organic acid was adsorbed by Xuwen oxisol and no change was observed in zeta potential for the soil suspension after organic acid was added. The presence of phthalic acid increased the capacity of exchangeable Al and the increment in the four variable-charge soils also followed the order Kunming oxisol > Xuwen oxisol > Lechang ultisol and Jinxian ultisol. The presence of salicylic acid increased the capacity of exchangeable Al in Kunming oxisol, Xuwen oxisol, and Jinxian ultisol, but decreased it in Lechang ultisol due to less adsorption of the acid and formation of soluble Al-salicylate complexes in solution. After free iron oxides were removed, less effect of organic acid on exchangeable Al was observed for Xuwen oxisol, which further confirmed that the iron oxides played a significant role in organic acid adsorption and had a consequent effect on the capacity of exchangeable Al in variable-charge soils. Therefore, the higher the content of iron oxides, the greater the adsorption of organic acids by soils and the greater the increase in soil exchangeable Al induced by the organic acids.

  5. Application of nanoparticle of rock phosphate and biofertilizer in increasing some soil chemical characteristics of variable charge soil

    NASA Astrophysics Data System (ADS)

    Devnita, Rina; Joy, Benny; Arifin, Mahfud; Hudaya, Ridha; Oktaviani, Nurul

    2018-02-01

    Soils in Indonesia are dominated by variable charge soils where the technology like fertilization did not give the same result as the soils with permanent charge. The objectives of this research is to increase some chemical characteristic of variable charge soils by using the high negative charge ameliorations like rock phosphate in nanoparticle combined with biofertilizer. The research used a complete randomized experimental design in factorial with two factors. The first factor was nanoparticle of rock phosphate consists of four doses on soil weight percentage (0%, 2.5%, 5.0% and 7.5%). The second factor was biofertilizer consisted of two doses (without biofertilizer and 1 g.kg-1 soil biofertilizer). The combination treatments replicated three times. Variable charge soil used was Andisol. Andisol and the treatments were incubated for 4 months. Soil samples were taken after one and four months during incubation period to be analyzed for P-retention, available P and potential P. The result showed that all combinations of rock phosphate and biofertilizer decreased the P-retention to 75-77% after one month. Independently, application of 7.5% of rock phosphate decreased P-retention to 87.22% after four months, increased available P (245.37 and 19.12 mg.kg-1) and potential P (1354.78 and 3000.99 mg/100) after one and four months. Independently, biofertilizer increased the P-retention to 91.66% after four months, decreased available P to 121.55 mg.kg-1 after one month but increased to 12.55 mg.kg-1 after four months, decreased potential P to 635.30 after one month but increased to 1810.40 mg.100 g-1 after four months.

  6. The variable charge of andisols as affected by nanoparticles of rock phosphate and phosphate solubilizing bacteria

    NASA Astrophysics Data System (ADS)

    Arifin, M.; Nurlaeny, N.; Devnita, R.; Fitriatin, B. N.; Sandrawati, A.; Supriatna, Y.

    2018-02-01

    Andisols has a great potential as agriculture land, however, it has a high phosphorus retention, variable charge characteristics and high value of zero net charge or pH0. The research is aimed to study the effects of nanoparticles of rock phosphate (NPRP) and biofertilizer (phosphate solubilizing bacteria/PSB) on soil pH, pHo (zero point of charge, ZPC) and organic-C in one subgroup of Andisols, namely Acrudoxic Durudands, Ciater Region West Java. The research was conducted from October 2016 to February 2017 in Soil Physics Laboratory and Laboratory of Soil Chemistry and Fertility, Soil Science Department, Faculty of Agriculture, Universitas Padjadjaran. This experiment used a completely randomized factorial design, consisting of two factors and three replications. The first factor was nanoparticles of rock phosphate consist of 4 doses 0; 25; 50 and 75 g/1 kg soil and the second factor was biofertilizer dose consist of g/1 kg soil and without biofertilizer. Total treatment combinations were 8 with 3 replications, so there were 24 experimental plots. The results showed that in general NPRR and biofertilizer will decrease the value of soil pH throughout the incubation periods. There is an interaction between nanoparticles of rock phosphate and biofertilizer in decreasing pHo in the first month of incubation, but after 4-month incubation period, NPRP increased. Interaction between 75 g nanoparticles of rock phosphate with 1 g biofertilizer/1 kg soil in fourth months of incubation decreased soil organic-C to 3.35%.

  7. Chemical composition and Zn bioavailability of the soil solution extracted from Zn amended variable charge soils.

    PubMed

    Zampella, Mariavittoria; Adamo, Paola

    2010-01-01

    A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.

  8. Cadmium sorption and extractability in tropical soils with variable charge.

    PubMed

    Colzato, Marina; Alleoni, Luís Reynaldo Ferracciú; Kamogawa, Marcos Yassuo

    2018-05-14

    The availability of cadmium (Cd) for plants and its impact in the environment depends on Cd sorption in soil colloids. The study of Cd sorption in soil and its fractionation is an interesting tool for the evaluation of Cd affinity with soil pools. The objective with this study was to evaluate Cd sorption and desorption in tropical soils with variable charge (three Oxisols), in a Mollisol and in two Entisols with diverse physical, chemical, and mineralogical attributes. We used a thermodynamic approach to evaluate Cd sorption and performed a chemical fractionation of Cd in the six soils. Data from Cd sorption fit the Langmuir model (r > 0.94), and the sorption capacity ranged from 0.33 to 11.5 mmol kg -1 . The Gibbs standard free energy was positively correlated to Cd sorption capacity (r = 0.74, except for the Quartzipsamments), and it was more favorable in soils with great sorption capacity. Distribution of Cd among fractions was not affected (t test, α = 0.05) by initial concentration, and there was a predominance of Cd extractable in 0.1 mol L -1 CaCl 2 .

  9. Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time*

    PubMed Central

    Shentu, Jia-li; He, Zhen-li; Yang, Xiao-e; Li, Ting-qiang

    2008-01-01

    Effects of cadmium (Cd) on microbial biomass, activity and community diversity were assessed in a representative variable charge soil (Typic Aquult) using an incubation study. Cadmium was added as Cd(NO3)2 to reach a concentration range of 0~16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5~1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (<0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (<1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1~16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination. PMID:18357628

  10. Metsulfuron-methyl sorption/desorption behavior on volcanic ash-derived soils. effect of phosphate and pH.

    PubMed

    Cáceres, Lizethly; Fuentes, Roxana; Escudey, Mauricio; Fuentes, Edwar; Báez, María E

    2010-06-09

    Metsulfuron-methyl sorption/desorption behavior was studied through batch sorption experiments in three typical volcanic ash-derived soils belonging to Andisol and Ultisol orders. Their distinctive physical and chemical properties are acidic pH and variable surface charge. Organic matter content and mineral composition affected in different ways sorption of metsulfuron-methyl (K(OC) ranging from 113 to 646 mL g(-1)): organic matter and iron and aluminum oxides mainly through hydrophilic rather than hydrophobic interactions in Andisols, and Kaolinite group minerals, as major constituents of Ultisols, and iron and aluminum oxides only through hydrophilic interactions. The Freundlich model described metsulfuron-methyl behavior in all cases (R(2) > 0.992). K(f) values (3.1-14.4 microg(1-1/n) mL(1/n) g(-1)) were higher than those reported for different class of soils including some with variable charge. Hysteresis was more significant in Ultisols. A strong influence of pH and phosphate was established for both kinds of soil, intensive soil fertilization and liming being the most probable scenario for leaching of metsulfuron-methyl, particularly in Ultisols.

  11. Adsorption of glyphosate on variable-charge, volcanic ash-derived soils.

    PubMed

    Cáceres-Jensen, L; Gan, J; Báez, M; Fuentes, R; Escudey, M

    2009-01-01

    Glyphosate (N-phosphonometylglycine) is widely used due to its broad spectrum of activity and nonselective mode of action. In Chile it is the most used herbicide, but its adsorption behavior in the abundant and widespread variable charge soils is not well understood. In this study, three volcanic ash-derived soils were selected, including Andisols (Nueva Braunau and Diguillin) and Ultisols (Collipulli), to evaluate the adsorption kinetics, equilibrium isotherms, and the effect of pH in glyphosate adsorption. The influence of glyphosate on soil phosphorus retention was also studied. Glyphosate was rapidly and strongly adsorbed on the selected soils, and adsorption isotherms were well described by the Freundlich relationship with strong nonlinearity (n(fads) < 0.5). The n(fads) values were consistently higher than n(fdes) values, suggesting strong hysteresis. Adsorption (K(ads)) increased strongly when pH decreased. The presence of glyphosate (3200 mug mL(-1)) changed the adsorption behavior of phosphate at its maximum adsorption capacity. Andisol soils without the addition of glyphosate had similar mean K(ads) values for Nueva Braunau (5.68) and Diguillin (7.38). Collipulli had a mean K(ads) value of 31.58. During the successive desorption steps, glyphosate at the highest level increased K(ads) values for phosphate in the Andisol soils but had little effect in the Ultisol soil. This different behavior was probably due to the irreversible occupation of some adsorption sites by glyphosate in the Ultisol soil attributed to the dominant Kaolinite mineral. Results from this study suggest that in the two types of volcanic soils, different mechanisms are involved in glyphosate and phosphate adsorption and that long-term use of glyphosate may impose different effects on the retention and availability of phosphorus. Volcanic ash-derived soils have a particular environmental behavior in relation to the retention of organic contaminants, representing an environmental substrate that may become highly polluted over time due to intensive agronomic uses.

  12. Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an Oxisol.

    PubMed

    Jiang, Jun; Dai, Zhaoxia; Sun, Rui; Zhao, Zhenjie; Dong, Ying; Hong, Zhineng; Xu, Renkou

    2017-07-01

    Iron oxides are dominant effective adsorbents for arsenate in iron oxide-rich variable charge soils. Oxisol-derived paddy soils undergo intensive ferrolysis, which results in high leaching and transformation of iron oxides. However, little information is available concerning the effect of ferrolysis on arsenate adsorption by paddy soil and parent Oxisol. In the present study, we examined the arsenate affinity of soils using arsenate adsorption/desorption isotherms, zeta potential, adsorption kinetics, pH effect and phosphate competition experiments. Results showed that ferrolysis in an alternating flooding-drying Oxisol-derived paddy soil resulted in a significant decrease of free iron oxides and increase of amorphous iron oxides in the surface and subsurface layers. There were more reactive sites exposed on amorphous than on crystalline iron oxides. Therefore, disproportionate ratios of arsenate adsorption capacities and contents of free iron oxides were observed in the studied Oxisols compared with paddy soils. The Gibbs free energy values corroborated that both electrostatic and non-electrostatic adsorption mechanisms contributed to the arsenate adsorption by bulk soils, and the kinetic adsorption data further suggested that the rate-limiting step was chemisorption. The zeta potential of soil colloids decreased after arsenate was adsorbed on the surfaces, forming inner-sphere complexes and thus transferring their negative charges to the soil particle surfaces. The adsorption/desorption isotherms showed that non-electrostatic adsorption was the main mechanism responsible for arsenate binding to the Oxisol and derived paddy soils, representing 91.42-94.65% of the adsorption capacities. Further studies revealed that arsenate adsorption was greatly inhibited by increasing suspension pH and incorporation of phosphate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    USDA-ARS?s Scientific Manuscript database

    Hydroxyapatite nanoparticles (nHAP) are increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP in water-saturated granular media were investigated. Experiments were conducted over a range of ionic ...

  14. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study

    USDA-ARS?s Scientific Manuscript database

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  15. Fractionation and characterization of natural organic matter from certain rivers and soils by free-flow electrophoresis

    USGS Publications Warehouse

    Leenheer, J.A.; Malcolm, R.L.

    1973-01-01

    Soluble river organic matter and soil fulvic acids from a variety of environments were compared by examining the free-flow electrophoretic fractionation curves of organic carbon, color, and polysaccharides. Significant amounts of virtually colorless organic material were found in both the soil and the river preparations. Polysaccharides comprised 20-75 percent of the colorless material in the soil fulvic acids but only 3.2-7.0 percent of the colorless material in the river preparations. A significant amount of polysaccharides was complexed with organic materials having negative charges. Amounts of polysaccharides were greater in the Fairbanks soil from Alaska than in the soils from North Carolina or Iowa, and they were greater in the Tahquamenon River in Michigan than in the two rivers in Florida; this suggests that polysaccharide degradation is slower in cooler environments. For all of the organic preparations which were fractionated, the intensity of the yellow color increased as the charge on the organic anion increased. Highly colored, negatively charged organic material was found to be present in greater amounts in the subsurface spodic soil horizon of the Lakewood and Fairbanks soils than in the surface mollic horizon of the Macksburg soil. Infrared spectroscopy and elemental analysis of four pooled fractions of the Fairbanks fulvic acid indicated increasing aromatic character with increasing negative charge. An increase in the carboxyl content with negative charge suggests the carboxyl group as the primary source of the negative charge.

  16. Surface features of soil particles of three types of soils under different land use strategies

    NASA Astrophysics Data System (ADS)

    Matveeva, Nataliy; Kotelnikova, Anna; Rogova, Olga; Proskurnin, Mikhail

    2017-04-01

    Nowadays, there is a clear need in a deep investigation of molecular composition of soils and of its influence on surface characteristics of soil particles. The aim of this study is to evaluate the composition and properties of physical fractions in different soil types in determining functional specificity of soil solid-phase surface. The experiments were carried out with three different types of Russian soils—Sod-Podzolic, Chestnut, and Chernozem soils—under various treatments (fallow, different doses of mineral fertilizers and their aftereffects). The samples were separated into three fractions: silt (SF) with a particle size of <2 μm, light fraction (LF) with a density of <2 g/cm3, and residual fraction (RF) with a size >2 μm and the density >2 g/cm3. We measured specific surface area, surface hydrophobicity (contact angle, CA), ζ-potential, and the point of zero charge (PZC). For Chernozem and Chestnut soils and their fractions of we observed an increase in hydrophobicity for SF and RF under fertilizer treatment. At the sites not treated with fertilizers and aftereffect sites, the hydrophobicity of fractions was lower compared to the sites under treatment. The CA of the original soils and fractions were different: in 35% of cases CA was higher for SF and RF by 12-16%. The rest of samples demonstrated CA of all three physical fractions lower than CA of the original soil. The variability of the mean CA indicates considerable differences in ζ-potential and PZC between different types of soils and soil fractions. The results of potentiometric titration of PZC for Sod-Podzolic soil showed that all values are in acidic range, which suggests predominance of acidic functional groups at the surface of soil particles. Specific surface area determines soil sorption processes, bioavailability of nutrients, water etc. Here, specific surface area of Sod-Podzolic soil was low and SF-dependent. We calculated specific surface charge from obtained data on specific surface area and PZC. The results suggested considerable differences between sorption features of both soils and fractions under different land use strategies.

  17. Simultaneous sorption of four ionizable pharmaceuticals in different horizons of three soil types.

    PubMed

    Kočárek, Martin; Kodešová, Radka; Vondráčková, Lenka; Golovko, Oksana; Fér, Miroslav; Klement, Aleš; Nikodem, Antonín; Jakšík, Ondřej; Grabic, Roman

    2016-11-01

    Soils may be contaminated by human or veterinary pharmaceuticals. Their behaviour in soil environment is largely controlled by sorption of different compounds in a soil solution onto soil constituents. Here we studied the sorption affinities of 4 pharmaceuticals (atenolol, trimethoprim, carbamazepine and sulfamethoxazole) applied in solute mixtures to soils taken from different horizons of 3 soil types (Greyic Phaeozem on loess, Haplic Luvisol on loess and Haplic Cambisol on gneiss). In the case of the carbamazepine (neutral form) and sulfamethoxazole (partly negatively charged and neutral), sorption affinity of compounds decreased with soil depth, i.e. decreased with soil organic matter content. On the other hand, in the case of atenolol (positively charged) and trimethoprim (partly positively charged and neutral) compound sorption affinity was not depth dependent. Compound sorption affinities in the four-solute systems were compared with those experimentally assessed in topsoils, and were estimated using the pedotransfer rules proposed in our previous study for single-solute systems. While sorption affinities of trimethoprim and carbamazepine in topsoils decreased slightly, sorption affinity of sulfamethoxazole increased. Decreases in sorption of the two compounds could be attributed to their competition between each other and competition with atenolol. Differences between carbamazepine and atenolol behaviour in the one- and four-solute systems could also be explained by the slightly different soil properties in this and our previous study. A great increase of sulfamethoxazole sorption in the Greyic Phaeozem and Haplic Luvisol was observed, which was attributed to elimination of repulsion between negatively charged molecules and particle surfaces due to cation sorption (atenolol and trimethoprim) on soil particles. Thus, our results proved not only an antagonistic but also a synergic affect of differently charged organic molecules on their sorption to soil constituents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Comparison of Selected Statistical Techniques to Model Soil Cation Exchange Capacity

    NASA Astrophysics Data System (ADS)

    Khaledian, Yones; Brevik, Eric C.; Pereira, Paulo; Cerdà, Artemi; Fattah, Mohammed A.; Tazikeh, Hossein

    2017-04-01

    Cation exchange capacity (CEC) measures the soil's ability to hold positively charged ions and is an important indicator of soil quality (Khaledian et al., 2016). However, other soil properties are more commonly determined and reported, such as texture, pH, organic matter and biology. We attempted to predict CEC using different advanced statistical methods including monotone analysis of variance (MONANOVA), artificial neural networks (ANNs), principal components regressions (PCR), and particle swarm optimization (PSO) in order to compare the utility of these approaches and identify the best predictor. We analyzed 170 soil samples from four different nations (USA, Spain, Iran and Iraq) under three land uses (agriculture, pasture, and forest). Seventy percent of the samples (120 samples) were selected as the calibration set and the remaining 50 samples (30%) were used as the prediction set. The results indicated that the MONANOVA (R2= 0.82 and Root Mean Squared Error (RMSE) =6.32) and ANNs (R2= 0.82 and RMSE=5.53) were the best models to estimate CEC, PSO (R2= 0.80 and RMSE=5.54) and PCR (R2= 0.70 and RMSE=6.48) also worked well and the overall results were very similar to each other. Clay (positively correlated) and sand (negatively correlated) were the most influential variables for predicting CEC for the entire data set, while the most influential variables for the various countries and land uses were different and CEC was affected by different variables in different situations. Although the MANOVA and ANNs provided good predictions of the entire dataset, PSO gives a formula to estimate soil CEC using commonly tested soil properties. Therefore, PSO shows promise as a technique to estimate soil CEC. Establishing effective pedotransfer functions to predict CEC would be productive where there are limitations of time and money, and other commonly analyzed soil properties are available. References Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E.C., Aitkenhead-Peterson, J. 2016. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degradation and Development. doi: 10.1002/ldr.2541.

  19. Soil pH on mobility of imazaquin in oxisols with positive balance of charges.

    PubMed

    Regitano, Jussara B; da Rocha, Wadson S D; Alleoni, Luís R F

    2005-05-18

    The influence of soil pH on the leaching potential of the ionizable herbicide imazaquin was assessed on the profile of two highly weathered soils having a net positive charge in the B horizon, in contrast to a soil having a net negative charge in the whole profile, using packed soil column experiments. Imazaquin leached to a large extent and faster at Kd values lower than 1.0 L kg(-1), a much more lenient limit than usually proposed for pesticides in the literature (Kd < 5.0 L kg(-1)). The amount of imazaquin leached increased with soil pH. As the soil pH increased, the percentage of imazaquin in the anionic forms, the negative surface potential of the soils, as well as imazaquin water solubility also increased, thus reducing sorption because of repulsive electrostatic forces (hydrophilic interactions). For all surface samples (0-0.2 m), imazaquin did not leach at soil pH values lower than pKa (3.8) and more than 80% of the applied amount was leached at pH values higher than 5.5. For subsurface samples from the acric soils, imazaquin only began to leach at soil pH values > zero point of salt effects (ZPSE > 5.7). In conclusion, the use of surface K(oc) values to predict the amount of imazaquin leached within soil profiles having a positive balance of charges may greatly overestimate its actual leaching potential.

  20. Effects of adhesions of amorphous Fe and Al hydroxides on surface charge and adsorption of K+ and Cd2+ on rice roots.

    PubMed

    Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou

    2017-11-01

    Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals.

    PubMed

    Feng, Xiong Han; Zhai, Li Mei; Tan, Wen Feng; Liu, Fan; He, Ji Zheng

    2007-05-01

    Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite> or =cryptomelane>todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb(2+), Cu(2+), Co(2+), Cd(2+) and Zn(2+), while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb(2+) among the tested heavy metals. Hydration tendency (pK(1)) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn(2+) varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0)>cryptomelane (422.6)>todorokite (59.7)>hausmannite (36.6).

  2. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  3. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Golden, Dadigamuwage C. (Inventor); Allen, Earl R. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  4. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid.

    PubMed

    Wang, Dengjun; Bradford, Scott A; Harvey, Ronald W; Hao, Xiuzhen; Zhou, Dongmei

    2012-08-30

    Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (I(c), 0-50mM NaCl) conditions in the presence of 10 mg L(-1) humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension I(c) in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of I(c) in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    USGS Publications Warehouse

    Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Hao, Xiuzhen; Zhou, Dongmei

    2012-01-01

    Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (Ic, 0–50 mM NaCl) conditions in the presence of 10 mg L−1 humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension Ic in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of Ic in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments.

  6. Surface complexation modeling of Cu(II) adsorption on mixtures of hydrous ferric oxide and kaolinite

    PubMed Central

    Lund, Tracy J; Koretsky, Carla M; Landry, Christopher J; Schaller, Melinda S; Das, Soumya

    2008-01-01

    Background The application of surface complexation models (SCMs) to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids. Results Cu adsorption was measured on pure hydrous ferric oxide (HFO), pure kaolinite (from two sources) and in systems containing mixtures of HFO and kaolinite over a wide range of pH, ionic strength, sorbate/sorbent ratios and, for the mixed solid systems, using a range of kaolinite/HFO ratios. Cu adsorption data measured for the HFO and kaolinite systems was used to derive diffuse layer surface complexation models (DLMs) describing Cu adsorption. Cu adsorption on HFO is reasonably well described using a 1-site or 2-site DLM. Adsorption of Cu on kaolinite could be described using a simple 1-site DLM with formation of a monodentate Cu complex on a variable charge surface site. However, for consistency with models derived for weaker sorbing cations, a 2-site DLM with a variable charge and a permanent charge site was also developed. Conclusion Component additivity predictions of speciation in mixed mineral systems based on DLM parameters derived for the pure mineral systems were in good agreement with measured data. Discrepancies between the model predictions and measured data were similar to those observed for the calibrated pure mineral systems. The results suggest that quantifying specific interactions between HFO and kaolinite in speciation models may not be necessary. However, before the component additivity approach can be applied to natural sediments and soils, the effects of aging must be further studied and methods must be developed to estimate reactive surface areas of solid constituents in natural samples. PMID:18783619

  7. Nitrate determination using anion exchange membrane and mid-infrared spectroscopy.

    PubMed

    Linker, Raphael; Shaviv, Avi

    2006-09-01

    This study investigates the combined use of an anion exchange membrane and transmittance mid-infrared spectroscopy for determining nitrate concentration in aqueous solutions and soil pastes. The method is based on immersing a small piece (2 cm(2)) of anion exchange membrane into 5 mL of solution or soil paste for 30 minutes, after which the membrane is removed, rinsed, and wiped dry. The absorbance spectrum of the charged membrane is then used to determine the amount of nitrate sorbed on the membrane. At the levels tested, the presence of carbonate or phosphate does not affect the nitrate sorption or the spectrum of the charged membrane in the vicinity of the nitrate band. Sulfate affects the spectrum of the charged membrane but does not prevent nitrate determination. For soil pastes, nitrate sorption is remarkably independent of the soil composition and is not affected by the level of soil constituents such as organic matter, clay, and calcium carbonate. Partial least squares analysis of the membrane spectra shows that there exists a strong correlation between the nitrate charge and the absorbance in the 1000-1070 cm(-1) interval, which includes the v(1) nitrate band located around 1040 cm(-1). The prediction errors range from 0.8 to 2.1 mueq, which, under the specific experimental conditions, corresponds to approximately 2 to 6 ppm N-NO(3)(-) on a solution basis or 2 to 5 mg [N]/kg [dry soil] on a dry soil basis.

  8. A smoothed particle hydrodynamics model for electrostatic transport of charged lunar dust on the moon surface

    NASA Astrophysics Data System (ADS)

    Mao, Zirui; Liu, G. R.

    2018-02-01

    The behavior of lunar dust on the Moon surface is quite complicated compared to that on the Earth surface due to the small lunar gravity and the significant influence of the complicated electrostatic filed in the Universe. Understanding such behavior is critical for the exploration of the Moon. This work develops a smoothed particle hydrodynamics (SPH) model with the elastic-perfectly plastic constitutive equation and Drucker-Prager yield criterion to simulate the electrostatic transporting of multiple charged lunar dust particles. The initial electric field is generated based on the particle-in-cell method and then is superposed with the additional electric field from the charged dust particles to obtain the resultant electric field in the following process. Simulations of cohesive soil's natural failure and electrostatic transport of charged soil under the given electric force and gravity were carried out using the SPH model. Results obtained in this paper show that the negatively charged dust particles levitate and transport to the shadow area with a higher potential from the light area with a lower potential. The motion of soil particles finally comes to a stable state. The numerical result for final distribution of soil particles and potential profile above planar surface by the SPH method matches well with the experimental result, and the SPH solution looks sound in the maximum levitation height prediction of lunar dust under an uniform electric field compared to theoretical solution, which prove that SPH is a reliable method in describing the behavior of soil particles under a complicated electric field and small gravity field with the consideration of interactions among soil particles.

  9. The Past, Present, and Future of Soils and Human Health Studies

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.; Sauer, T. J.

    2012-04-01

    The idea that human health is tied to the soil is not a new one. As far back as approximately 1400 B.C. the Bible depicts Moses as understanding that fertile soil was essential to the well-being of his people. While exploring Canaan, Moses charged the men he sent to evaluate the fertility of the soil. In 400 B.C. the Greek philosopher Hippocrates provided a list of things that should be considered in a proper medical evaluation, including the ground. By the late 1700 and early 1800s, American farmers had recognized that soil properties had some connection to human health. In "Letters from an American Farmer", published in 1792, J. Hector St. John De Crèvecoeur stated "Men are like plants; the goodness and flavor of the fruit proceeds from the peculiar soil and exposition in which they grow". And in "Larding the Lean Earth", published in 2002, S. Stoll noted that North American farmers in the early 1800s recognized a link between an enduring agriculture and an enduring society, leading them to become concerned about the fertility of their soils and to seek ways of improving the soil in order to insure a healthy society. Continuing into the first half of the 20th Century, a 1940 publication by the International Harvester Company noted that poor soils lead to "stoop-shouldered, poverty-stricken people." Then, in 1947, Sir Albert Howard published his landmark work "The Soil and Health: A Study of Organic Agriculture", a work that took a critical look at modern production agriculture and at the link between soil fertility and health. Despite these various lines of evidence of some earlier level of understanding that healthy soils are required for healthy people, the scientific study of the relationship between soils and human health is a fairly new undertaking. In his 1997 work "Soil and Human Health: A Review", M.A. Oliver states "… there is a dearth of quantitative information on the relations between elements in the soil and human health;…there is much speculation and anecdotal evidence." So, the scientific study of soils and human health is a recent undertaking, but the idea that healthy soils are required for healthy people is not a particularly new one. In the modern world, we recognize that soils have a distinct influence on human health. We recognize that soils influence 1) food availability and quality (food security), 2) human contact with various chemicals, and 3) human contact with various pathogens. Soils and human health studies include investigations into nutrient supply through the food web and routes of exposure to chemicals and pathogens. However, making strong, scientific connections between soils and human health can be difficult. There are multiple variables to consider in the soil environment, meaning traditional scientific studies that seek to isolate and manipulate a single variable often do not provide meaningful data. The complete study of soils and human health also involves many different specialties such as soil scientists, toxicologists, medical professionals, anthropologists, etc. These groups do not traditionally work together on research projects, and do not always effectively communicate with one another. Climate change and how it will affect the soil environment/ecosystem going into the future is another variable we need to get a better understanding of. Future successes in soils and human health research will require effectively addressing difficult issues such as these.

  10. Sorption kinetics of diuron on volcanic ash derived soils.

    PubMed

    Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente

    2013-10-15

    Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Dissolved Organic Carbon in Leachate after Application of Granular and Liquid N-P-K Fertilizers to a Sugarcane Soil.

    PubMed

    Pittaway, P A; Melland, A R; Antille, D L; Marchuk, S

    2018-05-01

    The progressive decline of soil organic matter (SOM) threatens the sustainability of arable cropping worldwide. Residue removal and burning, destruction of protected microsites, and the acceleration of microbial decomposition are key factors. Desorption of SOM by ammonia-based fertilizers from organomineral complexes in soil may also play a role. A urea- and molasses-based liquid fertilizer formulation and a urea-based granular formulation were applied at recommended and district practice rates, respectively, to soil leaching columns, with unfertilized columns used as controls. The chemistry of leachate collected from the columns, filled with two sandy soils differing in recent cropping history, was monitored over eight successive wet-dry drainage events. The pH, electrical conductivity, and concentration and species of N in leachate was compared with the concentration and aromaticity of dissolved organic C (DOC) to indicate if salt solutions derived from the two fertilizers extracted SOM from clay mineral sites. Cation exchange capacity and exchangeable cations in the soil were monitored at the start and end of the trial. Fertilizer application increased DOC in leachate up to 40 times above the control, but reduced aromaticity (specific ultraviolet light absorbance at 253.7 nm). Dissolved organic C was linearly proportional to leachate NH-N concentration. Exchangeable Ca and Mg in soil from fertilized columns at the end of both trials were significantly lower than in unfertilized soil, indicating that ammonium salt solutions derived from the fertilizers extracted cations and variably charged organic matter from soil mineral exchange sites. Desorption of organic matter and divalent cations from organomineral sites by ammonia-based fertilizers may be implicated in soil acidification. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    ERIC Educational Resources Information Center

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  13. May humic acids or mineral fertilisation mitigate arsenic mobility and availability to carrot plants (Daucus carota L.) in a volcanic soil polluted by As from irrigation water?

    PubMed

    Caporale, Antonio G; Adamo, Paola; Azam, Shah M G G; Rao, Maria A; Pigna, Massimo

    2018-02-01

    Carrot (Daucus carota L.) is a widely consumed root vegetable, whose growth and safety might be threatened by growing-medium arsenic (As) contamination. By this work, we evaluated the effects of humic acids from Leonardite and NPK mineral fertilisation on As mobility and availability to carrot plants grown for 60 days in a volcanic soil irrigated with As-contaminated water - representing the most common scenario occurring in As-affected Italian areas. As expected, the irrigation with As-contaminated water caused a serious toxic effect on plant growth and photosynthetic rate; the highest rate of As also inhibited soil enzymatic activity. In contrast, the organic and mineral fertilisation alleviated, at least partially, the toxicity of As, essentially by stimulating plant growth and promoting nutrient uptake. The mobility of As in the volcanic soil and thus its phytoavailability were differently affected by the organic and mineral fertilisers; the application of humic acids mitigated the availability of the contaminant, likely by its partial immobilisation on humic acid sorption sites - thus raising up the intrinsic anionic sorption capacity of the volcanic soil; the mineral fertilisation enhanced the mobility of As in soil, probably due to competition of P for the anionic sorption sites of the soil variable-charge minerals, very affine to available P. These findings hence suggest that a proper soil management of As-polluted volcanic soils and amendment by stable organic matter might mitigate the environmental risk of these soils, thus minimising the availability of As to biota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand.

    PubMed

    Wang, Dengjun; Bradford, Scott A; Harvey, Ronald W; Gao, Bin; Cang, Long; Zhou, Dongmei

    2012-03-06

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0-10 mg L(-1)), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0-0.75), and pH (6.0-10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L(-1), greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments.

  15. Instrumentation and Methodology Development for Mars Mission

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    2002-01-01

    The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars were observed often from Earth. This environment provides an idea condition for triboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If triboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface temperature on Mars helps to prolong the charge decay on the dust particles and soil. To better understand the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to detect the velocity distribution, charge distribution and mass distribution of Martian charged dust particles. These sensors are fabricated at NASA Kenney Space Center, Electromagnetic Physics Testbed. The sensors will be tested and calibrated for simulated Mars atmosphere condition with JSC MARS-1 Martian Regolith simulant in this NASA laboratory.

  16. Influence of spatial variability of hydraulic characteristics of soils on surface parameters obtained from remote sensing data in infrared and microwaves

    NASA Technical Reports Server (NTRS)

    Brunet, Y.; Vauclin, M.

    1985-01-01

    The correct interpretation of thermal and hydraulic soil parameters infrared from remotely sensed data (thermal infrared, microwaves) implies a good understanding of the causes of their temporal and spatial variability. Given this necessity, the sensitivity of the surface variables (temperature, moisture) to the spatial variability of hydraulic soil properties is tested with a numerical model of heat and mass transfer between bare soil and atmosphere. The spatial variability of hydraulic soil properties is taken into account in terms of the scaling factor. For a given soil, the knowledge of its frequency distribution allows a stochastic use of the model. The results are treated statistically, and the part of the variability of soil surface parameters due to that of soil hydraulic properties is evaluated quantitatively.

  17. Charge characteristics of humic and fulvic acids: comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model.

    PubMed

    Bratskaya, S; Golikov, A; Lutsenko, T; Nesterova, O; Dudarchik, V

    2008-09-01

    Charge characteristics of humic and fulvic acids of a different origin (inshore soils, peat, marine sediments, and soil (lysimetric) waters) were evaluated by means of two alternative methods - colloid titration and potentiometric titration. In order to elucidate possible limitations of the colloid titration as an express method of analysis of low content of humic substances we monitored changes in acid-base properties and charge densities of humic substances with soil depth, fractionation, and origin. We have shown that both factors - strength of acidic groups and molecular weight distribution in humic and fulvic acids - can affect the reliability of colloid titration. Due to deviations from 1:1 stoichiometry in interactions of humic substances with polymeric cationic titrant, the colloid titration can underestimate total acidity (charge density) of humic substances with domination of weak acidic functional groups (pK>6) and high content of the fractions with molecular weight below 1kDa.

  18. Variation in soil carbon dioxide efflux at two spatial scales in a topographically complex boreal forest

    USGS Publications Warehouse

    Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.

    2012-01-01

    Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.

  19. Impact of Subsurface Temperature Variability on Meteorological Variability: An AGCM Study

    NASA Astrophysics Data System (ADS)

    Mahanama, S. P.; Koster, R. D.; Liu, P.

    2006-05-01

    Anomalous atmospheric conditions can lead to surface temperature anomalies, which in turn can lead to temperature anomalies deep in the soil. The deep soil temperature (and the associated ground heat content) has significant memory -- the dissipation of a temperature anomaly may take weeks to months -- and thus deep soil temperature may contribute to the low frequency variability of energy and water variables elsewhere in the system. The memory may even provide some skill to subseasonal and seasonal forecasts. This study uses two long-term AGCM experiments to isolate the contribution of deep soil temperature variability to variability elsewhere in the climate system. The first experiment consists of a standard ensemble of AMIP-type simulations, simulations in which the deep soil temperature variable is allowed to interact with the rest of the system. In the second experiment, the coupling of the deep soil temperature to the rest of the climate system is disabled -- at each grid cell, the local climatological seasonal cycle of deep soil temperature (as determined from the first experiment) is prescribed. By comparing the variability of various atmospheric quantities as generated in the two experiments, we isolate the contribution of interactive deep soil temperature to that variability. The results show that interactive deep soil temperature contributes significantly to surface temperature variability. Interactive deep soil temperature, however, reduces the variability of the hydrological cycle (evaporation and precipitation), largely because it allows for a negative feedback between evaporation and temperature.

  20. Soil information in the Strategic Environmental Assessment of Rural Development Plans

    NASA Astrophysics Data System (ADS)

    Costantini, Edoardo

    2016-04-01

    Soil information is essential for land planning at different administrative levels. Currently, in Europe there is a hierarchy of at least seven main territorial administrative entities which consider soil in their land planning policies. In this study, European, national and regional regulations that affect soil are discussed, considering themes, priorities, and focus areas. A better attention on the Strategic Environmental Assessment (SEA) of the Rural Development Plans (RDP) 2014-2020 is given, by analysing the Environmental Reports produced in the framework of the SEA of the RDP 2014-2020 of some European Regions. Both old and new soil indicators are introduced, as well as the consequences of their adoption for soil science and soil scientists. It is evident from this study that soil information is treated very variably, not only because of the different kinds of available information, but mainly as a consequence of the expertise and sensitivity to the soil issues of the authors, since they can be different kinds of public or private bodies hired by regional authorities. Therefore, despite having the same reference, the SEAs are very different. In most cases, the amount of soil information is little or negligible, even when available. The ex-ante impacts are often only qualitative, or quantified only in terms of the areal extent of applied measures. On the other hand, following the European recommendations, the ongoing and ex-post reports of the monitoring activities of RDP are expected to provide a wealth of soil information, both qualitative and quantitative. Soil scientists, soil and water conservationists, and management experts will be requested to provide more sophisticated and dynamic types of information. Therefore, the SEA of RDP and similar land planning activities will provide greater scientific and technical opportunities for soil science, provided that the public bodies in charge of evaluations, namely Member States, Regions and their auditing counterparts within the European Commission, are able to implement their own recommendations.

  1. Ad-/desorption behavior of Sulfadiazine on soil and soil components

    NASA Astrophysics Data System (ADS)

    Meng, N.; Lewandowski, H.; Kasteel, R.; Narres, H.-D.; Klumpp, E.; Vereecken, H.

    2009-04-01

    Sulfadiazine [4-amino-N-(2-pyrimidinyl)benzene sulfonamide, SDZ] belongs to the widely used antibacterial veterinary pharmaceuticals which reach the environment by the application of manure. Therefore the adsorption and desorption behavior of 14C labeled sulfadiazine was investigated with different inorganic soil components including Al2O3, goethite, illite and compared with air-dried topsoil. The batch sorption experiments with Al2O3and soil were performed in natural pH-values (8.2 and 7.5, negatively charged SDZ). Experiments with illite and goethite were done with pH-values of 4.2 and 6.8 (natural pH of illite and goethite, neutral and partly negatively charged SDZ) and also done in buffer solution about pH 8 for comparing the adsorption on all adsorbents in same pH range. The adsorption isotherms on all sorbents are strongly nonlinear and can be fitted well by the Freundlich equation. From the initial slope of the isotherm the partition coefficient Kd could be determined. The adsorption of SDZ on illite at pH 4.2 and on goethite at pH 6.8 has higher Kd-values than at pH 8, which demonstrates that the negative charge of SDZ obstructs the adsorption. The desorption isotherms show hysteresis effects for all adsorbents. The strong hysteresis was found for goethite and soil indicates strongly physical or chemical binding. On the other hand, the low hysteresis effect for Al2O3 and illite indicates the weak binding of the adsorbed SDZ. The properties of the inorganic matrix and especially the charges of the inorganic compounds in relation to the charge of SDZ are important parameters for the sorption process. The data could be described by modeling with different sorption rates and sites.

  2. Decreasing DOC trends in soil solution along the hillslopes at two IM sites in southern Sweden--geochemical modeling of organic matter solubility during acidification recovery.

    PubMed

    Löfgren, Stefan; Gustafsson, Jon Petter; Bringmark, Lage

    2010-12-01

    Numerous studies report increased concentrations of dissolved organic carbon (DOC) during the last two decades in boreal lakes and streams in Europe and North America. Recently, a hypothesis was presented on how various spatial and temporal factors affect the DOC dynamics. It was concluded that declining sulphur deposition and thereby increased DOC solubility, is the most important driver for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the DOC levels should increase both in the soil solution as well as in the surrounding surface waters as soil pH rises and the ionic strength declines due to the reduced input of SO(4)(2-) ions. In this project a geochemical model was set up to calculate the net humic charge and DOC solubility trends in soils during the period 1996-2007 at two integrated monitoring sites in southern Sweden, showing clear signs of acidification recovery. The Stockholm Humic Model was used to investigate whether the observed DOC solubility is related to the humic charge and to examine how pH and ionic strength influence it. Soil water data from recharge and discharge areas, covering both podzols and riparian soils, were used. The model exercise showed that the increased net charge following the pH increase was in many cases counteracted by a decreased ionic strength, which acted to decrease the net charge and hence the DOC solubility. Thus, the recovery from acidification does not necessarily have to generate increasing DOC trends in soil solution. Depending on changes in pH, ionic strength and soil Al pools, the trends might be positive, negative or indifferent. Due to the high hydraulic connectivity with the streams, the explanations to the DOC trends in surface waters should be searched for in discharge areas and peat lands. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Soil properties discriminating Araucaria forests with different disturbance levels.

    PubMed

    Bertini, Simone Cristina Braga; Azevedo, Lucas Carvalho Basilio; Stromberger, Mary E; Cardoso, Elke Jurandy Bran Nogueira

    2015-04-01

    Soil biological, chemical, and physical properties can be important for monitoring soil quality under one of the most spectacular vegetation formation on Atlantic Forest Biome, the Araucaria Forest. Our aim was to identify a set of soil variables capable of discriminating between disturbed, reforested, and native Araucaria forest soils such that these variables could be used to monitor forest recovery and maintenance. Soil samples were collected at dry and rainy season under the three forest types in two state parks at São Paulo State, Brazil. Soil biological, chemical, and physical properties were evaluated to verify their potential to differentiate the forest types, and discriminant analysis was performed to identify the variables that most contribute to the differentiation. Most of physical and chemical variables were sensitive to forest disturbance level, but few biological variables were significantly different when comparing native, reforested, and disturbed forests. Despite more than 20 years following reforestation, the reforested soils were chemically and biologically distinct from native and disturbed forest soils, mainly because of the greater acidity and Al3+ content of reforested soil. Disturbed soils, in contrast, were coarser in texture and contained greater concentrations of extractable P. Although biological properties are generally highly sensitive to disturbance and amelioration efforts, the most important soil variables to discriminate forest types in both seasons included Al3+, Mg2+, P, and sand, and only one microbial attribute: the NO2- oxidizers. Therefore, these five variables were the best candidates, of the variables we employed, for monitoring Araucaria forest disturbance and recovery.

  4. Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species?

    PubMed Central

    Esperón-Rodríguez, Manuel; Baumgartner, John B.; Beaumont, Linda J.

    2017-01-01

    Background Shrubs play a key role in biogeochemical cycles, prevent soil and water erosion, provide forage for livestock, and are a source of food, wood and non-wood products. However, despite their ecological and societal importance, the influence of different environmental variables on shrub distributions remains unclear. We evaluated the influence of climate and soil characteristics, and whether including soil variables improved the performance of a species distribution model (SDM), Maxent. Methods This study assessed variation in predictions of environmental suitability for 29 Australian shrub species (representing dominant members of six shrubland classes) due to the use of alternative sets of predictor variables. Models were calibrated with (1) climate variables only, (2) climate and soil variables, and (3) soil variables only. Results The predictive power of SDMs differed substantially across species, but generally models calibrated with both climate and soil data performed better than those calibrated only with climate variables. Models calibrated solely with soil variables were the least accurate. We found regional differences in potential shrub species richness across Australia due to the use of different sets of variables. Conclusions Our study provides evidence that predicted patterns of species richness may be sensitive to the choice of predictor set when multiple, plausible alternatives exist, and demonstrates the importance of considering soil properties when modeling availability of habitat for plants. PMID:28652933

  5. NRL transmittance measurements at DIRT-III

    NASA Astrophysics Data System (ADS)

    Curcio, J. A.; Haught, K. M.; Woytko, M. A.; Gott, C.

    1981-06-01

    This is a final report on NRL experiments at the DIRT-III tests at Fort Polk, Louisiana in April - May 1980. Spectral transmission data at 3 wavelengths 0.55 microns, 1.06 microns and 10.4 microns is reported for 27 events in natural soil and various prepared soils. Spectral transmittance of smoke and dust clouds generated by explosive charges was found to be independent of wavelengths in about 50% of the events where useful data was obtained. When the charge was buried in wet natural soil transmittance at 10.4 microns was transmittance at 0.55 microns .

  6. Quantifying Forest Soil Physical Variables Potentially Important for Site Growth Analyses

    Treesearch

    John S. Kush; Douglas G. Pitt; Phillip J. Craul; William D. Boyer

    2004-01-01

    Accurate mean plot values of forest soil factors are required for use as independent variables in site-growth analyses. Adequate accuracy is often difficult to attain because soils are inherently widely variable. Estimates of the variability of appropriate soil factors influencing growth can be used to determine the sampling intensity required to secure accurate mean...

  7. Impacts of simulated acid rain on recalcitrance of two different soils.

    PubMed

    Dai, Zhongmin; Liu, Xingmei; Wu, Jianjun; Xu, Jianming

    2013-06-01

    Laboratory experiments were conducted to estimate the impacts of simulated acid rain (SAR) on recalcitrance in a Plinthudult and a Paleudalfs soil in south China, which were a variable and a permanent charge soil, respectively. Simulated acid rains were prepared at pH 2.0, 3.5, 5.0, and 6.0, by additions of different volumes of H2SO4 plus HNO3 at a ratio of 6 to 1. The leaching period was designed to represent 5 years of local annual rainfall (1,200 mm) with a 33 % surface runoff loss. Both soils underwent both acidification stages of (1) cation exchange and (2) mineral weathering at SAR pH 2.0, whereas only cation exchange occurred above SAR pH 3.5, i.e., weathering did not commence. The cation exchange stage was more easily changed into that of mineral weathering in the Plinthudult than in the Paleudalfs soil, and there were some K(+) and Mg(2+) ions released on the stages of mineral weathering in the Paleudalfs soil. During the leaching, the release of exchangeable base cations followed the order Ca(2+) >K(+) >Mg(2+) >Na(+) for the Plinthudult and Ca(2+) >Mg(2+) >Na(+) >K(+) for the Paleudalfs soil. The SARs above pH 3.5 did not decrease soil pH or pH buffering capacity, while the SAR at pH 2.0 decreased soil pH and the buffering capacity significantly. We conclude that acid rain, which always has a pH from 3.5 to 5.6, only makes a small contribution to the acidification of agricultural soils of south China in the short term of 5 years. Also, Paleudalfs soils are more resistant to acid rain than Plinthudult soils. The different abilities to prevent leaching by acid rain depend upon the parent materials, types of clay minerals, and soil development degrees.

  8. Controls on the spatial variability of key soil properties: comparing field data with a mechanistic soilscape evolution model

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, T.; Román, A.; Giraldez, J. V.

    2016-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  9. Sorption of pharmaceuticals to soil organic matter in a constructed wetland by electrostatic interaction.

    PubMed

    Park, Jongkwan; Cho, Kyung Hwa; Lee, Eunkyung; Lee, Sungyun; Cho, Jaeweon

    2018-09-01

    There is a growing interest in the removal of pharmaceuticals from wastewater because pharmaceuticals have potential ecotoxicological effects. Among several removal mechanisms, the sorption of pharmaceuticals to sediment organic matter is an important mechanism related to the mobility of pharmaceuticals. This study investigated the sorption of pharmaceuticals to soil organic matter (SOM) by electrostatic interactions. SOM located on the surface of soil/sediment generally has a negative charge because of the functional groups present (i.e., carboxylic and phenolic groups). Thus, the electrical characteristics of SOM can induce electrical attraction with positively charged chemical compounds. In this study, SOM was extracted from soils under different aquatic plants (Acorus and Typha) in a constructed wetland in Korea. Experiments were carried out with the following three pharmaceuticals with different electrical characteristics at pH 7: atenolol (positive charge; pKa 9.5), carbamazepine (neutral; no pKa), and ibuprofen (negative charge; pKa 4.9). The SOM in the Acorus pond had a higher hydrophobicity and electrical charge density than that in the Typha pond. Regarding the sorption efficiency between SOM and charged pharmaceuticals, atenolol showed highest sorption efficiency (~60%), followed by carbamazepine (~40%) and ibuprofen (<~30%). In addition, the removal efficiency of the targeted pharmaceuticals in the constructed wetland was estimated by comparing the concentrations of the pharmaceuticals at sampling points with flowing water. The results showed that the removal efficiency of atenolol and carbamazepine was almost 50%, whereas that of ibuprofen was only ~10%. A comparison of the results of lab-scale and field experiments showed that electrostatic interaction is one of the major pharmaceutical removal mechanisms in a constructed wetland. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nutrient movement in a 104-year old soil fertility experiment

    USDA-ARS?s Scientific Manuscript database

    Alabama’s “Cullars Rotation” experiment (circa 1911) is the oldest, continuous soil fertility experiment in the southern U.S. Treatments include 5 K variables, P variables, S variables, soil pH variables and micronutrient variables in 14 treatments involving a 3-yr rotation of (1) cotton-winter legu...

  11. Drivers for spatial variability in agricultural soil organic carbon stocks in Germany

    NASA Astrophysics Data System (ADS)

    Vos, Cora; Don, Axel; Hobley, Eleanor; Prietz, Roland; Heidkamp, Arne; Freibauer, Annette

    2017-04-01

    Soil organic carbon is one of the largest components of the global carbon cycle. It has recently gained importance in global efforts to mitigate climate change through carbon sequestration. In order to find locations suitable for carbon sequestration, and estimate the sequestration potential, however, it is necessary to understand the factors influencing the high spatial variability of soil organic carbon stocks. Due to numerous interacting factors that influence its dynamics, soil organic carbon stocks are difficult to predict. In the course of the German Agricultural Soil Inventory over 2500 agricultural sites were sampled and their soil organic carbon stocks determined. Data relating to more than 200 potential drivers of SOC stocks were compiled from laboratory measurements, farmer questionnaires and climate stations. The aims of this study were to 1) give an overview of soil organic carbon stocks in Germany's agricultural soils, 2) to quantify and explain the influence of explanatory variables on soil organic carbon stocks. Two different machine learning algorithms were used to identify the most important variables and multiple regression models were used to explore the influence of those variables. Models for predicting carbon stocks in different depth increments between 0-100 cm were developed, explaining up to 62% (validation, 98% calibration) of total variance. Land-use, land-use history, clay content and electrical conductivity were main predictors in the topsoil, while bedrock material, relief and electrical conductivity governed the variability of subsoil carbon stocks. We found 32% of all soils to be deeply anthropogenically transformed. The influence of climate related variables was surprisingly small (≤5% of explained variance), while site variables explained a large share of soil carbon variability (46-100% of explained variance), in particular in the subsoil. Thus, the understanding of SOC dynamics at regional scale requires a thorough description of the variability in soil physical parameters. Agronomic management impact on SOC stocks is important near the soil surface, but is mainly attributable to land-use and not to other management factors on this large regional scale. The importance of historical land-use practices as well as anthropogenic soil transformations to SOC stocks highlights the need for prudent soil management and conservation policies.

  12. Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport

    NASA Astrophysics Data System (ADS)

    Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike

    2017-04-01

    Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters spatially explicit including different directions and b) to use random-field stochastic models to assess the possible effects for gas-exchange models.

  13. Modeling impacts of human footprint and soil variability on the potential distribution of invasive plant species in different biomes

    NASA Astrophysics Data System (ADS)

    Wan, Ji-Zhong; Wang, Chun-Jing; Yu, Fei-Hai

    2017-11-01

    Human footprint and soil variability may be important in shaping the spread of invasive plant species (IPS). However, until now, there is little knowledge on how human footprint and soil variability affect the potential distribution of IPS in different biomes. We used Maxent modeling to project the potential distribution of 29 IPS with wide distributions and long introduction histories in China based on various combinations of climatic correlates, soil characteristics and human footprint. Then, we evaluated the relative importance of each type of environmental variables (climate, soil and human footprint) as well as the difference in range and similarity of the potential distribution of IPS between different biomes. Human footprint and soil variables contributed to the prediction of the potential distribution of IPS, and different types of biomes had varying responses and degrees of impacts from the tested variables. Human footprint and soil variability had the highest tendency to increase the potential distribution of IPS in Montane Grasslands and Shrublands. We propose to integrate the assessment in impacts of human footprint and soil variability on the potential distribution of IPS in different biomes into the prevention and control of plant invasion.

  14. Liming effects on cadmium stabilization in upland soil affected by gold mining activity.

    PubMed

    Hong, Chang Oh; Lee, Do Kyoung; Chung, Doug Young; Kim, Pil Joo

    2007-05-01

    To reduce cadmium (Cd) uptake of plants cultivated in heavy metal-contaminated soil, the best liming material was selected in the incubation test. The effect of the selected material was evaluated in the field. In the incubation experimentation, CaCO(3), Ca(OH)(2), CaSO(4).2H(2)O, and oyster shell meal were mixed with soil at rates corresponding to 0, 400, 800, 1600, 3200 mg Ca kg(-1). The limed soil was moistened to 70% of field moisture capacity, and incubated at 25 degrees C for 4 weeks. Ca(OH)(2) was found to be more efficient on reducing soil NH(4)OAc extractable Cd concentration, due to pH increase induced net negative charge. The selected Ca(OH)(2) was applied at rates 0, 2, 4, 8 Mg ha(-1) and then cultivated radish (Raphanus sativa L.) in the field. NH(4)OAc extractable Cd concentration of soil and plant Cd concentration decreased significantly with increasing Ca(OH)(2) rate, since alkaline-liming material markedly increased net negative charge of soil induced by pH increase, and decreased bioavailable Cd fractions (exchangeable + acidic and reducible Cd fraction) during radish cultivation. Cadmium uptake of radish could be reduced by about 50% by amending with about 5 Mg ha(-1) Ca(OH)(2) without adverse effect on radish yield and growth. The increase of net negative charge of soil by Ca(OH)(2) application may suppress Cd uptake and the competition between Ca(2+) and Cd(2+) may additionally affect the suppression of Cd uptake.

  15. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other systems. The negatively charged lunar soil would also be neutralized mitigating some of the adverse effects resulting from lunar dust.

  16. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China.

    PubMed

    Wang, Zhuoran; Zhao, Gengxing; Gao, Mingxiu; Chang, Chunyan

    2017-02-01

    The objectives of this study were to explore the spatial variability of soil salinity in coastal saline soil at macro, meso and micro scales in the Yellow River delta, China. Soil electrical conductivities (ECs) were measured at 0-15, 15-30, 30-45 and 45-60 cm soil depths at 49 sampling sites during November 9 to 11, 2013. Soil salinity was converted from soil ECs based on laboratory analyses. Our results indicated that at the macro scale, soil salinity was high with strong variability in each soil layer, and the content increased and the variability weakened with increasing soil depth. From east to west in the region, the farther away from the sea, the lower the soil salinity was. The degrees of soil salinization in three deeper soil layers are 1.14, 1.24 and 1.40 times higher than that in the surface soil. At the meso scale, the sequence of soil salinity in different topographies, soil texture and vegetation decreased, respectively, as follows: depression >flatland >hillock >batture; sandy loam >light loam >medium loam >heavy loam >clay; bare land >suaeda salsa >reed >cogongrass >cotton >paddy >winter wheat. At the micro scale, soil salinity changed with elevation in natural micro-topography and with anthropogenic activities in cultivated land. As the study area narrowed down to different scales, the spatial variability of soil salinity weakened gradually in cultivated land and salt wasteland except the bare land.

  17. Grounding electrode and method of reducing the electrical resistance of soils

    DOEpatents

    Koehmstedt, Paul L.

    1980-01-01

    A first solution of an electrolyte is injected underground into a volume of soil having negative surface charges on its particles. A cationic surfactant suspended in this solution neutralizes these surface charges of the soil particles within the volume. Following the first solution, a cationic asphalt emulsion suspended in a second solution is injected into the volume. The asphalt emulsion diffuses through the volume and electrostatically bonds with additional soil surrounding the volume such that an electrically conductive water repellant shell enclosing the volume is formed. This shell prevents the leaching of electrolyte from the volume into the additional soil. The second solution also contains a dissolved deliquescent salt which draws water into the volume prior to the formation of the shell. When electrically connected to an electrical installation such as a power line tower, the volume constitutes a grounding electrode for the tower.

  18. Ion exchange phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourg, I.C.; Sposito, G.

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculationmore » (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).« less

  19. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    USGS Publications Warehouse

    Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Gao, Bin; Cang, Long; Zhou, Dongmei

    2012-01-01

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0–10 mg L–1), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0–0.75), and pH (6.0–10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L–1, greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments.

  20. Combined effects of short-term rainfall patterns and soil texture on nitrogen cycling -- A Modeling Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, C.; Riley, W.J.

    2009-11-01

    Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less

  1. Effect of algal flocculation on dissolved organic matters using cationic starch modified soils.

    PubMed

    Shi, Wenqing; Bi, Lei; Pan, Gang

    2016-07-01

    Modified soils (MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch (CS) has been tested as an effective soil modifier, but little is known about its potential impacts on the treated water. This study investigated dissolved organic matters in the bloom water after algal removal using cationic starch modified soils (CS-MSs). Results showed that the dissolved organic carbon (DOC) could be decreased by CS-MS flocculation and the use of higher charge density CS yielded a greater DOC reduction. When CS with the charge density of 0.052, 0.102 and 0.293meq/g were used, DOC was decreased from 3.4 to 3.0, 2.3 and 1.7mg/L, respectively. The excitation-emission matrix fluorescence spectroscopy and UV254 analysis indicated that CS-MS exhibits an ability to remove some soluble organics, which contributed to the DOC reduction. However, the use of low charge density CS posed a potential risk of DOC increase due to the high CS loading for effective algal removal. When CS with the charge density of 0.044meq/g was used, DOC was increased from 3.4 to 3.9mg/L. This study suggested, when CS-MS is used for cyanobacterial bloom removal, the content of dissolved organic matters in the treated water can be controlled by optimizing the charge density of CS. For the settled organic matters, other measures (e.g., capping treatments using oxygen loaded materials) should be jointly applied after algal flocculation. Copyright © 2016. Published by Elsevier B.V.

  2. Field-scale apparent soil electrical conductivity

    USDA-ARS?s Scientific Manuscript database

    Soils are notoriously spatially heterogeneous and many soil properties (e.g., salinity, water content, trace element concentration, etc.) are temporally variable, making soil a complex media. Spatial variability of soil properties has a profound influence on agricultural and environmental processes ...

  3. Elucidating the Physical and Chemical Structural Changes of Proteins on Clay Mineral Surfaces using Large-scale Molecular Dynamics Simulations in Tandem with NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Govind, N.; Washton, N.; Reardon, P.; Chacon, S. S.; Burton, S.; Lipton, A.; Kleber, M.; Qafoku, N. P.

    2014-12-01

    Carbon cycling among the three major Earth's pools, i.e., atmosphere, terrestrial systems and oceans, has received increased attention because the concentration of CO2 in the atmosphere has increased significantly in recent years reaching concentrations greater than 400 ppm that have never been recorded before, warming the planet and changing the climate. Within the terrestrial system, soil organic matter (SOM) represents an important sub-pool of carbon. The associations of SOM with soil mineral interfaces and particles, creating micro-aggregates, are believed to regulate the bioavailability of the associated organic carbon by protecting it from transformations and mineralization to carbon dioxide. Nevertheless, the molecular scale interactions of different types of SOM with a variety of soil minerals and the controls on the extent and rate of SOM transformation and mineralization are not well documented in the current literature. Given the importance of SOM fate and persistence in soils and the current knowledge gaps, the application of atomistic scale simulations to study SOM/mineral associations in abiotic model systems offers rich territory for original and impactful science. Molecular modeling and simulation of SOM is a burgeoning and challenging avenue for aiding the characterization of these complex compounds and chemical systems and for studying their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types and common in soils, which are thought to contribute to their reactive properties including recalcitrance potential and resistance to mineralization. Here, we will discuss our large-scale molecular dynamics simulation efforts to explore the interaction of proteins with clay minerals (i.e., phyllosilicates such as kaolinite, smectite and micas), including the potential physical and chemical structural changes of proteins, protein adsorption by polar and permanently charged mineral surfaces and variably charged edges, and the potential role of amphiphilic proteins in providing adsorptive layers for SOM-mineral interfaces. Our efforts at characterizing these systems through combined modeling and simulation and NMR will also be discussed.

  4. Modelling study of soil C, N and pH response to air pollution and climate change using European LTER site observations.

    PubMed

    Holmberg, Maria; Aherne, Julian; Austnes, Kari; Beloica, Jelena; De Marco, Alessandra; Dirnböck, Thomas; Fornasier, Maria Francesca; Goergen, Klaus; Futter, Martyn; Lindroos, Antti-Jussi; Krám, Pavel; Neirynck, Johan; Nieminen, Tiina Maileena; Pecka, Tomasz; Posch, Maximilian; Pröll, Gisela; Rowe, Ed C; Scheuschner, Thomas; Schlutow, Angela; Valinia, Salar; Forsius, Martin

    2018-05-31

    Current climate warming is expected to continue in coming decades, whereas high N deposition may stabilize, in contrast to the clear decrease in S deposition. These pressures have distinctive regional patterns and their resulting impact on soil conditions is modified by local site characteristics. We have applied the VSD+ soil dynamic model to study impacts of deposition and climate change on soil properties, using MetHyd and GrowUp as pre-processors to provide input to VSD+. The single-layer soil model VSD+ accounts for processes of organic C and N turnover, as well as charge and mass balances of elements, cation exchange and base cation weathering. We calibrated VSD+ at 26 ecosystem study sites throughout Europe using observed conditions, and simulated key soil properties: soil solution pH (pH), soil base saturation (BS) and soil organic carbon and nitrogen ratio (C:N) under projected deposition of N and S, and climate warming until 2100. The sites are forested, located in the Mediterranean, forested alpine, Atlantic, continental and boreal regions. They represent the long-term ecological research (LTER) Europe network, including sites of the ICP Forests and ICP Integrated Monitoring (IM) programmes under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), providing high quality long-term data on ecosystem response. Simulated future soil conditions improved under projected decrease in deposition and current climate conditions: higher pH, BS and C:N at 21, 16 and 12 of the sites, respectively. When climate change was included in the scenario analysis, the variability of the results increased. Climate warming resulted in higher simulated pH in most cases, and higher BS and C:N in roughly half of the cases. Especially the increase in C:N was more marked with climate warming. The study illustrates the value of LTER sites for applying models to predict soil responses to multiple environmental changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Multiscale variability of soil aggregate stability: implications for rangeland hydrology and erosion

    USDA-ARS?s Scientific Manuscript database

    Conservation of soil and water resources in rangelands is a crucial step in stopping desertification processes. The formation of water-stable soil aggregates reduces soil erodibility and can increase infiltration capacity in many soils. Soil aggregate stability is highly variable at scales ranging f...

  6. Spatial and temporal variability of soil moisture on the field with and without plants*

    NASA Astrophysics Data System (ADS)

    Usowicz, B.; Marczewski, W.; Usowicz, J. B.

    2012-04-01

    Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil moisture runs in particular objects and of precipitation distribution shows clearly that rainfall has an effect on the soil moisture. The amount of precipitation water that increased the soil moisture depended on the strength of the rainfall, on the hydrological properties of the soil (primarily the soil density), the status of the plant cover, and surface runoff. Basing on the precipitation distribution and on the soil moisture runs, an attempt was made at finding a temporal and spatial relationship between those variables, employing for the purpose the geostatistical methods which permit time and space to be included in the analysis. The geostatistical parameters determined showed the temporal dependence of moisture distribution in the soil profile, with the autocorrelation radius increasing with increasing depth in the profile. The highest values of the radius were observed in the plots with plant cover below the arable horizon, and the lowest in the arable horizon on the barley and fallow plots. The fractal dimensions showed a clear decrease in values with increasing depth in the plots with plant cover, while in the bare plots they were relatively constant within the soil profile under study. Therefore, they indicated that the temporal distribution of soil moisture within the soil profile in the bare field was more random in character than in the plots with plants. The results obtained and the analyses indicate that the moisture in the soil profile, its variability and determination, are significantly affected by the type and condition of plant canopy. The differentiation in moisture content between the plots studied resulted from different precipitation interception and different intensity of water uptake by the roots. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO-3275.

  7. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability.

    PubMed

    Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre

    2014-12-05

    Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.

  8. Development of Charge to Mass Ratio Microdetector for Future Mars Mission

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Lian Albert

    2003-01-01

    The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars are observed often from Earth. This environment provides an ideal condition for turboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If turboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface on Mars helps to prolong the charge decay on the dust particles and soil. To better understanding the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to measure the velocity distribution, charge distribution and mass distribution of Martian wed dust particles. These sensors are fabricated at NASA Kenney Space Center, Electrostatic and Surface Physics Laboratory. The sensors are calibrated. The momentum sensor is capable to measure 45 pan size particles. The designed detector is very simple, robust, without moving parts, and does not require a high voltage power supply. Two sensors are combined to form the Dust Microdetector - CHAL.

  9. Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil

    NASA Astrophysics Data System (ADS)

    Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.

    2017-12-01

    The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases may be hampered by mineral association.

  10. Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms

    USGS Publications Warehouse

    Beyer, W.N.; Hensler, G.L.; Moore, J.

    1987-01-01

    Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.

  11. Modelling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team

    2003-04-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T&P-model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the inter-site variability, regardless whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly time scale we developed a simple T&P&LAI-model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time-step model and explained 50 % of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index.

  12. The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.

    PubMed

    Klitzke, Sondra; Metreveli, George; Peters, Andre; Schaumann, Gabriele E; Lang, Friederike

    2015-12-01

    Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α254/α410 were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5mM Ca(2+) solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 μg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag(+) ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces. Copyright © 2014. Published by Elsevier B.V.

  13. Analysis of spatiotemporal soil moisture patterns at the catchment scale using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Bogena, Heye R.; Huisman, Johan A.; Rosenbaum, Ulrike; Weuthen, Ansgar; Vereecken, Harry

    2010-05-01

    Soil water content plays a key role in partitioning water and energy fluxes and controlling the pattern of groundwater recharge. Despite the importance of soil water content, it is not yet measured in an operational way at larger scales. The aim of this paper is to present the potential of real-time monitoring for the analysis of soil moisture patterns at the catchment scale using the recently developed wireless sensor network SoilNet [1], [2]. SoilNet is designed to measure soil moisture, salinity and temperature in several depths (e.g. 5, 20 and 50 cm). Recently, a small forest catchment Wüstebach (~27 ha) has been instrumented with 150 sensor nodes and more than 1200 soil sensors in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories). From August to November 2009, more than 6 million soil moisture measurements have been performed. We will present first results from a statistical and geostatistical analysis of the data. The observed spatial variability of soil moisture corresponds well with the 800-m scale variability described in [3]. The very low scattering of the standard deviation versus mean soil moisture plots indicates that sensor network data shows less artificial soil moisture variations than soil moisture data originated from measurement campaigns. The variograms showed more or less the same nugget effect, which indicates that the sum of the sub-scale variability and the measurement error is rather time-invariant. Wet situations showed smaller spatial variability, which is attributed to saturated soil water content, which poses an upper limit and is typically not strongly variable in headwater catchments with relatively homogeneous soil. The spatiotemporal variability in soil moisture at 50 cm depth was significantly lower than at 5 and 20 cm. This finding indicates that the considerable variability of the top soil is buffered deeper in the soil due to lateral and vertical water fluxes. Topographic features showed the strongest correlation with soil moisture during dry periods, indicating that the control of topography on the soil moisture pattern depends on the soil water status. Interpolation using the external drift kriging method demonstrated that the high sampling density allows capturing the key patterns of soil moisture variation in the Wüstebach catchment. References: [1] Bogena, H.R., J.A. Huisman, C. Oberdörster, H. Vereecken (2007): Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology: 344, 32- 42. [2] Rosenbaum, U., Huisman, J.A., Weuthen, A., Vereecken, H. and Bogena, H.R. (2010): Quantification of sensor-to-sensor variability of the ECH2O EC-5, TE and 5TE sensors in dielectric liquids. Accepted for publication in Vadose Zone Journal (09/2009). [3] Famiglietti J.S., D. Ryu, A. A. Berg, M. Rodell and T. J. Jackson (2008), Field observations of soil moisture variability across scales, Water Resour. Res. 44, W01423, doi:10.1029/2006WR005804.

