VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew
2016-09-19
Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate mineralsmore » such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.« less
Response surface models of subsoil K concentration for loess over till soils in Missouri
USDA-ARS?s Scientific Manuscript database
Crop uptake of potassium (K) has demonstrated sensitivity to subsoil variation in K content. This fact has not been sufficiently considered in K management strategies in part due to logistical difficulties in sampling spatially variable subsoil K. We propose a simplified soil factorial model, a resp...
NASA Astrophysics Data System (ADS)
Beem-Miller, Jeffrey; Lehmann, Johannes
2017-04-01
The majority of the world's soil organic carbon (OC) stock is stored below 30 cm in depth, yet sampling for soil OC assessment rarely goes below 30 cm. Recent studies suggest that subsoil OC is distinct from topsoil OC in quantity and quality: subsoil OC concentrations are typically much lower and turnover times are much longer, but the mechanisms involved in retention and input of OC to the subsoil are not well understood. Improving our understanding of subsoil OC is essential for balancing the global carbon budget and confronting the challenge of global climate change. This study was undertaken to assess the relationship between OC stock and potential drivers of OC dynamics, including both soil properties and environmental covariates, in topsoil (0 to 30 cm) versus subsoil (30 to 75 cm). The performance of commonly used depth functions in predicting OC stock from 0 to 75 cm was also assessed. Depth functions are a useful tool for extrapolating OC stock below the depth of sampling, but may poorly model "hot spots" of OC accumulation, and be inadequate for modelling the distinct dynamics of topsoil and subsoil OC when applied with a single functional form. We collected two hundred soil cores on an arable Mollisol, sectioned into five depth increments (0-10, 10-20, 20-30, 30-50, and 50-75 cm), and performed the following analyses on each depth increment: concentration of OC, inorganic C, permanganate oxidizable carbon (POXC), and total N, as well as texture, pH, and bulk density; a digital elevation model was used to calculate elevation, slope, curvature, and soil topographic wetness index. We found that topsoil OC stocks were significantly correlated (p < 0.05) with terrain variables, texture, and pH, while subsoil OC stock was only significantly correlated with topsoil OC stock and soil pH. Total OC stock was highly spatially variable, and the relationship between surface soil properties, terrain variables, and subsoil OC stock was spatially variable as well. Hot spots of subsoil OC accumulation were correlated with higher pH (> 7.0), flat topography, a high OC to total N ratio, and a high ratio of POXC to OC. These findings suggest that at this site, topsoil OC stock is input driven, while OC accumulation in the subsoil is retention dominated. Accordingly, a new depth function is proposed that uses a linear relationship to model OC stock in topsoil and a power function to model OC stock in the subsoil. The combined depth function performed better than did negative exponential, power, and linear functions alone.
John K. Francis
1979-01-01
Although the configuration of pole-sized yellow-poplar root systems in Tennessee is quite variable, a branched taproot with several widely spreading laterals is typical. Rooting depth is particularly limited by clayey texture, wetness, and firmness of subsoils.
USDA-ARS?s Scientific Manuscript database
Understanding the effects of fertilizer addition and crop removal on long-term change in soil test phosphorus (STP) and soil test potassium (STK) is crucial for maximizing the use of grower inputs on claypan soils. Due to variable nutrient supply from subsoils and variable crop removal across fields...
Zu, Yanqun; Bock, Laurent; Schvartz, Christian; Colinet, Gilles; Li, Yuan
2011-01-01
Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn > or =1.0) and Cd and Cu in subsoil (RTS of Cd and Cu < or = 1.0). Subsoil trace element content was related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M > T > L), except for Cu (T > M > L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice.
NASA Astrophysics Data System (ADS)
Preusser, Sebastian; Poll, Christian; Marhan, Sven; Kandeler, Ellen
2017-04-01
At the global scale, soil organic carbon (SOC) represents the largest active terrestrial organic carbon (OC) pool. Carbon dynamics in subsoil, however, vary from those in topsoil with much lower C concentrations in subsoil than in topsoil horizons, although more than 50 % of SOC is stored in subsoils below 30 cm soil depth. In addition, microorganisms in subsoil are less abundant, more heterogeneously distributed and the microbial communities have a lower diversity than those in topsoil. Especially in deeper soil, the impact of changes in habitat conditions on microorganisms involved in carbon cycling are largely unexplored and consequently the understanding of microbial functioning is limited. A reciprocal translocation experiment allowed us to investigate the complex interaction effects of altered environmental and substrate conditions on microbial decomposer communities in both topsoil and subsoil habitats under in situ conditions. We conducted this experiment with topsoil (5 cm soil depth) and subsoil (110 cm) samples of an acid and sandy Dystric Cambisol from a European beech (Fagus sylvatica L.) forest in Lower Saxony, Germany. In total 144 samples were buried into three depths (5 cm, 45 cm and 110 cm) and 13C-labelled root litter was added to expose the samples to different environmental conditions and to increase the substrate availability, respectively. Samples were taken in three month intervals up to a maximum exposure time of one year to follow the temporal development over the experimental period. Analyses included 13Cmic and 13C PLFA measurements to investigate the response of microbial abundance, community structure and 13C-root decomposition activity under the different treatments. Environmental conditions in the respective soil depths such as soil temperature and water content were recorded throughout the experimental period. All microbial groups (gram+ and gram- bacteria, fungi) showed highest relative 13C incorporation in 110 cm depth and samples with root addition had generally higher microbial abundances than those with no root addition. Here, especially fungi benefited from the additional carbon source with highly increased abundances in all incorporation depths. Also the altered environmental conditions in the different incorporation depths significantly influenced the different microbial groups. The steepest decrease with depth was detected in fungal abundance, while bacteria were less affected and increased in relative abundance in soil samples incorporated into subsoil layers. The highest seasonal variability in microbial abundance, however, was determined in 5 cm incorporation depth demonstrating the higher amplitude in micro-climatic and micro-environmental conditions in this near-surface soil habitat. In summary, this experiment demonstrated that carbon quality and quantity are the main factors restricting fungal abundance in deeper soil layers, while bacterial decomposer communities are adapted to a wider range of habitat conditions.
Sigua, G C; Novak, J M; Watts, D W; Johnson, M G; Spokas, K
2016-01-01
In the Coastal Plains region of the United States, the hard setting subsoil layer of Norfolk soils results in low water holding capacity and nutrient retention, which often limits root development. In this region, the Norfolk soils are under intensive crop production that further depletes nutrients and reduces organic carbon (C). Incorporation of pyrolyzed organic residues or "biochars" can provide an alternative recalcitrant C source. However, biochar quality and effect can be inconsistent and different biochars react differently in soils. We hypothesized that addition of different designer biochars will have variable effects on biomass and nutrient uptake of winter wheat. The objective of this study was to investigate the effects of designer biochars on biomass productivity and nutrient uptake of winter wheat (Triticum aestivum L.) in a Norfolk's hard setting subsoil layer. Biochars were added to Norfolk's hard setting subsoil layer at the rate of 40 Mg ha(-1). The different sources of biochars were: plant-based (pine chips, PC); animal-based (poultry litter, PL); 50:50 blend (50% PC:50% PL); 80:20 blend (80% PC:20% PL); and hardwood (HW). Aboveground and belowground biomass and nutrient uptake of winter wheat varied significantly (p⩽0.0001) with the different designer biochar applications. The greatest increase in the belowground biomass of winter wheat over the control was from 80:20 blend of PC:PL (81%) followed by HW (76%), PC (59%) and 50:50 blend of PC:PL (9%). However, application of PL resulted in significant reduction of belowground biomass by about 82% when compared to the control plants. The average uptake of P, K, Ca, Mg, Na, Al, Fe, Cu and Zn in both the aboveground and belowground biomass of winter wheat varied remarkably with biochar treatments. Overall, our results showed promising significance for the treatment of a Norfolk's hard setting subsoil layer since designer biochars did improve both aboveground/belowground biomass and nutrient uptake of winter wheat. Published by Elsevier Ltd.
Chemical restrictions of roots in Ultisol subsoils lessened by long-term management
NASA Technical Reports Server (NTRS)
Hardy, D. H.; Raper, C. D. Jr; Miner, G. S.; Raper CD, J. r. (Principal Investigator)
1990-01-01
Exchangeable Al in subsoils of Ultisols in the southeastern USA can restrict rooting depth. Downward movement of basic cations (Ca, Mg, and K), applied as lime and fertilizer, may diminish that restriction over time. Materials from the argillic horizon were collected from three paired sites, having managed (long-term cropping) and nonmanaged topsoils (Typic Paleudults and Hapludults). One managed site was cropped continuously for 15 yr while the others were cultivated for more than 30 yr. Concentrations of extractable cations and other nutrients from the paired sites were compared to determine the magnitude of change due to management. The ability of the subsoils to support plant growth was evaluated in a missing-nutrient greenhouse experiment with sorghum [Sorghum bicolor (L.) Moench]. Subsoils of managed sites had greater effective cation-exchange capacity (CEC) and base saturation than those of non-managed sites. While availabilities of Ca, Mg, and K in subsoils of nonmanaged sites were inadequate to support maximal plant growth, they were adequate in subsoils of managed sites. Compared with nonmanaged sites, KCl-exchangeable Al in subsoils of managed sites was 23% lower at the 15-yr location and 65 and 100% lower at the two other locations. In the absence of lime, sorghum growth was almost totally inhibited on nonmanaged subsoils amended with optimum nutrients. On the managed subsoils, where 100, 65, and 23% of the nonmanaged exchangeable Al had been neutralized by topsoil fertilization and liming, growth reductions under the same conditions were 0, 50, and 100%, respectively. Thus, relatively long-term management had improved these Ultisol subsoils for root growth and development.
Topsoil thickness effects on phosphorus and potassium dynamics on claypan soils
USDA-ARS?s Scientific Manuscript database
Due to variable depth to claypan (DTC) across landscapes, nutrient supply from subsoils, and crop removal, precise P and K fertilizer management on claypan soil fields can be difficult. Therefore, a study was performed to determine if DTC derived from soil apparent electrical conductivity (ECa) coul...
Soil nutrient variability and groundwater nitrate-N in agricultural fields
USDA-ARS?s Scientific Manuscript database
Landscape and management often result in uneven nutrient loads within a field. The hypotheses of this study are that 1) phosphorus accumulates at low areas in the landscape adjacent to waterways, and 2) nitrate at lower landscape positions will be decreased in the subsoil due to denitrification and ...
NASA Astrophysics Data System (ADS)
Brus, Dick J.; van den Akker, Jan J. H.
2018-02-01
Although soil compaction is widely recognized as a soil threat to soil resources, reliable estimates of the acreage of overcompacted soil and of the level of soil compaction parameters are not available. In the Netherlands data on subsoil compaction were collected at 128 locations selected by stratified random sampling. A map showing the risk of subsoil compaction in five classes was used for stratification. Measurements of bulk density, porosity, clay content and organic matter content were used to compute the relative bulk density and relative porosity, both expressed as a fraction of a threshold value. A subsoil was classified as overcompacted if either the relative bulk density exceeded 1 or the relative porosity was below 1. The sample data were used to estimate the means of the two subsoil compaction parameters and the overcompacted areal fraction. The estimated global means of relative bulk density and relative porosity were 0.946 and 1.090, respectively. The estimated areal fraction of the Netherlands with overcompacted subsoils was 43 %. The estimates per risk map unit showed two groups of map units: a low-risk
group (units 1 and 2, covering only 4.6 % of the total area) and a high-risk
group (units 3, 4 and 5). The estimated areal fraction of overcompacted subsoil was 0 % in the low-risk unit and 47 % in the high-risk unit. The map contains no information about where overcompacted subsoils occur. This was caused by the poor association of the risk map units 3, 4 and 5 with the subsoil compaction parameters and subsoil overcompaction. This can be explained by the lack of time for recuperation.
Stabnikova, O; Goh, W-K; Ding, H-B; Tay, J-H; Wang, J-Y
2005-06-01
Greenhouse pot experiments were performed with Ipomoea aquatica (Kang Kong) to evaluate artificial soil produced from poor fertility subsoil, horticultural compost, and sewage sludge. The addition of horticultural compost and sewage sludge to subsoil substantially improved plant growth, improved the physical properties of subsoil and enriched subsoil by essential nutrients for plants. The effect was enhanced when the two ingredients were added to subsoil together. The highest yield of biomass of I. aquatica was observed in artificial soil prepared by mixing subsoil with 4% (wet weight/wet weight) of horticultural compost and 2% (dry weight/wet weight) of sewage sludge. The contents of heavy metals in plants, grown in the artificial soil, were significantly lower than toxic levels. The artificial soil could be recommended for urban landscaping and gardening in Singapore.
Using topsoil thickness to improve site-specific phosphorus and potassium management on claypan soil
USDA-ARS?s Scientific Manuscript database
Precise P and K fertilizer management on claypan soils can be difficult due to variable topsoil thickness, or depth to claypan (DTC), across landscapes, nutrient supply from subsoils, and crop removal. Therefore, a study was performed to determine if DTC could be used to improve P and K management f...
Semi-Quantitative Evaluation of Secondary Carbonates via Portable X-ray Fluorescence Spectrometry
NASA Astrophysics Data System (ADS)
Chakraborty, Somsubhra; Weindorf, David; Weindorf, Camille; Duda, Bogdan; Pennington, Sarah; Ortiz, Rebekah
2017-04-01
Secondary calcium carbonate commonly occurs in subsoils of semi-arid soils worldwide. In US Soil Taxonomy, such horizons are frequently described as Bk, Bkk, Bkm, Bkkm, or Ck horizons at variable stages of development. Specifically, the Soil Survey Staff uses a qualitative scale of one through six to indicate differential developmental stages. However, considerable disagreement exists even among experienced soil scientists. Evaluating 75 soil samples from across four US states, a portable X-ray fluorescence (PXRF) spectrometer was used to quantify the total soil Ca content and compare it to average developmental stage scores as determined by a panel of Soil Survey Staff personnel. Samples were evaluated both as intact aggregates as well as ground (<2 mm), homogenized powders. PXRF readings of total soil Ca concentration steadily increased under both conditions as developmental stage progressed. However, minimal difference was observed between stage five and six carbonate accumulation. Stage three showed the widest variability in total soil Ca. Given than PXRF cannot distinguish between primary and secondary CaCO3 in soils, interpretation by the analyst remains essential. Nonetheless, PXRF provides an important tool for assessing carbonate laden subsoils providing elemental differentiation beyond that perceived by the human eye.
Coastal plain soils and geomorphology: a key to understanding forest hydrology
Thomas M. Williams; Devendra M. Amatya
2016-01-01
In the 1950s, Coile published a simple classification of southeastern coastal soils using three characteristics: drainage class, sub-soil depth, and sub-soil texture. These ideas were used by Warren Stuck and Bill Smith to produce a matrix of soils with drainage class as one ordinate and subsoil texture as the second for the South Carolina coastal plain. Soils...
A reservoir of nitrate beneath desert soils.
Walvoord, Michelle A; Phillips, Fred M; Stonestrom, David A; Evans, R Dave; Hartsough, Peter C; Newman, Brent D; Striegl, Robert G
2003-11-07
A large reservoir of bioavailable nitrogen (up to approximately 10(4) kilograms of nitrogen per hectare, as nitrate) has been previously overlooked in studies of global nitrogen distribution. The reservoir has been accumulating in subsoil zones of arid regions throughout the Holocene. Consideration of the subsoil reservoir raises estimates of vadose-zone nitrogen inventories by 14 to 71% for warm deserts and arid shrublands worldwide and by 3 to 16% globally. Subsoil nitrate accumulation indicates long-term leaching from desert soils, impelling further evaluation of nutrient dynamics in xeric ecosystems. Evidence that subsoil accumulations are readily mobilized raises concern about groundwater contamination after land-use or climate change.
A reservoir of nitrate beneath desert soils
Walvoord, Michelle Ann; Phillips, Fred M.; Stonestrom, David A.; Evans, R. Dave; Hartsough, Peter C.; Newman, Brent D.; Striegl, Robert G.
2003-01-01
A large reservoir of bioavailable nitrogen (up to ∼104 kilograms of nitrogen per hectare, as nitrate) has been previously overlooked in studies of global nitrogen distribution. The reservoir has been accumulating in subsoil zones of arid regions throughout the Holocene. Consideration of the subsoil reservoir raises estimates of vadose-zone nitrogen inventories by 14 to 71% for warm deserts and arid shrublands worldwide and by 3 to 16% globally. Subsoil nitrate accumulation indicates long-term leaching from desert soils, impelling further evaluation of nutrient dynamics in xeric ecosystems. Evidence that subsoil accumulations are readily mobilized raises concern about groundwater contamination after land-use or climate change.
1979-11-15
COMPACTION 7-12 [2] 9 SUITABILITY AS ROAD SUBGRADE (’) poor to fair lair to go SUITABILITY AS ROAD SUBBASE OR BASE (1) poor poor to fai aJ 2.1-10.9 1.1...wave velocity of 9350 fps (2850 mps). These variable seismic wave velocities indicate nonuniformity in subsoil density and cementation. Electrical
Priming effect in topsoil and subsoil induced by earthworm burrows
NASA Astrophysics Data System (ADS)
Thu, Duyen Hoang Thi
2017-04-01
Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently important hotspots of microbial mediated carbon and C turnover through their burrowing activity. However, it is still unknown to which extend earthworms affect priming effect in top- and subsoil horizons. More labile C inputs in earthworm burrows were hypothesized to trigger higher priming of soil organic matter (SOM) decomposition compared to rhizosphere and bulk soil. Moreover, this effect was expected to be more pronounced in subsoil due to its greater C and nutrient limitation. To test these hypotheses, biopores and bulk soil were sampled from topsoil (0-30 cm) and two subsoil depths (45-75 and 75-105 cm). Additionally, rhizosphere samples were taken from the topsoil. Total organic C (Corg), total N (TN), total P (TP) and enzyme activities involved in C-, N-, and P-cycling (cellobiohydrolase, β-glucosidase, xylanase, chitinase, leucine aminopeptidase and phosphatase) were measured. Priming effects were calculated as the difference in SOM-derived CO2 from soil with or without 14C-labelled glucose addition. Enzyme activities in biopores were positively correlated with Corg, TN and TP, but in bulk soil this correlation was negative. The more frequent fresh and labile C inputs to biopores caused 4 to 20 time higher absolute priming of SOM turnover due to enzyme activities that were one order of magnitude higher than in bulk soil. In subsoil biopores, reduced labile C inputs and lower N availability stimulated priming twofold greater than in topsoil. In contrast, a positive priming effect in bulk soil was only detected at 75-105 cm depth. We conclude that earthworm burrows provide not only the linkage between top- and subsoil for C and nutrients, but strongly increase microbial activities and accelerate SOM turnover in subsoil, contributing to nutrient mobilization for roots and CO2 emission increase as a greenhouse gas. Additionally, the mechanisms of native SOM decomposition are distinct between topsoil and subsoil, which relies on the fresh C input and nutrient availability. Keywords: Priming effect; Earthworms; Organic matter decomposition; Biopores; Subsoil; Microbial hotspots.
Small scale variability of transport and composition of dissolved organic matter in the subsoil
NASA Astrophysics Data System (ADS)
Leinemann, T.; Mikutta, R.; Kalbitz, K.; Guggenberger, G.
2016-12-01
Dissolved organic matter (DOM) is the most mobile fraction of carbon in the soil and connects the carbon-rich topsoil with the subsoil where translocated OM may get stabilized. The water flux in soil is highly heterogeneous, both temporarily and spatially. We, therefore, hypothesize that at high flow velocities, DOM can bypass possible mineral binding sites and microorganisms, thus leading to less degraded DOM under high flow velocities. To address this question, we investigated water and DOM fluxes in situ using segmented suction plates (4 x 4 segments on 24 x 24 cm) installed into three soil observatories at three depths (10 cm, 50 cm, and 150 cm) in a Dystric Cambisol under Beech (Fagus sylvatica) near Hannover, Germany. To follow the transport of carbon from the litter layer through the soil, an in situ 13C-labelling experiment has been conducted in January 2015. Concentration of dissolved organic carbon (DOC) and DOM composition was analyzed using high temperature combustion and photometric methods. The amount of transported DOC decreased by ca. 80 % from 10 to 50 cm depth and by 40 % from 50 to 150 cm depth. Different flow patterns existed at the centimeter scale, which were stable over time for individual suction plate segments. The specific UV280 nm absorbance of DOM decreased with increasing soil depth. This indicates a selective loss of aromatic compounds. The influence of different flow regimes on the DOM quality became apparent in the subsoil samples (>50 cm depth) showing a correlation of increasing UV280 nm absorbance with increasing water flux. The 13C-labelling experiment showed that after 10 month just 0.3 % of the DOC in 150 cm depth was derived from fresh litter. The transport of leaf litter carbon seemed to be controlled by the flow regime as the DO13C ratio and the water flux correlated positively. This can be an indication for the importance of preferential flow on carbon transport to the subsoil.
USDA-ARS?s Scientific Manuscript database
Aims: Test the effect of soil volume and presence of subsoil on Ni hyperaccumulation. Methods: A. corsicum Duby was grown for 3 months on Chrome loam topsoil and subsoil from near Reistertown, MD, in a test of growth and Ni accumulation with varied soil masses (2.8 and 5.6 kg pot-1) to study the im...
W.J. Otrosina; Shi-Jean S. Sung; L.M. White
1996-01-01
We determined the effects of subsoiling on woody lateral roots and enzyme activities involved in stem carbon metabolism of 90- to 100-year-old Jeffrey pine (Pinus jeffreyi Grev. And Balf.) growing on the eastern side of the California Sierra Nevada Range.Twelve 1.0-ha plots were established on each of two sites. Four site treatments thinning and subsoiling entire...
David Gwaze; Ross Melick; Lynn McClure; Charly Studyvin; David Massengele
2007-01-01
The objective of this study was to evaluate the effect of subsoiling (ripping) and prescribed burning on height, survival, diameter, volume, and competition of planted shortleaf pine (Pinus echinata Mill.). The study was established at the Salem Ranger District, Mark Twain National Forest. The treatments were subsoil/burn, burn, and control with no...
Soil N retention and nitrate leaching in three types of dunes in the Mu Us desert of China.
Jin, Zhao; Zhu, Yajuan; Li, Xiangru; Dong, Yunshe; An, Zhisheng
2015-09-15
A large reservoir of soil nitrate in desert subsoil zones has been demonstrated in previous studies; however, information on the subsoil nitrate reservoir and its distribution characteristics in the deserts of China is still limited. This study investigated the distribution patterns of soil total nitrogen (N), nitrate, ammonium, and stable isotopic ratios of (15)N (δ(15)N) in shallow (1 m) and subsoil (5 m) profiles in three types of dunes in the Mu Us desert of China. We found that soil N retention of the fixed and semi-fixed dunes followed a progressive nutrient depletion pattern in shallow soil profiles, whereas the subsoil nitrate of the fixed, semi-fixed and mobile dunes maintained a conservative accumulation pattern. The results indicate that the subsoil of the Mu Us desert may act as a reservoir of available nitrate. Furthermore, a soil δ(15)N analysis indicate that the nitrate content of the fixed dune is likely derived from soil nitrification, whereas the nitrate content in the mobile dune is derived from atmospheric nitrate deposition. Within the context of looming climate change and intensifying human activities, the subsoil nitrate content in the deserts of northern China could become mobilized and increase environmental risks to groundwater.
Drivers for spatial variability in agricultural soil organic carbon stocks in Germany
NASA Astrophysics Data System (ADS)
Vos, Cora; Don, Axel; Hobley, Eleanor; Prietz, Roland; Heidkamp, Arne; Freibauer, Annette
2017-04-01
Soil organic carbon is one of the largest components of the global carbon cycle. It has recently gained importance in global efforts to mitigate climate change through carbon sequestration. In order to find locations suitable for carbon sequestration, and estimate the sequestration potential, however, it is necessary to understand the factors influencing the high spatial variability of soil organic carbon stocks. Due to numerous interacting factors that influence its dynamics, soil organic carbon stocks are difficult to predict. In the course of the German Agricultural Soil Inventory over 2500 agricultural sites were sampled and their soil organic carbon stocks determined. Data relating to more than 200 potential drivers of SOC stocks were compiled from laboratory measurements, farmer questionnaires and climate stations. The aims of this study were to 1) give an overview of soil organic carbon stocks in Germany's agricultural soils, 2) to quantify and explain the influence of explanatory variables on soil organic carbon stocks. Two different machine learning algorithms were used to identify the most important variables and multiple regression models were used to explore the influence of those variables. Models for predicting carbon stocks in different depth increments between 0-100 cm were developed, explaining up to 62% (validation, 98% calibration) of total variance. Land-use, land-use history, clay content and electrical conductivity were main predictors in the topsoil, while bedrock material, relief and electrical conductivity governed the variability of subsoil carbon stocks. We found 32% of all soils to be deeply anthropogenically transformed. The influence of climate related variables was surprisingly small (≤5% of explained variance), while site variables explained a large share of soil carbon variability (46-100% of explained variance), in particular in the subsoil. Thus, the understanding of SOC dynamics at regional scale requires a thorough description of the variability in soil physical parameters. Agronomic management impact on SOC stocks is important near the soil surface, but is mainly attributable to land-use and not to other management factors on this large regional scale. The importance of historical land-use practices as well as anthropogenic soil transformations to SOC stocks highlights the need for prudent soil management and conservation policies.
Changes in sub-soil river water quality upon its open storage-a case study.
Mohanty, A K; Satpathy, K K; Prasad, M V R
2017-08-01
A study was carried out to investigate the changes in the physicochemical and biological properties of sub-soil river water upon its storage in a man-made reservoir. Palar sub-soil and reservoir water samples were collated fortnightly for a period of 5 years (2010-2014). The open reservoir is used as a reliable raw water source for condenser cooling systems and for the demineralizing (DM) plant input of Fast Breeder Test Reactor (FBTR), Madras Atomic Power Station (MAPS), and other laboratories at Kalpakkam, southeast coast of India. Relatively high nutrient concentration was observed in the Palar sub-soil water, and a significant reduction in average concentration (μmol l -1 ) of phosphate (Palar 1.92; open reservoir 1.54) and nitrate (Palar 9.78; open reservoir 5.67) was observed from Palar to open reservoir. Substantial increase in pH (Palar 8.05; open reservoir 8.45), dissolved oxygen (mg l -1 ) (Palar 6.07; open reservoir 8.47), and chlorophyll-a (mg m -3 ) (Palar 1.66; open reservoir 8.43) values were noticed from the Palar sub-soil water to open reservoir water. It is concluded that sub-soil water with higher nutrient concentrations when stored openly, exposing to the sun, resulted in growth of plants, planktonic, and macrophytes, which led to substantial deterioration in water quality from its utility point of view as a condenser cooling medium and raw water input for DM plant.
Organic matter turnover in subsoils: current knowledge and future challenges
NASA Astrophysics Data System (ADS)
Marschner, Bernd
2014-05-01
In the past, carbon flux measurements and modelling have mostly considered the topsoil where C-concentrations, root densities and microbial activities are generally highest. However, depending on climate zone and land use, this soil compartment contains only 30-50% of the C-stocks of the first meter. If the deeper subsoil down to 3 m is also considered, the contribution of topsoil carbon stocks to total soil C-pools is only 20-40%. Another distinct property of subsoil organic matter is its high apparent 14C age. The 14C age of bulk soil organic matter below 30 cm depth generally increases continuously indicating mean residence times of several 103 to 104 years. Large pool size and high radiocarbon age suggest that subsoil OM has accumulated at very low rates over very long time periods and therefore appears to be very stable. In this review, several hypotheses for explaining why subsoil SOM is so seemingly old and inert are presented. These questions are being addressed in a recently granted German research unit consisting of 9 subprojects from all soil science disciplines using field measurements of C-fluxes, 14C analyses and conducting field and lab experiments.
1987-10-01
about 3 inches thick. The subsoil is light yellowish-brown, fine sandy loam, 25 inches thick, under- lain by a buried subsoil of brown clayey loam, 17...inches thick and brown very gravelly sandy loam to 60 inches or more. Fine lime filaments occur in the . buried subsoil. Permeability of the...18 Paq * 2 of FU. PATHWAYS factor taximum, p Rating Factor Possble Rating Factor (0-3) Multiplier Score Score A. If there is evidence of migration of
Zhang, Ming Zhi; Niu, Wen Quan; Xu, Jian; Li, Yuan
2016-06-01
In order to explore the influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield, an orthogonal experiment was carried out with three factors of micro-irrigation method, irrigation depth, and subsoiling depth. The factor of irrigation method included surface drip irrigation, subsurface drip irrigation, and moistube-irrigation; three levels of irrigation depth were obtained by controlling the lower limit of soil water content to 50%, 65%, and 80% of field holding capacity, respectively; and three depths of deep subsoiling were 20, 40, and 60 cm. The results showed that the activities of catalase and urease increased first and then decreased, while the activity of phosphatase followed an opposite trend in the growth season of summer maize. Compared with surface drip irrigation and moistube-irrigation, subsurface drip irrigation increased the average soil moisture of 0-80 cm layer by 6.3% and 1.8% in the growth season, respectively. Subsurface drip irrigation could significantly increase soil urease activity, roots volume, and yield of summer maize. With the increase of irrigation level, soil phosphatase activity decreased first and then increased, while urease activity and yield increased first and then decreased. The average soil moisture and root volume all increased in the growth season of summer maize. The increments of yield and root volume from subsoiling of 40 to 20 cm were greater than those from 60 to 40 cm. The highest enzyme activity was obtained with the treatment of subsoiling of 40 cm. In terms of improving water resource use efficiency, nitrogen use efficiency, and crop yield, the best management strategy of summer maize was the combination of subsurface drip irrigation, controlling the lower limit of soil water content to 65% of field holding capacity, and 40 cm subsoiling before planting.
The role of local heterogeneity in transport through steep hillslopes.
NASA Astrophysics Data System (ADS)
Fiori, A.; Russo, D.
2009-04-01
A stochastic model is developed for the analysis of the travel time distribution in a hillslope. The latter is represented as a system made up from a highly permeable soil underlain by a less permeable subsoil or bedrock. The heterogeneous hydraulic conductivity K is described as a stationary random space function. The travel time distribution is obtained through a stochastic Lagrangian model of transport, after adopting a first order approximation in the logconductivity variance. The results show that the travel time pdf pertaining to the soil is power-law, with exponent variable between -1 and -0.5; the behavior is mainly determined by unsaturated transport. The subsoil is mainly responsible for the tail of the travel time distribution. Analysis of the first and second moments of travel time show that the spreading of solute is controlled by the variations in the flow-paths (geomorphological dispersion), which depend on the hillslope geometry. Conversely, the contribution of the K heterogeneity to spreading appears as less relevant. The model is tested against a detailed three-dimensional numerical simulation with reasonably good agreement.
NASA Astrophysics Data System (ADS)
Gwozdz-Lason, Monika
2017-12-01
This paper attempts to answer some of the following questions: what is the main selling advantage of a plot of land on the areas with mining exploitation? which attributes influence on market value the most? and how calculate the mining influence in subsoil under future new building as market value of plot with commercial use? This focus is not accidental, as the paper sets out to prove that the subsoil load bearing capacity, as directly inferred from the local geotechnical properties with mining exploitation, considerably influences the market value of this type of real estate. Presented in this elaborate analysis and calculations, are part of the ongoing development works which aimed at suggesting a new technology and procedures for estimating the value of the land belonging to the third category geotechnical. Analysed the question was examined both in terms of the theoretical and empirical. On the basis of the analysed code calculations in residual method, numerical, statistical and econometric defined results and final conclusions. A market analysis yielded a group of subsoil stabilization costs which depend on the mining operations interaction, subsoil parameters, type of the contemplated structure, its foundations, selected stabilization method, its overall area and shape.
Numerical Analyses of Subsoil-structure Interaction in Original Non-commercial Software based on FEM
NASA Astrophysics Data System (ADS)
Cajka, R.; Vaskova, J.; Vasek, J.
2018-04-01
For decades attention has been paid to interaction of foundation structures and subsoil and development of interaction models. Given that analytical solutions of subsoil-structure interaction could be deduced only for some simple shapes of load, analytical solutions are increasingly being replaced by numerical solutions (eg. FEM – Finite element method). Numerical analyses provides greater possibilities for taking into account the real factors involved in the subsoil-structure interaction and was also used in this article. This makes it possible to design the foundation structures more efficiently and still reliably and securely. Currently there are several software that, can deal with the interaction of foundations and subsoil. It has been demonstrated that non-commercial software called MKPINTER (created by Cajka) provides appropriately results close to actual measured values. In MKPINTER software stress-strain analysis of elastic half-space by means of Gauss numerical integration and Jacobean of transformation is done. Input data for numerical analysis were observed by experimental loading test of concrete slab. The loading was performed using unique experimental equipment which was constructed in the area Faculty of Civil Engineering, VŠB-TU Ostrava. The purpose of this paper is to compare resulting deformation of the slab with values observed during experimental loading test.
Warming enhances old organic carbon decomposition through altering functional microbial communities
Cheng, Lei; Zhang, Naifang; Yuan, Mengting; ...
2017-04-21
Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We alsomore » showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.« less
NASA Astrophysics Data System (ADS)
O'Luanaigh, N. D.; Gill, L. W.; Misstear, B. D. R.; Johnston, P. M.
2012-11-01
An extensive field study on percolation areas receiving both septic tank and secondary treated on-site effluents from single houses in Ireland was carried out to investigate the attenuation capacity of highly permeable subsoils with respect to E. coli bacteria and spiked bacteriophages (MS2, ΦX174 and PR772). The development of biomats across the percolation areas receiving the secondary effluent was restricted compared to the percolation area receiving septic tank effluent, promoting a much higher areal hydraulic loading which created significant differences in the potential microbiological loading to groundwater. Greatest E. coli removal in the subsoil occurred within the first 0.35 m of unsaturated subsoil for all effluent types. Analysis showed, however, that more evidence of faecal contamination occurred at depth in the subsoils receiving secondary treated effluents than that receiving septic tank effluent, despite the lower bacterial influent load. All three bacteriophages were reduced to their minimum detection limit (< 10 PFU/mL) at a depth of 0.95 m below the percolation trenches receiving septic tank effluent, although isolated incidences of ΦX174 and PR772 were measured below one trench. However again, slightly higher breakthroughs of MS2 and PR772 contamination were detected at the same depth under the trenches receiving secondary treated effluent.
The forgotten part of carbon cycling: Organic matter storage and turnover in subsoils [SUBSOM
NASA Astrophysics Data System (ADS)
Marschner, B.
2013-12-01
In the past, carbon flux measurements and modelling have mostly considered the topsoil where C-concentrations, root densities and microbial activities are generally highest. However, depending on climate zone and land use, this soil compartment contains only 30-50% of the C-stocks of the first meter. If the deeper subsoil down to 3 m is also considered, the contribution of topsoil carbon stocks to total soil C-pools is only 20-40%. Another distinct property of subsoil organic matter is its high apparent 14C age. The 14C age of bulk soil organic matter below 30 cm depth generally increases continuously indicating mean residence times of several 103 to 104 years. Large pool size and high radiocarbon age suggest that subsoil OM has accumulated at very low rates over very long time periods and therefore appears to be very stable. In a review, several hypotheses for explaining why subsoil SOM is so seemingly old and inert are presented. Then a recently granted German research unit consisting of 9 subprojects from all soil science disciplines is introduced, which addresses these questions using field measurements of C-fluxes, 14C analyses and conducting field and lab experiments. 40-60% of soil C-pools are found below 40 cm depth (Data from Jobbagy & Jackson 2000).
Warming enhances old organic carbon decomposition through altering functional microbial communities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lei; Zhang, Naifang; Yuan, Mengting
Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We alsomore » showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.« less
Warming enhances old organic carbon decomposition through altering functional microbial communities
Cheng, Lei; Zhang, Naifang; Yuan, Mengting; Xiao, Jing; Qin, Yujia; Deng, Ye; Tu, Qichao; Xue, Kai; Van Nostrand, Joy D; Wu, Liyou; He, Zhili; Zhou, Xuhui; Leigh, Mary Beth; Konstantinidis, Konstantinos T; Schuur, Edward AG; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong
2017-01-01
Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We also showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate. PMID:28430189
Warming enhances old organic carbon decomposition through altering functional microbial communities.
Cheng, Lei; Zhang, Naifang; Yuan, Mengting; Xiao, Jing; Qin, Yujia; Deng, Ye; Tu, Qichao; Xue, Kai; Van Nostrand, Joy D; Wu, Liyou; He, Zhili; Zhou, Xuhui; Leigh, Mary Beth; Konstantinidis, Konstantinos T; Schuur, Edward Ag; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong
2017-08-01
Soil organic matter (SOM) stocks contain nearly three times as much carbon (C) as the atmosphere and changes in soil C stocks may have a major impact on future atmospheric carbon dioxide concentrations and climate. Over the past two decades, much research has been devoted to examining the influence of warming on SOM decomposition in topsoil. Most SOM, however, is old and stored in subsoil. The fate of subsoil SOM under future warming remains highly uncertain. Here, by combining a long-term field warming experiment and a meta-analysis study, we showed that warming significantly increased SOM decomposition in subsoil. We also showed that a decade of warming promoted decomposition of subsoil SOM with turnover times of decades to millennia in a tall grass prairie and this effect was largely associated with shifts in the functional gene structure of microbial communities. By coupling stable isotope probing with metagenomics, we found that microbial communities in warmed soils possessed a higher relative abundance of key functional genes involved in the degradation of organic materials with varying recalcitrance than those in control soils. These findings suggest warming may considerably alter the stability of the vast pool of old SOM in subsoil, contributing to the long-term positive feedback between the C cycle and climate.
NASA Astrophysics Data System (ADS)
Delvoie, S.; Radu, J.-P.; Ruthy, I.; Charlier, R.
2012-04-01
An engineering geological map can be defined as a geological map with a generalized representation of all the components of a geological environment which are strongly required for spatial planning, design, construction and maintenance of civil engineering buildings. In Wallonia (Belgium) 24 engineering geological maps have been developed between the 70s and the 90s at 1/5,000 or 1/10,000 scale covering some areas of the most industrialized and urbanized cities (Liège, Charleroi and Mons). They were based on soil and subsoil data point (boring, drilling, penetration test, geophysical test, outcrop…). Some displayed data present the depth (with isoheights) or the thickness (with isopachs) of the different subsoil layers up to about 50 m depth. Information about geomechanical properties of each subsoil layer, useful for engineers and urban planners, is also synthesized. However, these maps were built up only on paper and progressively needed to be updated with new soil and subsoil data. The Public Service of Wallonia and the University of Liège have recently initiated a study to evaluate the feasibility to develop engineering geological mapping with a computerized approach. Numerous and various data (about soil and subsoil) are stored into a georelational database (the geotechnical database - using Access, Microsoft®). All the data are geographically referenced. The database is linked to a GIS project (using ArcGIS, ESRI®). Both the database and GIS project consist of a powerful tool for spatial data management and analysis. This approach involves a methodology using interpolation methods to update the previous maps and to extent the coverage to new areas. The location (x, y, z) of each subsoil layer is then computed from data point. The geomechanical data of these layers are synthesized in an explanatory booklet joined to maps.