  14. Mapping Spatial Variability of Soil Salinity in a Coastal Paddy Field Based on Electromagnetic Sensors

    PubMed Central

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles. PMID:26020969

  15. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    PubMed

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  16. Evaluation of fine soil moisture data from the IFloodS (NASA GPM) Ground Validation campaign using a fully-distributed ecohydrological model

    NASA Astrophysics Data System (ADS)

    Bastola, S.; Dialynas, Y. G.; Arnone, E.; Bras, R. L.

    2014-12-01

    The spatial variability of soil, vegetation, topography, and precipitation controls hydrological processes, consequently resulting in high spatio-temporal variability of most of the hydrological variables, such as soil moisture. Limitation in existing measuring system to characterize this spatial variability, and its importance in various application have resulted in a need of reconciling spatially distributed soil moisture evolution model and corresponding measurements. Fully distributed ecohydrological model simulates soil moisture at high resolution soil moisture. This is relevant for range of environmental studies e.g., flood forecasting. They can also be used to evaluate the value of space born soil moisture data, by assimilating them into hydrological models. In this study, fine resolution soil moisture data simulated by a physically-based distributed hydrological model, tRIBS-VEGGIE, is compared with soil moisture data collected during the field campaign in Turkey river basin, Iowa. The soil moisture series at the 2 and 4 inch depth exhibited a more rapid response to rainfall as compared to bottom 8 and 20 inch ones. The spatial variability in two distinct land surfaces of Turkey River, IA, reflects the control of vegetation, topography and soil texture in the characterization of spatial variability. The comparison of observed and simulated soil moisture at various depth showed that model was able to capture the dynamics of soil moisture at a number of gauging stations. Discrepancies are large in some of the gauging stations, which are characterized by rugged terrain and represented, in the model, through large computational units.

  17. Using IKONOS Imagery to Estimate Surface Soil Property Variability in Two Alabama Physiographies

    NASA Technical Reports Server (NTRS)

    Sullivan, Dana; Shaw, Joey; Rickman, Doug

    2005-01-01

    Knowledge of surface soil properties is used to assess past erosion and predict erodibility, determine nutrient requirements, and assess surface texture for soil survey applications. This study was designed to evaluate high resolution IKONOS multispectral data as a soil- mapping tool. Imagery was acquired over conventionally tilled fields in the Coastal Plain and Tennessee Valley physiographic regions of Alabama. Acquisitions were designed to assess the impact of surface crusting, roughness and tillage on our ability to depict soil property variability. Soils consisted mostly of fine-loamy, kaolinitic, thermic Plinthic Kandiudults at the Coastal Plain site and fine, kaolinitic, thermic Rhodic Paleudults at the Tennessee Valley site. Soils were sampled in 0.20 ha grids to a depth of 15 cm and analyzed for % sand (0.05 - 2 mm), silt (0.002 -0.05 mm), clay (less than 0.002 mm), citrate dithionite extractable iron (Fe(sub d)) and soil organic carbon (SOC). Four methods of evaluating variability in soil attributes were evaluated: 1) kriging of soil attributes, 2) co-kriging with soil attributes and reflectance data, 3) multivariate regression based on the relationship between reflectance and soil properties, and 4) fuzzy c-means clustering of reflectance data. Results indicate that co-kriging with remotely sensed data improved field scale estimates of surface SOC and clay content compared to kriging and regression methods. Fuzzy c-means worked best using RS data acquired over freshly tilled fields, reducing soil property variability within soil zones compared to field scale soil property variability.

  18. Can Process Understanding Help Elucidate The Structure Of The Critical Zone? Comparing Process-Based Soil Formation Models With Digital Soil Mapping.

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, T.; Román, A.; Peña, A.; Laguna, A.; Giráldez, J. V.

    2017-12-01

    There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties in the critical zone. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of traditional digital soil mapping versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.

  19. A simple approach to determine reactive solute transport using time domain reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogeler, I.; Duwig, C.; Clothier, B.E.

    2000-02-01

    Time domain reflectometry (TDR) possesses potential for determining solute-transport parameters, such as dispersion coefficients and retardation factors for reactive solutes. The authors developed a simple method based on peak-to-peak measurements of water and solute velocities through the soil using TDR. The method was tested by carrying out unsaturated leaching experiments in the laboratory on two soil columns packed with a South Pacific soil from Mare, which is a ferrasol with variable surface charge. One column was left bare and the other was planted with mustard. Pulses of CaBr{sub 2} and Ca(NO{sub 3}){minus}{sub 2} were applied to the surface of eithermore » wet or dry soil and then leached by water from a rainfall simulator applied at a steady rate of between 30 and 45 mm h{sup {minus}1}. Water and solute transport were monitored by collecting the effluent. Contemporaneous in situ measurements of the water content and electrical conductivity were made using TDR. Transport parameters for the convection-dispersion equation, with a linear adsorption isotherm, were obtained from the flux concentration and the solute resident concentrations measured by TDR. Anion retardations between 1.2 and 1.7, and dispersivities between 1 and 9 mm, were found. Retardations also were calculated using the authors simple approach based on TDR-measured water and solute front velocities. These used TDR measurements of soil water content and bulk soil electrical conductivity with time, and were similar to those obtained from the effluent. The agreement suggests TDR could be a valuable in situ technique for obtaining the parameters relating to reactive solute transport through soil.« less

  20. Electrostatic Separator for Beneficiation of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  1. Spatial variability assessment of soil nutrients in an intense agricultural area, a case study of Rugao County in Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yongcun; Xu, Xianghua; Darilek, Jeremy Landon; Huang, Biao; Sun, Weixia; Shi, Xuezheng

    2009-05-01

    Topsoil samples (0-20 cm) ( n = 237) were collected from Rugao County, China. Geostatistical variogram analysis, sequential Gaussian simulation (SGS), and principal component (PC) analysis were applied to assess spatial variability of soil nutrients, identify the possible areas of nutrient deficiency, and explore spatial scale of variability of soil nutrients in the county. High variability of soil nutrient such as soil organic matter (SOM), total nitrogen (TN), available P, K, Fe, Mn, Cu, Zn, and B concentrations were observed. Soil nutrient properties displayed significant differences in their spatial structures, with available Cu having strong spatial dependence, SOM and available P having weak spatial dependence, and other nutrient properties having moderate spatial dependence. The soil nutrient deficiency, defined here as measured nutrient concentrations which do not meet the advisory threshold values specific to the county for dominant crops, namely rice, wheat, and rape seeds, was observed in available K and Zn, and the deficient areas covered 38 and 11%, respectively. The first three PCs of the nine soil nutrient properties explained 62.40% of the total variance. TN and SOM with higher loadings on PC1 are closely related to soil texture derived from different parent materials. The PC2 combined intermediate response variables such as available Zn and P that are likely to be controlled by land use and soil pH. Available B has the highest loading on PC3 and its variability of concentrations may be primarily ascribed to localized anthropogenic influence. The amelioration of soil physical properties (i.e. soil texture) and soil pH may improve the availability of soil nutrients and the sustainability of the agricultural system of Rugao County.

  2. Comparison of crop stress and soil maps to enhance variable rate irrigation prescriptions

    USDA-ARS?s Scientific Manuscript database

    Soil textural variability within many irrigated fields diminishes the effectiveness of conventional irrigation management, and scheduling methods that assume uniform soil conditions may produce less than satisfactory results. Furthermore, benefits of variable-rate application of agrochemicals, seeds...

  3. REGIONAL SOIL WATER RETENTION IN THE CONTIGUOUS US: SOURCES OF VARIABILITY AND VOLCANIC SOIL EFFECTS

    EPA Science Inventory

    Water retention of mineral soil is often well predicted using algorithms (pedotransfer functions) with basic soil properties but the spatial variability of these properties has not been well characterized. A further source of uncertainty is that water retention by volcanic soils...

  4. Spatiotemporal Variability of Hillslope Soil Moisture Across Steep, Highly Dissected Topography

    NASA Astrophysics Data System (ADS)

    Jarecke, K. M.; Wondzell, S. M.; Bladon, K. D.

    2016-12-01

    Hillslope ecohydrological processes, including subsurface water flow and plant water uptake, are strongly influenced by soil moisture. However, the factors controlling spatial and temporal variability of soil moisture in steep, mountainous terrain are poorly understood. We asked: How do topography and soils interact to control the spatial and temporal variability of soil moisture in steep, Douglas-fir dominated hillslopes in the western Cascades? We will present a preliminary analysis of bimonthly soil moisture variability from July-November 2016 at 0-30 and 0-60 cm depth across spatially extensive convergent and divergent topographic positions in Watershed 1 of the H.J. Andrews Experimental Forest in central Oregon. Soil moisture monitoring locations were selected following a 5 m LIDAR analysis of topographic position, aspect, and slope. Topographic position index (TPI) was calculated as the difference in elevation to the mean elevation within a 30 m radius. Convergent (negative TPI values) and divergent (positive TPI values) monitoring locations were established along northwest to northeast-facing aspects and within 25-55 degree slopes. We hypothesized that topographic position (convergent vs. divergent), as well as soil physical properties (e.g., texture, bulk density), control variation in hillslope soil moisture at the sub-watershed scale. In addition, we expected the relative importance of hillslope topography to the spatial variability in soil moisture to differ seasonally. By comparing the spatiotemporal variability of hillslope soil moisture across topographic positions, our research provides a foundation for additional understanding of subsurface flow processes and plant-available soil-water in forests with steep, highly dissected terrain.

  5. A Study of the Electrostatic Interaction Between Insulators and Martian/Lunar Soil Simulants

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.

    2001-01-01

    Using our previous experience with the Mars Environmental Compatibility Assessment (MECA) electrometer, we have designed a new type of aerodynamic electrometer. The goal of the research was to measure the buildup of electrostatic surface charge on a stationary cylindrical insulator after windborne granular particles have collided with the insulator surface in a simulated dust storm. The experiments are performed inside a vacuum chamber. This allows the atmospheric composition and pressure to be controlled in order to simulate the atmospheric conditions near the equator on the Martian surface. An impeller fan was used to propel the dust particles at a cylindrically shaped insulator under low vacuum conditions. We tested the new electrometer in a 10 mbar CO2 atmosphere by exposing two types of cylindrical insulators, Teflon (1.9 cm diameter) and Fiberglass (2.5 cm diameter), to a variety of windborne granular particulate materials. The granular materials tested were JSC Mars-1 simulant, which is a mixture of coarse and fine (<5microns diameter) particle sizes, and some of the major mineral constituents of the Martian soil. The minerals included Ottawa sand (SiO2), iron oxide (Fe2O3), aluminum oxide (Al2O3) and magnesium oxide (MgO). We also constructed a MECA-like electrometer that contained an insulator capped planar electrode for measuring the amount of electrostatic charge produced by rubbing an insulator surface over Martian and lunar soil simulants. The results of this study indicate that it is possible to detect triboelectric charging of insulator surfaces by windborne Martian soil simulant, and by individual mineral constituents of the soil simulant. We have also found that Teflon and Fiberglass insulator surfaces respond in different ways by developing opposite polarity surface charge, which decays at different rates after the particle impacts cease.

  6. Soil colloidal behavior

    USDA-ARS?s Scientific Manuscript database

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  7. Associations between soil variables and vegetation structure and composition of Caribbean dry forests

    Treesearch

    Elvia M. Melendez-Ackerman; Julissa Rojas-Sandoval; Danny S. Fernandez; Grizelle Gonzalez; Hana Lopez; Jose Sustache; Mariely Morales; Miguel Garcia-Bermudez; Susan Aragon

    2016-01-01

    Soil–vegetation associations have been understudied in tropical dry forests when compared to the amount of extant research on this issue in tropical wet forests. Recent studies assert that vegetation in tropical dry forests is highly heterogeneous and that soil variability may be a contributing factor. In this study, we evaluated the relationship between soil variables...

  8. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    NASA Astrophysics Data System (ADS)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal particles, extractable DOC was lower and less aromatic than in the adjacent control soil, likely due to strong sorption of dissolved organic matter (DOM) onto charcoal particles. We suggest that higher sorption of DOM onto the surface of biochar in the control soil provided additional acid functional groups and thus increased the surface charge to a greater extent than in the DOC poorer kiln soil. Hence, biochars incubated in the kiln soil showed less changes in CEC and surface acidity. Higher availability of DOM in the control soil could also stimulate microbial activity to a larger extent, resulting in higher oxidation rates of biochars incubated in the control soil.

  9. A new Downscaling Approach for SMAP, SMOS and ASCAT by predicting sub-grid Soil Moisture Variability based on Soil Texture

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.

    2017-12-01

    Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.

  10. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Treesearch

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  11. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    NASA Astrophysics Data System (ADS)

    Reichstein, Markus; Rey, Ana; Freibauer, Annette; Tenhunen, John; Valentini, Riccardo; Banza, Joao; Casals, Pere; Cheng, Yufu; Grünzweig, Jose M.; Irvine, James; Joffre, Richard; Law, Beverly E.; Loustau, Denis; Miglietta, Franco; Oechel, Walter; Ourcival, Jean-Marc; Pereira, Joao S.; Peressotti, Alessandro; Ponti, Francesca; Qi, Ye; Rambal, Serge; Rayment, Mark; Romanya, Joan; Rossi, Federica; Tedeschi, Vanessa; Tirone, Giampiero; Xu, Ming; Yakir, Dan

    2003-12-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 μmol m-2 s-1. The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the intersite variability, regardless of whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly timescale, we developed a simple T&P&LAI model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time step model and explained 50% of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index. Before application at the continental or global scale, this approach should be further tested in boreal, cold-temperate, and tropical biomes as well as for non-woody vegetation.

  12. Soil moisture profile variability in land-vegetation- atmosphere continuum

    NASA Astrophysics Data System (ADS)

    Wu, Wanru

    Soil moisture is of critical importance to the physical processes governing energy and water exchanges at the land-air boundary. With respect to the exchange of water mass, soil moisture controls the response of the land surface to atmospheric forcing and determines the partitioning of precipitation into infiltration and runoff. Meanwhile, the soil acts as a reservoir for the storage of liquid water and slow release of water vapor into the atmosphere. The major motivation of the study is that the soil moisture profile is thought to make a substantial contribution to the climate variability through two-way interactions between the land-surface and the atmosphere in the coupled ocean-atmosphere-land climate system. The characteristics of soil moisture variability with soil depth may be important in affecting the atmosphere. The natural variability of soil moisture profile is demonstrated using observations. The 16-year field observational data of soil moisture with 11-layer (top 2.0 meters) measured soil depths over Illinois are analyzed and used to identify and quantify the soil moisture profile variability, where the atmospheric forcing (precipitation) anomaly propagates down through the land-branch of the hydrological cycle with amplitude damping, phase shift, and increasing persistence. Detailed statistical data analyses, which include application of the periodogram method, the wavelet method and the band-pass filter, are made of the variations of soil moisture profile and concurrently measured precipitation for comparison. Cross-spectral analysis is performed to obtain the coherence pattern and phase correlation of two time series for phase shift and amplitude damping calculation. A composite of the drought events during this time period is analyzed and compared with the normal (non-drought) case. A multi-layer land surface model is applied for modeling the soil moisture profile variability characteristics and investigating the underlying mechanisms. Numerical experiments are conducted to examine the impacts of some potential controlling factors, which include atmospheric forcing (periodic and pulse) at the upper boundary, the initial soil moisture profile, the relative root abundance and the soil texture, on the variability of soil moisture profile and the corresponding evapotranspiration. Similar statistical data analyses are performed for the experimental data. Observations from the First International Satellite Land Surface Climatological Project (ISLSCP) Field Experiment (FIFE) are analyzed and used for the testing of model. The integration of the observational and modeling approaches makes it possible to better understand the mechanisms by which the soil moisture profile variability is generated with phase shift, fluctuation amplitude damping and low-pass frequency filtering with soil depth, to improve the strategies of parameterizations in land surface schemes, and furthermore, to assess its contribution to climate variability.

  13. Potential contributions of smectite clays and organic matter to pesticide retention in soils.

    PubMed

    Sheng, G; Johnston, C T; Teppen, B J; Boyd, S A

    2001-06-01

    Soil organic matter (SOM) is often considered the dominant sorptive phase for organic contaminants and pesticides in soil-water systems. This is evidenced by the widespread use of organic-matter-normalized sorption coefficients (K(OM)) to predict soil-water distribution of pesticides, an approach that ignores the potential contribution of soil minerals to sorption. To gain additional perspective on the potential contributions of clays and SOM to pesticide retention in soils, we measured sorption of seven pesticides by a K-saturated reference smectite clay (SWy-2) and SOM (represented by a muck soil). In addition, we measured the adsorption of atrazine by five different K-saturated smectites and Ca-saturated SWy-2. On a unit mass basis, the K-SWy-2 clay was a more effective sorbent than SOM for 4,6-dinitro-o-cresol (DNOC), dichlobenil, and carbaryl of the seven pesticides evaluated, of which, DNOC was sorbed to the greatest extent. Atrazine was sorbed to a similar extent by K-SWy-2 and SOM. Parathion, diuron, and biphenyl were sorbed to a greater extent by SOM than by K-SWy-2. Atrazine was adsorbed by Ca-SWy-2 to a much lesser extent than by K-SWy-2. This appears to be related to the larger hydration sphere of Ca(2+) (compared to that of K(+)) which shrinks the effective size of the adsorption domains between exchangeable cations, and which expands the clay layers beyond the apparently optimal spacing of approximately 12.2 A for sorption of aromatic pesticide structures. Although a simple relation between atrazine adsorption by different K-smectites and charge properties of clay was not observed, the highest charge clay was the least effective sorbent; a higher charge density would result in a loss of adsorption domains. These results indicate that for certain pesticides, expandable soil clays have the potential to be an equal or dominant sorptive phase when compared to SOM for pesticide retention in soil.

  14. NASA applications project in Miami County, Indiana

    NASA Technical Reports Server (NTRS)

    Fernandez, R. Norberto; Lozano-Garcia, D. Fabian; Wyss, Phillip J.; Johannsen, Chris J.

    1989-01-01

    The study site selection is intended to serve all of the different research areas within the project, i.e., soil conditions, soil management, etc. There are seven major soil associations or soils formed on similar landscapes in the Miami Co., and over 38 soil series that were mapped. Soil sampling was conducted in some sites because of its variability in soils and cover types, variable topography, and presence of erosion problems. Results from analysis of these soil data is presented.

  15. Highly charged swelling mica reduces free and extractable Cu levels in Cu-contaminated soils.

    PubMed

    Stuckey, Jason W; Neaman, Alexander; Ravella, Ramesh; Komarneni, Sridhar; Martínez, Carmen Enid

    2008-12-15

    Smelting of copper (Cu) results in the atmospheric deposition of Cu onto surrounding soils. Excess concentrations of Cu in soils can be absorbed by soil biota to toxic levels or leached into the groundwater, threatening the entire ecosystem. A means to restrict Cu mobility and uptake by plants is to remove it from the aqueous phase by applying an adsorptive material. A synthetic clay (highly charged swelling mica) was tested for its ability to decrease the levels of free and 0.1 M KNO3-extractable Cu in 15 surface soils from three different Cu mining areas in central Chile. The soils contained excessive total Cu levels (112-2790 mg Cu (kg soil)(-1)), while extractable Cu ranged from 0.3 to 22.9 mg Cu L(-1). The mica was applied to each soil at rates of 0.1%, 1%, and 2% (w/w). A 2% sodium-montmorillonite treatment and the nonamended soil served as controls. The order of treatment efficacy in reducing extractable Cu and free Cu2+ for low pH soils ( 1% mica > 2% montmorillonite > 0.1% mica. At 120 days, the 2% mica treatment maintained reductions of up to 93% in the free Cu2+ activity and up to 75% in the extractable Cu concentration upon acidification to the original soil pH value. In addition, Cu retention in mica-treated soils was more resistant to acidification than in lime-treated soils. This mica has promise for the remediation of acidic soils with metal contamination at the surface.

  16. Evaluating shrub-associated spatial patterns of soil properties in a shrub-steppe ecosystem using multiple-variable geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halvorson, J.J.; Smith, J.L.; Bolton, H. Jr.

    1995-09-01

    Geostatistics are often calculated for a single variable at a time, even though many natural phenomena are functions of several variables. The objective of this work was to demonstrate a nonparametric approach for assessing the spatial characteristics of multiple-variable phenomena. Specifically, we analyzed the spatial characteristics of resource islands in the soil under big sagebrush (Artemisia tridentala Nutt.), a dominant shrub in the intermountain western USA. For our example, we defined resource islands as a function of six soil variables representing concentrations of soil resources, populations of microorganisms, and soil microbial physiological variables. By collectively evaluating the indicator transformations ofmore » these individual variables, we created a new data set, termed a multiple-variable indicator transform or MVIT. Alternate MVITs were obtained by varying the selection criteria. Each MVIT was analyzed with variography to characterize spatial continuity, and with indicator kriging to predict the combined probability of their occurrence at unsampled locations in the landscape. Simple graphical analysis and variography demonstrated spatial dependence for all individual soil variables. Maps derived from ordinary kriging of MVITs suggested that the combined probabilities for encountering zones of above-median resources were greatest near big sagebrush. 51 refs., 5 figs., 1 tab.« less

  17. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.

    PubMed

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2016-02-01

    The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency.

  18. Increased sensitivity and variability of phytotoxicity responses in Arctic soils to a reference toxicant, boric acid.

    PubMed

    Anaka, Alison; Wickstrom, Mark; Siciliano, Steven Douglas

    2008-03-01

    Industrial and human activities in the Arctic regions may pose a risk to terrestrial Arctic ecosystem functions. One of the most common terrestrial toxicological end points, primary productivity, typically is assessed using a plant phytotoxicity test. Because of cryoturbation, a soil mixing process common in polar regions, we hypothesized that phytotoxicity test results in Arctic soils would be highly variable compared to other terrestrial ecosystems. The variability associated with phytotoxicity tests was evaluated using Environment Canada's standardized plant toxicity test in three cryoturbated soils from Canada's Arctic exposed to a reference toxicant, boric acid. Northern wheatgrass (Elymus lanceolatus) not only was more sensitive to toxicants in Arctic soils, its response to toxicants was more variable compared to that in temperate soils. The phytotoxicity of boric acid in cryosols was much greater than commonly reported in other soils, with a boric acid concentration of less than 150 microg/g soil needed to inhibit root and shoot growth by 20%. Large variability also was found in the phytotoxicity test results, with coefficients of variation for 10 samples ranging from 160 to 79%. The increased toxicity of boric acid in cryosols and variability in test response was not explained by soil properties. Based on our admittedly limited data set of three different Arctic soils, we recommend that more than 30 samples be taken from each control and potentially impacted area to accurately assess contaminant effects at sites in northern Canada. Such intensive sampling will insure that false-negative results for toxicant impacts in Arctic soils are minimized.

  19. Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva

    2013-04-01

    Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.

  20. Simulating maize yield and biomass with spatial variability of soil field capacity

    USDA-ARS?s Scientific Manuscript database

    Spatial variability in field soil water and other properties is a challenge for system modelers who use only representative values for model inputs, rather than their distributions. In this study, we compared simulation results from a calibrated model with spatial variability of soil field capacity ...

  1. Predictor variable resolution governs modeled soil types

    USDA-ARS?s Scientific Manuscript database

    Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...

  2. Land agroecological quality assessment in conditions of high spatial soil cover variability at the Pereslavskoye Opolye.

    NASA Astrophysics Data System (ADS)

    Morev, Dmitriy; Vasenev, Ivan

    2015-04-01

    The essential spatial variability is mutual feature for most natural and man-changed soils at the Central region of European territory of Russia. The original spatial heterogeneity of forest soils has been further complicated by a specific land-use history and human impacts. For demand-driven land-use planning and decision making the quantitative analysis and agroecological interpretation of representative soil cover spatial variability is an important and challenging task that receives increasing attention from private companies, governmental and environmental bodies. Pereslavskoye Opolye is traditionally actively used in agriculture due to dominated high-quality cultivated soddy-podzoluvisols which are relatively reached in organic matter (especially for conditions of the North part at the European territory of Russia). However, the soil cover patterns are often very complicated even within the field that significantly influences on crop yield variability and have to be considered in farming system development and land agroecological quality evaluation. The detailed investigations of soil regimes and mapping of the winter rye yield have been carried in conditions of two representative fields with slopes sharply contrasted both in aspects and degrees. Rye biological productivity and weed infestation have been measured in elementary plots of 0.25 m2 with the following analysis the quality of the yield. In the same plot soil temperature and moisture have been measured by portable devices. Soil sampling was provided from three upper layers by drilling. The results of ray yield detailed mapping shown high differences both in average values and within-field variability on different slopes. In case of low-gradient slope (field 1) there is variability of ray yield from 39.4 to 44.8 dt/ha. In case of expressed slope (field 2) the same species of winter rye grown with the same technology has essentially lower yield and within-field variability from 20 to 29.6 dt/ha. The variability in crop yield between two fields is determined by their differences in mesorelief, A-horizon average thickness and slightly changes in soil temperature. The within-field crop yield variability is determined by microrelief and connected differences in soil moisture. Higher soil cover variability reflects in higher variability of winter ray yield and its quality that could be predicted and planed in conditions of concrete field and year according to principal limiting factors evaluation.

  3. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    PubMed

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.

  4. Measuring spatial variability in soil characteristics

    DOEpatents

    Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  5. Search for Stable Strange Quark Matter in Lunar Soil

    NASA Astrophysics Data System (ADS)

    Han, K.; Ashenfelter, J.; Chikanian, A.; Emmet, W.; Finch, L. E.; Heinz, A.; Madsen, J.; Majka, R. D.; Monreal, B.; Sandweiss, J.

    2009-08-01

    We report results from a search for strangelets (small chunks of strange quark matter) in lunar soil using the Yale WNSL accelerator as a mass spectrometer. We have searched over a range in mass from A=42 to A=70amu for nuclear charges 5, 6, 8, 9, and 11. No strangelets were found in the experiment. For strangelets with nuclear charge 8, a concentration in lunar soil higher than 10-16 is excluded at the 95% confidence level. The implied limit on the strangelet flux in cosmic rays is the most sensitive to date for the covered range and is relevant to both recent theoretical flux predictions and a strangelet candidate event found by the AMS-01 experiment.

  6. Selecting minimum dataset soil variables using PLSR as a regressive multivariate method

    NASA Astrophysics Data System (ADS)

    Stellacci, Anna Maria; Armenise, Elena; Castellini, Mirko; Rossi, Roberta; Vitti, Carolina; Leogrande, Rita; De Benedetto, Daniela; Ferrara, Rossana M.; Vivaldi, Gaetano A.

    2017-04-01

    Long-term field experiments and science-based tools that characterize soil status (namely the soil quality indices, SQIs) assume a strategic role in assessing the effect of agronomic techniques and thus in improving soil management especially in marginal environments. Selecting key soil variables able to best represent soil status is a critical step for the calculation of SQIs. Current studies show the effectiveness of statistical methods for variable selection to extract relevant information deriving from multivariate datasets. Principal component analysis (PCA) has been mainly used, however supervised multivariate methods and regressive techniques are progressively being evaluated (Armenise et al., 2013; de Paul Obade et al., 2016; Pulido Moncada et al., 2014). The present study explores the effectiveness of partial least square regression (PLSR) in selecting critical soil variables, using a dataset comparing conventional tillage and sod-seeding on durum wheat. The results were compared to those obtained using PCA and stepwise discriminant analysis (SDA). The soil data derived from a long-term field experiment in Southern Italy. On samples collected in April 2015, the following set of variables was quantified: (i) chemical: total organic carbon and nitrogen (TOC and TN), alkali-extractable C (TEC and humic substances - HA-FA), water extractable N and organic C (WEN and WEOC), Olsen extractable P, exchangeable cations, pH and EC; (ii) physical: texture, dry bulk density (BD), macroporosity (Pmac), air capacity (AC), and relative field capacity (RFC); (iii) biological: carbon of the microbial biomass quantified with the fumigation-extraction method. PCA and SDA were previously applied to the multivariate dataset (Stellacci et al., 2016). PLSR was carried out on mean centered and variance scaled data of predictors (soil variables) and response (wheat yield) variables using the PLS procedure of SAS/STAT. In addition, variable importance for projection (VIP) statistics was used to quantitatively assess the predictors most relevant for response variable estimation and then for variable selection (Andersen and Bro, 2010). PCA and SDA returned TOC and RFC as influential variables both on the set of chemical and physical data analyzed separately as well as on the whole dataset (Stellacci et al., 2016). Highly weighted variables in PCA were also TEC, followed by K, and AC, followed by Pmac and BD, in the first PC (41.2% of total variance); Olsen P and HA-FA in the second PC (12.6%), Ca in the third (10.6%) component. Variables enabling maximum discrimination among treatments for SDA were WEOC, on the whole dataset, humic substances, followed by Olsen P, EC and clay, in the separate data analyses. The highest PLS-VIP statistics were recorded for Olsen P and Pmac, followed by TOC, TEC, pH and Mg for chemical variables and clay, RFC and AC for the physical variables. Results show that different methods may provide different ranking of the selected variables and the presence of a response variable, in regressive techniques, may affect variable selection. Further investigation with different response variables and with multi-year datasets would allow to better define advantages and limits of single or combined approaches. Acknowledgment The work was supported by the projects "BIOTILLAGE, approcci innovative per il miglioramento delle performances ambientali e produttive dei sistemi cerealicoli no-tillage", financed by PSR-Basilicata 2007-2013, and "DESERT, Low-cost water desalination and sensor technology compact module" financed by ERANET-WATERWORKS 2014. References Andersen C.M. and Bro R., 2010. Variable selection in regression - a tutorial. Journal of Chemometrics, 24 728-737. Armenise et al., 2013. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the mediterranean environment. Soil and Tillage Research, 130:91-98. de Paul Obade et al., 2016. A standardized soil quality index for diverse field conditions. Sci. Total Env. 541:424-434. Pulido Moncada et al., 2014. Data-driven analysis of soil quality indicators using limited data. Geoderma, 235:271-278. Stellacci et al., 2016. Comparison of different multivariate methods to select key soil variables for soil quality indices computation. XLV Congress of the Italian Society of Agronomy (SIA), Sassari, 20-22 September 2016.

  7. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    NASA Astrophysics Data System (ADS)

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  8. Variability in Soil Properties at Different Spatial Scales (1 m to 1 km) in a Deciduous Forest Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten Jr, Charles T; Kang, S.; Brice, Deanne Jane

    2007-01-01

    The purpose of this research was to test the hypothesis that variability in 11 soil properties, related to soil texture and soil C and N, would increase from small (1 m) to large (1 km) spatial scales in a temperate, mixed-hardwood forest ecosystem in east Tennessee, USA. The results were somewhat surprising and indicated that a fundamental assumption in geospatial analysis, namely that variability increases with increasing spatial scale, did not apply for at least five of the 11 soil properties measured over a 0.5-km2 area. Composite mineral soil samples (15 cm deep) were collected at 1, 5, 10, 50,more » 250, and 500 m distances from a center point along transects in a north, south, east, and westerly direction. A null hypothesis of equal variance at different spatial scales was rejected (P{le}0.05) for mineral soil C concentration, silt content, and the C-to-N ratios in particulate organic matter (POM), mineral-associated organic matter (MOM), and whole surface soil. Results from different tests of spatial variation, based on coefficients of variation or a Mantel test, led to similar conclusions about measurement variability and geographic distance for eight of the 11 variables examined. Measurements of mineral soil C and N concentrations, C concentrations in MOM, extractable soil NH{sub 4}-N, and clay contents were just as variable at smaller scales (1-10 m) as they were at larger scales (50-500 m). On the other hand, measurement variation in mineral soil C-to-N ratios, MOM C-to-N ratios, and the fraction of soil C in POM clearly increased from smaller to larger spatial scales. With the exception of extractable soil NH4-N, measured soil properties in the forest ecosystem could be estimated (with 95% confidence) to within 15% of their true mean with a relatively modest number of sampling points (n{le}25). For some variables, scaling up variation from smaller to larger spatial domains within the ecosystem could be relatively easy because small-scale variation may be indicative of variation at larger scales.« less

  9. REMOVAL OF RADIONUCLIDES BY ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetics promises to be an innovative treatment process for in-situ treatment of soils and groundwater contaminated with heavy metals and radionuclides. Electrokinetics refers to the movement of ionic liquids and charged particles relative to one another under the action ...

  10. Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation

    PubMed Central

    Song, Genxin; Zhang, Jing; Wang, Ke

    2014-01-01

    In order to explore the selection of the best auxiliary variables (BAVs) when using the Cokriging method for soil attribute interpolation, this paper investigated the selection of BAVs from terrain parameters, soil trace elements, and soil nutrient attributes when applying Cokriging interpolation to soil nutrients (organic matter, total N, available P, and available K). In total, 670 soil samples were collected in Fuyang, and the nutrient and trace element attributes of the soil samples were determined. Based on the spatial autocorrelation of soil attributes, the Digital Elevation Model (DEM) data for Fuyang was combined to explore the coordinate relationship among terrain parameters, trace elements, and soil nutrient attributes. Variables with a high correlation to soil nutrient attributes were selected as BAVs for Cokriging interpolation of soil nutrients, and variables with poor correlation were selected as poor auxiliary variables (PAVs). The results of Cokriging interpolations using BAVs and PAVs were then compared. The results indicated that Cokriging interpolation with BAVs yielded more accurate results than Cokriging interpolation with PAVs (the mean absolute error of BAV interpolation results for organic matter, total N, available P, and available K were 0.020, 0.002, 7.616, and 12.4702, respectively, and the mean absolute error of PAV interpolation results were 0.052, 0.037, 15.619, and 0.037, respectively). The results indicated that Cokriging interpolation with BAVs can significantly improve the accuracy of Cokriging interpolation for soil nutrient attributes. This study provides meaningful guidance and reference for the selection of auxiliary parameters for the application of Cokriging interpolation to soil nutrient attributes. PMID:24927129

  11. Fatty acid methyl ester analysis to identify sources of soil in surface water.

    PubMed

    Banowetz, Gary M; Whittaker, Gerald W; Dierksen, Karen P; Azevedo, Mark D; Kennedy, Ann C; Griffith, Stephen M; Steiner, Jeffrey J

    2006-01-01

    Efforts to improve land-use practices to prevent contamination of surface waters with soil are limited by an inability to identify the primary sources of soil present in these waters. We evaluated the utility of fatty acid methyl ester (FAME) profiles of dry reference soils for multivariate statistical classification of soils collected from surface waters adjacent to agricultural production fields and a wooded riparian zone. Trials that compared approaches to concentrate soil from surface water showed that aluminum sulfate precipitation provided comparable yields to that obtained by vacuum filtration and was more suitable for handling large numbers of samples. Fatty acid methyl ester profiles were developed from reference soils collected from contrasting land uses in different seasons to determine whether specific fatty acids would consistently serve as variables in multivariate statistical analyses to permit reliable classification of soils. We used a Bayesian method and an independent iterative process to select appropriate fatty acids and found that variable selection was strongly impacted by the season during which soil was collected. The apparent seasonal variation in the occurrence of marker fatty acids in FAME profiles from reference soils prevented preparation of a standardized set of variables. Nevertheless, accurate classification of soil in surface water was achieved utilizing fatty acid variables identified in seasonally matched reference soils. Correlation analysis of entire chromatograms and subsequent discriminant analyses utilizing a restricted number of fatty acid variables showed that FAME profiles of soils exposed to the aquatic environment still had utility for classification at least 1 wk after submersion.

  12. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    PubMed

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.

  13. Environmental stochasticity controls soil erosion variability

    PubMed Central

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-01-01

    Understanding soil erosion by water is essential for a range of research areas but the predictive skill of prognostic models has been repeatedly questioned because of scale limitations of empirical data and the high variability of soil loss across space and time scales. Improved understanding of the underlying processes and their interactions are needed to infer scaling properties of soil loss and better inform predictive methods. This study uses data from multiple environments to highlight temporal-scale dependency of soil loss: erosion variability decreases at larger scales but the reduction rate varies with environment. The reduction of variability of the geomorphic response is attributed to a ‘compensation effect’: temporal alternation of events that exhibit either source-limited or transport-limited regimes. The rate of reduction is related to environment stochasticity and a novel index is derived to reflect the level of variability of intra- and inter-event hydrometeorologic conditions. A higher stochasticity index implies a larger reduction of soil loss variability (enhanced predictability at the aggregated temporal scales) with respect to the mean hydrologic forcing, offering a promising indicator for estimating the degree of uncertainty of erosion assessments. PMID:26925542

  14. Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content

    NASA Astrophysics Data System (ADS)

    Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar

    2014-08-01

    As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.

  15. Small-scale spatial variability of soil microbial community composition and functional diversity in a mixed forest

    NASA Astrophysics Data System (ADS)

    Wang, Qiufeng; Tian, Jing; Yu, Guirui

    2014-05-01

    Patterns in the spatial distribution of organisms provide important information about mechanisms that regulate the diversity and complexity of soil ecosystems. Therefore, information on spatial distribution of microbial community composition and functional diversity is urgently necessary. The spatial variability on a 26×36 m plot and vertical distribution (0-10 cm and 10-20 cm) of soil microbial community composition and functional diversity were studied in a natural broad-leaved Korean pine (Pinus koraiensis) mixed forest soil in Changbai Mountain. The phospholipid fatty acid (PLFA) pattern was used to characterize the soil microbial community composition and was compared with the community substrate utilization pattern using Biolog. Bacterial biomass dominated and showed higher variability than fungal biomass at all scales examined. The microbial biomass decreased with soil depths increased and showed less variability in lower 10-20 cm soil layer. The Shannon-Weaver index value for microbial functional diversity showed higher variability in upper 0-10 cm than lower 10-20 cm soil layer. Carbohydrates, carboxylic acids, polymers and amino acids are the main carbon sources possessing higher utilization efficiency or utilization intensity. At the same time, the four carbon source types contributed to the differentiation of soil microbial communities. This study suggests the higher diversity and complexity for this mix forest ecosystem. To determine the driving factors that affect this spatial variability of microorganism is the next step for our study.

  16. Fe(III)-EDDHA and -EDDHMA sorption on Ca-montmorillonite, ferrihydrite, and peat.

    PubMed

    Hernández-Apaolaza, L; Lucena, J J

    2001-11-01

    The effectiveness of Fe chelates as Fe sources and carriers in soil can be severely limited by the adsorption of Fe chelates or chelating agents in the solid phase. To study this phenomenon, well-characterized peat, Ca-montmorillonite, and ferrihydrite were used as model compounds, and the adsorption of Fe-EDDHA and Fe-EDDHMA chelates were studied. Sorption isotherms for the meso and racemic isomers of these chelates on the soil materials are described. The variability of sorption with pH in peat and ferrihydrite was also determined because both have variable surface charge at different pH values. In montmorillonite, at low concentrations, the retention of Fe from the Fe-EDDHMA chelate is greater than the one of the Fe-EDDHA chelate. As well as the concentration increased, the inverse situation occurs. The behavior of both meso and racemic isomers of chelates in contact with Ca-montmorillonite is similar. The Fe-meso-EDDHA isomer was highly adsorbed on ferrihydrite, but the racemic isomer is not significantly retained by this oxide. For Fe-EDDHMA isomers, the racemic isomer was more retained by the oxide, but a small sorption of the racemic isomer was also observed. Results suggest that Fe-EDDHA chelates were more retained in peat than Fe-EDDHMA chelates. The most retained isomer of Fe-EDDHA was the meso isomer. For Fe-EDDHMA, the adsorption was very low for both racemic and meso isomers.

  17. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate.

    PubMed

    Hiemstra, Tjisse; Mia, Shamim; Duhaut, Pierre-Benoît; Molleman, Bastiaan

    2013-08-20

    Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application of biochar, potentially creating Darks Earths or Terra Preta soils. A surface complexation approach has been developed that aims to describe the competitive behavior of natural organic matter (NOM) in soil as well as model systems. Modeling points unexpectedly to a strong change of the molecular conformation of humic acid (HA) with a predominant adsorption in the Stern layer domain at low NOM loading. In soil, mineral oxide surfaces remain efficiently loaded by mineral-protected organic carbon (OC), equivalent with a layer thickness of ≥ ~0.5 nm that represents at least 0.1-1.0% OC, while surface-associated OC may be even three times higher. In natural systems, surface complexation modeling should account for this pervasive NOM coverage. With our charge distribution model for NOM (NOM-CD), the pH-dependent oxyanion competition of the organo-mineral oxide fraction can be described. For pyrogenic HA, a more than 10-fold increase in dissolved phosphate is predicted at long-term applications of biochar or black carbon.

  18. Spatiotemporal Variability of Soil Hydraulic Properties from Field Data and Remote Sensing in the Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Becker, R.; Gebremichael, M.; Marker, M.

    2015-12-01

    Soil moisture is one of the main input variables for hydrological models. However due to the high spatial and temporal variability of soil properties it is often difficult to obtain accurate soil information at the required resolution. The new satellite SMAP promises to deliver soil moisture information at higher resolutions and could therefore improve the results of hydrological models. Nevertheless it still has to be investigated how precisely the SMAP soil moisture data can be used to delineate rainfall-runoff generation processes and if SMAP imagery can significantly improve the results of surface runoff models. Important parameters to understand the spatiotemporal distribution of soil humidity are infiltration and hydraulic conductivities apart from soil texture and macrostructure. During the SMAPVEX15-field campaign data on hydraulic conductivity and infiltration rates is collected in the Walnut Gulch Experimental Watershed (WGEW) in Southeastern Arizona in order to analyze the spatiotemporal variability of soil hydraulic properties. A Compact Constant Head Permeameter is used for in situ measurements of saturated hydraulic conductivity within the soil layers and a Hood Infiltrometer is used to determine infiltration rates at the undisturbed soil surface. Sampling sites were adjacent to the USDA-ARS meteorological and soil moisture measuring sites in the WGEW to take advantage of the long-term database of soil and climate data. Furthermore a sample plot of 3x3km was selected, where the spatial variability of soil hydraulic properties within a SMAP footprint was investigated. The results of the ground measurement based analysis are then compared with the remote sensing data derived from SMAP and aircraft-based microwave data to determine how well these spatiotemporal variations are captured by the remotely sensed data with the final goal of evaluating the use of future satellite soil moisture products for the improvement of rainfall runoff models. The results reveal several interesting features on the spatiotemporal variability of soil moisture at multiple scales, and the capabilities and limitations of remote sensing derived products in reproducing them.

  19. Review of Variable Generation Integration Charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, K.; Fink, S.; Buckley, M.

    2013-03-01

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviewsmore » the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.« less

  20. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    PubMed

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Investigating local controls on soil moisture temporal stability using an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry

    2013-04-01

    A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).

  2. Can we quantify the variability of soil moisture across scales using Electromagnetic Induction ?

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan

    2017-04-01

    Soil moisture is a key variable in many natural processes. Therefore, technological and methodological advancements are of primary importance to provide accurate measurements of spatial and temporal variability of soil moisture. In that context, ElectroMagnetic Induction (EMI) instruments are often cited as a hydrogeophysical method with a large potential, through the measurement of the soil apparent electrical conductivity (ECa). To our knowledge, no studies have evaluated the potential of EMI to characterize variability of soil moisture on both agricultural and forested land covers in a (sub-) tropical environment. These differences in land use could be critical as differences in temperature, transpiration and root water uptake can have significant effect, notably on the electrical conductivity of the pore water. In this study, we used an EMI instrument to carry out a first assessment of the impact of deforestation and agriculture on soil moisture in a subtropical region in the south of Brazil. We selected slopes of different topographies (gentle vs. steep) and contrasting land uses (natural forest vs. agriculture) within two nearby catchments. At selected locations on the slopes, we measured simultaneously ECa using EMI and a depth-weighted average of the soil moisture using TDR probes installed within soil pits. We found that the temporal variability of the soil moisture could not be measured accurately with EMI, probably because of important temporal variations of the pore water electrical conductivity and the relatively small temporal variations in soil moisture content. However, we found that its spatial variability could be effectively quantified using a non-linear relationship, for both intra- and inter-slopes variations. Within slopes, the ECa could explained between 67 and 90% of the variability of the soil moisture, while a single non-linear model for all the slopes could explain 55% of the soil moisture variability. We eventually showed that combining a specific relationship for the most degraded slope (steep slope under agriculture) and a single relationship for all the other slopes, both non-linear relations, yielded the best results with an overall explained variance of 90%. We applied the latter model to measurements of the ECa along transects at the different slopes, which allowed us to highlight the strong control of topography on the soil moisture content. We also observed a significant impact of the land use with higher moisture content on the agricultural slopes, probably due to a reduced evapotranspiration.

  3. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    NASA Astrophysics Data System (ADS)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon (SOC), as essential input variable, was predicted by measured soil samples and associated to STD of the upper 30 cm. The comprehensive and high-resolution (4x4 m) soil profile information (up to 2 m soil depth) were then used to initialise a soil process model (Carbon and Nitrogen Dynamics - CANDY) for soil functional modelling (daily steps of matter fluxes, soil temperature and water balances). Our study was conducted on a practical field (~32,000 m²) of an agricultural farm in Central Germany with Chernozem soils under arid conditions (average rainfall < 550 mm). This soil region is known to have differences in soil structure mainly occurring within the subsoil, since topsoil conditions are described as homogenous. The modelled soil functions considered local climate information and practical farming activities. Results show, as expected, distinguished functional variability, both on spatial and temporal resolution for subsoil evident structures, e.g. visible differences for available water capacity within 0-100 cm but homogenous conditions for the topsoil.

  4. The past, present, and future of soils and human health studies

    USDA-ARS?s Scientific Manuscript database

    The idea that human health is tied to the soil is not a new one. As far back as approximately 1400 B.C. the Bible depicts Moses as understanding that fertile soil was essential to the well-being of his people. While exploring Canaan, Moses charged the men he sent to evaluate the fertility of the soi...

  5. Using DNA-labelled nano- and microparticles to track particle transport in the environment

    NASA Astrophysics Data System (ADS)

    McNew, Coy; Wang, Chaozi; Dahlke, Helen; Lyon, Steve; Walter, Todd

    2017-04-01

    By utilizing bio-molecular nanotechnology developed for nano-medicines and drug delivery, we are able to produce DNA-labelled nano- and microparticle tracers for use in a myriad of environmental systems. The use of custom sequenced DNA allows for the fabrication of an enormous number of uniquely labelled tracers with identical transport properties (approximately 1.61 x 1060 unique sequences), each independently quantifiable, that can be applied simultaneously in any hydrologic system. By controlling the fabrication procedure to produce particles of custom size and charge, we are able to tag each size-charge combination uniquely in order to directly probe the effect of these variables on the transport properties of the particles. Here we present our methods for fabrication, extraction, and analysis of the DNA nano- and microparticle tracers, along with results from several successful applications of the tracers, including transport and retention analysis at the lab, continuum, and field scales. To date, our DNA-labelled nano- and microparticle tracers have proved useful in surface and subsurface water applications, soil retention, and even subglacial flow pathways. The range of potential applications continue to prove nearly limitless.

  6. Method and apparatus for smart battery charging including a plurality of controllers each monitoring input variables

    DOEpatents

    Hammerstrom, Donald J.

    2013-10-15

    A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.

  7. Effects of spatial variability of soil hydraulic properties on water dynamics

    NASA Astrophysics Data System (ADS)

    Gumiere, Silvio Jose; Caron, Jean; Périard, Yann; Lafond, Jonathan

    2013-04-01

    Soil hydraulic properties may present spatial variability and dependence at the scale of watersheds or fields even in man-made single soil structures, such as cranberry fields. The saturated hydraulic conductivity (Ksat) and soil moisture curves were measured at two depths for three cranberry fields (about 2 ha) at three different sites near Québec city, Canada. Two of the three studied fields indicate strong spatial dependence for Ksat values and soil moisture curves both in horizontal and vertical directions. In the summer of 2012, the three fields were equipped with 55 tensiometers installed at a depth of 0.10 m in a regular grid. About 20 mm of irrigation water were applied uniformly by aspersion to the fields, raising soil water content to near saturation condition. Soil water tension was measured once every hour during seven days. Geostatistical techniques such as co-kriging and cross-correlograms estimations were used to investigate the spatial dependence between variables. The results show that soil tension varied faster in high Ksat zones than in low Ksatones in the cranberry fields. These results indicate that soil water dynamic is strongly affected by the variability of saturated soil hydraulic conductivity, even in a supposed homogenous anthropogenic soil. This information may have a strong impact in irrigation management and subsurface drainage efficiency as well as other water conservation issues. Future work will involve 3D numerical modeling of the field water dynamics with HYDRUS software. The anticipated outcome will provide valuable information for the understanding of the effect of spatial variability of soil hydraulic properties on soil water dynamics and its relationship with crop production and water conservation.

  8. Progressing towards more quantitative analytical pyrolysis of soil organic matter using molecular beam mass spectroscopy of whole soils and added standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddix, Michelle L.; Magrini-Bair, Kim; Evans, Robert J.

    Soil organic matter (SOM) is extremely complex. It is composed of hundreds of different organic substances and it has been difficult to quantify these diverse substances in a dynamic-ecosystem functioning standpoint. Analytical pyrolysis has been used to compare chemical differences between soils, but its ability to measure the absolute amount of a specific compound in the soil is still in question. Our objective was to assess whether utilizing pyrolysis-molecular beam mass spectroscopy (py-MBMS) to define the signature of known reference compounds (adenine, indole, palmitic acid, etc.) and biological samples (chitin, fungi, cellulose, etc.) separately and when added to whole soilsmore » it was possible to make py-MBMS more quantitative. Reference compounds, spanning a wide variety of compound categories, and biological samples, expected to be present in SOM, were added to three soils from Colorado, Ohio, and Massachusetts that have varying total C, % clay, and clay type. Py-MBMS, a rapid analysis technique originally developed to analyze complex biomolecules, flash pyrolyzes soil organic matter to form products that are often considered characteristic of the original molecular structure. Samples were pyrolyzed at 550 degrees C by py-MBMS. All samples were weighed and %C and %N determined both before and after pyrolysis to evaluate mass loss, C loss, and N loss for the samples.An average relationship of r2 = 0.76 (P = 0.005) was found for the amount of cellulose added to soil at 25, 50, and 100% of soil C relative to the ion intensity of select mass/charge of the compound.There was a relationship of r2 = 0.93 (P < 0.001) for the amount of indole added to soil at 25, 50, and 100% of soil C and the ion intensity of the associated mass variables (mass/charge). Comparing spectra of pure compounds with the spectra of the compounds added to soil and isolated clay showed that interference could occur based on soil type and compound with the Massachusetts soil with high C (55.8 g C kg-1) and low % clay (5.4%) having the least interference and the Colorado soil with low C (14.6 g C kg-1) and a moderate smectite clay content of 14% having the greatest soil interference. Due to soil interference from clay type and content and varying optimum temperatures of pyrolysis for different compounds it is unlikely that analytical pyrolysis can be quantitative for all types of compounds. Select compound categories such as carbohydrates have the potential to be quantified in soil with analytical pyrolysis due to the fact that they: 1) almost fully pyrolyzed, 2) were represented by a limited number of m/z, and 3) had a strong relationship with the amount added and the total ion intensity produced. The three different soils utilized in this study had similar proportions of C pyrolyzed in the whole soil (54-57%) despite differences in %C and %clay between the soils. Mid-infrared spectroscopic analyses of the soil before and after pyrolysis showed that pyrolysis resulted in reductions in the 3400, 2930-2870, 1660 and 1430 cm-1 bands. These bands are primarily representative of O-H and N-H bonds, C-H stretch, and ..delta.. (CH2) in polysaccharides/lipid and are associated with mineralizable SOM. The incorporation of standards into routine analytical pyrolysis allowed us to assess the quantitative potential of py-MBMS along with the effect of the mineral matrix, which we believe is applicable to all forms of analytical pyrolysis.« less

  9. Spatial variability structure of soil CO2 emission and soil physical and chemical properties characterized by fractal dimension in sugarcane areas

    NASA Astrophysics Data System (ADS)

    Bicalho, E. S.; Teixeira, D. B.; Panosso, A. R.; Perillo, L. I.; Iamaguti, J. L.; Pereira, G. T.; La Scala, N., Jr.

    2012-04-01

    Soil CO2 emission (FCO2) is influenced by chemical, physical and biological factors that affect the production of CO2 in the soil and its transport to the atmosphere, varying in time and space depending on environmental conditions, including the management of agricultural area. The aim of this study was to investigate the structure of spatial variability of FCO2 and soil properties by using fractal dimension (DF), derived from isotropic variograms at different scales, and construction of fractograms. The experimental area consisted of a regular grid of 60 × 60 m on sugarcane area under green management, containing 141 points spaced at minimum distances ranging from 0.5 to 10 m. Soil CO2 emission, soil temperature and soil moisture were evaluated over a period of 7 days, and soil chemical and physical properties were determined by sampling at a depth of 0.0 to 0.1 m. FCO2 showed an overall average of 1.51 µmol m-2 s-1, correlated significantly (p < 0.05) with soil physical factors such as soil bulk density, air-filled pore space, macroporosity and microporosity. Significant DF values were obtained in the characterization of FCO2 in medium and large scales (from 20 m). Variations in DF with the scale, which is the fractogram, indicate that the structure of FCO2 variability is similar to that observed for the soil temperature and total pore volume, and reverse for the other soil properties, except for macroporosity, sand content, soil organic matter, carbon stock, C/N ratio and CEC, which fractograms were not significantly correlated to the FCO2 fractogram. Thus, the structure of spatial variability for most soil properties, characterized by fractogram, presents a significant relationship with the structure of spatial variability of FCO2, generally with similar or dissimilar behavior, indicating the possibility of using the fractogram as tool to better observe the behavior of the spatial dependence of the variables along the scale.

  10. Key indicator tools for shallow slope failure assessment using soil chemical property signatures and soil colour variables.

    PubMed

    Othman, Rashidi; Hasni, Shah Irani; Baharuddin, Zainul Mukrim; Hashim, Khairusy Syakirin Has-Yun; Mahamod, Lukman Hakim

    2017-10-01

    Slope failure has become a major concern in Malaysia due to the rapid development and urbanisation in the country. It poses severe threats to any highway construction industry, residential areas, natural resources and tourism activities. The extent of damages that resulted from this catastrophe can be lessened if a long-term early warning system to predict landslide prone areas is implemented. Thus, this study aims to characterise the relationship between Oxisols properties and soil colour variables to be manipulated as key indicators to forecast shallow slope failure. The concentration of each soil property in slope soil was evaluated from two different localities that consist of 120 soil samples from stable and unstable slopes located along the North-South Highway (PLUS) and East-West Highway (LPT). Analysis of variance established highly significant difference (P < 0.0001) between the locations, the total organic carbon (TOC), soil pH, cation exchange capacity (CEC), soil texture, soil chromaticity and all combinations of interactions. The overall CIELAB analysis leads to the conclusion that the CIELAB variables lightness L*, c* (Chroma) and h* (Hue) provide the most information about soil colour and other related soil properties. With regard to the relationship between colour variables and soil properties, the analysis detected that soil texture, organic carbon, iron oxide and aluminium concentration were the key factors that strongly correlate with soil colour variables at the studied area. Indicators that could be used to predict shallow slope failure were high value of L*(62), low values of c* (20) and h* (66), low concentration of iron (53 mg kg -1 ) and aluminium oxide (37 mg kg -1 ), low soil TOC (0.5%), low CEC (3.6 cmol/kg), slightly acidic soil pH (4.9), high amount of sand fraction (68%) and low amount of clay fraction (20%).

  11. Pedological memory in forest soil development

    Treesearch

    Jonathan D. Phillips; Daniel A. Marion

    2004-01-01

    Individual trees may have significant impacts on soil morphology. If these impacts are non-random such that some microsites are repeatedly preferentially affected by trees, complex local spatial variability of soils would result. A model of self-reinforcing pedologic influences of trees (SRPIT) is proposed to explain patterns of soil variability in the Ouachita...

  12. Spatio-Temporal Analysis of Surface Soil Moisture in Evaluating Ground Truth Monitoring Sites for Remotely Sensed Observations

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is an intrinsic state variable that varies considerably in space and time. Although soil moisture is highly variable, repeated measurements of soil moisture at the field or small watershed scale can often reveal certain locations as being temporally stable and representative of the are...

  13. Vegetation and environmental controls on soil respiration in a pinon-juniper woodland

    Treesearch

    Sandra A. White

    2008-01-01

    Soil respiration (RS) responds to changes in plant and microbial activity and environmental conditions. In arid ecosystems of the southwestern USA, soil moisture exhibits large fluctuations because annual and seasonal precipitation inputs are highly variable, with increased variability expected in the future. Patterns of soil moisture, and periodic severe drought, are...

  14. State of the Art in Large-Scale Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  15. Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method

    NASA Astrophysics Data System (ADS)

    Mansuy, N. R.; Paré, D.; Thiffault, E.

    2015-12-01

    Large-scale mapping of soil properties is increasingly important for environmental resource management. Whileforested areas play critical environmental roles at local and global scales, forest soil maps are typically at lowresolution.The objective of this study was to generate continuous national maps of selected soil variables (C, N andsoil texture) for the Canadian managed forest landbase at 250 m resolution. We produced these maps using thekNN method with a training dataset of 538 ground-plots fromthe National Forest Inventory (NFI) across Canada,and 18 environmental predictor variables. The best predictor variables were selected (7 topographic and 5 climaticvariables) using the Least Absolute Shrinkage and Selection Operator method. On average, for all soil variables,topographic predictors explained 37% of the total variance versus 64% for the climatic predictors. Therelative root mean square error (RMSE%) calculated with the leave-one-out cross-validation method gave valuesranging between 22% and 99%, depending on the soil variables tested. RMSE values b 40% can be considered agood imputation in light of the low density of points used in this study. The study demonstrates strong capabilitiesfor mapping forest soil properties at 250m resolution, compared with the current Soil Landscape of CanadaSystem, which is largely oriented towards the agricultural landbase. The methodology used here can potentiallycontribute to the national and international need for spatially explicit soil information in resource managementscience.

  16. Stochastical analysis of surfactant-enhanced remediation of denser-than-water nonaqueous phase liquid (DNAPL)-contaminated soils.

    PubMed

    Zhang, Renduo; Wood, A Lynn; Enfield, Carl G; Jeong, Seung-Woo

    2003-01-01

    Stochastical analysis was performed to assess the effect of soil spatial variability and heterogeneity on the recovery of denser-than-water nonaqueous phase liquids (DNAPL) during the process of surfactant-enhanced remediation. UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model, was used to simulate water flow and chemical transport processes in heterogeneous soils. Soil spatial variability and heterogeneity were accounted for by considering the soil permeability as a spatial random variable and a geostatistical method was used to generate random distributions of the permeability. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL transport in heterogeneous media and stochastical analysis was conducted based on the simulated results. From the analysis, an exponential relationship between average DNAPL recovery and soil heterogeneity (defined as the standard deviation of log of permeability) was established with a coefficient of determination (r2) of 0.991, which indicated that DNAPL recovery decreased exponentially with increasing soil heterogeneity. Temporal and spatial distributions of relative saturations in the water phase, DNAPL, and microemulsion in heterogeneous soils were compared with those in homogeneous soils and related to soil heterogeneity. Cleanup time and uncertainty to determine DNAPL distributions in heterogeneous soils were also quantified. The study would provide useful information to design strategies for the characterization and remediation of nonaqueous phase liquid-contaminated soils with spatial variability and heterogeneity.

  17. Characterization of soil spatial variability for site-specific management using soil electrical conductivity and other remotely sensed data

    NASA Astrophysics Data System (ADS)

    Bang, Jisu

    Field-scale characterization of soil spatial variability using remote sensing technology has potential for achieving the successful implementation of site-specific management (SSM). The objectives of this study were to: (i) examine the spatial relationships between apparent soil electrical conductivity (EC a) and soil chemical and physical properties to determine if EC a could be useful to characterize soil properties related to crop productivity in the Coastal Plain and Piedmont of North Carolina; (ii) evaluate the effects of in-situ soil moisture variation on ECa mapping as a basis for characterization of soil spatial variability and as a data layer in cluster analysis as a means of delineating sampling zones; (iii) evaluate clustering approaches using different variable sets for management zone delineation to characterize spatial variability in soil nutrient levels and crop yields. Studies were conducted in two fields in the Piedmont and three fields in the Coastal Plain of North Carolina. Spatial measurements of ECa via electromagnetic induction (EMI) were compared with soil chemical parameters (extractable P, K, and micronutrients; pH, cation exchange capacity [CEC], humic matter or soil organic matter; and physical parameters (percentage sand, silt, and clay; and plant-available water [PAW] content; bulk density; cone index; saturated hydraulic conductivity [Ksat] in one of the coastal plain fields) using correlation analysis across fields. We also collected ECa measurements in one coastal plain field on four days with significantly different naturally occurring soil moisture conditions measured in five increments to 0.75 m using profiling time-domain reflectometry probes to evaluate the temporal variability of ECa associated with changes in in-situ soil moisture content. Nonhierarchical k-means cluster analysis using sensor-based field attributes including vertical ECa, near-infrared (NIR) radiance of bare-soil from an aerial color infrared (CIR) image, elevation, slope, and their combinations was performed to delineate management zones. The strengths and signs of the correlations between ECa and measured soil properties varied among fields. Few strong direct correlations were found between ECa and the soil chemical and physical properties studied (r2 < 0.50), but correlations improved considerably when zone mean ECa and zone means of selected soil properties among ECa zones were compared. The results suggested that field-scale ECa survey is not able to directly predict soil nutrient levels at any specific location, but could delimit distinct zones of soil condition among which soil nutrient levels differ, providing an effective basis for soil sampling on a zone basis. (Abstract shortened by UMI.)

  18. Variability in urban soils influences the health and growth of native tree seedlings

    Treesearch

    Clara C. Pregitzer; Nancy F. Sonti; Richard A. Hallett

    2016-01-01

    Reforesting degraded urban landscapes is important due to the many benefits urban forests provide. Urban soils are highly variable, yet little is known about how this variability in urban soils influences tree seedling performance and survival. We conducted a greenhouse study to assess health, growth, and survival of four native tree species growing in native glacial...

  19. Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria

    USGS Publications Warehouse

    Thomas, Matthew A.; Mirus, Benjamin B.; Collins, Brian D.; Lu, Ning; Godt, Jonathan W.

    2018-01-01

    Rainfall-induced shallow landsliding is a persistent hazard to human life and property. Despite the observed connection between infiltration through the unsaturated zone and shallow landslide initiation, there is considerable uncertainty in how estimates of unsaturated soil-water retention properties affect slope stability assessment. This source of uncertainty is critical to evaluating the utility of physics-based hydrologic modeling as a tool for landslide early warning. We employ a numerical model of variably saturated groundwater flow parameterized with an ensemble of texture-, laboratory-, and field-based estimates of soil-water retention properties for an extensively monitored landslide-prone site in the San Francisco Bay Area, CA, USA. Simulations of soil-water content, pore-water pressure, and the resultant factor of safety show considerable variability across and within these different parameter estimation techniques. In particular, we demonstrate that with the same permeability structure imposed across all simulations, the variability in soil-water retention properties strongly influences predictions of positive pore-water pressure coincident with widespread shallow landsliding. We also find that the ensemble of soil-water retention properties imposes an order-of-magnitude and nearly two-fold variability in seasonal and event-scale landslide susceptibility, respectively. Despite the reduced factor of safety uncertainty during wet conditions, parameters that control the dry end of the soil-water retention function markedly impact the ability of a hydrologic model to capture soil-water content dynamics observed in the field. These results suggest that variability in soil-water retention properties should be considered for objective physics-based simulation of landslide early warning criteria.

  20. Soil moisture and soil temperature variability among three plant communities in a High Arctic Lake Basin

    NASA Astrophysics Data System (ADS)

    Davis, M. L.; Konkel, J.; Welker, J. M.; Schaeffer, S. M.

    2017-12-01

    Soil moisture and soil temperature are critical to plant community distribution and soil carbon cycle processes in High Arctic tundra. As environmental drivers of soil biochemical processes, the predictability of soil moisture and soil temperature by vegetation zone in High Arctic landscapes has significant implications for the use of satellite imagery and vegetation distribution maps to estimate of soil gas flux rates. During the 2017 growing season, we monitored soil moisture and soil temperature weekly at 48 sites in dry tundra, moist tundra, and wet grassland vegetation zones in a High Arctic lake basin. Soil temperature in all three communities reflected fluctuations in air temperature throughout the season. Mean soil temperature was highest in the dry tundra community at 10.5±0.6ºC, however, did not differ between moist tundra and wet grassland communities (2.7±0.6 and 3.1±0.5ºC, respectively). Mean volumetric soil moisture differed significantly among all three plant communities with the lowest and highest soil moisture measured in the dry tundra and wet grassland (30±1.2 and 65±2.7%), respectively. For all three communities, soil moisture was highest during the early season snow melt. Soil moisture in wet grassland remained high with no significant change throughout the season, while significant drying occurred in dry tundra. The most significant change in soil moisture was measured in moist tundra, ranging from 61 to 35%. Our results show different gradients in soil moisture variability within each plant community where: 1) soil moisture was lowest in dry tundra with little change, 2) highest in wet grassland with negligible change, and 3) variable in moist tundra which slowly dried but remained moist. Consistently high soil moisture in wet grassland restricts this plant community to areas with no significant drying during summer. The moist tundra occupies the intermediary areas between wet grassland and dry tundra and experiences the widest range of soil moisture variability. As climate projections predict wetter summers in the High Arctic, expansion of areas with seasonally inundated soils and increased soil moisture variability could result in an expansion of wet grassland and moist tundra communities with a commensurate decrease in dry tundra area.

  1. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Embong, Zaidi, E-mail: zaidi@uthm.edu.my; Research Centre for Soft Soils; Johar, Saffuwan

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangaumore » soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.« less

  2. Comparing different approaches - data mining, geostatistic, and deterministic pedology - to assess the frequency of WRB Reference Soil Groups in the Italian soil regions

    NASA Astrophysics Data System (ADS)

    Lorenzetti, Romina; Barbetti, Roberto; L'Abate, Giovanni; Fantappiè, Maria; Costantini, Edoardo A. C.

    2013-04-01

    Estimating frequency of soil classes in map unit is always affected by some degree of uncertainty, especially at small scales, with a larger generalization. The aim of this study was to compare different possible approaches - data mining, geostatistic, deterministic pedology - to assess the frequency of WRB Reference Soil Groups (RSG) in the major Italian soil regions. In the soil map of Italy (Costantini et al., 2012), a list of the first five RSG was reported in each major 10 soil regions. The soil map was produced using the national soil geodatabase, which stored 22,015 analyzed and classified pedons, 1,413 soil typological unit (STU) and a set of auxiliary variables (lithology, land-use, DEM). Other variables were added, to better consider the influence of soil forming factors (slope, soil aridity index, carbon stock, soil inorganic carbon content, clay, sand, geography of soil regions and soil systems) and a grid at 1 km mesh was set up. The traditional deterministic pedology assessed the STU frequency according to the expert judgment presence in every elementary landscape which formed the mapping unit. Different data mining techniques were firstly compared in their ability to predict RSG through auxiliary variables (neural networks, random forests, boosted tree, supported vector machine (SVM)). We selected SVM according to the result of a testing set. A SVM model is a representation of the examples as points in space, mapped so that examples of separate categories are divided by a clear gap that is as wide as possible. The geostatistic algorithm we used was an indicator collocated cokriging. The class values of the auxiliary variables, available at all the points of the grid, were transformed in indicator variables (values 0, 1). A principal component analysis allowed us to select the variables that were able to explain the largest variability, and to correlate each RSG with the first principal component, which explained the 51% of the total variability. The principal component was used as collocated variable. The results were as many probability maps as the estimated WRB classes. They were summed up in a unique map, with the most probable class at each pixel. The first five more frequent RSG resulting from the three methods were compared. The outcomes were validated with a subset of the 10% of the pedons, kept out before the elaborations. The error estimate was produced for each estimated RSG. The first results, obtained in one of the most widespread soil region (plains and low hills of central and southern Italy) showed that the first two frequency classes were the same for all the three methods. The deterministic method differed from the others at the third position, while the statistical methods inverted the third and fourth position. An advantage of the SVM was the possibility to use in the same elaboration numeric and categorical variable, without any previous transformation, which reduced the processing time. A Bayesian validation indicated that the SVM method was as reliable as the indicator collocated cokriging, and better than the deterministic pedological approach.

  3. Assessing Soil Organic C Stability at the Continental Scale: An Analysis of Soil C and Radiocarbon Profiles Across the NEON Sites

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Gallo, A.; Hatten, J. A.; Swanston, C.; McKnight, D. M.; Strahm, B. D.; Sanclements, M.

    2017-12-01

    Soil carbon stocks have become recognized as increasingly important in the context of climate change and global C cycle modeling. As modelers seek to identify key parameters affecting the size and stability of belowground C stocks, attention has been drawn to the mineral matrix and the soil physiochemical factors influenced by it. Though clay content has often been utilized as a convenient and key explanatory variable for soil C dynamics, its utility has recently come under scrutiny as new paradigms of soil organic matter stabilization have been developed. We utilized soil cores from a range of National Ecological Observatory Network (NEON) experimental plots to examine the influence of physicochemical parameters on soil C stocks and turnover, and their relative importance in comparison to climatic variables. Soils were cored at NEON sites, sampled by genetic horizon, and density separated into light fractions (particulate organics neither occluded within aggregates nor associated with mineral surfaces), occluded fractions (particulate organics occluded within aggregates), and heavy fractions (organics associated with mineral surfaces). Bulk soils and density fractions were measured for % C and radiocarbon abundance (as a measure of C stability). Carbon and radiocarbon abundances were examined among fractions and in the context of climatic variables (temperature, precipitation, elevation) and soil physiochemical variables (% clay and pH). No direct relationships between temperature and soil C or radiocarbon abundances were found. As a whole, soil radiocarbon abundance in density fractions decreased in the order of light>heavy>occluded, highlighting the importance of both surface sorption and aggregation to the preservation of organics. Radiocarbon abundance was correlated with pH, with variance also grouping by dominate vegetation type. Soil order was also identified as an important proxy variable for C and radiocarbon abundance. Preliminary results suggest that both integrative proxies as well as physicochemical properties may be needed to account for variation in soil C abundance and stability at the continental scale.

  4. Tactical Wheeled Vehicle Survivability: Results of Experiments to Quantify Aboveground Impulse

    DTIC Science & Technology

    2010-03-01

    in each testbed are pre- sented in Table 4.7. For all the clay soil experiments, the mean value of wet density was 121.2 lb/ft3, and the mean value...4.7. Summary of clay soil test series. Experiment Number Charge Position Avg Wet Density , lb/ft3 Avg Dry Density , lb/ft3 Avg Water... Clay soil ................................................................................................................................... 81

  5. On the temporal and spatial variability of near-surface soil moisture for the identification of representative in situ soil moisture monitoring stations

    USDA-ARS?s Scientific Manuscript database

    The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in-situ monitoring stations. Therefore, a standard methodology for selecting the most repre- sentative stations for the purpose of validating satellites and land surface ...

  6. Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics.

    PubMed

    Jafarnejadi, A R; Sayyad, Gh; Homaee, M; Davamei, A H

    2013-05-01

    Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high correlation between the consumption rate of P fertilizers and soil Cd content. Rotation type was likely the main effective factor on variations of the soil DTPA-extractable Cd contents in some parts (eastern part of study region) and could explain some Cd variation. Total Cd concentrations had significant correlation with the total neutralizing value (p < 0.01), available P (p < 0.01), cation exchange capacity (p < 0.05), and organic carbon (p < 0.05) variables. The DTPA-extractable Cd had significant correlation with OC (p < 0.01), pH, and clay content (p < 0.05). Therefore, consumption rate of the phosphate fertilizers and crop rotation are important factors on solubility and hence spatial variability of Cd content in agricultural soils.

  7. A Brief History of the use of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, James

    2017-04-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools and increased the amount and types of data that can be gathered with a single pass. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. The future should witness a greater use of multiple-frequency and multiple-coil EMI sensors and integration with other sensors to assess the spatial variability of soil properties. Data analysis will be improved with advanced processing and presentation systems and more sophisticated geostatistical modeling algorithms will be developed and used to interpolate EMI data, improve the resolution of subsurface features, and assess soil properties.

  8. Response to elevated CO2 in the temperate C3 grass Festuca arundinaceae across a wide range of soils

    PubMed Central

    Nord, Eric A.; Jaramillo, Raúl E.; Lynch, Jonathan P.

    2015-01-01

    Soils vary widely in mineral nutrient availability and physical characteristics, but the influence of this variability on plant responses to elevated CO2 remains poorly understood. As a first approximation of the effect of global soil variability on plant growth response to CO2, we evaluated the effect of CO2 on tall fescue (Festuca arundinacea) grown in soils representing 10 of the 12 global soil orders plus a high-fertility control. Plants were grown in small pots in continuously stirred reactor tanks in a greenhouse. Elevated CO2 (800 ppm) increased plant biomass in the high-fertility control and in two of the more fertile soils. Elevated CO2 had variable effects on foliar mineral concentration—nitrogen was not altered by elevated CO2, and phosphorus and potassium were only affected by CO2 in a small number of soils. While leaf photosynthesis was stimulated by elevated CO2 in six soils, canopy photosynthesis was not stimulated. Four principle components were identified; the first was associated with foliar minerals and soil clay, and the second with soil acidity and foliar manganese concentration. The third principle component was associated with gas exchange, and the fourth with plant biomass and soil minerals. Soils in which tall fescue did not respond to elevated CO2 account for 83% of global land area. These results show that variation in soil physical and chemical properties have important implications for plant responses to global change, and highlight the need to consider soil variability in models of vegetation response to global change. PMID:25774160

  9. Influence of tillage in soil penetration resistance variability in an olive orchard

    NASA Astrophysics Data System (ADS)

    López de Herrera, Juan; Herrero Tejedor, Tomas; Saa-Requejo, Antonio; Tarquis, Ana M.

    2015-04-01

    Soil attributes usually present a high degree of spatial variation due to a combination of physical, chemical, biological or climatic processes operating at different scales. The quantification and interpretation of such variability is a key issue for site-specific soil management (Brouder et al., 2001). The usual geostatistical approach studies soil variability by means of the semi-variograms. However, recently a multiscaling approach has been applied on the determination of the scaling data properties (Kravechenko et al., 1999; Caniego et al., 2005; Tarquis et al., 2008). This work focus in the multifractal analysis as a way to characterize the variability of field data in a case study of soil penetrometer resistance (SPR) in two olive orchards, one applying tillage for 20 years and the other one non. The field measurements and soil data were obtained at the village of Puebla de Almenara (Cuenca, Spain) (39o 47'42.37'N, 2o 49'29.23'W) with 869 m of elevation approximately. The characteristic of the soil at the surface is classified as clay loam texture according to Guidelines for soil description of FAO. The soil consists of clays and red silts with some clusters of limestone's and sands. Two transect data were collected from 128 points between the squared of the olive tree, tillage and no tillage area, for SPR readings with a sampling interval of 50 cm. In each sampling, readings were obtained from 0 cm till 20 cm of depth, with an interval of 5 cm. The multifractal spectrum for each area and depth was estimated showing a characteristic pattern and differentiating both treatments. References Brouder, S., Hofmann, B., Reetz, H.F., 2001. Evaluating spatial variability of soil parameters for input management. Better Crops 85, 8-11. Kravchenko, A.N., Boast, C.W., Bullock, D.G., 1999. Multifractal analysis of soil spatial variability. Agron. J. 91, 1033-1041. Caniego, F.J., R. Espejo, M.A. Martín, F. San José, 2005. Multifractal scaling of soil spatial variability. Ecological Modelling, 182, 291-303. Tarquis, A.M., N. Bird, M.C. Cartagena, A. Whitmore and Y. Pachepsky, 2008. Multiscale entropy-based analyses of soil transect data. Vadose Zone Journal, 7(2), 563-569.

  10. Comparison of Three Model Concepts for Streaming Potential in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Satenahalli, P.; Zimmermann, E.; Vereecken, H.

    2017-12-01

    Streaming potential is the electric potential generated by fluid flow in a charged porous medium. Although streaming potential in saturated conditions is well understood, there still is considerable debate about the adequate modelling of streaming potential signals in unsaturated soil because different concepts are available to estimate the effective excess charge in unsaturated conditions. In particular, some studies have relied on the volumetric excess charge, whereas others proposed to use the flux-averaged excess charge derived from the water retention or relative permeability function. The aim of this study is to compare measured and modelled streaming potential signals for two different flow experiments with sand. The first experiment is a primary gravity drainage of a long column equipped with non-polarizing electrodes and tensiometers, as presented in several previous studies. Expected differences between the three concepts for the effective excess charge are only moderate for this set-up. The second experiment is a primary drainage of a short soil column equipped with non-polarizing electrodes and tensiometers using applied pressure, where differences between the three concepts are expected to be larger. A comparison of the experimental results with a coupled model of streaming potential for 1D flow problems will provide insights in the ability of the three model concepts for effective excess charge to describe observed streaming potentials.

  11. The underlying processes of a soil mite metacommunity on a small scale.

    PubMed

    Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.

  12. The underlying processes of a soil mite metacommunity on a small scale

    PubMed Central

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906

  13. Exploring the spatial variability of soil properties in an Alfisol Catena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosemary, F.; Vitharana, U. W. A.; Indraratne, S. P.

    Detailed digital soil maps showing the spatial heterogeneity of soil properties consistent with the landscape are required for site-specific management of plant nutrients, land use planning and process-based environmental modeling. We characterized the short-scale spatial heterogeneity of soil properties in an Alfisol catena in a tropical landscape of Sri Lanka. The impact of different land-uses (paddy, vegetable and un-cultivated) was examined to assess the impact of anthropogenic activities on the variability of soil properties at the catenary level. Conditioned Latin hypercube sampling was used to collect 58 geo-referenced topsoil samples (0–30 cm) from the study area. Soil samples were analyzedmore » for pH, electrical conductivity (EC), organic carbon (OC), cation exchange capacity (CEC) and texture. The spatial correlation between soil properties was analyzed by computing crossvariograms and subsequent fitting of theoretical model. Spatial distribution maps were developed using ordinary kriging. The range of soil properties, pH: 4.3–7.9; EC: 0.01–0.18 dS m –1 ; OC: 0.1–1.37%; CEC: 0.44– 11.51 cmol (+) kg –1 ; clay: 1.5–25% and sand: 59.1–84.4% and their coefficient of variations indicated a large variability in the study area. Electrical conductivity and pH showed a strong spatial correlation which was reflected by the cross-variogram close to the hull of the perfect correlation. Moreover, cross-variograms calculated for EC and Clay, CEC and OC, CEC and clay and CEC and pH indicated weak positive spatial correlation between these properties. Relative nugget effect (RNE) calculated from variograms showed strongly structured spatial variability for pH, EC and sand content (RNE < 25%) while CEC, organic carbon and clay content showed moderately structured spatial variability (25% < RNE < 75%). Spatial dependencies for examined soil properties ranged from 48 to 984 m. The mixed effects model fitting followed by Tukey's post-hoc test showed significant effect of land use on the spatial variability of EC. Our study revealed a structured variability of topsoil properties in the selected tropical Alfisol catena. Except for EC, observed variability was not modified by the land uses. Investigated soil properties showed distinct spatial structures at different scales and magnitudes of strength. Our results will be useful for digital soil mapping, site specific management of soil properties, developing appropriate land use plans and quantifying anthropogenic impacts on the soil system.« less

  14. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern US

    USGS Publications Warehouse

    Gremer, Jennifer; Bradford, John B.; Munson, Seth M.; Duniway, Michael C.

    2015-01-01

    Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20 to 56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40 to 60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands.

  15. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States.

    PubMed

    Gremer, Jennifer R; Bradford, John B; Munson, Seth M; Duniway, Michael C

    2015-11-01

    Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20-56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40-60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  16. A Mulitivariate Statistical Model Describing the Compound Nature of Soil Moisture Drought

    NASA Astrophysics Data System (ADS)

    Manning, Colin; Widmann, Martin; Bevacqua, Emanuele; Maraun, Douglas; Van Loon, Anne; Vrac, Mathieu

    2017-04-01

    Soil moisture in Europe acts to partition incoming energy into sensible and latent heat fluxes, thereby exerting a large influence on temperature variability. Soil moisture is predominantly controlled by precipitation and evapotranspiration. When these meteorological variables are accumulated over different timescales, their joint multivariate distribution and dependence structure can be used to provide information of soil moisture. We therefore consider soil moisture drought as a compound event of meteorological drought (deficits of precipitation) and heat waves, or more specifically, periods of high Potential Evapotraspiration (PET). We present here a statistical model of soil moisture based on Pair Copula Constructions (PCC) that can describe the dependence amongst soil moisture and its contributing meteorological variables. The model is designed in such a way that it can account for concurrences of meteorological drought and heat waves and describe the dependence between these conditions at a local level. The model is composed of four variables; daily soil moisture (h); a short term and a long term accumulated precipitation variable (Y1 and Y_2) that account for the propagation of meteorological drought to soil moisture drought; and accumulated PET (Y_3), calculated using the Penman Monteith equation, which can represent the effect of a heat wave on soil conditions. Copula are multivariate distribution functions that allow one to model the dependence structure of given variables separately from their marginal behaviour. PCCs then allow in theory for the formulation of a multivariate distribution of any dimension where the multivariate distribution is decomposed into a product of marginal probability density functions and two-dimensional copula, of which some are conditional. We apply PCC here in such a way that allows us to provide estimates of h and their uncertainty through conditioning on the Y in the form h=h|y_1,y_2,y_3 (1) Applying the model to various Fluxnet sites across Europe, we find the model has good skill and can particularly capture periods of low soil moisture well. We illustrate the relevance of the dependence structure of these Y variables to soil moisture and show how it may be generalised to offer information of soil moisture on a widespread scale where few observations of soil moisture exist. We then present results from a validation study of a selection of EURO CORDEX climate models where we demonstrate the skill of these models in representing these dependencies and so offer insight into the skill seen in the representation of soil moisture in these models.

  17. High Temporal and Spatial Variability of Atmospheric-Methane Oxidation in Alpine Glacier Forefield Soils

    PubMed Central

    Chiri, Eleonora; Nauer, Philipp A.; Rainer, Edda-Marie; Zeyer, Josef

    2017-01-01

    ABSTRACT Glacier forefield soils can provide a substantial sink for atmospheric CH4, facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, MOB location in different forefield landforms, and temporal fluctuations in soil physical parameters. We assessed the spatial and temporal variability of atmospheric-CH4 oxidation in an Alpine glacier forefield during the snow-free season of 2013. We quantified CH4 flux in soils of increasing age and in different landforms (sandhill, terrace, and floodplain forms) by using soil gas profile and static flux chamber methods. To determine MOB abundance and community structure, we employed pmoA gene-based quantitative PCR and targeted amplicon sequencing. Uptake of CH4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH4 uptake rates ranging from −3.7 to −0.03 mg CH4 m−2 day−1. Floodplain and terrace soils exhibited lower uptake rates and even intermittent CH4 emissions. Linear mixed-effects models indicated that soil age and landform were the dominating factors shaping CH4 flux, followed by cumulative rainfall (weighted sum ≤4 days prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with upland soil clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical but differed significantly from the highly variable sandhill soil communities. We concluded that soil age and landform modulate the soil CH4 sink strength in glacier forefields and that recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH4 inventories. IMPORTANCE Oxidation of methane (CH4) in well-drained, “upland” soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric-CH4 oxidation in mature upland soils, little is known about this important function in young, developing soils, such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat. In this field-based study, we investigated the spatial and temporal variability of atmospheric-CH4 oxidation and associated MOB communities in Alpine glacier forefield soils, aiming at better understanding the factors that shape the sink for atmospheric CH4 in this young soil ecosystem. This study contributes to the knowledge on the dynamics of atmospheric-CH4 oxidation in developing upland soils and represents a further step toward the inclusion of Alpine glacier forefield soils in global CH4 inventories. PMID:28687652

  18. High temporal and spatial variability of atmospheric-methane oxidation in Alpine glacier-forefield soils.

    PubMed

    Chiri, Eleonora; Nauer, Philipp A; Rainer, Edda-Marie; Zeyer, Josef; Schroth, Martin H

    2017-07-07

    Glacier-forefield soils can provide a substantial sink for atmospheric CH 4 , facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, location in different forefield landforms, and temporal fluctuations in soil-physical parameters. We assessed spatial and temporal variability of atmospheric CH 4 oxidation in an Alpine glacier forefield during the snow-free season 2013. We quantified CH 4 flux in soils of increasing age and in different landforms (sandhill, terrace, floodplain) using soil-gas-profile and static flux-chamber methods. To determine MOB abundance and community structure, we employed pmoA -gene-based quantitative PCR and targeted-amplicon sequencing. Uptake of CH 4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH 4 uptake ranging from -0.03- -3.7 mg CH 4 m -2 d -1 Floodplain and terrace soils exhibited smaller uptake and even intermittent CH 4 emissions. Linear mixed-effect models indicated that soil age and landform were dominating factors shaping CH 4 flux, followed by cumulative rainfall (weighted sum ≤ 4 d prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with Upland Soil Clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical, but differed significantly from highly variable sandhill-soil communities. We conclude that soil age and landform modulate the soil CH 4 sink strength in glacier forefields, and recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH 4 inventories. Importance Oxidation of methane (CH 4 ) in well-drained, "upland" soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric CH 4 oxidation in mature upland soils, little is known about this important function in young, developing soils such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat.In this field-based study we investigated spatial and temporal variability of atmospheric CH 4 oxidation and associated MOB communities in Alpine glacier-forefield soils, aiming at better understanding factors that shape the sink for atmospheric CH 4 in this young soil ecosystem. The study contributes to the knowledge on the dynamics of atmospheric CH 4 oxidation in developing upland soils, and represents a further step towards the inclusion of Alpine glacier-forefield soils in global CH 4 inventories. Copyright © 2017 American Society for Microbiology.

  19. [Spatial variability of surface soil nutrients in the landslide area of Beichuan County, South- west China, after 5 · 12 Wenchuan Earthquake].

    PubMed

    Mai, Ji-shan; Zhao, Ting-ning; Zheng, Jiang-kun; Shi, Chang-qing

    2015-12-01

    Based on grid sampling and laboratory analysis, spatial variability of surface soil nutrients was analyzed with GS⁺ and other statistics methods on the landslide area of Fenghuang Mountain, Leigu Town, Beichuan County. The results showed that except for high variability of available phosphorus, other soil nutrients exhibited moderate variability. The ratios of nugget to sill of the soil available phosphorus and soil organic carbon were 27.9% and 28.8%, respectively, showing moderate spatial correlation, while the ratios of nugget to sill of the total nitrogen (20.0%), total phosphorus (24.3%), total potassium (11.1%), available nitrogen (11.2%), and available potassium (22.7%) suggested strong spatial correlation. The total phosphorus had the maximum range (1232.7 m), followed by available nitrogen (541.27 m), total nitrogen (468.35 m), total potassium (136.0 m), available potassium (128.7 m), available phosphorus (116.6 m), and soil organic carbon (93.5 m). Soil nutrients had no significant variation with the increase of altitude, but gradually increased from the landslide area, the transition area, to the little-impacted area. The total and available phosphorus contents of the landslide area decreased by 10.3% and 79.7% compared to that of the little-impacted area, respectively. The soil nutrient contents in the transition area accounted for 31.1%-87.2% of that of the little-impacted area, with the nant reason for the spatial variability of surface soil nutrients.

  20. Evaluation of the Performance of the Mars Environmental Compatibility Assessment Electrometer

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.

    2002-01-01

    The Mars Environmental Compatibility Assessment (MECA) electrometer is an instrument that was designed jointly by researchers at the Jet Propulsion Laboratory and the Kennedy Space Center, and is intended to fly on a future space exploration mission of the surface of Mars. The electrometer was designed primarily to study (1) the electrostatic interaction between the Martian soil and five different types of insulators, which are attached to the electrometer, as the electrometer is rubbed over the Martian soil. The MECA/Electrometer is also capable of measuring (2) the presence of charged particles in the Martian atmosphere, (3) the local electric field strength, and (4) the local temperature. The goal of the research project described in this report was to test and evaluate the measurement capabilities of the MECA/Electrometer under simulated Martian surface conditions using facilities located in the Labs and Testbeds Division at the Kennedy Space Center. The results of this study indicate that the Martian soil simulant can triboelectrically charge up the insulator surface. However, the maximum charge buildup did not exceed 18% of the electrometer's full-range sensitivity when rubbed vigorously, and is more likely to be as low as 1% of the maximum range when rubbed through soil. This indicates that the overall gain of the MECA/Electrometer could be increased by a factor of 50 if measurements at the 50% level of full-range sensitivity are desired. The ion gauge, which detects the presence of charged particles, was also evaluated over a pressure range from 10 to 400 Torr (13 to 533 mbar). The electric field sensor was also evaluated. Although the temperature sensor was not evaluated due to project time constraints, it was previously reported to work properly.

  1. Evaluation of The Performance of The Mars Environmental Compatibility Assessment Electrometer

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.

    2001-01-01

    The Mars Environmental Compatibility Assessment (MECA) electrometer is an instrument that was designed jointly by researchers at the Jet Propulsion Laboratory and the Kennedy Space Center, and is intended to fly on a future space exploration mission of the surface of Mars. The electrometer was designed primarily to study (1) the electrostatic interaction between the Martian soil and five different types of insulators, which are attached to the electrometer, as the electrometer is rubbed over the Martian soil. The MECA/Electrometer is also capable of measuring (2) the presence of charged particles in the Martian atmosphere, (3) the local electric field strength, and (4) the local temperature. The goal of the research project described in this report was to test and evaluate the measurement capabilities of the MECA/Electrometer under simulated Martian surface conditions using facilities located in the Labs and Testbeds Division at the Kennedy Space Center. The results of this study indicate that the Martian soil simulant can triboelectrically charge up the insulator surface. However, the maximum charge buildup did not exceed 18% of the electrometer's full-range sensitivity when rubbed vigorously, and is more likely to be as low as 1% of the maximum range when rubbed through soil. This indicates that the overall gain of the MECA/Electrometer could be increased by a factor of 50 if measurements at the 50% level of full-range sensitivity are desired. The ion gauge, which detects the presence of charged particles, was also evaluated over a pressure range from 10 to 400 Torr (13 to 533 mbar). The electric field sensor was also evaluated. Although the temperature sensor was not evaluated due to project time constraints, it was previously reported to work properly.

  2. Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes

    NASA Astrophysics Data System (ADS)

    Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.

    2017-12-01

    Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation differences amplify the soil moisture variability of semi-arid landscapes.

  3. The Temperature Sensitivity (Q10) of Soil Respiration: Controlling Factors and Spatial Prediction at Regional Scale Based on Environmental Soil Classes

    NASA Astrophysics Data System (ADS)

    Meyer, N.; Welp, G.; Amelung, W.

    2018-02-01

    The temperature sensitivity of heterotrophic soil respiration is crucial for modeling carbon dynamics but it is variable. Presently, however, most models employ a fixed value of 1.5 or 2.0 for the increase of soil respiration per 10°C increase in temperature (Q10). Here we identified the variability of Q10 at a regional scale (Rur catchment, Germany/Belgium/Netherlands). We divided the study catchment into environmental soil classes (ESCs), which we define as unique combinations of land use, aggregated soil groups, and texture. We took nine soil samples from each ESC (108 samples) and incubated them at four soil moisture levels and five temperatures (5-25°C). We hypothesized that Q10 variability is controlled by soil organic carbon (SOC) degradability and soil moisture and that ESC can be used as a widely available proxy for Q10, owing to differences in SOC degradability. Measured Q10 values ranged from 1.2 to 2.8 and were correlated with indicators of SOC degradability (e.g., pH, r = -0.52). The effect of soil moisture on Q10 was variable: Q10 increased with moisture in croplands but decreased in forests. The ESC captured significant parts of Q10 variability under dry (R2 = 0.44) and intermediate (R2 = 0.36) moisture conditions, where Q10 increased in the order cropland

  4. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest

    Treesearch

    Tana Wood; M. Detto; W.L. Silver

    2013-01-01

    Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m2), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal...

  5. Biomechanical effects, lithological variations, and local pedodiversity in some forest soils of Arkansas

    Treesearch

    Jonathan D. Phillips; Daniel A. Marion

    2005-01-01

    A high degree of soil variability over short distances and small areas is common, particularly in forest soils. This variability is sometimes, but not always, related to readily apparent variations in the environmental factors that control soil formation. This study examines the potential role of biomechanical effects of trees and of lithological variations within the...

  6. Nitrate and dissolved organic carbon mobilization in response to soil freezing variability

    Treesearch

    Colin B. Fuss; Charles T. Driscoll; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer; Jorge Durán; Jennifer L. Morse

    2016-01-01

    Reduced snowpack and associated increases in soil freezing severity resulting from winter climate change have the potential to disrupt carbon (C) and nitrogen (N) cycling in soils. We used a natural winter climate gradient based on elevation and aspect in a northern hardwood forest to examine the effects of variability in soil freezing depth, duration, and frequency on...

  7. Electrical resistivity tomography to delineate greenhouse soil variability

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Amato, M.; Bitella, G.; Bochicchio, R.

    2013-03-01

    Appropriate management of soil spatial variability is an important tool for optimizing farming inputs, with the result of yield increase and reduction of the environmental impact in field crops. Under greenhouses, several factors such as non-uniform irrigation and localized soil compaction can severely affect yield and quality. Additionally, if soil spatial variability is not taken into account, yield deficiencies are often compensated by extra-volumes of crop inputs; as a result, over-irrigation and overfertilization in some parts of the field may occur. Technology for spatially sound management of greenhouse crops is therefore needed to increase yield and quality and to address sustainability. In this experiment, 2D-electrical resistivity tomography was used as an exploratory tool to characterize greenhouse soil variability and its relations to wild rocket yield. Soil resistivity well matched biomass variation (R2=0.70), and was linked to differences in soil bulk density (R2=0.90), and clay content (R2=0.77). Electrical resistivity tomography shows a great potential in horticulture where there is a growing demand of sustainability coupled with the necessity of stabilizing yield and product quality.

  8. Screening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects.

    PubMed

    Verrot, Lucile; Destouni, Georgia

    2015-01-01

    Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.

  9. One perspective on spatial variability in geologic mapping

    USGS Publications Warehouse

    Markewich, H.W.; Cooper, S.C.

    1991-01-01

    This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.

  10. Application of manures to mitigate the harmful effects of electrokinetic remediation of heavy metals on soil microbial properties in polluted soils.

    PubMed

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar; Nguyen, Thi Thu Nhan; Che, Rongxiao; Phan, Thuc D; Hosseini Bai, Shahla

    2017-12-01

    Ethylenediaminetetraacetic acid (EDTA) used with electrokinetic (EK) to remediate heavy metal-polluted soils is a toxic chelate for soil microorganisms. Therefore, this study aimed to evaluate the effects of alternative organic chelates to EDTA on improving the microbial properties of a heavy metal-polluted soil subjected to EK. Cow manure extract (CME), poultry manure extract (PME) and EDTA were applied to a lead (Pb) and zinc (Zn)-polluted calcareous soil which were subjected to two electric intensities (1.1 and 3.3 v/cm). Soil carbon pools, microbial activity, microbial abundance (e.g., fungal, actinomycetes and bacterial abundances) and diethylenetriaminepentaacetic acid (DTPA)-extractable Pb and Zn (available forms) were assessed in both cathodic and anodic soils. Applying the EK to soil decreased all the microbial variables in the cathodic and anodic soils in the absence or presence of chelates. Both CME and PME applied with two electric intensities decreased the negative effect of EK on soil microbial variables. The lowest values of soil microbial variables were observed when EK was combined with EDTA. The following order was observed in values of soil microbial variables after treating with EK and chelates: EK + CME or EK + PME > EK > EK + EDTA. The CME and PME could increase the concentrations of available Pb and Zn, although the increase was less than that of EDTA. Overall, despite increasing soil available Pb and Zn, the combination of EK with manures (CME or PME) mitigated the negative effects of using EK on soil microbial properties. This study suggested that the synthetic chelates such as EDTA could be replaced with manures to alleviate the environmental risks of EK application.

  11. The contribution of hydroxylamine content to spatial variability of N2O formation in soil of a Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Liu, Shurong; Herbst, Michael; Bol, Roland; Gottselig, Nina; Pütz, Thomas; Weymann, Daniel; Wiekenkamp, Inge; Vereecken, Harry; Brüggemann, Nicolas

    2016-04-01

    Hydroxylamine (NH2OH), a reactive intermediate of several microbial nitrogen turnover processes, is a potential precursor of nitrous oxide (N2O) formation in the soil. However, the contribution of soil NH2OH to soil N2O emission rates in natural ecosystems is unclear. Here, we determined the spatial variability of NH2OH content and potential N2O emission rates of organic (Oh) and mineral (Ah) soil layers of a Norway spruce forest, using a recently developed analytical method for the determination of soil NH2OH content, combined with a geostatistical Kriging approach. Potential soil N2O emission rates were determined by laboratory incubations under oxic conditions, followed by gas chromatographic analysis and complemented by ancillary measurements of soil characteristics. Stepwise multiple regressions demonstrated that the potential N2O emission rates, NH2OH and nitrate (NO3-) content were spatially highly correlated, with hotspots for all three parameters observed in the headwater of a small creek flowing through the sampling area. In contrast, soil ammonium (NH4+) was only weakly correlated with potential N2O emission rates, and was excluded from the multiple regression models. While soil NH2OH content explained the potential soil N2O emission rates best for both layers, also NO3- and Mn content turned out to be significant parameters explaining N2O formation in both soil layers. The Kriging approach was improved markedly by the addition of the co-variable information of soil NH2OH and NO3- content. The results indicate that determination of soil NH2OH content could provide crucial information for the prediction of the spatial variability of soil N2O emissions.

  12. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe.

    PubMed

    Durán, Jorge; Delgado-Baquerizo, Manuel; Dougill, Andrew J; Guuroh, Reginald T; Linstädter, Anja; Thomas, Andrew D; Maestre, Fernando T

    2018-05-01

    The relationship between the spatial variability of soil multifunctionality (i.e., the capacity of soils to conduct multiple functions; SVM) and major climatic drivers, such as temperature and aridity, has never been assessed globally in terrestrial ecosystems. We surveyed 236 dryland ecosystems from six continents to evaluate the relative importance of aridity and mean annual temperature, and of other abiotic (e.g., texture) and biotic (e.g., plant cover) variables as drivers of SVM, calculated as the averaged coefficient of variation for multiple soil variables linked to nutrient stocks and cycling. We found that increases in temperature and aridity were globally correlated to increases in SVM. Some of these climatic effects on SVM were direct, but others were indirectly driven through reductions in the number of vegetation patches and increases in soil sand content. The predictive capacity of our structural equation modelling was clearly higher for the spatial variability of N- than for C- and P-related soil variables. In the case of N cycling, the effects of temperature and aridity were both direct and indirect via changes in soil properties. For C and P, the effect of climate was mainly indirect via changes in plant attributes. These results suggest that future changes in climate may decouple the spatial availability of these elements for plants and microbes in dryland soils. Our findings significantly advance our understanding of the patterns and mechanisms driving SVM in drylands across the globe, which is critical for predicting changes in ecosystem functioning in response to climate change. © 2018 by the Ecological Society of America.

  13. Surface Instabilities From Buried Explosives

    DTIC Science & Technology

    2009-07-21

    interface between soil and air during buried explosions. The purpose of understanding this instability is to determine its effect on local vehicle loading...Except when the target is on the surface, e.g., a tank track, the most important loading mechanism from a buried charge is the impact of soil propelled...rising soil and the air. This unstable 15. SUBJECT TERMS Buried Explosions, Richtmyer-Meshkov Instability, Target Loading, Jetting, 16 SECURITY

  14. Highly charged swelling mica reduces Cu bioavailability in Cu-contaminated soils.

    PubMed

    Stuckey, Jason W; Neaman, Alexander; Ravella, Ramesh; Komarneni, Sridhar; Martínez, Carmen Enid

    2009-01-01

    This is the first test of a highly charged swelling mica's (Na-2-mica) ability to reduce the plant-absorbed Cu in Cu-contaminated soils from Chile. Perennial ryegrass (Lolium perenne L.) was grown in two acid soils (Sector 2: pH 4.2, total Cu = 172 mg Cu kg(-1) and Sector 3: pH 4.2, total Cu = 112 mg Cu kg(-1)) amended with 0.5% and 1% (w/w) mica, and 1% (w/w) montmorillonite. At 10 weeks of growth, both mica treatments decreased the shoot Cu of ryegrass grown in Sector 2 producing shoot Cu concentrations above 21-22 mg Cu kg(-1) (the phytotoxicity threshold for that species), yet the mica treatments did not reduce shoot Cu concentrations when grown in Sector 3, which were at a typical level. The mica treatments improved shoot growth in Sector 3 by reducing free and extractable Cu to low enough levels where other nutrients could compete for plant absorption and translocation. In addition, the mica treatments improved root growth in both soils, and the 1% mica treatment reduced root Cu in both soils. This swelling mica warrants further testing of its ability to assist re-vegetation and reduce Cu bioavailability in Cu-contaminated surface soils.

  15. Applications of Geostatistics in Plant Nematology

    PubMed Central

    Wallace, M. K.; Hawkins, D. M.

    1994-01-01

    The application of geostatistics to plant nematology was made by evaluating soil and nematode data acquired from 200 soil samples collected from the Ap horizon of a reed canary-grass field in northern Minnesota. Geostatistical concepts relevant to nematology include semi-variogram modelling, kriging, and change of support calculations. Soil and nematode data generally followed a spherical semi-variogram model, with little random variability associated with soil data and large inherent variability for nematode data. Block kriging of soil and nematode data provided useful contour maps of the data. Change of snpport calculations indicated that most of the random variation in nematode data was due to short-range spatial variability in the nematode population densities. PMID:19279938

  16. Applications of geostatistics in plant nematology.

    PubMed

    Wallace, M K; Hawkins, D M

    1994-12-01

    The application of geostatistics to plant nematology was made by evaluating soil and nematode data acquired from 200 soil samples collected from the A(p) horizon of a reed canary-grass field in northern Minnesota. Geostatistical concepts relevant to nematology include semi-variogram modelling, kriging, and change of support calculations. Soil and nematode data generally followed a spherical semi-variogram model, with little random variability associated with soil data and large inherent variability for nematode data. Block kriging of soil and nematode data provided useful contour maps of the data. Change of snpport calculations indicated that most of the random variation in nematode data was due to short-range spatial variability in the nematode population densities.

  17. Effects of pH and phosphate on glyphosate adsorption to Argentina soils.

    NASA Astrophysics Data System (ADS)

    De Geronimo, Eduardo; Aparicio, Virginia; Costa, José Luis

    2017-04-01

    Glyphosate is a non-selective, post-emergence herbicide that is widely used in Argentina. Due to the similar molecular structures, glyphosate and phosphate compete for the same adsorption sites in soil. Soil pH has a strong influence in glyphosate and phosphate adsorption since it modifies the net charge of the molecules and, consequently, the force of the electrostatic interaction between these molecules and soil components. Glyphosate adsorption generally decreases as the soil pH was increased, although there were exceptions. In this work, we study the effects of pH and the presence of phosphate on the adsorption of glyphosate on six different types of Argentina soils. Batch equilibrium technique was employed to study the adsorption of glyphosate onto soils at different pH values (from 3 to 9) and phosphate content (0.5 and 1 mM). Stepwise multiple linear regression analysis was applied to obtain a relationship between the sorption parameters and soil properties. The results indicated that Freundlich equations used to simulate glyphosate adsorption isotherms gave high correlation coefficients with Kf values range from 24.9 to 397.4. Clay contents and soil pH were found to be the most significant soil factors affecting the glyphosate adsorption process. The presence of phosphate significantly decreased the adsorption of glyphosate to soils. The Kf values obtained for all six soils decreased a 40% at 0.5 mM of phosphate and a 55% at 1 mM of phosphate. On the other hand, the affinity parameters of glyphosate to soils varied with changes in pH. A general trend of decrease in glyphosate adsorption with increase in pH was observed for all six studied soils. In turn, there appears to be a maximum glyphosate adsorption at pH close to 6 for most soils when the net charge of the molecule at this pH was approximately -1.7.

  18. Influence of management history and landscape variables on soil organic carbon and soil redistribution

    USGS Publications Warehouse

    Venteris, E.R.; McCarty, G.W.; Ritchie, J.C.; Gish, T.

    2004-01-01

    Controlled studies to investigate the interaction between crop growth, soil properties, hydrology, and management practices are common in agronomy. These sites (much as with real world farmland) often have complex management histories and topographic variability that must be considered. In 1993 an interdisiplinary study was started for a 20-ha site in Beltsville, MD. Soil cores (271) were collected in 1999 in a 30-m grid (with 5-m nesting) and analyzed as part of the site characterization. Soil organic carbon (SOC) and 137Cesium (137Cs) were measured. Analysis of aerial photography from 1992 and of farm management records revealed that part of the site had been maintained as a swine pasture and the other portion as cropped land. Soil properties, particularly soil redistribution and SOC, show large differences in mean values between the two areas. Mass C is 0.8 kg m -2 greater in the pasture area than in the cropped portion. The pasture area is primarily a deposition site, whereas the crop area is dominated by erosion. Management influence is suggested, but topographic variability confounds interpretation. Soil organic carbon is spatially structured, with a regionalized variable of 120 m. 137Cs activity lacks spatial structure, suggesting disturbance of the profile by animal activity and past structures such as swine shelters and roads. Neither SOC nor 137Cs were strongly correlated to terrain parameters, crop yields, or a seasonal soil moisture index predicted from crop yields. SOC and 137Cs were weakly correlated (r2 ???0.2, F-test P-value 0.001), suggesting that soil transport controls, in part, SOC distribution. The study illustrates the importance of past site history when interpreting the landscape distribution of soil properties, especially those strongly influenced by human activity. Confounding variables, complex soil hydrology, and incomplete documentation of land use history make definitive interpretations of the processes behind the spatial distributions difficult. Such complexity may limit the accuracy of scaling approaches to mapping SOC and soil redistribution.

  19. High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Kollet, S. J.; Qu, W.; Vereecken, H.

    2017-04-01

    The prediction of the spatial and temporal variability of land surface states and fluxes with land surface models at high spatial resolution is still a challenge. This study compares simulation results using TerrSysMP including a 3D variably saturated groundwater flow model (ParFlow) coupled to the Community Land Model (CLM) of a 38 ha managed grassland head-water catchment in the Eifel (Germany), with soil water content (SWC) measurements from a wireless sensor network, actual evapotranspiration recorded by lysimeters and eddy covariance stations and discharge observations. TerrSysMP was discretized with a 10 × 10 m lateral resolution, variable vertical resolution (0.025-0.575 m), and the following parameterization strategies of the subsurface soil hydraulic parameters: (i) completely homogeneous, (ii) homogeneous parameters for different soil horizons, (iii) different parameters for each soil unit and soil horizon and (iv) heterogeneous stochastic realizations. Hydraulic conductivity and Mualem-Van Genuchten parameters in these simulations were sampled from probability density functions, constructed from either (i) soil texture measurements and Rosetta pedotransfer functions (ROS), or (ii) estimated soil hydraulic parameters by 1D inverse modelling using shuffle complex evolution (SCE). The results indicate that the spatial variability of SWC at the scale of a small headwater catchment is dominated by topography and spatially heterogeneous soil hydraulic parameters. The spatial variability of the soil water content thereby increases as a function of heterogeneity of soil hydraulic parameters. For lower levels of complexity, spatial variability of the SWC was underrepresented in particular for the ROS-simulations. Whereas all model simulations were able to reproduce the seasonal evapotranspiration variability, the poor discharge simulations with high model bias are likely related to short-term ET dynamics and the lack of information about bedrock characteristics and an on-site drainage system in the uncalibrated model. In general, simulation performance was better for the SCE setups. The SCE-simulations had a higher inverse air entry parameter resulting in SWC dynamics in better correspondence with data than the ROS simulations during dry periods. This illustrates that small scale measurements of soil hydraulic parameters cannot be transferred to the larger scale and that interpolated 1D inverse parameter estimates result in an acceptable performance for the catchment.

  20. Relationship between cotton yield and soil electrical conductivity, topography, and landsat imagery

    USDA-ARS?s Scientific Manuscript database

    Understanding spatial and temporal variability in crop yield is a prerequisite to implementing site-specific management of crop inputs. Apparent soil electrical conductivity (ECa), soil brightness, and topography are easily obtained data that can explain yield variability. The objectives of this stu...

  1. The History of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, Jim

    2014-05-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.

  2. Soil amendments effects on radiocesium translocation in forest soils.

    PubMed

    Sugiura, Yuki; Ozawa, Hajime; Umemura, Mitsutoshi; Takenaka, Chisato

    2016-12-01

    We conducted an experiment to investigate the potential of phytoremediation by soil amendments in a forest area. To desorb radiocesium ( 137 Cs) from variable charges in the soil, ammonium sulfate (NH 4 + ) and elemental sulfur (S) (which decrease soil pH) were applied to forest soil collected from contaminated area at a rate of 40 and 80 g/m 2 , respectively. A control condition with no soil treatment was also considered. We defined four groups of aboveground conditions: planted with Quercus serrata, planted with Houttuynia cordata, covered with rice straw as litter, and unplanted/uncovered (control). Cultivation was performed in a greenhouse with a regular water supply for four months. Following elemental sulfur treatment, soil pH values were significantly lower than pH values following ammonium sulfate treatment and no treatment. During cultivation, several plant species germinated from natural seeds. No clear differences in aboveground tissue 137 Cs concentrations in planted Q. serrata and H. cordata were observed among the treatments. However, aboveground tissue 137 Cs concentration values in the germinated plants following elemental sulfur treatment were higher than the values following the ammonium sulfate treatment and no treatment. Although biomass values for Q. serrata, H. cordata, and germinated plants following elemental sulfur treatment tended to be low, the total 137 Cs activities in the aboveground tissue of germinated plants were higher than those following ammonium sulfate treatment and no treatment in rice straw and unplanted conditions. Although no significant differences were observed, 137 Cs concentrations in rice straw following ammonium sulfate and elemental sulfur treatments tended to be higher than those in the control case. The results of this study indicate that elemental sulfur lowers the soil pH for a relatively long period and facilitates 137 Cs translocation to newly emerged and settled plants or litter, but affects plant growth in large concentrations and/or anaerobic conditions. Combining elemental sulfur application with forest management practices, such as mowing and thinning, could be a suitable method of decontamination of the forest environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)

    DOE Data Explorer

    Raich, James W. [Iowa State University, Ames, IA (USA); Potter, Christopher S. [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Bhagawat, Dwipen [Iowa State Univ., Ames, IA (United States); Olson, L. M. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN

    2003-08-01

    The Principal Investigators used a climate-driven regression model to develop spatially resolved estimates of soil-CO2 emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO2 fluxes. The mean annual global soil-CO2 flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO2 emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO2 emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreen broad-leaved forests contributed more soil-derived CO2 to the atmosphere than did any other vegetation type (~30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO2 emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO2 production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO2 concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO2 emmissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO2 fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY-1 per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO2 emissions, global warming is likely to stimulate CO2 emissions from soils.

  4. Exploring the Impact of Different Input Data Types on Soil Variable Estimation Using the ICRAF-ISRIC Global Soil Spectral Database.

    PubMed

    Aitkenhead, Matt J; Black, Helaina I J

    2018-02-01

    Using the International Centre for Research in Agroforestry-International Soil Reference and Information Centre (ICRAF-ISRIC) global soil spectroscopy database, models were developed to estimate a number of soil variables using different input data types. These input types included: (1) site data only; (2) visible-near-infrared (Vis-NIR) diffuse reflectance spectroscopy only; (3) combined site and Vis-NIR data; (4) red-green-blue (RGB) color data only; and (5) combined site and RGB color data. The models produced variable estimation accuracy, with RGB only being generally worst and spectroscopy plus site being best. However, we showed that for certain variables, estimation accuracy levels achieved with the "site plus RGB input data" were sufficiently good to provide useful estimates (r 2  > 0.7). These included major elements (Ca, Si, Al, Fe), organic carbon, and cation exchange capacity. Estimates for bulk density, contrast-to-noise (C/N), and P were moderately good, but K was not well estimated using this model type. For the "spectra plus site" model, many more variables were well estimated, including many that are important indicators for agricultural productivity and soil health. Sum of cation, electrical conductivity, Si, Ca, and Al oxides, and C/N ratio were estimated using this approach with r 2 values > 0.9. This work provides a mechanism for identifying the cost-effectiveness of using different model input data, with associated costs, for estimating soil variables to required levels of accuracy.

  5. [Relationships between soil and rocky desertification in typical karst mountain area based on redundancy analysis].

    PubMed

    Long, Jian; Liao, Hong-Kai; Li, Juan; Chen, Cai-Yun

    2012-06-01

    Redundancy analysis (RDA) was employed to reveal the relationships between soil and rocky desertification through vegetation investigation and analysis of soil samples collected in typical karst mountain area of southwest Guizhou Province. The results showed that except TP, TK and ACa, all other variables including SOC, TN, MBC, ROC, DOC, available nutrients and basal respiration showed significant downward trends during the rocky desertification process. RDA results showed significant correlations between different types of desertification and soil variables, described as non-degraded > potential desertification > light desertification > moderate desertification > severe desertification. Moreover, RDA showed that using SOC, TN, AN, and BD as soil indicators, 74.4% of the variance information on soil and rocky desertification could be explained. Furthermore, the results of correlation analysis showed that soil variables were significantly affected by surface vegetation. Considering the ecological function of the aboveground vegetation and the soil quality, Zanthoxylum would be a good choice for restoration of local vegetation in karst mountain area.

  6. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-07-01

    Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.

  7. Site-specific cotton management: Soil measurements

    USDA-ARS?s Scientific Manuscript database

    oil variability within fields has a large effect on crop growth and yield, often due to variations in soil texture and water holding capacity. This is particularly true in the alluvial soils of the Mississippi Delta, where profile sand contents can range from 20% to 90% within a field. Variable-rate...

  8. Predicting surface vibration from underground railways through inhomogeneous soil

    NASA Astrophysics Data System (ADS)

    Jones, Simon; Hunt, Hugh

    2012-04-01

    Noise and vibration from underground railways is a major source of disturbance to inhabitants near subways. To help designers meet noise and vibration limits, numerical models are used to understand vibration propagation from these underground railways. However, the models commonly assume the ground is homogeneous and neglect to include local variability in the soil properties. Such simplifying assumptions add a level of uncertainty to the predictions which is not well understood. The goal of the current paper is to quantify the effect of soil inhomogeneity on surface vibration. The thin-layer method (TLM) is suggested as an efficient and accurate means of simulating vibration from underground railways in arbitrarily layered half-spaces. Stochastic variability of the soil's elastic modulus is introduced using a K-L expansion; the modulus is assumed to have a log-normal distribution and a modified exponential covariance kernel. The effect of horizontal soil variability is investigated by comparing the stochastic results for soils varied only in the vertical direction to soils with 2D variability. Results suggest that local soil inhomogeneity can significantly affect surface velocity predictions; 90 percent confidence intervals showing 8 dB averages and peak values up to 12 dB are computed. This is a significant source of uncertainty and should be considered when using predictions from models assuming homogeneous soil properties. Furthermore, the effect of horizontal variability of the elastic modulus on the confidence interval appears to be negligible. This suggests that only vertical variation needs to be taken into account when modelling ground vibration from underground railways.

  9. Assessment of restoration measures efficiency for soil contamination in Mediterranean Ecosystem. The case study of Guadiamar Green Corridor in the context of RECARE project

    NASA Astrophysics Data System (ADS)

    Anaya-Romero, Maria; José Blanco-Velázquez, Francisco; Muñoz-Vallés, Sara

    2017-04-01

    Restoration of soil ecosystems contaminated by heavy metals requires their characterization and the assessment of measures for risk reduction. Particular soil traits and history define different levels of resilience, so soil contamination assessment needs to take into account a site-by-site approach, which considers both the particular environmental characteristics of soils and the human activities. Nevertheless, current approaches for soil contamination assessment developed as academy and market solutions continue to be rather qualitative, and they do not allow as far the selection of efficient remediation measures to solve soil contamination at the long-term and extensively over larger áreas. In this context, under the framework of RECARE (Preventing and Remediating degradation of Soils in Europe through Land Care) project, we are designing a Decision Support System (DSS) which automatically assess soil contamination values by heavy metals in the topsoil and evaluate the efficiency of soil remediation measures under scenarios of climate and land-use change. The DSS works by simulating the spatio-temporal efficiency of three widely applied remediation measures (compost, sugar beet lime and iron-rich clayey materials). Input variables are divided into: (I) climate variables (mainly precipitation and temperature), (II) site variables (elevation, slope and erodibility), (III) soil (heavy metal content, pH, sand/clay content, soil organic carbon and bulk density), (IV) land use and (V) remediation measures. The predictor variables are related to soil functions expressed by % of change of heavy metal content (Currently the DSS consider cadmium dynamics due to the worldwide distribution in agricultural system and toxicity impact on health and plants), soil carbon and erosion dynamics. The pilot study area is the Guadiamar valley (SW Spain) where the main threat is soil contamination, after a mine spill occurred on April 1998. Since that time, a huge soil databse of more than 30 Gbytes, has been produced by different stakeholders (administration, scientist and private sector), which covered the spatial-temporal evolution of soil contamination by specific soil remediation measures, so the affected area has become the "virtual lab" to develop and test the DSS. Further development of the DSS tool includes its validation/calibration in other European climate zones, such as Copsa Mica in Romania, and the inclusion of new input and output variables to improve the accurancy of results.

  10. Electrostatic Characterization of Lunar Dust Simulants

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Ritz, M. L.

    2008-01-01

    Lunar dust can jeopardize exploration activities due to its ability to cling to most surfaces. In this paper, we report on our measurements of the electrostatic properties of the lunar soil simulants. Methods have been developed to measure the volume resistivity, dielectric constant, chargeability, and charge decay of lunar soil. While the first two parameters have been measured in the past [Olhoeft 1974], the last two have never been measured directly on the lunar regolith or on any of the Apollo samples. Measurements of the electrical properties of the lunar samples are being performed in an attempt to answer important problems that must be solved for the development of an effective dust mitigation technology, namely, how much charge can accumulate on the dust and how long does the charge remain on surfaces. The measurements will help develop coatings that are compatible with the intrinsic electrostatic properties of the lunar regolith.

  11. Dynamic control of a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  12. Spatial variability of specific surface area of arable soils in Poland

    NASA Astrophysics Data System (ADS)

    Sokolowski, S.; Sokolowska, Z.; Usowicz, B.

    2012-04-01

    Evaluation of soil spatial variability is an important issue in agrophysics and in environmental research. Knowledge of spatial variability of physico-chemical properties enables a better understanding of several processes that take place in soils. In particular, it is well known that mineralogical, organic, as well as particle-size compositions of soils vary in a wide range. Specific surface area of soils is one of the most significant characteristics of soils. It can be not only related to the type of soil, mainly to the content of clay, but also largely determines several physical and chemical properties of soils and is often used as a controlling factor in numerous biological processes. Knowledge of the specific surface area is necessary in calculating certain basic soil characteristics, such as the dielectric permeability of soil, water retention curve, water transport in the soil, cation exchange capacity and pesticide adsorption. The aim of the present study is two-fold. First, we carry out recognition of soil total specific surface area patterns in the territory of Poland and perform the investigation of features of its spatial variability. Next, semivariograms and fractal analysis are used to characterize and compare the spatial variability of soil specific surface area in two soil horizons (A and B). Specific surface area of about 1000 samples was determined by analyzing water vapor adsorption isotherms via the BET method. The collected data of the values of specific surface area of mineral soil representatives for the territory of Poland were then used to describe its spatial variability by employing geostatistical techniques and fractal theory. Using the data calculated for some selected points within the entire territory and along selected directions, the values of semivariance were determined. The slope of the regression line of the log-log plot of semi-variance versus the distance was used to estimate the fractal dimension, D. Specific surface area in A and B horizons was space-dependent, with the range of spatial dependence of about 2.5°. Variogram surfaces showed anisotropy of the specific surface area in both horizons with a trend toward the W to E directions. The smallest fractal dimensions were obtained for W to E directions and the highest values - for S to N directions. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.

  13. Effects of biotic and abiotic indices on long term soil moisture data in a grassland biodiversity experiment

    NASA Astrophysics Data System (ADS)

    Fischer, Christine; Hohenbrink, Tobias; Leimer, Sophia; Roscher, Christiane; Ravenek, Janneke; de Kroon, Hans; Kreutziger, Yvonne; Wirth, Christian; Eisenhauer, Nico; Gleixner, Gerd; Weigelt, Alexandra; Mommer, Liesje; Beßler, Holger; Schröder, Boris; Hildebrandt, Anke

    2015-04-01

    Soil moisture is the dynamic link between climate, soil and vegetation and the dynamics and variation are affected by several often interrelated factors such as soil texture, soil structural parameters (soil organic carbon) and vegetation parameters (belowground- and aboveground biomass). For the characterization and estimation of soil moisture and its variability and the resulting water fluxes and solute transports, the knowledge of the relative importance of these factors is of major challenge for hydrology and bioclimatology. Because of the heterogeneity of these factors, soil moisture varies strongly over time and space. Our objective was to assess the spatio-temporal variability of soil moisture and factors which could explain that variability, like soil properties and vegetation cover, in in a long term biodiversity experiment (Jena Experiment). The Jena Experiment consist 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional groups (legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design Soil moisture measurements were performed weekly April to September 2003-2005 and 2008-2013 using Delta T theta probe. Measurements were integrated to three depth intervals: 0.0 - 0.20, 0.20 - 0.40 and 0.40 - 0.70 m. We analyze the spatio-temporal patterns of soil water content on (i) the normalized time series and (ii) the first components obtained from a principal component analysis (PCA). Both were correlated with the design variables of the Jena Experiment (plant species richness and plant functional groups) and other influencing factors such as soil texture, soil structural variables and vegetation parameters. For the time stability of soil water content, the analysis showed that plots containing grasses was consistently drier than average at the soil surface in all observed years while plots containing legumes comparatively moister, but only up to the year 2008. In 0.40 - 0.70 m soil deep plots presence of small herbs led to higher than average soil moisture in some years (2008, 2012, 2013). Interestingly, plant species richness led to moister than average subsoil at the beginning of the experiment (2003 and 2004), which changed to lower than average up to the year 2010 in all depths. There was no effect of species diversity in the years since 2010, although species diversity generally increases leaf area index and aboveground biomass. The first component from the PCA analysis described the mean behavior in time of all soil moisture time series. The second component reflected the impact of soil depth. The first two components explained 76% of the data set total variance. The third component is linked to plant species richness and explained about 4 % of the total variance of soil moisture data. The fourth component, which explained 2.4 %, showed a high correlation to soil texture. Within this study we investigate the dominant factors controlling spatio-temporal patterns of soil moisture at several soil depths. Although climate and soil depths were the most important drivers, other factors like plant species richness and soil texture affected the temporal variation while certain plant functional groups were important for the spatial variability.

  14. Determination of secondary electron emission characteristics of lunar soil samples

    NASA Technical Reports Server (NTRS)

    Gold, T.; Baron, R. L.; Bilson, E.

    1979-01-01

    A procedure is described for the determination of the 'apparent crossover voltage', i.e. the value of the primary (bombarding) electron energy at which an insulating sample surface changes the average sign of its charge. This apparent crossover point is characteristic of the secondary emission properties of insulating powders such as the lunar soil samples. Lunar core samples from well-defined, distinct soil layers are found to differ significantly in their secondary emission properties. This observation supports the suggestion that soil layers were deposited by an electrostatic transport process.

  15. Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed

    NASA Astrophysics Data System (ADS)

    Ferreira, V.; Panagopoulos, T.; Andrade, R.; Guerrero, C.; Loures, L.

    2015-04-01

    The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility (K factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this end, three areas representative of different land uses (agroforestry grassland, lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while the K factor increased with intensive cultivation. The HJ-Biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. The K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion.

  16. Spatial variability of soil properties and soil erodibility in the Alqueva dam watershed, Portugal

    NASA Astrophysics Data System (ADS)

    Ferreira, V.; Panagopoulos, T.; Andrade, R.; Guerrero, C.; Loures, L.

    2015-01-01

    The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility (K factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this, three areas representative of different land uses (agroforestry grassland, Lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while K factor increased with intensive cultivation. The HJ-biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion.

  17. The Use of Electromagnetic Induction Techniques for Soil Mapping

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, Jim

    2015-04-01

    Soils have high natural spatial variability. This has been recognized for a long time, and many methods of mapping that spatial variability have been investigated. One technique that has received considerable attention over the last ~30 years is electromagnetic induction (EMI). Particularly when coupled with modern GPS and GIS systems, EMI techniques have allowed the rapid and relatively inexpensive collection of large spatially-related data sets that can be correlated to soil properties that either directly or indirectly influence electrical conductance in the soil. Soil electrical conductivity is directly controlled by soil water content, soluble salt content, clay content and mineralogy, and temperature. A wide range of indirect controls have been identified, such as soil organic matter content and bulk density; both influence water relationships in the soil. EMI techniques work best in areas where there are large changes in one soil property that influences soil electrical conductance, and don't work as well when soil properties that influence electrical conductance are largely homogenous. This presentation will present examples of situations where EMI techniques were successful as well as a couple of examples of situations where EMI was not so useful in mapping the spatial variability of soil properties. Reasons for both the successes and failures will be discussed.

  18. Magnetic minerals in soils across the forest-prairie ecotone in NW Minnesota

    NASA Astrophysics Data System (ADS)

    Maxbauer, D.; Feinberg, J. M.; Fox, D. L.; Nater, E. A.

    2016-12-01

    Soil pedogenesis results in a complex assemblage of iron oxide minerals that can be disentangled successfully using sensitive magnetic techniques to better delineate specific soil processes. Here, we evaluate the variability in soil processes within forest, prairie, and transitional soils along an 11 km transect of anthropogenically unaltered soils that span the forest-to-prairie ecotone in NW Minnesota. All soils in this study developed on relatively uniform topography, similar glacial till parent material, under a uniform climate, and presumably over similar time intervals. The forest-to-prairie transition zone in this region is controlled by naturally occurring fires, affording the opportunity to evaluate differences in soil processes related to vegetation (forest versus prairie) and burning (prairie and transitional soils). Results suggest that the pedeogenic fraction of magnetite/maghemite in soils is similar in all specimens and is independent of soil type, vegetation, and any effects of burning. Magnetically enhanced horizons have 45% of remanence held by a low-coercivity pedogenic component (likely magnetite/maghemite) regardless of vegetation cover and soil type. Enhancement ratios for magnetic susceptibility and low-field remanences, often used as indicators of pedogenic magnetic minerals, are more variable but remain statistically equivalent across the transect. These results support the hypothesis that pedogenic magnetic minerals in soils mostly reflect ambient climatic conditions regardless of the variability in soil processes related to vegetation and soil type. The non-pedogenic magnetic mineral assemblage shows clear distinctions between the forest, prairie, and transitional soils in hysteresis properties (remanence and coercivity ratios; Mr/Ms and Bc/Bcr, respectively), suggesting that variable processes in these settings influence the local magnetic mineral assemblage, and that it may be possible to use magnetic minerals in paleosols to constrain these processes. This work highlights the importance of isolating the magnetic behavior of pedogenic and non-pedogenic minerals in environmental magnetism studies in order to provide the most rigorous interpretation of past environmental conditions.

  19. Investigating local controls on temporal stability of soil water content using sensor network data and an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Qu, W.; Bogena, H. R.; Huisman, J. A.; Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2013-12-01

    Soil water content is a key variable in the soil, vegetation and atmosphere continuum with high spatial and temporal variability. Temporal stability of soil water content (SWC) has been observed in multiple monitoring studies and the quantification of controls on soil moisture variability and temporal stability presents substantial interest. The objective of this work was to assess the effect of soil hydraulic parameters on the temporal stability. The inverse modeling based on large observed time series SWC with in-situ sensor network was used to estimate the van Genuchten-Mualem (VGM) soil hydraulic parameters in a small grassland catchment located in western Germany. For the inverse modeling, the shuffled complex evaluation (SCE) optimization algorithm was coupled with the HYDRUS 1D code. We considered two cases: without and with prior information about the correlation between VGM parameters. The temporal stability of observed SWC was well pronounced at all observation depths. Both the spatial variability of SWC and the robustness of temporal stability increased with depth. Calibrated models both with and without prior information provided reasonable correspondence between simulated and measured time series of SWC. Furthermore, we found a linear relationship between the mean relative difference (MRD) of SWC and the saturated SWC (θs). Also, the logarithm of saturated hydraulic conductivity (Ks), the VGM parameter n and logarithm of α were strongly correlated with the MRD of saturation degree for the prior information case, but no correlation was found for the non-prior information case except at the 50cm depth. Based on these results we propose that establishing relationships between temporal stability and spatial variability of soil properties presents a promising research avenue for a better understanding of the controls on soil moisture variability. Correlation between Mean Relative Difference of soil water content (or saturation degree) and inversely estimated soil hydraulic parameters (log10(Ks), log10(α), n, and θs) at 5-cm, 20-cm and 50-cm depths. Solid circles represent parameters estimated by using prior information; open circles represent parameters estimated without using prior information.

  20. Adsorption of transgenic insecticidal Cry1Ab protein to silica particles. Effects on transport and bioactivity.

    PubMed

    Madliger, Michael; Gasser, Christoph A; Schwarzenbach, René P; Sander, Michael

    2011-05-15

    Bt crops are genetically modified to be resistant against insect pests by expressing insecticidal Cry proteins. The processes governing the fate and bioavailability of the expressed transgenic Cry proteins in soils are poorly understood. We studied adsorption of Cry1Ab to negatively charged silica (SiO(2)) particles, a major soil constituent and a model for negatively charged mineral surfaces, at pH 5 to 10 and ionic strengths I = 10 mM to 250 mM, both in solution depletion and saturated column transport experiments. Cry1Ab-SiO(2) interactions were dominated by patch-controlled electrostatic attraction (PCEA), as evident from increasing Cry1Ab attraction to SiO(2) with decreasing I at pH at which both Cry1Ab and SiO(2) were net negatively charged. Experimental and modeling evidence is provided that the surface heterogeneity of SiO(2) particles modulated PCEA, leading to a fraction of adsorption sites with slow Cry1Ab desorption kinetics. Desorption rates from these sites increased upon increasing the solution pH. In toxicity bioassays, we demonstrated that Cry1Ab retained insecticidal activity when adsorbed to SiO(2), suggesting high protein conformational stability during adsorption-desorption cycles. Models predicting Cry1A protein adsorption in soils therefore need to account for combined effects of the nonuniform protein surface charge distribution and of sorbent surface heterogeneity.

  1. Native temperature regime influences soil response to simulated warming

    Treesearch

    Timothy G. Whitby; Michael D. Madritch

    2013-01-01

    Anthropogenic climate change is expected to increase global temperatures and potentially increase soil carbon (C) mineralization, which could lead to a positive feedback between global warming and soil respiration. However the magnitude and spatial variability of belowground responses to warming are not yet fully understood. Some of the variability may depend...

  2. Amplification and dampening of soil respiration by changes in temperature variability

    Treesearch

    C.A. Sierra; M.E. Harmon; E.A. Thomann; S.S. Perakis; H.W. Loescher

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic...

  3. Effects of Short Term Bioturbation by Common Voles on Biogeochemical Soil Variables

    PubMed Central

    Wilske, Burkhard; Eccard, Jana A.; Zistl-Schlingmann, Marcus; Hohmann, Maximilian; Methler, Annabel; Herde, Antje; Liesenjohann, Thilo; Dannenmann, Michael; Butterbach-Bahl, Klaus; Breuer, Lutz

    2015-01-01

    Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 × 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35–150 individuals ha–1 mth–1). Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC) and total nitrogen (N), CO2 emission potential, C/N ratio, the stable isotopic signatures of 13C and 15N, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the δ15N at depths of 10–20 and 20–30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15–30 cm decreased and the C/N ratio at 5–10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools. PMID:25954967

  4. Effects of short term bioturbation by common voles on biogeochemical soil variables.

    PubMed

    Wilske, Burkhard; Eccard, Jana A; Zistl-Schlingmann, Marcus; Hohmann, Maximilian; Methler, Annabel; Herde, Antje; Liesenjohann, Thilo; Dannenmann, Michael; Butterbach-Bahl, Klaus; Breuer, Lutz

    2015-01-01

    Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 × 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35-150 individuals ha-1 mth-1). Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC) and total nitrogen (N), CO2 emission potential, C/N ratio, the stable isotopic signatures of 13C and 15N, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the δ15N at depths of 10-20 and 20-30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15-30 cm decreased and the C/N ratio at 5-10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools.

  5. Spatial Variability of Soil-Water Storage in the Southern Sierra Critical Zone Observatory: Measurement and Prediction

    NASA Astrophysics Data System (ADS)

    Oroza, C.; Bales, R. C.; Zheng, Z.; Glaser, S. D.

    2017-12-01

    Predicting the spatial distribution of soil moisture in mountain environments is confounded by multiple factors, including complex topography, spatial variably of soil texture, sub-surface flow paths, and snow-soil interactions. While remote-sensing tools such as passive-microwave monitoring can measure spatial variability of soil moisture, they only capture near-surface soil layers. Large-scale sensor networks are increasingly providing soil-moisture measurements at high temporal resolution across a broader range of depths than are accessible from remote sensing. It may be possible to combine these in-situ measurements with high-resolution LIDAR topography and canopy cover to estimate the spatial distribution of soil moisture at high spatial resolution at multiple depths. We study the feasibility of this approach using six years (2009-2014) of daily volumetric water content measurements at 10-, 30-, and 60-cm depths from the Southern Sierra Critical Zone Observatory. A non-parametric, multivariate regression algorithm, Random Forest, was used to predict the spatial distribution of depth-integrated soil-water storage, based on the in-situ measurements and a combination of node attributes (topographic wetness, northness, elevation, soil texture, and location with respect to canopy cover). We observe predictable patterns of predictor accuracy and independent variable ranking during the six-year study period. Predictor accuracy is highest during the snow-cover and early recession periods but declines during the dry period. Soil texture has consistently high feature importance. Other landscape attributes exhibit seasonal trends: northness peaks during the wet-up period, and elevation and topographic-wetness index peak during the recession and dry period, respectively.

  6. Variations in thematic mapper spectra of soil related to tillage and crop residue management - Initial evaluation

    NASA Technical Reports Server (NTRS)

    Seeley, M. W.; Ruschy, D. L.; Linden, D. R.

    1983-01-01

    A cooperative research project was initiated in 1982 to study differences in thematic mapper spectral characteristics caused by variable tillage and crop residue practices. Initial evaluations of radiometric data suggest that spectral separability of variably tilled soils can be confounded by moisture and weathering effects. Separability of bare tilled soils from those with significant amounts of corn residue is enhanced by wet conditions, but still possible under dry conditions when recent tillage operations have occurred. In addition, thematic mapper data may provide an alternative method to study the radiant energy balance at the soil surface in conjunction with variable tillage systems.

  7. Evapotranspiration from nonuniform surfaces - A first approach for short-term numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1988-01-01

    Observations of surface heterogeneity of soil moisture from scales of meters to hundreds of kilometers are discussed, and a relationship between grid element size and soil moisture variability is presented. An evapotranspiration model is presented which accounts for the variability of soil moisture, standing surface water, and vegetation internal and stomatal resistance to moisture flow from the soil. The mean values and standard deviations of these parameters are required as input to the model. Tests of this model against field observations are reported, and extensive sensitivity tests are presented which explore the importance of including subgrid-scale variability in an evapotranspiration model.