The treatment performance of different subsoils in Ireland receiving on-site wastewater effluent.
Gill, L W; O'Súlleabháin, C; Misstear, B D R; Johnston, P J
2007-01-01
Current Irish guidelines require a comprehensive site assessment of a percolation area for wastewater disposal before planning permission is granted for dwellings in rural areas. For a site to be deemed suitable, the subsoil must have a percolation value equivalent to a field saturated hydraulic conductivity in the range 0.08 to 4.2 m d(-1) using a falling head percolation test. A minimum of 1.2 m of unsaturated subsoil must also exist below the invert of the percolation area receiving effluent from a septic tank (or 0.6 m for secondary treated effluent). During a 2-yr period, the three-dimensional performance of four percolation areas treating domestic wastewater was monitored. At each site samples were taken at 0, 10, and 20 m along each of the four percolation trenches at depths of 0.3, 0.6, and 1.0 m below each trench to ascertain the attenuation effects of the unsaturated subsoil. The two sites with septic tanks installed performed at least as well as the other two sites with secondary treatment systems installed and appeared to discharge a better quality effluent in terms of nutrient load. An average of 2.1 and 6.8 g total N d(-1) remained after passing through 1-m depth of subsoil beneath the trenches receiving septic tank effluent compared with 12.7 and 16.7 g total N d(-1) on the sites receiving secondary effluent. The research also indicates that the septic tank effluent was of an equivalent quality to the secondary treated effluent in terms of indicator bacteria (E. coli) after percolating through 0.6-m depth of unsaturated subsoil.
A tracer experiment to study flow paths of water in a forest soil
NASA Astrophysics Data System (ADS)
Feyen, H.; Wunderli, H.; Wydler, H.; Papritz, A.
1999-12-01
This contribution discusses a tracer experiment, which was performed to study the flow paths of water in a macroporous forest soil. The experiment was performed in the framework of a study on the cycling of nitrogen in forested Prealpine catchments, in which losses of nitrate from virtually pristine areas were observed. Two soil plots with distinct micro-topography and top-soil were investigated: a well drained mor humus on a mound and a wet muck humus in a small depression. To reveal the effect of the soil horizons on the flow regime, tracers were applied both onto the soil surface and injected into the sub-soil. Tracers injected directly into the gleyic sub-soil reached the outlet (at a distance of 3.3 m) about 1000 times faster than could be expected from the saturated hydraulic conductivity of the soil matrix. Peak concentrations were observed after 18 (muck humus, tracer recovery 31%) to 70 min (mor humus, tracer recovery 40%). The peak concentration was 10 times smaller on the drier mor humus plot as compared to the muck humus. The mobile water content of the sub-soil varied between 0.5 (muck humus) and 1.3% (mor humus) of the total available soil water. The discrepancy in residence time, peak concentration and volume of mobile water between both sub-soils can be attributed to the differently structured sub-soil (longer travel distance and mixing volume in the drier mor humus). Tracers applied onto the soil surface resulted in a much slower breakthrough (tracer peaks after 400-700 min). Thus, in contrast to the sub-soil, flow through the matrix was the predominating transport process in the upper humus layers of both plots.
Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil
NASA Astrophysics Data System (ADS)
Hoang, D. T. T.
2016-12-01
Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil
Assessment of the impact of traditional septic tank soakaway systems on water quality in Ireland.
Keegan, Mary; Kilroy, Kate; Nolan, Daniel; Dubber, Donata; Johnston, Paul M; Misstear, Bruce D R; O'Flaherty, Vincent; Barrett, Maria; Gill, Laurence W
2014-01-01
One of the key threats to groundwater and surface water quality in Ireland is the impact of poorly designed, constructed or maintained on-site wastewater treatment systems. An extensive study was carried out to quantify the impact of existing sites on water quality. Six existing sites, consisting of a traditional septic tank and soakaway system, located in various ranges of subsoil permeabilities were identified and monitored to determine how well they function under varying subsoil and weather conditions. The preliminary results of the chemical and microbiological pollutant attenuation in the subsoil of the systems have been assessed and treatment performance evaluated, as well as impact on local surface water and groundwater quality. The source of any faecal contamination detected in groundwater, nearby surface water and effluent samples was confirmed by microbial source tracking. From this, it can be seen that the transport and treatment of percolate vary greatly depending on the permeability and composition of the subsoil.
Gill, L W; O'Luanaigh, N; Johnston, P M; Misstear, B D R; O'Suilleabhain, C
2009-06-01
The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent and this created significant differences in terms of the potential nitrogen loading to groundwater. The average nitrogen loading per capita at 1.0m depth of unsaturated subsoil equated to 3.9 g total-N/d for the sites receiving secondary treated effluent, compared to 2.1 g total-N/d for the sites receiving septic tank effluent. Relatively high nitrogen loading was, however, found on the septic tank sites discharging effluent into highly permeable subsoil that counteracted any significant denitrification. Phosphorus removal was generally very good on all of the sites although a clear relationship to the soil mineralogy was determined.
Current state and problems of integrated development of mineral resources base in Russia
NASA Astrophysics Data System (ADS)
Filimonova, I. V.; Eder, L. V.; Mishenin, M. V.; Mamakhatov, T. M.
2017-09-01
The article deals with the issues of integrated development of subsoil resources taking into account the actual problems facing the Russian oil and gas complex. The key factors determining the need for integrated development of subsoil resources have been systematized and investigated. These factors are the change of the hydrocarbon resource base quality, the improvement of the depletion degree of basic (unique and major) oil fields, the increase in the number of small and smallest oil fields discovered and introduced into development, the increased capital intensity and the riskiness of geological exploration, and the territorial location of new subsoil use facilities.
Biochars impact on water infiltration and water quality through a compacted subsoil layer
USDA-ARS?s Scientific Manuscript database
Soils in the Southeastern United States Coastal Plain region frequently have a compacted subsoil layer, which is a barrier for water movement. Four different biochars were evaluated to increase water movement through a compacted horizon from a Norfolk soil (fine-loamy, kaolinitic, thermic, Typic Ka...
Biochar impact on water infiltration and water quality through a compacted subsoil layer
Soils in the SE USA Coastal Plain region frequently have a compacted subsoil layer (E horizon), which is a barrier for water infiltration. Four different biochars were evaluated to increase water infiltration through a compacted horizon from a Norfolk soil (fine-loamy, kaolinitic...
MA_MISS and terrestrial analogues for Mars
NASA Astrophysics Data System (ADS)
De Sanctis, M. C.; De Angelis, S.; Ammannito, E.; Di Iorio, T.; Carli, C.; Frigeri, A.; Boccaccini, A.; Battistelli, E.; Mugnolo, R.; MA MISS Team
2012-09-01
The MA_MISS instrument (Mars Multispectral Imager for Subsurface Studies) is a VIS-NIR spectrometer devoted to study the Martian subsoil within the ExoMars mission. This miniaturized spectrometer is integrated in drilling system of the ExoMars Pasteur Rover, and will investigate the Martian subsoil down to 2 m, in the spectral range 0.4 - 2.2 μm [1,2]. It will provide important information regarding the composition and mineralogy of the Martian subsoil, whose materials are expected to be less altered by erosion and other exogenous processes than surface rocks. With a view to doing laboratory spectroscopic measurements with the instrument breadboard, we performed preliminary laboratory measurements on Mars analogues using a spectrophotometer coupled with a goniometer.
J. Paul Jeffreys; Emily B. Schultz; Thomas G. Matney; W. Cade Booth; Jason M. Morris
2010-01-01
A replicated split-plot design experiment to evaluate the effects of three site preparation methods (disking, bedding, and subsoiling plus bedding) on survival and growth of three oak species (cherrybark, Quercus pagoda Raf.; Shumard, Quercus shumardii Buckl.; and Nuttall, Quercus texana Buckl.) was established...
USDA-ARS?s Scientific Manuscript database
The Norfolk soil series is a well-drained soil used commonly for agricultural production in the Eastern Carolinas. Certain profile features such as a hard setting subsoil layer with high bulk density, low water holding capacity and meager soil fertility characteristics makes this soil less producti...
USDA-ARS?s Scientific Manuscript database
Soils in the southeastern U.S. Coastal Plain region have meager soil fertility and frequently have compacted subsoil layers (E horizon). Designer biochar has gained global interest as an amendment to improve the fertility, chemical, and physical properties of degraded agricultural soils. We hypothes...
30 CFR 816.22 - Topsoil and subsoil.
Code of Federal Regulations, 2014 CFR
2014-07-01
... § 816.22 Topsoil and subsoil. (a) Removal. (1)(i) All topsoil shall be removed as a separate layer from... paragraph (b) of this section shall be removed as a separate layer from the area to be disturbed, and... soil medium is equal to, or more suitable for sustaining vegetation than, the existing topsoil, and the...
30 CFR 816.22 - Topsoil and subsoil.
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 816.22 Topsoil and subsoil. (a) Removal. (1)(i) All topsoil shall be removed as a separate layer from... paragraph (b) of this section shall be removed as a separate layer from the area to be disturbed, and... soil medium is equal to, or more suitable for sustaining vegetation than, the existing topsoil, and the...
30 CFR 816.22 - Topsoil and subsoil.
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 816.22 Topsoil and subsoil. (a) Removal. (1)(i) All topsoil shall be removed as a separate layer from... paragraph (b) of this section shall be removed as a separate layer from the area to be disturbed, and... soil medium is equal to, or more suitable for sustaining vegetation than, the existing topsoil, and the...
30 CFR 817.22 - Topsoil and subsoil.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ACTIVITIES § 817.22 Topsoil and subsoil. (a) Removal. (1)(i) All topsoil shall be removed as a separate layer... accordance with paragraph (b) of this section shall be removed as a separate layer from the area to be... that the resulting soil medium is equal to, or more suitable for sustaining vegetation than, the...
30 CFR 817.22 - Topsoil and subsoil.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ACTIVITIES § 817.22 Topsoil and subsoil. (a) Removal. (1)(i) All topsoil shall be removed as a separate layer... accordance with paragraph (b) of this section shall be removed as a separate layer from the area to be... that the resulting soil medium is equal to, or more suitable for sustaining vegetation than, the...
30 CFR 817.22 - Topsoil and subsoil.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ACTIVITIES § 817.22 Topsoil and subsoil. (a) Removal. (1)(i) All topsoil shall be removed as a separate layer... accordance with paragraph (b) of this section shall be removed as a separate layer from the area to be... that the resulting soil medium is equal to, or more suitable for sustaining vegetation than, the...
Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique
2017-02-01
The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.
Fine resolution map of top- and subsoil carbon sequestration potential in France.
Chen, Songchao; Martin, Manuel P; Saby, Nicolas P A; Walter, Christian; Angers, Denis A; Arrouays, Dominique
2018-07-15
Although soils have a high potential to offset CO 2 emissions through its conversion into soil organic carbon (SOC) with long turnover time, it is widely accepted that there is an upper limit of soil stable C storage, which is referred to SOC saturation. In this study we estimate SOC saturation in French topsoil (0-30cm) and subsoil (30-50cm), using the Hassink equation and calculate the additional SOC sequestration potential (SOC sp ) by the difference between SOC saturation and fine fraction C on an unbiased sampling set of sites covering whole mainland France. We then map with fine resolution the geographical distribution of SOC sp over the French territory using a regression Kriging approach with environmental covariates. Results show that the controlling factors of SOC sp differ from topsoil and subsoil. The main controlling factor of SOCsp in topsoils is land use. Nearly half of forest topsoils are over-saturated with a SOC sp close to 0 (mean and standard error at 0.19±0.12) whereas cropland, vineyard and orchard soils are largely unsaturated with degrees of C saturation deficit at 36.45±0.68% and 57.10±1.64%, respectively. The determinant of C sequestration potential in subsoils is related to parent material. There is a large additional SOC sp in subsoil for all land uses with degrees of C saturation deficit between 48.52±4.83% and 68.68±0.42%. Overall the SOCsp for French soils appears to be very large (1008Mt C for topsoil and 1360Mt C for subsoil) when compared to previous total SOC stocks estimates of about 3.5Gt in French topsoil. Our results also show that overall, 176Mt C exceed C saturation in French topsoil and might thus be very sensitive to land use change. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dondeyne, Stefaan; Juilleret, Jérôme; Vancampenhout, Karen; Deckers, Jozef; Hissler, Christophe
2017-04-01
Classification of soils in both World Reference Base for soil resources (WRB) and Soil Taxonomy hinges on the identification of diagnostic horizons and characteristics. However as these features often occur within the first 100 cm, these classification systems convey little information on subsoil characteristics. An integrated knowledge of the soil, soil-to-substratum and deeper substratum continuum is required when dealing with environmental issues such as vegetation ecology, water quality or the Critical Zone in general. Therefore, we recently proposed a classification system of the subsolum complementing current soil classification systems. By reflecting on the structure of the subsoil classification system which is inspired by WRB, we aim at fostering a discussion on some potential future developments of WRB. For classifying the subsolum we define Regolite, Saprolite, Saprock and Bedrock as four Subsolum Reference Groups each corresponding to different weathering stages of the subsoil. Principal qualifiers can be used to categorize intergrades of these Subsoil Reference Groups while morphologic and lithologic characteristics can be presented with supplementary qualifiers. We argue that adopting a low hierarchical structure - akin to WRB and in contrast to a strong hierarchical structure as in Soil Taxonomy - offers the advantage of having an open classification system avoiding the need for a priori knowledge of all possible combinations which may be encountered in the field. Just as in WRB we also propose to use principal and supplementary qualifiers as a second level of classification. However, in contrast to WRB we propose to reserve the principal qualifiers for intergrades and to regroup the supplementary qualifiers into thematic categories (morphologic or lithologic). Structuring the qualifiers in this manner should facilitate the integration and handling of both soil and subsoil classification units into soil information systems and calls for paying attention to these structural issues in future developments of WRB.
Meta-analysis of pesticide sorption in subsoils
NASA Astrophysics Data System (ADS)
Jarvis, Nicholas
2017-04-01
It has been known for several decades that sorption koc values tend to be larger in soils that are low in organic carbon (i.e. subsoils). Nevertheless, in a regulatory context, the models used to assess leaching of pesticides to groundwater still rely on a constant koc value, which is usually measured on topsoil samples. This is mainly because the general applicability of any improved model approach that is also simple enough to use for regulatory purposes has not been demonstrated. The objective of this study was therefore first to summarize and generalize available literature data in order to assess the magnitude of any systematic increase of koc values in subsoil and to test an alternative model of subsoil sorption that could be useful in pesticide risk assessment and management. To this end, a database containing the results of batch sorption experiments for pesticides was compiled from published studies in the literature, which placed at least as much emphasis on measurements in subsoil horizons as in topsoil. The database includes 967 data entries from 46 studies and for 34 different active substances (15 non-ionic compounds, 13 weak acids, 6 weak bases). In order to minimize pH effects on sorption, data for weak acids and bases were only included if the soil pH was more than two units larger than the compound pKa. A simple empirical model, whereby the sorption constant is given as a power law function of the soil organic carbon content, gave good fits to most data sets. Overall, the apparent koc value, koc(app), for non-ionic compounds and weak bases roughly doubled as the soil organic carbon content decreased by a factor of ten. The typical increase in koc(app) was even larger for weak acids: on average koc(app) increased by a factor of six as soil organic carbon content decreased by a factor of ten. These results suggest the koc concept currently used in leaching models should be replaced by an alternative approach that gives a more realistic representation of pesticide sorption in subsoil. The model tested in this study appears to be widely applicable and simple enough to parameterize for risk assessment purposes. However, more data on subsoil sorption should first be included in the analysis to enable reliable estimation of worst-case percentile values of the power law exponent in the model.
NASA Astrophysics Data System (ADS)
Leifeld, Jens; Conen, Franz; Oberholzer, Hans Rudolf; Jochen, Mayer
2014-05-01
Soil carbon dynamics are controlled by the delicate balance between carbon inputs and outputs which both are co-regulated by land use and management (LUM) as important anthropogenic drivers. Upon land use change to cropland carbon stocks generally tend to decline but often the contribution of two opposing factors, namely changes in input and decomposition rates, to soil carbon stock changes is indistinguishable. Here we report on an ongoing cropland experiment in Zurich, Switzerland, named ZOFE (Zurich Organic Fertilization Experiment), established on former grassland in 1949. ZOFE encompasses a range of mineral and organic fertilization practices and a zero fertilizer treatment as control. The experiment has a block design with five replicates per treatment. We make use of productivity and fertilization gradients in selected treatments of the ZOFE trial to evaluate how low or high inputs (induced by differential yields and organic fertilization) may affect soil organic carbon storage and transformation. For the most recent sampling that also included subsoil down to 0.9 m, all properties were measured for every single replicate. Topsoil carbon storage declined after grassland conversion at rates of c. 0.2 t C ha-1 a-1, particularly in treatments with mineral fertilizer and high yields, and without fertilization and low yields. Organic matter amendments such as manure or compost could partially offset but not fully compensate some of the topsoil carbon loss. Over time the soil's delta 15N signature declined as well, probably due to increased atmospheric nitrogen deposition. It increased from the top- to the subsoil, indicating increasing microbial transformation, particularly with manure added. The soil's radiocarbon signature revealed distinct bomb peak patterns in all treatments but only in the topsoil. The 14C data confirmed that with higher productivity more recent organic matter was incorporated, both in top and subsoil. Because, in contrast to topsoil, subsoil carbon storage was similar among treatments, the results tentatively indicate that in the ZOFE trial higher subsoil carbon inputs, owing to high productivity and additional organic amendments, do not enhance subsoil carbon storage but higher inputs are counterbalanced by faster soil organic matter decomposition.
NASA Astrophysics Data System (ADS)
Petrosino, Paola; Sadeghi, Martiya; Andersson, Madelen; Albanese, Stefano; Dinelli, Enrico; Valera, Paolo; Ladenberger, Anna; Morris, George; Uhlbäck, Jo; Lima, Annamaria; De Vivo, Benedetto
2014-05-01
Scientific interest on Rare Earth Elements (REEs)-bearing media is increasing as a consequence of the rapidly growing demand of these important chemical resources, which are currently used in a large number of technical applications. In this study, Italian and Swedish REE data from the FOREGS database on topsoil and subsoils samples have been compared to the distribution of REEs in the GEMAS samples of agricultural soil (Ap), pertaining to regularly ploughed land to a depth of 20 cm. Principal Component Analysis (PCA) was carried out to identify patterns within both data sets. Investigation of the spatial distribution of REEs in FOREGS topsoil-subsoil and GEMAS Ap media for both countries revealed the prominent role of the geogenic component in the general REE geochemical pattern of the three solid media. Despite a similar REE content in the underlying parent material or bedrocks (alkaline igneous rocks, both intrusive and effusive in Italy, alkaline granites and pegmatites in Sweden), several distinct differences emerged between the two countries driven by climate, topography, age of the rock units and sediments, presence of mineralisations, type of soils and presence of glacial deposits. GEMAS agricultural soils form both countries show higher REEs contents than the corresponding subsoils and topsoils, which could be ascribed to the analytical method specifically set for REEs and the last generation ICP-MS instrument used by SGS Lab to analyze REEs in Ap soils. The REE content in Italian topsoil and subsoil is similar and there is a good agreement between the topsoils and Ap soils, which were collected from similar depth. Swedish subsoil is on the contrary more enriched in REEs with respect to topsoil, and Ap soils even display REE contents higher than subsoils. This anomalous REE concentrations in agricultural soil may originate from the fact that most of the arable land in Sweden has been located on glacial and postglacial deposits, rich in clay which has tendency to accumulate secondary REEs. We concluded that the fingerprints of anthropic activity due to agricultural activities does not influence the geogenic signal. Both in Italy and Sweden, in fact, REE trends in GEMAS agricultural soils are well comparable with those obtained for FOREGS soils sampled from unoccupied and undisturbed regions.