  8. Estimating soil turnover rate from tree uprooting during hurricanes in Puerto Rico

    USGS Publications Warehouse

    Lenart, M.T.; Falk, D.A.; Scatena, F.N.; Osterkamp, W.R.

    2010-01-01

    Soil turnover by tree uprooting in primary and secondary forests on the island of Puerto Rico was measured in 42 study plots in the months immediately after the passage of a Category 3 hurricane. Trunk basal area explained 61% of the variability of mound volume and 53% of the variability of mound area. The proportion of uprooted trees, the number of uprooted trees, or the proportion of uprooted basal area explained 84-85% of the variation in hurricane-created mound area. These same variables explain 79-85% of the variation in mound volume. The study indicates that the soil turnover period from tree uprooting by Puerto Rican hurricanes is between 1600 and 4800 years. These rates are faster than soil turnover by landslides and background treefall in the same area and provide a useful age constraint on soil profile development and soil carbon sequestration in these dynamic landscapes. ?? 2009 Elsevier B.V.

  9. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.

    PubMed

    El Sebai, T; Lagacherie, B; Soulas, G; Martin-Laurent, F

    2007-02-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass.

  10. Effects of Recent Regional Soil Moisture Variability on Global Net Ecosystem CO2 Exchange

    NASA Astrophysics Data System (ADS)

    Jones, L. A.; Madani, N.; Kimball, J. S.; Reichle, R. H.; Colliander, A.

    2017-12-01

    Soil moisture exerts a major regional control on the inter-annual variability of the global land sink for atmospheric CO2. In semi-arid regions, annual biomass production is closely coupled to variability in soil moisture availability, while in cold-season-affected regions, summer drought offsets the effects of advancing spring phenology. Availability of satellite solar-induced fluorescence (SIF) observations and improvements in atmospheric inversions has led to unprecedented ability to monitor atmospheric sink strength. However, discrepancies still exist between such top-down estimates as atmospheric inversion and bottom-up process and satellite driven models, indicating that relative strength, mechanisms, and interaction of driving factors remain poorly understood. We use soil moisture fields informed by Soil Moisture Active Passive Mission (SMAP) observations to compare recent (2015-2017) and historic (2000-2014) variability in net ecosystem land-atmosphere CO2 exchange (NEE). The operational SMAP Level 4 Carbon (L4C) product relates ground-based flux tower measurements to other bottom-up and global top-down estimates to underlying soil moisture and other driving conditions using data-assimilation-based SMAP Level 4 Soil Moisture (L4SM). Droughts in coastal Brazil, South Africa, Eastern Africa, and an anomalous wet period in Eastern Australia were observed by L4C. A seasonal seesaw pattern of below-normal sink strength at high latitudes relative to slightly above-normal sink strength for mid-latitudes was also observed. Whereas SMAP-based soil moisture is relatively informative for short-term temporal variability, soil moisture biases that vary in space and with season constrain the ability of the L4C estimates to accurately resolve NEE. Such biases might be caused by irrigation and plant-accessible ground-water. Nevertheless, SMAP L4C daily NEE estimates connect top-down estimates to variability of effective driving factors for accurate estimates of regional-to-global land-atmosphere CO2 exchange.

  11. Plant Trait Diversity Buffers Variability in Denitrification Potential over Changes in Season and Soil Conditions

    PubMed Central

    McGill, Bonnie M.; Sutton-Grier, Ariana E.; Wright, Justin P.

    2010-01-01

    Background Denitrification is an important ecosystem service that removes nitrogen (N) from N-polluted watersheds, buffering soil, stream, and river water quality from excess N by returning N to the atmosphere before it reaches lakes or oceans and leads to eutrophication. The denitrification enzyme activity (DEA) assay is widely used for measuring denitrification potential. Because DEA is a function of enzyme levels in soils, most ecologists studying denitrification have assumed that DEA is less sensitive to ambient levels of nitrate (NO3 −) and soil carbon and thus, less variable over time than field measurements. In addition, plant diversity has been shown to have strong effects on microbial communities and belowground processes and could potentially alter the functional capacity of denitrifiers. Here, we examined three questions: (1) Does DEA vary through the growing season? (2) If so, can we predict DEA variability with environmental variables? (3) Does plant functional diversity affect DEA variability? Methodology/Principal Findings The study site is a restored wetland in North Carolina, US with native wetland herbs planted in monocultures or mixes of four or eight species. We found that denitrification potentials for soils collected in July 2006 were significantly greater than for soils collected in May and late August 2006 (p<0.0001). Similarly, microbial biomass standardized DEA rates were significantly greater in July than May and August (p<0.0001). Of the soil variables measured—soil moisture, organic matter, total inorganic nitrogen, and microbial biomass—none consistently explained the pattern observed in DEA through time. There was no significant relationship between DEA and plant species richness or functional diversity. However, the seasonal variance in microbial biomass standardized DEA rates was significantly inversely related to plant species functional diversity (p<0.01). Conclusions/Significance These findings suggest that higher plant functional diversity may support a more constant level of DEA through time, buffering the ecosystem from changes in season and soil conditions. PMID:20661464

  12. NEOCHIM: An electrochemical method for environmental application

    USGS Publications Warehouse

    Leinz, R.W.; Hoover, D.B.; Meier, A.L.

    1999-01-01

    Ion migration and electroosmosis are the principal processes underlying electrokinetic remediation of hazardous wastes from soils. These processes are a response of charged species to an applied electrical current and they are accompanied by electrolysis of water at the electrodes through which the current is applied. Electrolysis results in the formation of OH- at the cathode and H+ at the anode. The current drives the OH- and H+ thus formed from the electrodes, through the soil and to the electrode of opposite charge. Introduction of OH- and H+ into the soil being treated modifies soil chemistry and can interfere with either the collection or immobilization of hazardous waste ions. The introduction of either OH- or H+ to the soil can be problematic to electrokinetic remediation but the problem caused by OH- has been the focus of most researchers. The problem has been addressed by flushing the OH- from the soil near the cathode or treating the soil with buffers. These treatments would apply as well to soils affected by H+. With the NEOCHIM technology, developed by the U.S. Geological Survey (USGS) for use as a sampling technique in exploration for buried ore deposits, OH- and H+ are retained in the inner compartment of two-compartment electrodes and are thus prevented from reaching the soil. This enables the extraction of cations and anions, including anionic forms of toxic metals such as HAsO42-. One of the principal attributes of NEOCHIM is the large volume of soil from which ions can be extracted. It is mathematically demonstrable that NEOCHIM extraction volumes can be orders of magnitude greater than volumes typically sampled in more conventional geochemical exploration methods or for environmental sampling. The technology may also be used to introduce selected ions into the soil that affect the solubility of ceratin ions present in the soil. Although field tests for mineral exploration have shown NEOCHIM extraction efficiencies of about 25-35%, laboratory experiments suggest that significantly higher efficiencies are possible. The attributes of NEOCHIM combined with relatively low cost of electrical power, indicate that the technology may be useful for remediation and monitoring of hazardous waste sites. Of particular importance is that NEOCHIM extractions affect only dissolved and electrically charged species, hence those prone to move in groundwater.The U.S. Geological Survey (USGS) has developed a technology called NEOCHIM for use as a sampling technique in exploration for buried deposits. With this technology, OH- and H+ are retained in the inner compartment of two-compartment electrodes and are thus prevented from reaching the soil. This enables the extraction of cations and anions. Laboratory experiments suggest extraction efficiencies higher than 25-35%.

  13. Soil erodibility variability in laboratory and field rainfall simulations

    NASA Astrophysics Data System (ADS)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán

    2017-04-01

    Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?

  14. Effects of Spatial Variability of Soil Properties on the Triggering of Rainfall-Induced Shallow Landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2015-04-01

    Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.

  15. Geochemical variability of natural soils and reclaimed minespoil soils in the San Juan Basin, New Mexico

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.

    1981-01-01

    An inventory of total-and extractable-element concentrations in soils was made for three areas of the San Juan Basin in New Mexico: (1) the broad area likely to be affected by energy-related development. (2) an area of soils considered to have potential for use as topsoil in mined-land reclamation. and (3) an area of the San Juan coal mine that has been regraded. topsoiled, and revegetated. Maps made of concentrations of 16 elements in area 1 soils show no gradational pattern across the region. Further. these maps do not correspond to those showing geology or soil types. Sodic or saline problems, and a possible but unproven deficiency of zinc available to plants. may make some of the soils in this area undesirable for use as topsoil in mined-land reclamation. Taxonomic great groups of soil in this area cannot be distinguished because each great group tends to have a large within-group variability if compared to the between-group variability. In area 2 the major soils sampled were of the Sheppard. Shiprock. and Doak association. These soils are quite uniform in chemical composition and are not greatly saline or sodic. As in area 1 soils. zinc deficiency may cause a problem in revegetating most of these soils. It is difficult to distinguish soil taxonomic families by using their respective chemical compositions. because of small between-family variability. Topsoil from a reclaimed area of the San Juan mine (area 3) most closely resembles the chemical composition of natural C horizons of soil from area 1. Spoil material that has not been topsoiled is likely to cause sodic-and saline-related problems in revegetation and may cause boron toxicity in plants. Topsoiling has apparently ameliorated these potential problems for plant growth on mine spoil. Total and extractable concentrations for elements and other parameters for each area of the San Juan Basin provide background information for the evaluation of the chemical quality of soils in each area.

  16. Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol)

    NASA Astrophysics Data System (ADS)

    Wang, Dengjun; Su, Chunming; Zhang, Wei; Hao, Xiuzhen; Cang, Long; Wang, Yujun; Zhou, Dongmei

    2014-11-01

    Soils are major sinks of engineered nanoparticles (ENPs) as results of land applications of sewage sludge, accidental spills, or deliberate applications of ENPs (e.g., nano-pesticides). In this study, the transport behaviors of four widely used ENPs (i.e., titanium dioxide [TiO2], buckminsterfullerene [C60], single-walled carbon nanotube [SWNT], and elemental silver [Ag0]) were investigated in water-saturated columns packed with either a quartz sand, a red soil (Ultisol), or sand/soil mixtures with soil mass fraction (λ) from 0% to 100% at slightly acidic solution pH (4.0-5.0). The mobility of tested ENPs decreased significantly with increasing λ, which was attributed to increased surface area and/or retention sites imparted by iron oxides, clay minerals, and organic matter in the red soil. Breakthrough curves of all ENPs exhibited blocking effects (decreasing deposition rate over time) and were well-described using an unfavorable and favorable, two-site kinetic attachment model accounting for random sequential adsorption on the favorable site. Modeled maximum retention capacity and first-order attachment rate coefficient on the favorable site both increased linearly with increasing λ, suggesting that transport parameters of ENPs in natural soils may be accurately extrapolated from transport parameters in the sand/soil mixtures. In addition, the mobility of three negatively charged ENPs (C60, SWNT, and Ag0 NPs) was reversely correlated with their average hydrodynamic diameters, highlighting that the average hydrodynamic diameter of negatively charged ENPs is the dominant physicochemical characteristics controlling their mobility in the Ultisol.

  17. Climate Controls AM Fungal Distributions from Global to Local Scales

    NASA Astrophysics Data System (ADS)

    Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.

    2016-12-01

    Arbuscular mycorrhizal (AM) fungi have key functions in terrestrial biogeochemical processes; thus, determining the relative importance of climate, edaphic factors, and plant community composition on their geographic distributions can improve predictions of their sensitivity to global change. Local adaptation by AM fungi to plant hosts, soil nutrients, and climate suggests that all of these factors may control fungal geographic distributions, but their relative importance is unknown. We created species distribution models for 142 AM fungal taxa at the global scale with data from GenBank. We compared climate variables (BioClim and soil moisture), edaphic variables (phosphorus, carbon, pH, and clay content), and plant variables using model selection on models with (1) all variables, (2) climatic variables only (including soil moisture) and (3) resource-related variables only (all other soil parameters and NPP) using the MaxEnt algorithm evaluated with ENMEval. We also evaluated whether drivers of AM fungal distributions were phylogenetically conserved. To test whether global correlates of AM fungal distributions were reflected at local scales, we then surveyed AM fungi in nine plant hosts along three elevation gradients in the Upper Gunnison Basin, Colorado, USA. At the global scale, the distributions of 55% of AM fungal taxa were affected by both climate and soil resources, whereas 16% were only affected by climate and 29% were only affected by soil resources. Even for AM fungi that were affected by both climate and resources, the effects of climatic variables nearly always outweighed those of resources. Soil moisture and isothermality were the main climatic and NPP and soil carbon the main resource related factors influencing AM fungal distributions. Distributions of closely related AM fungal taxa were similarly affected by climate, but not by resources. Local scale surveys of AM fungi across elevations confirmed that climate was a key driver of AM fungal composition and root colonization, with weaker influences of plant identity and soil nutrients. These two studies across scales suggest prevailing effects of climate on AM fungal distributions. Thus, incorporating climate when forecasting future ranges of AM fungi will enhance predictions of AM fungal abundance and associated ecosystem functions.

  18. On Budyko curve as a consequence of climate-soil-vegetation equilibrium hypothesis

    NASA Astrophysics Data System (ADS)

    Pande, S.

    2012-04-01

    A hypothesis that Budyko curve is a consequence of stable equilibriums of climate-soil-vegetation co-evolution is tested at biome scale. We assume that i) distribution of vegetation, soil and climate within a biome is a distribution of equilibriums of similar soil-vegetation dynamics and that this dynamics is different across different biomes and ii) soil and vegetation are in dynamic equilibrium with climate while in static equilibrium with each other. In order to test the hypothesis, a two stage regression is considered using MOPEX/Hydrologic Synthesis Project dataset for basins in eastern United States. In the first stage, multivariate regression (Seemingly Unrelated Regression) is performed for each biome with soil (estimated porosity and slope of soil water retention curve) and vegetation characteristics (5-week NDVI gradient) as dependent variables and aridity index, vegetation and soil characteristics as independent variables for respective dependent variables. The regression residuals of the first stage along with aridity index then serve as second stage independent variables while actual vaporization to precipitation ratio (vapor index) serving as dependent variable. Insignificance, if revealed, of a first stage parameter allows us to reject the role of corresponding soil or vegetation characteristics in the co-evolution hypothesis. Meanwhile the significance of second stage regression parameter corresponding to a first stage residual allow us to reject the hypothesis that Budyko curve is a locus "solely" of climate-soil-vegetation co-evolution equilibrium points. Results suggest lack of evidence for soil-vegetation co-evolution in Prairies and Mixed/SouthEast Forests (unlike in Deciduous Forests) though climate plays a dominant role in explaining within biome soil and vegetation characteristics across all the biomes. Preliminary results indicate absence of effects beyond climate-soil-vegetation co-evolution in explaining the ratio of annual total minimum monthly flows to precipitation in Deciduous Forests though other three biome types show presence of effects beyond co-evolutionary. Such an analysis can yield insights into the nature of hydrologic change when assessed along the Budyko curve as well as non co-evolutionary effects such as anthropogenic effects on basin scale annual water balances.

  19. Linking the climatic and geochemical controls on global soil carbon cycling

    NASA Astrophysics Data System (ADS)

    Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; Van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal

    2015-04-01

    Climatic and geochemical parameters are regarded as the primary controls for soil organic carbon (SOC) storage and turnover. However, due to the difference in scale between climate and geochemical-related soil research, the interaction of these key factors for SOC dynamics have rarely been assessed. Across a large geochemical and climatic transect in similar biomes in Chile and the Antarctic Peninsula we show how abiotic geochemical soil features describing soil mineralogy and weathering pose a direct control on SOC stocks, concentration and turnover and are central to explaining soil C dynamics at larger scales. Precipitation and temperature had an only indirect control by regulating geochemistry. Soils with high SOC content have low specific potential CO2 respiration rates, but a large fraction of SOC that is stabilized via organo-mineral interactions. The opposite was observed for soils with low SOC content. The observed differences for topsoil SOC stocks along this transect of similar biomes but differing geo-climatic site conditions are of the same magnitude as differences observed for topsoil SOC stocks across all major global biomes. Using precipitation and a set of abiotic geochemical parameters describing soil mineralogy and weathering status led to predictions of high accuracy (R2 0.53-0.94) for different C response variables. Partial correlation analyses revealed that the strength of the correlation between climatic predictors and SOC response variables decreased by 51 - 83% when controlling for geochemical predictors. In contrast, controlling for climatic variables did not result in a strong decrease in the strength of the correlations of between most geochemical variables and SOC response variables. In summary, geochemical parameters describing soil mineralogy and weathering were found to be essential for accurate predictions of SOC stocks and potential CO2 respiration, while climatic factors were of minor importance as a direct control, but are important through governing soil weathering and geochemistry. In conclusion, we pledge for a stronger implementation of geochemical soil properties to predict SOC stocks on a global scale. Understanding the effects of climate (temperature and precipitation) change on SOC dynamics also requires good understanding of the relationship between climate and soil geochemistry.

  20. Sorption of imazaquin in soils with positive balance of charges.

    PubMed

    Rocha, Wadson S D; Regitano, Jussara B; Alleoni, Luis R F; Tornisielo, Valdemar L

    2002-10-01

    The herbicide imazaquin has both an acid and a basic ionizable groups, and its sorption depends upon the pH, the electric potential (psi0), and the oxide and the organic carbon (OC) contents of the soil. Sorption and extraction experiments using 14C-imazaquin were performed in surface and subsurface samples of two acric oxisols (an anionic "rhodic" acrudox and an anionic "xanthic" acrudox) and one non-acric alfisol (a rhodic kandiudalf), treated at four different pH values. Imazaquin showed low to moderate sorption to the soils. Sorption decreased and aqueous extraction increased as pH increased. Up to pH 5.8, sorption was higher in subsurface than in surface layers of the acric soils, due to the positive balance of charges resulted from the high Fe and Al oxide and the low OC contents. It favored electrostatic interactions with anionic molecules of imazaquin. For the subsurface samples of these highly weathered soils, where psi0 was positive and OC was low, it was not possible to predict sorption just by considering imazaquin speciation and its hydrophobic partition to the organic domains of the soil. Moreover, if Koc measured for thesurface samples were assumed to represent the whole profile in predictive models for leaching potential, then it would result in underestimation of sorption potential in subsurface, and consequently result in overestimation of the leaching potential.

  1. The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions.

    PubMed

    Cao, Zhiming; Rossi, Lorenzo; Stowers, Cheyenne; Zhang, Weilan; Lombardini, Leonardo; Ma, Xingmao

    2018-01-01

    The ongoing global climate change raises concerns over the decreasing moisture content in agricultural soils. Our research investigated the physiological impact of two types of cerium oxide nanoparticles (CeO 2 NPs) on soybean at different moisture content levels. One CeO 2 NP was positively charged on the surface and the other negatively charged due to the polyvinylpyrrolidone (PVP) coating. The results suggest that the effect of CeO 2 NPs on plant photosynthesis and water use efficiency (WUE) was dependent upon the soil moisture content. Both types of CeO 2 NPs exhibited consistently positive impacts on plant photosynthesis at the moisture content above 70% of field capacity (θ fc ). Similar positive impact of CeO 2 NPs was not observed at 55% θ fc , suggesting that the physiological impact of CeO 2 NPs was dependent upon the soil moisture content. The results also revealed that V Cmax (maximum carboxylation rate) was affected by CeO 2 NPs, indicating that CeO 2 NPs affected the Rubisco activity which governs carbon assimilation in photosynthesis. In conclusion, CeO 2 NPs demonstrated significant impacts on the photosynthesis and WUE of soybeans and such impacts were affected by the soil moisture content. Graphical abstract Soil moisture content affects plant cerium oxide nanoparticle interactions.

  2. Assessing the applicability of the earth impedance method for in situ studies of tree root systems

    PubMed Central

    Urban, Josef; Bequet, Raphael; Mainiero, Raphael

    2011-01-01

    Several electrical methods have been introduced as non-invasive techniques to overcome the limited accessibility to root systems. Among them, the earth impedance method (EIM) represents the most recent development. Applying an electrical field between a cormus and the rooted soil, the EIM measures the absorptive root surface area (ARSA) from grounding resistance patterns. Allometric relationships suggested that this method was a valuable tool. Crucial assumptions for the applicability of the EIM, however, have not been tested experimentally. Focusing on tree root systems, the present study assesses the applicability of the EIM. Six hypotheses, deduced from the EIM approach, were tested in several experiments and the results were compared with conventional methods. None of the hypotheses could be verified and the results allow two major conclusions. First, in terms of an analogue electrical circuit, a tree-root–soil continuum appears as a serial circuit with xylem and soil resistance being the dominant components. Allometric variation in contact resistance, with the latter being the proxy for root surface area, are thus overruled by the spatial and seasonal variation of soil and xylem resistances. Second, in a tree-root–soil continuum, distal roots conduct only a negligible portion of the electric charge. Most of charge carriers leave the root system in the proximal parts of the root–soil interface. PMID:21273337

  3. Electrokinetic removal of charged contaminant species from soil and other media using moderately conductive adsorptive materials

    DOEpatents

    Lindgren, Eric R.; Mattson, Earl D.

    2001-01-01

    Method for collecting and concentrating charged species, specifically, contaminant species in a medium, preferably soil. The method utilizes electrokinesis to drive contaminant species into and through a bed adjacent to a drive electrode. The bed comprises a moderately electrically conductive adsorbent material which is porous and is infused with water or other solvent capable of conducting electrical current. The bed material, preferably activated carbon, is easily removed and disposed of. Preferably, where activated carbon is used, after contaminant species are collected and concentrated, the mixture of activated carbon and contaminant species is removed and burned to form a stable and easily disposable waste product.

  4. Screening of polymers on selected Hawaii soils for erosion reduction and particle settling

    NASA Astrophysics Data System (ADS)

    Teo, James A.; Ray, Chittaranjan; El-Swaify, Samir A.

    2006-01-01

    In recent years, high-molecular-weight anionic polyacrylamides (PAMs) have been tested on a variety of soils, primarily in temperate climates. However, little information is available regarding the effectiveness of PAM for preventing soil loss through runoff in tropical settings. Screening tests were performed using three negatively charged PAMs and one positively charged PAM on five Hawaii soils (two Oxisols, one Vertisol, and two Aridisols) to determine erosion loss, sediment settling, and aggregate stability. A laboratory-scale rainfall simulator was used to apply erosive rainfall at intensities from 5 to 8.5 cm h-1 at various PAM doses applied in both dry and solution forms. Soil detachment due to splash and runoff, as well as the runoff and percolate water volumes, were measured for initial and successive storms. The impact of PAM on particle settling and aggregate stability was also evaluated for selected soil-treatment combinations. Among the PAMs, Superfloc A-836 was most effective, and significantly reduced runoff and splash sediment loss for the Wahiawa Oxisol and Pakini Andisol at rates varying between 10 and 50 kg ha-1. Reduced runoff and splash sediment loss were also noted for PAM Aerotil-D when applied in solution form to the Wahiawa Oxisol. Significant reductions in soil loss were not noted for either the Lualualei Vertisol or the Holomua Oxisol. It is believed that the high montmorillonite content of the Lualualei Vertisol and the low cation-exchange capacity of the Holomua Oxisol diminished the effectiveness of the various PAMs tested. The polymers were also found to enhance sediment settling of all soils and helped improve their aggregate stability. This screening study shows the potential use of PAM for tropical soils for applications such as infiltration enhancement, runoff reduction, and enhanced sedimentation of detention ponds.

  5. On the role of "internal variability" on soil erosion assessment

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy; Fatichi, Simone

    2017-04-01

    Empirical data demonstrate that soil loss is highly non-unique with respect to meteorological or even runoff forcing and its frequency distributions exhibit heavy tails. However, all current erosion assessments do not describe the large associated uncertainties of temporal erosion variability and make unjustified assumptions by relying on central tendencies. Thus, the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. In this study, we attempt to reveal that the high variability in soil losses can be attributed to two sources: (1) 'external variability' referring to the uncertainties originating at macro-scale, such as climate, topography, and land use, which has been extensively studied; (2) 'geomorphic internal variability' referring to the micro-scale variations of pedologic properties (e.g., surface erodibility in soils with multi-sized particles), hydrologic properties (e.g., soil structure and degree of saturation), and hydraulic properties (e.g., surface roughness and surface topography). Using data and a physical hydraulic, hydrologic, and erosion and sediment transport model, we show that the geomorphic internal variability summarized by spatio-temporal variability in surface erodibility properties is a considerable source of uncertainty in erosion estimates and represents an overlooked but vital element of geomorphic response. The conclusion is that predictive frameworks of soil erosion should embed stochastic components together with deterministic assessments, if they do not want to largely underestimate uncertainty. Acknowledgement: This study was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B03931886).

  6. Effects of Landform on site index for two mesophytic tree species in the Appalachian Mountains of North Carolina, USA

    Treesearch

    W.Henry. McNab

    2010-01-01

    The effects of soil and topographic variables on forest site index were determined for two mesophytic tree species, northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.) in the Southern Appalachian Mountains of North Carolina. Stand variables included soil solum thickness, soil A-horizon thickness,...

  7. Evaluating topsoil depth effects on phosphorus and potassium nutrient dynamics of grain and switchgrass production systems

    USDA-ARS?s Scientific Manuscript database

    Understanding the effects of fertilizer addition and crop removal on long-term change in soil test phosphorus (STP) and soil test potassium (STK) is crucial for maximizing the use of grower inputs on claypan soils. Due to variable nutrient supply from subsoils and variable crop removal across fields...

  8. Drivers of small scale variability in soil-atmosphere fluxes of CH4, N2O and CO2 in a forest soil

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Nicolai, Clara; Wheeler, Denis; Lang, Friedeike; Paulus, Sinikka

    2016-04-01

    Soil-atmosphere fluxes of CH4, N2O and CO2 can vary on different spatial scales, on large scales between ecosystems but also within apparently homogenous sites. While CO2 and CH4 consumption is rather evenly distibuted in well aerated soils, the production of N2O and CH4 seems to occur at hot spots that can be associated with anoxic or suboxic conditions. Small-scale variability in soil properties is well-known from field soil assesment, affecting also soil aeration and thus theoretically, greenhouse gas fluxes. In many cases different plant species are associated with different soil conditions and vegetation mapping should therefor combined with soil mapping. Our research objective was explaining the small scale variability of greenhouse gas fluxes in an apparently homogeneous 50 years old Scots Pine stand in a former riparian flood plain.We combined greenhouse gas measurements and soil physical lab measurments with field soil assessment and vegetation mapping. Measurements were conducted with at 60 points at a plot of 30 X 30 m at the Hartheim monitoring site (SW Germany). For greenhouse gas measurements a non-steady state chamber system and laser analyser, and a photoacoustic analyser were used. Our study shows that the well aerated site was a substantial sink for atmospheric CH4 (-2.4 nmol/m² s) and also a for N2O (-0.4 nmol/m² s), but less pronounced, whereas CO2 production was a magnitude larger (2.6 μmol/m² s). The spatial variability of the CH4 consumption of the soils could be explained by the variability of the soil gas diffusivity (measured in situ + using soil cores). Deviations of this clear trend were only observed at points where decomposing woody debris was directly under the litter layer. Soil texture ranged from gravel, coarse sand, fine sand to pure silt, with coarser texture having higher soil gas diffusivity. Changes in texture were rather abrupt at some positions or gradual at other positions, and were well reflected in the vegetation structure. On patches of gravel and coarse sand there was hardly any ground vegatation, and a shrublayer was found only at silty patches Our results indicate that a stratification and regionalisation approach based on vegetation structure and soil texture represents a promising tool for the adjustment of sampling designs for soil gas flux measurement. Acknowledgement This research was financially supported by the project DFG (MA 5826/2-1).

  9. Spatial variability of soil carbon, pH, available phosphorous and potassium in organic farm located in Mediterranean Croatia

    NASA Astrophysics Data System (ADS)

    Bogunović, Igor; Pereira, Paulo; Šeput, Miranda

    2016-04-01

    Soil organic carbon (SOC), pH, available phosphorus (P), and potassium (K) are some of the most important factors to soil fertility. These soil parameters are highly variable in space and time, with implications to crop production. The aim of this work is study the spatial variability of SOC, pH, P and K in an organic farm located in river Rasa valley (Croatia). A regular grid (100 x 100 m) was designed and 182 samples were collected on Silty Clay Loam soil. P, K and SOC showed moderate heterogeneity with coefficient of variation (CV) of 21.6%, 32.8% and 51.9%, respectively. Soil pH record low spatial variability with CV of 1.5%. Soil pH, P and SOC did not follow normal distribution. Only after a Box-Cox transformation, data respected the normality requirements. Directional exponential models were the best fitted and used to describe spatial autocorrelation. Soil pH, P and SOC showed strong spatial dependence with nugget to sill ratio with 13.78%, 0.00% and 20.29%, respectively. Only K recorded moderate spatial dependence. Semivariogram ranges indicate that future sampling interval could be 150 - 200 m in order to reduce sampling costs. Fourteen different interpolation models for mapping soil properties were tested. The method with lowest Root Mean Square Error was the most appropriated to map the variable. The results showed that radial basis function models (Spline with Tension and Completely Regularized Spline) for P and K were the best predictors, while Thin Plate Spline and inverse distance weighting models were the least accurate. The best interpolator for pH and SOC was the local polynomial with the power of 1, while the least accurate were Thin Plate Spline. According to soil nutrient maps investigated area record very rich supply with K while P supply was insufficient on largest part of area. Soil pH maps showed mostly neutral reaction while individual parts of alkaline soil indicate the possibility of penetration of seawater and salt accumulation in the soil profile. Future research should focus on spatial patterns on soil pH, electrical conductivity and sodium adsorption ratio. Keywords: geostatistics, semivariogram, interpolation models, soil chemical properties

  10. Instrumenting an upland research catchment in Canterbury, New Zealand to study controls on variability of soil moisture, shallow groundwater and streamflow

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Srinivasan, Ms

    2015-04-01

    Hydrologists recognise the importance of vertical drainage and deep flow paths in runoff generation, even in headwater catchments. Both soil and groundwater stores are highly variable over multiple scales, and the distribution of water has a strong control on flow rates and timing. In this study, we instrumented an upland headwater catchment in New Zealand to measure the temporal and spatial variation in unsaturated and saturated-zone responses. In NZ, upland catchments are the source of much of the water used in lowland agriculture, but the hydrology of such catchments and their role in water partitioning, storage and transport is poorly understood. The study area is the Langs Gully catchment in the North Branch of the Waipara River, Canterbury: this catchment was chosen to be representative of the foothills environment, with lightly managed dryland pasture and native Matagouri shrub vegetation cover. Over a period of 16 months we measured continuous soil moisture at 32 locations and near-surface water table (< 2 m) at 14 locations, as well as measuring flow at 3 stream gauges. The distributed measurement sites were located to allow comparisons between North and South facing locations, near-stream versus hillslope locations, and convergent versus divergent hillslopes. We found that temporal variability is strongly controlled by the climatic seasonal cycle, for both soil moisture and water table, and for both the mean and extremes of their distributions. Groundwater is a larger water storage component than soil moisture, and the difference increases with catchment wetness. The spatial standard deviation of both soil moisture and groundwater is larger in winter than in summer. It peaks during rainfall events due to partial saturation of the catchment, and also rises in spring as different locations dry out at different rates. The most important controls on spatial variability are aspect and distance from stream. South-facing and near-stream locations have higher water tables and more, larger soil moisture wetting events. Typical hydrological models do not explicitly account for aspect, but our results suggest that it is an important factor in hillslope runoff generation. Co-measurement of soil moisture and water table level allowed us to identify interrelationships between the two. Locations where water tables peaked closest to the surface had consistently wetter soils and higher water tables. These wetter sites were the same across seasons. However, temporary patterns of strong soil moisture response to summer storms did not correspond to the wetter sites. Total catchment spatial variability is composed of multiple variability sources, and the dominant type is sensitive to those stores that are close to a threshold such as field capacity or saturation. Therefore, we classified spatial variability as 'summer mode' or 'winter mode'. In summer mode, variability is controlled by shallow processes e.g. interactions of water with soils and vegetation. In winter mode, variability is controlled by deeper processes e.g. groundwater movement and bypass flow. Double flow peaks observed during some events show the direct impact of groundwater variability on runoff generation. Our results suggest that emergent catchment behaviour depends on the combination of these multiple, time varying components of variability.

  11. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations.

    PubMed

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Zhang, Ling; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality.

  12. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations

    PubMed Central

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality. PMID:29377926

  13. Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raich, J.W.

    2003-09-15

    We used a climate-driven regression model to develop spatially resolved estimates of soil-CO{sub 2} emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO{sub 2} fluxes. The mean annual global soil-CO{sub 2} flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO{sub 2} emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO{sub 2} emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreenmore » broad-leaved forests contributed more soil-derived CO{sub 2} to the atmosphere than did any other vegetation type ({approx}30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO{sub 2} emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO{sub 2} production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO{sub 2} concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO{sub 2} emissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO{sub 2} fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY{sup -1} per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO{sub 2} emissions, global warming is likely to stimulate CO{sub 2} emissions from soils.« less

  14. Effects of biochar produced from different feedstocks on soil properties and sunflower growth

    NASA Astrophysics Data System (ADS)

    Alburquerque, J. A.; Calero, J. M.; Villar, R.; Barrón, V.; Torrent, J.; del Campillo, M. C.; Gallardo, A.

    2012-04-01

    The use of biochar obtained from biomass pyrolysis as a soil amendment has potential benefits, such as reduction in gas emissions, increase in soil carbon sequestration and improvements in soil fertility and crop yield. These constitute a great incentive for the implementation of biochar-based strategies, which could contribute to improvement of the sustainability of agricultural systems. However, to date, the results of research studies show great variability as a result of differences in both the raw materials and the pyrolysis conditions used to produce biochar, as well as in the experimental setting (crop, soil type, pedo-climatic conditions, etc.). The aim of this study was to evaluate the effects of five types of biochar produced from representative agricultural and forestry wastes (olive husk, almond shell, wheat straw, pine woodchips and olive tree prunings), and applied to soil at different rates, on soil properties and sunflower (Helianthus annuus L.) growth. The biochars had a high organic matter content, alkaline pH, variable soluble salt content and non-phytotoxic properties. The addition of biochar to soil increased pH, electrical conductivity and water retention capacity, and decreased soil bulk density compared to control (unamended soil). However, these effects differed depending on biochar type. In contrast, no consistent effects on sunflower growth variables were observed due to the addition of biochar: increases were observed in some variables (plant dry weight, leaf area and height), but these increases were, in general, not statistically significant when compared to the unamended soil. This can be explained by the nature of biochar, being rich in carbon but relatively poor in nutrients. In summary, our results indicate that biochar is capable of improving soil properties which can impact positively on soil-plant water relations, without negative effects on sunflower growth, and therefore it is suitable for use as a long-term carbon sink in agricultural soils, with both agricultural and environmental benefits.

  15. Soil variability in engineering applications

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna

    2014-05-01

    Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random Finite Element Method (RFEM). This method has been used to investigate the random behavior of soils in the context of a variety of classical geotechnical problems. Afterward, some following studies collected the worldwide variability values of many technical parameters of soils (Phoon and Kulhawy 1999a) and their spatial correlation functions (Phoon and Kulhawy 1999b). In Italy, Cherubini et al. (2007) calculated the spatial variability structure of sandy and clayey soils from the standard cone penetration test readings. The large extent of the worldwide measured spatial variability of soils and rocks heavily affects the reliability of geotechnical designing as well as other uncertainties introduced by testing devices and engineering models. So far, several methods have been provided to deal with the preceding sources of uncertainties in engineering designing models (e.g. First Order Reliability Method, Second Order Reliability Method, Response Surface Method, High Dimensional Model Representation, etc.). Nowadays, the efforts in this field have been focusing on (1) measuring spatial variability of different rocks and soils and (2) developing numerical models that take into account the spatial variability as additional physical variable. References Cherubini C., Vessia G. and Pula W. 2007. Statistical soil characterization of Italian sites for reliability analyses. Proc. 2nd Int. Workshop. on Characterization and Engineering Properties of Natural Soils, 3-4: 2681-2706. Griffiths D.V. and Fenton G.A. 1993. Seepage beneath water retaining structures founded on spatially random soil, Géotechnique, 43(6): 577-587. Mandelbrot B.B. 1983. The Fractal Geometry of Nature. San Francisco: W H Freeman. Matheron G. 1962. Traité de Géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 p. Phoon K.K. and Kulhawy F.H. 1999a. Characterization of geotechnical variability. Can Geotech J, 36(4): 612-624. Phoon K.K. and Kulhawy F.H. 1999b. Evaluation of geotechnical property variability. Can Geotech J, 36(4): 625-639. Terzaghi K. 1943. Theoretical Soil Mechanics. New York: John Wiley and Sons. Turcotte D.L. 1986. Fractals and fragmentation. J Geophys Res, 91: 1921-1926. Vanmarcke E.H. 1977. Probabilistic modeling of soil profiles. J Geotech Eng Div, ASCE, 103: 1227-1246. Vanmarcke E.H. 1983. Random fields: analysis and synthesis. MIT Press, Cambridge.

  16. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape

    DOE PAGES

    Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.; ...

    2018-05-18

    Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less

  17. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.

    Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less

  18. Predicting active-layer soil thickness using topographic variables at a small watershed scale

    PubMed Central

    Li, Aidi; Tan, Xing; Wu, Wei; Liu, Hongbin; Zhu, Jie

    2017-01-01

    Knowledge about the spatial distribution of active-layer (AL) soil thickness is indispensable for ecological modeling, precision agriculture, and land resource management. However, it is difficult to obtain the details on AL soil thickness by using conventional soil survey method. In this research, the objective is to investigate the possibility and accuracy of mapping the spatial distribution of AL soil thickness through random forest (RF) model by using terrain variables at a small watershed scale. A total of 1113 soil samples collected from the slope fields were randomly divided into calibration (770 soil samples) and validation (343 soil samples) sets. Seven terrain variables including elevation, aspect, relative slope position, valley depth, flow path length, slope height, and topographic wetness index were derived from a digital elevation map (30 m). The RF model was compared with multiple linear regression (MLR), geographically weighted regression (GWR) and support vector machines (SVM) approaches based on the validation set. Model performance was evaluated by precision criteria of mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Comparative results showed that RF outperformed MLR, GWR and SVM models. The RF gave better values of ME (0.39 cm), MAE (7.09 cm), and RMSE (10.85 cm) and higher R2 (62%). The sensitivity analysis demonstrated that the DEM had less uncertainty than the AL soil thickness. The outcome of the RF model indicated that elevation, flow path length and valley depth were the most important factors affecting the AL soil thickness variability across the watershed. These results demonstrated the RF model is a promising method for predicting spatial distribution of AL soil thickness using terrain parameters. PMID:28877196

  19. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2013-08-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.

  20. Valorisation of N and P from waste water by using natural reactive hybrid sorbents: Nutrients (N,P,K) release evaluation in amended soils by dynamic experiments.

    PubMed

    Guaya, Diana; Valderrama, César; Farran, Adriana; Sauras, Teresa; Cortina, José Luis

    2018-01-15

    The removal of nutrients (nitrogen (N), phosphorous (P)) from waste water has become a resource recovery option in recent regulations worldwide, as observed in the European Union. Although both of these nutrients could be recovered from the sludge line, >70-75% of the N and P is discharged into the water line. Efforts to improve the nutrient recovery ratios have focused on developing low-cost technologies that use sorption processes. In this study, a natural zeolite (clinoptilolite type) in its potassium (K) form was impregnated with hydrated metal oxides and used to prepare natural hybrid reactive sorbents (HRS) for the simultaneous recovery of ammonium (NH 4 + ) and phosphate (PO 4 3- ) from treated urban waste water. Three unfertile soils (e.g., one acidic and two basic) amended with N-P-K charged HRS were leached with deionized water (e.g. to simulate infiltration in the field) at two- and three-day time intervals over 15 different leaching cycles (equivalent to 15 bed volumes). The N-P-K leaching profiles for the three charged hybrid sorbents exhibited continuous nutrient release, with their values dependent on the composition of minerals in the soils. In the basic soil that is rich in illite and calcite, the release of potassium (K + ) and ammonium (NH 4 + ) is favoured by-ion exchange with calcium (Ca 2+ ) and accordingly diminishes the release of phosphate (PO 4 3- ) due to its limited solubility in saturated calcite solutions (pH8 to 9). The opposite is true for sandy soils that are rich in albite (both acidic and basic), whereas the release of NH 4 + and K + was limited and the values of both ions measured in the leaching solutions were below 1mg/L. Their leaching solutions were poor in Ca 2+ , and the release of PO 4 3- was higher (up to 12mgP-PO 4 3- /L). The nutrient releases necessary for plant growth were provided continuously and were controlled primarily by the soil mineral dissolution rates fixing the soil aqueous solution composition (e.g. pH and ionic composition; in particular, the presence of calcite is a determinant for nutrient release, especially in alkaline soils). The N-P-K charged HRS sorbents that were used for soil amendment may be an alternative for avoiding nutrient leaching and reaching the goals of soil sustainability in agriculture and reducing the nutrient overloading of surface waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica.

    PubMed

    Thomazini, A; Francelino, M R; Pereira, A B; Schünemann, A L; Mendonça, E S; Almeida, P H A; Schaefer, C E G R

    2016-08-15

    Soils and vegetation play an important role in the carbon exchange in Maritime Antarctica but little is known on the spatial variability of carbon processes in Antarctic terrestrial environments. The objective of the current study was to investigate (i) the soil development and (ii) spatial variability of ecosystem respiration (ER), net ecosystem CO2 exchange (NEE), gross primary production (GPP), soil temperature (ST) and soil moisture (SM) under four distinct vegetation types and a bare soil in Keller Peninsula, King George Island, Maritime Antarctica, as follows: site 1: moss-turf community; site 2: moss-carpet community; site 3: phanerogamic antarctic community; site 4: moss-carpet community (predominantly colonized by Sanionia uncinata); site 5: bare soil. Soils were sampled at different layers. A regular 40-point (5×8 m) grid, with a minimum separation distance of 1m, was installed at each site to quantify the spatial variability of carbon exchange, soil moisture and temperature. Vegetation characteristics showed closer relation with soil development across the studied sites. ER reached 2.26μmolCO2m(-2)s(-1) in site 3, where ST was higher (7.53°C). A greater sink effect was revealed in site 4 (net uptake of 1.54μmolCO2m(-2)s(-1)) associated with higher SM (0.32m(3)m(-3)). Spherical models were fitted to describe all experimental semivariograms. Results indicate that ST and SM are directly related to the spatial variability of CO2 exchange. Heterogeneous vegetation patches showed smaller range values. Overall, poorly drained terrestrial ecosystems act as CO2 sink. Conversely, where ER is more pronounced, they are associated with intense soil carbon mineralization. The formations of new ice-free areas, depending on the local soil drainage condition, have an important effect on CO2 exchange. With increasing ice/snow melting, and resulting widespread waterlogging, increasing CO2 sink in terrestrial ecosystems is expected for Maritime Antarctica. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. MineWolf Tiller Test and Evaluation

    DTIC Science & Technology

    2007-11-01

    scale. Reheat and reweigh until no change in mass is recorded. Soil is then dry. Calculations The moisture content of a soil is expressed as a... MOISTURE % WET DENSITY KG/M³ DRY DENSITY KG/M³ 1 07-Sep-06 gravel 10cm 4 2731 2621 2 07-Sep-06 gravel 10cm 4 2653 2541 3 07-Sep-06 gravel 10cm 3...each soil condition. This table also indicates the number of untriggered fuzes which were found separated from their main charges. The notes

  3. Geochemical Fate and Transport of Sildenafil and Vardenafil

    NASA Astrophysics Data System (ADS)

    Richter, L.; Boudinot, G.; Vulava, V. M.; Cory, W. C.

    2015-12-01

    The geochemical fate of pharmaceuticals and their degradation products is a developing environmental field. The geologic, chemical, and biological fate of these pollutants has become very relevant with the increase in human population and the resulting increase in pollutant concentrations in the environment. In this study, we focus on sildenafil (SDF) and vardenafil (VDF), active compounds in Viagra and Levitra, respectively, two commonly used erectile dysfunction drugs. The main objective is to determine the sorption potential and transport behavior of these two compounds in natural soils. Both SDF and VDF are complex organic molecules with multiple amine functional groups in their structures. Two types of natural acidic soils (pH≈4.5), an organic-rich soil (7.6% OM) and clay-rich soil (5.1% clay) were used in this study to determine which soil components influence sorption behavior of both compounds. Sorption isotherms measured using batch reactors were nearly linear, but sorption was stronger in soil that contained higher clay content. Both compounds have multiple pKas due to the amine functional groups, the relevant pKas of SDF are 5.97 and 7.27, and those of VDF's are 4.72 and 6.21. These values indicate that these compounds likely behave as cations in soil suspensions and hence were strongly sorbed to negatively-charged clay minerals present in both soils. The clay composition in both soils is predominantly kaolinite with smaller amount of montmorillonite, both of which have a predominantly negative surface charge. Transport experiments using glass chromatography columns indicated that both compounds were more strongly retarded in the clay-rich soils. Breakthrough curves from the transport experiments were modeled using convection-dispersion transport equations. The organic matter in the soil seemed to play a less dominant role in the geochemistry in this study, but is likely to transform both compounds into derivative compounds as seen in other studies.

  4. Joint Multifractal Analysis of penetration resistance variability in an olive orchard.

    NASA Astrophysics Data System (ADS)

    Lopez-Herrera, Juan; Herrero-Tejedor, Tomas; Saa-Requejo, Antonio; Villeta, Maria; Tarquis, Ana M.

    2016-04-01

    Spatial variability of soil properties is relevant for identifying those zones with physical degradation. We used descriptive statistics and multifractal analysis for characterizing the spatial patterns of soil penetrometer resistance (PR) distributions and compare them at different soil depths and soil water content to investigate the tillage effect in soil compactation. The study was conducted on an Inceptisol dedicated to olive orchard for the last 70 years. Two parallel transects of 64 m were selected as different soil management plots, conventional tillage (CT) and no tillage (NT). Penetrometer resistance readings were carried out at 50 cm intervals within the first 20 cm of soil depth (López de Herrera et al., 2015a). Two way ANOVA highlighted that tillage system, soil depth and their interaction are statistically significant to explain the variance of PR data. The comparison of CT and NT results at different depths showed that there are significant differences deeper than 10 cm but not in the first two soil layers. The scaling properties of each PR profile was characterized by τ(q) function, calculated in the range of moment orders (q) between -5 and +5 taken at 0.5 lag increments. Several parameters were calculated from this to establish different comparisons (López de Herrera et al., 2015b). While the multifractal analysis characterizes the distribution of a single variable along its spatial support, the joint multifractal analysis can be used to characterize the joint distribution of two or more variables along a common spatial support (Kravchenko et al., 2000; Zeleke and Si, 2004). This type of analysis was performed to study the scaling properties of the joint distribution of PR at different depths. The results showed that this type of analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets in all the soil layers. References Kravchenko AN, Bullock DG, Boast CW (2000) Joint multifractal analysis of crop yield and terrain slope. Agro. j. 92: 1279-1290. López de Herrera, J., Tomas Herrero Tejedor, Antonio Saa-Requejo and Ana M. Tarquis (2015a) Influence of tillage in soil penetration resistance variability in an olive orchard. Geophysical Research Abstracts, 17, EGU2015-15425. López de Herrera, J., Tomás Herrero Tejedor, Antonio Saa-Requejo, A.M. Tarquis. Influence of tillage in soil penetration resistance variability in an olive orchard. Soil Research, accepted, 2015b. doi: SR15046 Zeleke TB, Si BC (2004) Scaling properties of topographic indices and crop yield: Multifractal and joint multifractal approaches. Agro. j. 96: 1082-1090.

  5. Reliable and accurate point-based prediction of cumulative infiltration using soil readily available characteristics: A comparison between GMDH, ANN, and MLR

    NASA Astrophysics Data System (ADS)

    Rahmati, Mehdi

    2017-08-01

    Developing accurate and reliable pedo-transfer functions (PTFs) to predict soil non-readily available characteristics is one of the most concerned topic in soil science and selecting more appropriate predictors is a crucial factor in PTFs' development. Group method of data handling (GMDH), which finds an approximate relationship between a set of input and output variables, not only provide an explicit procedure to select the most essential PTF input variables, but also results in more accurate and reliable estimates than other mostly applied methodologies. Therefore, the current research was aimed to apply GMDH in comparison with multivariate linear regression (MLR) and artificial neural network (ANN) to develop several PTFs to predict soil cumulative infiltration point-basely at specific time intervals (0.5-45 min) using soil readily available characteristics (RACs). In this regard, soil infiltration curves as well as several soil RACs including soil primary particles (clay (CC), silt (Si), and sand (Sa)), saturated hydraulic conductivity (Ks), bulk (Db) and particle (Dp) densities, organic carbon (OC), wet-aggregate stability (WAS), electrical conductivity (EC), and soil antecedent (θi) and field saturated (θfs) water contents were measured at 134 different points in Lighvan watershed, northwest of Iran. Then, applying GMDH, MLR, and ANN methodologies, several PTFs have been developed to predict cumulative infiltrations using two sets of selected soil RACs including and excluding Ks. According to the test data, results showed that developed PTFs by GMDH and MLR procedures using all soil RACs including Ks resulted in more accurate (with E values of 0.673-0.963) and reliable (with CV values lower than 11 percent) predictions of cumulative infiltrations at different specific time steps. In contrast, ANN procedure had lower accuracy (with E values of 0.356-0.890) and reliability (with CV values up to 50 percent) compared to GMDH and MLR. The results also revealed that Ks exclusion from input variables list caused around 30 percent decrease in PTFs accuracy for all applied procedures. However, it seems that Ks exclusion resulted in more practical PTFs especially in the case of GMDH network applying input variables which are less time consuming than Ks. In general, it is concluded that GMDH provides more accurate and reliable estimates of cumulative infiltration (a non-readily available characteristic of soil) with a minimum set of input variables (2-4 input variables) and can be promising strategy to model soil infiltration combining the advantages of ANN and MLR methodologies.

  6. New Mexico Tech landmine, UXO, IED detection sensor test facility: measurements in real field soils

    NASA Astrophysics Data System (ADS)

    Hendrickx, Jan M. H.; Alkov, Nicole; Hong, Sung-ho; Van Dam, Remke L.; Kleissl, Jan; Shannon, Heather; Meason, John; Borchers, Brian; Harmon, Russell S.

    2006-05-01

    Modeling studies and experimental work have demonstrated that the dynamic behavior of soil physical properties has a significant effect on most sensors for the detection of buried land mines. An outdoor test site has been constructed allowing full control over soil water content and continuous monitoring of important soil properties and environmental conditions. Time domain reflectometry sensors and thermistors measure soil water1 content and temperature, respectively, at different depths above and below the land mines as well as in homogeneous soil away from the land mines. During the two-year operation of the test-site, the soils have evolved to reflect real field soil conditions. This paper compares visual observations as well as ground-penetrating radar and thermal infrared measurements at this site taken immediately after construction in early 2004 with measurements from early 2006. The visual observations reveal that the 2006 soil surfaces exhibit a much higher spatial variability due to the development of mini-reliefs, "loose" and "connected" soil crusts, cracks in clay soils, and vegetation. Evidence is presented that the increased variability of soil surface characteristics leads to a higher natural spatial variability of soil surface temperatures and, thus, to a lower probability to detect landmines using thermal imagery. No evidence was found that the soil surface changes affect the GPR signatures of landmines under the soil conditions encountered in this study. The New Mexico Tech outdoor Landmine Detection Sensor Test Facility is easily accessible and anyone interested is welcome to use it for sensor testing.

  7. Landscape structure control on soil CO2 efflux variability in complex terrain: Scaling from point observations to watershed scale fluxes

    Treesearch

    Diego A. Riveros-Iregui; Brian L. McGlynn

    2009-01-01

    We investigated the spatial and temporal variability of soil CO2 efflux across 62 sites of a 393-ha complex watershed of the northern Rocky Mountains. Growing season (83 day) cumulative soil CO2 efflux varied from ~300 to ~2000 g CO2 m-2, depending upon landscape position, with a median of 879.8 g CO2 m-2. Our findings revealed that highest soil CO2 efflux rates were...

  8. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under different hydrologic conditions and the factors controlling the temporal variability of the ECa-soil moisture relationship. The approach provided valuable insight into the time-varying contribution of local and nonlocal factors to the characteristic spatial patterns of soil moisture and the transition mechanisms. The spatial organization of soil moisture was controlled by different processes in different soil horizons, and the topsoil's moisture did not mirror processes that take place within the soil profile. Results show that, for the Schäfertal hillslope site which is presumed to be representative for non-intensively managed soils with moderate clay content, local soil properties (e.g., soil texture and porosity) are the major control on the spatial pattern of ECa. In contrast, the ECa-soil moisture relationship is small and varies over time indicating that ECa is not a good proxy for soil moisture estimation at the investigated site.Occasionally observed stronger correlations between ECa and soil moisture may be explained by background dependencies of ECa to other state variables such as pore water electrical conductivity. The results will help to improve conceptual understanding for hydrological model studies at similar or smaller scales, and to transfer observation concepts and process understanding to larger or less instrumented sites, as well as to constrain the use of EMI-based ECa data for hydrological applications.

  9. State-Space Estimation of Soil Organic Carbon Stock

    NASA Astrophysics Data System (ADS)

    Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.

    2014-04-01

    Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.

  10. Relative spatial soil geochemical variability along two transects across the United States and Canada

    USGS Publications Warehouse

    Garrett, Robert G.

    2009-01-01

    The patterns of relative variability differ by transect and horizon. The N–S transect A-horizon soils show significant between-40-km scale variability for 29 elements, with only 4 elements (Ca, Mg, Pb and Sr) showing in excess of 50% of their variability at the within-40-km and ‘at-site’ scales. In contrast, the C-horizon data demonstrate significant between-40-km scale variability for 26 elements, with 21 having in excess of 50% of their variability at the within-40-km and ‘at-site’ scales. In 36 instances, the ‘at-site’ variability is statistically significant in terms of the sample preparation and analysis variability. It is postulated that this contrast between the A- and C- horizons along the N–S transect, that is dominated by agricultural land uses, is due to the local homogenization of Ap-horizon soils by tillage reducing the ‘at-site’ variability. The spatial variability is distributed similarly between scales for the A- and C-horizon soils of the E–W transect. For all elements, there is significant variability at the within-40-km scale. Notwithstanding this, there is significant between-40-km variability for 28 and 20 of the elements in the A- and C-horizon data, respectively. The differences between the two transects are attributed to (1) geology, the N–S transect runs generally parallel to regional strikes, whereas the E–W transect runs across regional structures and lithologies; and (2) land use, with agricultural tillage dominating along the N–S transect. The spatial analysis of the transect data indicates that continental-scale maps demonstrating statistically significant patterns of geochemical variability may be prepared for many elements from data on soil samples collected on a 40 x 40 km grid or similar sampling designs resulting in a sample density of 1 site per 1600 km2.

  11. Evaluating Spatial Heterogeneity and Environmental Variability Inferred from Branched Glycerol Dialkyl Glycerol Tetraethers (GDGTs) Distribution in Soils from Valles Caldera, New Mexic

    NASA Astrophysics Data System (ADS)

    Contreras Quintana, S. H.; Werne, J. P.; Brown, E. T.; Halbur, J.; Sinninghe Damsté, , J.; Schouten, S.; Correa-Metrio, A.; Fawcett, P. J.

    2014-12-01

    Branched glycerol dialkyl glycerol tetraethers (GDGTs) are recently discovered bacterial membrane lipids, ubiquitously present in peat bogs and soils, as well as in rivers, lakes and lake sediments. Their distribution appears to be controlled mainly by soil pH and annual mean air temperature (MAT) and they have been increasingly used as paleoclimate proxies in sedimentary records. In order to validate their application as paleoclimate proxies, it is essential evaluate the influence of small scale environmental variability on their distribution. Initial application of the original soil-based branched GDGT distribution proxy to lacustrine sediments from Valles Caldera, New Mexico (NM) was promising, producing a viable temperature record spanning two glacial/interglacial cycles. In this study, we assess the influence of analytical and spatial soil heterogeneity on the concentration and distribution of 9 branched GDGTs in soils from Valles Caldera, and show how this variability is propagated to MAT and pH estimates using multiple soil-based branched GDGT transfer functions. Our results show that significant differences in the abundance and distribution of branched GDGTs in soil can be observed even within a small area such as Valles Caldera. Although the original MBT-CBT calibration appears to give robust MAT estimates and the newest calibration provides pH estimates in better agreement with modern local soils in Valles Caldera, the environmental heterogeneity (e.g. vegetation type and soil moisture) appears to affect the precision of MAT and pH estimates. Furthermore, the heterogeneity of soils leads to significant variability among samples taken even from within a square meter. While such soil heterogeneity is not unknown (and is typically controlled for by combining multiple samples), this study quantifies heterogeneity relative to branched GDGT-based proxies for the first time, indicating that care must be taken with samples from heterogeneous soils in MAT and pH reconstructions.

  12. What are the most crucial soil factors for predicting the distribution of alpine plant species?

    NASA Astrophysics Data System (ADS)

    Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.

    2017-12-01

    Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil pH remains one of the most important soil factor for predicting plant species distributions, closely followed by water, organic and inorganic carbon related properties. Finally, we were able to extract three main categories of important soil properties for plant species distributions: grain size distribution, acidity and water in the soil.

  13. Spatial variability and response of soil organic carbon stocks to land abandonment and erosion in mountainous drylands (Invited)

    NASA Astrophysics Data System (ADS)

    De Baets, S. L.; Meersmans, J.; Vanacker, V.; Quine, T. A.; van oost, K.

    2013-12-01

    This research focuses on understanding the impact of human activities on C dynamics in a mountainous and semi-arid environment. Despite the low C status of drylands, soil organic carbon (SOC) is the largest C pool in these systems and hence possess a large restoration capacity. Still, regional estimates of SOC stocks and insights in their determining factors are lacking. This study therefore aims 1) to interpret the variability of soil organic carbon in relation to key soil, topographical and land use variables and 2) to quantify the effects of land regeneration following abandonment on SOC stocks. Soil profiles were taken in the Sierra de los Filabres (SE Spain) in different land units along geomorphic and degradation gradients. SOC contents were modelled using recovery period, soil and topographical variables. Sample depth, topographical position, altitude, recovery period and stone content are identified as the main factors for predicting SOC concentrations. SOC stocks in 1 m depth of soil vary between 3.16 and 76.44 t ha-1. Recovery period (years since abandonment), topographical position and altitude were used to predict and map SOC stocks in the top 0.2 m. The results show that C accumulates fast during the first 10-50 years following abandonment, whereafter the stocks evolve towards a steady state level. The erosion zones in the study area demonstrate a higher potential to increase their SOC stocks when abandoned. Deposition zones have higher SOC stocks, although their C accumulation rate is lower compared to erosion dominated landscapes in the first 10-50 years following abandonment. Therefore, full understanding of the C sequestration potential of land use change in areas of complex topography requires knowledge of spatial variability in soil properties and in particular SOC.

  14. Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Vanessa L.; Bond-Lamberty, Ben; DeAngelis, Kristen

    The complexity of processes and interactions that drive soil C dynamics necessitate the use of proxy variables to represent soil characteristics that cannot be directly measured (correlative proxies), or that aggregate information about multiple soil characteristics into one variable (integrative proxies). These proxies have proven useful for understanding the soil C cycle, which is highly variable in both space and time, and are now being used to make predictions of the C fate and persistence under future climate scenarios. As these proxies are used at increasingly larger scales, the C pools and processes that proxies represent must be thoughtfully consideredmore » in order to minimize uncertainties in empirical understanding, as well as in model parameters and in model outcomes. The importance of these uncertainties is further amplified by the current need to make predictions of the C cycle for the non steady state environmental conditions resulting from global climate change. To clarify the appropriate uses of proxy variables, we provide specific examples of proxy variables that could improve decision making, adaptation choices, and modeling skill, while not foreclosing on – and also encouraging – continued work on their mechanistic underpinnings. We explore the use of three common soil proxies used to study soil organic matter: metabolic quotient, clay content, and physical fractionation. We also consider emerging data types, specifically genome-sequence data, and how these serve as proxies for microbial community activities. We opine that the demand for increasing mechanistic detail, and the flood of data from new imaging and genetic techniques, does not replace the value of correlative and integrative proxies--variables that are simpler, easier, or cheaper to measure. By closely examining the current knowledge gaps and broad assumptions in soil C cycling with the proxies already in use, we can develop new hypotheses and specify criteria for new and needed proxies.« less

  15. Fine scale climatic and soil variability effects on plant species cover along the Front Range of Colorado, USA

    NASA Astrophysics Data System (ADS)

    Cumming, William Frank Preston

    Fine scale studies are rarely performed to address landscape level responses to microclimatic variability. Is it the timing, distribution, and magnitude of soil temperature and moisture that affects what species emerge each season and, in turn, their resilience to fluctuations in microclimate. For this dissertation research, I evaluated the response of vegetation change to microclimatic variability within two communities over a three year period (2009-2012) utilizing 25 meter transects at two locations along the Front Range of Colorado near Boulder, CO and Golden, CO respectively. To assess microclimatic variability, spatial and temporal autocorrelation analyses were performed with soil temperature and moisture. Species cover was assessed along several line transects and correlated with microclimatic variability. Spatial and temporal autocorrelograms are useful tools in identifying the degree of dependency of soil temperature and moisture on the distance and time between pairs of measurements. With this analysis I found that a meter spatial resolution and two-hour measurements are sufficient to capture the fine scale variability in soil properties throughout the year. By comparing this to in situ measurements of soil properties and species percent cover I found that there are several plant functional types and/or species origin in particular that are more sensitive to variations in temperature and moisture than others. When all seasons, locations, correlations, and regional climate are looked at, it is the month of March that stands out in terms of significance. Additionally, of all of the vegetation types represented at these two sites C4, C3, native, non-native, and forb species seem to be the most sensitive to fluctuations in soil temperature, moisture, and regional climate in the spring season. The steady decline in percent species cover the study period and subsequent decrease in percent species cover and size at both locations may indicate that certain are unable to respond to continually higher temperatures and lower moisture availability that is inevitable with future climatic variability.

  16. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    USDA-ARS?s Scientific Manuscript database

    In nearly all large-scale models, CO2 efflux from soil (i.e., soil respiration) is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable at the local scale, and there is often a pronounced hysteresis in the soil resp...

  17. A statistical method for estimating rates of soil development and ages of geologic deposits: A design for soil-chronosequence studies

    USGS Publications Warehouse

    Switzer, P.; Harden, J.W.; Mark, R.K.

    1988-01-01

    A statistical method for estimating rates of soil development in a given region based on calibration from a series of dated soils is used to estimate ages of soils in the same region that are not dated directly. The method is designed specifically to account for sampling procedures and uncertainties that are inherent in soil studies. Soil variation and measurement error, uncertainties in calibration dates and their relation to the age of the soil, and the limited number of dated soils are all considered. Maximum likelihood (ML) is employed to estimate a parametric linear calibration curve, relating soil development to time or age on suitably transformed scales. Soil variation on a geomorphic surface of a certain age is characterized by replicate sampling of soils on each surface; such variation is assumed to have a Gaussian distribution. The age of a geomorphic surface is described by older and younger bounds. This technique allows age uncertainty to be characterized by either a Gaussian distribution or by a triangular distribution using minimum, best-estimate, and maximum ages. The calibration curve is taken to be linear after suitable (in certain cases logarithmic) transformations, if required, of the soil parameter and age variables. Soil variability, measurement error, and departures from linearity are described in a combined fashion using Gaussian distributions with variances particular to each sampled geomorphic surface and the number of sample replicates. Uncertainty in age of a geomorphic surface used for calibration is described using three parameters by one of two methods. In the first method, upper and lower ages are specified together with a coverage probability; this specification is converted to a Gaussian distribution with the appropriate mean and variance. In the second method, "absolute" older and younger ages are specified together with a most probable age; this specification is converted to an asymmetric triangular distribution with mode at the most probable age. The statistical variability of the ML-estimated calibration curve is assessed by a Monte Carlo method in which simulated data sets repeatedly are drawn from the distributional specification; calibration parameters are reestimated for each such simulation in order to assess their statistical variability. Several examples are used for illustration. The age of undated soils in a related setting may be estimated from the soil data using the fitted calibration curve. A second simulation to assess age estimate variability is described and applied to the examples. ?? 1988 International Association for Mathematical Geology.

  18. Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham M.; Huggins, David R.

    2011-07-01

    SummarySpatio-temporal patterns of soil water are major determinants of crop yield potential in dryland agriculture and can serve as the basis for delineating precision management zones. Soil water patterns can vary significantly due to differences in seasonal precipitation, soil properties and topographic features. In this study we used empirical orthogonal function (EOF) analysis to characterize the spatial variability of soil water at the Washington State University Cook Agronomy Farm (CAF) near Pullman, WA. During the period 1999-2006, the CAF was divided into three roughly equal blocks (A, B, and C), and soil water at 0.3 m intervals to a depth of 1.5 m measured gravimetrically at approximately one third of the 369 geo-referenced points on the 37-ha watershed. These data were combined with terrain attributes, soil bulk density and apparent soil conductivity (EC a). The first EOF generated from the three blocks explained 73-76% of the soil water variability. Field patterns of soil water based on EOF interpolation varied between wet and dry conditions during spring and fall seasons. Under wet conditions, elevation and wetness index were the dominant factors regulating the spatial patterns of soil water. As soil dries out during summer and fall, soil properties (EC a and bulk density) become more important in explaining the spatial patterns of soil water. The EOFs generated from block B, which represents average topographic and soil properties, provided better estimates of soil water over the entire watershed with larger Nash-Sutcliffe Coefficient of Efficiency (NSCE) values, especially when the first two EOFs were retained. Including more than the first two EOFs did not significantly increase the NSCE of soil water estimate. The EOF interpolation method to estimate soil water variability worked slightly better during spring than during fall, with average NSCE values of 0.23 and 0.20, respectively. The predictable patterns of stored soil water in the spring could serve as the basis for delineating precision management zones as yield potential is largely driven by water availability. The EOF-based method has the advantage of estimating the soil water variability based on soil water data from several measurement times, whereas in regression methods only soil water measurement at a single time are used. The EOF-based method can also be used to estimate soil water at any time other than measurement times, assuming the average soil water of the watershed is known at that time.

  19. Impact of climate variability on N and C flux within the life cycle of biofuels produced from crop residues

    NASA Astrophysics Data System (ADS)

    Pourhashem, G.; Block, P. J.; Adler, P. R.; Spatari, S.

    2013-12-01

    Biofuels from agricultural feedstocks (lignocellulose) are under development to meet national policy objectives for producing domestic renewable fuels. Using crop residues such as corn stover as feedstock for biofuel production can minimize the risks associated with food market disruption; however, it demands managing residue removal to minimize soil carbon loss, erosion, and to ensure nutrient replacement. Emissions of nitrous oxide and changes to soil organic carbon (SOC) are subject to variability in time due to local climate conditions and cultivation practices. Our objective is to investigate the effect of climate inputs (precipitation and temperature) on biogeochemical greenhouse gas (GHG) emissions (N2O and SOC expressed as CO2) within the life cycle of biofuels produced from agricultural residues. Specifically, we investigate the impact of local climate variability on soil carbon and nitrogen fluxes over a 20-year biorefinery lifetime where biomass residue is used for lignocellulosic ethanol production. We investigate two cases studied previously (Pourhashem et al, 2013) where the fermentable sugars in the agricultural residue are converted to ethanol (biofuel) and the lignin byproduct is used in one of two ways: 1) power co-generation; or 2) application to land as a carbon/nutrient-rich amendment to soil. In the second case SOC losses are mitigated through returning the lignin component to land while the need for fertilizer addition is also eliminated, however in both cases N2O and SOC are subject to variability due to variable climate conditions. We used the biogeochemical model DayCent to predict soil carbon and nitrogen fluxes considering soil characteristics, tillage practices and local climate (e.g. temperature and rainfall). We address the impact of climate variability on the soil carbon and nitrogen fluxes by implementing a statistical bootstrap resampling method based on a historic data set (1980 to 2000). The ensuing probabilistic outputs from the DayCent model provide an increased understanding of expected ranges in fluxes attributable to climate variability. DayCent results for soil carbon change from the developed input datasets indicate that SOC is more strongly influenced by management practices than by variability in local climate even though the magnitude of this impact could depend on the local soil characteristics. Unlike carbon fluxes, soil N2O emissions are more sensitive to local climate variability than management practices suggesting that the difference in N2O emissions from the two management cases is not statistically significant. Therefore application of the high lignin byproduct material to land is a more efficient strategy in reducing soil carbon loss. However, although soil nitrogen fluxes might not be very sensitive to local climate when comparing synthetic to bio-based fertilizer applications, implementing the latter will eliminate the fertilizer production emissions on a biofuel production life cycle basis. Reference Pourhashem, G.; Adler, P., R.; McAloon, A. J.; Spatari, S., Cost and greenhouse gas emission tradeoffs of alternative uses of lignin for second generation ethanol. Env. Res. Let. 2013, 8, 025021

  20. Some aspects of interrelations between fungi and other biota in forest soil.

    PubMed

    Krivtsov, Vladimir; Griffiths, Bryan S; Salmond, Ross; Liddell, Keith; Garside, Adam; Bezginova, Tanya; Thompson, Jacqueline A; Staines, Harry J; Watling, Roy; Palfreyman, John W

    2004-08-01

    Interrelations of fungal mycelium with other soil biota are of paramount importance in forestry and soil ecology. Here we present the results of statistical analysis of a comprehensive data set collected in the first (and the only) British fungus sanctuary over a period of four months. The variables studied included a number of soil properties, bacteria, protozoan flagellates, ciliates and amoebae, microbial and plant feeding nematodes, various microarthropods, and two fungal biomarkers--glomalin and ergosterol. One way ANOVA showed that the dynamics of the microbiota studied was influenced by seasonal changes. Superimposed on these changes, however, was variability due to biological interactions and habitat characteristics. Two fungal biomarkers, ergosterol and glomalin, were differently influenced by other biota and abiotic variables. The results indicate that the dynamics of soil fungi is influenced not only by soil microarthropods, but also by those found in forest litter. The overall outcome, therefore, is likely to be very complex and will depend upon specific conditions of any particular ecosystem.

  1. Optimization of isolation of cellulose from orange peel using sodium hydroxide and chelating agents.

    PubMed

    Bicu, Ioan; Mustata, Fanica

    2013-10-15

    Response surface methodology was used to optimize cellulose recovery from orange peel using sodium hydroxide (NaOH) as isolation reagent, and to minimize its ash content using ethylenediaminetetraacetic acid (EDTA) as chelating agent. The independent variables were NaOH charge, EDTA charge and cooking time. Other two constant parameters were cooking temperature (98 °C) and liquid-to-solid ratio (7.5). The dependent variables were cellulose yield and ash content. A second-order polynomial model was used for plotting response surfaces and for determining optimum cooking conditions. The analysis of coefficient values for independent variables in the regression equation showed that NaOH and EDTA charges were major factors influencing the cellulose yield and ash content, respectively. Optimum conditions were defined by: NaOH charge 38.2%, EDTA charge 9.56%, and cooking time 317 min. The predicted cellulose yield was 24.06% and ash content 0.69%. A good agreement between the experimental values and the predicted was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Soil microbial diversity in the vicinity of desert shrubs.

    PubMed

    Saul-Tcherkas, Vered; Unc, Adrian; Steinberger, Yosef

    2013-04-01

    Water and nutrient availability are the major limiting factors of biological activity in arid and semiarid ecosystems. Therefore, perennial plants have developed different ecophysiological adaptations to cope with harsh conditions. The chemical profile of the root exudates varies among plant species and this can induce variability in associated microbial populations. We examined the influence of two shrubs species, Artemisia sieberi and Noaea mucronata, on soil microbial diversity. Soil samples were collected monthly, from December 2006 to November 2007, near canopies of both shrubs (0-10-cm depth). Samples were used for abiotic tests and determination of soil bacterial diversity. No significant differences were found in the abiotic variables (soil moisture, total organic matter, and total soluble nitrogen (TSN)) between soil samples collected from under the two shrubs during the study period. No obvious differences in the Shannon-Weaver index, evenness values, or total phylogenetic distances were found for the soil microbial communities. However, detailed denaturing gradient gel electrophoresis (DGGE) clustering as well as taxonomic diversity analyses indicated clear shifts in the soil microbial community composition. These shifts were governed by seasonal variability in water availability and, significantly, by plant species type.

  3. Ecological Drivers of Biogeographic Patterns of Soil Archaeal Community

    PubMed Central

    Zheng, Yuan-Ming; Cao, Peng; Fu, Bojie; Hughes, Jane M.; He, Ji-Zheng

    2013-01-01

    Knowledge about the biogeography of organisms has long been a focus in ecological research, including the mechanisms that generate and maintain diversity. In this study, we targeted a microbial group relatively underrepresented in the microbial biogeographic literature, the soil Archaea. We surveyed the archaeal abundance and community composition using real-time quantitative PCR and T-RFLP approaches for 105 soil samples from 2 habitat types to identify the archaeal distribution patterns and factors driving these patterns. Results showed that the soil archaeal community was affected by spatial and environmental variables, and 79% and 51% of the community variation was explained in the non-flooded soil (NS) and flooded soil (FS) habitat, respectively, showing its possible biogeographic distribution. The diversity patterns of soil Archaea across the landscape were influenced by a combination of stochastic and deterministic processes. The contribution from neutral processes was higher than that from deterministic processes associated with environmental variables. The variables pH, sample depth and longitude played key roles in determining the archaeal distribution in the NS habitat, while sampling depth, longitude and NH4 +-N were most important in the FS habitat. Overall, there might be similar ecological drivers in the soil archaeal community as in macroorganism communities. PMID:23717418

  4. A soil-landscape framework for understanding spatial and temporal variability in biogeochemical processes in catchments

    NASA Astrophysics Data System (ADS)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.

    2017-12-01

    Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.

  5. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    PubMed

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  6. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    NASA Astrophysics Data System (ADS)

    Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra B.

    2016-05-01

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA's Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture.

  7. The effect of soil moisture anomalies on maize yield in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Thober, Stephan; Meyer, Volker; Samaniego, Luis

    2018-03-01

    Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of soil moisture to estimate silage maize yield in Germany. We also evaluate how approaches considering soil moisture perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.

  8. Soil Carbon and Nitrogen Pools and Assessment of Soil Mitigation of N Removal for Biomass for Energy in the coastal Douglas-fir zone of Oregon, Washington and British Columbia.

    NASA Astrophysics Data System (ADS)

    Harrison, Robert; James, Jason; Dietzen, Christiana; Littke, Kimberly

    2017-04-01

    Biomass, carbon and nitrogen pools in soil (1 m depth) and tree components in 68 intensively-managed Douglas-fir plantations in western Oregon and Washington USA, and British Columbia Canada. The potential removal of N with bole-only and total aboveground harvesting was compared to total ecosystem pools of N to determine the relative removals compared to the total ecosystem N pools to assign a risk rating to each potential harvest site for N removal, with <=10% of total removed being a threshhold at which there would be little potential for N removal concerns over a 55-year rotation, and 30% or greater a cause for significan concern or the potential amelioration of losses with N fertilization. Additional research on 22 of the sites for deep rooting and soil C and N pools up to 4 m depth showed that there were unanticipated and formerly unrecognized large pools of C and N below 1 m depth, and as deep as we were capable of sampling (4 m). Analysis of organic matter in the soil profiles indicate significant differences in binding of organic matter to mineral components of soil at depth, dependent on pH-dependent charge sources primarily associated with volcanic activity in the region. Characterization of PZNC and pH dependent charge at one site showed substantial anion exchange capacity and the ability to bind organic acids and DOC leaching through the soil profile.

  9. Variability in soil CO2 efflux across distinct urban land cover types

    NASA Astrophysics Data System (ADS)

    Weissert, Lena F.; Salmond, Jennifer A.; Schwendenmann, Luitgard

    2015-04-01

    As a main source of greenhouse gases urban areas play an important role in the global carbon cycle. To assess the potential role of urban vegetation in mitigating carbon emissions we need information on the magnitude of biogenic CO2 emissions and its driving factors. We examined how urban land use types (urban forest, parklands, sportsfields) vary in their soil CO2 efflux. We measured soil CO2 efflux and its isotopic signature, soil temperature and soil moisture over a complete growing season in Auckland, New Zealand. Soil physical and chemical properties and vegetation characteristics were also measured. Mean soil CO2 efflux ranged from 4.15 to 12 μmol m-2 s-1. We did not find significant differences in soil CO2 efflux among land cover types due to high spatial variability in soil CO2 efflux among plots. Soil (soil carbon and nitrogen density, texture, soil carbon:nitrogen ratio) and vegetation characteristics (basal area, litter carbon density, grass biomass) were not significantly correlated with soil CO2 efflux. We found a distinct seasonal pattern with significantly higher soil CO2 efflux in autumn (Apr/May) and spring (Oct). In urban forests and sportsfields over 80% of the temporal variation was explained by soil temperature and soil water content. The δ13C signature of CO2 respired from parklands and sportsfields (-20 permil - -25 permil) were more positive compared to forest plots (-29 permil) indicating that parkland and sportsfields had a considerable proportion of C4 grasses. Despite the large intra-urban variability, our results compare to values reported from other, often climatically different cities, supporting the hypothesis of homogenization across urban areas as a result of human management practices.

  10. Influence of spatial and temporal variability of subsurface soil moisture and temperature on vapour intrusion

    NASA Astrophysics Data System (ADS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2014-05-01

    A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.

  11. Efficacy of Radiative Transfer Model Across Space, Time and Hydro-climates

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Neelam, M.

    2017-12-01

    The efficiency of radiative transfer model for better soil moisture retrievals is not yet clearly understood over natural systems with great variability and heterogeneity with respect to soil, land cover, topography, precipitation etc. However, this knowledge is important to direct and strategize future research direction and field campaigns. In this work, we present global sensitivity analysis (GSA) technique to study the influence of heterogeneity and uncertainties on radiative transfer model (RTM) and to quantify climate-soil-vegetation interactions. A framework is proposed to understand soil moisture mechanisms underlying these interactions, and influence of these interactions on soil moisture retrieval accuracy. Soil moisture dynamics is observed to play a key role in variability of these interactions, i.e., it enhances both mean and variance of soil-vegetation coupling. The analysis is conducted for different support scales (Point Scale, 800 m, 1.6 km, 3.2 km, 6.4 km, 12.8 km, and 36 km), seasonality (time), hydro-climates, aggregation (scaling) methods and across Level I and Level II ecoregions of contiguous USA (CONUS). For undisturbed natural environments such as SGP'97 (Oklahoma, USA) and SMEX04 (Arizona, USA), the sensitivity of TB to land surface variables remain nearly uniform and are not influenced by extent, support scales or averaging method. On the contrary, for anthropogenically-manipulated environments such as SMEX02 (Iowa, USA) and SMAPVEX12 (Winnipeg, Canada), the sensitivity to variables are highly influenced by the distribution of land surface heterogeneity and upscaling methods. The climate-soil-vegetation interactions analyzed across all ecoregions are presented through a probability distribution function (PDF). The intensity of these interactions are categorized accordingly to yield "hotspots", where the RTM model fails to retrieve soil moisture. A ecoregion specific scaling function is proposed for these hotspots to rectify RTM for retrieving soil moisture.

  12. Spatial patterns of soil moisture connected to monthly-seasonal precipitation variability in a monsoon region

    Treesearch

    Yongqiang Liu

    2003-01-01

    The relations between monthly-seasonal soil moisture and precipitation variability are investigated by identifying the coupled patterns of the two hydrological fields using singular value decomposition (SVD). SVD is a technique of principal component analysis similar to empirical orthogonal knctions (EOF). However, it is applied to two variables simultaneously and is...

  13. Phosphorus in agricultural soils: drivers of its distribution at the global scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringeval, Bruno; Augusto, Laurent; Monod, Herve

    Phosphorus (P) availability in soils limits crop yields in many regions of the world, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global datasets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analyzed both the labile inorganic P (P ILAB), a proxy of the pool involved in plant nutrition and themore » total soil P (P TOT). We found that the soil biogeochemical background (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between P TOT vs P ILAB. Indeed, 97% of the P TOT spatial variability could be explained by BIOG, while BIOG and FARM explained 41% and 58% of P ILAB spatial variability, respectively. Other drivers such as climate, soil erosion, atmospheric P deposition and soil buffering capacity made only very small contribution. Lastly, our study is a promising approach to investigate the potential effect of P as a limiting factor for agricultural ecosystems and for global food production. Additionally, we quantified the anthropogenic perturbation of P cycle and demonstrated how the different drivers are combined to explain the global distribution of agricultural soil P.« less

  14. Climatic variability of soil water in the American Midwest: Part 2. Spatio-temporal analysis

    NASA Astrophysics Data System (ADS)

    Georgakakos, Konstantine P.; Bae, Deg-Hyo

    1994-11-01

    A study of the model-estimated soil water, aggregated over three large drainage basins of the Midwestern USA, is reported. The basin areas are in the range from 2000 km 2 to 3500 km 2, and allow the study of mesoscale (1000-10000 km 2) soil water features. In each case, a conceptual hydrologic model was used to produce upper and lower soil water estimates that are consistent with the atmospheric forcing of daily precipitation, potential evapotranspiration and air temperature, and with the observed daily streamflow divergence over a 40 year period. It is shown that the water contents of the upper and lower soil reach peaks in different months, with the soil column being most saturated in June, when the area is prone to serious flooding. Temporal and spatial features of the variability of model-estimated soil water content are identified. The autocorrelation function of monthly averaged soil water shows that the upper soil water remains persistent for about a season, whereas the persistence of the lower soil water extends to several seasons. The soil water estimates of the three study basins exhibit strong similarities in annual cycles and interannual variability. It is shown that the frequency of significant positive (wet) soil water anomalies that extend over a 2° × 2° region is lower than that of significant negative (dry) ones of the same extent in this region of the USA.

  15. Intra- and interspecific trait variations reveal functional relationships between specific leaf area and soil niche within a subtropical forest.

    PubMed

    He, Dong; Chen, Yongfa; Zhao, Kangning; Cornelissen, J H C; Chu, Chengjin

    2018-02-03

    How functional traits vary with environmental conditions is of fundamental importance in trait-based community ecology. However, how intraspecific variability in functional traits is connected to species distribution is not well understood. This study investigated inter- and intraspecific variation of a key functional trait, i.e. specific leaf area (leaf area per unit dry mass; SLA), in relation to soil factors and tested if trait variation is more closely associated with specific environmental regimes for low-variability species than for high-variability species. In a subtropical evergreen forest plot (50 ha, southern China), 106 700 leaves from 5335 individuals of 207 woody species were intensively collected, with 30 individuals sampled for most species to ensure a sufficient sample size representative of intraspecific variability. Soil conditions for each plant were estimated by kriging from more than 1700 observational soil locations across the plot. Intra- and interspecific variation in SLA were separately related to environmental factors. Based on the species-specific variation of SLA, species were categorized into three groups: low-, intermediate- and high-intraspecific variability. Intraspecific habitat ranges and the strength of SLA-habitat relationships were compared among these three groups. Interspecific variation in SLA overrides the intraspecific variation (77 % vs. 8 %). Total soil nitrogen (TN, positively) and total organic carbon (TOC, negatively) are the most important explanatory factors for SLA variation at both intra- and interspecific levels. SLA, both within and between species, decreases with decreasing soil nitrogen availability. As predicted, species with low intraspecific variability in SLA have narrower habitat ranges with respect to soil TOC and TN and show a stronger SLA-habitat association than high-variability species. For woody plants low SLA is a phenotypic and probably adaptive response to nitrogen stress, which drives the predominance of species with ever-decreasing SLA towards less fertile habitats. Intraspecific variability in SLA is positively connected to species' niche breadth, suggesting that low-variability species may play a more deterministic role in structuring plant assemblages than high-variability species. This study highlights the importance of quantifying intraspecific trait variation to improve our understanding of species distributions across a vegetated landscape. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Method for altering antibody light chain interactions

    DOEpatents

    Stevens, Fred J.; Stevens, Priscilla Wilkins; Raffen, Rosemarie; Schiffer, Marianne

    2002-01-01

    A method for recombinant antibody subunit dimerization including modifying at least one codon of a nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in the interface segment of the light polypeptide variable region, the charged amino acid having a first polarity; and modifying at least one codon of the nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in an interface segment of the heavy polypeptide variable region corresponding to a position in the light polypeptide variable region, the charged amino acid having a second polarity opposite the first polarity. Nucleic acid sequences which code for novel light chain proteins, the latter of which are used in conjunction with the inventive method, are also provided.

  17. Variability in soil CO2 production and surface CO2 efflux across riparian-hillslope transitions

    Treesearch

    Vincent Jerald Pacific

    2007-01-01

    The spatial and temporal controls on soil CO2 production and surface CO2 efflux have been identified as an outstanding gap in our understanding of carbon cycling. I investigated both the spatial and temporal variability of soil CO2 concentrations and surface CO2 efflux across eight topographically distinct riparian-hillslope transitions in the ~300 ha subalpine upper-...

  18. Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method

    DTIC Science & Technology

    2010-01-25

    2010 / Accepted: 19 January 2010 / Published: 25 January 2010 Abstract: Spatial and temporal soil moisture dynamics are critically needed to...scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial... dynamics is essential in the hydrological and meteorological modeling, improves our understanding of land surface–atmosphere interactions. Spatial and

  19. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2018-04-01

    As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.

  20. Modelling Soil-Landscapes in Coastal California Hills Using Fine Scale Terrestrial Lidar

    NASA Astrophysics Data System (ADS)

    Prentice, S.; Bookhagen, B.; Kyriakidis, P. C.; Chadwick, O.

    2013-12-01

    Digital elevation models (DEMs) are the dominant input to spatially explicit digital soil mapping (DSM) efforts due to their increasing availability and the tight coupling between topography and soil variability. Accurate characterization of this coupling is dependent on DEM spatial resolution and soil sampling density, both of which may limit analyses. For example, DEM resolution may be too coarse to accurately reflect scale-dependent soil properties yet downscaling introduces artifactual uncertainty unrelated to deterministic or stochastic soil processes. We tackle these limitations through a DSM effort that couples moderately high density soil sampling with a very fine scale terrestrial lidar dataset (20 cm) implemented in a semiarid rolling hillslope domain where terrain variables change rapidly but smoothly over short distances. Our guiding hypothesis is that in this diffusion-dominated landscape, soil thickness is readily predicted by continuous terrain attributes coupled with catenary hillslope segmentation. We choose soil thickness as our keystone dependent variable for its geomorphic and hydrologic significance, and its tendency to be a primary input to synthetic ecosystem models. In defining catenary hillslope position we adapt a logical rule-set approach that parses common terrain derivatives of curvature and specific catchment area into discrete landform elements (LE). Variograms and curvature-area plots are used to distill domain-scale terrain thresholds from short range order noise characteristic of very fine-scale spatial data. The revealed spatial thresholds are used to condition LE rule-set inputs, rendering a catenary LE map that leverages the robustness of fine-scale terrain data to create a generalized interpretation of soil geomorphic domains. Preliminary regressions show that continuous terrain variables alone (curvature, specific catchment area) only partially explain soil thickness, and only in a subset of soils. For example, at spatial scales up 20, curvature explains 40% of soil thickness variance among soils <3 m deep, while soils >3 m deep show no clear relation to curvature. To further demonstration our geomorphic segmentation approach, we apply it to DEM domains where diffusion processes are less dominant than in our primary study area. Classified landform map derived from fine scale terrestrial lidar. Color classes depict hydrogeomorphic process domains in zero order watersheds.

  1. Response of three soil water sensors to variable solution electrical conductivity in different soils

    USDA-ARS?s Scientific Manuscript database

    Commercial dielectric soil water sensors may improve management of irrigated agriculture by providing continuous field soil water information. Use of these sensors is partly limited by sensor sensitivity to variations in soil salinity and texture, which force expensive, time consuming, soil specific...

  2. Remediation of soils polluted with lindane using surfactant-aided soil washing and electrochemical oxidation.

    PubMed

    Muñoz-Morales, M; Braojos, M; Sáez, C; Cañizares, P; Rodrigo, M A

    2017-10-05

    In this work the complete treatment of soil spiked with lindane is studied using surfactant-aided soil-washing (SASW) to exhaust lindane from soil and electrolysis with diamond anodes to mineralize lindane from the soil washing fluid (SWF) waste. Results demonstrated that this technological approach is efficient and allow to remove this hazardous pollutant from soil. They also pointed out the significance of the ratio surfactant/soil in the efficiency of the SASW process and in the performance of the later electrolysis used to mineralize the pollutant. Larger values of this parameter lead to effluents that undergo a very efficient treatment which allows the depletion of lindane for applied charges lower than 15AhL -1 and the recovery of more than 70% of the surfactant for the regeneration of the SWF. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. An inversion method for retrieving soil moisture information from satellite altimetry observations

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Forootan, Ehsan; Kusche, Jürgen; Braakmann-Folgmann, Anne

    2016-04-01

    Soil moisture represents an important component of the terrestrial water cycle that controls., evapotranspiration and vegetation growth. Consequently, knowledge on soil moisture variability is essential to understand the interactions between land and atmosphere. Yet, terrestrial measurements are sparse and their information content is limited due to the large spatial variability of soil moisture. Therefore, over the last two decades, several active and passive radar and satellite missions such as ERS/SCAT, AMSR, SMOS or SMAP have been providing backscatter information that can be used to estimate surface conditions including soil moisture which is proportional to the dielectric constant of the upper (few cm) soil layers . Another source of soil moisture information are satellite radar altimeters, originally designed to measure sea surface height over the oceans. Measurements of Jason-1/2 (Ku- and C-Band) or Envisat (Ku- and S-Band) nadir radar backscatter provide high-resolution along-track information (~ 300m along-track resolution) on backscatter every ~10 days (Jason-1/2) or ~35 days (Envisat). Recent studies found good correlation between backscatter and soil moisture in upper layers, especially in arid and semi-arid regions, indicating the potential of satellite altimetry both to reconstruct and to monitor soil moisture variability. However, measuring soil moisture using altimetry has some drawbacks that include: (1) the noisy behavior of the altimetry-derived backscatter (due to e.g., existence of surface water in the radar foot-print), (2) the strong assumptions for converting altimetry backscatters to the soil moisture storage changes, and (3) the need for interpolating between the tracks. In this study, we suggest a new inversion framework that allows to retrieve soil moisture information from along-track Jason-2 and Envisat satellite altimetry data, and we test this scheme over the Australian arid and semi-arid regions. Our method consists of: (i) deriving time-invariant spatial patterns (base-functions) by applying principal component analysis (PCA) to simulated soil moisture from a large-scale land surface model. (ii) Estimating time-variable soil moisture evolution by fitting these base functions of (i) to the along-track retracked backscatter coefficients in a least squares sense. (iii) Combining the estimated time-variable amplitudes and the pre-computed base-functions, which results in reconstructed (spatio-temporal) soil moisture information. We will show preliminary results that are compared to available high-resolution soil moisture model data over the region (the Australian Water Resource Assessment, AWRA model). We discuss the possibility of using altimetry-derived soil moisture estimations to improve the simulation skill of soil moisture in the Global Land Data Assimilation System (GLDAS) over Australia.

  4. Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, Stephen P.

    Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less

  5. Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.

  6. Comparative mobility of sulfonamides and bromide tracer in three soils

    USGS Publications Warehouse

    Kurwadkar, S.T.; Adams, C.D.; Meyer, M.T.; Kolpin, D.W.

    2011-01-01

    In animal agriculture, sulfonamides are one of the routinely used groups of antimicrobials for therapeutic and sub-therapeutic purposes. It is observed that, the animals when administered the antimicrobials, often do not completely metabolize them; and excrete the partially metabolized forms into the environment. Due to the continued use of antimicrobials and disposal of untreated waste, widespread occurrence of partially metabolized antimicrobials in aquatic and terrestrial environments has been reported in various scientific journals. In this research, the mobility of two sulfonamides - sulfamethazine (SMN), sulfathiazole (STZ) and a conservative bromide tracer was investigated in three soils collected from regions in the United States with large number of concentrated animal-feed operations. Results of a series of column studies indicate that the mobility of these two sulfonamides was dependent on pH, soil charge density, and contact time. At low pH and high charge density, substantial retention of sulfonamides was observed in all three soils investigated, due to the increased fraction of cationic and neutral forms of the sulfonamides. Conversely, enhanced mobility was observed at high pH, where the sulfonamides are predominantly in the anionic form. The results indicate that when both SMN and STZ are predominantly in anionic forms, their mobility approximates the mobility of a conservative bromide tracer. This observation is consistent for the mobility of both SMN and STZ individually, and also in the presence of several other antimicrobials in all three soils investigated. Higher contact time indicates lower mobility due to increased interaction with soil material. ?? 2011.

  7. 17 CFR 274.303 - Form N-27I-2, notice of withdrawal right and statement of charges for variable life insurance...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... variable life insurance contractholders required pursuant to Rule 6e-2 (§ 270.6e-2 of this chapter). [41 FR... withdrawal right and statement of charges for variable life insurance contractholders required pursuant to Rule 6e-2 (§ 270.6e-2 of this chapter). 274.303 Section 274.303 Commodity and Securities Exchanges...

  8. Study Variability of Seasonal Soil Moisture in Ensemble of CMIP5 Models Over South Asia During 1950-2005

    NASA Astrophysics Data System (ADS)

    Fahim, A. M.; Shen, R.; Yue, Z.; Di, W.; Mushtaq Shah, S.

    2015-12-01

    Moisture in the upper most layer of soil column from 14 different models under Coupled Model Intercomparison Project Phase-5 (CMIP5) project were analyzed for four seasons of the year. Aim of this study was to explore variability in soil moisture over south Asia using multi model ensemble and relationship between summer rainfall and soil moisture for spring and summer season. GLDAS (Global Land Data Assimilation System) dataset set was used for comparing CMIP5 ensemble mean soil moisture in different season. Ensemble mean represents soil moisture well in accordance with the geographical features; prominent arid regions are indicated profoundly. Empirical Orthogonal Function (EOF) analysis was applied to study the variability. First component of EOF explains 17%, 16%, 11% and 11% variability for spring, summer, autumn and winter season respectively. Analysis reveal increasing trend in soil moisture over most parts of Afghanistan, Central and north western parts of Pakistan, northern India and eastern to south eastern parts of China, in spring season. During summer, south western part of India exhibits highest negative trend while rest of the study area show minute trend (increasing or decreasing). In autumn, south west of India is under highest negative loadings. During winter season, north western parts of study area show decreasing trend. Summer rainfall has very week (negative or positive) spatial correlation, with spring soil moisture, while possess higher correlation with summer soil moisture. Our studies have significant contribution to understand complex nature of land - atmosphere interactions, as soil moisture prediction plays an important role in the cycle of sink and source of many air pollutants. Next level of research should be on filling the gaps between accurately measuring the soil moisture using satellite remote sensing and land surface modelling. Impact of soil moisture in tracking down different types of pollutant will also be studied.

  9. Environmental Controls on Multi-Scale Soil Nutrient Variability in the Tropics: the Importance of Land-Cover Change

    NASA Astrophysics Data System (ADS)

    Holmes, K. W.; Kyriakidis, P. C.; Chadwick, O. A.; Matricardi, E.; Soares, J. V.; Roberts, D. A.

    2003-12-01

    The natural controls on soil variability and the spatial scales at which correlation exists among soil and environmental variables are critical information for evaluating the effects of deforestation. We detect different spatial scales of variability in soil nutrient levels over a large region (hundreds of thousands of km2) in the Amazon, analyze correlations among soil properties at these different scales, and evaluate scale-specific relationships among soil properties and the factors potentially driving soil development. Statistical relationships among physical drivers of soil formation, namely geology, precipitation, terrain attributes, classified soil types, and land cover derived from remote sensing, were included to determine which factors are related to soil biogeochemistry at each spatial scale. Surface and subsurface soil profile data from a 3000 sample database collected in Rond“nia, Brazil, were used to investigate patterns in pH, phosphorus, nitrogen, organic carbon, effective cation exchange capacity, calcium, magnesium, potassium, aluminum, sand, and clay in this environment grading from closed canopy tropical forest to savanna. We focus on pH in this presentation for simplicity, because pH is the single most important soil characteristic for determining the chemical environment of higher plants and soil microbial activity. We determined four spatial scales which characterize integrated patterns of soil chemistry: less than 3 km; 3 to 10 km; 10 to 68 km; and from 68 to 550 km (extent of study area). Although the finest observable scale was fixed by the field sampling density, the coarser scales were determined from relationships in the data through coregionalization modeling, rather than being imposed by the researcher. Processes which affect soils over short distances, such as land cover and terrain attributes, were good predictors of fine scale spatial components of nutrients; processes which affect soils over very large distances, such as precipitation and geology, were better predictors at coarse spatial scales. However, this result may be affected by the resolution of the available predictor maps. Land-cover change exerted a strong influence on soil chemistry at fine spatial scales, and had progressively less of an effect at coarser scales. It is important to note that land cover, and interactions among land cover and the other predictors, continued to be a significant predictor of soil chemistry at every spatial scale up to hundreds of thousands of kilometers.

  10. Effect of polyacrylamide on soil physical and hydraulic properties

    NASA Astrophysics Data System (ADS)

    Albalasmeh, Ammar; Gharaibeh, Mamoun; Hamdan, Enas

    2017-04-01

    The effect of polyacrylamide (PAM), as a soil conditioner, on selected soil physical and hydraulic properties (infiltration rate (f(t)), hydraulic conductivity (HC), soil moisture content, aggregate stability (AS), and soil aggregation) was studied. Two types of anionic PAM were used: Low molecular weight (LPAM) (1×105 g/mol) with medium charge density (33-43) and high molecular weight (HPAM) (1-6×106 g/mol) with medium charge density (33-43). Sandy loam soil was packed into plastic columns; PAM solutions at different concentrations (100, 250, 500, and 1000 mg L-1) were used every two weeks in four wetting and drying cycles. The highest infiltration rate value was 0.16 mm s-1 at 1000 mg/L low molecular weight PAM while the highest value of infiltration rate in high PAM molecular weight was 0.11 mm s-1 compared to the control (0.01 mm s-1). Soil HC was about 3.00 cm h-1 for LPAM at 1000 mg L-1 PAM, while the highest value for HPAM was about 2 cm h-1 for the same concentration, compared to the control. The amount of water that can be held by soil increased with the addition of PAM compared to the control. Differences in water content were more pronounced in LPAM compared to HPAM. The addition of LPAM increased aggregate stability proportional to PAM concentration. Moreover, 1000 mg L-1 produced the highest aggregate stability (19{%}) compared to HPAM and control (7{%} and 5{%}), respectively. As PAM concentration increased, the geometric mean diameter (GMD) increased for both PAM molecular weights compared to control (0.4 mm). At 1000 mg L-1 the GMD values were 0.88 mm and 0.79 mm for LPAM and HPAM, respectively. The addition of PAM improved soil physical and hydraulic properties, with an advantage to LPAM owing that to its ability to penetrate soil aggregates and therefore stabilizing them.

  11. Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama

    USGS Publications Warehouse

    Barthold, F.K.; Stallard, R.F.; Elsenbeer, H.

    2008-01-01

    Soils play a crucial role in biogeochemical cycles as spatially distributed sources and sinks of nutrients. Any spatial patterns depend on soil forming processes, our understanding of which is still limited, especially in regards to tropical rainforests. The objective of our study was to investigate the effects of landscape properties, with an emphasis on the geometry of the land surface, on the spatial heterogeneity of soil chemical properties, and to test the suitability of soil-landscape modeling as an appropriate technique to predict the spatial variability of exchangeable K and Mg in a humid tropical forest in Panama. We used a design-based, stratified sampling scheme to collect soil samples at 108 sites on Barro Colorado Island, Panama. Stratifying variables are lithology, vegetation and topography. Topographic variables were generated from high-resolution digital elevation models with a grid size of 5 m. We took samples from five depths down to 1 m, and analyzed for total and exchangeable K and Mg. We used simple explorative data analysis techniques to elucidate the importance of lithology for soil total and exchangeable K and Mg. Classification and Regression Trees (CART) were adopted to investigate importance of topography, lithology and vegetation for the spatial distribution of exchangeable K and Mg and with the intention to develop models that regionalize the point observations using digital terrain data as explanatory variables. Our results suggest that topography and vegetation do not control the spatial distribution of the selected soil chemical properties at a landscape scale and lithology is important to some degree. Exchangeable K is distributed equally across the study area indicating that other than landscape processes, e.g. biogeochemical processes, are responsible for its spatial distribution. Lithology contributes to the spatial variation of exchangeable Mg but controlling variables could not be detected. The spatial variation of soil total K and Mg is mainly influenced by lithology. ?? 2007 Elsevier B.V. All rights reserved.

  12. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil management induced variability, there was a strong interaction with soil type and climate conditions. There was also a relatively high variability within the same soil management and soil type class, indicating farm to farm variability in conditions and history of soil management. Based on this dataset two different approaches were taken to: A) evaluate the risk of soil degradation based on a limited set of soil properties, B) assess the effect of changes in SMS on soil biodiversity by using terminal restriction profiles (TRFs) derived from T-RFLP analysis of amplified 16S rDNA as. The results indicates the potential of both approaches to assess the risk of soil degradation (A) and the impact on soil biodiversity (B) upon appropriate benchmarking to characterize the interaction between soil management and soil type References Álvarez, S., Soriano, M.A., Landa, B.B., and Gómez, J.A. 2007. Soil properties in organic olive orchards compared with that in natural areas in a mountainous landscape in southern Spain. Soil Use Manage 23:404-416. Gómez, J.A., Álvarez, S., and Soriano, M.A. 2009. Development of a soil degradation assessment tool for organic olive groves in southern Spain. Catena 79:9-17. Landa, B.B., Montes-Borrego, M., Aranda, S., Soriano, M.A., Gómez, J.A., and Navas-Cortés, J.A. 2013. Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in Southern Spain. Environmental Microbiology Reports (accepted) Soriano, M.A., Álvarez, S., Landa, B.B., and Gómez, J.A. 2013. Soil properties in organic olive orchards following different weed management in a rolling landscape of Andalusia, Spain. Renew Agr Food Syst (in press), doi:10.1017/S1742170512000361.

  13. Within-field variability of plant and soil parameters

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Brisco, B.; Dobson, C.

    1981-01-01

    The variability of ground truth data collected for vegetation experiments was investigated. Two fields of wheat and one field of corn were sampled on two different dates. The variability of crop and soil parameters within a field, between two fields of the same type, and within a field over time were compared statistically. The number of samples from each test site required in order to be able to determine with confidence the mean and standard deviations for a given variable was determined. Eight samples were found to be adequate for plant height determinations, while twenty samples were required for plant moisture and soil moisture characterization. Eighteen samples were necessary for detecting within field variability over time and for between field variability for the same crop. The necessary sample sites vary according to the physiological growth stage of the crop and recent weather events that affect the moisture and/or height characteristics of the field in question.

  14. Environmental forcing does not induce diel or synoptic variation in the carbon isotope content of forest soil respiration

    DOE PAGES

    Bowling, D. R.; Egan, J. E.; Hall, S. J.; ...

    2015-08-31

    Recent studies have examined temporal fluctuations in the amount and carbon isotope content (δ 13C) of CO 2 produced by the respiration of roots and soil organisms. These changes have been correlated with diel cycles of environmental forcing (e.g., sunlight and soil temperature) and with synoptic-scale atmospheric motion (e.g., rain events and pressure-induced ventilation). We used an extensive suite of measurements to examine soil respiration over 2 months in a subalpine forest in Colorado, USA (the Niwot Ridge AmeriFlux forest). Observations included automated measurements of CO 2 and δ 13C of CO 2 in the soil efflux, the soil gasmore » profile, and forest air. There was strong diel variability in soil efflux but no diel change in the δ 13C of the soil efflux (δ R) or the CO 2 produced by biological activity in the soil (δ J). Following rain, soil efflux increased significantly, but δ R and δ J did not change. Temporal variation in the δ 13C of the soil efflux was unrelated to measured environmental variables, and we failed to find an explanation for this unexpected result. Measurements of the δ 13C of the soil efflux with chambers agreed closely with independent observations of the isotopic composition of soil CO 2 production derived from soil gas well measurements. Deeper in the soil profile and at the soil surface, results confirmed established theory regarding diffusive soil gas transport and isotopic fractionation. Deviation from best-fit diffusion model results at the shallower depths illuminated a pump-induced ventilation artifact that should be anticipated and avoided in future studies. There was no evidence of natural pressure-induced ventilation of the deep soil. However, higher variability in δ 13C of the soil efflux relative to δ 13C of production derived from soil profile measurements was likely caused by transient pressure-induced transport with small horizontal length scales.« less

  15. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  16. Exploring the Role of Soil Moisture Conditions for Rainfall Triggered Landslides on Catchment Scale: the case of the Ialomita Sub Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Bogaard, Thom; Adler, Mary-Jeanne; Steele-Dunne, Susan; Hrachowitz, Markus; Busuioc, Aristita; Sandric, Ionut; Istrate, Alexandru

    2014-05-01

    Like in many parts of the world, landslides represent in Romania recurrent phenomena that produce numerous damages to the infrastructure every few years. The high frequency of landslide events over the world has resulted to the development of many early warning systems that are based on the definition of rainfall thresholds triggering landslides. In Romania in particular, recent studies exploring the temporal occurrence of landslides have revealed that rainfall represents the most important triggering factor for landslides. The presence of low permeability soils and gentle slope degrees in the Ialomita Subcarpathians of Romania makes that cumulated precipitation over variable time interval and the hydraulic response of the soil plays a key role in landslides triggering. In order to identify the slope responses to rainfall events in this particular area we investigate the variability of soil moisture and its relationship to landslide events in three Subcarpathians catchments (Cricovul Dulce, Bizididel and Vulcana) by combining in situ measurements, satellite-based radiometry and hydrological modelling. For the current study, hourly soil moisture measurements from six soil moisture monitoring stations that are fitted with volumetric soil moisture sensors, temperature soil sensors and rain gauges sensors are used. Pedotransfer functions will be applied in order to infer hydraulic soil properties from soil texture sampled from 50 soil profiles. The information about spatial and temporal variability of soil moisture content will be completed with the Level 2 soil moisture products from the Soil Moisture and Ocean Salinity (SMOS) mission. A time series analysis of soil moisture is planned to be integrated to landslide and rainfall time series in order to determine a preliminary rainfall threshold triggering landslides in Ialomita Subcarpathians.

  17. Impact of Hydrologic Variability on Ecosystem Dynamics and the Sustainable Use of Soil and Water Resources

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.

    2013-05-01

    We discuss the key processes by which hydrologic variability affects the probabilistic structure of soil moisture dynamics in water-controlled ecosystems. These in turn impact biogeochemical cycling and ecosystem structure through plant productivity and biodiversity as well as nitrogen availability and soil conditions. Once the long-term probabilistic structure of these processes is quantified, the results become useful to understand the impact of climatic changes and human activities on ecosystem services, and can be used to find optimal strategies of water and soil resources management under unpredictable hydro-climatic fluctuations. Particular applications regard soil salinization, phytoremediation and optimal stochastic irrigation.

  18. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    Treesearch

    Quan Zhang; Richard P. Phillips; Stefano Manzoni; Russell L. Scott; A. Christopher Oishi; Adrien Finzi; Edoardo Daly; Rodrigo Vargas; Kimberly A. Novick

    2018-01-01

    In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This...

  19. Statistical process control applied to mechanized peanut sowing as a function of soil texture.

    PubMed

    Zerbato, Cristiano; Furlani, Carlos Eduardo Angeli; Ormond, Antonio Tassio Santana; Gírio, Lucas Augusto da Silva; Carneiro, Franciele Morlin; da Silva, Rouverson Pereira

    2017-01-01

    The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing.

  20. Spatial and temporal variability of soil temperature, moisture and surface soil properties

    NASA Technical Reports Server (NTRS)

    Hajek, B. F.; Dane, J. H.

    1993-01-01

    The overall objectives of this research were to: (l) Relate in-situ measured soil-water content and temperature profiles to remotely sensed surface soil-water and temperature conditions; to model simultaneous heat and water movement for spatially and temporally changing soil conditions; (2) Determine the spatial and temporal variability of surface soil properties affecting emissivity, reflectance, and material and energy flux across the soil surface. This will include physical, chemical, and mineralogical characteristics of primary soil components and aggregate systems; and (3) Develop surface soil classes of naturally occurring and distributed soil property assemblages and group classes to be tested with respect to water content, emissivity and reflectivity. This document is a report of studies conducted during the period funded by NASA grants. The project was designed to be conducted over a five year period. Since funding was discontinued after three years, some of the research started was not completed. Additional publications are planned whenever funding can be obtained to finalize data analysis for both the arid and humid locations.

  1. Statistical process control applied to mechanized peanut sowing as a function of soil texture

    PubMed Central

    Furlani, Carlos Eduardo Angeli; da Silva, Rouverson Pereira

    2017-01-01

    The successful establishment of agricultural crops depends on sowing quality, machinery performance, soil type and conditions, among other factors. This study evaluates the operational quality of mechanized peanut sowing in three soil types (sand, silt, and clay) with variable moisture contents. The experiment was conducted in three locations in the state of São Paulo, Brazil. The track-sampling scheme was used for 80 sampling locations of each soil type. Descriptive statistics and statistical process control (SPC) were used to evaluate the quality indicators of mechanized peanut sowing. The variables had normal distributions and were stable from the viewpoint of SPC. The best performance for peanut sowing density, normal spacing, and the initial seedling growing stand was found for clayey soil followed by sandy soil and then silty soil. Sandy or clayey soils displayed similar results regarding sowing depth, which was deeper than in the silty soil. Overall, the texture and the moisture of clayey soil provided the best operational performance for mechanized peanut sowing. PMID:28742095

  2. Implications of complete watershed soil moisture measurements to hydrologic modeling

    NASA Technical Reports Server (NTRS)

    Engman, E. T.; Jackson, T. J.; Schmugge, T. J.

    1983-01-01

    A series of six microwave data collection flights for measuring soil moisture were made over a small 7.8 square kilometer watershed in southwestern Minnesota. These flights were made to provide 100 percent coverage of the basin at a 400 m resolution. In addition, three flight lines were flown at preselected areas to provide a sample of data at a higher resolution of 60 m. The low level flights provide considerably more information on soil moisture variability. The results are discussed in terms of reproducibility, spatial variability and temporal variability, and their implications for hydrologic modeling.

  3. An analysis of carbon and radiocarbon profiles across a range ecosystems types

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Gallo, A.; Hatten, J. A.; Swanston, C.; Strahm, B. D.; Sanclements, M.

    2016-12-01

    Soil carbon stocks have become recognized as increasingly important in the context of climate change and global C cycle modeling. As modelers seek to identify key parameters affecting the size and stability of belowground C stocks, attention has been drawn to the mineral matrix and the soil physiochemical factors influenced by it. Though clay content has often been utilized as a convenient and key explanatory variable for soil C dynamics, its utility has recently come under scrutiny as new paradigms of soil organic matter stabilization have been developed. We utilized soil cores from a range of National Ecological Observatory Network (NEON) experimental plots to examine the influence of mineralogical parameters on soil C stocks and turnover and their relative importance in comparison to climatic variables. Results are presented for a total of 11 NEON sites, spanning Alfisols, Entisols, Mollisols and Spodosols. Soils were sampled by genetic horizon, density separated according to density fractionation: light fractions (particulate organics neither occluded within aggregates nor associated with mineral surfaces), occluded fractions (particulate organics occluded within aggregates), and heavy fractions (organics associated with mineral surfaces). Bulk soils and density fractions were measured for % C and radiocarbon abundance (as a measure of C stability). Carbon and radiocarbon abundances were examined among fractions and in the context of climatic variables (temperature, precipitation, elevation) and soil physiochemical variables (% clay and pH). No direct relationships between temperature and soil C or radiocarbon abundances were found. As a whole, soil radiocarbon abundance in density fractions decreased in the order of light>heavy>occluded, highlighting the importance of both surface sorption and aggregation to the preservation of organics. Radiocarbon concentrations of the heavy fraction (mineral adsorbed) were significantly, though weakly, correlated with pH (r2 = 0.35, p = 0.02), though C concentrations were not. Data suggest an important role for both aggregation and soil chemistry in regulating soil C cycling across a diversity of soil orders. The current presented results serve as a preliminary report on a project spanning 40 NEON sites and a range of physiochemical analyses.

  4. On the soil moisture estimate at basin scale in Mediterranean basins with the ASAR sensor: the Mulargia basin case study

    NASA Astrophysics Data System (ADS)

    Fois, Laura; Montaldo, Nicola

    2017-04-01

    Soil moisture plays a key role in water and energy exchanges between soil, vegetation and atmosphere. For water resources planning and managementthesoil moistureneeds to be accurately and spatially monitored, specially where the risk of desertification is high, such as Mediterranean basins. In this sense active remote sensors are very attractive for soil moisture monitoring. But Mediterranean basinsaretypicallycharacterized by strong topography and high spatial variability of physiographic properties, and only high spatial resolution sensorsare potentially able to monitor the strong soil moisture spatial variability.In this regard the Envisat ASAR (Advanced Synthetic Aperture Radar) sensor offers the attractive opportunity ofsoil moisture mapping at fine spatial and temporal resolutions(up to 30 m, every 30 days). We test the ASAR sensor for soil moisture estimate in an interesting Sardinian case study, the Mulargia basin withan area of about 70 sq.km. The position of the Sardinia island in the center of the western Mediterranean Sea basin, its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. The Mulargia basin is a typical Mediterranean basinin water-limited conditions, and is an experimental basin from 2003. For soil moisture mapping23 satellite ASAR imagery at single and dual polarization were acquired for the 2003-2004period.Satellite observationsmay bevalidated through spatially distributed soil moisture ground-truth data, collected over the whole basin using the TDR technique and the gravimetric method, in days with available radar images. The results show that ASAR sensor observations can be successfully used for soil moisture mapping at different seasons, both wet and dry, but an accurate calibration with field data is necessary. We detect a strong relationship between the soil moisture spatial variability and the physiographic properties of the basin, such as soil water storage capacity, deep and texture of soils, type and density of vegetation, and topographic parameters. Finally we demonstrate that the high resolution ASAR imagery are an attractive tool for estimating surface soil moisture at basin scale, offering a unique opportunity for monitoring the soil moisture spatial variability in typical Mediterranean basins.

  5. Effects of rainfall partitioning in the seasonal and spatial variability of soil water content in a Mediterranean downy oak forest

    NASA Astrophysics Data System (ADS)

    Garcia-Estringana, P.; Latron, J.; Molina, A. J.; Llorens, P.

    2012-04-01

    Rainfall partitioning fluxes (throughfall and stemflow) have a large degree of temporal and spatial variability and may consequently lead to significant changes in the volume and composition of water that reach the understory and the soil. The objective of this work is to study the effect of rainfall partitioning on the seasonal and spatial variability of the soil water content in a Mediterranean downy oak forest (Quercus pubescens), located in the Vallcebre research catchments (42° 12'N, 1° 49'E). The monitoring design, started on July 2011, consists of a set of 20 automatic rain recorders and 40 automatic soil moisture probes located below the canopy. One hundred hemispheric photographs of the canopy were used to place the instruments at representative locations (in terms of canopy cover) within the plot. Bulk rainfall, stemflow and meteorological conditions above the forest cover are also automatically recorded. Canopy cover, in leaf and leafless periods, as well as biometric characteristics of the plot, are also regularly measured. This work presents the first results describing throughfall and soil moisture spatial variability during both the leaf and leafless periods. The main drivers of throughfall variability, as canopy structure and meteorological conditions are also analysed.

  6. Determining the spatial variability of crop yields of two different climatic regions in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Eshonkulov, Ravshan; Poyda, Arne; Ingwersen, Joachim; Streck, Thilo

    2017-04-01

    Assessing the spatial variability of soil physical properties is crucial for agricultural land management. We determined the spatial variability within two agricultural fields in the regions of Kraichgau and Swabian Jura in Southwest Germany. We determined soil physical properties and recorded the temporal development of soil mineral nitrogen (N) and water content as well as that of plant variables (phenology, biomass, leaf area index (LAI), N content, green vegetation fraction (GVF). The work was conducted during the vegetation periods of 2015 and 2016 in winter wheat, and winter rapeseed in Kraichgau and winter barley and silage maize on Swabian Jura. Measurements were taken in three-weekly intervals. On each field, we identified three plots with reduced plant development using high-resolution (RapidEye) satellite images ("cold spots"). Measurements taken on these cold spots were compared to those from five established (long-term) reference plots representing the average field variability. The software EXPERT-N was used to simulate the soil crop system at both cold spots and reference plots. Sensitivity analyses were conducted to identify the most important parameters for the determination of spatial variability in crop growth dynamics.

  7. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: Implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (p ??? 0.05) as a function of soil x counterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, NH4+, and HPO42-, the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.

  8. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.

  9. Transverse Motion of a Particle with an Oscillating Charge and Variable Mass in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.; Ragimkhanov, G. B.

    2018-03-01

    The problem of motion of a particle with an oscillating electric charge and variable mass in an uniform magnetic field has been solved. Three laws of mass variation have been considered: linear growth, oscillations, and stepwise growth. Analytical expressions for the particle velocity at different time dependences of the particle mass are obtained. It is established that simultaneous consideration of changes in the mass and charge leads to a significant change in the particle trajectory.

  10. The magnitude and variability of soil-surface CO2 efflux increase with temperature in Hawaiian tropical montane wet forests

    Treesearch

    Creighton M. Litton; Christian P. Giardina; Jeremy K. Albano; Michael S. Long; Gregory P. Asner

    2011-01-01

    Soil-surface CO2 efflux (FS; ‘soil respiration’) accounts for 50% of the CO2 released annually by the terrestrial biosphere to the atmosphere, and the magnitude and variability of this flux are likely to be sensitive to climate change. We measured FS in nine permanent plots along a 5.2C mean annual...

  11. Landscape structure, groundwater dynamics, and soil water content influence soil respiration across riparian-hillslope transitions in the Tenderfoot Creek Experimental Forest, Montana

    Treesearch

    Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Daniel L. Welsch; Howard E. Epstein

    2011-01-01

    Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability...

  12. Soil Parameter Mapping and Ad Hoc Power Analysis to Increase Blocking Efficiency Prior to Establishing a Long-Term Field Experiment.

    PubMed

    Collins, Doug; Benedict, Chris; Bary, Andy; Cogger, Craig

    2015-01-01

    The spatial heterogeneity of soil and weed populations poses a challenge to researchers. Unlike aboveground variability, below-ground variability is more difficult to discern without a strategic soil sampling pattern. While blocking is commonly used to control environmental variation, this strategy is rarely informed by data about current soil conditions. Fifty georeferenced sites were located in a 0.65 ha area prior to establishing a long-term field experiment. Soil organic matter (OM) and weed seed bank populations were analyzed at each site and the spatial structure was modeled with semivariograms and interpolated with kriging to map the surface. These maps were used to formulate three strategic blocking patterns and the efficiency of each pattern was compared to a completely randomized design and a west to east model not informed by soil variability. Compared to OM, weeds were more variable across the landscape and had a shorter range of autocorrelation, and models to increase blocking efficiency resulted in less increase in power. Weeds and OM were not correlated, so no model examined improved power equally for both parameters. Compared to the west to east blocking pattern, the final blocking pattern chosen resulted in a 7-fold increase in power for OM and a 36% increase in power for weeds.

  13. Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter?

    PubMed Central

    Williams, Alwyn; Hunter, Mitchell C.; Kammerer, Melanie; Kane, Daniel A.; Jordan, Nicholas R.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde

    2016-01-01

    Yield stability is fundamental to global food security in the face of climate change, and better strategies are needed for buffering crop yields against increased weather variability. Regional- scale analyses of yield stability can support robust inferences about buffering strategies for widely-grown staple crops, but have not been accomplished. We present a novel analytical approach, synthesizing 2000–2014 data on weather and soil factors to quantify their impact on county-level maize yield stability in four US states that vary widely in these factors (Illinois, Michigan, Minnesota and Pennsylvania). Yield stability is quantified as both ‘downside risk’ (minimum yield potential, MYP) and ‘volatility’ (temporal yield variability). We show that excessive heat and drought decreased mean yields and yield stability, while higher precipitation increased stability. Soil water holding capacity strongly affected yield volatility in all four states, either directly (Minnesota and Pennsylvania) or indirectly, via its effects on MYP (Illinois and Michigan). We infer that factors contributing to soil water holding capacity can help buffer maize yields against variable weather. Given that soil water holding capacity responds (within limits) to agronomic management, our analysis highlights broadly relevant management strategies for buffering crop yields against climate variability, and informs region-specific strategies. PMID:27560666

  14. Utilization of point soil moisture measurements for field scale soil moisture averages and variances in agricultural landscapes

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is a key variable in understanding the hydrologic processes and energy fluxes at the land surface. In spite of new technologies for in-situ soil moisture measurements and increased availability of remotely sensed soil moisture data, scaling issues between soil moisture observations and...

  15. Harvest traffic monitoring and soil physical response in a pine plantation

    Treesearch

    Emily A. Carter; Timothy P. McDonald; John L. Torbert

    2000-01-01

    Mechanized forest harvest operations induce changes in soil physical properties, which have the potential to impact soil sustainability and forest productivity. The assessment of soil compaction and its spatial variability has been determined previously through the identification and tabulation of visual soil disturbance classes and soil physical changes associated...

  16. Scaling of Device Variability and Subthreshold Swing in Ballistic Carbon Nanotube Transistors

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Tersoff, Jerry; Han, Shu-Jen; Penumatcha, Ashish V.

    2015-08-01

    In field-effect transistors, the inherent randomness of dopants and other charges is a major cause of device-to-device variability. For a quasi-one-dimensional device such as carbon nanotube transistors, even a single charge can drastically change the performance, making this a critical issue for their adoption as a practical technology. Here we calculate the effect of the random charges at the gate-oxide surface in ballistic carbon nanotube transistors, finding good agreement with the variability statistics in recent experiments. A combination of experimental and simulation results further reveals that these random charges are also a major factor limiting the subthreshold swing for nanotube transistors fabricated on thin gate dielectrics. We then establish that the scaling of the nanotube device uniformity with the gate dielectric, fixed-charge density, and device dimension is qualitatively different from conventional silicon transistors, reflecting the very different device physics of a ballistic transistor with a quasi-one-dimensional channel. The combination of gate-oxide scaling and improved control of fixed-charge density should provide the uniformity needed for large-scale integration of such novel one-dimensional transistors even at extremely scaled device dimensions.

  17. Detection of soil erosion within pinyon-juniper woodlands using Thematic Mapper (TM) satellite data

    NASA Technical Reports Server (NTRS)

    Price, Kevin P.; Ridd, Merrill K.

    1991-01-01

    The sensitivity of Landsat TM data for detecting soil erosion within pinyon-juniper woodlands, and the potential of the spectral data for assigning the universal soil loss equation (USLE) crop managemnent (C) factor to varying cover types within the woodlands are assessed. Results show greatly accelerated rates of soil erosion on pinyon-juniper sites. Percent cover by pinyon-juniper, total soil-loss, and total nonliving ground cover accounted for nearly 70 percent of the variability in TM channels 2, 3, 4, and 5. TM spectral data were consistently better predictors of soil erosion than the biotic and abiotic field variables. Satellite data were more sensitive to vegetation variation than the USLE C factor, and USLE was found to be a poor predictor of soil loss on pinyon-juniper sites. A new string-to-ground soil erosion prediction technique is introduced.

  18. Adsorption of lambda-cyhalothrin and cypermethrin on two typical Chinese soils as affected by copper.

    PubMed

    Liu, Jun; Lü, Xiaomeng; Xie, Jimin; Chu, Yafei; Sun, Cheng; Wang, Qian

    2009-06-01

    Pesticides and heavy metals pollution in soil environment has become a serious problem in many countries including China. Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid (Pys) insecticides have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils. However, few studies focused on the interaction of Pys and heavy metals in the soil environment. Our previous studies had indicated the combined effect of cypermethrin (CPM) and Cu on soil catalase activity. Also, we had suggested that the addition of Cu could catalyze photo-degradation of CPM and lambda-cyhalothrin (lambda-CHT) in aqueous solution and restrain their degradation in soil. To better understand the potential influence of Cu on the fate of Pys in the soil environment, the aim of the present work was to examine the effect of Cu on the adsorption of lambda-CHT and CPM on two typical Chinese soils with different soil characteristics, which was one of the key processes controlling the fate of Pys, and to provide more information about the potential ecological risk of chemicals on the soil ecosystem. Fourier transform infrared and point charges analysis using the MOPAC program of the Gaussian system were also used to reveal the probable adsorption mechanism of lambda-CHT and CPM on soils. Two vineyard soils with different properties were chosen as experimental samples. They were sampled from 0 to 10 cm, dried, and sieved to 2 mm. Each soil was spiked with copper sulfate solution to obtain the following total soil Cu concentrations: 100, 200, 400, 800, and 1,600 mg.kg(-1). The treated soils were incubated for 2 weeks and then dried at 20 degrees C. For each soil sample and at each soil Cu concentration, the adsorption of lambda-CHT and CPM was measured using a batch equilibrium method. The concentration of lambda-CHT was determined by HPLC, and the amount of lambda-CHT and CPM adsorbed by the soil sample at equilibrium was determined by the difference between the initial and equilibrium concentrations in solution corrected by the blank adsorption measurement. Without the addition of Cu, the adsorption of lambda-CHT and CPM on Black soil is greater than that on Red soil, while the adsorption of lambda-CHT on both soils is significantly stronger than that of CPM. As the soil Cu concentration increased from 19 (or 18; background) to 1,600 mg.kg(-1), the adsorption coefficient (K (d)) of lambda-CHT decreased from 12.2 to 5.9 L.kg(-1) for Red soil, and from 26.1 to 16.8 L.kg(-1) for Black soil, whereas the CPM adsorption coefficient in both soils decreased nearly by 100% (K (d) decreased from 9.4 to 0.2 L.kg(-1) for Red soil and from 16.2 to 0.5 L.kg(-1) for Black soil). Pys adsorption is a surface phenomenon which depends on the surface area and the organic matter content. Thus, the Black soil, having higher organic matter and greater surface area than that of the Red soil, show greater adsorption affinity to lambda-CHT and CPM. In our study, the different adsorption affinity of the two Pys was obtained, which was probably attributed to differences with respect to their physical-chemical properties. Further comparison upon the two Pys was conducted. The point charges of halogen atoms in the lambda-CHT and CPM were calculated, the differences of which probably lead to the fact that lambda-CHT has a stronger binding capacity to soils than CPM. Also, FTIR spectra show that competitive adsorption occurs between CPM and Cu for the same adsorption sites, which is responsible for the obtained suppression of CPM adsorption affected by Cu. Lambda-cyhalothrin shows a significantly stronger adsorption than cypermethrin on both soils. This phenomenon may be due to several reasons: (1) lambda-CHT has lower solubility and a higher octanol-water partition coefficient value than CPM; (2) lambda-CHT consists of specific isomers, whereas CPM is mixtures of eight different isomers; (3) the chlorine and fluorine atoms in the lambda-CHT have a negative point charge, whereas the chlorine atoms in the CPM have a positive point charge. As the soil Cu concentrations increased from 19 (or 18) mg.kg(-1) to 1,600 mg.kg(-1), the adsorption coefficient of lambda-CHT and CPM decreased on both soils. This is mainly due to a competition between Cu and Pys for occupying the adsorption sites on soils. The information from this study have important implications for vineyard and orchard soils, which often contain elevated levels of Cu and Pys. These results are also useful in assessing the environmental fate and health effect of lambda-CHT and CPM. It is important for environmental scientists and engineers to get a better understanding of soil-metal-organic contaminant interactions. However, pesticide adsorption involves complex processes, and shortcomings in understanding them still restrict the ability to predict the fate and behavior of pesticide. Therefore, considerable research should be carried out to understand the mechanism of interaction between Pys and heavy metal on soils clearly.

  19. Investigating the relationship between climate teleconnection patterns and soil moisture variability in the Rio Grande/Río Bravo del Norte basin using the NOAH land surface model

    NASA Astrophysics Data System (ADS)

    Khedun, C. P.; Mishra, A. K.; Bolten, J. D.; Giardino, J. R.; Singh, V. P.

    2010-12-01

    Soil moisture is an important component of the hydrological cycle. Climate variability patterns, such as the Pacific Decadal Oscillation (PDO), El Niño Southern Oscillation (ENSO), and Atlantic Multidecadal Oscillation (AMO) are determining factors on surface water availability and soil moisture. Understanding this complex relationship and the phase and lag times between climate events and soil moisture variability is important for agricultural management and water planning. In this study we look at the effect of these climate teleconnection patterns on the soil moisture across the Rio Grande/Río Bravo del Norte basin. The basin is transboundary between the US and Mexico and has a varied climatology - ranging from snow dominated in its headwaters in Colorado, to an arid and semi-arid region in its middle reach and a tropical climate in the southern section before it discharges into the Gulf of Mexico. Agricultural activities in the US and in northern Mexico are highly dependent on the Rio Grande and are extremely vulnerable to climate extremes. The treaty between the two countries does not address climate related events. The soil moisture is generated using the community NOAH land surface model (LSM). The LSM is a 1-D column model that runs in coupled or uncoupled mode, and it simulates soil moisture, soil temperature, skin temperature, snowpack depth, snow water equivalent, canopy water content, and energy flux and water flux of the surface energy and water balance. The North American Land Data Assimilation Scheme 2 (NLDAS2) is used to drive the model. The model is run for the period 1979 to 2009. The soil moisture output is validated against measured values from the different Soil Climate Analysis Network (SCAN) sites within the basin. The spatial and temporal variability of the modeled soil moisture is then analyzed using marginal entropy to investigate monthly, seasonal, and annual variability. Wavelet transform is used to determine the relation, phase difference, and lag times between climate teleconnection events and soil moisture. The results from this study will help agricultural scientists and water planners in both the US and Mexico in better managing the dwindling water resources of this transboundary basin.

  20. A stochastic-geometric model of soil variation in Pleistocene patterned ground

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Meerschman, Eef; Van Meirvenne, Marc

    2013-04-01

    In this paper we examine the spatial variability of soil in parent material with complex spatial structure which arises from complex non-linear geomorphic processes. We show that this variability can be better-modelled by a stochastic-geometric model than by a standard Gaussian random field. The benefits of the new model are seen in the reproduction of features of the target variable which influence processes like water movement and pollutant dispersal. Complex non-linear processes in the soil give rise to properties with non-Gaussian distributions. Even under a transformation to approximate marginal normality, such variables may have a more complex spatial structure than the Gaussian random field model of geostatistics can accommodate. In particular the extent to which extreme values of the variable are connected in spatially coherent regions may be misrepresented. As a result, for example, geostatistical simulation generally fails to reproduce the pathways for preferential flow in an environment where coarse infill of former fluvial channels or coarse alluvium of braided streams creates pathways for rapid movement of water. Multiple point geostatistics has been developed to deal with this problem. Multiple point methods proceed by sampling from a set of training images which can be assumed to reproduce the non-Gaussian behaviour of the target variable. The challenge is to identify appropriate sources of such images. In this paper we consider a mode of soil variation in which the soil varies continuously, exhibiting short-range lateral trends induced by local effects of the factors of soil formation which vary across the region of interest in an unpredictable way. The trends in soil variation are therefore only apparent locally, and the soil variation at regional scale appears random. We propose a stochastic-geometric model for this mode of soil variation called the Continuous Local Trend (CLT) model. We consider a case study of soil formed in relict patterned ground with pronounced lateral textural variations arising from the presence of infilled ice-wedges of Pleistocene origin. We show how knowledge of the pedogenetic processes in this environment, along with some simple descriptive statistics, can be used to select and fit a CLT model for the apparent electrical conductivity (ECa) of the soil. We use the model to simulate realizations of the CLT process, and compare these with realizations of a fitted Gaussian random field. We show how statistics that summarize the spatial coherence of regions with small values of ECa, which are expected to have coarse texture and so larger saturated hydraulic conductivity, are better reproduced by the CLT model than by the Gaussian random field. This suggests that the CLT model could be used to generate an unlimited supply of training images to allow multiple point geostatistical simulation or prediction of this or similar variables.

  1. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    PubMed

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  2. Linking Annual N2O Emission in Organic Soils to Mineral Nitrogen Input as Estimated by Heterotrophic Respiration and Soil C/N Ratio

    PubMed Central

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted. PMID:24798347

  3. [Evaluation of soil heavy metals accumulation in the fast economy development region].

    PubMed

    Zhong, Xian-Lan; Zhou, Sheng-Lu; Li, Jiang-Tao; Zhao, Qi-Guo

    2010-06-01

    Evaluation of soil heavy metals accumulation was studied in Kunshan City, a typical region of the fast economy development region in China. 126 soil samples were collected and analyzed, and evaluation indexes of soil heavy metal accumulation, which including total concentration of soil heavy metal index (THMI), soil available heavy metal index (AHMI) and fractionation of soil heavy metal index (FHMI), were established, and the heavy metal accumulation conditions of soil in this region were also discussed. Results showed as follows: the spatial variability of THMI was relative lower, with a mean value of 42.57%, whereas strong variability was found in AHMI and FHMI (especially active fraction of soil heavy metals), with the average value of 82.75% and 77.83%, respectively. Judging by each index reference standard of C Horizon, THMI was low-grade with a mean value of 1.01, while the AHMI and FHMI reached to medium accumulation and serious accumulation, with the average values of 2.46 and 4.32, respectively. The synthetic accumulation index of soil heavy metals (SHMI) was 2.56, reaching to medium grade level and with strong variability. 21.54% land area was in low-grade accumulation and 54.70% land area was in medium grade accumulation, while 23.76% land area was in serious accumulation under SHMI evaluation system. All the accumulation evaluation indexes in livestock breeding zone were the lowest, while the indexes in the smelting and plating zone were the highest, but the indexes difference between two zones were unobvious. There were markedly differences in soil types, which the accumulation indexes in Wushan soil were significantly higher than those in Huangni soil and Qingni soil.

  4. The past, present, and future of soils and human health studies

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.; Sauer, T. J.

    2015-01-01

    The idea that human health is tied to the soil is not a new one. As far back as circa 1400 BC the Bible depicts Moses as understanding that fertile soil was essential to the well-being of his people. In 400 BC the Greek philosopher Hippocrates provided a list of things that should be considered in a proper medical evaluation, including the properties of the local ground. By the late 1700s and early 1800s, American farmers had recognized that soil properties had some connection to human health. In the modern world, we recognize that soils have a distinct influence on human health. We recognize that soils influence (1) food availability and quality (food security), (2) human contact with various chemicals, and (3) human contact with various pathogens. Soils and human health studies include investigations into nutrient supply through the food chain and routes of exposure to chemicals and pathogens. However, making strong, scientific connections between soils and human health can be difficult. There are multiple variables to consider in the soil environment, meaning traditional scientific studies that seek to isolate and manipulate a single variable often do not provide meaningful data. The complete study of soils and human health also involves many different specialties such as soil scientists, toxicologists, medical professionals, anthropologists, etc. These groups do not traditionally work together on research projects, and do not always effectively communicate with one another. Climate change and how it will affect the soil environment/ecosystem going into the future is another variable affecting the relationship between soils and health. Future successes in soils and human health research will require effectively addressing difficult issues such as these.

  5. Erosion measurements at various scales in a semi arid mountainous catchment - case of the Rheraya watershed, High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Cheggour, A.; Simonneaux, V.; Roose, E.