Progress report: effects of subsoiling study, Milford Ranger District, Plumas National Forest
John T. Kliejunas; William J. Otrosina
1997-01-01
Subsoiling is becoming a standard practice to alleviate detrimental soil compaction following biomass harvesting in eastside pine and mixed conifer forests in California. Compaction of soil following the harvesting can be detrimental to growth of residuals, to establishment of natural regeneration, and may change long-term soil productivity. The short and long-term...
System for plotting subsoil structure and method therefor
NASA Technical Reports Server (NTRS)
Narasimhan, K. Y.; Nathan, R.; Parthasarathy, S. P. (Inventor)
1980-01-01
Data for use in producing a tomograph of subsoil structure between boreholes is derived by pacing spaced geophones in one borehole, on the Earth surface if desired, and by producing a sequence of shots at spaced apart locations in the other borehole. The signals, detected by each of the geophones from the various shots, are processed either on a time of arrival basis, or on the basis of signal amplitude, to provide information of the characteristics of a large number of incremental areas between the boreholes. Such information is useable to produce a tomograph of the subsoil structure between the boreholes. By processing signals of relatively high frequencies, e.g., up to 100 Hz, and by closely spacing the geophones, a high resolution tomograph can be produced.
The development of a code of practice for single house on-site wastewater treatment in Ireland.
Gill, L W
2011-01-01
The performance of six separate percolation areas was intensively monitored to ascertain the attenuation effects of unsaturated subsoils with respect to on-site wastewater effluent: three sites receiving septic tank effluent, the other three sites receiving secondary treated effluent. The development of a biomat across the percolation areas receiving secondary treated effluent was restricted on these sites compared to those sites receiving septic tank effluent. This created significant differences in terms of the hydraulic loading on the percolation areas with implications for the transport and attenuation of indicator microorganisms and nitrogen down through the subsoils and into the groundwater. The results of this work have formed a large input into the production of a new Code of Practice Wastewater Treatment and Disposal Systems Serving Single Houses. This has led to changes in the design of on-site hydraulic loading from 180 L per capita per day (L/c.d) down to 150 L/c.d. The range of acceptable subsoils receiving septic tank effluent has narrowed for more highly permeable subsoils following a series of tracer studies using bacteriophages. However, the range has been extended for lower permeability subsoils (range 0.08 down to 0.06 m/d) receiving secondary treated effluent in order to encourage the effluent to spread further along the trenches. The maximum individual length of percolation trenches receiving secondary effluent has also been reduced to 10 m to encourage dispersion on a wider area. This paper thus highlights how research can directly feed into a Code of Practice.
Huang, Ming; Wu, Jin-Zhi; Li, You-Jun; Yao, Yu-Qing; Zhang, Can-Jun; Cai, Dian-Xiong; Jin, Ke
2009-06-01
A field experiment was conducted to study the effects of different tillage patterns, i.e., deep plowing once, no-tillage, subsoiling, and conventional tillage, on the flag leaf senescence and grain yield of winter wheat, as well as the soil moisture and nutrient status under dry farming. No-tillage and subsoiling increased the SOD and POD activities and the chlorophyll and soluble protein contents, decreased the MDA and O2(-.) contents, and postponed the senescence of flag leaf. Under non-tillage and subsoiling, the moisture content in 0-40 cm soil layer at anthesis and grain-filling stages was decreased by 4.13% and 6.23% and by 5.50% and 9.27%, respectively, and the contents of alkali-hydrolysable N, available P, and available K in this soil layer also increased significantly, compared with those under conventional tillage. Deep plowing once decreased the moisture content and increased the nutrients contents in 0-40 cm soil layer, but the decrement and increment were not significant. The post-anthesis biomass, post-anthesis dry matter translocation rate, and grain yield under no-tillage and subsoiling were 4.34% and 4.76%, 15.56% and 13.51%, and 10.22% and 9.26% higher than those under conventional tillage, respectively. It could be concluded that no-tillage and subsoiling provided better soil conditions for the post-anthesis growth of winter wheat, under which, the flag leaf senescence postponed, post-anthesis dry matter accumulation and translocation accelerated, and grain yield increased significantly, being the feasible tillage practices in dry farming winter wheat areas.
Rowland, S M; Prescott, C E; Grayston, S J; Quideau, S A; Bradfield, G E
2009-01-01
During oil-sands mining all vegetation, soil, overburden, and oil sand is removed, leaving pits several kilometers wide and up to 100 m deep. These pits are reclaimed through a variety of treatments using subsoil or a mixed peat-mineral soil cap. Using nonmetric multidimensional scaling and cluster analysis of measurements of ecosystem function, reclamation treatments of several age classes were compared with a range of natural forest ecotypes to discover which treatments had created ecosystems similar to natural forest ecotypes and at what age this occurred. Ecosystem function was estimated from bioavailable nutrients, plant community composition, litter decomposition rate, and development of a surface organic layer. On the reclamation treatments, availability of nitrate, calcium, magnesium, and sulfur were generally higher than in the natural forest ecotypes, while ammonium, P, K, and Mn were generally lower. Reclamation treatments tended to have more bare ground, grasses, and forbs but less moss, lichen, shrubs, trees, or woody debris than natural forests. Rates of litter decomposition were lower on all reclamation treatments. Development of an organic layer appeared to be facilitated by the presence of shrubs. With repeated applications of fertilizers, measured variables for the peat-mineral amendments fell within the range of natural variability at about 20 yr. An intermediate subsoil layer reduced the need for fertilizer and conditions resembling natural forests were reached about 15 yr after a single fertilizer application. Treatments over tailings sand receiving only one application of fertilizer appeared to be on a different trajectory to a novel ecosystem.
Effects of subsoiling on woody roots of Jeffrey pines on two different soil types
W.J. Otrosina; Shi-Jean S. Sung
1995-01-01
This study was initiated to determine the long term effects of subsoiling to alleviate soil compaction due to use of mechanized harvesting equipment in forest stands. Two stands having a predominance of 90 to 110 year old Jeffrey pines (Pinus jeffreyi Grev. & Balf.) were selected for this investigation. Each stand was located on the Milford...
Evaluating subsoiling and herbaceous weed control on shortleaf pine planted in retired farm land
John D. Kushla
2010-01-01
In March 2005, shortleaf pine was planted on retired fields of the Mississippi Agriculture and Forestry Experiment Station in Holly Springs. The objectives were to evaluate subsoiling and herbaceous weed control on first year seedling stocking, survival, and size. First year seedling measurements were made on stocking, survival, and size. Only results for first year...
Fertilizer and Mulch Improves Yellow-Poplar Growth on Exposed harsells Subsoils
John K. Francis
1977-01-01
Fertilizing and mulching of eroded Hartsells soil increased height and diameter of yellow-poplars. To see if chemical infertility of exposed Hartsells subsoils limits yellow-poplar growth and to test fertilizer and mulch as remedial agents, seedlings were planted on undisturbed soil, soil with the topsoil removed, and soil with the topsoil removed but mulched with leaf...
Attenuation of contaminants of coal pile leachate by interaction with subsoil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghuman, G.S.; Denham, M.E.
1996-09-01
Increased use of coal as energy source has resulted in its greater outdoor storage at electrical generation sites. Coal pile runoff (CPR) with its high concentrations of Fe, Al and sulfate leaches into subsoil and may adversely affect the quality of groundwater. During the summer, 1995, this study was conducted to determine the removal of CPR contaminants by subsoil around D-area electric plant at Savannah River Site (SRS). Groundwater samples from five monitoring wells were analyzed for physical and chemical parameters. Hydrolab Surveyor, TOC Analyzer, Dionex Ion Chromatograph and ICP-ES instruments were used for analysis. Results showed appreciable removal ofmore » CPR contaminants, sulfate, Fe, Al, Cr, Mn and Ni by the upper subsoil near the pile. The reductions in the concentrations of major contaminants in the distant wells relative to the near wells were from 12,947 to 1293 mg/L for sulfate, from 3.138 to 42 mg/L for Fe, and from 593 to 119 mg/L for Al. The study revealed the capacity of soil system to retain toxic elements of CPR leachate, which may lead to remedial actions.« less
NASA Astrophysics Data System (ADS)
Laceby, J. Patrick; Olley, Jon
2013-04-01
Moreton Bay, in South East Queensland, Australia, is a Ramsar wetland of international significance. A decline of the bay's ecosystem health has been primarily attributed to sediments and nutrients from catchment sources. Sediment budgets for three catchments indicated gully erosion dominates the supply of sediment in Knapp Creek and the Upper Bremer River whereas erosion from cultivated soils is the primary sediment source in Blackfellow Creek. Sediment tracing with fallout-radionuclides confirmed subsoil erosion processes dominate the supply of sediment in Knapp Creek and the Upper Bremer River whereas in Blackfellow Creek cultivated and subsoil sources contribute >90% of sediments. Other sediment properties are required to determine the relative sediment contributions of channel bank, gully and cultivated sources in these catchments. The potential of total organic carbon (TOC), total nitrogen (TN), and carbon and nitrogen stable isotopes (δ13C, δ15N) to conservatively discriminate between subsoil sediment sources is presented. The conservativeness of these sediment properties was examined through evaluating particle size variations in depth core soil samples and investigating whether they remain constant in source soils over two sampling occasions. Varying conservative behavior and source discrimination was observed. TN in the
Dike Strength Analysis on a Regional Scale Based On a Stochastic Subsoil Model
NASA Astrophysics Data System (ADS)
Koelewijn, A. R.; Vastenburg, E. W.
2013-12-01
About two-third of the Netherlands is protected against flooding by dikes and levees. The subsoil can be characterized by fluvial and marine sediments. Maintaining the safety of these dikes and levees is of vital importance. Insufficient safety is not permissible, but excessive safety would imply a waste of money and other resources. Therefore safety assessments are carried out on a regular basis. Over the past decades, a practice has grown to calculate a limited number of cross-sections, roughly one every 500 to 1000 meters. For this purpose, a representative cross-section is selected as an estimate of the most vulnerable surface geometry and the subsoil conditions determined from boreholes and cone penetration tests, for which slope stability and piping analyses are carried out. This is a time-consuming procedure which is not only expensive, but also neglects geological knowledge. A method to incorporate geological knowledge of an area, including updating on the basis of additional investigations, has been described in Koelewijn et al. [2011]. In addition, various groups have worked to incorporate geotechnical stability models and detailed Lidar-measurements of the surface into a more efficient and rational calculation process [Knoeff et al. 2011, Lam et al. 2013, van den Ham & Mastbergen, 2013]. Combining this experience with the 3D subsoil model opens possibilities for cost-effective additional soil investigations for those locations where ruling out unfavorable conditions really influences the decisions to be made regarding rejection and improvement, see the figure for examples of different subsoil profiles along a dike. The resulting system has been applied for semi-automated calculations of dikes in various parts of the Netherlands, totalling over 4000 km by now, and a part of the Mississippi levee system. [van den Ham & Mastbergen, 2013] G.A. van den Ham & D.R. Mastbergen, A semi-probabilistic assessment method for flow slides. AGU Fall meeting, 2013 [Knoeff et al. 2011] J.G. Knoeff, E.W. Vastenburg, G.A. van den Ham & J. Lopez de la Cruz, Automated levee flood risk management, 5th Int. Conf. on Flood Management, Tokyo, 2011 [Koelewijn et al. 2011] A.R. Koelewijn, G.A.M. Kruse & J. Pruiksma, Stochastic subsoil modelling - first set-up of the model and reliability analyses, report 12042000-002-HYE-0001, Deltares, Delft, 2011 [In Dutch] [Lam et al. 2013] K.S. Lam, P.W. Gill & L.W.A. Zwang, Implementation of new levee strength modules for continuous safety assessments, Comprehensive Flood Risk Managment, Taylor & Francis, London, 2013, 317-326. Dike sections with stochastic subsoil profiles.
Woodard, Kenneth R; Sollenberger, Lynn E; Sweat, Lewin A; Graetz, Donald A; Nair, Vimala D; Rymph, Stuart J; Walker, Leighton; Joo, Yongsung
2007-01-01
There is concern that P from dairy effluent sprayfields will leach into groundwater beneath Suwannee River basins in northern Florida. Our purpose was to describe the effects of dairy effluent irrigation on the movement of soil P and other nutrients within the upper soil profile of a sprayfield over three 12-mo cycles (April 1998-March 2001). Effluent P rates of 70, 110, and 165 kg ha(-1) cycle(-1) were applied to forages that were grown year-round. The soil is a deep, excessively drained sand (thermic, uncoated Typic Quartzipsamment). Mean P concentration in soil water below the rooting zone (152-cm depth) was < or = 0.1 mg L(-1) during 11 3-mo periods. Mehlich-1-extractable (M1) P, Al, and Ca in the topsoil increased over time but did not change in subsoil depths of 25 to 51, 51 to 71, 71 to 97, and 97 to 122 cm. Topsoil Ca increased as effluent rate increased. High Ca levels were found in dairy effluent (avg.: 305 mg L(-1)) and supplemental irrigation water (avg.: 145 mg L(-1)) which likely played a role in retaining P in the topsoil. An effect of effluent rate on P and Al concentrations in the topsoil was not detected, probably due to large and variable quantities present at project initiation. The P retention capacity (i.e., Al plus Fe) increased in the topsoil because Al increased. Dairy effluent contained Al (avg.: 31 mg L(-1)). Phosphorus saturation ratio (PSR) increased over time in the topsoil but not in subsoil layers. Regardless of effluent rate, the P retention capacity and PSR of subsoil, which contained 119 to 229 mg kg(-1) of Al, should be taken into account when assessing the risk of P moving below the rooting zone of most forage crops.
NASA Astrophysics Data System (ADS)
Lin, Y.; Prentice, S., III; Tran, T.; Bingham, N.; King, J. Y.; Chadwick, O.
2015-12-01
At the scale of hillslopes, topography strongly regulates soil formation, affecting hillslope hydrology and biological activities. Topographic control of soil formation is particularly strong for semi-arid landscapes where soil thickening is induced by pedoturbation and soil creep. Thus, terrain attributes hold great potential for modeling full profile soil C and N stocks at the hillslope scale in these landscapes. In this study, we developed predictions of grassland soil C and N stocks using digital terrain attributes scaled to the signal of site-specific hillslope geomorphic processes. We found that soil thickness was the major control of soil organic C and N stocks and was best predicted by mean curvature. This curvature dependency of soil thickness affected prediction of organic C and N stocks because of the C and N added by taking subsoil into account. We also found that curvature was positively correlated with depth to carbonate reflecting drier soil conditions in convex hillslope positions and wetter soil conditions in concave areas. Slope aspect also had a marginal effect on soil C and N stocks; soil organic C and N stocks on the north-facing slope tended to be higher than those on the south-facing slope. We found that terrain attributes at medium resolutions (8 to 16 m) were most effective in modeling soil C and N stocks. Overall, terrain attributes explained 61% of the variation in soil thickness and 49% of the variation in soil organic C stock. Our results suggest that curvature-induced soil thickening, coupled with aspect, likely exerts a first-order control on soil organic C and N accumulation rates, and these changes occur predominantly in subsoil. Thus our data highlight the importance of subsoil in mapping soil C and N stocks and other soil properties. Our model also demonstrates how scale-driven analysis may guide soil C and N prediction in other hillslope dominated regions.
Sun, Min; Gao, ZhiQiang; Zhao, WeiFeng; Deng, LianFeng; Deng, Yan; Zhao, HongMei; Ren, AiXia; Li, Gang; Yang, ZhenPing
2013-01-01
To provide a new way to increase water storage and retention of dryland wheat, a field study was conducted at Wenxi experimental site of Shanxi Agricultural University. The effect of subsoiling in fallow period on soil water storage, accumulation of proline, and formation of grain protein after anthesis were determined. Our results showed that subsoiling in fallow period could increase water storage in the 0-300 cm soil at pre-sowing stage and at anthesis stage with low or medium N application, especially for the 60-160 cm soil. However, the proline content, glutamine synthetase (GS) activity, glutamate dehydrogenase (GDH) activity in flag leaves and grains were all decreased by subsoiling in fallow period. In addition, the content of albumin, gliadin, and total protein in grains were also decreased while globulin content, Glu/Gli, protein yield, and glutelin content were increased. With N application increasing, water storage of soil layers from 20 to 200 cm was decreased at anthesis stage. High N application resulted in the increment of proline content and GS activity in grains. Besides, correlation analysis showed that soil storage in 40-160 cm soil was negatively correlated with proline content in grains; proline content in grains was positively correlated with GS and GDH activity in flag leaves. Contents of albumin, globulin and total protein in grains were positively correlated with proline content in grains and GDH activity in flag leaves. In conclusion, subsoiling in fallow period, together with N application at 150 kg·hm(-2), was beneficial to increase the protein yield and Glu/Gli in grains which improve the quality of wheat.
Ujaczki, Éva; Feigl, Viktória; Molnár, Mónika; Vaszita, Emese; Uzinger, Nikolett; Erdélyi, Attila; Gruiz, Katalin
2016-06-01
Red mud, the by-product of aluminum production, has been regarded as a problematic residue all over the world. Its storage involves risks as evidenced by the Ajka red mud spill, an accident in Hungary where the slurry broke free, flooding the surrounding areas. As an immediate remediation measure more than 5cm thick red mud layer was removed from the flooded soil surface. The removed red mud and soil mixture (RMSM) was transferred into the reservoirs for storage. In this paper the application of RMSM is evaluated in a field study aiming at re-utilizing waste, decreasing cost of waste disposal and providing a value-added product. The purpose was to investigate the applicability of RMSM as surface layer component of landfill cover systems. The field study was carried out in two steps: in lysimeters and in field plots. The RMSM was mixed at ratios ranging between 0 and 50% w/w with low quality subsoil (LQS) originally used as surface layer of an interim landfill cover. The characteristics of the LQS+RMSM mixtures compared to the subsoil (LQS) and the RMSM were determined by physical-chemical, biological and ecotoxicological methods. The addition of RMSM to the subsoil (LQS) at up to 20% did not result any ecotoxic effect, but it increased the water holding capacity. In addition, the microbial substrate utilization became about triple of subsoil (LQS) after 10months. According to our results the RMSM mixed into subsoil (LQS) at 20% w/w dose may be applied as surface layer of landfill cover systems. Copyright © 2016. Published by Elsevier B.V.
Crop response to deep tillage - a meta-analysis
NASA Astrophysics Data System (ADS)
Schneider, Florian; Don, Axel; Hennings, Inga; Schmittmann, Oliver; Seidel, Sabine J.
2017-04-01
Subsoil, i.e. the soil layer below the topsoil, stores tremendous stocks of nutrients and can keep water even under drought conditions. Deep tillage may be a method to enhance the plant-availability of subsoil resources. However, in field trials, deep tillage effects on crop yields were inconsistent. Therefore, we conducted a meta-analysis of crop yield response to subsoiling, deep ploughing and deep mixing of soil profiles. Our search resulted in 1530 yield comparisons following deep and conventional control tillage on 67 experimental cropping sites. The vast majority of the data derived from temperate latitudes, from trials conducted in the USA (679 observations) and Germany (630 observations). On average, crop yield response to deep tillage was slightly positive (6% increase). However, individual deep tillage effects were highly scattered including about 40% yield depressions after deep tillage. Deep tillage on soils with root restrictive layers increased crop yields about 20%, while soils containing >70% silt increased the risk of yield depressions following deep tillage. Generally, deep tillage effects increased with drought intensity indicating deep tillage as climate adaptation measure at certain sites. Our results suggest that deep tillage can facilitate the plant-availability of subsoil nutrients, which increases crop yields if (i) nutrients in the topsoil are growth limiting, and (ii) deep tillage does not come at the cost of impairing topsoil fertility. On sites with root restrictive soil layers, deep tillage can be an effective measure to mitigate drought stress and improve the resilience of crops. However, deep tillage should only be performed on soils with a stable structure, i.e. <70% silt content. We will discuss the contribution of deep tillage options to enhance the sustainability of agricultural production by facilitating the uptake of nutrients and water from the subsoil.