    2009-04-01

    Erosion is a critical phenomenon in North Africa, under the combined effects of aggressive rainfall and soil fragility, increased by the grazing pressure on rangelands. However measurements of actual erosion rates are rare, especially in mountainous areas. Siltation of dams is estimated at more than 60 million m3 annually in Morocco, which corresponds to a decrease of 0.5% of the storage capacity. The Rheraya watershed (225 km2) is located in a semi-arid climat, in the High Atlas of Morocco. In order to assess erosion processes at various scales, three types of measurements were achieved on this area, namely rainfall simulation tests one square meter, erosion plots on 150 m2, and catchment's discharge and associated sediments measurements. Rainfall simulation experiments were achieved on 27 sites, measuring runoff and sediment charge. The turbidity was correctly measured thanks to the development of a new runoff collector which doesn't disturb the soil. In the scope of spatial extrapolation, we searched for indicators obtained from ground description variables and/or by laboratory tests on soil samples, which were well correlated with infiltration and turbidity of the simulations. For the various soils present in the study area, the results show a large variability of infiltration (from 1 to 70 mm h-1) and turbidity (from 3 to 325 g.l-1). Analysis showed that infiltration is correlated mainly with texture and soil surface opening, and that turbidity is related to the surface of bare soil exposed to runoff. Six erosion plots of about 150 m2, located on various soil and land cover conditions, were measured during four years. The observations showed very rare runoff events in the main part of the watershed, producing a low sediment load (between 0.015 and 2.5 t.ha1.year1). Conversely, runoff was much more frequent on silty badlands, producing about 95% of the watershed sediment (350 t.ha-1.year-1) despite their area was only 1% of the watershed. There was a significant linear relation between simulation turbidity and erosion plot turbidity. However, there was a great difference between infiltration estimates from the two types of measurements. Plot infiltrations estimates were only between 3 and 5 mm/h, but they were significantly correlated to the one from test, through an exponential relation. Finally, an estimate of the overall erosion at catchment's scale was achieved from plots values extrapolated using a soil map, and gave about 3 to 4 t.ha-1.year-1. A good correlation was found between this watershed scale estimate and the catchment's exportation, indirectly validating the significance of both measurements. Moreover, both estimates were about the same, showing a sediment delivery ratio around one. Keywords: erosion, rainfall simulation, erosion plot, sediment exportation

  6. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Hoskinson; R C. Rope; L G. Blackwood

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and amore » predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences accounted for almost 87% of the cost difference. The sum of these differences could result in a $34 per acre cost difference for the fertilization. Because of these differences, better analysis or better sampling methods may need to be done, or more samples collected, to ensure that the soil measurements are truly representative of the field’s spatial variability.« less

  7. Farm-scale variation of soil quality indices and association with edaphic properties

    USDA-ARS?s Scientific Manuscript database

    Soil organisms are indicators of dynamic soil quality because their community structure and population density are sensitive to management changes. However, edaphic properties can also affect soil organisms and high spatial variability can confound their utility for soil evaluation. In the present...

  8. Temporal and spatial variability of soil biological activity at European scale

    NASA Astrophysics Data System (ADS)

    Mallast, Janine; Rühlmann, Jörg

    2015-04-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. Soil biological activity was investigated using two model concepts: a) Re_clim parameter within the ICBM (Introductory Carbon Balance Model) (Andrén & Kätterer 1997) states a climatic factor summarizing soil water storage and soil temperature and its influence on soil biological activity. b) BAT (biological active time) approach derived from model CANDY (CArbon and Nitrogen Dynamic) (Franko & Oelschlägel 1995) expresses the variation of soil moisture, soil temperature and soil aeration as a time scale and an indicator of biological activity for soil organic matter (SOM) turnover. During an earlier stage both model concepts, Re_clim and BAT, were applied based on a monthly data to assess spatial variability of turnover conditions across Europe. This hampers the investigation of temporal variability (e.g. intra-annual). The improved stage integrates daily data of more than 350 weather stations across Europe presented by Klein Tank et al. (2002). All time series data (temperature, precipitation and potential evapotranspiration and soil texture derived from the European Soil Database (JRC 2006)), are used to calculate soil biological activity in the arable layer. The resulting BAT and Re_clim values were spatio-temporal investigated. While "temporal" refers to a long-term trend analysis, "spatial" includes the investigation of soil biological activity variability per environmental zone (ENZ, Metzger et al. 2005 representing similar conditions for precipitation, temperature and relief) to identify ranges and hence turnover conditions for each ENZ. We will discuss the analyzed results of both concepts to assess SOM turnover conditions across Europe for historical weather data and for Spain focusing on climate scenarios. Both concepts help to separate different turnover activities and to indicate organic matter input in order to maintain the given SOM. The assessment could provide recommendations for adaptations of soil management practices. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies, Agriculture & Food (Grant Agreement N° 289782).

  9. Predicting the particle size distribution of eroded sediment using artificial neural networks.

    PubMed

    Lagos-Avid, María Paz; Bonilla, Carlos A

    2017-03-01

    Water erosion causes soil degradation and nonpoint pollution. Pollutants are primarily transported on the surfaces of fine soil and sediment particles. Several soil loss models and empirical equations have been developed for the size distribution estimation of the sediment leaving the field, including the physically-based models and empirical equations. Usually, physically-based models require a large amount of data, sometimes exceeding the amount of available data in the modeled area. Conversely, empirical equations do not always predict the sediment composition associated with individual events and may require data that are not always available. Therefore, the objective of this study was to develop a model to predict the particle size distribution (PSD) of eroded soil. A total of 41 erosion events from 21 soils were used. These data were compiled from previous studies. Correlation and multiple regression analyses were used to identify the main variables controlling sediment PSD. These variables were the particle size distribution in the soil matrix, the antecedent soil moisture condition, soil erodibility, and hillslope geometry. With these variables, an artificial neural network was calibrated using data from 29 events (r 2 =0.98, 0.97, and 0.86; for sand, silt, and clay in the sediment, respectively) and then validated and tested on 12 events (r 2 =0.74, 0.85, and 0.75; for sand, silt, and clay in the sediment, respectively). The artificial neural network was compared with three empirical models. The network presented better performance in predicting sediment PSD and differentiating rain-runoff events in the same soil. In addition to the quality of the particle distribution estimates, this model requires a small number of easily obtained variables, providing a convenient routine for predicting PSD in eroded sediment in other pollutant transport models. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Theoretical Relationships between Luminescence and Hillslope Soil Vertical Diffusivity: a Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Gray, H. J.; Tucker, G. E.; Mahan, S.

    2017-12-01

    Luminescence is a property of matter that can be used to obtain depositional ages from fine sand. Luminescence generates due to exposure to background ionizing radiation and is removed by sunlight exposure in a process known as bleaching. There is evidence to suggest that luminescence can also serve as a sediment tracer in fluvial and hillslope environments. For hillslope environments, it has been suggested that the magnitude of luminescence as a function of soil depth is related to the strength of soil mixing. Hillslope soils with a greater extent of mixing will have previously surficial sand grains moved to greater depths in a soil column. These previously surface-exposed grains will contain a lower luminescence than those which have never seen the surface. To attempt to connect luminescence profiles with soil mixing rate, here defined as the soil vertical diffusivity, I conduct numerical modelling of particles in hillslope soils coupled with equations describing the physics of luminescence. I use recently published equations describing the trajectories of particles under both exponential and uniform soil velocity soils profiles and modify them to include soil diffusivity. Results from the model demonstrates a strong connection between soil diffusivity and luminescence. Both the depth profiles of luminescence and the total percent of surface exposed grains will change drastically based on the magnitude of the diffusivity. This suggests that luminescence could potentially be used to infer the magnitude of soil diffusivity. However, I test other variables such as the soil production rate, e-folding length of soil velocity, background dose rate, and soil thickness, and I find these other variables can also affect the relationship between luminescence and diffusivity. This suggests that these other variables may need to be constrained prior to any inferences of soil diffusivity from luminescence measurements. Further field testing of the model in areas where the soil vertical diffusivity and other parameters are independently known will provide a test of this potential new method.

  11. Spatial Distribution of Soil Fauna In Long Term No Tillage

    NASA Astrophysics Data System (ADS)

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial variability for all groups of soil epigeal fauna found in this study.

  12. Evaluating soil carbon in global climate models: benchmarking, future projections, and model drivers

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Randerson, J. T.; Post, W. M.; Allison, S. D.

    2012-12-01

    The carbon cycle plays a critical role in how the climate responds to anthropogenic carbon dioxide. To evaluate how well Earth system models (ESMs) from the Climate Model Intercomparison Project (CMIP5) represent the carbon cycle, we examined predictions of current soil carbon stocks from the historical simulation. We compared the soil and litter carbon pools from 17 ESMs with data on soil carbon stocks from the Harmonized World Soil Database (HWSD). We also examined soil carbon predictions for 2100 from 16 ESMs from the rcp85 (highest radiative forcing) simulation to investigate the effects of climate change on soil carbon stocks. In both analyses, we used a reduced complexity model to separate the effects of variation in model drivers from the effects of model parameters on soil carbon predictions. Drivers included NPP, soil temperature, and soil moisture, and the reduced complexity model represented one pool of soil carbon as a function of these drivers. The ESMs predicted global soil carbon totals of 500 to 2980 Pg-C, compared to 1260 Pg-C in the HWSD. This 5-fold variation in predicted soil stocks was a consequence of a 3.4-fold variation in NPP inputs and 3.8-fold variability in mean global turnover times. None of the ESMs correlated well with the global distribution of soil carbon in the HWSD (Pearson's correlation <0.40, RMSE 9-22 kg m-2). On a biome level there was a broad range of agreement between the ESMs and the HWSD. Some models predicted HWSD biome totals well (R2=0.91) while others did not (R2=0.23). All of the ESM terrestrial decomposition models are structurally similar with outputs that were well described by a reduced complexity model that included NPP and soil temperature (R2 of 0.73-0.93). However, MPI-ESM-LR outputs showed only a moderate fit to this model (R2=0.51), and CanESM2 outputs were better described by a reduced model that included soil moisture (R2=0.74), We also found a broad range in soil carbon responses to climate change predicted by the ESMs, with changes of -480 to 230 Pg-C from 2005-2100. All models that reported NPP and heterotrophic respiration showed increases in both of these processes over the simulated period. In two of the models, soils switched from a global sink for carbon to a net source. Of the remaining models, half predicted that soils were a sink for carbon throughout the time period and the other half predicted that soils were a carbon source.. Heterotrophic respiration in most of the models from 2005-2100 was well explained by a reduced complexity model dependent on soil carbon, soil temperature, and soil moisture (R2 values >0.74). However, MPI-ESM (R2=0.45) showed only moderate fit to this model. Our analysis shows that soil carbon predictions from ESMs are highly variable, with much of this variability due to model parameterization and variations in driving variables. Furthermore, our reduced complexity models show that most variation in ESM outputs can be explained by a simple one-pool model with a small number of drivers and parameters. Therefore, agreement between soil carbon predictions across models could improve substantially by reconciling differences in driving variables and the parameters that link soil carbon with environmental drivers. However it is unclear if this model agreement would reflect what is truly happening in the Earth system.

  13. Soil internal drainage: temporal stability and spatial variability in succession bean-black oat

    NASA Astrophysics Data System (ADS)

    Salvador, M. M. S.; Libardi, P. L.; Moreira, N. B.; Sousa, H. H. F.; Neiverth, C. A.

    2012-04-01

    There are a variety of studies considering the soil water content, but those who consider the flow of water, which are translated by deep drainage and capillary rise are scarce, especially those who assess their spatio-temporal variability, due to its laborious obtaining. Large areas have been considered homogeneous, but show considerable spatial variability inherent in the soil, causing the appearance of zones of distinct physical properties. In deep, sandy soils where the groundwater level is far below the root zone of interference, internal drainage is one of the factors limiting the supply of water to the soil surface, and possibly one of the biggest factors that determines what kinds satisfactory development of plants present in a given landscape. The forms of relief may also be indicators of changes in soil properties, because this variability is caused by small changes that affect the slope of the pedogenetic processes and the transport and storage of water in the soil profile, i.e., the different trajectories of water flow in different forms of the landscape, is the cause of variability. The objectives of this research were: i) evaluate the spatial and temporal stability of internal soil water drainage in a place near and another distant from the root system in a bean-black-oat succession and ii) verify their spatial variability in relation to relief. With the hydraulic conductivity obtained by the instantaneous profile method and the total potential gradient obtained from the difference in readings of tensiometers installed at depths of 0.35 and 0.45 and 0.75 and 0.85 m in 60 sampling points totaling 1680 and 1200 observations during the cultivation of beans and oats, respectively, was obtained so the internal drainage / capillary rise through the Darcy-Buckingham equation. To evaluate the temporal stability the method used was the relative difference and Spearman correlation test and the spatial variability was analyzed as geostatistical methodology. During the period when the water flow in soil is higher, there is strong temporal stability in the depth of 0.40 m, which is the opposite for the periods of drying. The lowest relative difference and standard deviation for the internal drainage obtained during the cultivation of beans and depth of 0.40 m confirm the hypothesis that the research carried out during periods of soil water recharge have less variability than those in the drying period. Temporal stability was due to the topographic position of selected points, since the points chosen for the depth of 0.40 m in both growing seasons, are located on the lower portion of the relief, and the nominees for the depth of 0,80 m, the highest portion. There were differences in the spatial pattern of water flow in the soil along the crop succession, i.e. the seasonal demand for water by plants and evaporation from the soil at the time of drying, changed their distribution model with internal drainage phases and stages capillary rise.

  14. Why is seed production so variable among individuals? A ten-year study with oaks reveals the importance of soil environment.

    PubMed

    Pérez-Ramos, Ignacio M; Aponte, Cristina; García, Luis V; Padilla-Díaz, Carmen M; Marañón, Teodoro

    2014-01-01

    Mast-seeding species exhibit not only a large inter-annual variability in seed production but also considerable variability among individuals within the same year. However, very little is known about the causes and consequences for population dynamics of this potentially large between-individual variability. Here, we quantified seed production over ten consecutive years in two Mediterranean oak species - the deciduous Quercus canariensis and the evergreen Q. suber - that coexist in forests of southern Spain. First, we calibrated likelihood models to identify which abiotic and biotic variables best explain the magnitude (hereafter seed productivity) and temporal variation of seed production at the individual level (hereafter CVi), and infer whether reproductive effort results from the available soil resources for the plant or is primarily determined by selectively favoured strategies. Second, we explored the contribution of between-individual variability in seed production as a potential mechanism of satiation for predispersal seed predators. We found that Q. canariensis trees inhabiting moister and more fertile soils were more productive than those growing in more resource-limited sites. Regarding temporal variation, individuals of the two studied oak species inhabiting these resource-rich environments also exhibited larger values of CVi. Interestingly, we detected a satiating effect on granivorous insects at the tree level in Q. suber, which was evident in those years where between-individual variability in acorn production was higher. These findings suggest that individual seed production (both in terms of seed productivity and inter-annual variability) is strongly dependent on soil resource heterogeneity (at least for one of the two studied oak species) with potential repercussions for recruitment and population dynamics. However, other external factors (such as soil heterogeneity in pathogen abundance) or certain inherent characteristics of the tree might be also involved in this process.

  15. Evaluation of the spatial variability of soil water content at the spatial resolution of SMAP data products : case studies in Italy and Morocco

    NASA Astrophysics Data System (ADS)

    Menenti, Massimo; Akdim, Nadia; Alfieri, Silvia Maria; Labbassi, Kamal; De Lorenzi, Francesca; Bonfante, Antonello; Basile, Angelo

    2014-05-01

    Frequent and contiguous observations of soil water content such as the ones to be provided by SMAP are potentially useful to improve distributed models of soil water balance. This requires matching of observations and model estimates provided both sample spatial patterns consistently. The spatial resolution of SMAP soil water content data products ranges from 3 km X 3 km to 40 km X 40 km. Even the highest spatial resolution may not be sufficient to capture the spatial variability due to terrain, soil properties and precipitation. We have evaluated the SMAP spatial resolution against spatial variability of soil water content in two Mediterranean landscapes: a hilly area dominated by vineyards and olive orchards in Central Italy and a large irrigation schemes (Doukkala) in Morocco. The "Valle Telesina" is a 20,000 ha complex landscape located in South Italy in the Campania region, which has a complex geology and geomorphology and it is characterised by an E-W elongated graben where the Calore river flows. The main crops are grapevine (6,448 ha) and olive (3,390 ha). Soil information was mainly derived from an existing soil map at 1:50 000 scale (Terribile et al., 1996). The area includes 47 SMUs (Soil Mapping Units) and about 60 soil typological units (STUs). (Bonfante et al., 2011). In Doukkala, the soil water retention and unsaturated capillary conductivity were estimated from grain size distribution of a number of samples (22 pilot points, each one sampled in 3 horizons of 20cm), and combined with a soil map. The land use classification was carried out using a NDVI time series at high spatial resolution (Landsat TM and SPOT HRV). We have calculated soil water content for each soil unit in each area in response to several climate cases generating daily maps of soil water content at different depths. To reproduce spatial sampling by SMAP we have filtered these spatial patterns by calculating box averages with grid sizes of 1 km X 1 km and 5 km X 5 km. We have repeated this procedure for soil water content in the 0 to 5 cm and 0 to 10 cm depths. For each case we have compared the variance of filtered soil water content with the expected accuracy of SMAP soil water content. The two areas are very different as regards morphology and soil formation. The Valle Telesina is characterized by a very significant variability of soil hydrological properties leading to complex patterns in soil water content. Contrariwise, the soil properties estimated for all soil mapping units in the Dhoukkala collapse into just two pairs of water retention and hydraulic conductivity characteristics, leading to smoother patterns of soil water content.

  16. Amplification and dampening of soil respiration by changes in temperature variability

    USGS Publications Warehouse

    Sierra, C.A.; Harmon, M.E.; Thomann, E.; Perakis, S.S.; Loescher, H.W.

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feed backs related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature vari-ability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature.Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen there release of carbon through soil respiration as climate regimes change. The effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  17. Reliability Coupled Sensitivity Based Design Approach for Gravity Retaining Walls

    NASA Astrophysics Data System (ADS)

    Guha Ray, A.; Baidya, D. K.

    2012-09-01

    Sensitivity analysis involving different random variables and different potential failure modes of a gravity retaining wall focuses on the fact that high sensitivity of a particular variable on a particular mode of failure does not necessarily imply a remarkable contribution to the overall failure probability. The present paper aims at identifying a probabilistic risk factor ( R f ) for each random variable based on the combined effects of failure probability ( P f ) of each mode of failure of a gravity retaining wall and sensitivity of each of the random variables on these failure modes. P f is calculated by Monte Carlo simulation and sensitivity analysis of each random variable is carried out by F-test analysis. The structure, redesigned by modifying the original random variables with the risk factors, is safe against all the variations of random variables. It is observed that R f for friction angle of backfill soil ( φ 1 ) increases and cohesion of foundation soil ( c 2 ) decreases with an increase of variation of φ 1 , while R f for unit weights ( γ 1 and γ 2 ) for both soil and friction angle of foundation soil ( φ 2 ) remains almost constant for variation of soil properties. The results compared well with some of the existing deterministic and probabilistic methods and found to be cost-effective. It is seen that if variation of φ 1 remains within 5 %, significant reduction in cross-sectional area can be achieved. But if the variation is more than 7-8 %, the structure needs to be modified. Finally design guidelines for different wall dimensions, based on the present approach, are proposed.

  18. Temporal variability of soil water repellency in field conditions under humid Mediterranean climate (South of Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Murillo, Juan F.; Gabarron-Galeote, Miguel A.; Ruiz-Sinoga, Jose D.

    2013-04-01

    Soil water repellency (SWR) has become an important field of scientific study because of its effects on soil hydrological behavior, including reduced matrix infiltration, development of fingered flow in structural or textural preferential flow paths, irregular wetting fronts, and increased runoff generation and soil erosion. The aim of this study is to evaluate the temporal variability of SWR in Mediterranean rangeland under humid Mediterranean climatic conditions (Tª=14.5 °C; P=1,010 mm y-1) in South of Spain. Every month from September 2008 to May 2009 (rainy season), soil moisture and SWR was measured in field conditions by means of gravimetric method and Water Drop Penetration Test, respectively. The entire tests were performed in differente eco-geomorphological conditions in the experimental site: North and South aspect hillslopes and beneath shrub and bare soil in every of them. The results indicate that: i) climatic conditions seem to be more transcendent than the vegetal cover for explaining the temporal variability of SWR in field conditions; ii) thus, SWR appears to be controlled by the antecedent rainfall and soil moisture; iii) more severity SWR were observed in patches characterized by sandier soils and/or greater organic matter contents; and iv) the factor 'hillslope aspect' was not found very influential in the degree of SWR.

  19. Regional investigations of soil and overburden analysis and plant uptake of metals

    USGS Publications Warehouse

    Gough, L.P.

    1984-01-01

    Regional studies on the bioavailability of metals at native and disturbed sites were conducted over the past seven years by the USGS. The work was concentrated in the Fort Union, Powder River, and Green River coal resource regions where measures of extractable metals in soils were found to have limited use in predicting metal levels in plants. Correlations between Cu, Fe, and Zn in plants and extractable (DTPA, EDTA, and oxalate) or total levels in native A- and C-horizons of soil were occasionally significant. A simple linear model is generally not adequate, however, in estimating element uptake by plants. Prediction capabilities were improved when a number of soil chemical and physical parameters were included as independent variables in a stepwise linear multiple regression analysis; however, never more than 54% of the total variability in the data was explained by the equations for these metals. Soil pH was the most important variable relating soil chemistry to plant chemistry. This relation was always positive and apparently a response to soil levels of metal carbonates and not Fe and Mn oxides. Studies that compared the metal uptake by rehabilitation species to extractable (DTPA) metal levels in mice soils produced similar results. ?? 1984 Science and Technology Letters.

  20. Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-based water and carbon measurements

    NASA Astrophysics Data System (ADS)

    Traore, Abdoul Khadre; Ciais, Philippe; Vuichard, Nicolas; Poulter, Benjamin; Viovy, Nicolas; Guimberteau, Matthieu; Jung, Martin; Myneni, Ranga; Fisher, Joshua B.

    2014-08-01

    Few studies have evaluated land surface models for African ecosystems. Here we evaluate the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) process-based model for the interannual variability (IAV) of the fraction of absorbed active radiation, the gross primary productivity (GPP), soil moisture, and evapotranspiration (ET). Two ORCHIDEE versions are tested, which differ by their soil hydrology parameterization, one with a two-layer simple bucket and the other a more complex 11-layer soil-water diffusion. In addition, we evaluate the sensitivity of climate forcing data, atmospheric CO2, and soil depth. Beside a very generic vegetation parameterization, ORCHIDEE simulates rather well the IAV of GPP and ET (0.5 < r < 0.9 interannual correlation) over Africa except in forestlands. The ORCHIDEE 11-layer version outperforms the two-layer version for simulating IAV of soil moisture, whereas both versions have similar performance of GPP and ET. Effects of CO2 trends, and of variable soil depth on the IAV of GPP, ET, and soil moisture are small, although these drivers influence the trends of these variables. The meteorological forcing data appear to be quite important for faithfully reproducing the IAV of simulated variables, suggesting that in regions with sparse weather station data, the model uncertainty is strongly related to uncertain meteorological forcing. Simulated variables are positively and strongly correlated with precipitation but negatively and weakly correlated with temperature and solar radiation. Model-derived and observation-based sensitivities are in agreement for the driving role of precipitation. However, the modeled GPP is too sensitive to precipitation, suggesting that processes such as increased water use efficiency during drought need to be incorporated in ORCHIDEE.

  1. Climate and soil attributes determine plant species turnover in global drylands.

    PubMed

    Ulrich, Werner; Soliveres, Santiago; Maestre, Fernando T; Gotelli, Nicholas J; Quero, José L; Delgado-Baquerizo, Manuel; Bowker, Matthew A; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R; Hernández, Rosa M; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A; Raveh, Eran; Romão, Roberto L; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2014-12-01

    Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake's beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R 2 )), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R 2 )) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.

  2. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, Jayne; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (pa??0.05) as a function of soilcounterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, and the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.

  3. Vehicle charging and potential on the STS-3 mission

    NASA Technical Reports Server (NTRS)

    Williamson, R.

    1983-01-01

    An electron gun with fast pulse capability was used in the vehicle charging and potential experiment carried on the OSS-1 pallet to study dielectric charging, return current mechanisms, and the techniques required to manage the electrical charging of the orbiter. Return currents and charging of the dielectrics were measured during electron beam emission and plasma characteristics in the payload bay were determined in the absence of electron beam emission. The fast pulse electron generator, charge current probes, spherical retarding potential analyzer, and the digital control interface unit which comprise the experiment are described. Results show that the thrusters produce disturbances which are variable in character and magnitude. Strong ram/wake effects were seen in the ion densities in the bay. Vehicle potentials are variable with respect to the plasma and depend upon location on the vehicle relative to the main engine nozzles, the vehicle attitude, and the direction of the geomagnetic field.

  4. Modeling Effects of Temperature, Soil, Moisture, Nutrition and Variety As Determinants of Severity of Pythium Damping-Off and Root Disease in Subterranean Clover

    PubMed Central

    You, Ming P.; Rensing, Kelly; Renton, Michael; Barbetti, Martin J.

    2017-01-01

    Subterranean clover (Trifolium subterraneum) is a critical pasture legume in Mediterranean regions of southern Australia and elsewhere, including Mediterranean-type climatic regions in Africa, Asia, Australia, Europe, North America, and South America. Pythium damping-off and root disease caused by Pythium irregulare is a significant threat to subterranean clover in Australia and a study was conducted to define how environmental factors (viz. temperature, soil type, moisture and nutrition) as well as variety, influence the extent of damping-off and root disease as well as subterranean clover productivity under challenge by this pathogen. Relationships were statistically modeled using linear and generalized linear models and boosted regression trees. Modeling found complex relationships between explanatory variables and the extent of Pythium damping-off and root rot. Linear modeling identified high-level (4 or 5-way) significant interactions for each dependent variable (dry shoot and root weight, emergence, tap and lateral root disease index). Furthermore, all explanatory variables (temperature, soil, moisture, nutrition, variety) were found significant as part of some interaction within these models. A significant five-way interaction between all explanatory variables was found for both dry shoot and root dry weights, and a four way interaction between temperature, soil, moisture, and nutrition was found for both tap and lateral root disease index. A second approach to modeling using boosted regression trees provided support for and helped clarify the complex nature of the relationships found in linear models. All explanatory variables showed at least 5% relative influence on each of the five dependent variables. All models indicated differences due to soil type, with the sand-based soil having either higher weights, greater emergence, or lower disease indices; while lowest weights and less emergence, as well as higher disease indices, were found for loam soil and low temperature. There was more severe tap and lateral root rot disease in higher moisture situations. PMID:29184544

  5. Adsorption of transgenic insecticidal Cry1Ab protein to SiO2. 2. Patch-controlled electrostatic attraction.

    PubMed

    Madliger, Michael; Sander, Michael; Schwarzenbach, René P

    2010-12-01

    Adsorption governs the fate of Cry proteins from genetically modified Bt crops in soils. The effect of ionic strength (I) on the adsorption of Cry1Ab (isoelectric point IEP(Cry1Ab) ≈ 6) to negatively charged quartz (SiO(2)) and positively charged poly-L-lysine (PLL) was investigated at pH 5 to 8, using quartz crystal microbalance with dissipation monitoring and optical waveguide lightmode spectroscopy. Cry1Ab adsorbed via positively and negatively charged surface patches to SiO(2) and PLL, respectively. This patch controlled electrostatic attraction (PCEA) explains the observed increase in Cry1Ab adsorption to sorbents that carried the same net charge as the protein (SiO(2) at pH > IEP(Cry1Ab) and PLL at pH < IEP(Cry1Ab)) with decreasing I. In contrast, the adsorption of two reference proteins, BSA and HEWL, with different adsorption mechanism, were little affected by similar changes of I. Consistent with PCEA, Cry1Ab desorption from SiO(2) at pH > IEP(Cry1Ab) increased with increasing I and pH. Weak Cry1Ab-SiO(2) PCEA above pH 7 resulted in reversible, concentration dependent adsorption. Solution depletion experiments showed that PCEA also governed Cry1Ab adsorption to SiO(2) particles at environmentally relevant concentrations (a few ng mL(-1)). These results imply that models describing Cry1Ab adsorption to charged surfaces in soils need to account for the nonuniform surface charge distribution of the protein.

  6. Rainfall simulations to study the types of groundcover on surface runoff and soil erosion in Champagne vineyards in France

    NASA Astrophysics Data System (ADS)

    Xavier, Morvan; Christophe, Naisse; Issa Oumarou, Malam; Jean-François, Desprats; Anne, Combaud; Olivier, Cerdan

    2015-04-01

    In the literature, grass cover is often considered to be one of the best methods of limiting runoff in the vineyards; But results can vary, especially when the plot area is <2 m². However, in any study to our knowledge, the way grass cover is structured in the inter-row is taken into account to explain the variability of runoff and soil loss. The objective of this study, conducted in Champagne vineyards in France, was to quantify the influence of the cultivation practices in the inter-rows of vines and determine the influence of the density of the grass cover in the wheel tracks on the surface runoff and soil erosion in experimental plots of 0.25 m2 under simulated rainfall. Three types of ground cover were studied. In the bark-and-vine-prunings plots, the runoff coefficient ranged from 1.3 to 4.0% and soil losses were <1 g/m²/h. In the bare soil plot, the highest runoff coefficient of the study was found (80.0%) and soil losses reached 7.4 g/m²/h. In the grass cover plots, the runoff coefficient and amount of eroded soil were highly variable: the runoff coefficients ranged from 0.4 to 77.0%, and soil losses were between less than 1 and 13.4 g/m²/h. Soil type, soil moisture, slope and agricultural practices did not account for the variability. In fact, the density of grass cover in the wheel tracks explained a portion of this variability. The lack of grass in the centre of the inter-row allowed for a preferential flow and created an erosion line in the wheel tracks where the soil was compacted. This study showed that grass cover in a vineyard was not necessarily sufficient to reduce surface runoff and prevent soil erosion. To be effective, the grass cover must be dense enough in the wheel tracks of agricultural machinery to avoid runoff coefficients close to those achieved with bare soil.

  7. Soil-test biological activity in corn production systems: II. Greenhouse growth bioassay

    USDA-ARS?s Scientific Manuscript database

    Soil N mineralization is variably affected by management and edaphic conditions. A routine soil test is needed to make better predictions for N fertilizer recommendations to cereal grains on different soil types and landscape settings. We collected soils from 47 corn production fields in North Car...

  8. Simulation of crop yield variability by improved root-soil-interaction modelling

    NASA Astrophysics Data System (ADS)

    Duan, X.; Gayler, S.; Priesack, E.

    2009-04-01

    Understanding the processes and factors that govern the within-field variability in crop yield has attached great importance due to applications in precision agriculture. Crop response to environment at field scale is a complex dynamic process involving the interactions of soil characteristics, weather conditions and crop management. The numerous static factors combined with temporal variations make it very difficult to identify and manage the variability pattern. Therefore, crop simulation models are considered to be useful tools in analyzing separately the effects of change in soil or weather conditions on the spatial variability, in order to identify the cause of yield variability and to quantify the spatial and temporal variation. However, tests showed that usual crop models such as CERES-Wheat and CERES-Maize were not able to quantify the observed within-field yield variability, while their performance on crop growth simulation under more homogeneous and mainly non-limiting conditions was sufficent to simulate average yields at the field-scale. On a study site in South Germany, within-field variability in crop growth has been documented since years. After detailed analysis and classification of the soil patterns, two site specific factors, the plant-available-water and the O2 deficiency, were considered as the main causes of the crop growth variability in this field. Based on our measurement of root distribution in the soil profile, we hypothesize that in our case the insufficiency of the applied crop models to simulate the yield variability can be due to the oversimplification of the involved root models which fail to be sensitive to different soil conditions. In this study, the root growth model described by Jones et al. (1991) was adapted by using data of root distributions in the field and linking the adapted root model to the CERES crop model. The ability of the new root model to increase the sensitivity of the CERES crop models to different enviromental conditions was then evaluated by means of comparison of the simualtion results with measured data and by scenario calculations.

  9. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling

    Treesearch

    James A. Thompson; Randall K. Kolka

    2005-01-01

    Carbon storage in soils is important to forest ecosystems. Moreover, forest soils may serve as important C sinks for ameliorating excess atmospheric CO2. Spatial estimates of soil organic C (SOC) storage have traditionally relied upon soil survey maps and laboratory characterization data. This approach does not account for inherent variability...

  10. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    DOE PAGES

    Berryman, E. M.; Barnard, H. R.; Adams, H. R.; ...

    2015-02-10

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. In this paper, we quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important formore » dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Finally, soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.« less

  11. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berryman, E. M.; Barnard, H. R.; Adams, H. R.

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. In this paper, we quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important formore » dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Finally, soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.« less

  12. Complex terrain alters temperature and moisture limitations of forest soil respiration across a semiarid to subalpine gradient

    USGS Publications Warehouse

    Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.

    2015-01-01

    Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.

  13. Biochar contribution to soil pH buffer capacity

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Krebstein, Kadri; Utso, Maarius; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Biochar as ecologically clean and stable form of carbon has complex of physical and chemical properties which make it a potentially powerful soil amendment (Mutezo, 2013). Therefore during the last decade the biochar application as soil amendment has been a matter for a great number of investigations. For the ecological viewpoint the trend of decreasing of soil organic matter in European agricultural land is a major problem. Society is faced with the task to find possibilities to stabilize or increase soil organic matter content in soil and quality. The availability of different functional groups (e.g. carboxylic, phenolic, acidic, alcoholic, amine, amide) allows soil organic matter to buffer over a wide range of soil pH values (Krull et al. 2004). Therefore the loss of soil organic matter also reduces cation exchange capacity resulting in lower nutrient retention (Kimetu et al. 2008). Biochar can retain elements in soil directly through the negative charge that develops on its surfaces, and this negative charge can buffer acidity in the soil. There are lack of investigations about the effect of biochar to soil pH buffering properties, The aim of our investigation was to investigate the changes in soil pH buffer capacity in a result of addition of carbonizated material to temperate region soils. In the experiment different kind of softwood biochars, activated carbon and different soil types with various organic matter and pH were used. The study soils were Albeluvisols, Leptosols, Cambisols, Regosols and Histosols . In the experiment the series of the soil: biochar mixtures with the biochar content 0 to 100% were used. The times of equiliberation between solid and liquid phase were from 1 to 168 hours. The suspension of soil: biochar mixtures was titrated with HCl solution. The titration curves were established and pH buffer capacities were calculated for the pH interval from 3.0 to 10.0. The results demonstrate the dependence of pH buffer capacity from soil type, organic matter and type of added carbonizated material. Our study showed that the biochar content has significant role in total pH buffer capacity in soil:biochar system . References. Kimetu, J.M., Lehmann, J., Ngoze, S.O., Mugendi, D.N., Kinyangi, J., Riha, S.J., Verchot, L., Recha, J.W., Pell, A.N. 2008. Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality Along a Degradation Gradient. Ecosystems, 11, 726-739. Krull, E. S., Skjemstad, J.O., Baldock, J.A. 2004 'Functions of Soil Organic Matter and the Effect on Soil Properties'. GRDC report. Project CSO 00029. Mutezo, W.T., 2013. Early crop growth and yield responses of maize (Zea mays) to biochar applied on soil. International Working Paper Series, 13/03, 50 pp.

  14. Spatial variability of detrended soil plow layer penetrometer resistance transect in a sugarcane field

    NASA Astrophysics Data System (ADS)

    Pérez, Luis D.; Cumbrera, Ramiro; Mato, Juan; Millán, Humberto; Tarquis, Ana M.

    2015-04-01

    Spatial variability of soil properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns (Brouder et al., 2001; Millán et al., 2012). The objective of the present work was to quantify the spatial structure of soil penetrometer resistance (PR) collected from a transect data consisted of 221 points equidistant. In each sampling, readings were obtained from 0 cm till 70 cm of depth, with an interval of 5 cm (Pérez, 2012). The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years (Pérez et al., 2010). Recently, scaling approach has been applied on the determination of the scaling data properties (Tarquis et al., 2008; Millán et al., 2012; Pérez, 2012). We focus in the Hurst analysis to characterize the data variability for each depth. Previously a detrended analysis was conducted in order to better study de intrinsic variability of the series. The Hurst exponent (H) for each depth was estimated showing a characteristic pattern and differentiating PR evolution in depth. References Brouder, S., Hofmann, B., Reetz, H.F., 2001. Evaluating spatial variability of soil parameters for input management. Better Crops 85, 8-11. Millán, H; AM Tarquís, Luís D. Pérez, Juan Mato, Mario González-Posada, 2012. Spatial variability patterns of some Vertisol properties at a field scale using standardized data. Soil and Tillage Research, 120, 76-84. Pérez, Luís D. 2012. Influencia de la maquinaria agrícola sobre la variabilidad espacial de la compactación del suelo. Aplicación de la metodología geoestadística-fractal. PhD thesis, UPM (In Spanish). Pérez, Luís D., Humberto Millán, Mario González-Posada 2010. Spatial complexity of soil plow layer penetrometer resistance as influenced by sugarcane harvesting: A prefractal approach. Soil and Tillage Research, 110(1), 77-86. Tarquis, A.M., N. Bird, M.C. Cartagena, A. Whitmore and Y. Pachepsky, 2008. Multiscale entropy-based analyses of soil transect data. Vadose Zone Journal, 7(2), 563-569.

  15. Assessing agricultural management effects on structure related soil hydraulic properties by tension infiltrometry

    NASA Astrophysics Data System (ADS)

    Bodner, G.; Loiskandl, W.; Kaul, H.-P.

    2009-04-01

    Soil structure is a dynamic property subject to numerous natural and human influences. It is recognized as fundamental for sustainable functioning of soil. Therefore knowledge of management impacts on the sensitive structural states of soil is decisive in order to avoid soil degradation. The stabilization of the soil's (macro)pore system and eventually the improvement of its infiltrability are essential to avoid runoff and soil erosion, particularly in view of an increasing probability of intense rainfall events. However structure-related soil properties generally have a high natural spatiotemporal variability that interacts with the potential influence of agricultural land use. This complicates a clear determination of management vs. environmental effects and requires adequate measurement methods, allowing a sufficient spatiotemporal resolution to estimate the impact of the targeted management factors within the natural dynamics of soil structure. A common method to assess structure-related soil hydraulic properties is tension infiltrometry. A major advantage of tension infiltrometer measurements is that no or only minimum soil disturbance is necessary and several structure-controlled water transmission properties can readily be derived. The method is more time- and cost-efficient compared to laboratory measurements of soil hydraulic properties, thus enabling more replications. Furthermore in situ measurements of hydraulic properties generally allow a more accurate reproduction of field soil water dynamics. The present study analyses the impact of two common agricultural management options on structure related hydraulic properties based on tension infiltrometer measurements. Its focus is the identification of the role of management within the natural spatiotemporal variability, particularly in respect to seasonal temporal dynamics. Two management approaches are analysed, (i) cover cropping as a "plant-based" agro-environmental measure, and (ii) tillage with different intensities including conventional tillage with a mouldboard plough, reduced tillage with a chisel plough and no-tillage. The results showed that the plant-based management measure of cover cropping had only minor influence on near-saturated hydraulic conductivity (kh) and flow weighted mean pore radius (λm). Substantial over-winter changes were found with a significant increase in kh and a reduction in the pore radius. A spatial trend in soil texture along the cover cropped slope resulted in a higher kh at lower pressure heads at the summit with higher fractions of coarse particles, while kh tended to be highest at the toeslope towards saturation. Cover crop management accounted for a maximum of 9.7% of the total variability in kh, with a decreasing impact towards the unsaturated range. A substantial difference to bare soil in the cover cropped treatments could be identified in relation to a stabilization of macro-pores over winter. The different tillage treatments had a substantial impact on near-saturated kh and pore radius. Although conventional tillage showed the highest values in kh and λm, settling of the soil after the ploughing event tended to reduce differences over time compared to the other tillage methods. The long-term no-tillage (10 years) however had the lowest values of kh at all measurement dates. The high contents of silt and fine sand probably resulted in soil densification that was not counterbalanced sufficiently by biological structure forming agents. The study could show that soil structure related hydraulic properties are subject to a substantial seasonal variability. A comprehensive assessment of agricultural measures such as tillage or cover cropping requires an estimate of these temporal dynamics and their interaction with the management strategies. Particularly for plant-based management measures such as cover cropping, which represent a less intense intervention in the structural states of the soil compared to tillage, this was evident, as the main mechanism revealed for this measure was structure stabilization over time. While spatial variability is mostly controlled in designed experiments, the role of temporal variability is often underestimated. From our study we concluded that (i) a proper understanding of processes involved in management effects on soil structure must take into consideration the dynamic nature of the respective soil properties, (ii) experimental planning for studies regarding management impacts on soil structure should allow an estimation of temporal variability, and (iii) for this purpose tension infiltrometry provides an efficient measurement tool to assess structure related soil hydraulic properties.

  16. Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field.

    PubMed

    Farhate, Camila Viana Vieira; Souza, Zigomar Menezes de; Oliveira, Stanley Robson de Medeiros; Tavares, Rose Luiza Moraes; Carvalho, João Luís Nunes

    2018-01-01

    Soil CO2 emissions are regarded as one of the largest flows of the global carbon cycle and small changes in their magnitude can have a large effect on the CO2 concentration in the atmosphere. Thus, a better understanding of this attribute would enable the identification of promoters and the development of strategies to mitigate the risks of climate change. Therefore, our study aimed at using data mining techniques to predict the soil CO2 emission induced by crop management in sugarcane areas in Brazil. To do so, we used different variable selection methods (correlation, chi-square, wrapper) and classification (Decision tree, Bayesian models, neural networks, support vector machine, bagging with logistic regression), and finally we tested the efficiency of different approaches through the Receiver Operating Characteristic (ROC) curve. The original dataset consisted of 19 variables (18 independent variables and one dependent (or response) variable). The association between cover crop and minimum tillage are effective strategies to promote the mitigation of soil CO2 emissions, in which the average CO2 emissions are 63 kg ha-1 day-1. The variables soil moisture, soil temperature (Ts), rainfall, pH, and organic carbon were most frequently selected for soil CO2 emission classification using different methods for attribute selection. According to the results of the ROC curve, the best approaches for soil CO2 emission classification were the following: (I)-the Multilayer Perceptron classifier with attribute selection through the wrapper method, that presented rate of false positive of 13,50%, true positive of 94,20% area under the curve (AUC) of 89,90% (II)-the Bagging classifier with logistic regression with attribute selection through the Chi-square method, that presented rate of false positive of 13,50%, true positive of 94,20% AUC of 89,90%. However, the (I) approach stands out in relation to (II) for its higher positive class accuracy (high CO2 emission) and lower computational cost.

  17. Active layer and permafrost thermal regime in a patterned ground soil in Maritime Antarctica, and relationship with climate variability models.

    PubMed

    Chaves, D A; Lyra, G B; Francelino, M R; Silva, Ldb; Thomazini, A; Schaefer, Cegr

    2017-04-15

    Permafrost and active layer studies are important to understand and predict regional climate changes. The objectives of this work were: i) to characterize the soil thermal regime (active layer thickness and permafrost formation) and its interannual variability and ii) to evaluate the influence of different climate variability modes to the observed soil thermal regime in a patterned ground soil in Maritime Antarctica. The study was carried out at Keller Peninsula, King George Island, Maritime Antarctica. Six soil temperatures probes were installed at different depths (10, 30 and 80cm) in the polygon center (Tc) and border (Tb) of a patterned ground soil. We applied cross-correlation analysis and standardized series were related to the Antarctic Oscillation Index (AAO). The estimated active layer thickness was approximately 0.75cm in the polygon border and 0.64cm in the center, indicating the presence of permafrost (within 80cm). Results indicate that summer and winter temperatures are becoming colder and warmer, respectively. Considering similar active layer thickness, the polygon border presented greater thawing days, resulting in greater vulnerability to warming, cooling faster than the center, due to its lower volumetric heat capacity (Cs). Cross-correlation analysis indicated statistically significant delay of 1day (at 10cm depth) in the polygon center, and 5days (at 80cm depth) for the thermal response between atmosphere and soil. Air temperature showed a delay of 5months with the climate variability models. The influence of southern winds from high latitudes, in the south facing slopes, favored freeze in the upper soil layers, and also contributed to keep permafrost closer to the surface. The observed cooling trend is linked to the regional climate variability modes influenced by atmospheric circulation, although longer monitoring period is required to reach a more precise scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field

    PubMed Central

    de Souza, Zigomar Menezes; Oliveira, Stanley Robson de Medeiros; Tavares, Rose Luiza Moraes; Carvalho, João Luís Nunes

    2018-01-01

    Soil CO2 emissions are regarded as one of the largest flows of the global carbon cycle and small changes in their magnitude can have a large effect on the CO2 concentration in the atmosphere. Thus, a better understanding of this attribute would enable the identification of promoters and the development of strategies to mitigate the risks of climate change. Therefore, our study aimed at using data mining techniques to predict the soil CO2 emission induced by crop management in sugarcane areas in Brazil. To do so, we used different variable selection methods (correlation, chi-square, wrapper) and classification (Decision tree, Bayesian models, neural networks, support vector machine, bagging with logistic regression), and finally we tested the efficiency of different approaches through the Receiver Operating Characteristic (ROC) curve. The original dataset consisted of 19 variables (18 independent variables and one dependent (or response) variable). The association between cover crop and minimum tillage are effective strategies to promote the mitigation of soil CO2 emissions, in which the average CO2 emissions are 63 kg ha-1 day-1. The variables soil moisture, soil temperature (Ts), rainfall, pH, and organic carbon were most frequently selected for soil CO2 emission classification using different methods for attribute selection. According to the results of the ROC curve, the best approaches for soil CO2 emission classification were the following: (I)–the Multilayer Perceptron classifier with attribute selection through the wrapper method, that presented rate of false positive of 13,50%, true positive of 94,20% area under the curve (AUC) of 89,90% (II)–the Bagging classifier with logistic regression with attribute selection through the Chi-square method, that presented rate of false positive of 13,50%, true positive of 94,20% AUC of 89,90%. However, the (I) approach stands out in relation to (II) for its higher positive class accuracy (high CO2 emission) and lower computational cost. PMID:29513765

  19. Spatial Variation in Soil Properties among North American Ecosystems and Guidelines for Sampling Designs

    PubMed Central

    Loescher, Henry; Ayres, Edward; Duffy, Paul; Luo, Hongyan; Brunke, Max

    2014-01-01

    Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ∼1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior. PMID:24465377

  20. Spatial analysis of soil organic carbon in Zhifanggou catchment of the Loess Plateau.

    PubMed

    Li, Mingming; Zhang, Xingchang; Zhen, Qing; Han, Fengpeng

    2013-01-01

    Soil organic carbon (SOC) reflects soil quality and plays a critical role in soil protection, food safety, and global climate changes. This study involved grid sampling at different depths (6 layers) between 0 and 100 cm in a catchment. A total of 1282 soil samples were collected from 215 plots over 8.27 km(2). A combination of conventional analytical methods and geostatistical methods were used to analyze the data for spatial variability and soil carbon content patterns. The mean SOC content in the 1282 samples from the study field was 3.08 g · kg(-1). The SOC content of each layer decreased with increasing soil depth by a power function relationship. The SOC content of each layer was moderately variable and followed a lognormal distribution. The semi-variograms of the SOC contents of the six different layers were fit with the following models: exponential, spherical, exponential, Gaussian, exponential, and exponential, respectively. A moderate spatial dependence was observed in the 0-10 and 10-20 cm layers, which resulted from stochastic and structural factors. The spatial distribution of SOC content in the four layers between 20 and 100 cm exhibit were mainly restricted by structural factors. Correlations within each layer were observed between 234 and 562 m. A classical Kriging interpolation was used to directly visualize the spatial distribution of SOC in the catchment. The variability in spatial distribution was related to topography, land use type, and human activity. Finally, the vertical distribution of SOC decreased. Our results suggest that the ordinary Kriging interpolation can directly reveal the spatial distribution of SOC and the sample distance about this study is sufficient for interpolation or plotting. More research is needed, however, to clarify the spatial variability on the bigger scale and better understand the factors controlling spatial variability of soil carbon in the Loess Plateau region.

  1. What is the effect of local controls on the temporal stability of soil water contents?

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.; Vanderlinden, K.; Hardelauf, H.; Herbst, M.

    2012-04-01

    Temporal stability of soil water content (TS SWC) reflects the spatio-temporal organization of SWC. Factors and their interactions that control this organization, are not completely understood and have not been quantified yet. It is understood that these factors should be classified into groups of local and non-local controls. This work is a first attempt to evaluate the effects of soil properties at a certain location as local controls Time series of SWC were generated by running water flow simulations with the HYDRUS6 code. Bare and grassed sandy loam, loam and clay soils were represented by sets of 100 independent soil columns. Within each set, values of saturated hydraulic conductivity (Ks) were generated randomly assuming for the standard deviation of the scaling factor of ln Ks a value ranging from 0.1 to 1.0. Weather conditions were the same for all of the soil columns. SWC at depths of 0.05 and 0.60 m, and the average water content of the top 1 m were analyzed. The temporal stability was characterized by calculating the mean relative differences (MRD) of soil water content. MRD distributions from simulations, developed from the log-normal distribution of Ks, agreed well with the experimental studies found in the literature. Generally, Ks was the leading variable to define the MRD rank for a specific location. Higher MRD corresponded to the lowest values of Ks when a single textural class was considered. Higher MRD were found in the finer texture when mixtures of textural classes were considered and similar values of Ks were compared. The relationships between the spread of the MRD distributions and the scaling factor of ln Ks were nonlinear. Variation in MRD was higher in coarser textures than in finer ones and more variability was seen in the topsoil than in the subsoil. Established vegetation decreased variability of MRD in the root zone and increased variability below. The dependence of MRD on Ks opens the possibility of using SWC sensor networks to relate variations of MRD of measured SWC time series to spatial variations of Ks. TS of SWC can provide information on Ks variability at ungauged watersheds if the effect of non-local controls of SWC on TS is not significant. Using the spatiotemporal statistics to convert the information about the temporal variability of soil moisture into information about the spatial variability of soil hydraulic properties presents an interesting avenue for further exploration.

  2. Spatial and temporal variability of throughfall and soil moisture in a deciduous forest in the low mountain ranges (Hesse, Germany)

    NASA Astrophysics Data System (ADS)

    Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin

    2017-04-01

    Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.

  3. Between and within-field variation in physico-chemical soil properties of vineyards: implications for terroir zoning and management in Heuvelland, Belgium

    NASA Astrophysics Data System (ADS)

    Tavernier, Emma; Verdoodt, Ann; Cornelis, Wim; Delbecque, Nele; Tiebergijn, Lynn; Seynnaeve, Marleen; Gabriels, Donald

    2015-04-01

    The 'Heuvelland' region with a surface area of 94 km² is situated in the Province of West Flanders, Belgium, bordering with France. The region comprises a number of hills ("heuvel") on which a fast growing 'wine culture' is developing. Both professional as well as non-professional wine makers together cultivate about 19 ha of vineyards, and are still expanding. Grapes cultivated include Chardonnay, Pinot gris and Pinot noir among others. The small-scale, strongly dispersed vineyards are located in different landscape positions of variable aspect. The objective of our preliminary study was to assess the between-field and within-field variation in physico-chemical soil properties of these vineyards with the aim to better characterise the terroir(s) in Heuvelland and provide guidelines for soil management. Fourteen vineyards from five different wineries were selected for detailed soil sampling. Twenty-five sampling sites were chosen according to the topography, soil map units and observed variability in grape growth. The soil was sampled using 15 cm depth increments up to a depth of 60 cm or a shallower lithic contact. Composite samples of 5 sampling locations along the contour lines were taken per within-field zone. Besides the texture, pH, organic carbon, total nitrogen, available phosphorous and exchangeable base cations (Ca, Mg, K), also some micronutrients (Fe, B, Cu, Mn) were determined using standard laboratory procedures. The soils developed on Quaternary niveo-eolian sandy loam and loamy sediments of variable thickness covering marine sandy and clayey sediments of the Tertiary. Where the Tertiary clayey sediments occur at shallow depth, they can strongly influence the internal drainage. At higher positions in the landscape, iron-rich sandstone layers are found at shallow depth. Fragments of this iron-rich sandstone can also be found at lower positions (colluvial material). This iron sandstone is claimed to contribute to the unique character of this wine growing region. According to the soil map of Belgium (scale 1:20,000), the soils are characterized by variable depth, texture, internal drainage and profile development. As such, the 23 vineyards in Heuvelland are found on 21 different soil types; of which 12 different soil types are included within our sampling strategy. Our sampling furthermore revealed an even greater variability in physico-chemical soil properties than reflected by the soil map. This leads to a 'tentative' conclusion that Heuvelland cannot be considered as one natural terroir as such and that the wine growers can potentially improve their production by adapting their management to local soil properties using the improved knowledge on the vineyard soils.

  4. Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties

    PubMed Central

    Zhang, Houxi; Zhuang, Shunyao; Qian, Haiyan; Wang, Feng; Ji, Haibao

    2015-01-01

    Understanding the spatial variability of soil organic carbon (SOC) must be enhanced to improve sampling design and to develop soil management strategies in terrestrial ecosystems. Moso bamboo (Phyllostachys pubescens Mazel ex Houz.) forests have a high SOC storage potential; however, they also vary significantly spatially. This study investigated the spatial variability of SOC (0-20 cm) in association with other soil properties and with spatial variables in the Moso bamboo forests of Jian’ou City, which is a typical bamboo hometown in China. 209 soil samples were collected from Moso bamboo stands and then analyzed for SOC, bulk density (BD), pH, cation exchange capacity (CEC), and gravel content (GC) based on spatial distribution. The spatial variability of SOC was then examined using geostatistics. A Kriging map was produced through ordinary interpolation and required sample numbers were calculated by classical and Kriging methods. An aggregated boosted tree (ABT) analysis was also conducted. A semivariogram analysis indicated that ln(SOC) was best fitted with an exponential model and that it exhibited moderate spatial dependence, with a nugget/sill ratio of 0.462. SOC was significantly and linearly correlated with BD (r = −0.373**), pH (r = −0.429**), GC (r = −0.163*), CEC (r = 0.263**), and elevation (r = 0.192**). Moreover, the Kriging method requires fewer samples than the classical method given an expected standard error level as per a variance analysis. ABT analysis indicated that the physicochemical variables of soil affected SOC variation more significantly than spatial variables did, thus suggesting that the SOC in Moso bamboo forests can be strongly influenced by management practices. Thus, this study provides valuable information in relation to sampling strategy and insight into the potential of adjustments in agronomic measure, such as in fertilization for Moso bamboo production. PMID:25789615

  5. Fractal behavior of soil water storage at multiple depths

    NASA Astrophysics Data System (ADS)

    Ji, Wenjun; Lin, Mi; Biswas, Asim; Si, Bing C.; Chau, Henry W.; Cresswell, Hamish P.

    2016-08-01

    Spatiotemporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties are kept at deep layers. The current study examined the scaling properties of sub-surface soil water and their relationship to surface soil water, thereby serving as supporting information for plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal nature only during the wet period (from snowmelt until mid- to late June) indicating the need for multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need for a single scaling index to upscale/downscale soil water variability information. In contrast, all soil layers during the dry period (from late June to the end of the growing season in early November) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.

  6. VARIABLE RATE APPLICATION OF SOIL HERBICIDES IN ARABLE CROPS: FROM THEORY TO PRACTICE.

    PubMed

    Heijting, S; Kempenaar, C

    2014-01-01

    Soil herbicides are applied around crop emergence and kill germinating weeds in the surface layer of the soil. These herbicides play an important role in the chemical management of weeds in major arable crops. From an environmental point of view there is a clear need for smarter application of these chemicals. This paper presents research done in The Netherlands on Variable Rate Application (VRA) of soil herbicides by taking into account spatial variation of the soil. Herbicides adsorbed to soil parameters such as clay or organic matter are not available for herbicidal activity. Decision Support Rules (DSR) describe the relation between the soil parameter and herbicide dosage needed for effectively controlling weeds. Research methods such as greenhouse trials, models and on farm research to develop DSR are discussed and results are presented. Another important ingredient for VRA of soil herbicides is an accurate soil map of the field. Sampling and subsequent interpolation is costly. Soil scans measuring a proxy that is subsequently translated into soil properties such as clay fraction and soil organic matter content offer a quicker way to achieve such maps but validation is needed. DSR is applied to the soil map to get the variable dosage map. The farmer combines this map with the routing, spray volume and spray boom width in the Farm Management Information System (FMIS), resulting in a task file. This task file can subsequently be read by the board computer resulting in a VRA spray map. Reduction in soil herbicide depends on the DSR, the spatial variation and pattern of the soil, the spatial configuration of the routing and the technical advances of the spray equipment. Recently, within the framework the Programma Precisie Landbouw, first steps were made to test and implement this in practice. Currently, theory and practice of VRA of soil herbicides is developed within the research program IJKakker in close cooperation with pioneering farmers in The Netherlands.

  7. Geographic variations in orthopedic trauma billing and reimbursements for hip and pelvis fractures in the Medicare population.

    PubMed

    Dodd, Ashley C; Lakomkin, Nikita; Bulka, Catherine; Thakore, Rachel; Collinge, Cory A; Sethi, Manish K

    2016-12-01

    We investigated geographic variations in Medicare spending for DRG 536 (hip and pelvis fracture). We identified 22,728 patients. The median number of charges, discharges, and payments were recorded. Hospitals were aggregated into core based statistical (CBS) areas and the coefficient of variation (CV) was calculated for each area. On average, hospitals charged 3.75 times more than they were reimbursed. Medicare charges and reimbursements demonstrated variability within each area. Geographic variation in Medicare spending for hip fractures is currently unexplained. It is imperative for orthopedists to understand drivers behind such high variability in hospital charges for management of hip and pelvis fractures.

  8. Physicochemical properties related to long-term phosphorus retention by drinking-water treatment residuals.

    PubMed

    Makris, Konstantinos C; Harris, Willie G; O'Connor, George A; Obreza, Thomas A; Elliott, Herschel A

    2005-06-01

    Drinking-water treatment residuals (WTRs) are nonhazardous materials that can be obtained free-of-charge from drinking-water treatment plants to reduce soluble phosphorus (P) concentrations in poorly P sorbing soils. Phosphorus sorption capacities of WTRs can vary 1-2 orders of magnitude, on the basis of short-term equilibration times (up to 7 d), but studies dealing with long-term (weeks to months) P retention by WTRs are lacking. Properties that most affect long-term P sorption capacities are pertinent to the efficacy of WTRs as amendments to stabilize P in soils. This research addressed the long-term (up to 80 d) P sorption/desorption characteristics and kinetics for seven WTRs, including the influence of specific surface area (SSA), porosity, and total C content on the overall magnitude of P sorption by seven WTRs. The data confirm a strong but variable affinity for P by WTRs. Aluminum-based WTRs tended to have higher P sorption capacity than Fe-based WTRs. Phosphorus sorption with time was biphasic in nature for most samples and best fit to a second-order rate model. The P sorption rate dependency was strongly correlated with a hysteretic P desorption, consistent with kinetic limitations on P desorption from micropores. Oxalate-extractable Al + Fe concentrations of the WTRs did not effectively explain long-term (80 d) P sorption capacities of the WTRs. Micropore (CO2-based) SSAs were greater than BET-N2 SSAs for most WTRs, except those with the lowest (<80 g kg(-1)) total C content. There was a significant negative linear correlation between the total C content and the CO2/N2 SSA ratio. The data suggest that C in WTRs increases microporosity, but reduces P sorption per unit pore volume or surface area. Hence, variability in C content confounds direct relations among SSA, porosity, and P sorption. Total C, N2-based SSA, and CO2-based SSAs explained 82% of the variability in the long-term P sorption capacities of the WTRs. Prediction of long-term P sorption capacities for different WTRs may be achieved by taking into account the three proposed variables.

  9. Modelling the effect of the physical and chemical characteristics of the materials used as casing layers on the production parameters of Agaricus bisporus.

    PubMed

    Pardo, Arturo; Emilio Pardo, J; de Juan, J Arturo; Zied, Diego Cunha

    2010-12-01

    The aim of this research was to show the mathematical data obtained through the correlations found between the physical and chemical characteristics of casing layers and the final mushrooms' properties. For this purpose, 8 casing layers were used: soil, soil + peat moss, soil + black peat, soil + composted pine bark, soil + coconut fibre pith, soil + wood fibre, soil + composted vine shoots and, finally, the casing of La Rioja subjected to the ruffling practice. The conclusion that interplays in the fructification process with only the physical and chemical characteristics of casing are complicated was drawn. The mathematical data obtained in earliness could be explained in non-ruffled cultivation. The variability observed for the mushroom weight and the mushroom diameter variables could be explained in both ruffled and non-ruffled cultivations. Finally, the properties of the final quality of mushrooms were established by regression analysis.

  10. [Evaluation on environmental quality of heavy metals in soils and vegetables based on geostatistics and GIS].

    PubMed

    Xie, Zheng-miao; Li, Jing; Wang, Bi-ling; Chen, Jian-jun

    2006-10-01

    Contents of heavy metals (Pb, Zn, Cd, Cu) in soils and vegetables from Dongguan town in Shangyu city, China were studied using geostatistical analysis and GIS technique to evaluate environmental quality. Based on the evaluation criteria, the distribution of the spatial variability of heavy metals in soil-vegetable system was mapped and analyzed. The results showed that the distribution of soil heavy metals in a large number of soil samples in Dongguan town was asymmetric. The contents of Zn and Cu were lower than those of Cd and Pb. The concentrations distribution of Pb, Zn, Cd and Cu in soils and vegetables were different in spatial variability. There was a close relationship between total and available contents of heavy metals in soil. The contents of Pb and Cd in green vegetables were higher than those of Zn and Cu and exceeded the national sanitation standards for vegetables.

  11. Evaluation of gravimetric ground truth soil moisture data collected for the agricultural soil moisture experiment, 1978 Colby, Kansas, aircraft mission

    NASA Technical Reports Server (NTRS)

    Arya, L. M.; Phinney, D. E. (Principal Investigator)

    1980-01-01

    Soil moisture data acquired to support the development of algorithms for estimating surface soil moisture from remotely sensed backscattering of microwaves from ground surfaces are presented. Aspects of field uniformity and variability of gravimetric soil moisture measurements are discussed. Moisture distribution patterns are illustrated by frequency distributions and contour plots. Standard deviations and coefficients of variation relative to degree of wetness and agronomic features of the fields are examined. Influence of sampling depth on observed moisture content an variability are indicated. For the various sets of measurements, soil moisture values that appear as outliers are flagged. The distribution and legal descriptions of the test fields are included along with examinations of soil types, agronomic features, and sampling plan. Bulk density data for experimental fields are appended, should analyses involving volumetric moisture content be of interest to the users of data in this report.

  12. A global map of mangrove forest soil carbon at 30 m spatial resolution

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily

    2018-05-01

    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.

  13. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    NASA Astrophysics Data System (ADS)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting events and more prolonged response to drying cycles, as opposed to binary behavior in the control.

  14. Soil erosion assessment - Mind the gap

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-12-01

    Accurate assessment of erosion rates remains an elusive problem because soil loss is strongly nonunique with respect to the main drivers. In addressing the mechanistic causes of erosion responses, we discriminate between macroscale effects of external factors - long studied and referred to as "geomorphic external variability", and microscale effects, introduced as "geomorphic internal variability." The latter source of erosion variations represents the knowledge gap, an overlooked but vital element of geomorphic response, significantly impacting the low predictability skill of deterministic models at field-catchment scales. This is corroborated with experiments using a comprehensive physical model that dynamically updates the soil mass and particle composition. As complete knowledge of microscale conditions for arbitrary location and time is infeasible, we propose that new predictive frameworks of soil erosion should embed stochastic components in deterministic assessments of external and internal types of geomorphic variability.

  15. A regional modeling framework of phosphorus sources and transport in streams of the southeastern United States

    USGS Publications Warehouse

    Garcia, Ana Maria.; Hoos, Anne B.; Terziotti, Silvia

    2011-01-01

    We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p < 0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables – soil organic matter and soil pH – are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity.

  16. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    PubMed

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  17. Soil process modelling in CZO research: gains in data harmonisation and model validation

    NASA Astrophysics Data System (ADS)

    van Gaans, Pauline; Andrianaki, Maria; Kobierska, Florian; Kram, Pavel; Lamacova, Anna; Lair, Georg; Nikolaidis, Nikos; Duffy, Chris; Regelink, Inge; van Leeuwen, Jeroen P.; de Ruiter, Peter

    2014-05-01

    Various soil process models were applied to four European Critical Zone observatories (CZOs), the core research sites of the FP7 project SoilTrEC: the Damma glacier forefield (CH), a set of three forested catchments on geochemically contrasing bedrocks in the Slavkov Forest (CZ), a chronosequence of soils in the former floodplain of the Danube of Fuchsenbigl/Marchfeld (AT), and the Koiliaris catchments in the north-western part of Crete, (GR). The aim of the modelling exercises was to apply and test soil process models with data from the CZOs for calibration/validation, identify potential limits to the application scope of the models, interpret soil state and soil functions at key stages of the soil life cycle, represented by the four SoilTrEC CZOs, contribute towards harmonisation of data and data acquisition. The models identified as specifically relevant were: The Penn State Integrated Hydrologic Model (PIHM), a fully coupled, multiprocess, multi-scale hydrologic model, to get a better understanding of water flow and pathways, The Soil and Water Assessment Tool (SWAT), a deterministic, continuous time (daily time step) basin scale model, to evaluate the impact of soil management practices, The Rothamsted Carbon model (Roth-C) to simulate organic carbon turnover and the Carbon, Aggregation, and Structure Turnover (CAST) model to include the role of soil aggregates in carbon dynamics, The Ligand Charge Distribution (LCD) model, to understand the interaction between organic matter and oxide surfaces in soil aggregate formation, and The Terrestrial Ecology Model (TEM) to obtain insight into the link between foodweb structure and carbon and nutrient turnover. With some exceptions all models were applied to all four CZOs. The need for specific model input contributed largely to data harmonisation. The comparisons between the CZOs turned out to be of great value for understanding the strength and limitations of the models, as well as the differences in soil conditions between the CZOs. The CZO modelling led to further developments of the PIHM, with incorporation of functionality for karstic fracture flow (Koiliaris) and fracture flow anisotropy (Damma). The Damma case also provided experience on how to use results from geophysical investigations in model refinement. The SWAT modelling showed variability among the CZOs in hydraulic conductivity, the curve number that determines how fast rainfall results in runoff, and soil moisture capacity. Roth-C and CAST showed carbon sequestration fluxes to be low for old cultivated soils (Koiliaris) and high for new soils (Damma), where the latter site also had very high turnover rates. The LCD modelling, so far limited to the calcareous floodplain soils in Austria, explains differences in C-sequestration capacity between forest and agricultural soils from competition between phosphate and soil organic matter for adsorption sites on Fe-(hydr)oxides. The wide variety of soil (eco)system conditions challenged the TEM model and showed important directions for refinement: 1) differentiating between various fractions of organic matter and concomitant microbial decomposition pathways, and 2) the need to better define the physiological traits of the organisms in relation to local environmental conditions.

  18. Soil Parameter Mapping and Ad Hoc Power Analysis to Increase Blocking Efficiency Prior to Establishing a Long-Term Field Experiment

    PubMed Central

    Collins, Doug; Benedict, Chris; Bary, Andy; Cogger, Craig

    2015-01-01

    The spatial heterogeneity of soil and weed populations poses a challenge to researchers. Unlike aboveground variability, below-ground variability is more difficult to discern without a strategic soil sampling pattern. While blocking is commonly used to control environmental variation, this strategy is rarely informed by data about current soil conditions. Fifty georeferenced sites were located in a 0.65 ha area prior to establishing a long-term field experiment. Soil organic matter (OM) and weed seed bank populations were analyzed at each site and the spatial structure was modeled with semivariograms and interpolated with kriging to map the surface. These maps were used to formulate three strategic blocking patterns and the efficiency of each pattern was compared to a completely randomized design and a west to east model not informed by soil variability. Compared to OM, weeds were more variable across the landscape and had a shorter range of autocorrelation, and models to increase blocking efficiency resulted in less increase in power. Weeds and OM were not correlated, so no model examined improved power equally for both parameters. Compared to the west to east blocking pattern, the final blocking pattern chosen resulted in a 7-fold increase in power for OM and a 36% increase in power for weeds. PMID:26247056

  19. Assessing soil compaction on Forest Inventory & Analysis phase 3 field plots using a pocket penetrometer

    Treesearch

    Michael C. Amacher; Katherine P. O' Neill

    2004-01-01

    Soil compaction is an important indicator of soil quality, yet few practical methods are available to quantitatively measure this variable. Although an assessment of the areal extent of soil compaction is included as part of the soil indicator portion of the Forest Inventory & Analysis (FIA) program, no quantitative measurement of the degree of soil compaction...

  20. Soil-Bacterium Compatibility Model as a Decision-Making Tool for Soil Bioremediation.

    PubMed

    Horemans, Benjamin; Breugelmans, Philip; Saeys, Wouter; Springael, Dirk

    2017-02-07

    Bioremediation of organic pollutant contaminated soil involving bioaugmentation with dedicated bacteria specialized in degrading the pollutant is suggested as a green and economically sound alternative to physico-chemical treatment. However, intrinsic soil characteristics impact the success of bioaugmentation. The feasibility of using partial least-squares regression (PLSR) to predict the success of bioaugmentation in contaminated soil based on the intrinsic physico-chemical soil characteristics and, hence, to improve the success of bioaugmentation, was examined. As a proof of principle, PLSR was used to build soil-bacterium compatibility models to predict the bioaugmentation success of the phenanthrene-degrading Novosphingobium sp. LH128. The survival and biodegradation activity of strain LH128 were measured in 20 soils and correlated with the soil characteristics. PLSR was able to predict the strain's survival using 12 variables or less while the PAH-degrading activity of strain LH128 in soils that show survival was predicted using 9 variables. A three-step approach using the developed soil-bacterium compatibility models is proposed as a decision making tool and first estimation to select compatible soils and organisms and increase the chance of success of bioaugmentation.

  1. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico

    NASA Technical Reports Server (NTRS)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.

    1998-01-01

    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  2. Statistical analyses of soil properties on a quaternary terrace sequence in the upper sava river valley, Slovenia, Yugoslavia

    USGS Publications Warehouse

    Vidic, N.; Pavich, M.; Lobnik, F.

    1991-01-01

    Alpine glaciations, climatic changes and tectonic movements have created a Quaternary sequence of gravely carbonate sediments in the upper Sava River Valley, Slovenia, Yugoslavia. The names for terraces, assigned in this model, Gu??nz, Mindel, Riss and Wu??rm in order of decreasing age, are used as morphostratigraphic terms. Soil chronosequence on the terraces was examined to evaluate which soil properties are time dependent and can be used to help constrain the ages of glaciofluvial sedimentation. Soil thickness, thickness of Bt horizons, amount and continuity of clay coatings and amount of Fe and Me concretions increase with soil age. The main source of variability consists of solutions of carbonate, leaching of basic cations and acidification of soils, which are time dependent and increase with the age of soils. The second source of variability is the content of organic matter, which is less time dependent, but varies more within soil profiles. Textural changes are significant, presented by solution of carbonate pebbles and sand, and formation is silt loam matrix, which with age becomes finer, with clay loam or clayey texture. The oldest, Gu??nz, terrace shows slight deviation from general progressive trends of changes of soil properties with time. The hypothesis of single versus multiple depositional periods of deposition was tested with one-way analysis of variance (ANOVA) on a staggered, nested hierarchical sampling design on a terrace of largest extent and greatest gravel volume, the Wu??rm terrace. The variability of soil properties is generally higher within subareas than between areas of the terrace, except for the soil thickness. Observed differences in soil thickness between the areas of the terrace could be due to multiple periods of gravel deposition, or to the initial differences of texture of the deposits. ?? 1991.

  3. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function. ?? 2006 Springer Science+Business Media, Inc.

  4. Microbial ecology of the watery ecosystems of Evros river in North Eastern Greece and its influence upon the cultivated soil ecosystem.

    PubMed

    Vavias, S; Alexopoulos, A; Plessas, S; Stefanis, C; Voidarou, C; Stavropoulou, E; Bezirtzoglou, E

    2011-12-01

    The aim of the present study was to evaluate the microbial ecosystem of cultivated soils along the Evros river in NE Greece. Evros river together with its derivative rivers constitute the capital source of life and sustainable development of the area. Along this riverside watery ecosystem systematic agro-cultures were developed such as wheat, corn and vegetable cultures. The evaluation of the ecosystem microbial charge was conducted in both axes which are the watery ecosystem and the riverside cultivated soil area. Considerable discrimination of water quality was observed when considering chemical and microbiological parameters of the Evros river ecosystem. Ardas river possesses a better water quality than Evros and Erythropotamos, which is mainly due to the higher quantities that these two rivers accumulate from industrial, farming and urban residues leading to higher degree of pollution. An increased microbial pollution was recorded in two of the three rivers monitored and a direct relation in microbial and chemical charging between water and cultivated-soil ecosystems was observed. The protection of these ecosystems with appropriate cultivated practices and control of human and animal activities will define the homeostasis of the environmental area. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Correlations between soil respiration and soil properties in sugarcane areas under green and slash-and-burn management systems

    NASA Astrophysics Data System (ADS)

    Rodrigo Panosso, Alan; Milori, Débora M. B. P.; Marques Júnior, José; Martin-Neto, Ladislau; La Scala, Newton, Jr.

    2010-05-01

    Soil management causes changes in soil physical, chemical, and biological properties that consequently affect its CO2 emission. In this work we studied soil respiration (FCO2) in areas with sugarcane production in southern Brazil under two different sugarcane management systems: green (G), consisting of mechanized harvesting that produces a large amount of crop residues left on the soil surface, and slash-and-burn (SB), in which the residues are burned before manual harvest, leaving no residues on the soil surface. The study was conducted after the harvest period in two side-by-side grids installed in adjacent areas, having 20 measurement points each. The objective of this work was to determinate whether soil physical and chemical properties within each plot were useful in order to explain the spatial variability of FCO2, supposedly influence by each management system. Most of the soil physical properties studied showed no significant differences between management systems, but on the other hand most of the chemical properties differed significantly when SB and G areas were compared. Total FCO2 was 31% higher in the SB plot (729 g CO2 m-2) when compared to the G plot (557 g CO2 m-2) throughout the 70-day period after harvest studied. This seems to be related to the sensitivity of FCO2 to precipitation events, as respiration in this plot increased significantly with increases in soil moisture. Despite temporal variability showed to be positively related to soil moisture, inside each management system there was a negative correlation (p<0.01) between the spatial changes of FCO2 and soil moisture (MS), R= -0.56 and -0.59 for G and SB respectively. There was no spatial correlation between FCO2 and soil organic matter in each management system, however, the humification index (Hum) of organic matter was negatively linear correlated with FCO2 in SB (R= -0.53, p<0.05) while positively linear correlated in G area (R=0.42, p<0.10). The multiple regression model analysis applied in each management system indicates that 63% of the FCO2 spatial variability in G managed could be explained by the model: FCO2(G)= 4.11978 -0.07672MS + 0.0045Hum +1.5352K -0.04474FWP, where K and FWP are potassium content and free water porosity in G area, respectively. On the other hand, 75% of FCO2 spatial variability in SB managed plot was accounted by the model: FCO2(SB) = 10.66774 -0.08624MS -0.02904Hum -2.42548K. Therefore, soil moisture, humification index of organic matter and potassium level were the main properties able to explain the spatial variability of FCO2 in both sugarcane management systems. This result indicates that changes in sugarcane management systems could result in changes on the soil chemical properties, mostly, especially humification index of organic matter. It seems that in conversion from slash-and-burn to green harvest system, free water porosity turns to be an important aspect in order to explain part of FCO2 spatial variability in green managed system.

  6. Improved chemometric methodologies for the assessment of soil carbon sequestration mechanisms

    NASA Astrophysics Data System (ADS)

    Jiménez-González, Marco A.; Almendros, Gonzalo; Álvarez, Ana M.; González-Vila, Francisco J.

    2016-04-01

    The factors involved soil C sequestration, which is reflected in the highly variable content of organic matter in the soils, are not yet well defined. Therefore, their identification is crucial for understanding Earth's biogeochemical cycle and global change. The main objective of this work is to contribute to a better qualitative and quantitative assessment of the mechanisms of organic C sequestration in the soil, using omic approaches not requiring the detailed knowledge of the structure of the material under study. With this purpose, we have carried out a series of chemometric approaches on a set of widely differing soils (35 representative ecosystems). In an exploratory phase, we used multivariate statistical models (e.g., multidimensional scaling, discriminant analysis with automatic backward variable selection…) to analyze arrays of more than 200 independent soil variables (physicochemical, spectroscopic, pyrolytic...) in order to select those factors (descriptors or proxies) that explain most of the total system variance (content and stability of the different C forms). These models showed that the factors determining the stabilization of organic material are greatly dependent on the soil type. In some cases, the molecular structure of organic matter seemed strongly correlated with their resilience, while in other soil types the organo-mineral interactions played a significant bearing on the accumulation of selectively preserved C forms. In any case, it was clear that the factors driving the resilience of organic matter are manifold and not exclusive. Consequently, in a second stage, prediction models of the soil C content and their biodegradability (laboratory incubation experiments) were carried out by massive data processing by partial least squares (PLS) regression of data from Py-GC-MS and Py-MS. In some models, PLS was applied to a matrix of 150 independent variables corresponding to major pyrolysis compounds (peak areas) from the 35 samples of whole soils. The variable importance in the projection (VIP) histogram obtained from this treatment (total C and total mineralization coefficients as dependent variables) illustrated the contribution of the individual compounds to the total inertia of the models (e.g., carbohydrate-derived compounds, methoxyphenols, or specific alkylbenzenes were relevant in explaining the total quality and the biodegradation rates of the organic matter). Further simplified models consisting of direct PLS analysis of the debugged ion matrix calculated by averaging all ions (45 - 250 amu) in the whole chromatographic area in the 5-60 min range (here referred to as 'rebuilt MS spectra' or 'Py-MS spectra' when obtained connecting directly the pyrolyser to the MS detector through suitable interfaces) were carried out. The above three approaches coincided in pointing out that C sequestration behave as an emergent soil property depending on the complexity of its progressive molecular levels. Most of the total variance is explained by specific assemblages of variables, strongly depending on the soil types. On the other hand, chemical biodiversity (e.g., Shannon indices or coefficients from multivariate data models) behaved as a common background in the prediction models including very different soil types. In fact, assessment of chemodiversity of the pyrolytic compound assemblages (or the Py-MS ion data) would represent a valid clue for the assessment of the extent to which the original biomass has been diagenetically reworked into chaotic structures with non-repeatable units, providing a useful proxy to forecast at least a portion of the total variance in the soil organic matter biodegradability.

  7. Intra-basin variability of snowmelt water balance calculations in a subarctic catchment

    NASA Astrophysics Data System (ADS)

    McCartney, Stephen E.; Carey, Sean K.; Pomeroy, John W.

    2006-03-01

    The intra-basin variability of snowmelt and melt-water runoff hydrology in an 8 km2 subarctic alpine tundra catchment was examined for the 2003 melt period. The catchment, Granger Creek, is within the Wolf Creek Research Basin, Yukon, which is typical of mountain subarctic landscapes in northwestern Canada. The study catchment was segmented into nine internally uniform zones termed hydrological response units (HRUs) based on their similar hydrological, physiographic, vegetation and soil properties. Snow accumulation exhibited significant variability among the HRUs, with greatest snow water equivalent in areas of tall shrub vegetation. Melt began first on southerly exposures and at lower elevations, yet average melt rates for the study period varied little among HRUs with the exception of those with steep aspects. In HRUs with capping organic soils, melt water first infiltrated this surface horizon, satisfying its storage capacity, and then percolated into the frozen mineral substrate. Infiltration and percolation into frozen mineral soils was restricted where melt occurred rapidly and organic soils were thin; in this case, melt-water delivery rates exceeded the frozen mineral soil infiltration rate, resulting in high runoff rates. In contrast, where there were slower melt rates and thick organic soils, infiltration was unlimited and runoff was suppressed. The snow water equivalent had a large impact on runoff volume, as soil storage capacity was quickly surpassed in areas of deep snow, diverting the bulk of melt water laterally to the drainage network. A spatially distributed water balance indicated that the snowmelt freshet was primarily controlled by areas with tall shrub vegetation that accumulate large quantities of snow and by alpine areas with no capping organic soils. The intra-basin water balance variability has important implications for modelling freshet in hydrological models.

  8. Predicting key malaria transmission factors, biting and entomological inoculation rates, using modelled soil moisture in Kenya.

    PubMed

    Patz, J A; Strzepek, K; Lele, S; Hedden, M; Greene, S; Noden, B; Hay, S I; Kalkstein, L; Beier, J C

    1998-10-01

    While malaria transmission varies seasonally, large inter-annual heterogeneity of malaria incidence occurs. Variability in entomological parameters, biting rates and entomological inoculation rates (EIR) have been strongly associated with attack rates in children. The goal of this study was to assess the weather's impact on weekly biting and EIR in the endemic area of Kisian, Kenya. Entomological data collected by the U.S. Army from March 1986 through June 1988 at Kisian, Kenya was analysed with concurrent weather data from nearby Kisumu airport. A soil moisture model of surface-water availability was used to combine multiple weather parameters with landcover and soil features to improve disease prediction. Modelling soil moisture substantially improved prediction of biting rates compared to rainfall; soil moisture lagged two weeks explained up to 45% of An. gambiae biting variability, compared to 8% for raw precipitation. For An. funestus, soil moisture explained 32% variability, peaking after a 4-week lag. The interspecies difference in response to soil moisture was significant (P < 0.00001). A satellite normalized differential vegetation index (NDVI) of the study site yielded a similar correlation (r = 0.42 An. gambiae). Modelled soil moisture accounted for up to 56% variability of An. gambiae EIR, peaking at a lag of six weeks. The relationship between temperature and An. gambiae biting rates was less robust; maximum temperature r2 = -0.20, and minimum temperature r2 = 0.12 after lagging one week. Benefits of hydrological modelling are compared to raw weather parameters and to satellite NDVI. These findings can improve both current malaria risk assessments and those based on El Niño forecasts or global climate change model projections.

  9. Variability of Soil Temperature: A Spatial and Temporal Analysis.

    ERIC Educational Resources Information Center

    Walsh, Stephen J.; And Others

    1991-01-01

    Discusses an analysis of the relationship of soil temperatures at 3 depths to various climatic variables along a 200-kilometer transect in west-central Oklahoma. Reports that temperature readings increased from east to west. Concludes that temperature variations were explained by a combination of spatial, temporal, and biophysical factors. (SG)

  10. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    USDA-ARS?s Scientific Manuscript database

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  11. Dynamic prescription maps for site-specific variable rate irrigation of cotton

    USDA-ARS?s Scientific Manuscript database

    A prescription map is a set of instructions that controls a variable rate irrigation (VRI) system. These maps, which may be based on prior yield, soil texture, topography, or soil electrical conductivity data, are often manually applied at the beginning of an irrigation season and remain static. The...

  12. Using passive capillary lysimeter water flux measurements to improve flow predictions in variably saturated soils.

    USDA-ARS?s Scientific Manuscript database

    Passive capillary lysimeters (PCLs) are uniquely suited for measuring water fluxes in variably-saturated soils. The objective of this work was to compare PCL flux measurements with simulated fluxes obtained with a calibrated unsaturated flow model. The Richards equation-based model was calibrated us...

  13. Incorporating the site variability and laboratory/in-situ testing variability of soil properties in geotechnical engineering design : research project capsule : technology transfer program.

    DOT National Transportation Integrated Search

    2016-04-01

    While structural engineering deals with mostly homogeneous manmade materials : (e.g., concrete and steel), geotechnical engineering typically involves highly varied : natural materials (e.g., soil and rock). As a result, high variance of the resistan...

  14. Edaphic controls on soil organic carbon stocks in restored grasslands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Sarah L.; Jastrow, Julie D.; Grimley, David A.

    Cultivation of undisturbed soils dramatically depletes organic carbon stocks at shallow depths, releasing a substantial quantity of stored carbon to the atmosphere. Restoration of native ecosystems can help degraded soils rebuild a portion of the depleted soil organic matter. However, the rate and magnitude of soil carbon accrual can be highly variable from site to site. Thus, a better understanding of the mechanisms controlling soil organic carbon stocks is necessary to improve predictions of soil carbon recovery. We measured soil organic carbon stocks and a suite of edaphic factors in the upper 10 cm of a series of restored tallgrassmore » prairies representing a range of drainage conditions. Our findings suggest that factors related to soil organic matter stabilization mechanisms (texture, polyvalent cations) were key predictors of soil organic carbon, along with variables that influence plant and microbial biomass (available phosphorus, pH) and soil moisture. Exchangeable soil calcium was the strongest single predictor, explaining 74% of the variation in soil organic carbon, followed by clay content,which explained 52% of the variation. Our results demonstrate that the cumulative effects of even relatively small differences in these edaphic properties can have a large impact on soil carbon stocks when integrated over several decades.« less

  15. The variability of runoff and soil erosion in the Brazilian Cerrado biome due to the potential land use and climate changes

    NASA Astrophysics Data System (ADS)

    Alexandre Ayach Anache, Jamil; Wendland, Edson; Malacarne Pinheiro Rosalem, Lívia; Srivastava, Anurag; Flanagan, Dennis

    2017-04-01

    Changes in land use and climate can influence runoff and soil loss, threatening soil and water conservation in the Cerrado biome in Brazil. Due to the lack of long term observed data for runoff and soil erosion in Brazil, the adoption of a process-based model was necessary, representing the variability of both variables in a continuous simulation approach. Thus, we aimed to calibrate WEPP (Water Erosion Prediction Project) model for different land uses (undisturbed Cerrado, fallow, pasture, and sugarcane) under subtropical conditions inside the Cerrado biome; predict runoff and soil erosion for these different land uses; and simulate runoff and soil erosion considering climate change scenarios. We performed the model calibration using a 4-year dataset of observed runoff and soil loss in four different land uses (undisturbed Cerrado, fallow, pasture, and sugarcane). The WEPP model components (climate, topography, soil, and management) were calibrated according to field data. However, soil and management were optimized according to each land use using a parameter estimation tool. The observations were conducted between 2012 and 2015 in experimental plots (5 m width, 20 m length, 9% slope gradient, 3 replicates per treatment). The simulations were done using the calibrated WEPP model components, but changing the 4-year observed climate file by a 100-year dataset created with CLIGEN (weather generator) based on regional climate statistics. Afterwards, using MarkSim DSSAT Weather File Generator, runoff and soil loss were simulated using future climate scenarios for 2030, 2060, and 2090. To analyze the data, we used non-parametric statistics as data do not follow normal distribution. The results show that WEPP model had an acceptable performance for the considered conditions. In addition, both land use and climate can influence on runoff and soil loss rates. Potential climate changes which consider the increase of rainfall intensities and depths in the studied region may increase the variability and rates for runoff and soil erosion. However, the climate did not change the differences and similarities between the rates of the four analyzed land uses. The runoff behavior is distinct for all land uses, but for soil loss we found similarities between pasture and undisturbed Cerrado, suggesting that soil sustainability could be reached when the management follows conservation principles.

  16. A THREE-DIMENSIONAL AIR FLOW MODEL FOR SOIL VENTING: SUPERPOSITION OF ANLAYTICAL FUNCTIONS

    EPA Science Inventory

    A three-dimensional computer model was developed for the simulation of the soil-air pressure distribution at steady state and specific discharge vectors during soil venting with multiple wells in unsaturated soil. The Kirchhoff transformation of dependent variables and coordinate...

  17. Evaluation of the performance of hydrological variables derived from GLDAS-2 and MERRA-2 in Mexico

    NASA Astrophysics Data System (ADS)

    Real-Rangel, R. A.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.

    2017-12-01

    Hydrological studies have found in data assimilation systems and global reanalysis of land surface variables (e.g soil moisture, streamflow) a wide range of applications, from drought monitoring to water balance and hydro-climatology variability assessment. Indeed, these hydrological data sources have led to an improvement in developing and testing monitoring and prediction systems in poorly gauged regions of the world. This work tests the accuracy and error of land surface variables (precipitation, soil moisture, runoff and temperature) derived from the data assimilation reanalysis products GLDAS-2 and MERRA-2. Validate the performance of these data platforms must be thoroughly evaluated in order to consider the error of hydrological variables (i.e., precipitation, soil moisture, runoff and temperature) derived from the reanalysis products. For such purpose, a quantitative assessment was performed at 2,892 climatological stations, 42 stream gauges and 44 soil moisture probes located in Mexico and across different climate regimes (hyper-arid to tropical humid). Results show comparisons between these gridded products against ground-based observational stations for 1979-2014. The results of this analysis display a spatial distribution of errors and accuracy over Mexico discussing differences between climates, enabling the informed use of these products.

  18. Landsat thematic mapper (TM) soil variability analysis over Webster County, Iowa

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Henderson, K. E.; Pitts, D. E.

    1984-01-01

    Thematic mapper simulator (TMS) data acquired June 7, June 23, and July 31, 1982, and Landsat thematic mapper (TM) data acquired August 2, September 3, and October 21, 1982, over Webster County, Iowa, were examined for within-field soil effects on corn and soybean spectral signatures. It was found that patterns displayed on various computer-generated map products were in close agreement with the detailed soil survey of the area. The difference in spectral values appears to be due to a combination of subtle soil properties and crop growth patterns resulting from the different soil properties. Bands 4 (0.76-.90 micron), 5 (1.55-1.75 micron), and 7 (2.08-2.35 micron) were found to be responding to the within-field soil variability even with increasing ground cover. While these results are preliminary, they do indicate that the soil influence on the vegetation is being detected by TM and should provide improved information relating to crop and soil properties.

  19. Controls on Soil Organic Matter in Blue Carbon Ecosystems along the South Florida Coast

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Rosenheim, B. E.; Moyer, R. P.; Radabaugh, K.; Chambers, L. G.; Lagomasino, D.; Lynch, J.; Cahoon, D. R.

    2017-12-01

    Coastal wetlands store disproportionately large amounts of carbon due to high rates of net primary productivity and slow microbial degradation of organic matter in water-saturated soils. Wide spatial and temporal variability in plant communities and soil biogeochemistry necessitate location-specific quantification of carbon stocks to improve current wetland carbon inventories and future projections. We apply field measurements, remote sensing technology, and spatiotemporal models to quantify regional carbon storage and to model future spatial variability of carbon stocks in mangroves and coastal marshes in Southwest Florida. We examine soil carbon accumulation and accretion rates on time scales ranging from decadal to millennial to project responses to climate change, including variations in inundation and salinity. Once freshwater and oligohaline wetlands are exposed to increased duration and spatial extent of inundation and salinity from seawater, soil redox potential, soil respiration, and the intensification of osmotic stress to vegetation and the soil microbial community can affect the soil C balance potentially increasing rates of mineralization.

  20. Propagation of hydroclimatic variability through the critical zone

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.; Calabrese, S.; Parolari, A.

    2016-12-01

    The interaction between soil moisture dynamics and mineral-weathering reactions (e.g., ion exchange, precipitation-dissolution) affects the availability of nutrients to plants, composition of soils, soil acidification, as well as CO2 sequestration. Across the critical zone (CZ), this interaction is responsible for propagating hydroclimatic fluctuations to deeper soil layers, controlling weathering rates via leaching events which intermittently alter the alkalinity levels. In this contribution, we analyze these dynamics using a stochastic modeling approach based on spatially lumped description of soil hydrology and chemical weathering reactions forced by multi-scale temporal hydrologic variability. We quantify the role of soil moisture dynamics in filtering the rainfall fluctuations through its impacts on soil water chemistry, described by a system of ordinary differential equations (and algebraic equations, for the equilibrium reactions), driving the evolution of alkalinity, pH, the chemical species of the soil solution, and the mineral-weathering rate. A probabilistic description of the evolution of the critical zone is thus obtained, allowing us to describe the CZ response to long-term climate fluctuations, ecosystem and land-use conditions, in terms of key variables groups. The model is applied to the weathering rate of albite in the Calhoun CZ observatory and then extended to explore similarities and differences across other CZs. Typical time scales of response and degrees of sensitivities of CZ to hydroclimatic fluctuations and human forcing are also explored.

  1. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble

    NASA Astrophysics Data System (ADS)

    Lorenz, Ruth; Argüeso, Daniel; Donat, Markus G.; Pitman, Andrew J.; van den Hurk, Bart; Berg, Alexis; Lawrence, David M.; Chéruy, Frédérique; Ducharne, Agnès.; Hagemann, Stefan; Meier, Arndt; Milly, P. C. D.; Seneviratne, Sonia I.

    2016-01-01

    We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This protocol enables separate examinations of the influences of soil moisture variability and trends on the intensity, frequency, and duration of climate extremes by the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) emission scenario. Removing soil moisture variability significantly reduces temperature extremes over most continental surfaces, while wet precipitation extremes are enhanced in the tropics. Projected drying trends in soil moisture lead to increases in intensity, frequency, and duration of temperature extremes by the end of the 21st century. Wet precipitation extremes are decreased in the tropics with soil moisture trends in the simulations, while dry extremes are enhanced in some regions, in particular the Mediterranean and Australia. However, the ensemble results mask considerable differences in the soil moisture trends simulated by the six climate models. We find that the large differences between the models in soil moisture trends, which are related to an unknown combination of differences in atmospheric forcing (precipitation, net radiation), flux partitioning at the land surface, and how soil moisture is parameterized, imply considerable uncertainty in future changes in climate extremes.

  2. Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal, India.

    PubMed

    Chatterjee, Sourov; Santra, Priyabrata; Majumdar, Kaushik; Ghosh, Debjani; Das, Indranil; Sanyal, S K

    2015-04-01

    A large part of precision agriculture research in the developing countries is devoted towards precision nutrient management aspects. This has led to better economics and efficiency of nutrient use with off-farm advantages of environmental security. The keystone of precision nutrient management is analysis and interpretation of spatial variability of soils by establishing management zones. In this study, spatial variability of major soil nutrient contents was evaluated in the Ghoragacha village of North 24 Parganas district of West Bengal, India. Surface soil samples from 100 locations, covering different cropping systems of the village, was collected from 0 to 15 cm depth using 100×100 m grid system and analyzed in the laboratory to determine organic carbon (OC), available nitrogen (N), phosphorus (P), and potassium (K) contents of the soil as well as its water-soluble K (KWS), exchangeable K (KEX), and non-exchangeable forms of K (KNEX). Geostatistical analyses were performed to determine the spatial variation structure of each nutrient content within the village, followed by the generation of surface maps through kriging. Four commonly used semivariogram models, i.e., spherical, exponential, Gaussian, and linear models were fitted to each soil property, and the best one was used to prepare surface maps through krigging. Spherical model was found the best for available N and P contents, while linear and exponential model was the best for OC and available K, and for KWS and KNEK, Gausian model was the best. Surface maps of nutrient contents showed that N content (129-195 kg ha(-1)) was the most limiting factor throughout the village, while P status was generally very high ( 10-678 kg ha(-1)) in the soils of the present village. Among the different soil K fractions, KWS registered the maximum variability (CV 75%), while the remaining soil K fractions showed moderate to high variation. Interestingly, KNEX content also showed high variability, which essentially indicates reserve native K exploitation under intensive cultivation. These maps highlight the necessity of estimating the other soil K fractions as well for better understanding of soil K supplying capacity and K fertilization strategy rather than the current recommendations, based on the plant-available K alone. In conclusion, the present study revealed that the variability of nutrient distribution was a consequence of complex interactions between the cropping system, nutrient application rates, and the native soil characteristics, and such interactions could be utilized to develop the nutrient management strategies for intensive small-holder system.

  3. Modeling the hysteretic moisture and temperature responses of soil carbon decomposition resulting from organo-mineral interactions

    NASA Astrophysics Data System (ADS)

    Tang, J.; Riley, W. J.

    2017-12-01

    Most existing soil carbon cycle models have modeled the moisture and temperature dependence of soil respiration using deterministic response functions. However, empirical data suggest abundant variability in both of these dependencies. We here use the recently developed SUPECA (Synthesizing Unit and Equilibrium Chemistry Approximation) theory and a published dynamic energy budget based microbial model to investigate how soil carbon decomposition responds to changes in soil moisture and temperature under the influence of organo-mineral interactions. We found that both the temperature and moisture responses are hysteretic and cannot be represented by deterministic functions. We then evaluate how the multi-scale variability in temperature and moisture forcing affect soil carbon decomposition. Our results indicate that when the model is run in scenarios mimicking laboratory incubation experiments, the often-observed temperature and moisture response functions can be well reproduced. However, when such response functions are used for model extrapolation involving more transient variability in temperature and moisture forcing (as found in real ecosystems), the dynamic model that explicitly accounts for hysteresis in temperature and moisture dependency produces significantly different estimations of soil carbon decomposition, suggesting there are large biases in models that do not resolve such hysteresis. We call for more studies on organo-mineral interactions to improve modeling of such hysteresis.

  4. Effect of Solution Properties on Arsenic Adsorption by Drinking Water Treatment Residuals

    NASA Astrophysics Data System (ADS)

    Nagar, R.; Sarkar, D.; Datta, R.; Sharma, S.

    2005-05-01

    Arsenic (As) is a ubiquitous element in the environment. Higher levels of As in soils may result from various anthropogenic sources such as use of arsenical pesticides, fertilizers, wood preservatives, smelter wastes, and coal combustion. This is of great environmental and human health concern due to the high toxicity and proven carcinogenicity of several arsenical species. Thus there is a need for developing cost effective technologies capable of lowering bioavailable As concentrations in soils to environmentally acceptable levels. In-situ immobilization of metals using inexpensive amendments such as minerals (apatite, zeolite, or clay minerals) or waste by-products (steel shot, beringite, and iron-rich biosolids) to reduce bioavailability is an inexpensive alternative to the more expensive ex-situ remediation methods. One such emerging in-situ technique is the application of drinking water treatment residuals (WTRs). WTRs can be classified as a byproduct of drinking water treatment plants and are generally composed of amorphous Fe/Al oxides, activated C and cationic polymers. WTRs possess amorphous structure and generally have high positive charge. Because As is chemically similar to phosphorus, the oxyanions As (V) and As (III) may have the potential of being retained by the WTRs. Thus, it is hypothesized that WTRs retain As irreversibly, thereby reducing As biavailability. As mobility of arsenic is controlled by adsorption reactions, knowledge of adsorption of As by WTRs is of primary relevance. Although the overall rate of adsorption is dependent on numerous factors, review of the literature indicates that competing ions in solution play an important role in the overall retention of As; however, little work has been conducted to identify which ions provide the most competition. As arsenic adsorption appears to be influenced by the variable pH-dependent charges developed on the soil particle surfaces, the effect of pH is also of critical importance. Hence, the purpose of the present study is to investigate the effect of solution properties, such as pH, ionic strength and competing ions on the adsorption of As by WTRs and WTR amended soils. Three types of WTRs are being used, namely Fe- WTR, Al- WTR and Ca-WTR. Effect of pH is being studied by varying the pH values between 3 and 9. The solid/solution ratio has been fixed at 1:5 and a 24 h equilibration has been chosen based on the results of earlier adsorption experiments. Furthermore, As adsorption will be studied in presence of potentially competing ions such as phosphate, sulfate, and selenate. Keywords: Adsorption, water treatment residuals, oxyanions, in-situ remediation, Arsenic

  5. Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor

    NASA Astrophysics Data System (ADS)

    Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.

    2017-12-01

    Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar

  6. The intraannual variability of land-atmosphere coupling over North America in the Canadian Regional Climate Model (CRCM5)

    NASA Astrophysics Data System (ADS)

    Yang Kam Wing, G.; Sushama, L.; Diro, G. T.

    2016-12-01

    This study investigates the intraannual variability of soil moisture-temperature coupling over North America. To this effect, coupled and uncoupled simulations are performed with the fifth-generation Canadian Regional Climate Model (CRCM5), driven by ERA-Interim. In coupled simulations, land and atmosphere interact freely; in uncoupled simulations, the interannual variability of soil moisture is suppressed by prescribing climatological values for soil liquid and frozen water contents. The study also explores projected changes to coupling by comparing coupled and uncoupled CRCM5 simulations for current (1981-2010) and future (2071-2100) periods, driven by the Canadian Earth System Model. Coupling differs for the northern and southern parts of North America. Over the southern half, it is persistent throughout the year while for the northern half, strongly coupled regions generally follow the freezing line during the cold months. Detailed analysis of the southern Canadian Prairies reveals seasonal differences in the underlying coupling mechanism. During spring and fall, as opposed to summer, the interactive soil moisture phase impacts the snow depth and surface albedo, which further impacts the surface energy budget and thus the surface air temperature; the air temperature then influences the snow depth in a feedback loop. Projected changes to coupling are also season specific: relatively drier soil conditions strengthen coupling during summer, while changes in soil moisture phase, snow depth, and cloud cover impact coupling during colder months. Furthermore, results demonstrate that soil moisture variability amplifies the frequency of temperature extremes over regions of strong coupling in current and future climates.

  7. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Eagleson, P. S.

    1989-01-01

    Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.

  8. Vegetation Response to Rainfall and Soil Moisture Variability in Botswana

    DTIC Science & Technology

    1991-01-01

    Effects of Varying Soil Type on the NDVI /Rainfall and NDVI /Soil Moisture...examine the effects of different soil types on the vegetation growth/rainfall relationship. The goals are to determine whether differences in the water-use...34first step" in removing the soil effect (Huete et al., 1985). Indeed, no large-scale soil corrections have been attempted as yet on NDVI data.

  9. Cyclic Dinitroureas As Self-Remediating Munition Charges

    DTIC Science & Technology

    2009-02-26

    Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine NAWCWD Naval Air Warfare Center Weapons Division NMR Nuclear magnetic resonance PBXN Plastic Bonded...problems as UXO. A typical submunition fill, such as PBXN -107 in the BLU- 97/B, employs RDX as the main explosive charge. RDX is known to exhibit... 106 ; “maximum lambda” 1050; “lambda factor” 10. Results and Accomplishments As kinetic runs under the various conditions of humidity and soil

  10. Soil-Site Factors Affecting Southern Upland Oak Managment and Growth

    Treesearch

    John K. Francis

    1980-01-01

    Soil supplies trees with physical support, moisture, oxygen, and nutrients. Amount of moisture most limits tree growth; and soil and topographic factors such as texture and aspect, which influence available soil moisture. are most useful in predicting growth. Equations that include soil and topographic variables can be used to predict site index. Foresters can also...

  11. A simplified regional-scale electromagnetic induction - Salinity calibration model using ANOCOVA modeling techniques

    USDA-ARS?s Scientific Manuscript database

    Directed soil sampling based on geospatial measurements of apparent soil electrical conductivity (ECa) is a potential means of characterizing the spatial variability of any soil property that influences ECa including soil salinity, water content, texture, bulk density, organic matter, and cation exc...

  12. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    USDA-ARS?s Scientific Manuscript database

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  13. Factors to consider in developing variable rate seeding prescriptions

    USDA-ARS?s Scientific Manuscript database

    Soil hydraulic properties influence many of the ecological functions of soil. The objectives of this study were to determine the influence of topsoil thickness on soil hydraulic properties for grain and perennial grass production systems. The experiment was carried out at the Soil Productivity Asses...

  14. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.

    PubMed

    Zhao, Wenqiang; Walker, Sharon L; Huang, Qiaoyun; Cai, Peng

    2014-04-15

    Bacterial adhesion to granular soil particles is well studied; however, pathogen interactions with naturally occurring colloidal particles (<2 μm) in soil has not been investigated. This study was developed to identify the interaction mechanisms between model bacterial pathogens and soil colloids as a function of cell type, natural organic matter (NOM), and solution chemistry. Specifically, batch adhesion experiments were conducted using NOM-present, NOM-stripped soil colloids, Streptococcus suis SC05 and Escherichia coli WH09 over a wide range of solution pH (4.0-9.0) and ionic strength (IS, 1-100 mM KCl). Cell characterization techniques, Freundlich isotherm, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (sphere-sphere model) were utilized to quantitatively determine the interactions between cells and colloids. The adhesion coefficients (Kf) of S. suis SC05 to NOM-present and NOM-stripped soil colloids were significantly higher than E. coli WH09, respectively. Similarly, Kf values of S. suis SC05 and E. coli WH09 adhesion to NOM-stripped soil colloids were greater than those colloids with NOM-present, respectively, suggesting NOM inhibits bacterial adhesion. Cell adhesion to soil colloids declined with increasing pH and enhanced with rising IS (1-50 mM). Interaction energy calculations indicate these adhesion trends can be explained by DLVO-type forces, with S. suis SC05 and E. coli WH09 being weakly adhered in shallow secondary energy minima via polymer bridging and charge heterogeneity. S. suis SC05 adhesion decreased at higher IS 100 mM, which is attributed to the change of hydrophobic effect and steric repulsion resulted from the greater presence of extracellular polymeric substances (EPS) on S. suis SC05 surface as compared to E. coli WH09. Hence, pathogen adhesion to the colloidal material is determined by a combination of DLVO, charge heterogeneity, hydrophobic and polymer interactions as a function of solution chemistry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Use of thermal infrared and colour infrared imagery to detect crop moisture stress. [Alberta, Canada

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. C.; Clark, N. F.; Cihlar, J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. In the presence of variable plant cover (primarily percent cover) and variable available water content, the remotely sensed apparent temperatures correlate closely with plant cover and poorly with soil water. To the extent that plant cover is not systematically related to available soil water, available water in the root zone values may not be reliably predicted from the thermal infrared data. On the other hand, if plant cover is uniform and the soil surface is shown in a minor way, the thermal data indicate plant stress and consequently available water in the soil profile.

  16. Horizontal and vertical variability of soil properties in a trace element contaminated area

    NASA Astrophysics Data System (ADS)

    Burgos, Pilar; Madejón, Engracia; Pérez-de-Mora, Alfredo; Cabrera, Francisco

    2008-02-01

    The spatial distribution of some soil chemical properties and trace element contents of a plot affected by the Aznalcóllar mine spill were investigated using statistical and geostatistical methods to assess the extent of soil contamination. Total and EDTA-extractable soil trace element concentrations and total S content showed great variability and high coefficients of variation in the three examined depths. Soil in the plot was found to be significantly contaminated by As, Cd, Cu, Pb and Zn within a wide range of pH. Total trace element concentrations at all depths (0-60 cm) were much higher than background values of non-affected soil, indicating that despite the clean-up operations, the concentration of trace elements in the experimental plot was still high. The spatial distribution of the different variables was estimated by kriging to design contour maps. These maps allowed the identification of specific zones with high metal concentrations and low pH values corresponding to spots of residual sludge. Moreover, kriged maps showed distinct spatial distribution and hence different behaviour for the elements considered. This information may be applied to optimise remediation strategies in highly and moderately contaminated areas.

  17. Physical responses of volcanic soils to land-use intensity in tropical headwater catchments of central Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Looker, N. T.; Kolka, R.; Asbjornsen, H.; Munoz-Villers, L.; Colin, P. O.; Gómez Aguilar, L. R.; Ward, A. B.

    2017-12-01

    Soil physical properties, such as bulk density (ρb) and penetrability (P), may vary in response to anthropogenic disturbance and are relatively easy to measure. These variables are thus often used as proxies for soil characteristics that more directly govern process rates but are logistically challenging to sample in situ (e.g., hydraulic conductivity). We evaluated within- and among-site variability in the physical condition of the upper soil throughout eight first-order catchments in the volcanic landscape of central Veracruz, Mexico, through nested sampling of ρb, P, and ground cover characteristics. The study catchments spanned a land-use intensity gradient, ranging in dominant cover type from sugarcane to mature cloud forest, with pasture and coffee agroforest as intermediate cover types. Catchments were compared using data collected in forest inventory plots and at points distributed along the topographic position index. Analysis of this hierarchical dataset led to a ranking of catchments in terms of soil physical condition and, importantly, revealed the bias introduced by ignoring the within-catchment variability in response metrics. These results will help optimize soil sampling effort in landscapes with complex topography and land-use/cover distributions.

  18. Proxies for soil organic carbon derived from remote sensing

    NASA Astrophysics Data System (ADS)

    Rasel, S. M. M.; Groen, T. A.; Hussin, Y. A.; Diti, I. J.

    2017-07-01

    The possibility of carbon storage in soils is of interest because compared to vegetation it contains more carbon. Estimation of soil carbon through remote sensing based techniques can be a cost effective approach, but is limited by available methods. This study aims to develop a model based on remotely sensed variables (elevation, forest type and above ground biomass) to estimate soil carbon stocks. Field observations on soil organic carbon, species composition, and above ground biomass were recorded in the subtropical forest of Chitwan, Nepal. These variables were also estimated using LiDAR data and a WorldView 2 image. Above ground biomass was estimated from the LiDAR image using a novel approach where the image was segmented to identify individual trees, and for these trees estimates of DBH and Height were made. Based on AIC (Akaike Information Criterion) a regression model with above ground biomass derived from LiDAR data, and forest type derived from WorldView 2 imagery was selected to estimate soil organic carbon (SOC) stocks. The selected model had a coefficient of determination (R2) of 0.69. This shows the scope of estimating SOC with remote sensing derived variables in sub-tropical forests.

  19. Environmental and management influences on temporal variability of near saturated soil hydraulic properties.

    PubMed

    Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P

    2013-08-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (- 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r 2  = 0.43 to 0.59). Our results suggested that beside considering average management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters.

  20. Environmental and management influences on temporal variability of near saturated soil hydraulic properties☆

    PubMed Central

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2013-01-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (− 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r2 = 0.43 to 0.59). Our results suggested that beside considering average management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters. PMID:24748683

  1. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America

    USGS Publications Warehouse

    Ross, Donald S.; Bailiey, Scott W; Briggs, Russell D; Curry, Johanna; Fernandez, Ivan J.; Fredriksen, Guinevere; Goodale, Christine L.; Hazlett, Paul W.; Heine, Paul R; Johnson, Chris E.; Larson, John T; Lawrence, Gregory B.; Kolka, Randy K; Ouimet, Rock; Pare, D; Richter, Daniel D.; Shirmer, Charles D; Warby, Richard A.F.

    2015-01-01

    Long-term forest soil monitoring and research often requires a comparison of laboratory data generated at different times and in different laboratories. Quantifying the uncertainty associated with these analyses is necessary to assess temporal changes in soil properties. Forest soil chemical properties, and methods to measure these properties, often differ from agronomic and horticultural soils. Soil proficiency programs do not generally include forest soil samples that are highly acidic, high in extractable Al, low in extractable Ca and often high in carbon. To determine the uncertainty associated with specific analytical methods for forest soils, we collected and distributed samples from two soil horizons (Oa and Bs) to 15 laboratories in the eastern United States and Canada. Soil properties measured included total organic carbon and nitrogen, pH and exchangeable cations. Overall, results were consistent despite some differences in methodology. We calculated the median absolute deviation (MAD) for each measurement and considered the acceptable range to be the median 6 2.5 3 MAD. Variability among laboratories was usually as low as the typical variability within a laboratory. A few areas of concern include a lack of consistency in the measurement and expression of results on a dry weight basis, relatively high variability in the C/N ratio in the Bs horizon, challenges associated with determining exchangeable cations at concentrations near the lower reporting range of some laboratories and the operationally defined nature of aluminum extractability. Recommendations include a continuation of reference forest soil exchange programs to quantify the uncertainty associated with these analyses in conjunction with ongoing efforts to review and standardize laboratory methods.

  2. Interaction between aggrading geomorphic surfaces and the formation of a late pleistocene paleosol in the palouse loess of eastern Washington state

    NASA Astrophysics Data System (ADS)

    McDonald, Eric V.; Busacca, Alan J.

    1990-09-01

    Variable rates of loess deposition contributed to dramatic regional variation in a soil-stratigraphic unit, the Washtucna Soil, in the Palouse loess deposits in the Channeled Scabland of eastern Washington state. Throughout most of the Channeled Scabland, the morphology of the Washtucna Soil is that of a single buried soil, but it bifurcates into two well-developed and pedologically distinct buried soils in areas immediately downwind of the major source of loessial sediment. Regional loess stratigraphy confirms that the two well-developed soils formed during the same interval of time during which only one soil formed in areas that are distal to loess source areas. The variable and perhaps rapid rates of soil formation suggested by the stratigraphy resulted from an interaction between variable rates of loess deposition and the formation of superimposed calcic soils. Petrocalcic horizons with weak Stage IV morphology formed as the zone of carbonate accumulation moved up into former A and cambic horizons that had been profusely burrowed by cicadas. The development of cicada burrows in one phase of soil development that were subsequently engulfed by pedogenic carbonate under a rising land surface seems to have greatly accelerated the development of the petrocalcic horizons. Accelerated rates of formation of the petrocalcic horizons occurred when extrinsic (pulses of loess deposition) and intrinsic (engulfment of burrowed horizons) thresholds were exceeded. Stratigraphic evidence suggests that the soil formation that accompanied the rise in the land surface due to additional loess deposition may have occurred during the late Wisconsin glaciation when giant glacial outburst floods in the channeled Scabland triggered a new cycle of loess deposition.

  3. Oribatid mites in soil toxicity testing-the use of Oppia nitens (C.L. Koch) as a new test species.

    PubMed

    Princz, Juliska I; Behan-Pelletier, Valerie M; Scroggins, Richard P; Siciliano, Steven D

    2010-04-01

    Few soil invertebrate species are available for the toxic assessment of soils from boreal or other northern ecozones, yet these soils cover the majority of Canada's landmass as well as significant portions of Eurasia. Oppia nitens (C.L. Koch) is an herbivorous and fungivorous oribatid mite found in soil throughout Holarctic regions, including Canada. Soil tests using O. nitens were performed using 15 different forest soil types and horizons to investigate test variability in adult survival and reproduction. Adult survival (86.1 +/- 1.1%) was consistent across soil types, with a coefficient of variation (CV) of 15%. However, reproduction varied significantly, ranging from 2.9 (+/-1.1) to 86.2 (+/-11.7) individuals, with a corresponding CV of 118 and 30%, respectively. Of the soil factors assessed (NH(3), NO(3), pH, phosphorus [P], organic matter content (OM), carbon:nitrogen (C:N), sand, silt, clay, and sodium adsorption ratio), soil organic matter (OM) explained 68% of the variation observed for reproduction. Increasing the OM using Sphagnum sp. peat moss resulted in optimal reproduction at 7% OM (8% peat content) with the lowest variability (CV of 20%). When assessing the toxicity of a reference chemical, boric acid, the effect of peat amendment reduced lethality to adults with no observable difference on reproduction. The use an age-synchronized culture reduced the test variability for reproduction relative to the use of unsynchronized cultures. Oppia nitens is a good candidate species for a standardized test design, with adult survival easily assessed in a relatively simple design. A long-term reproduction test with O. nitens will require the use of a synchronized population and, on occasion, OM amendment when testing soils with low organic matter content. (c) 2009 SETAC.

  4. Evaluating the influence of antecedent soil moisture on variability of the North American Monsoon precipitation in the coupled MM5/VIC modeling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chunmei; Leung, Lai R.; Gochis, David

    2009-11-29

    The influence of antecedent soil moisture on North American monsoon system (NAMS) precipitation variability was explored using the MM5 mesoscale model coupled with the Variable Infiltration Capacity (VIC) land surface model. Sensitivity experiments were performed with extreme wet and dry initial soil moisture conditions for both the 1984 wet monsoon year and the 1989 dry year. The MM5-VIC model reproduced the key features of NAMS in 1984 and 1989 especially over northwestern Mexico. Our modeling results indicate that the land surface has memory of the initial soil wetness prescribed at the onset of the monsoon that persists over most ofmore » the region well into the monsoon season (e.g. until August). However, in contrast to the classical thermal contrast concept, where wetter soils lead to cooler surface temperatures, less land-sea thermal contrast, weaker monsoon circulations and less precipitation, the coupled model consistently demonstrated a positive soil moisture – precipitation feedback. Specifically, anomalously wet premonsoon soil moisture always lead to enhanced monsoon precipitation, and the reverse was also true. The surface temperature changes induced by differences in surface energy flux partitioning associated with pre-monsoon soil moisture anomalies changed the surface pressure and consequently the flow field in the coupled model, which in turn changed moisture convergence and, accordingly, precipitation patterns. Both the largescale circulation change and local land-atmospheric interactions in response to premonsoon soil moisture anomalies play important roles in the coupled model’s positive soil moisture monsoon precipitation feedback. However, the former may be sensitive to the strength and location of the thermal anomalies, thus leaving open the possibility of both positive and negative soil moisture precipitation feedbacks.« less

  5. Multivariate control of plant species richness and community biomass in blackland prairie

    USGS Publications Warehouse

    Weiher, E.; Forbes, S.; Schauwecker, T.; Grace, J.B.

    2004-01-01

    Recent studies have shown that patterns of plant species richness and community biomass are best understood in a multivariate context. The objective of this study was to develop and evaluate a multivariate hypothesis about how herbaceous biomass and richness relate to gradients in soil conditions and woody plant cover in blackland prairies. Structural equation modeling was used to investigate how soil characteristics and shade by scattered Juniperus virginiana trees relate to standing biomass and species richness in 99 0.25 m2 quadrats collected in eastern Mississippi, USA. Analysis proceeded in two stages. In the first stage, we evaluated the hypothesis that correlations among soil parameters could be represented by two underlying (latent) soil factors, mineral content and organic content. In the second stage, we evaluated the hypothesis that richness and biomass were related to (1) soil properties, (2) tree canopy extent, and (3) each other (i.e. reciprocal effects between richness and biomass). With some modification to the details of the original model, it was found that soil properties could be represented as two latent variables. In the overall model, 51% and 53% of the observed variation in richness and biomass were explained. The order of importance for variables explaining variations in richness was (1) soil organic content, (2) soil mineral content, (3) community biomass, and (4) tree canopy extent. The order of importance for variables explaining biomass was (1) tree canopy and (2) soil organic content, with neither soil mineral content nor species richness explaining significant variation in biomass. Based on these findings, we conclude that variations in richness are uniquely related to both variations in soil conditions and variations in herbaceous biomass. We further conclude that there is no evidence in these data for effects of species richness on biomass.

  6. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.

    PubMed

    Li, Hu; Weng, Bo-Sen; Huang, Fu-Yi; Su, Jian-Qiang; Yang, Xiao-Ru

    2015-07-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity.

  7. Simulating soybean canopy temperature as affected by weather variables and soil water potential

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1982-01-01

    Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.

  8. A study of short test and charge retention test methods for nickel-cadmium spacecraft cells

    NASA Technical Reports Server (NTRS)

    Scott, W. R.

    1975-01-01

    Methods for testing nickel-cadmium cells for internal shorts and charge retention were studied. Included were (a) open circuit voltage decay after a brief charge, (b) open circuit voltage recovery after shorting, and (c) open circuit voltage decay and capacity loss after a full charge. The investigation included consideration of the effects of prior history, of conditioning cells prior to testing, and of various test method variables on the results of the tests. Sensitivity of the tests was calibrated in terms of equivalent external resistance. The results were correlated. It was shown that a large number of variables may affect the results of these tests. It is concluded that the voltage decay after a brief charge and the voltage recovery methods are more sensitive than the charged stand method, and can detect an internal short equivalent to a resistance of about (10,000/C)ohms where "C' is the numerical value of the capacity of the cell in ampere hours.

  9. Reducing Demand Charges and Onsite Generation Variability Using Behind-the-Meter Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattarai, Bishnu P.; Myers, Kurt S.; Bush, Jason W.

    Electric utilities in the United States are increasingly employing demand charges and/or real-time pricing. This directive is bringing potential opportunities in deploying behindthe-meter energy storage (BMES) systems for various grid functionalities. This study quantifies techno-economic benefits of BMES in reducing demand charge and smoothing load/generation intermittencies, and determines how those benefits vary with onsite distributed photovoltaic. We proposed a two-stage control algorithm, whereby the first stage proactively determines costoptimal BMES configuration for reducing peak-demands and demand charges, and the second stage adaptively compensates intermittent generations and short load spikes that may otherwise increase the demand charges. The performance of themore » proposed algorithm is evaluated through a 24 hours time sweep simulation performed using data from smart microgrid testbed at Idaho National Laboratory (INL). The simulation results demonstrated that this research provides a simple but effective solution for peak shaving, demand charge reductions, and smoothing onsite PV variability.« less

  10. Soil resources and topography shape local tree community structure in tropical forests

    PubMed Central

    Baldeck, Claire A.; Harms, Kyle E.; Yavitt, Joseph B.; John, Robert; Turner, Benjamin L.; Valencia, Renato; Navarrete, Hugo; Davies, Stuart J.; Chuyong, George B.; Kenfack, David; Thomas, Duncan W.; Madawala, Sumedha; Gunatilleke, Nimal; Gunatilleke, Savitri; Bunyavejchewin, Sarayudh; Kiratiprayoon, Somboon; Yaacob, Adzmi; Supardi, Mohd N. Nur; Dalling, James W.

    2013-01-01

    Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24–50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9–34% and 5–29%, respectively), and all environmental variables together explain 13–39% of compositional variation within a plot. A large fraction of variation (19–37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe. PMID:23256196

  11. Soil profile water content determination:Spatiotemporal variability of electromagnetic and neutron probe sensors in access tubes

    USDA-ARS?s Scientific Manuscript database

    Since the late 1980s, electromagnetic (EM) sensors for determination on of soil water content from within nonmetallic access tubes have been marketed as replacements for the neutron moisture meter (NMM); however, the accuracy, variability and physical significance of EM sensor field measurements hav...

  12. Simulating tracer transport in variably saturated soils and shallow groundwater

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in variably saturated soils and to compare simulation results with the detailed monitoring observations. The USDA-ARS OPE3 field site was selected for the case study due to ava...

  13. The influence of use-related, environmental, and managerial factors on soil loss from recreational trails.

    PubMed

    Olive, Nathaniel D; Marion, Jeffrey L

    2009-03-01

    Recreational uses of unsurfaced trails inevitably result in their degradation, with the type and extent of resource impact influenced by factors such as soil texture, topography, climate, trail design and maintenance, and type and amount of use. Of particular concern, the loss of soil through erosion is generally considered a significant and irreversible form of trail impact. This research investigated the influence of several use-related, environmental, and managerial factors on soil loss on recreational trails and roads at Big South Fork National River and Recreation Area, a unit of the U.S. National Park Service. Regression modeling revealed that trail position, trail slope alignment angle, grade, water drainage, and type of use are significant determinants of soil loss. The introduction of individual and groups of variables into a series of regression models provides improved understanding and insights regarding the relative influence of these variables, informing the selection of more effective trail management actions. Study results suggest that trail erosion can be minimized by avoiding "fall-line" alignments, steep grades, and valley-bottom alignments near streams, installing and maintaining adequate densities of tread drainage features, applying gravel to harden treads, and reducing horse and all-terrain vehicle use or restricting them to more resistant routes. This research also sought to develop a more efficient Variable Cross-Sectional Area method for assessing soil loss on trails. This method permitted incorporation of CSA measures in a representative sampling scheme applied to a large (24%) sample of the park's 526 km trail system. The variety of soil loss measures derived from the Variable CSA method, including extrapolated trail-wide soil loss estimates, permit an objective quantification of soil erosion on recreational trails and roads. Such data support relational analyses to increase understanding of trail degradation, and long-term monitoring of the natural and recreational integrity of the trail system infrastructure.

  14. The influence of use-related, environmental, and managerial factors on soil loss from recreational trails

    USGS Publications Warehouse

    Olive, Nathaniel D.; Marion, Jeffrey L.

    2009-01-01

    Recreational uses of unsurfaced trails inevitably result in their degradation, with the type and extent of resource impact influenced by factors such as soil texture, topography, climate, trail design and maintenance, and type and amount of use. Of particular concern, the loss of soil through erosion is generally considered a significant and irreversible form of trail impact. This research investigated the influence of several use-related, environmental, and managerial factors on soil loss on recreational trails and roads at Big South Fork National River and Recreation Area, a unit of the U.S. National Park Service. Regression modeling revealed that trail position, trail slope alignment angle, grade, water drainage, and type of use are significant determinants of soil loss. The introduction of individual and groups of variables into a series of regression models provides improved understanding and insights regarding the relative influence of these variables, informing the selection of more effective trail management actions. Study results suggest that trail erosion can be minimized by avoiding “fall-line” alignments, steep grades, and valley-bottom alignments near streams, installing and maintaining adequate densities of tread drainage features, applying gravel to harden treads, and reducing horse and all-terrain vehicle use or restricting them to more resistant routes.This research also sought to develop a more efficient Variable Cross-Sectional Area method for assessing soil loss on trails. This method permitted incorporation of CSA measures in a representative sampling scheme applied to a large (24%) sample of the park's 526 km trail system. The variety of soil loss measures derived from the Variable CSA method, including extrapolated trail-wide soil loss estimates, permit an objective quantification of soil erosion on recreational trails and roads. Such data support relational analyses to increase understanding of trail degradation, and long-term monitoring of the natural and recreational integrity of the trail system infrastructure.

  15. Phylogenetic Analysis of Local-Scale Tree Soil Associations in a Lowland Moist Tropical Forest

    PubMed Central

    Schreeg, Laura A.; Kress, W. John; Erickson, David L.; Swenson, Nathan G.

    2010-01-01

    Background Local plant-soil associations are commonly studied at the species-level, while associations at the level of nodes within a phylogeny have been less well explored. Understanding associations within a phylogenetic context, however, can improve our ability to make predictions across systems and can advance our understanding of the role of evolutionary history in structuring communities. Methodology/Principal Findings Here we quantified evolutionary signal in plant-soil associations using a DNA sequence-based community phylogeny and several soil variables (e.g., extractable phosphorus, aluminum and manganese, pH, and slope as a proxy for soil water). We used published plant distributional data from the 50-ha plot on Barro Colorado Island (BCI), Republic of Panamá. Our results suggest some groups of closely related species do share similar soil associations. Most notably, the node shared by Myrtaceae and Vochysiaceae was associated with high levels of aluminum, a potentially toxic element. The node shared by Apocynaceae was associated with high extractable phosphorus, a nutrient that could be limiting on a taxon specific level. The node shared by the large group of Laurales and Magnoliales was associated with both low extractable phosphorus and with steeper slope. Despite significant node-specific associations, this study detected little to no phylogeny-wide signal. We consider the majority of the ‘traits’ (i.e., soil variables) evaluated to fall within the category of ecological traits. We suggest that, given this category of traits, phylogeny-wide signal might not be expected while node-specific signals can still indicate phylogenetic structure with respect to the variable of interest. Conclusions Within the BCI forest dynamics plot, distributions of some plant taxa are associated with local-scale differences in soil variables when evaluated at individual nodes within the phylogenetic tree, but they are not detectable by phylogeny-wide signal. Trends highlighted in this analysis suggest how plant-soil associations may drive plant distributions and diversity at the local-scale. PMID:21060686

  16. Release of dissolved phosphorus from riparian wetlands: Evidence for complex interactions among hydroclimate variability, topography and soil properties.

    PubMed

    Gu, Sen; Gruau, Gérard; Dupas, Rémi; Rumpel, Cornélia; Crème, Alexandra; Fovet, Ophélie; Gascuel-Odoux, Chantal; Jeanneau, Laurent; Humbert, Guillaume; Petitjean, Patrice

    2017-11-15

    In agricultural landscapes, establishment of vegetated buffer zones in riparian wetlands (RWs) is promoted to decrease phosphorus (P) emissions because RWs can trap particulate P from upslope fields. However, long-term accumulation of P risks the release of dissolved P, since the unstable hydrological conditions in these zones may mobilize accumulated particulate P by transforming it into a mobile dissolved P species. This study evaluates how hydroclimate variability, topography and soil properties interact and influence this mobilization, using a three-year dataset of molybdate-reactive dissolved P (MRDP) and total dissolved P (TDP) concentrations in soil water from two RWs located in an agricultural catchment in western France (Kervidy-Naizin), along with stream P concentrations. Two main drivers of seasonal dissolved P release were identified: i) soil rewetting during water-table rise after dry periods and ii) reductive dissolution of soil Fe (hydr)oxides during prolonged water saturation periods. These mechanisms were shown to vary greatly in space (according to topography) and time (according to intra- and interannual hydroclimate variability). The concentration and speciation of the released dissolved P also varied spatially depending on soil chemistry and local topography. Comparison of sites revealed a similar correlation between soil P speciation (percentage of organic P ranging from 35-70%) and the concentration and speciation of the released P (MRDP from <0.10 to 0.40mgl -1 ; percentage of MRDP in TDP from 25-70%). These differences propagated to stream water, suggesting that the two RWs investigated were the main sources of dissolved P to streams. RWs can be critical areas due to their ability to biogeochemically transform the accumulated P in these zones into highly mobile and highly bioavailable dissolved P forms. Hydroclimate variability, local topography and soil chemistry must be considered to decrease the risk of remobilizing legacy soil P when establishing riparian buffer zones in agricultural landscapes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Spatial structure and scaling of macropores in hydrological process at small catchment scale

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter

    2013-04-01

    During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.

  18. Patterns of soil community structure differ by scale and ecosystem type along a large-scale precipitation gradient

    USDA-ARS?s Scientific Manuscript database

    Climate models predict increased variability in precipitation regimes, which will likely increase frequency/duration of drought. Reductions in soil moisture affect physical and chemical characteristics of the soil habitat and can influence soil organisms such as mites and nematodes. These organisms ...

  19. Temporal soil bulk density following tillage

    USDA-ARS?s Scientific Manuscript database

    Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...

  20. Field scale spatiotemporal analysis of surface soil moisture for evaluating point-scale in situ networks

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is an intrinsic state variable that varies considerably in space and time. From a hydrologic viewpoint, soil moisture controls runoff, infiltration, storage and drainage. Soil moisture determines the partitioning of the incoming radiation between latent and sensible heat fluxes. Althou...

  1. Claypan depth effect on soil phosphorus and potassium dynamics

    USDA-ARS?s Scientific Manuscript database

    Understanding the effects of fertilizer addition and crop removal on long-term change in spatially-variable soil test P (STP) and soil test K (STK) is crucial for maximizing the use of grower inputs on claypan soils. Using apparent electrical conductivity (ECa) to estimate topsoil depth (or depth to...

  2. Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale

    USDA-ARS?s Scientific Manuscript database

    Soil water patterns vary significantly due to precipitation, soil properties, topographic features, and land use. We used empirical orthogonal function (EOF) analysis to characterize the spatial variability of soil water across a 37-ha field of the Washington State University Cook Agronomy Farm near...

  3. Multiple indices of soil nitrogen status and temperature regulate microbial C allocation to CO2, substrate choices, and contributions to SOM

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Ziegler, S. E.

    2012-12-01

    The response of microbial resource demand to many environmental variables, including temperature and natural organic and inorganic N variability, remains poorly understood. Furthermore, we do not understand how these variables can influence CO2 release vs. C retention in cell walls, which as microbial necromass can generate long-lived soil organic matter (SOM). We explore microbial resource demand and C retention vs. release in one temperate forest and two boreal forests along a climate gradient. We characterized SOM C:N and inorganic N, extracellular enzyme activity (E), and phospholipid fatty acid (PLFA) concentration and δ13C. Experimental warming permitted us to assess how interactions between soil N status and warming influence resource demand and C flows through microbes in the two boreal soils. For all soils, we used δ13C of respired CO2 and δ13CPLFA to generate indices of C allocation to biomass vs. to respiratory costs (Δ), useful for cross-site comparisons. Decreasing values of Δ indicate a greater proportion of 13C-enriched C allocated to respiration relative to PLFA-C; changes in Δ with warming or N status thus imply that these variables can influence the physiological mechanisms determining the fate of microbial C after it is imported into the cell. We thus were able to assess the influence of soil N status and warming on substrate decay via E, the fate of microbial C from diverse substrates via Δ, and one index of microbial composition relevant to SOM formation [PLFA]. In all soils, E often varied with N status in ways predicted by stoichiometric theory. For example, the ratio of exo-enzymes associated with labile C decay to those linked to organic N decay (EC:N) increased with inorganic N, and EC:N declined as substrate C:N increased. In contrast to measures of decay, all soils exhibited distinct responses of microbial composition and C allocation to N status and warming. In the temperate forest soils, Gram+ bacteria responded positively to organic N availability and Gram- bacteria to inorganic N, while fungi responded positively to declines in both measures of soil N status. In the more northern boreal soils, actinomycete [PLFA] increased with inorganic N, while that of more southern boreal soils increased with substrate C:N; in both boreal soils, Gram+ bacteria increased with temperature. Given that cell walls of these microbes exhibit distinct propensities for forming long-lived SOM, our work illustrates how similar variation in N status and temperature can drive divergent patterns of biomass relevant to SOM formation. Sensitivity of patterns of C allocation to these variables also contrasted between these soils. In the temperate soils, Δ did not vary with soil N status nor with E, implying that microbes' C allocation patterns were not driven N status or by the C's organic precursor. In both boreal soils, Δ declined with warming, and as EC or EC:N increased. Though N status of the boreal soils drove resource demand similarly as in the temperate forest, the fate of boreal microbial C varied with N status and temperature. Because microbial C substrate use varied with warming in the boreal soils, Δ highlights how the fate of microbial C may vary with the identity of its organic precursor, which in turn is influenced by environmental conditions like temperature and soil N status.

  4. Mapping CO2 emission in highly urbanized region using standardized microbial respiration approach

    NASA Astrophysics Data System (ADS)

    Vasenev, V. I.; Stoorvogel, J. J.; Ananyeva, N. D.

    2012-12-01

    Urbanization is a major recent land-use change pathway. Land conversion to urban has a tremendous and still unclear effect on soil cover and functions. Urban soil can act as a carbon source, although its potential for CO2 emission is also very high. The main challenge in analysis and mapping soil organic carbon (SOC) in urban environment is its high spatial heterogeneity and temporal dynamics. The urban environment provides a number of specific features and processes that influence soil formation and functioning and results in a unique spatial variability of carbon stocks and fluxes at short distance. Soil sealing, functional zoning, settlement age and size are the predominant factors, distinguishing heterogeneity of urban soil carbon. The combination of these factors creates a great amount of contrast clusters with abrupt borders, which is very difficult to consider in regional assessment and mapping of SOC stocks and soil CO2 emission. Most of the existing approaches to measure CO2 emission in field conditions (eddy-covariance, soil chambers) are very sensitive to soil moisture and temperature conditions. They require long-term sampling set during the season in order to obtain relevant results. This makes them inapplicable for the analysis of CO2 emission spatial variability at the regional scale. Soil respiration (SR) measurement in standardized lab conditions enables to overcome this difficulty. SR is predominant outgoing carbon flux, including autotrophic respiration of plant roots and heterotrophic respiration of soil microorganisms. Microbiota is responsible for 50-80% of total soil carbon outflow. Microbial respiration (MR) approach provides an integral CO2 emission results, characterizing microbe CO2 production in optimal conditions and thus independent from initial difference in soil temperature and moisture. The current study aimed to combine digital soil mapping (DSM) techniques with standardized microbial respiration approach in order to analyse and map CO2 emission and its spatial variability in highly urbanized Moscow region. Moscow region with its variability of bioclimatic conditions and high urbanization level (10 % from the total area) was chosen as an interesting case study. Random soil sampling in different soil zones (4) and land-use types (3 non-urban and 3 urban) was organized in Moscow region in 2010-2011 (n=242). Both topsoil (0-10 cm) and subsoil (10-150 cm) were included. MR for each point was analysed using standardized microbial (basal) respiration approach, including the following stages: 1) air dried soil samples were moisturised up to 55% water content and preincubated (7 days, 22° C) in a plastic bag with air exchange; 2) soil MR (in μg CO2-C g-1) was measured as the rate of CO2 production (22° C, 24 h) after incubating 2g soil with 0.2 μl distilled water; 3) the MR results were used to estimate CO2 emission (kg C m-2 yr-1). Point MR and CO2 emission results obtained were extrapolated for the Moscow region area using regression model. As a result, two separate CO2 maps for topsoil and subsoil were created. High spatial variability was demonstrated especially for the urban areas. Thus standardized MR approach combined with DSM techniques provided a unique opportunity for spatial analysis of soil carbon temporal dynamics at the regional scale.