Sun, Min; Gao, ZhiQiang; Zhao, WeiFeng; Deng, LianFeng; Deng, Yan; Zhao, HongMei; Ren, AiXia; Li, Gang; Yang, ZhenPing
2013-01-01
To provide a new way to increase water storage and retention of dryland wheat, a field study was conducted at Wenxi experimental site of Shanxi Agricultural University. The effect of subsoiling in fallow period on soil water storage, accumulation of proline, and formation of grain protein after anthesis were determined. Our results showed that subsoiling in fallow period could increase water storage in the 0–300 cm soil at pre-sowing stage and at anthesis stage with low or medium N application, especially for the 60–160 cm soil. However, the proline content, glutamine synthetase (GS) activity, glutamate dehydrogenase (GDH) activity in flag leaves and grains were all decreased by subsoiling in fallow period. In addition, the content of albumin, gliadin, and total protein in grains were also decreased while globulin content, Glu/Gli, protein yield, and glutelin content were increased. With N application increasing, water storage of soil layers from 20 to 200 cm was decreased at anthesis stage. High N application resulted in the increment of proline content and GS activity in grains. Besides, correlation analysis showed that soil storage in 40–160 cm soil was negatively correlated with proline content in grains; proline content in grains was positively correlated with GS and GDH activity in flag leaves. Contents of albumin, globulin and total protein in grains were positively correlated with proline content in grains and GDH activity in flag leaves. In conclusion, subsoiling in fallow period, together with N application at 150 kg·hm−2, was beneficial to increase the protein yield and Glu/Gli in grains which improve the quality of wheat. PMID:24098371
F. D. McBride; J. W. Van Sambeek
1995-01-01
Vegetation management with glyphosate and simazine proved to be more effective than preplant subsoiling or irrigation for achieving acceptable walnut biomass growth on an upland old field site (SI = 70 for white oak). In 1980, we direct seeded germinating black walnut seed on an upland, slightly eroded, old field ridge with a 45 to 60 cm deep fragipan. We tested all...
Geosynthetic clay liners shrinkage under simulated daily thermal cycles.
Sarabadani, Hamid; Rayhani, Mohammad T
2014-06-01
Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Le Guern, Cecile; Baudouin, Vivien; Conil, Pierre
2017-04-01
Recently, European cities have faced several changes including deindustrialization and population increase. To limit urban sprawl, urban densification is preferred. It conducts to (re)develop available areas such as brownfields. Although these areas can be attractive for housing due to their location (in proximity to the city centre or to a riverside), their soils and subsoils are often contaminated. They are therefore potentially harmful for human health and the environment, and potentially costly to remediate. Currently, in case of contamination suspicion, depth geochemical characterization of urban soil and subsoil are carried out at site scale. Nevertheless, large redevelopment project occur at quarter to city scale. It appears therefore useful to acquire the preliminary knowledge on the structure and quality of soil and subsoils, as well as on the potential sources of contamination at quarter to city scale. In the frame of the Ile de Nantes (France) redevelopment project, we considered more particularly anthropogenic deposits and former industrial activities as main sources of contamination linked to human activities. To face the low traceability of the use of anthropogenic deposits and the lack of synthesis of former industrial activities, we carried out a historical study, synthetizing the information spread in numerous archive documents to spatialize the extent of the deposits and of the former activities. In addition we developed a typology of made grounds according to their contamination potential to build a 3D geological model with a geochemical coherence. In this frame, we valorized existing borehole descriptions coming mainly from pollution diagnosis and geotechnical studies. We also developed a methodology to define urban baseline compatibility levels using the existing analytical data at depth from pollution diagnosis. These data were previously gathered in a local geodatabase towards with borehole descriptions (more than 2000 borehole descriptions, more than 1800 analyzed samples, almost 100 000 analyzed parameters). The potential quality of soil and subsoil was spatialized in 2D and 3D on the basis of anthropogenic deposits structure and typology as well as of the potential sources of contamination linked to former industrial activities. Volumes were also calculated to help the developer anticipating the management of excavated materials. Comparison with effective soil and subsoil quality (existing chemical data) shows fairly good anticipation of contamination problems, confirming the interest of spatializing the historical anthropogenic activities to anticipate the quality of urban soil and subsoil and guide city scale mapping. Urban geochemical compatibility levels will be used operationally to enhance the reuse of excavated materials. A better knowledge of soils and subsoils at depth is very useful to optimize urban redevelopment projects, anticipating contamination problems, and managing excavated materials (e.g. local reuse possibilities, disposal costs etc.). The potential economic, environmental and social consequences render it essential for urban sustainable development. 3D geochemical characterization of soil and subsoil for urban (re)development is an ambitious task. Rarely carried out until now, it needs improved development of acquisition, management, visualisation and use of data.
Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.
Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D
2012-11-15
This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights reserved.
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2015-03-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2014-11-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
Reformulation of the CBR Procedure. Report 1: Basic Report
2012-04-01
originate a superior method of compaction control, the modified density test associated with the name of Ralph R. Proctor . In time, Porter was able to...enough for the subsoil moisture to equalize. Colonel Bragdon in the South Atlantic Division was to choose an airstrip built on sandy clay , a fairly good...subsoil; Colonel Scott in the Southwestern Division, one of lean black clay , a rather poor foundation; Colonel Elliott in the Upper Mississippi
NASA Astrophysics Data System (ADS)
Spielvogel, Sandra; Steingräber, Laura; Schleuß, Per; Kuzyakov, Yakov; Guggenberger, Georg
2015-04-01
Kobresia pastures of the Tibetan Plateau represent the world's largest alpine ecosystem. Moderate husbandry on Kobresia pastures is beneficial for the storage of soil organic carbon (OC), nitrogen (N) and other nutrients and prevents erosion by establishment of sedge-turf root mats with high OC allocation rates below ground. However, undisturbed root mats are affected by freezing and thawing processes, which cause initial ice cracks. As a consequence decomposition of root mat layers will be accelerated and current sedentarization programs with concomitant increased grazing intensity may additionally enhance root mat degradation. Finally, cracks are enlarged by water and wind erosion as well as pika activities until bare soil surface areas without root mat horizons occur. The aim of this study was to understand the impact of the root mat layer on soil organic carbon stabilization and microbial functioning depending on soil depths and to predict future changes (OC, N and nutrient losses, soil microbial functioning in SOM transformation) by overgrazing and climate change. We investigated the mineral soil below Kobresia root mats along a false time degradation sequence ranging from stage 1 (intact root mat) to stage 4 (mats with large cracks and bare soil patches). Vertical gradients of δ13C values, neutral sugar, cutin and suberin contents as well as microbial biomass estimated by total phospholipid fatty acid (PLFA), microbial community composition (PLFA profiles) and activities of six extracellular enzymes involved in the C, N, and P cycle were assessed. Soil OC and N contents as well as C/N ratios indicate an increasing illuviation of topsoil material into the subsoil with advancing root mat degradation. This was confirmed by more negative δ13C values as well as significantly (p ≤ 0.05) increasing contributions of cutin derived hydroxy fatty acids to OC in the subsoils from degradation stages 1 to 4. PLFA profiles were surprisingly similar in the subsoils of degradation stages 1, 2 and 3 although OC contents and composition in the subsoil changed progressively from stage 1 to 4. Only the PLFA profiles of stage 4 differed from those of the other subsoils, suggesting that microbial communities were mainly controlled by other factors than C and N contents and SOM composition. These findings were also confirmed by the activities of β-glucosidase, xylanase, amino-peptidases and proteases. Those enzyme activities were highest in the subsoil of degradation stage 4, whereas degradation stages 2 and 3 showed low enzyme activities in the subsoil if related to soil OC amount and composition. We conclude that pasture degradation decreases not only mechanical protection of soil surface by Kobresia root mats, but also changes their biochemical and microbial functions.
Spatial-temporal variability in GHG fluxes and their functional interpretation in RusFluxNet
NASA Astrophysics Data System (ADS)
Vasenev, Ivan; Meshalkina, Julia; Sarzhanov, Dmitriy; Mazirov, Ilia; Yaroslavtsev, Alex; Komarova, Tatiana; Tikhonova, Maria
2016-04-01
High spatial and temporal variability is mutual feature for most modern boreal landscapes in the European Territory of Russia. This variability is result of their relatively young natural and land-use age with very complicated development stories. RusFluxNet includes a functionally-zonal set of representative natural, agricultural and urban ecosystems from the Central Forest Reserve in the north till the Central Chernozemic Reserve in the south (more than 1000 km distance). Especial attention has been traditionally given to their soil cover and land-use detailed variability, morphogenetic and functional dynamics. Central Forest Biosphere Reserve (360 km to North-West from Moscow) is the principal southern-taiga one in the European territory of Russia with long history of mature spruce ecosystem structure and dynamics investigation. Our studies (in frame of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) have been concentrated on the soil carbon stocks and GHG fluxes spatial variability and dynamics due to dominated there windthrow and fallow-forest successions. In Moscow RTSAU campus gives a good possibility to develop the ecosystem and soil monitoring of GHG fluxes in the comparable sites of urban forest, field crops and lawn ecosystems taking especial attention on their meso- and micro-relief, soil cover patterns and subsoil, vegetation and land-use technologies, temperature and moisture spatial and temporal variability. In the Central Chernozemic Biosphere Reserve and adjacent areas we do the comparative analysis of GHG fluxes and balances in the virgin and mowed meadow-steppe, forest, pasture, cropland and three types of urban ecosystems with similar subsoil and relief conditions. The carried out researches have shown not only sharp (in 2-5 times) changes in GHG ecosystem and soil fluxes and balances due to seasonal and daily microclimate variation, vegetation and crop development but their essential (in 2-4 times) spatial variability due to different meso- or micro-relief forms, natural or man-made succession studies, topsoil texture or organic matter state, subsoil or perched groundwater features. Zonal, seasonal and functional subdividing the monitoring data allows essentially increase the regression links between GHG fluxes and air or soil temperature and moisture (to 0.75-0.87) that is very important for their modeling and prediction. In taiga and mix-forest zones usually there is stronger effect on GHG fluxes by air temperature than soil one due to comparatively thin (from 3 till 10 cm) layer of principal soil organic and/or humus-accumulative horizons with maximum biological activity that usually determines the total rate of GHG soil fluxes. Unfavorable seasonal conditions (dry season or low temperature) determine essential (in 1.5-2 times) decreasing not only in soil GHG fluxes but in level of their spatial variability, intraseasonal and daily dynamics too. These trends are most obvious in case of more open and sensitive to the external factors ecosystems, for example in case of industrial area lawns or at the first stages of the windthrow or fallow-forest successions. Understanding the principal regional and land-use-determined regularities of spatial and temporal changes in ecosystem and soil GHG fluxes help better modeling them in the process of spatial intra- and extrapolations, seasonal and interseasonal predictions, taking into attention basic and current principal ecological factors limiting GHG fluxes and balances. Their introduction in the ecological or agroecological models and land-use decision support systems allows improve the quality of environmental/agroecological monitoring and control not only for GHG emission but also for soil organic matter conservation, manure and nitrogen fertilizer application that is often crucially important for sustainable rural development and profitable farming.
Constraining the subsoil carbon source to cave-air CO2 and speleothem calcite in central Texas
NASA Astrophysics Data System (ADS)
Bergel, Shelly J.; Carlson, Peter E.; Larson, Toti E.; Wood, Chris T.; Johnson, Kathleen R.; Banner, Jay L.; Breecker, Daniel O.
2017-11-01
Canonical models for speleothem formation and the subsurface carbon cycle invoke soil respiration as the dominant carbon source. However, evidence from some karst regions suggests that belowground CO2 originates from a deeper, older source. We therefore investigated the carbon sources to central Texas caves. Drip-water chemistry of two caves in central Texas implies equilibration with calcite at CO2 concentrations (PCO2_sat) higher than the maximum CO2 concentrations observed in overlying soils. This observation suggests that CO2 is added to waters after they percolate through the soils, which requires a subsoil carbon source. We directly evaluate the carbon isotope composition of the subsoil carbon source using δ13C measurements on cave-air CO2, which we independently demonstrate has little to no contribution from host rock carbon. We do so using the oxidative ratio, OR, defined as the number of moles of O2 consumed per mole of CO2 produced during respiration. However, additional belowground processes that affect O2 and CO2 concentrations, such as gas-water exchange and/or diffusion, may also influence the measured oxidative ratio, yielding an apparent OR (ORapparent). Cave air in Natural Bridge South Cavern has ORapparent values (1.09 ± 0.06) indistinguishable from those expected for respiration alone (1.08 ± 0.06). Pore space gases from soils above the cave have lower values (ORapparent = 0.67 ± 0.05) consistent with respiration and gas transport by diffusion. The simplest explanation for these observations is that cave air in NB South is influenced by respiration in open-system bedrock fractures such that neither diffusion nor exchange with water influence the composition of the cave air. The radiocarbon activities of NB South cave-air CO2 suggest the subsoil carbon source is hundreds of years old. The calculated δ13C values of the subsoil carbon source are consistent with tree-sourced carbon (perhaps decomposing root matter), the δ13C values of which have shifted during industrialization due to changes in the δ13C values and concentrations of atmospheric CO2. Seasonal variations in PCO2_sat in most of the drip waters suggest that these waters exchange with ventilated bedrock fractures in the epikarst, implying that the subsoil CO2 source contributes carbon to speleothems.
Yield Response of Spring Maize to Inter-Row Subsoiling and Soil Water Deficit in Northern China.
Liu, Zhandong; Qin, Anzhen; Zhao, Ben; Ata-Ul-Karim, Syed Tahir; Xiao, Junfu; Sun, Jingsheng; Ning, Dongfeng; Liu, Zugui; Nan, Jiqin; Duan, Aiwang
2016-01-01
Long-term tillage has been shown to induce water stress episode during crop growth period due to low water retention capacity. It is unclear whether integrated water conservation tillage systems, such asspringdeepinter-row subsoiling with annual or biennial repetitions, can be developed to alleviate this issue while improve crop productivity. Experimentswere carried out in a spring maize cropping system on Calcaric-fluvicCambisolsatJiaozuoexperimentstation, northern China, in 2009 to 2014. Effects of threesubsoiling depths (i.e., 30 cm, 40 cm, and 50 cm) in combination with annual and biennial repetitionswasdetermined in two single-years (i.e., 2012 and 2014)againstthe conventional tillage. The objectives were to investigateyield response to subsoiling depths and soil water deficit(SWD), and to identify the most effective subsoiling treatment using a systematic assessment. Annualsubsoiling to 50 cm (AS-50) increased soil water storage (SWS, mm) by an average of8% in 0-20 cm soil depth, 19% in 20-80 cm depth, and 10% in 80-120 cm depth, followed by AS-40 and BS-50, whereas AS-30 and BS-30 showed much less effects in increasing SWS across the 0-120 cm soil profile, compared to the CK. AS-50 significantly reduced soil water deficit (SWD, mm) by an average of123% during sowing to jointing, 318% during jointing to filling, and 221% during filling to maturity, compared to the CK, followed by AS-40 and BS-50. An integrated effect on increasing SWS and reducing SWD helped AS-50 boost grain yield by an average of 31% and biomass yield by 30%, compared to the CK. A power function for subsoiling depth and a negative linear function for SWD were used to fit the measured yields, showing the deepest subsoiling depth (50 cm) with the lowest SWD contributed to the highest yield. Systematic assessment showed that AS-50 received the highest evaluation index (0.69 out of 1.0) among all treatments. Deepinter-row subsoilingwith annual repetition significantly boosts yield by alleviating SWD in critical growth period and increasing SWS in 20-80 cm soil depth. The results allow us to conclude that AS-50 can be adopted as an effective approach to increase crop productivity, alleviate water stress, and improve soil water availability for spring maize in northern China.
Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields
NASA Astrophysics Data System (ADS)
Kimura, M.
2004-12-01
Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were leached from the plow layer by percolating water amounted to 170 kgC ha-1 in a Japanese rice field, among which 120 kgC of organic materials were adsorbed in the subsoil layer between 13 and 40 cm depth.
Change in Stiffness of Pavement Layers in the Linear Discontinuous Deformation Area
NASA Astrophysics Data System (ADS)
Grygierek, Marcin
2017-10-01
The underground mining exploitation causes deformations on the surface of the area which are classified as continuous or discontinuous. Mining deformations cause loosening or compression of the subsoil. Loosening has an impact on the reduction of the subsoil stiffness. As a result the reduction of subsoil stiffness causes loosening of construction layers built in that subsoil. Pavement is a specific case. If there happens to be loosening then the fatigue life of pavement is reduced and premature damages can be observed such as fatigue cracks or/and structural deformation. Discontinuous deformations are an especially interesting case. They not only cause the reduction of the stiffness of the subsoil and pavement layers but also cause rapid deterioration in roughness. Change of roughness is very dangerous especially on fast roads such as a highway. Lately there can be observed the so called linear discontinuous surface deformations in the lanes in the mining area. Unfortunately, the ‘in situ’ research, presenting experiments on the effect of linear discontinuous deformations on the pavement, is in short supply. It is especially crucial with regard to the design of pavement reinforcement and the specification of optimal length of the reinforced part of the road. The article presents the results of ‘in situ’ tests carried out on the chosen pavements where the so called linear discontinuous surface deformation has appeared. The genesis of the damage is connected with the underground mining exploitation. Falling Weight Deflectometer (FWD) has been used in researches. Measuring points were carried out with high frequency which helped to acquire a very interesting distribution of deflections. The distribution of deflections well shows the impact of linear discontinuous deformation on the changes in stiffness pavement layers. In the analysis of data from FWD there has been used back calculation which worked modulus of layers out. The results of researches and analysis have allowed to specify the scale of stiffness reduction of subsoil and pavement layers and, above all, to specify a minimal area of reinforcement. Therefore, the results of the analysis can be very helpful in determining the range of reinforcement as well as designing reinforcement. Of course, researches should be continued for better knowledge about the impact of discontinuous deformations on pavement.
The carbon count of 2000 years of rice cultivation.
Kalbitz, Karsten; Kaiser, Klaus; Fiedler, Sabine; Kölbl, Angelika; Amelung, Wulf; Bräuer, Tino; Cao, Zhihong; Don, Axel; Grootes, Piet; Jahn, Reinhold; Schwark, Lorenz; Vogelsang, Vanessa; Wissing, Livia; Kögel-Knabner, Ingrid
2013-04-01
More than 50% of the world's population feeds on rice. Soils used for rice production are mostly managed under submerged conditions (paddy soils). This management, which favors carbon sequestration, potentially decouples surface from subsurface carbon cycling. The objective of this study was to elucidate the long-term rates of carbon accrual in surface and subsurface soil horizons relative to those of soils under nonpaddy management. We assessed changes in total soil organic as well as of inorganic carbon stocks along a 2000-year chronosequence of soils under paddy and adjacent nonpaddy management in the Yangtze delta, China. The initial organic carbon accumulation phase lasts much longer and is more intensive than previously assumed, e.g., by the Intergovernmental Panel on Climate Change (IPCC). Paddy topsoils accumulated 170-178 kg organic carbon ha(-1) a(-1) in the first 300 years; subsoils lost 29-84 kg organic carbon ha(-1) a(-1) during this period of time. Subsoil carbon losses were largest during the first 50 years after land embankment and again large beyond 700 years of cultivation, due to inorganic carbonate weathering and the lack of organic carbon replenishment. Carbon losses in subsoils may therefore offset soil carbon gains or losses in the surface soils. We strongly recommend including subsoils into global carbon accounting schemes, particularly for paddy fields. © 2012 Blackwell Publishing Ltd.