  5. Divergent patterns of experimental and model derived variables of tundra ecosystem carbon exchange in response to arctic warming

    NASA Astrophysics Data System (ADS)

    Schaedel, C.; Koven, C.; Celis, G.; Hutchings, J.; Lawrence, D. M.; Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Taylor, M.; Wieder, W. R.; Schuur, E.

    2017-12-01

    Warming over the Arctic in the last decades has been twice as high as for the rest of the globe and has exposed large amounts of organic carbon to microbial decomposition in permafrost ecosystems. Continued warming and associated changes in soil moisture conditions not only lead to enhanced microbial decomposition from permafrost soil but also enhanced plant carbon uptake. Both processes impact the overall contribution of permafrost carbon dynamics to the global carbon cycle, yet field and modeling studies show large uncertainties in regard to both uptake and release mechanisms. Here, we compare variables associated with ecosystem carbon exchange (GPP: gross primary production; Reco: ecosystem respiration; and NEE: net ecosystem exchange) from eight years of experimental soil warming in moist acidic tundra with the same variables derived from an experimental model (Community Land Model version 4.5: CLM4.5) that simulates the same degree of arctic warming. While soil temperatures and thaw depths exhibited comparable increases with warming between field and model variables, carbon exchange related parameters showed divergent patterns. In the field non-linear responses to experimentally induced permafrost thaw were observed in GPP, Reco, and NEE. Indirect effects of continued soil warming and thaw created changes in soil moisture conditions causing ground surface subsidence and suppressing ecosystem carbon exchange over time. In contrast, the model predicted linear increases in GPP, Reco, and NEE with every year of warming turning the ecosystem into a net annual carbon sink. The field experiment revealed the importance of hydrology in carbon flux responses to permafrost thaw, a complexity that the model may fail to predict. Further parameterization of variables that drive GPP, Reco, and NEE in the model will help to inform and refine future model development.

  6. Spatial inhomogeneities in ionic liquids, charged proteins, and charge stabilized colloids from collective variables theory.

    PubMed

    Patsahan, O; Ciach, A

    2012-09-01

    Effects of size and charge asymmetry between oppositely charged ions or particles on spatial inhomogeneities are studied for a large range of charge and size ratios. We perform a stability analysis of the primitive model of ionic systems with respect to periodic ordering using the collective variables-based theory. We extend previous studies [Ciach et al., Phys. Rev. E 75, 051505 (2007)] in several ways. First, we employ a nonlocal approximation for the reference hard-sphere fluid which leads to the Percus-Yevick pair direct correlation functions for the uniform case. Second, we use the Weeks-Chandler-Anderson regularization scheme for the Coulomb potential inside the hard core. We determine the relevant order parameter connected with the periodic ordering and analyze the character of the dominant fluctuations along the λ lines. We show that the above-mentioned modifications produce large quantitative and partly qualitative changes in the phase diagrams obtained previously. We discuss possible scenarios of the periodic ordering for the whole range of size and charge ratios of the two ionic species, covering electrolytes, ionic liquids, charged globular proteins or nanoparticles in aqueous solutions, and charge-stabilized colloids.

  7. New Discrete Fibonacci Charge Pump Design, Evaluation and Measurement

    NASA Astrophysics Data System (ADS)

    Matoušek, David; Hospodka, Jiří; Šubrt, Ondřej

    2017-06-01

    This paper focuses on the practical aspects of the realisation of Dickson and Fibonacci charge pumps. Standard Dickson charge pump circuit solution and new Fibonacci charge pump implementation are compared. Both charge pumps were designed and then evaluated by LTspice XVII simulations and realised in a discrete form on printed circuit board (PCB). Finally, the key parameters as the output voltage, efficiency, rise time, variable power supply and clock frequency effects were measured.

  8. Simulation of changes in heavy metal contamination in farmland soils of a typical manufacturing center through logistic-based cellular automata modeling.

    PubMed

    Qiu, Menglong; Wang, Qi; Li, Fangbai; Chen, Junjian; Yang, Guoyi; Liu, Liming

    2016-01-01

    A customized logistic-based cellular automata (CA) model was developed to simulate changes in heavy metal contamination (HMC) in farmland soils of Dongguan, a manufacturing center in Southern China, and to discover the relationship between HMC and related explanatory variables (continuous and categorical). The model was calibrated through the simulation and validation of HMC in 2012. Thereafter, the model was implemented for the scenario simulation of development alternatives for HMC in 2022. The HMC in 2002 and 2012 was determined through soil tests and cokriging. Continuous variables were divided into two groups by odds ratios. Positive variables (odds ratios >1) included the Nemerow synthetic pollution index in 2002, linear drainage density, distance from the city center, distance from the railway, slope, and secondary industrial output per unit of land. Negative variables (odds ratios <1) included elevation, distance from the road, distance from the key polluting enterprises, distance from the town center, soil pH, and distance from bodies of water. Categorical variables, including soil type, parent material type, organic content grade, and land use type, also significantly influenced HMC according to Wald statistics. The relative operating characteristic and kappa coefficients were 0.91 and 0.64, respectively, which proved the validity and accuracy of the model. The scenario simulation shows that the government should not only implement stricter environmental regulation but also strengthen the remediation of the current polluted area to effectively mitigate HMC.

  9. How do air ions reflect variations in ionising radiation in the lower atmosphere in a boreal forest?

    NASA Astrophysics Data System (ADS)

    Chen, Xuemeng; Kerminen, Veli-Matti; Paatero, Jussi; Paasonen, Pauli; Manninen, Hanna E.; Nieminen, Tuomo; Petäjä, Tuukka; Kulmala, Markku

    2016-11-01

    Most of the ion production in the atmosphere is attributed to ionising radiation. In the lower atmosphere, ionising radiation consists mainly of the decay emissions of radon and its progeny, gamma radiation of the terrestrial origin as well as photons and elementary particles of cosmic radiation. These types of radiation produce ion pairs via the ionisation of nitrogen and oxygen as well as trace species in the atmosphere, the rate of which is defined as the ionising capacity. Larger air ions are produced out of the initial charge carriers by processes such as clustering or attachment to pre-existing aerosol particles. This study aimed (1) to identify the key factors responsible for the variability in ionising radiation and in the observed air ion concentrations, (2) to reveal the linkage between them and (3) to provide an in-depth analysis into the effects of ionising radiation on air ion formation, based on measurement data collected during 2003-2006 from a boreal forest site in southern Finland. In general, gamma radiation dominated the ion production in the lower atmosphere. Variations in the ionising capacity came from mixing layer dynamics, soil type and moisture content, meteorological conditions, long-distance transportation, snow cover attenuation and precipitation. Slightly similar diurnal patterns to variations in the ionising capacity were observed in air ion concentrations of the cluster size (0.8-1.7 nm in mobility diameters). However, features observed in the 0.8-1 nm ion concentration were in good connection to variations of the ionising capacity. Further, by carefully constraining perturbing variables, a strong dependency of the cluster ion concentration on the ionising capacity was identified, proving the functionality of ionising radiation in air ion production in the lower atmosphere. This relationship, however, was only clearly observed on new particle formation (NPF) days, possibly indicating that charges after being born underwent different processes on NPF days and non-event days and also that the transformation of newly formed charges to cluster ions occurred in a shorter timescale on NPF days than on non-event days.

  10. ‘Natural background’ soil water repellency in conifer forests of the north-western USA: Its prediction and relationship to wildfire occurrence

    NASA Astrophysics Data System (ADS)

    Doerr, S. H.; Woods, S. W.; Martin, D. A.; Casimiro, M.

    2009-06-01

    SummarySoils under a wide range of vegetation types exhibit water repellency following the passage of a fire. This is viewed by many as one of the main causes for accelerated post-fire runoff and soil erosion and it has often been assumed that strong soil water repellency present after wildfire is fire-induced. However, high levels of repellency have also been reported under vegetation types not affected by fire, and the question arises to what degree the water repellency observed at burnt sites actually results from fire. This study aimed at determining 'natural background' water repellency in common coniferous forest types in the north-western USA. Mature or semi-mature coniferous forest sites ( n = 81), which showed no evidence of recent fires and had at least some needle cast cover, were sampled across six states. After careful removal of litter and duff at each site, soil water repellency was examined in situ at the mineral soil surface using the Water Drop Penetration Time (WDPT) method for three sub-sites, followed by collecting near-surface mineral soil layer samples (0-3 cm depth). Following air-drying, samples were further analyzed for repellency using WDPT and contact angle ( θsl) measurements. Amongst other variables examined were dominant tree type, ground vegetation, litter and duff layer depth, slope angle and aspect, elevation, geology, and soil texture, organic carbon content and pH. 'Natural background' water repellency (WDPT > 5 s) was detected in situ and on air-dry samples at 75% of all sites examined irrespective of dominant tree species ( Pinus ponderosa, Pinus contorta, Picea engelmanii and Pseudotsuga menziesii). These findings demonstrate that the soil water repellency commonly observed in these forest types following burning is not necessarily the result of recent fire but can instead be a natural characteristic. The notion of a low background water repellency being typical for long-unburnt conifer forest soils of the north-western USA is therefore incorrect. It follows that, where pre-fire water repellency levels are not known or highly variable, post-fire soil water repellency conditions are an unreliable indicator in classifying soil burn severity. The terrain and soil variables examined showed, overall, no convincing relationship with the repellency levels observed ( R2 < 0.15) except that repellency was limited in soils (i) developed over meta-sedimentary lithology and (ii) with clay contents >4%. This suggests that water repellency levels cannot be predicted with confidence from common terrain or soil variables.

  11. Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna

    2016-07-01

    Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after assimilation of soil moisture and soil temperature at the initial condition which helped to improve the exchange fluxes at lower atmospheric level. Mixing ratio were increased along with elevated theta-e at lower level giving a signature of improvement in LDAS experiment leading to a suitable condition for convection. In the analysis, moisture convergence, mixing ratio and vertical velocities have improved significantly in terms of intensity and time lag. Surface variables like soil moisture, soil temperature, sensible heat flux and latent heat flux have progressed in a possible realistic pattern. Above discussion suggests that assimilation of soil moisture and soil temperature improves the overall simulations significantly.

  12. Assessing the Importance of Incorporating Spatial and Temporal Variability of Soil and Plant Parameters into Local Water Balance Models for Precision Agriculture: Investigations within a California Vineyard

    NASA Astrophysics Data System (ADS)

    Hubbard, S.; Pierce, L.; Grote, K.; Rubin, Y.

    2003-12-01

    Due Due to the high cash crop nature of premium winegrapes, recent research has focused on developing a better understanding of the factors that influence winegrape spatial and temporal variability. Precision grapevine irrigation schemes require consideration of the factors that regulate vineyard water use such as (1) plant parameters, (2) climatic conditions, and (3) water availability in the soil as a function of soil texture. The inability to sample soil and plant parameters accurately, at a dense enough resolution, and over large enough areas has limited previous investigations focused on understanding the influences of soil water and vegetation on water balance at the local field scale. We have acquired several novel field data sets to describe the small scale (decimeters to a hundred meters) spatial variability of soil and plant parameters within a 4 acre field study site at the Robert Mondavi Winery in Napa County, California. At this site, we investigated the potential of ground penetrating radar data (GPR) for providing estimates of near surface water content. Calibration of grids of 900 MHz GPR groundwave data with conventional soil moisture measurements revealed that the GPR volumetric water content estimation approach was valid to within 1 percent accuracy, and that the data grids provided unparalleled density of soil water content over the field site as a function of season. High-resolution airborne multispectral remote sensing data was also collected at the study site, which was converted to normalized difference vegetation index (NDVI) and correlated to leaf area index (LAI) using plant-based measurements within a parallel study. Meteorological information was available from a weather station of the California Irrigation management Information System, located less than a mile from our study area. The measurements were used within a 2-D Vineyard Soil Irrigation Model (VSIM), which can incorporate the spatially variable, high-resolution soil and plant-based information. VSIM, which is based on the concept that equilibrium exists between climate, soils, and LAI, was used to simulate vine water stress, water use, and irrigation requirements during a single year for the site. Using the simple water-balance model with the dense characterization data, we will discuss: (1) the ability to predict vineyard soil water content at the small scales of soil heterogeneity that are observed in nature at the local-scale, (2) the relative importance of plant, climate, and soil information to predictions of the soil water balance at the site, (3) the influence of crop cover in the water balance predictions.

  13. 'Natural background' soil water repellency in conifer forests of the north-western USA: Its prediction and relationship to wildfire occurrence

    USGS Publications Warehouse

    Doerr, S.H.; Woods, S.W.; Martin, D.A.; Casimiro, M.

    2009-01-01

    Soils under a wide range of vegetation types exhibit water repellency following the passage of a fire. This is viewed by many as one of the main causes for accelerated post-fire runoff and soil erosion and it has often been assumed that strong soil water repellency present after wildfire is fire-induced. However, high levels of repellency have also been reported under vegetation types not affected by fire, and the question arises to what degree the water repellency observed at burnt sites actually results from fire. This study aimed at determining 'natural background' water repellency in common coniferous forest types in the north-western USA. Mature or semi-mature coniferous forest sites (n = 81), which showed no evidence of recent fires and had at least some needle cast cover, were sampled across six states. After careful removal of litter and duff at each site, soil water repellency was examined in situ at the mineral soil surface using the Water Drop Penetration Time (WDPT) method for three sub-sites, followed by collecting near-surface mineral soil layer samples (0-3 cm depth). Following air-drying, samples were further analyzed for repellency using WDPT and contact angle (??sl) measurements. Amongst other variables examined were dominant tree type, ground vegetation, litter and duff layer depth, slope angle and aspect, elevation, geology, and soil texture, organic carbon content and pH. 'Natural background' water repellency (WDPT > 5 s) was detected in situ and on air-dry samples at 75% of all sites examined irrespective of dominant tree species (Pinus ponderosa, Pinus contorta, Picea engelmanii and Pseudotsuga menziesii). These findings demonstrate that the soil water repellency commonly observed in these forest types following burning is not necessarily the result of recent fire but can instead be a natural characteristic. The notion of a low background water repellency being typical for long-unburnt conifer forest soils of the north-western USA is therefore incorrect. It follows that, where pre-fire water repellency levels are not known or highly variable, post-fire soil water repellency conditions are an unreliable indicator in classifying soil burn severity. The terrain and soil variables examined showed, overall, no convincing relationship with the repellency levels observed (R2 < 0.15) except that repellency was limited in soils (i) developed over meta-sedimentary lithology and (ii) with clay contents >4%. This suggests that water repellency levels cannot be predicted with confidence from common terrain or soil variables. ?? 2009 Elsevier B.V.

  14. A Regional Modeling Framework of Phosphorus Sources and Transport in Streams of the Southeastern United States

    USGS Publications Warehouse

    Garcia, A.M.; Hoos, A.B.; Terziotti, S.

    2011-01-01

    We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p<0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables - soil organic matter and soil pH - are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity. ?? 2011 American Water Resources Association. This article is a US Government work and is in the public domain in the USA.

  15. Climate and soil attributes determine plant species turnover in global drylands

    PubMed Central

    Maestre, Fernando T.; Gotelli, Nicholas J.; Quero, José L.; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Raveh, Eran; Romão, Roberto L.; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2015-01-01

    Aim Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Methods Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake’s beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R2)), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R2)) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation. PMID:25914437

  16. Quantifying Spatial Variability of Selected Soil Trace Elements and Their Scaling Relationships Using Multifractal Techniques

    PubMed Central

    Zhang, Fasheng; Yin, Guanghua; Wang, Zhenying; McLaughlin, Neil; Geng, Xiaoyuan; Liu, Zuoxin

    2013-01-01

    Multifractal techniques were utilized to quantify the spatial variability of selected soil trace elements and their scaling relationships in a 10.24-ha agricultural field in northeast China. 1024 soil samples were collected from the field and available Fe, Mn, Cu and Zn were measured in each sample. Descriptive results showed that Mn deficiencies were widespread throughout the field while Fe and Zn deficiencies tended to occur in patches. By estimating single multifractal spectra, we found that available Fe, Cu and Zn in the study soils exhibited high spatial variability and the existence of anomalies ([α(q)max−α(q)min]≥0.54), whereas available Mn had a relatively uniform distribution ([α(q)max−α(q)min]≈0.10). The joint multifractal spectra revealed that the strong positive relationships (r≥0.86, P<0.001) among available Fe, Cu and Zn were all valid across a wider range of scales and over the full range of data values, whereas available Mn was weakly related to available Fe and Zn (r≥0.18, P<0.01) but not related to available Cu (r = −0.03, P = 0.40). These results show that the variability and singularities of selected soil trace elements as well as their scaling relationships can be characterized by single and joint multifractal parameters. The findings presented in this study could be extended to predict selected soil trace elements at larger regional scales with the aid of geographic information systems. PMID:23874944

  17. An underestimated role of precipitation frequency in regulating summer soil moisture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka

    2012-04-26

    Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less

  18. Integrated Approach to Inform the New York City Water Supply System Coupling SAR Remote Sensing Observations and the SWAT Watershed Model

    NASA Astrophysics Data System (ADS)

    Tesser, D.; Hoang, L.; McDonald, K. C.

    2017-12-01

    Efforts to improve municipal water supply systems increasingly rely on an ability to elucidate variables that drive hydrologic dynamics within large watersheds. However, fundamental model variables such as precipitation, soil moisture, evapotranspiration, and soil freeze/thaw state remain difficult to measure empirically across large, heterogeneous watersheds. Satellite remote sensing presents a method to validate these spatially and temporally dynamic variables as well as better inform the watershed models that monitor the water supply for many of the planet's most populous urban centers. PALSAR 2 L-band, Sentinel 1 C-band, and SMAP L-band scenes covering the Cannonsville branch of the New York City (NYC) water supply watershed were obtained for the period of March 2015 - October 2017. The SAR data provides information on soil moisture, free/thaw state, seasonal surface inundation, and variable source areas within the study site. Integrating the remote sensing products with watershed model outputs and ground survey data improves the representation of related processes in the Soil and Water Assessment Tool (SWAT) utilized to monitor the NYC water supply. PALSAR 2 supports accurate mapping of the extent of variable source areas while Sentinel 1 presents a method to model the timing and magnitude of snowmelt runoff events. SMAP Active Radar soil moisture product directly validates SWAT outputs at the subbasin level. This blended approach verifies the distribution of soil wetness classes within the watershed that delineate Hydrologic Response Units (HRUs) in the modified SWAT-Hillslope. The research expands the ability to model the NYC water supply source beyond a subset of the watershed while also providing high resolution information across a larger spatial scale. The global availability of these remote sensing products provides a method to capture fundamental hydrology variables in regions where current modeling efforts and in situ data remain limited.

  19. Evapotranspiration measurement and modeling without fitting parameters in high-altitude grasslands

    NASA Astrophysics Data System (ADS)

    Ferraris, Stefano; Previati, Maurizio; Canone, Davide; Dematteis, Niccolò; Boetti, Marco; Balocco, Jacopo; Bechis, Stefano

    2016-04-01

    Mountain grasslands are important, also because one sixth of the world population lives inside watershed dominated by snowmelt. Also, grasslands provide food to both domestic and selvatic animals. The global warming will probably accelerate the hydrological cycle and increase the drought risk. The combination of measurements, modeling and remote sensing can furnish knowledge in such faraway areas (e.g.: Brocca et al., 2013). A better knowledge of water balance can also allow to optimize the irrigation (e.g.: Canone et al., 2015). This work is meant to build a model of water balance in mountain grasslands, ranging between 1500 and 2300 meters asl. The main input is the Digital Terrain Model, which is more reliable in grasslands than both in the woods and in the built environment. It drives the spatial variability of shortwave solar radiation. The other atmospheric forcings are more problematic to estimate, namely air temperature, wind and longwave radiation. Ad hoc routines have been written, in order to interpolate in space the meteorological hourly time variability. The soil hydraulic properties are less variable than in the plains, but the soil depth estimation is still an open issue. The soil vertical variability has been modeled taking into account the main processes: soil evaporation, root uptake, and fractured bedrock percolation. The time variability latent heat flux and soil moisture results have been compared with the data measured in an eddy covariance station. The results are very good, given the fact that the model has no fitting parameters. The space variability results have been compared with the results of a model based on Landsat 7 and 8 data, applied over an area of about 200 square kilometers. The spatial correlation is quite in agreement between the two models. Brocca et al. (2013). "Soil moisture estimation in alpine catchments through modelling and satellite observations". Vadose Zone Journal, 12(3), 10 pp. Canone et al. (2015). "Field measurements based model for surface irrigation efficiency assessment". Agric. Water Manag., 156(1) pp. 30-42

  20. Infiltration Variability in Agricultural Soil Aggregates Caused by Air Slaking

    NASA Astrophysics Data System (ADS)

    Korenkova, L.; Urik, M.

    2018-04-01

    This article reports on variation in infiltration rates of soil aggregates as a result of phenomenon known as air slaking. Air slaking is caused by the compression and subsequent escape of air captured inside soil aggregates during water saturation. Although it has been generally assumed that it occurs mostly when dry aggregates are rapidly wetted, the measurements used for this paper have proved that it takes place even if the wetting is gradual, not just immediate. It is a phenomenon that contributes to an infiltration variability of soils. In measuring the course of water flow through the soil, several small aggregates of five agricultural soils were exposed to distilled water at zero tension in order to characterize their hydraulic properties. Infiltration curves obtained for these aggregates demonstrate the effect of entrapped air on the increase and decrease of infiltration rates. The measurements were performed under various moisture conditions of the A-horizon aggregates using a simple device.

  1. MURASOC, a parametric model to test climate change effects on soil organic carbon. Application to Southern Spain (Mediterranean áreas)

    NASA Astrophysics Data System (ADS)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Brevik, Eric C.; Olaya-Abril, Alfonso; Obregón-Romero, Rafael; Gil Torres, Juan; Recio-Espejo, Jose Manuel

    2016-04-01

    Soil organic carbon (SOC) is formed through the decomposition processes of plant, animal and microbial residues, root exudates, living and dead microorganism and soil biota; and is the main energy source for soil microorganism. Consequently, a strong feedback is stablished among a large number of components in the complex biota-abiota network. Likewise, SOC influences in physical, chemical and biological soil properties such as temperature, cationic exchange capacity and plant growth (Parras-Alcántara et al., 2015). Therefore, to improve our knowledge about what soil variables are more responsible of SOC content would be extremely useful in soils characterization. In many studies, independent variables were related to SOC, however, the possible combined effects of different independent variables and their ability to model SOC have not been considered. On the other hand, over the last few decades interest in soil organic carbon (SOC) has increased due to its role in C sequestration in terrestrial ecosystems, which could contribute to decreasing atmospheric CO2 levels (Lozano-García et al., 2016; Fernández-Romero et al., 2016; Parras-Alcántara and Lozano-García 2014). Then, attempts to model SOC content have multiplied over this time. In this study, 612 soil profiles obtained from the Natura 2000 network of protected areas in the Sierra Morena mountains, (Spain) were used with the following objectives: i) To quantify SOC content according to different variables (analytical, morphological, genetic and climatic) in order to define the variables that are most closely related to SOC content; ii) To model the Current SOC content for a geographic area (Sierra Morena - Spain); iii) To model SOC suitability-habitat under a climate change scenario; iv) To extrapolate the SOC content and distribution model to the wider Andalusia region, showing the areas that have a high probability to experience an increase in their SOC content in coming years; and v) To propose effective management in Andalusia's soils according to land use and land cover in protected areas of Sierra Morena and the entire Andalusia region. To this aim, 24 independent variables were obtained and, using a correlation and a multiple linear regression analysis (MURASOC), the effects of these variables on the correlation with SOC content were considered. Indeed, predictor analysis was carried out with the best parameters determined with the regression analysis to be used in a climatic change scenario as predictor variables. The main conclusions of this work could be summarize as: i) Direct relationships between environmental variables and SOC content are similar to described by other authors; ii) In a multiple regression analysis, a poor relationship was observed between the analyzed variables and the SOC content; iii) When SOC content is under study, soil organic fraction (and activity) must be taken into consideration; iv) Similar to described by other authors in living entities under a climatic change scenario, a tend to migration of SOC >2% could be observed in latitude and altitude (it tend to disappear in lower altitudes and southern-oriented slopes; and v) The SOC content will decrease in Sierra Morena under a climatic change scenario, but it would increase in Andalusia under ideal conditions. The information generated in this study might support new strategies in decision-making to complete analyses started long ago, and extend it with new biological and biochemical strategies, as for example, identification of microorganism and relationships among them, with the terrestrial ecosystem and with the SOC synthesis and content. Once that is done, it will provide important information for soil management and climate adaptation strategies. REFERENCES Fernández-Romero, M.L., Parras-Alcántara, L., Lozano-García, B., Clark, J.M., Collins, C.D., 2016. Soil quality assessment based on carbon stratification index in different olive grove management practices in Mediterranean areas. Catena 137; 449-458. http://dx.doi.org/10.1016/j.catena.2015.10.019. Lozano-García, B., Parras-Alcántara, L., Brevik, E.C., 2016. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Science of the Total Environment 544; 963-970. http://dx.doi.org/10.1016/j.scitotenv.2015.12.022. Parras-Alcántara, L., Lozano-García, B., 2014. Conventional tillage versus organic farming in relation to soil organic carbon stock in olive groves in Mediterranean rangelands (southern Spain). Solid Earth, 5; 299-311. http://dx.doi.org/10.5194/se-5-299-2014. Parras-Alcántara, L., Lozano-García, B., Brevik, E.C., Cerdá, A., 2015. Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. Journal of Environmental Management 155; 219-228. http://dx.doi.org/10.1016/j.jenvman.2015.03.039

  2. Influence of soil thickness on stand characteristics in a Sierra Nevada mixed-conifer forest

    Treesearch

    Marc D. Meyer; Malcolm P. North; Andrew N. Gray; Harold S. J. Zald

    2007-01-01

    Soil thickness can be an important factor influencing vegetation, yet few spatially explicit studies have examined soil horizon thickness and vegetation composition in summer drought forests. We compared seismic and soil penetration measurements of combined A + C and Cr horizon thickness, soil moisture and temperature, and stand variables in a contiguous 4-ha mixed-...

  3. Semi-Quantitative Evaluation of Secondary Carbonates via Portable X-ray Fluorescence Spectrometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Somsubhra; Weindorf, David; Weindorf, Camille; Duda, Bogdan; Pennington, Sarah; Ortiz, Rebekah

    2017-04-01

    Secondary calcium carbonate commonly occurs in subsoils of semi-arid soils worldwide. In US Soil Taxonomy, such horizons are frequently described as Bk, Bkk, Bkm, Bkkm, or Ck horizons at variable stages of development. Specifically, the Soil Survey Staff uses a qualitative scale of one through six to indicate differential developmental stages. However, considerable disagreement exists even among experienced soil scientists. Evaluating 75 soil samples from across four US states, a portable X-ray fluorescence (PXRF) spectrometer was used to quantify the total soil Ca content and compare it to average developmental stage scores as determined by a panel of Soil Survey Staff personnel. Samples were evaluated both as intact aggregates as well as ground (<2 mm), homogenized powders. PXRF readings of total soil Ca concentration steadily increased under both conditions as developmental stage progressed. However, minimal difference was observed between stage five and six carbonate accumulation. Stage three showed the widest variability in total soil Ca. Given than PXRF cannot distinguish between primary and secondary CaCO3 in soils, interpretation by the analyst remains essential. Nonetheless, PXRF provides an important tool for assessing carbonate laden subsoils providing elemental differentiation beyond that perceived by the human eye.

  4. Spatial variability of total carbon and soil organic carbon in agricultural soils in Baranja region, Croatia

    NASA Astrophysics Data System (ADS)

    Bogunović, Igor; Trevisani, Sebastiano; Pereira, Paulo; Šeput, Miranda

    2017-04-01

    Climate change is expected to have an important influence on the crop production in agricultural regions. Soil carbon represents an important soil property that contributes to mitigate the negative influence of climate change on intensive cropped areas. Based on 5063 soil samples sampled from soil top layer (0-30 cm) we studied the spatial distribution of total carbon (TC) and soil organic carbon (SOC) content in various soil types (Anthrosols, Cambisols, Chernozems, Fluvisols, Gleysols, Luvisols) in Baranja region, Croatia. TC concentrations ranged from 2.10 to 66.15 mg/kg (with a mean of 16.31 mg/kg). SOC concentrations ranged from 1.86 to 58.00 mg/kg (with a mean of 13.35 mg/kg). TC and SOC showed moderate heterogeneity with coefficient of variation (CV) of 51.3% and 33.8%, respectively. Average concentrations of soil TC vary in function of soil types in the following decreasing order: Anthrosols (20.9 mg/kg) > Gleysols (19.3 mg/kg) > Fluvisols (15.6 mg/kg) > Chernozems (14.2 mg/kg) > Luvisols (12.6 mg/kg) > Cambisols (11.1 mg/kg), while SOC concentrations follow next order: Gleysols (15.4 mg/kg) > Fluvisols (13.2 mg/kg) = Anthrosols (13.2 mg/kg) > Chernozems (12.6 mg/kg) > Luvisols (11.4 mg/kg) > Cambisols (10.5 mg/kg). Performed geostatistical analysis of TC and SOC; both the experimental variograms as well as the interpolated maps reveal quite different spatial patterns of the two studied soil properties. The analysis of the spatial variability and of the spatial patterns of the produced maps show that SOC is likely influenced by antrophic processes. Spatial variability of SOC indicates soil health deterioration on an important significant portion of the studied area; this suggests the need for future adoption of environmentally friendly soil management in the Baranja region. Regional maps of TC and SOC provide quantitative information for regional planning and environmental monitoring and protection purposes.

  5. Effect of different crops on soil organic matter and biological activity in Oxisols under three different crops

    NASA Astrophysics Data System (ADS)

    Toledo, Diana Marcela; Arzuaga, Silvia; Dalurzo, Humberto; Zornoza, Raúl; Vazquez, Sara

    2015-04-01

    The objective of this work was to evaluate changes in soil organic matter in Oxisols under different crops compared to native rainforest, and to assess if acid phosphatase activity (APA) could be a good indicator for SOC changes and soil quality. The experimental design consisted of four completely randomized blocks with four treatments: subtropical rainforest (F); yerba mate crop (I) (Ilex paraguariensis SH.); citrus crop (C) (Citrus unshiu Marc); and tobacco crop (T) (Nicotiana tabacum L.). Soil samples were taken at 0-10; 10-20 and 20-30 cm depths. The variables measured were soil organic carbon (SOC), APA, clay content, pH, total nitrogen (Nt), available phosphorus (P) and CO2 emissions. All data were analyzed by ANOVA to assess the effects of land-use changes. The treatment means were compared through Duncan's multiple range tests (p<0.05). The relationship between variables was determined with a simple correlation analysis and with a multiple linear regression analysis through the stepwise method. These soils showed an acid reaction and their clay content was over 650 g kg-1 for the three depths. SOC and N contents were higher in native soils, intermediate for the citrus crop, and lower under both tobacco and yerba mate crops. CO2 emissions were higher in the rainforest (47.32 kg ha-1 of CO2) than in cultivated soils, which indicates that biological activity is enhanced in rainforest soils where substrates for soil biota and fauna are more readily available. The variability of 76% in APA was explained by total nitrogen, which is closely related to soil organic matter, and by available P. Conversion of subtropical rainforests into agricultural lands reduced SOC content and acid phosphatase activity, thereby lowering soil quality. In this study, acid phosphatase activity proved to be a sensitive indicator to detect changes from pristine to cropped soils, but it failed to distinguish differences among crop systems.

  6. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    USGS Publications Warehouse

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  7. Reproducibility of up-flow column percolation tests for contaminated soils

    PubMed Central

    Naka, Angelica; Sakanakura, Hirofumi; Kurosawa, Akihiko; Inui, Toru; Takeo, Miyuki; Inoba, Seiji; Watanabe, Yasutaka; Fujikawa, Takuro; Miura, Toshihiko; Miyaguchi, Shinji; Nakajou, Kunihide; Sumikura, Mitsuhiro; Ito, Kenichi; Tamoto, Shuichi; Tatsuhara, Takeshi; Chida, Tomoyuki; Hirata, Kei; Ohori, Ken; Someya, Masayuki; Katoh, Masahiko; Umino, Madoka; Negishi, Masanori; Ito, Keijiro; Kojima, Junichi; Ogawa, Shohei

    2017-01-01

    Up-flow column percolation tests are used at laboratory scale to assess the leaching behavior of hazardous substance from contaminated soils in a specific condition as a function of time. Monitoring the quality of these test results inter or within laboratory is crucial, especially if used for Environment-related legal policy or for routine testing purposes. We tested three different sandy loam type soils (Soils I, II and III) to determine the reproducibility (variability inter laboratory) of test results and to evaluate the difference in the test results within laboratory. Up-flow column percolation tests were performed following the procedure described in the ISO/TS 21268–3. This procedure consists of percolating solution (calcium chloride 1 mM) from bottom to top at a flow rate of 12 mL/h through softly compacted soil contained in a column of 5 cm diameter and 30 ± 5 cm height. Eluate samples were collected at liquid-to-solid ratio of 0.1, 0.2, 0.5, 1, 2, 5 and 10 L/kg and analyzed for quantification of the target elements (Cu, As, Se, Cl, Ca, F, Mg, DOC and B in this research). For Soil I, 17 institutions in Japan joined this validation test. The up-flow column experiments were conducted in duplicate, after 48 h of equilibration time and at a flow rate of 12 mL/h. Column percolation test results from Soils II and III were used to evaluate the difference in test results from the experiments conducted in duplicate in a single laboratory, after 16 h of equilibration time and at a flow rate of 36 mL/h. Overall results showed good reproducibility (expressed in terms of the coefficient of variation, CV, calculated by dividing the standard deviation by the mean), as the CV was lower than 30% in more than 90% of the test results associated with Soil I. Moreover, low variability (expressed in terms of difference between the two test results divided by the mean) was observed in the test results related to Soils II and III, with a variability lower than 30% in more than 88% of the cases for Soil II and in more than 96% of the cases for Soil III. We also discussed the possible factors that affect the reproducibility and variability in the test results from the up-flow column percolation tests. The low variability inter and within laboratory obtained in this research indicates that the ISO/TS 21268–3 can be successfully upgraded to a fully validated ISO standard. PMID:28582458

  8. Connecting with Teachers and Students through K-12 Outreach Activities

    NASA Astrophysics Data System (ADS)

    Chapman, Susan; Lindbo, David; Robinson, Clay

    2014-05-01

    The Soil Science Society of America has invested heavily in a significant outreach effort to reach teachers and students in the primary/secondary grades (K-12 grades in US/Canada) to raise awareness of soil as a critical resource. The SSSA K-12 committee has been charged with increasing interest and awareness of soil science as a scientific pursuit and career choice, and providing resources that integrate more information on soil science into biology, chemistry, physics, and earth science areas taught at multiple grade levels. Activities center around five main areas: assessment and standards, learning modules/lesson plans, website development, and books and materials, and partnership activities. Members (professionals and students) of SSSA are involved through committee participation, local events, materials review, and project development.

  9. Soil Moisture Project Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Gilbert, R. H. (Editor)

    1980-01-01

    Approaches planned or being developed for measuring and modeling soil moisture parameters are discussed. Topics cover analysis of spatial variability of soil moisture as a function of terrain; the value of soil moisture information in developing stream flow data; energy/scene interactions; applications of satellite data; verifying soil water budget models; soil water profile/soil temperature profile models; soil moisture sensitivity analysis; combinations of the thermal model and microwave; determing planetary roughness and field roughness; how crust or a soil layer effects microwave return; truck radar; and truck/aircraft radar comparison.

  10. Forty years experience in developing and using rainfall simulators under tropical and Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso; Nacci, Silvana

    2010-05-01

    Rainfall simulation has been used as a practical tool for evaluating the interaction of falling water drops on the soil surface, to measure both stability of soil aggregates to drop impact and water infiltration rates. In both cases it is tried to simulate the effects of natural rainfall, which usually occurs at very different, variable and erratic rates and intensities. One of the main arguments against the use of rainfall simulators is the difficulty to reproduce the size, final velocity and kinetic energy of the drops in natural rainfall. Since the early 70´s we have been developing and using different kinds of rainfall simulators, both at laboratory and field levels, and under tropical and Mediterranean soil and climate conditions, in flat and sloping lands. They have been mainly used to evaluate the relative effects of different land use and management, including different cropping systems, tillage practices, surface soil conditioning, surface covers, etc. on soil water infiltration, on runoff and on erosion. Our experience is that in any case it is impossible to reproduce the variable size distribution and terminal velocity of raindrops, and the variable changes in intensity of natural storms, under a particular climate condition. In spite of this, with the use of rainfall simulators it is possible to obtain very good information, which if it is properly interpreted in relation to each particular condition (land and crop management, rainfall characteristics, measurement conditions, etc.) may be used as one of the parameters for deducing and modelling soil water balance and soil moisture regime under different land use and management and variable climate conditions. Due to the possibility for a better control of the intensity of simulated rainfall and of the size of water drops, and the possibility to make more repeated measurements under very variable soil and land conditions, both in the laboratory and specially in the field, the better results have been obtained with small size 500-1000 cm2, easily dismantled, drop former simulators, than with larger, nozzle, or more sophisticated equipments. In this contribution there are presented some of the rainfall simulators developed and used by the main author, and some of the results obtained in different studies of practical problems under tropical and Mediterranean conditions. References Pla, I.,G.Campero, y R.Useche.1974.Physical degradación of agricultural soils in the Western Plains of Venezuela. "Trans.10th Int.Cong.Soil.Sci.Soc". 1:231-240. .Moscú Pla, I. 1975.Effects of bitumen emulsion and polyacrilamide on some physical properties of Venezuelan soils. En "Soil Sci. Soc. Am. Special Publication"• 7. 35-46. Madison. Wisconsin . (USA). Pla, I. 1977.Aggregate size and erosion control on sloping land treated with hydrophobic bitumen emulsion."Soil Conservation and Management in the Humid Tropics".109-115. John Wiley & Sons. Pla, I.1981.Simuladores de lluvia para el estudio de relaciones suelo-agua bajo agricultura de secano en los trópicos. Rev. Fac. Agron. XII(1-2):81-93.Maracay (Venezuela) Pla, I. 1986.A routine laboratory index to predict the effects of soil sealing on soil and water conservation. En "Assesment of Soil Surface Sealing and Crusting". 154-162.State Univ. of Ghent.Gante (Bélgica Pla, I., M.C. Ramos, S. Nacci, F. Fonseca y X. Abreu. 2005. Soil moisture regime in dryland vineyards of Catalunya (Spain) as influenced by climate, soil and land management. "Integrated Soil and Water Management for Orchard Development". FAO Land and Water Bulletin 10. 41-49. Roma (Italia).

  11. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties.

    PubMed

    Bending, Gary D; Lincoln, Suzanne D; Edmondson, Rodney N

    2006-01-01

    The extent of within field variability in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican, and the role of intrinsic soil factors and technical errors in contributing to the variability, was investigated in sites on sandy-loam and clay-loam. At each site, 40 topsoil samples were taken from a 160 x 60 m area, and pesticides applied in the laboratory. Time to 25% dissipation (DT25) ranged between 13 and 61 weeks for diflufenican, 5.6 and 17.2 weeks for azoxystrobin, and 0.3 and 12.5 weeks for isoproturon. Variability in DT25 was higher in the sandy-loam in which there was also greatest variability in soil chemical and microbial properties. Technical error associated with pesticide extraction, analysis and lack of model fit during derivation of DT25 accounted for between 5.3 and 25.8% of the variability for isoproturon and azoxystrobin, but could account for almost all the variability for diflufenican. Azoxystrobin DT25, sorption and pH were significantly correlated.

  12. Is CH4 consumption by soils controlled by physics or biology? Results from a study of plot-scale variability of greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Paulus, Sinikka; Nicolai, Clara; Nauer, Philipp

    2017-04-01

    Soil-atmosphere fluxes of trace gases vary on different spatial scales, between landscapes and ecosystems down to the plot scale within apparently homogenous sites. The production and consumption of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) underlie different spatial and temporal changes, und thus, their interrelation is difficult to unravel. Small-scale variability in soil properties is well-known from soil surveys, affecting theoretically water availability for plants, soil aeration, vegetation, the local photosynthesis rate, and, eventually, greenhouse gas fluxes. We investigated the small scale variability of greenhouse gas fluxes in a homogenous Scots Pine stand in a former riparian flood plain. Soil-atmosphere fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were carried out at 60 points on a 250 m2 plot with strata of diverse soil substrates and understory vegetation. Gas flux measurements were combined with soil physical lab measurements, and a soil vegetation survey. The soil was a source of CO2 and a sink for CH4 and N2O. No correlations between the fluxes and only weak correlations between the fluxes and soil physical factors were observed. CH4 and CO2 fluxes were significantly different for the soil-vegetation strata. Separating the dataset into the different soil-vegetation strata showed that CH4 consumption increased significantly with soil gas diffusivity and soil respiration. Methane consumption in the silt stratum was higher at a given soil gas diffusivity than in the sand stratum, indicating a higher methanotrophic microbe population and thus better habitats in silt. CH4 consumption increased with soil respiration in all strata, so that we speculate that the rhizosphere and decomposing organic litter (as origin of most of the soil respiration) facilitate a preferred habitat of methanotrophic microbes. The patterns of N2O consumption were more complex, but consumption seemed to be limited at locations with higher soil respiration. Thus, we conclude that soil texture has a significant effect on greenhouse gas fluxes on the plot scale and that the fluxes of CO2, CH4 and N2O are linked. Acknowledgement This research was financially supported by the project DFG (MA 5826/2-1).

  13. Cost accounting in a surgical unit in a teaching hospital--a pilot study.

    PubMed

    Malalasekera, A P; Ariyaratne, M H; Fernando, R; Perera, D; Deen, K I

    2003-09-01

    Economic constraints remain one of the major limitations on the quality of health care even in industrialised countries. Improvement of quality will require optimising facilities within available resources. Our objective was to determine costs of surgery and to identify areas where cost reduction is possible. 80 patients undergoing routine major and intermediate surgery during a period of 6 months were selected at random. All consumables used and procedures carried out were documented. A unit cost was assigned to each of these. Costing was based on 3 main categories: preoperative (investigations, blood product related costs), operative (anaesthetic charges, consumables and theatre charges) and post-operative (investigations, consumables, hospital stay). Theatre charges included two components: fixed (consumables) and variable (dependent on time per operation). The indirect costs (e.g. administration costs, 'hotel' costs), accounted for 30%, of the total and were lower than similar costs in industrialised nations. The largest contributory factors (median, range) towards total cost were, basic hospital charges (30%; 15 to 63%); theatre charges fixed (23%; 6 to 35%) and variable (14%; 8 to 27%); and anaesthetic charges (15%; 1 to 36%). Cost reduction in patients undergoing surgery should focus on decreasing hospital stay, operating theatre time and anaesthetic expenditure. Although definite measures can be suggested from the study, further studies on these variables are necessary to optimise cost effectiveness of surgical units.

  14. Investigating the relationship between a soils classification and the spatial parameters of a conceptual catchment-scale hydrological model

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.; Lilly, A.

    2001-10-01

    There are now many examples of hydrological models that utilise the capabilities of Geographic Information Systems to generate spatially distributed predictions of behaviour. However, the spatial variability of hydrological parameters relating to distributions of soils and vegetation can be hard to establish. In this paper, the relationship between a soil hydrological classification Hydrology of Soil Types (HOST) and the spatial parameters of a conceptual catchment-scale model is investigated. A procedure involving inverse modelling using Monte-Carlo simulations on two catchments is developed to identify relative values for soil related parameters of the DIY model. The relative values determine the internal variability of hydrological processes as a function of the soil type. For three out of the four soil parameters studied, the variability between HOST classes was found to be consistent across two catchments when tested independently. Problems in identifying values for the fourth 'fast response distance' parameter have highlighted a potential limitation with the present structure of the model. The present assumption that this parameter can be related simply to soil type rather than topography appears to be inadequate. With the exclusion of this parameter, calibrated parameter sets from one catchment can be converted into equivalent parameter sets for the alternate catchment on the basis of their HOST distributions, to give a reasonable simulation of flow. Following further testing on different catchments, and modifications to the definition of the fast response distance parameter, the technique provides a methodology whereby it is possible to directly derive spatial soil parameters for new catchments.

  15. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  16. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble

    USGS Publications Warehouse

    Lorenz, Ruth; Argueso, Daniel; Donat, Markus G.; Pitman, Andrew J.; van den Hurk, Bart; Berg, Alexis; Lawrence, David M.; Cheruy, Frederique; Ducharne, Agnes; Hagemann, Stefan; Meier, Arndt; Milly, Paul C.D.; Seneviratne, Sonia I

    2016-01-01

    We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This protocol enables separate examinations of the influences of soil moisture variability and trends on the intensity, frequency, and duration of climate extremes by the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) emission scenario. Removing soil moisture variability significantly reduces temperature extremes over most continental surfaces, while wet precipitation extremes are enhanced in the tropics. Projected drying trends in soil moisture lead to increases in intensity, frequency, and duration of temperature extremes by the end of the 21st century. Wet precipitation extremes are decreased in the tropics with soil moisture trends in the simulations, while dry extremes are enhanced in some regions, in particular the Mediterranean and Australia. However, the ensemble results mask considerable differences in the soil moisture trends simulated by the six climate models. We find that the large differences between the models in soil moisture trends, which are related to an unknown combination of differences in atmospheric forcing (precipitation, net radiation), flux partitioning at the land surface, and how soil moisture is parameterized, imply considerable uncertainty in future changes in climate extremes.

  17. Toward more realistic projections of soil carbon dynamics by Earth system models

    USGS Publications Warehouse

    Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, A. David; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.

    2016-01-01

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.

  18. Trace Gases - A Warning Signs of Impending Major Seismic Activity

    NASA Astrophysics Data System (ADS)

    Baijnath, J.; Freund, F.; Li, J.

    2013-12-01

    Seismological models can predict future earthquakes only with wide uncertainty windows, typically on the order of decades to centuries. To improve short-term earthquake forecasts, it is essential to understand the non-seismic processes that take place in Earth's crust during the build-up of tectonic stresses. Days prior to the January 2001 M 7.6 Gujurat earthquake in India, there was a significant increase in the regional CO concentration, reaching 240 ppbv over a 100 squared kilometers, as derived from data of the MOPITT sensor onboard the NASA Terra satellite. A possible explanation for these observations is that when stresses in Earth's crust are building, positive hole charge carriers are activated, which are highly mobile and spread from deep below the earth to the surface. Positive holes act as highly oxidizing oxygen radicals, oxidizing water to hydrogen peroxide. It is hypothesized that, as positive hole charge carriers arrive from below and traverse the soil, they are expected to oxidize soil organics, converting aliphatics to ketones, formaldehyde, CO and CO2. This is tested by using a closed chamber with a slab of gabbro rock. Ultrasound generated by a pair of 50 W, 40 kHz piezoelectric transducers, applied to one end of the gabbro slab was used to activate the positive holes. This created a high concentration of positive holes at the end of the rock that the electrical conductivity through the rock increased more than 1000-fold, while the increase in conductivity through the other end of the gabbro slab was on the order of 100-fold. On the other end of the slab, rock dust and various soils were placed. A stainless steel mesh was also placed over the soil and dust to allow a current to flow through the granular material. When the far end of the slab was subjected to the ultrasound, currents as large as 250 nA were recorded flowing through the length of the gabbro slab and through the dust/soil pile. Dry dust/soil and dust samples impregnated with isopropanol and with a highly reduced butyn containing triple-bonded C and an aromatic ring were used. Multiple tests were conducted to study the interaction of stressed-activated positive hole charge carriers with organic versus inorganic and dry versus moist materials. This study suggests that the appearance of certain trace gases may be useful as a pre-earthquake indicator.

  19. Proximal soil sensing: global perspective

    USDA-ARS?s Scientific Manuscript database

    As a result of a number of naturally occurring processes and cultural practices, the characteristics of soils demonstrate substantial spatial heterogeneity that affects current land use. From infrastructure development to agriculture, spatial variability in soils must be taken into account in order ...

  20. Integrating soil ecological knowledge into restoration management

    Treesearch

    M.A. Callaham

    2008-01-01

    The variability in the type of ecosystem degradation andthe specificity of restoration goals can challenge restorationists’ability to generalize about approaches that leadto restoration success. The discipline of soil ecology, whichemphasizes both soil organisms and ecosystem processes,

  1. Interannual Variability in Soil Trace Gas (CO2, N2O, NO) Fluxes and Analysis of Controllers

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Interannual variability in flux rates of biogenic trace gases must be quantified in order to understand the differences between short-term trends and actual long-term change in biosphere-atmosphere interactions. We simulated interannual patterns (1983-1988) of global trace gas fluxes from soils using the NASA Ames model version of CASA (Carnegie-Ames-Stanford Approach) in a transient simulation mode. This ecosystem model has been recalibrated for simulations driven by satellite vegetation index data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. The predicted interannual pattern of soil heterotropic CO2 emissions indicates that relatively large increases in global carbon flux from soils occurred about three years following the strong El Nino Southern Oscillation (ENSO) event of 1983. Results for the years 1986 and 1987 showed an annual increment of +1 Pg (1015 g) C-CO2 emitted from soils, which tended to dampen the estimated global increase in net ecosystem production with about a two year lag period relative to plant carbon fixation. Zonal discrimination of model results implies that 80-90 percent of the yearly positive increments in soil CO2 emission during 1986-87 were attributable to soil organic matter decomposition in the low-latitudes (between 30 N and 30 S). Soils of the northern middle-latitude zone (between 30 N and 60 N) accounted for the residual of these annual increments. Total annual emissions of nitrogen trace gases (N2O and NO) from soils were estimated to vary from 2-4 percent over the time period modeled, a level of variability which is consistent with predicted interannual fluctuations in global soil CO2 fluxes. Interannual variability of precipitation in tropical and subtropical zones (30 N to 20 S appeared to drive the dynamic inverse relationship between higher annual emissions of NO versus emissions of N2O. Global mean emission rates from natural (heterotrophic) soil sources over the period modeled (1983-1988) were estimated at 57.1 Pg C-CO2yr-1, 9.8Tg (1012 g) N-NO yr-1, and 9.7 Tg N-N2O yr-1. Chemical fertilizer contributions to global soil N gas fluxes were estimated at between 1.3 to 7.3 Tg N-NO yr-1, and 1.2 to 4.0 Tg N-N2O yr-1.

  2. Teaching About the Links Between Soils and Climate: An International Year of Soil Outreach by the Soil Science Society of America

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2015-04-01

    Soil scientists are well aware of the intimate links that exist between soils and climate, but the same is not always true of the broader population. In an attempt to help address this, the Soil Science Society of America (SSSA) has designated the theme "Soils and Climate" for the month of November, 2015 as part of the SSSA International Year of Soil (IYS) celebration. The topic has been further subdivided into three subthemes: 1) carbon sequestration and greenhouse gases, 2) Soils and past environments, and 3) Desertification and drought. Each subtheme outreach has two parts 1) lesson plans that K-12 educators can use in their classrooms, and 2) materials that a trained soil scientist can present to the general public. Activities developed for the theme include classroom activities to accompany an online game that students can play to see how farm management choices influence greenhouse gas emissions, questions to go with a vermicomposting activity, and discussion session questions to go with a movie on the USA Dust Bowl. All materials are available online free of charge. The Soils and Climate materials can be found at https://www.soils.org/iys/12-month-resources/november; all of the SSSA IYS materials can be found at https://www.soils.org/iys.

  3. Assessing spatial variability of soil properties and ions associated to salinity using the multifractal approach

    NASA Astrophysics Data System (ADS)

    Machado Siqueira, Glécio; Soares da Silva, Jucicleia; Farías França e Silva, Ênio; Lado, Marcos; Paz-González, Antonio; Vidal-Vázquez, Eva

    2017-04-01

    The lowlands coastal region of the state of Pernambuco, Northeast of Brazil, was formerly covered by humid Atlantic forest (Mata Atlântica) and then has been increasingly devoted to Sugar cane production. Because the water table is near to the soil surface salinity can occur in this area. The objective of this study was to assess the scale dependence of parameters associated to soil salinity and ions responsible for salination using multifractal analysis. The field work was conducted at an experimental field located in the Goiania municipality, Pernambuco, Brazil. This site is located 10 km east from the Atlantic coast. The field has been devoted to monoculture of sugarcane (Saccharum of?cinarum sp.) since 25 years. The climate of the region is tropical, with average annual temperature of 24°C and 1800 mm of precipitation per year. Soil was sampled every 3 m at 128 locations across a 384 m transect at a depth of 0-20 cm. The soil samples were analysed for pH, electrical conductivity (EC), Na+, K+, Ca2+, Mg2+, Cl- and SO4-2; also sodium adsorption ratio (SAR) was calculated. The spatial distributions of all the studied variables associated to soil salinity exhibited multifractal behaviour. Although all the variables studied exhibited a very strong power law scaling, different degrees of multifractality, assessed by differences in the amplitude and several selected parameters of the generalized dimension and singularity spectrum curves, have been appreciated. The multifractal approach gives a good description of the patterns of spatial variability of properties and ions describing soil salinity, and allows discriminating differences between them.

  4. Regional co-variability of spatial and temporal soil moisture-precipitation coupling in North Africa: an observational perspective

    NASA Astrophysics Data System (ADS)

    Petrova, Irina Y.; van Heerwaarden, Chiel C.; Hohenegger, Cathy; Guichard, Françoise

    2018-06-01

    The magnitude and sign of soil moisture-precipitation coupling (SMPC) is investigated using a probability-based approach and 10 years of daily microwave satellite data across North Africa at a 1° horizontal scale. Specifically, the co-existence and co-variability of spatial (i.e. using soil moisture gradients) and temporal (i.e. using soil moisture anomaly) soil moisture effects on afternoon rainfall is explored. The analysis shows that in the semi-arid environment of the Sahel, the negative spatial and the negative temporal coupling relationships do not only co-exist, but are also dependent on one another. Hence, if afternoon rain falls over temporally drier soils, it is likely to be surrounded by a wetter environment. Two regions are identified as SMPC hot spots. These are the south-western part of the domain (7-15° N, 10° W-7° E), with the most robust negative SMPC signal, and the South Sudanese region (5-13° N, 24-34° E). The sign and significance of the coupling in the latter region is found to be largely modulated by the presence of wetlands and is susceptible to the number of long-lived propagating convective systems. The presence of wetlands and an irrigated land area is found to account for about 30 % of strong and significant spatial SMPC in the North African domain. This study provides the first insight into regional variability of SMPC in North Africa, and supports the potential relevance of mechanisms associated with enhanced sensible heat flux and mesoscale variability in surface soil moisture for deep convection development.

  5. Trends in soil moisture and real evapotranspiration in Douro River for the period 1980-2010

    NASA Astrophysics Data System (ADS)

    García-Valdecasas-Ojeda, Matilde; de Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    This study analyzes the evolution of different hydrological variables, such as soil moisture and real evapotranspiration, for the last 30 years, in the Douro Basin, the most extensive basin in the Iberian Peninsula. The different components of the real evaporation, connected to the soil moisture content, can be important when analyzing the intensity of droughts and heat waves, and particularly relevant for the study of the climate change impacts. The real evapotranspiration and soil moisture data are provided by simulations obtained using the Variable Infiltration Capacity (VIC) hydrological model. This model is a large-scale hydrologic model and allows estimates of different variables in the hydrological system of a basin. Land surface is modeled as a grid of large and uniform cells with sub-grid heterogeneity (e.g. land cover), while water influx is local, only depending from the interaction between grid cells and local atmosphere environment. Observational data of temperature and precipitation from Spain02 dataset are used as input variables for VIC model. The simulations have a spatial resolution of about 9 km, and the analysis is carried out on a seasonal time-scale. Additionally, we compare these results with those obtained from a dynamical downscaling driven by ERA-Interim data using the Weather Research and Forecasting (WRF) model, with the same spatial resolution. The results obtained from Spain02 data show a decrease in soil moisture at different parts of the basin during spring and summer, meanwhile soil moisture seems to be increased for autumn. No significant changes are found for real evapotranspiration. Keywords: real evapotranspiration, soil moisture, Douro Basin, trends, VIC, WRF. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  6. Airborne radionuclides in the proglacial environment as indicators of sources and transfers of soil material.

    PubMed

    Łokas, Edyta; Wachniew, Przemysław; Jodłowski, Paweł; Gąsiorek, Michał

    2017-11-01

    A survey of artificial ( 137 Cs, 238 Pu, 239+240 Pu, 241 Am) and natural ( 226 Ra, 232 Th, 40 K, 210 Pb) radioactive isotopes in proglacial soils of an Arctic glacier have revealed high spatial variability of activity concentrations and inventories of the airborne radionuclides. Soil column 137 Cs inventories range from below the detection limit to nearly 120 kBq m -2 , this value significantly exceeding direct atmospheric deposition. This variability may result from the mixing of materials characterised by different contents of airborne radionuclides. The highest activity concentrations observed in the proglacial soils may result from the deposition of cryoconites, which have been shown to accumulate airborne radionuclides on the surface of glaciers. The role of cryoconites in radionuclide accumulation is supported by the concordant enrichment of the naturally occurring airborne 210 Pb in proglacial soil cores showing elevated levels of artificial radionuclides. The lithogenic radionuclides show less variability than the airborne radionuclides because their activity concentrations are controlled only by the mixing of material derived from the weathering of different parent rocks. Soil properties vary little within and between the profiles and there is no unequivocal relationship between them and the radionuclide contents. The inventories reflect the pathways and time variable inputs of soil material to particular sites of the proglacial zone. Lack of the airborne radionuclides reflects no deposition of material exposed to the atmosphere after the 1950s or its removal by erosion. Inventories above the direct atmospheric deposition indicate secondary deposition of radionuclide-bearing material. Very high inventories indicate sites where transport pathways of cryoconite material terminated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Spatial Variability of Grapevine Bud Burst Percentage and Its Association with Soil Properties at Field Scale

    PubMed Central

    Li, Tao; Hao, Xinmei; Kang, Shaozhong

    2016-01-01

    There is a growing interest in precision viticulture with the development of global positioning system and geographical information system technologies. Limited information is available on spatial variation of bud behavior and its possible association with soil properties. The objective of this study was to investigate spatial variability of bud burst percentage and its association with soil properties based on 2-year experiments at a vineyard of arid northwest China. Geostatistical approach was used to describe the spatial variation in bud burst percentage within the vineyard. Partial least square regressions (PLSRs) of bud burst percentage with soil properties were used to evaluate the contribution of soil properties to overall spatial variability in bud burst percentage for the high, medium and low bud burst percentage groups. Within the vineyard, the coefficient of variation (CV) of bud burst percentage was 20% and 15% for 2012 and 2013 respectively. Bud burst percentage within the vineyard showed moderate spatial variability, and the overall spatial pattern of bud burst percentage was similar between the two years. Soil properties alone explained 31% and 37% of the total spatial variation respectively for the low group of 2012 and 2013, and 16% and 24% for the high group of 2012 and 2013 respectively. For the low group, the fraction of variations explained by soil properties was found similar between the two years, while there was substantial difference for the high group. The findings are expected to lay a good foundation for developing remedy measures in the areas with low bud burst percentage, thus in turn improving the overall grape yield and quality. PMID:27798692

  8. Determining the spatial variability of wetland soil bulk density, organic matter, and the conversion factor between organic matter and organic carbon across coastal Louisiana, U.S.A.

    USGS Publications Warehouse

    Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.

    2016-01-01

    Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.

  9. Identification of sensitive parameters in the modeling of SVOC reemission processes from soil to atmosphere.

    PubMed

    Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc

    2014-09-15

    Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Carbon-water Cycling in the Critical Zone: Understanding Ecosystem Process Variability Across Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, Holly; Brooks, Paul

    2016-06-16

    One of the largest knowledge gaps in environmental science is the ability to understand and predict how ecosystems will respond to future climate variability. The links between vegetation, hydrology, and climate that control carbon sequestration in plant biomass and soils remain poorly understood. Soil respiration is the second largest carbon flux of terrestrial ecosystems, yet there is no consensus on how respiration will change as water availability and temperature co-vary. To address this knowledge gap, we use the variation in soil development and topography across an elevation and climate gradient on the Front Range of Colorado to conduct a naturalmore » experiment that enables us to examine the co-evolution of soil carbon, vegetation, hydrology, and climate in an accessible field laboratory. The goal of this project is to further our ability to combine plant water availability, carbon flux and storage, and topographically driven hydrometrics into a watershed scale predictive model of carbon balance. We hypothesize: (i) landscape structure and hydrology are important controls on soil respiration as a result of spatial variability in both physical and biological drivers: (ii) variation in rates of soil respiration during the growing season is due to corresponding shifts in belowground carbon inputs from vegetation; and (iii) aboveground carbon storage (biomass) and species composition are directly correlated with soil moisture and therefore, can be directly related to subsurface drainage patterns.« less

  11. Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, eastern China.

    PubMed

    Liu, Yang; Lv, Jianshu; Zhang, Bing; Bi, Jun

    2013-04-15

    Identifying the sources of spatial variability and deficiency risk of soil nutrients is a crucial issue for soil and agriculture management. A total of 1247 topsoil samples (0-20 cm) were collected at the nodes of a 2×2 km grid in Rizhao City and the contents of soil organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) were determined. Factorial kriging analysis (FKA), stepwise multiple regression, and indicator kriging (IK) were appled to investigate the scale dependent correlations among soil nutrients, identify the sources of spatial variability at each spatial scale, and delineate the potential risk of soil nutrient deficiency. Linear model of co-regionalization (LMC) fitting indicated that the presence of multi-scale variation was comprised of nugget effect, an exponential structure with a range of 12 km (local scale), and a spherical structure with a range of 84 km (regional scale). The short-range variation of OC and TN was mainly dominated by land use types, and TP was controlled by terrain. At long-range scale, spatial variation of OC, TN, and TP was dominated by parent material. Indicator kriging maps depicted the probability of soil nutrient deficiency compared with the background values in eastern Shandong province. The high deficiency risk area of all nutrient integration was mainly located in eastern and northwestern parts. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Strategies for soil-based precision agriculture in cotton

    NASA Astrophysics Data System (ADS)

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff

    2016-05-01

    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  13. Vegetation regulation on streamflow intra-annual variability through adaption to climate variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Sheng; Li, Hongyi; Li, Shuai

    2015-12-16

    This study aims to provide a mechanistic explanation of the empirical patterns of streamflow intra-annual variability revealed by watershed-scale hydrological data across the contiguous United States. A mathematical extension of the Budyko formula with explicit account for the soil moisture storage change is used to show that, in catchments with a strong seasonal coupling between precipitation and potential evaporation, climate aridity has a dominant control on intra-annual streamflow variability, but in other catchments, additional factors related to soil water storage change also have important controls on how precipitation seasonality propagates to streamflow. More importantly, use of leaf area index asmore » a direct and indirect indicator of the above ground biomass and plant root system, respectively, reveals the vital role of vegetation in regulating soil moisture storage and hence streamflow intra-annual variability under different climate conditions.« less

  14. Influence of early variables in traumatic brain injury on functional independence measure scores and rehabilitation length of stay and charges.

    PubMed

    Cowen, T D; Meythaler, J M; DeVivo, M J; Ivie, C S; Lebow, J; Novack, T A

    1995-09-01

    To determine the relationship between early variables (initial Glasgow Coma Scale [GCS] scores, computed tomography [CT] findings, presence of skeletal trauma, age, length of acute hospitalization) and outcome variables (Functional Independence Measure [FIM] scores, rehabilitation length of stay [LOS], rehabilitation charges) in traumatic brain injury (TBI). Inception cohort. University tertiary care rehabilitation center. 91 patients with TBI. Inpatient rehabilitation. FIM, rehabilitation LOS, and rehabilitation charges. Patients in the severely impaired (GCS = 3 to 7) group showed significantly lower (p = .01) mean admission and discharge motor scores (21.26, 39.83) than patients in the mildly impaired (GCS = 13 to 15) group (38.86, 55.29). Cognitive scores were also significantly lower (p < .01) in the severely impaired group on admission (26.73 vs 54.14) and discharge (42.28 vs 66.48). These findings continued to be statistically significant (p < .01) after regression analysis accounted for the other early variables previously listed. Regression analysis also illustrated that longer acute hospitalization LOS was independently associated with significantly lower admission motor (p < .01) and cognitive (p = .05) scores, and significantly higher (p = .01) rehabilitation charges. Patients with CT findings of intracranial bleed with skull fracture had longer total LOS (70.88 vs 43.08 days; p < .05), rehabilitation LOS (30.01 vs 19.68 days; p < .10), and higher rehabilitation charges ($43,346 vs $25,780; p < .05). Paradoxically, those patients in a motor vehicle crash with an extremity bone fracture had significantly higher (p = .002; p = .04 after regression analysis) FIM cognitive scores on admission (48.30 vs 27.28) and discharge (64.74 vs 45.78) than those without a fracture. Finally, data available on rehabilitation admission were used to predict discharge outcomes. The percentage of explained variance for each outcome variable is as follows: discharge FIM motor score, 69.5%; discharge FIM cognitive score, 71.2%; rehabilitation LOS, 54.1%; rehabilitation charges, 61.1%. The most powerful predictor of LOS and charges was the admission FIM motor score (p < .001), followed by CT findings (p = .02) and age (p = .04). Information readily available on rehabilitation admission, particularly the FIM motor score, may be useful in predicting discharge FIM scores as well as utilization of medical rehabilitation resources. Earlier transfer to rehabilitation may result in higher functional status and lower rehabilitation charges, as well as lower acute hospitalization charges. The presence of extremity fractures encountered during a motor vehicle crash is associated with a more favorable outcome in TBI as evidenced by higher discharge FIM cognitive scores.

  15. Spatial and Temporal Evaluation of Soil Erosion with RUSLE: A Case Study in an Olive Orchard Microcathment in Spain

    EPA Science Inventory

    Soil loss is commonly estimated using the Revised Universal Soil Loss Equation (RUSLE). Since RUSLE is an empirically based soil loss model derived from surveys on plots, the high spatial and temporal variability of erosion in Mediterranean environments and scale effects provoke...

  16. Soil Water Sensing-Focus on Variable Rate Irrigation

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling using soil water sensors is an exercise in maintaining the water content of the crop root zone soil above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation. The management allow...

  17. Missouri Ozark forest soils: perspectives and realities

    Treesearch

    R. David. Hammer

    1997-01-01

    Ozark forest soils are dynamic in space and time, and most formed in multiple parent materials. Erosion and mass movement have been variable and extensive. Soil attributes including texture, cation exchange capacity, and mineralogy are related to geologic strata and to geomorphic conditions. Soil organic carbon content is influenced by surface shape, position in...

  18. Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability

    USDA-ARS?s Scientific Manuscript database

    Indices derived from remotely-sensed imagery are commonly used to predict soil properties with digital soil mapping (DSM) techniques. The use of images from single dates or a small number of dates is most common for DSM; however, selection of the appropriate images is complicated by temporal variabi...

  19. Power and limitation of soil properties as predictors of variation in peak plant biomass in a northern mixed-grass prairie

    USDA-ARS?s Scientific Manuscript database

    Soil properties are thought to affect annual plant productivity in rangelands, and thus soil variables that are consistently correlated with variation in plant biomass may be general indicators of rangeland health. Here we measured several soil properties (e.g. aggregate stability, organic carbon, ...

  20. Spatial and Temporal Evaluation of Soil Erosion with RUSLE: A case Study in an Olive Orchard Microcathment in Spain

    EPA Science Inventory

    Soil loss is commonly estimated using the Revised Universal Soil Loss Equation (RUSLE). Since RUSLE is an empirically based soil loss model derived from surveys on plots, the high spatial and temporal variability of erosion in Mediterranean environments and scale effects provo...

Top