Post-mining deterioration of bauxite overburdens in Jamaica: storage methods or subsoil dilution?
NASA Astrophysics Data System (ADS)
Harris, Mark A.; Omoregie, Samson N.
2008-03-01
Rapid degradation of disturbed soil from a karst bauxite mine in Jamaica was recorded. Substantial macronutrient losses were incurred during a short (1 month) or a long (12 months) storage of the replaced topsoils during frequent wet/dry changes. The results suggested very high rates (>70% in the first year) of soil degradation from storage, alongside moderate rates (30%) within the same storage dump. However, higher levels of soil organic matter (SOM) were indicated just below the surface, compared with the surface horizons. It was unlikely that under a high leaching humid tropical rainfall regime, natural degradation processes could have re-emplaced such material firmly intact in the 15-30 cm zone. It was therefore concluded that these SOM anomalies were due to mechanical dilution of surface soil with subsoil material during overburden removal and emplacement rather than from long storage. Increasing the soil organic content during storage could be one corrective approach. However, it is far less costly to exercise greater care to apply more precise overburden removal and emplacement techniques initially, than it is to correct the results of topsoil contamination with subsoil. Although this study was limited to one mine, in the context of imminent large-scale mining expansion and current practices, further investigations are needed to accurately ascertain the proportion of similar subsoil contamination in other bauxite-mined sites.
Analysis of Causes of Uplift Anomalies in the Čierny Váh Subsoil
NASA Astrophysics Data System (ADS)
Bednárová, Emília; Grambličková, Danka; Škvarka, Juraj; Majerčák, Vlastimil; Slávik, Ivan
2017-12-01
The pumped storage hydropower plant of Čierny Váh was created by means of damming up the valley of the Čierny Váh River. The dam is 18.5 m high above terrain and 375 m long in the dam’s crest. Total capacity of the reservoir is 5.1 million m3. Complicated geological conditions in the subsoil of dam’s body - fractured dolomite with local occurrence of tectonic breccia and clays, with the occurrence of intense disturbances - called for the construction of the grouting curtain in the dam’s subsoil. Its depth is about 20 in the area of the riverine plain, and about 60 m in the areas of abutments. During foregoing operations of the structure, more than 30 years, local anomalies in the uplift development in the right abutment’s subsoil of the lower reservoir dam were recorded. Their abnormally high values on the downstream side of grouting curtain have become the subject of extensive discussion and a stimulus for its remediation. To ensure reliable operation of the hydraulic structure a comprehensive analysis of the impact of the long-term operation of the reservoir on the dam safety was carried out. This included an examination of the causes of anomalous development of uplifts using FEM numerical modelling. The paper presents obtained results from this analysis.
Wild, Birgit; Schnecker, Jörg; Alves, Ricardo J. Eloy; Barsukov, Pavel; Bárta, Jiří; Čapek, Petr; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Rusalimova, Olga; Šantrůčková, Hana; Shibistova, Olga; Urich, Tim; Watzka, Margarete; Zrazhevskaya, Galina; Richter, Andreas
2014-01-01
Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM (“priming effect”). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze–thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM stored in deeper layers of permafrost soils, with possible repercussions on the global climate. PMID:25089062
Jarvis, Nicholas
2016-01-01
Models used to assess leaching of pesticides to groundwater still rely on the sorption koc value, even though its limitations have been known for several decades, especially for soils of low organic carbon content (i.e. subsoils). This is mainly because the general applicability of any improved model approach that is also simple enough to use for regulatory purposes has not been demonstrated. The objective of this study was to test and compare alternative models of sorption that could be useful in pesticide risk assessment and management. To this end, a database containing the results of batch sorption experiments for pesticides was compiled from published studies in the literature, which placed at least as much emphasis on measurements in subsoil horizons as in topsoil. The database includes 785 data entries from 34 different published studies and for 21 different active substances. Overall, the apparent koc value, koc(app), roughly doubled as the soil organic carbon content decreased by a factor of ten. Nevertheless, in nearly half of the individual datasets, a constant koc value proved to be an adequate model. Further analysis showed that significant increases in koc(app) in subsoil were found primarily for the more weakly adsorbing compounds (koc values
Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development.
Mobley, Megan L; Lajtha, Kate; Kramer, Marc G; Bacon, Allan R; Heine, Paul R; Richter, Daniel Deb
2015-02-01
Reforestation of formerly cultivated land is widely understood to accumulate above- and belowground detrital organic matter pools, including soil organic matter. However, during 40 years of study of reforestation in the subtropical southeastern USA, repeated observations of above- and belowground carbon documented that significant gains in soil organic matter (SOM) in surface soils (0-7.5 cm) were offset by significant SOM losses in subsoils (35-60 cm). Here, we extended the observation period in this long-term experiment by an additional decade, and used soil fractionation and stable isotopes and radioisotopes to explore changes in soil organic carbon and soil nitrogen that accompanied nearly 50 years of loblolly pine secondary forest development. We observed that accumulations of mineral soil C and N from 0 to 7.5 cm were almost entirely due to accumulations of light-fraction SOM. Meanwhile, losses of soil C and N from mineral soils at 35 to 60 cm were from SOM associated with silt and clay-sized particles. Isotopic signatures showed relatively large accumulations of forest-derived carbon in surface soils, and little to no accumulation of forest-derived carbon in subsoils. We argue that the land use change from old field to secondary forest drove biogeochemical and hydrological changes throughout the soil profile that enhanced microbial activity and SOM decomposition in subsoils. However, when the pine stands aged and began to transition to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth eased due to pine mortality, and subsoil organic matter levels stabilized. This study emphasizes the importance of long-term experiments and deep measurements when characterizing soil C and N responses to land use change and the remarkable paucity of such long-term soil data deeper than 30 cm. © 2014 John Wiley & Sons Ltd.
Retention and loss of water extractable carbon in soils: effect of clay properties.
Nguyen, Trung-Ta; Marschner, Petra
2014-02-01
Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.
Steering mechanism for a subsoil boring apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinnan, F.R.
This paper describes a subsoil boring apparatus. It comprises: a rotatable, steerable boring assembly; motor means for producing rotary motion; pipe string means coupled to the motor means and the boring assembly to import rotation thereto; and impacting means coupled to the motor means to apply impact forces to the pipe string means to improve the steerability of the boring assembly wherein only on of the motor means and the impact means can be applied to the k pipe string means at one time.
NASA Astrophysics Data System (ADS)
Retsky, Michael
2008-04-01
Explosively formed projectiles (EFP) are a major problem in terrorism and asymmetrical warfare. EFPs are often triggered by ordinary infrared motion detectors. A potential weak link is that such electronics are not hardened to ionizing radiation and can latch-up or enter other inoperative states after exposure to a single short event of ionizing radiation. While these can often be repaired with a power restart, they also can produce shorts and permanent damage. A problem of course is that we do not want to add radiation exposure to the long list of war related hazards. Biological systems are highly sensitive to integrated dosage but show no particular sensitivity to short pulses. There may be a way to generate short pulsed subsoil radiation to deactivate concealed electronics without introducing radiation hazards to military personnel and civilian bystanders. Electron beams of 30 MeV that can be produced by portable linear accelerators (linacs) propagate >20 m in air and 10-12 cm in soil. X-radiation is produced by bremsstrahlung and occurs subsoil beneath the point of impact and is mostly forward directed. Linacs 1.5 m long can produce 66 MWatt pulses of subsoil x-radiation 1 microsecond or less in duration. Untested as yet, such a device could be mounted on a robotic vehicle that precedes a military convoy and deactivates any concealed electronics within 10-20 meters on either side of the road.
Uddin, Shihab; Löw, Markus; Parvin, Shahnaj; Fitzgerald, Glenn J; Tausz-Posch, Sabine; Armstrong, Roger; O'Leary, Garry; Tausz, Michael
2018-01-01
Through stimulation of root growth, increasing atmospheric CO2 concentration ([CO2]) may facilitate access of crops to sub-soil water, which could potentially prolong physiological activity in dryland environments, particularly because crops are more water use efficient under elevated [CO2] (e[CO2]). This study investigated the effect of drought in shallow soil versus sub-soil on agronomic and physiological responses of wheat to e[CO2] in a glasshouse experiment. Wheat (Triticum aestivum L. cv. Yitpi) was grown in split-columns with the top (0-30 cm) and bottom (31-60 cm; 'sub-soil') soil layer hydraulically separated by a wax-coated, root-penetrable layer under ambient [CO2] (a[CO2], ∼400 μmol mol-1) or e[CO2] (∼700 μmol mol-1) [CO2]. Drought was imposed from stem-elongation in either the top or bottom soil layer or both by withholding 33% of the irrigation, resulting in four water treatments (WW, WD, DW, DD; D = drought, W = well-watered, letters denote water treatment in top and bottom soil layer, respectively). Leaf gas exchange was measured weekly from stem-elongation until anthesis. Above-and belowground biomass, grain yield and yield components were evaluated at three developmental stages (stem-elongation, anthesis and maturity). Compared with a[CO2], net assimilation rate was higher and stomatal conductance was lower under e[CO2], resulting in greater intrinsic water use efficiency. Elevated [CO2] stimulated both above- and belowground biomass as well as grain yield, however, this stimulation was greater under well-watered (WW) than drought (DD) throughout the whole soil profile. Imposition of drought in either or both soil layers decreased aboveground biomass and grain yield under both [CO2] compared to the well-watered treatment. However, the greatest 'CO2 fertilisation effect' was observed when drought was imposed in the top soil layer only (DW), and this was associated with e[CO2]-stimulation of root growth especially in the well-watered bottom layer. We suggest that stimulation of belowground biomass under e[CO2] will allow better access to sub-soil water during grain filling period, when additional water is converted into additional yield with high efficiency in Mediterranean-type dryland agro-ecosystems. If sufficient water is available in the sub-soil, e[CO2] may help mitigating the effect of drying surface soil.
NASA Astrophysics Data System (ADS)
Montanaro, Cristian; Mayer, Klaus; Isaia, Roberto; Gresse, Marceau; Scheu, Bettina; Yilmaz, Tim I.; Vandemeulebrouck, Jean; Ricci, Tullio; Dingwell, Donald B.
2017-12-01
The Solfatara area and its fumaroles are the main surface expression of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. At depth, a range of volcanic and structural processes dictate the actual state of the hydrothermal system below the crater. The presence of a large variety of volcanic products at shallow depth (including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias, and lavas), and the existence of a maar-related fault system appears to exert major controls on the degassing and alteration behavior. Adding further to the complexity of this environment, variations in permeability and porosity, due to subsoil lithology and alteration effects, may further influence fluid flow towards the surface. Here, we report results from a field campaign conducted in July 2015 that was designed to characterize the in situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties of the Solfatara crater subsoil. The survey also included a mapping of the surficial hydrothermal features and their distributions. Finally, laboratory measurements (porosity, granulometry) of selected samples were performed. Our results enable the discrimination of four main subsoils around the crater: (1) the Fangaia domain located in a topographic low in the southwestern sector, (2) the silica flat domain on the western altered side, (3) the new crust domain in the central area, and (4) the crusted hummocks domain that dominates the north, east, and south parts. These domains are surrounded by encrusted areas, reworked material, and vegetated soil. The distribution of these heterogeneous subsoils suggests that their formation is mostly related to (i) the presence of the Fangaia domain within the crater and (ii) a system of ring faults bordering it. The subsoils show an alternation between very high and very low permeabilities, a fact which seems to affect both the temperature distribution and surficial degassing. A large range of surface temperatures (from 25 up to 95 °C) has been measured across these surfaces, with the hottest spot corresponding to the mud pools, the area of new crust formation, and the crusted hummocks. In the subsoil, the distribution of temperature is more complex and controlled by the presence of coarser, and more permeable, sandy/pebbly levels. These act as preferential pathways for hot hydrothermal fluid circulation. In contrast, low permeability, fine-grained levels act as thermal insulators that remain relatively cold and hinder fluid escape to the surface. Hot gases reach the surface predominantly along (vertical) fractures. When this occurs, mound-like structures can be formed by a cracking and healing process associated with significant degassing. It is anticipated that the results presented here may contribute to an improved understanding of the hazard potential associated with the ongoing hydrothermal activity within the Solfatara crater. At this site the permeability of the near-surface environment and its changes in space and time can affect the spatial and temporal distribution of gas and heat emission. Particularly, in areas where reduction in permeability occurs, it can produce pore pressure augmentation that may result in explosive events.
Microbial community changes as a possible factor controlling carbon sequestration in subsoil
NASA Astrophysics Data System (ADS)
Strücker, Juliane; Jörgensen, Rainer Georg
2015-04-01
In order to gain more knowledge regarding the microbial community and their influence on carbon sequestration in subsoil two depth profiles with different soil organic carbon (SOC) concentrations were sampled. The SOC concentrations developed naturally due to deposition and erosion. This experiment offers the opportunity to investigate to which extend natural SOC availability or other subsoil specific conditions influence the composition and the functional diversity of the microbial community and in return if there is any evidence how the microbial community composition affects carbon sequestration under these conditions. Soil samples were taken at four different depths on two neighbouring arable sites; one Kolluvisol with high SOC concentrations (8-12 g/kg) throughout the profile and one Luvisol with low SOC concentrations (3-4 g/kg) below 30 cm depth. The multi substrate induced respiration (MSIR) method was used to identify shifts in the functional diversity of the microbial community along the depth profiles. Amino sugars Muramic Acid and Glucosamine were measured as indicators for bacterial and fungal residues and ergosterol was determined as marker for saprotrophic fungi. The results of the discriminant analysis of the respiration values obtained from the 17 substrates used in the MSIR show that the substrate use in subsoil is different from the substrate use in topsoil. The amino sugar analysis and the ratio of ergosterol to microbial biomass C indicate that the fungal dominance of the microbial community decreases with depth. The results from this study support previous findings, which also observed decreasing fungal dominance with depth. Furthermore the MSIR approach shows clearly that not only the composition of the microbial community but also their substrate use changes with depth. Thus, a different microbial community with altered substrate requirements could be an important reason for enhanced carbon sequestration in subsoil. The fact that the MSIR was also able to differentiate between the two sites proves the assumption that resources are an important factor controlling the functional diversity of the microbial community, as abiotic factors are very similar for the two profiles, but the sites show a different depth gradient for SOC.
Lysimeter Study of Plant Water Uptake in a Model Forest Ecosystem on Heavy Metal Contaminated Soil
NASA Astrophysics Data System (ADS)
Menon, M.; Abbaspour, K.; Schulin, R.; Oswald, S.
2003-04-01
We have been investigating the impact of heavy metal stress on the water regime of young forest ecosystems grown in 32 open top lysimeters (3 m in diameter and 1 m deep). The factorial treatments of the lysimeters include variations of rainwater acidity (acidic, ambient rain), subsoil type (acidic, calcareous), and soil contamination (with and without copper, zinc and cadmium in the top 20 cm). Each lysimeter was planted in spring of 2000 with the same selection of trees and herbaceous plants. All lysimeters are equipped with tensiometers for monitoring of pressure head and time domain reflectometry for measuring of water content. Irrigation was applied equally to all lysimeters through sprinkler devices. Drainage water was collected by means of canisters installed at the bottom of the lysimeters, and thus evapotranspiration could be calculated through water balancing. We monitored the water regime for two years including an imposed drought period. Significantly more water was extracted from the calcareous than the acidic subsoil. The water potential measurements show that also the heavy metal polluted topsoil had a significant influence on the water regime. Metal stress was particularly evident under reduced irrigation. We suspect that the roots were damaged in the contaminated topsoil. In contrast to the subsoil type, heavy metal pollution did not produce a significant effect on evapotranspiration (ET) though, and neither did acidic rain. Pot experiments confirmed that in presence of clean subsoil plants compensated for metal stress in contaminated topsoil by shifting their root activity from contaminated to uncontaminated zones.
Biochars impact on water infiltration and water quality through a compacted subsoil layer.
Novak, Jeff; Sigua, Gilbert; Watts, Don; Cantrell, Keri; Shumaker, Paul; Szogi, Ariel; Johnson, Mark G; Spokas, Kurt
2016-01-01
Soils in the SE USA Coastal Plain region frequently have a compacted subsoil layer (E horizon), which is a barrier for water infiltration. Four different biochars were evaluated to increase water infiltration through a compacted horizon from a Norfolk soil (fine-loamy, kaolinitic, thermic, Typic Kandiudult). In addition, we also evaluated biochars effect on water quality. Biochars were produced by pyrolysis at 500 °C from pine chips (Pinus taeda), poultry litter (Gallus domesticus) feedstocks, and as blends (50:50 and 80:20) of pine chip:poultry litter. Prior to pyrolysis, the feedstocks were pelletized and sieved to >2-mm pellets. Each biochar was mixed with the subsoil at 20 g/kg (w/w) and the mixture was placed in columns. The columns were leached four times with Milli-Q water over 128 d of incubation. Except for the biochar produced from poultry litter, all other applied biochars resulted in significant water infiltration increases (0.157-0.219 mL min(-1); p<0.05) compared to the control (0.095 mL min(-1)). However, water infiltration in each treatment were influenced by additional water leaching. Leachates were enriched in PO4, SO4, Cl, Na, and K after addition of poultry litter biochar, however, their concentrations declined in pine chip blended biochar treatments and after multiple leaching. Adding biochars (except 100% poultry litter biochar) to a compacted subsoil layer can initially improve water infiltration, but, additional leaching revealed that the effect remained only for the 50:50 pine chip:poultry litter blended biochar while it declined in other biochar treatments. Published by Elsevier Ltd.
Sorption-desorption behavior of PCP on soil organic matter and clay minerals.
Pu, Xunchi; Cutright, Teresa J
2006-08-01
Pentachlorophenol (PCP) contamination is a severe environmental problem due to its widespread occurrence, toxicity and recalcitrance. In order to gain a better understanding of the fate of PCP in soils, the role of the soil organic matter (SOM) and clay minerals in the PCP sorption-desorption was studied on two bulk field soils, two subsoils (i.e., SOM or clay-removed soil) and two artificial soils. The two field soils used were a silty loam from New Mexico (NM) containing 10% clay and a sandy-clay-loam from Colombia (CO) South America comprised of 18% clay minerals. The bulk CO soil containing kaolinite sorbed significantly less PCP than the NM soil. All soils depicted an apparent hysteresis during sorption. The CO bulk and subsoils desorbed 14-20% and 15-26% of the sorbed PCP respectively whereas the NM bulk and subsoils desorbed only 4-12% and 5-16%, respectively. Experiments conducted with pure clay and artificial soils indicated that the expandable clay minerals were key sorbent material. Additional studies to investigate the interaction between SOM and clay minerals are needed to fully understand sorptive phenomena.
A Comparative Study on Safe Pile Capacity as Shown in Table 1 of IS 2911 (Part III): 1980
NASA Astrophysics Data System (ADS)
Pakrashi, Somdev
2017-06-01
Code of practice for design and construction of under reamed pile foundations: IS 2911 (Part-III)—1980 presents one table in respect of safe load for bored cast in situ under reamed piles in sandy and clayey soils including black cotton soils, stem dia. of pile ranging from 20 to 50 cm and its effective length being 3.50 m. A comparative study, was taken up by working out safe pile capacity for one 400 dia., 3.5 m long bored cast in situ under reamed pile based on subsoil properties obtained from soil investigation work as well as subsoil properties of different magnitudes of clayey, sandy soils and comparing the same with the safe pile capacity shown in Table 1 of that IS Code. The study reveals that safe pile capacity computed from subsoil properties, barring a very few cases, considerably differs from that shown in the aforesaid code and looks forward for more research work and study to find out a conclusive explanation of this probable anomaly.
NASA Astrophysics Data System (ADS)
Di Fiore, V.; Cavuoto, G.; Tarallo, D.; Punzo, M.; Evangelista, L.
2016-05-01
A joint analysis of down-hole (DH) and multichannel analysis of surface waves (MASW) measurements offers a complete evaluation of shear wave velocity profiles, especially for sites where a strong lateral variability is expected, such as archeological sites. In this complex stratigraphic setting, the high "subsoil anisotropy" (i.e., sharp lithological changes due to the presence of anthropogenic backfill deposits and/or buried man-made structures) implies a different role for DH and MASW tests. This paper discusses some results of a broad experimental program conducted on the Palatine Hill, one of the most ancient areas of the city of Rome (Italy). The experiments were part of a project on seismic microzoning and consisted of 20 MASW and 11 DH tests. The main objective of this study was to examine the difficulties related to the interpretation of the DH and MASW tests and the reliability limits inherent in the application of the noninvasive method in complex stratigraphic settings. As is well known, DH tests provide good determinations of shear wave velocities (Vs) for different lithologies and man-made materials, whereas MASW tests provide average values for the subsoil volume investigated. The data obtained from each method with blind tests were compared and were correlated to site-specific subsurface conditions, including lateral variability. Differences between punctual (DH) and global (MASW) Vs measurements are discussed, quantifying the errors by synthetic comparison and by site response analyses. This study demonstrates that, for archeological sites, VS profiles obtained from the DH and MASW methods differ by more than 15 %. However, the local site effect showed comparable results in terms of natural frequencies, whereas the resolution of the inverted shear wave velocity was influenced by the fundamental mode of propagation.
NASA Astrophysics Data System (ADS)
Athmann, Miriam; Kautz, Timo; Köpke, Ulrich
2017-04-01
Large sized continuous biopores (diameter > 2 mm) in arable subsoils can contribute to enhance soil aeration, increase water infiltration, reduce water runoff and serve as preferential pathways for root growth. Biopores can be generated by taproots, but these pores probably have limited physical stability unless they are colonized by anecic earthworms and coated with worm cast. Long-term field experiments have shown that populations of anecic earthworms and numbers of biopores are promoted by perennial fodder cropping, no-till cropping and reduced tillage systems, i.e. extended soil rest. Potential effects of biopores on root growth of annual crops include accelerating access to deep soil layers, facilitating exploitation of water while simultaneously allowing nutrient acquisition from the pore wall and the bulk soil. Biopores can be considered as hot spots for nutrient acquisition of crops, especially when the pore wall is enriched in nutrients as a consequence of deposition of decaying plant material and feces of earthworms. However, the extent of such effects largely depends on physical properties of the bulk soil. Preferential root growth through biopores has been observed in many types of subsoil. The role of biopores is expected to be relevant especially when rooting in the bulk soil is impeded by high penetration resistance. Nevertheless, in hard-setting clay soils clumping of roots has been reported, when roots were unable to re-enter the bulk soil from biopores' lumen. Recent field experiments on a deep loamy Haplic Luvisol indicated increased biopore density in the subsoil promoting root growth of winter cereals and winter oilseed rape not necessarily resulting in significant effects on shoot parameters. Nevertheless, in a dry year increased biopore density had beneficial effects on N uptake, root and shoot growth and grain yield of spring crops.
Zhang, Yang; Ni, Jiupai; Yang, John; Zhang, Tong; Xie, Deti
2017-08-01
Soil carbon fractionation is a valuable indicator in assessing stabilization of soil organic matter and soil quality. However, limited studies have addressed how different vegetation stand ages under intercropping agroforestry systems, could affect organic carbon (OC) accumulation in bulk soil and its physical fractions. A field study thus investigated the impact of citrus plantation age (15-, 25-, and 45-year citrus) on the bulk soil organic carbon (SOC) and SOC fractions and yields of Stropharia rugoso-annulata (SRA) in the Three Gorges Reservoir area, Chongqing, China. Results indicated that the intercropping practice of SRA with citrus significantly increased the SOC by 57.4-61.6% in topsoil (0-10 cm) and by 24.8-39.9% in subsoil (10-30 cm). With a significantly higher enhancement under the 25-year citrus stand than the other two stands, all these citrus stands of three ages also resulted in a significant increase of free particulate OC (fPOC, 60.1-62.4% in topsoil and 34.8-46.7% in subsoil), intra-micro aggregate particulate OC (iPOC, 167.6-206.0% in topsoil and 2.77-61.09% in subsoil), and mineral-associated OC (MOC, 43.6-46.5% in topsoil and 26.0-51.5% in subsoil). However, there were no significant differences in yields of SRA under three citrus stands. Our results demonstrated that citrus stand ages did play an important role in soil carbon sequestration and fractionation under a citrus/SRA intercropping system, which could therefore provide a sustainable agroforestry system to enhance concurrently the SOC accumulation while mitigating farmland CO 2 emission.
NASA Astrophysics Data System (ADS)
Kjeldsen, Peter; Kjølholt, Jesper; Schultz, Birgit; Christensen, Thomas H.; Tjell, Jens Christian
1990-09-01
Landfills and old industrial plant sites have been identified in an increasing number of cases as point sources of groundwater pollution, dissipating a wide range of industrial chemicals and pesticides. To study the fate of co-disposed chemicals in the subsoil of landfills, anaerobic soil columns loaded with anaerobic leachate from a municipal landfill were set up. The leachate was spiked with eleven compounds representing three groups of chemicals: chlorophenols, nitrophenols and organophosphates. Two subsoils were used in the study. The columns were maintained at Danish groundwater temperature (8-10°C), and were run for a period of 10 months. Analysis of the influent leachate concentrations of the spiked compounds showed that the concentrations were constant during the entire experimental period. Many of the compounds showed delayed breakthrough (compared to chloride breakthrough) in both soils, followed by a constant effluent concentration ratio of less than unity indicating that degradation was occuring. The velocities for the chloro- and nitrophenols were in the range of 10-100% of the water velocity in the two subsoils. The distribution coefficient for the specific phenol, the acidity and the pH of the soil apparently governed the retardation of the phenolic compounds. Degradation of most of the phenols was observed with half-like values of 30-150 days. The four organophosphorus pesticides, Dimethoate ®, Malathion ®, Sulfotep ® and Fenitrothion ®, showed relative velocities from < 10% to ≈ 100%. Malathion ® and Sulfotep ® were degraded with half-life values of 10-20 days, while Dimethoate ® was not significantly degraded in the two soil columns. Fenitrothion ® did not appear in the effluent from the columns within the experimental period of time, probably due to high retardation.
NASA Astrophysics Data System (ADS)
Zumr, David; Vláčilová, Markéta; Dostál, Tomáš; Jeřábek, Jakub; Sobotková, Martina; Sněhota, Michal
2015-04-01
Soil compaction is a well recognized phenomena in the agricultural land. Various effects can alter the degree of the compaction in the field. The topsoil is regularly loosened due to agrotechnical operations, but the subsoil remains usually compacted. Various studies show increasing bulk density and decreasing saturated hydraulic conductivity in the plough pan, even though some authors argue that it does not have to be always the case due to presence of bio-macropores. Hence the structural properties of the subsoil and the spatial distribution of the compacted layer depth within the cultivated fields are important factors influencing soil water regime, nutrients regime and runoff generation. The aim of the contribution is to present the results of the monitoring of the plough pan depth spatial distribution at the experimental catchment Nucice (Central Bohemia, Czech Republic). The soils are classified as Luvisols and Cambisols with a loamy Ap horizon (0.1 - 0.2 m deep) underlined by a silty and silty-clay B horizon. The content of clay particles in the topsoil is around 8%. The soil has low inner aggregate (soil matrix) hydraulic conductivity, with measured values of approximately 0.1 - 2 cm d-1. The bulk topsoil saturated hydraulic conductivity (Ks) is significantly higher and varies depending on the season. To observe the divide between topsoil and subsoil layers in detail and to be able to compare the soil structure and pore networks of both layers we inspected undisturbed soil samples with X-ray computed tomography. The divide between the conservatively tilled topsoil and the subsoil is clearly observable also on terrain. To identify its exact position we implemented a combination of penetrometry, soil sampling and electrical resistance tomography (ERT). The penetration tests accompanied by soil probing were done in an irregular network across the whole catchment based on the slopes and distance to the stream. Several 2D ERT measurements were done locally on a plot of approximately 10 x 50 m. Dipole-dipole scheme with electrode span of 10 cm was used. The results obtained by different techniques are in a good agreement with observed plough pan position. The contribution was prepared within the project of Czech Science Foundation No. 13-20388P. We thank Johannes Koestel from SLU Uppsala for his great help during CT imaging of the soil samples.
Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang
2016-12-01
Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO 2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO 2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ 13 C, Δ 14 C, δ 15 N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ 13 C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small modifications in SOM chemistry result from an interplay of enhanced microbial decomposition of SOM and increased root litter input in the warmed plots. Overall, stable functional SOM pool sizes indicate that soil warming had similarly affected easily decomposable and stabilized SOM of this C-rich forest soil.
NASA Astrophysics Data System (ADS)
Capparelli, Giovanna; La Sala, Gabriella; Vena, Mirko; Donato, Antonio
2015-04-01
A landslide is defined as a perceptible downward and outward movement of slope-forming soil, rock, and vegetation under the influence of gravity. Landslides can be triggered by both natural and human-induced changes in the environment. However rainfall is recognized as a major precursor for many types of slope movements. As a result of rainfall events and subsequent infiltration into the subsoil, the soil moisture can be significantly changed with a decrease in matric suction in unsaturated soil layers and/or increase in pore-water pressure in saturated layers. As a consequence, in these cases, the shear strength can be reduced enough to trigger the failure. An effective way to develop such an understanding is by means of computer simulation using numerical model. As part of the project PON "Integrated Early Warning System" our main objective was just to develop a numerical models that was able to consider the relation between rainfall, pore pressure and slope stability taking into account several components, including specific site conditions, mechanical, hydraulic and physical soil properties, local seepage conditions, and the contribution of these to soil strength. In this work the mechanism behind rainfall-triggered landslides is modeled by using combined infiltration, seepage and stability analyses. This method allows the evaluation of the terrain and its response based on geological, physical, hydrogeological and mechanical characteristics. The model is based on the combined use of two modules: an hydraulic module, to analyze the subsoil water circulation due to the rainfall infiltration under transient conditions and a geotechnical module, which provides indications regarding the slope stability. With regard to hydraulic module, variably saturated porous media flows have been modeled by the classical nonlinear Richards equation; in the geotechnical module the differential equilibrium equations have been solved taking into account the linear constitutive equations (plane stress) and strain-displacement relationship. By means of the model it is possible to analyze subsoil water circulation, safety factor of the slope subjected to gravity loading and to the pore pressure calculated from hydraulic module, displacement, strain and stress under the effect of rainfall infiltration. As an application case, the analysis and the representative results obtained for the Torre Orsaia landslide (Campania region - Southern Italy) are described.
NASA Astrophysics Data System (ADS)
Hynds, Paul; Misstear, Bruce D.; Gill, Laurence W.; Murphy, Heather M.
2014-04-01
An integrated domestic well sampling and "susceptibility assessment" programme was undertaken in the Republic of Ireland from April 2008 to November 2010. Overall, 211 domestic wells were sampled, assessed and collated with local climate data. Based upon groundwater physicochemical profile, three clusters have been identified and characterised by source type (borehole or hand-dug well) and local geological setting. Statistical analysis indicates that cluster membership is significantly associated with the prevalence of bacteria (p = 0.001), with mean Escherichia coli presence within clusters ranging from 15.4% (Cluster-1) to 47.6% (Cluster-3). Bivariate risk factor analysis shows that on-site septic tank presence was the only risk factor significantly associated (p < 0.05) with bacterial presence within all clusters. Point agriculture adjacency was significantly associated with both borehole-related clusters. Well design criteria were associated with hand-dug wells and boreholes in areas characterised by high permeability subsoils, while local geological setting was significant for hand-dug wells and boreholes in areas dominated by low/moderate permeability subsoils. Multivariate susceptibility models were developed for all clusters, with predictive accuracies of 84% (Cluster-1) to 91% (Cluster-2) achieved. Septic tank setback was a common variable within all multivariate models, while agricultural sources were also significant, albeit to a lesser degree. Furthermore, well liner clearance was a significant factor in all models, indicating that direct surface ingress is a significant well contamination mechanism. Identification and elucidation of cluster-specific contamination mechanisms may be used to develop improved overall risk management and wellhead protection strategies, while also informing future remediation and maintenance efforts.
Management of source and drinking-water quality in Pakistan.
Aziz, J A
2005-01-01
Drinking-water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking-water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants or to anthropogenic activities. The poor bacteriological quality of drinking-water has frequently resulted in high incidence of waterborne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking-water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking-water supplies to consumers.
NASA Astrophysics Data System (ADS)
Hrubesova, E.; Lahuta, H.; Mohyla, M.; Quang, T. B.; Phi, N. D.
2018-04-01
The paper is focused on the sensitivity analysis of behaviour of the subsoil – foundation system as regards the variant properties of fibre-concrete slab resulting into different relative stiffness of the whole cooperating system. The character of slab and its properties are very important for the character of external load transfer, but the character of subsoil cannot be neglected either because it determines the stress-strain behaviour of the all system and consequently the bearing capacity of structure. The sensitivity analysis was carried out based on experimental results, which include both the stress values in soil below the foundation structure and settlements of structure, characterized by different quantity of fibres in it. Flat dynamometers GEOKON were used for the stress measurements below the observed slab, the strains inside slab were registered by tensometers, the settlements were monitored geodetically. The paper is focused on the comparison of soil stresses below the slab for different quantity of fibres in structure. The results obtained from the experimental stand can contribute to more objective knowledge of soil – slab interaction, to the evaluation of real carrying capacity of the slab, to the calibration of corresponding numerical models, to the optimization of quantity of fibres in the slab, and finally, to higher safety and more economical design of slab.
Clay illuviation provides a long-term sink for C sequestration in subsoils
NASA Astrophysics Data System (ADS)
Torres-Sallan, Gemma; Schulte, Rogier P. O.; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Simó, Iolanda; Six, Johan; Creamer, Rachel E.
2017-04-01
Soil plays a key role in the global carbon (C) cycle. Most current assessments of SOC stocks and the guidelines given by Intergovernmental Panel on Climate Change (IPCC) focus on the top 30 cm of soil. Our research shows that, when considering only total quantities, most of the SOC stocks are found in this top layer. However, not all forms of SOC are equally valuable as long-term stable stores of carbon: the majority of SOC is available for mineralisation and can potentially be re-emitted to the atmosphere. SOC associated with micro-aggregates and silt plus clay fractions is more stable and therefore represents a long-term carbon store. Our research shows that most of this stable carbon is located at depths below 30 cm (42% of subsoil SOC is located in microaggregates and silt and clay, compared to 16% in the topsoil), specifically in soils that are subject to clay illuviation. This has implications for land management decisions in temperate grassland regions, defining the trade-offs between primary productivity and C emissions in clay-illuviated soils, as a result of drainage. Therefore, climate smart land management should consider the balance between SOC stabilisation in topsoils for productivity versus sequestration in subsoils for climate mitigation.
NASA Astrophysics Data System (ADS)
Richter, D., Jr.; Mobley, M. L.; Billings, S. A.; Markewitz, D.
2016-12-01
At the Calhoun Long-Term Soil-Ecosystem field experiment (1957-present), reforestation of previously cultivated land over fifty years nearly doubled soil organic carbon (SOC) in surface soils (0 to 7.5-cm) but these gains were offset by significant SOC losses in subsoils (35 to 60-cm). Nearly all of the accretions in surface soils amounted to gains in light fraction SOC, whereas losses at depth were associated with silt and clay-sized particles. These changes are documented in the Calhoun Long-Term Soil-Ecosystem (LTSE) study that resampled soil from 16 plots about every five years and archived all soil samples from four soil layers within the upper 60-cm of mineral soil. We combined soil bulk density, density fractionation, stable isotopes, and radioisotopes to explore changes in SOC and soil organic nitrogen (SON) associated with five decades of the growth of a loblolly pine secondary forest. Isotopic signatures showed relatively large accumulations of contemporary forest-derived carbon in surface soils, and no accumulation of forest-derived carbon in subsoils. We interpret results to indicate that land-use change from cotton fields to secondary pine forests drove soil biogeochemical and hydrological changes that enhanced root and microbial activity and SOM decomposition in subsoils. As pine stands matured and are now transitioning to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth has eased due to pine mortality, and bulk SOM and SON and their isotopes in subsoils have stabilized. We anticipate major changes in the next fifty years as 1957 pine trees transition to hardwoods. This study emphasizes the importance of long-term experiments and deep soil measurements when characterizing SOC and SON responses to land use change. There is a remarkable paucity of E long-term soil data deeper than 30 cm.
NASA Astrophysics Data System (ADS)
Gocke, Martina; Huguet, Arnaud; Derenne, Sylvie; Kolb, Steffen; Wiesenberg, Guido L. B.
2013-04-01
Roots have a high potential capacity to store large amounts of CO2 in the subsoil. However, associated with rooting, microorganisms enter the subsoil and might contribute to priming effects of carbon mineralisation in the microbial hotspot rhizosphere. Although these processes are well known for recent surface soils, it remains questionable, if and how microorganisms contribute to priming effects in the subsoil and if these effects can be traced after the roots' lifetime. The current study implies several state-of-the-art techniques like DNA and lipid molecular proxies to trace remains of microbial biomass in ancient root systems. These can provide valuable information if parts of the root and rhizomicrobial biomass are preserved, e.g. by encrustation with secondary carbonate during the root's lifespan or shortly thereafter. At the Late Pleistocene loess-paleosol sequence near Nussloch (SW Germany), rhizoliths (calcified roots) occur highly abundant in the deep subsoil from 1 to 9 m depth and below. They were formed by Holocene woody vegetation. Their size can account for up to several cm in diameter and up to > 1 m length. Rhizoliths and surrounding sediment with increasing distances of up to 10 cm, as well as reference loess without visible root remains were collected at several depth intervals. Samples were analysed for n-fatty acids (FAs) and glycerol dialkyl glycerol tetraethers (GDGTs; membrane lipids from Archaea and some Bacteria), as well as structural diversity based on the RNA gene of the prokaryotic ribosome subunit 16S (16S rRNA). GDGT represent organic remains from microbial biomass, whereas FA comprise both microbial remains and degradation products. 16S rRNA indicates the presence of both living cells and/or cell fragments. Despite the general low RNA contents in the sample set, results pointed to a much higher abundance of bacterial compared to archaeal RNA. The latter occured in notable amounts only in some rhizoliths. This was in part enforced by decreasing contents of archeal GDGTs from rhizolith via rhizosphere towards root-free loess. Furthermore, the bacterial fingerprint revealed - similar to modern root systems - higher taxonomic diversity in rhizosphere compared to rhizoliths and reference loess. This argues for microorganisms benefiting from root deposits and exudates. Highest concentrations of branched GDGTs in rhizoliths suggest that their source organisms feed on root remains. Incorporation of rhizomicrobial remains as represented by RNA and GDGTs usually affected the sediment at maximum to a distance of 2-3 cm from the former root. FA contents in rhizosphere showed strong scatter and were in part depleted compared to reference loess or, especially in deeper transects, enriched. This indicates the presence of degradation products originating from former rhizosphere processes. Especially at larger depth not affected by modern pedogenic processes, portions of mainly microbial derived C16 homologues were higher in rhizosphere loess up to distances of 10 cm, revealing that the possible extension of the rhizosphere was underestimated so far. In Corg poor subsoil, the occurence of diverse rhizosphere microorganisms and degradation processes even in several centimeters distant from roots point to a strong alteration of OM, possibly contributing to carbon mineralisation.
NASA Astrophysics Data System (ADS)
Kilroy, Kate; Keggan, Mary; Barrett, Maria; Dubber, Donata; Gill, Laurence W.; O'Flaherty, Vincent
2014-05-01
In Ireland the domestic wastewater of over 1/3 of the population is treated by on-site systems. These systems are based on a traditional design for disposal of domestic wastewater and rely on the surrounding subsoil for further treatment. Inefficient treatment is often associated with these systems and can cause pollution of local aquifers and waterways. The effluent nutrient load can contribute to eutrophication, depletion of dissolved oxygen and excessive algae growth in surface water bodies. Human enteric pathogens associated with faecal pollution of water sources may promote the outbreak of disease through contamination of drinking water supplies. The subsoil attenuation plays an important role in the protection of groundwater from effluent pollution. Therefore, as over 25% of the countries domestic water supplies are provided by groundwater, the protection of groundwater resources is crucial. This project involves both the assessment of traditional septic tank soakaway systems and the effects of remediation in low permeability subsoil settings on water quality in Ireland. The study aims to confirm by microbial source tracking (MST), the source (human and/or animal) of faecal microorganisms detected in groundwater, surface water and effluent samples, and to monitor the transport of pathogens specific to on-site wastewater outflows. In combination with MST, the evaluation of nitrification and denitrification in surrounding soil and effluent samples aims to assess nitrogen removal at specific intervals; pre-remediation and post-remediation. Two experimental sites have been routinely sampled for effluent, soil and groundwater samples as well as soil moisture samples using suction lysimeters located at various depths. A robust and reproducible DNA extraction method was developed, applicable to both sites. MST markers based on host-specific Bacteriodales bacteria for universal, human and cow-derived faecal matter are being employed to determine quantitative target occurrence using real-time Polymerase Chain Reaction (qPCR) assays (Kildare et al., 2007). The abundance of both archaeal and bacterial 16S rRNA and of several functional nitrification and denitrification genes (i.e., amoA, nirS, nirK, and nosZ) is also being determined and compared in both sites. Ultimately, this novel project aims to assess the effectiveness of remediation at reducing the risk of pathogen transport and nitrate loading to local ground and surface waters. Results from both sites suggest low permeability subsoil prevents the even distribution of effluent through the receiving subsoil, forcing it instead to flow laterally via distinct pathways such as sand lenses and nearby drainage routes. This affects the ability of the subsoil to sufficiently treat the percolating effluent. Initial results from the remediation of the existing systems to alternative low pressure systems indicate a positive impact towards the groundwater quality of both sites. This step towards a better understanding of the factors influencing microbial denitrification and the behaviour of pathogens in sensitive environments aids in identifying management options for reducing nitrous oxide (N2O) emissions and nitrate (NO3-) leaching; and for enhanced protection of public health.
NASA Astrophysics Data System (ADS)
Vormstein, Svendja; Kaiser, Michael; Ludwig, Bernard
2017-04-01
Forest top- and subsoil account for approximately 70 % of the organic C (OC) globally stored in soil reasoning their large importance for terrestrial ecosystem services such as the mitigation of climate change. In contrast to forest topsoil, there is much less information about the decomposition and stabilization of organic matter (OM) in subsoil. Therefore, we sampled the pedogenetic horizons of five soils under mature beech forest developed on different parent material (i.e. Tertiary Sand, Loess, Basalt, Lime Stone, Red Sandstone) down to the bedrock. The bulk soil samples were characterized for texture, oxalate and dithionite soluble Fe and Al, pH, OC, microbial biomass C and basal respiration (cumulative CO2 emission after 7 and 14 days). Furthermore, we analyzed aggregate size fractions separated by wet-sieving (i.e. >1000 µm, 1000-250 µm, 250-53 µm, <53 µm) and density fractions separated using NaPT (i.e. light, occluded light, and heavy fraction) from the soil horizon specific samples. The OC of the topsoil (Ah horizon) on Lime Stone and Red Sandstone was predominately stored in the larger macro-aggregates (>1000 µm). In contrast, the major part of the topsoil OC on Basalt and Tertiary Sand was found in the smaller macro-aggregates (1000-250 µm). For the topsoil samples, we found that the basal respiration as well as the microbial biomass C were positively correlated (p ≤0.05) with the OC amounts associated with the free and occluded light fraction and with the macro-aggregates (1000-250 µm) and micro-aggregates (250-53 µm) suggesting these fractions to store the major part of the easily decomposable OM. The OC amount associated with the heavy fraction and the fraction <53 µm was correlated with the contents of oxalate and dithionite soluble Fe and Al suggesting interactions between organic compounds and Fe- and Al-oxides to be highly important for the OM stabilization in forest topsoil. In the subsoil (horizons below the Ah), the contribution of the OC associated with the aggregate size fractions <250 µm to the OC stored in the subsoil increased with depth. The OC contents associated with the free and occluded light as well as the heavy fraction and with the aggregate size fractions >53 µm were positively correlated with basal respiration and the microbial biomass C. This suggests, in contrast to the topsoil, the easily decomposable OM to be distributed more homogeneously among fractions. Only the OC content of the <53 µm fraction showed positive correlations to soil mineral characteristics such as the contents of clay oxalate and dithionite soluble Fe or Al and no relationship to the basal respiration and microbial biomass C. This indicates the OM associated with this fraction to be most diagnostic for the amount of OC stabilized against microbial decay in the subsoil and interactions between OM and oxides as well as layer silicates to be relevant stabilization mechanisms. The results point toward similar OM stabilization mechanisms in the analysed forest top- and subsoils but revealed differences in the distribution of easily decomposable OM within the soil matrix.
NASA Astrophysics Data System (ADS)
Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe
2016-04-01
Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon (SOC), as essential input variable, was predicted by measured soil samples and associated to STD of the upper 30 cm. The comprehensive and high-resolution (4x4 m) soil profile information (up to 2 m soil depth) were then used to initialise a soil process model (Carbon and Nitrogen Dynamics - CANDY) for soil functional modelling (daily steps of matter fluxes, soil temperature and water balances). Our study was conducted on a practical field (~32,000 m²) of an agricultural farm in Central Germany with Chernozem soils under arid conditions (average rainfall < 550 mm). This soil region is known to have differences in soil structure mainly occurring within the subsoil, since topsoil conditions are described as homogenous. The modelled soil functions considered local climate information and practical farming activities. Results show, as expected, distinguished functional variability, both on spatial and temporal resolution for subsoil evident structures, e.g. visible differences for available water capacity within 0-100 cm but homogenous conditions for the topsoil.
Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot Hm; Rengel, Zed
2016-06-01
Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot HM; Rengel, Zed
2016-01-01
Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. PMID:27049020
Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth
Werner, Florian; Mueller, Carsten W.; Thieme, Jurgen; ...
2017-06-09
Soils comprise various heterogeneously distributed pools of lithogenic, free organic, occluded, adsorbed, and precipitated phosphorus (P) forms, which differ depending on soil forming factors. Small-scale heterogeneity of element distributions recently has received increased attention in soil science due to its influence on soil functions and soil fertility. We investigated the micro-scale distribution of total P and different specific P binding forms in aggregates taken from a high-P clay-rich soil and a low-P sandy soil by combining advanced spectrometric and spectroscopic techniques to introduce new insights on P accessibility and availability in soils. Here we show that soil substrate and soilmore » depth determine micro-scale P heterogeneity in soil aggregates. In P-rich areas of all investigated soil aggregates, P was predominantly co-located with aluminium and iron oxides and hydroxides, which are known to strongly adsorb P. Clay minerals were co-located with P only to a lesser extent. In the low-P topsoil aggregate, the majority of the P was bound organically. Aluminium and iron phosphate predominated in the quartz-rich low-P subsoil aggregate. Sorbed and mineral P phases determined P speciation in the high-P top- and subsoil, and apatite was only detected in the high-P subsoil aggregate. Lastly, our results indicate that micro-scale spatial and chemical heterogeneity of P influences P accessibility and bioavailability.« less
Micro-scale heterogeneity of soil phosphorus depends on soil substrate and depth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, Florian; Mueller, Carsten W.; Thieme, Jurgen
Soils comprise various heterogeneously distributed pools of lithogenic, free organic, occluded, adsorbed, and precipitated phosphorus (P) forms, which differ depending on soil forming factors. Small-scale heterogeneity of element distributions recently has received increased attention in soil science due to its influence on soil functions and soil fertility. We investigated the micro-scale distribution of total P and different specific P binding forms in aggregates taken from a high-P clay-rich soil and a low-P sandy soil by combining advanced spectrometric and spectroscopic techniques to introduce new insights on P accessibility and availability in soils. Here we show that soil substrate and soilmore » depth determine micro-scale P heterogeneity in soil aggregates. In P-rich areas of all investigated soil aggregates, P was predominantly co-located with aluminium and iron oxides and hydroxides, which are known to strongly adsorb P. Clay minerals were co-located with P only to a lesser extent. In the low-P topsoil aggregate, the majority of the P was bound organically. Aluminium and iron phosphate predominated in the quartz-rich low-P subsoil aggregate. Sorbed and mineral P phases determined P speciation in the high-P top- and subsoil, and apatite was only detected in the high-P subsoil aggregate. Lastly, our results indicate that micro-scale spatial and chemical heterogeneity of P influences P accessibility and bioavailability.« less
Erodibility of waste (Loess) soils from construction sites under water and wind erosional forces.
Tanner, Smadar; Katra, Itzhak; Argaman, Eli; Ben-Hur, Meni
2018-03-01
Excess soils from construction sites (waste soils) become a problem when exposed to soil erosion by water or wind. Understanding waste soil erodibility can contribute to its proper reuse for various surface applications. The general objective of the study was to provide a better understanding of the effects of soil properties on erodibility of waste soils excavated from various depths in a semiarid region under rainfall and wind erosive forces. Soil samples excavated from the topsoil (0-0.3m) and subsoil layers (0.3-0.9 and >1m depths) were subjected to simulated rainfall and wind. Under rainfall erosive forces, the subsoils were more erodible than the topsoil, in contrast to the results obtained under wind erosive forces. Exchangeable sodium percentage was the main factor controlling soil erodibility (K i ) under rainfall, and a significant logarithmic regression line was found between these two parameters. In addition, a significant, linear regression was found between K i and slaking values for the studied soil samples, suggesting that the former can be predicted from the latter. Soil erodibility under wind erosion force was controlled mainly by the dry aggregate characteristics (mean weight diameter and aggregate density): their higher values in the subsoil layers resulted in lower soil erodibility compared to the topsoil. Copyright © 2017 Elsevier B.V. All rights reserved.
Review of Variable Generation Integration Charges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, K.; Fink, S.; Buckley, M.
2013-03-01
The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviewsmore » the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.« less
Biomat development in soil treatment units for on-site wastewater treatment.
Winstanley, H F; Fowler, A C
2013-10-01
We provide a simple mathematical model of the bioremediation of contaminated wastewater leaching into the subsoil below a septic tank percolation system. The model comprises a description of the percolation system's flows, together with equations describing the growth of biomass and the uptake of an organic contaminant concentration. By first rendering the model dimensionless, it can be partially solved, to provide simple insights into the processes which control the efficacy of the system. In particular, we provide quantitative insight into the effect of a near surface biomat on subsoil permeability; this can lead to trench ponding, and thus propagation of effluent further down the trench. Using the computed vadose zone flow field, the model can be simply extended to include reactive transport of other contaminants of interest.
The methodology of choice Cam-Clay model parameters for loess subsoil
NASA Astrophysics Data System (ADS)
Nepelski, Krzysztof; Błazik-Borowa, Ewa
2018-01-01
The paper deals with the calibration method of FEM subsoil model described by the constitutive Cam-Clay model. The four-storey residential building and solid substrate are modelled. Identification of the substrate is made using research drilling, CPT static tests, DMT Marchetti dilatometer, and laboratory tests. Latter are performed on the intact soil specimens which are taken from the wide planning trench at the depth of foundation. The real building settlements was measured as the vertical displacement of benchmarks. These measurements were carried out periodically during the erection of the building and its operation. Initially, the Cam Clay model parameters were determined on the basis of the laboratory tests, and later, they were corrected by taking into consideration numerical analyses results (whole building and its parts) and real building settlements.
NASA Astrophysics Data System (ADS)
Hernandez-Soriano, Maria C.; Maclean, Jamie L.; Dalal, Ram C.; Menzies, Neal W.; Kopittke, Peter M.
2015-04-01
The dissolved organic carbon (DOC) is a highly dynamic pool, directly related to biological functions and to the stabilization of organic carbon (OC) through interaction with the mineral phase. Therefore, the characterization of the main components of DOC can be linked to the metabolic status of soil and the turnover of OC and provides a sensitive approach to evaluate the impact of land use on OC turnover in soils. Accordingly, the objective of this study was to derive relationships between DOC characteristics and biochemical activity in soils under contrasting land management. The soil solution was isolated from topsoil and subsoil for three soils (Vertisol, Ferralsol, Acrisol, World Reference Base 2014) collected from undisturbed areas and from a location(s) immediately adjacent which has a long history of agricultural, pasture or afforestation use (>20 years) by centrifugation at 4000 rpm (20 min, 25 °C. The fingerprint of DOC was obtained to identify OC functionalities by spectrofluorometric analyses and Excitation-Emission matrices (EEM) were obtained for all samples. The excitation wavelengths were increased from 250 to 400 nm in 5-nm steps for each excitation wavelength, and emission was detected from 250 to 500 nm in 0.5-nm steps and. Humification index (HIX), freshness index (FrI), fluorescence index (FI) and redox index (RI) were derived from the EEMs. Extracellular laccase activity was examined by monitoring the oxidation of 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) at 420 nm. The EEMs revealed a depletion of the humic-like component (250
Hammerstrom, Donald J.
2013-10-15
A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.
NASA Astrophysics Data System (ADS)
Spielvogel, Sandra; Breidenbach, Andreas; de la Haye, Tilman; Schleuß, Per; Kuzyakov, Yakov; Guggenberger, Georg
2016-04-01
The Tibetan Plateau hosts the highest and largest pasture ecosystem worldwide, and provides tremendous sinks for carbon. Due to the sheer size of the of the Tibetan Plateau, feedback effects of soil organic carbon (OC) losses from inadequate grassland management are of undisputed relevance for ecosystem stability and future global change scenarios. Given the vital importance of the Tibetan steppes as global OC sinks, we combined data on OC stocks from own studies with an extensive literature review on soils developed under montane and alpine Kobresia pygmaea and Stipa grandis pastures. We calculated soil OC stocks at the Tibetan Plateau within the first 30 cm of the soil profile depending on pasture management and climate. Vertical gradients of δ13C values, neutral sugar, cutin and suberin contents, lignin phenol contents as well as microbial community composition (t-RFLP analysis, 16S rDNA und IST sequencing) and activities of six extracellular enzymes involved in the C, N, and P cycle were assessed. The depth gradients of these parameters reflected degradation processes from intact Kobresia pastures (stage 0) to pronounced degradation (bare soil; stage 5). Moderate husbandry is beneficial for the storage of OC, nitrogen (N) and other nutrients (e.g. phosphorus) for the majority of the montane grasslands of the Tibetan Plateau (i.e., Kobresia pygmaea pastures). However, Kobresia root mats originated from grazing are affected by desiccations and frost, which cause polygonal cracking and initiates soil erosion. This process is accelerated under high grazing pressure (overgrazing) that enhances root mat degradation. Increasing degradation caused by large herbivore densities resulted in an increased OC decomposition demonstrated by decreasing δ13C values. The δ13C shift towards more negative values reflects the relative enrichment of 13C depleted lignin components during OC decomposition in the strongly disturbed soil. Translocation of topsoil material into the subsoil with advancing degradation (from stages 1 to 5) was indicated by increasing contributions of cutin to OC in the subsoils. Microbial community composition in the subsoil changed progressively from stage 1 to 5 with most pronounced changes of the fungal community. These findings were confirmed by the enzyme activities involved in the degradation of more complex OC compounds (e.g. fungal phenoloxidases) that were highest in the subsoil of degradation stage 4. In contrast, degradation stages 2 and 3 showed low enzyme activities in the subsoil if related to soil OC amount. We conclude that pasture degradation decreases not only the mechanical protection of soil surface by Kobresia root mats, but also changes their biochemical and microbial functions. Moderate grazing improves the pastures, increases OC sequestration and may stop the degradation of soils on Tibetan plateau.
NASA Astrophysics Data System (ADS)
Angst, Gerrit; John, Stephan; Rethemeyer, Janet; Kögel-Knabner, Ingrid; Mueller, Carsten W.
2014-05-01
Subsoils can significantly contribute to the terrestrial C pool. While processes of C turnover and storage in topsoils are generally well understood, little is known about subsoils. Our project, embedded within the DFG research group FOR 1806, aims to contribute to the knowledge about subsoil C by differentiating soil organic matter (SOM) in terms of its origin and its composition. In order to obtain a meaningful sample set we studied three soil ditches, 3.15 m in length and 2.15 m in depth, in a podzolic Cambisol under European beech (Fagus sylvatica L.) north of Hannover, Germany. In a to date unique sampling approach we took 64 soil samples in a regular vertical grid in each of the soil profiles, thus identifying possible gradients between top- and subsoil. The samples were subjected to a combined density and particle size fractionation to separate particulate organic matter (POM) from mineral compartments. We especially aimed at obtaining the combined fine silt and clay fraction which is thought to be most important in the long term stabilization of SOM. The chemical composition of the so obtained fractions and the bulk soil was revealed by C, N and 13C CPMAS NMR measurements. The source of OM in the soil was investigated by tracing the biopolymers cutin and suberin across the soil profile. Cutin occurs mainly in the cuticula of leaves while suberin mainly constitutes the endodermal cell walls of plant roots. In soils the two polymers can thus be used as proxies for above and belowground OM input respectively. To release the constituting monomers of the two biopolymers from the soil samples the latter were pretreated with organic solvents to extract free lipids. The soil residues were subsequently subjected to a base hydrolysis and the so obtained extracts were measured with GC/MS. The organic C contents of the bulk soil decrease significantly with depth in all transects from around 15 mg g-1 to 2 mg g-1. This is likely associated with the very high sand and low clay concentrations and the decreasing POM content at greater depths in the soil profiles. The highest C contents were found in the POM fractions with 400 mg g-1 and the combined fine silt and clay fractions with 6 mg g-1. Interestingly the NMR spectra display an already highly processed POM in the uppermost soil horizon as indicated by high alkyl/O-alkyl C ratios. This, together with the absence of POM in greater depths, points towards a decomposition of aboveground OM predominantly in the upper zones of the soil and a confined root input to deeper soil regions.
Testing radon mitigation techniques in a pilot house from Băiţa-Ştei radon prone area (Romania).
Cosma, Constantin; Papp, Botond; Cucoş Dinu, Alexandra; Sainz, Carlos
2015-02-01
This work presents the implementation and testing of several radon mitigation techniques in a pilot house in the radon prone area of Băiţa-Ştei in NW part of Romania. Radon diagnostic investigations in the pilot house showed that the main source of radon was the building sub-soil and the soil near the house. The applied techniques were based on the depressurization and pressurization of the building sub-soil, on the combination of the soil depressurization system by an electric and an eolian fans. Also, there was made an application of a radon barrier membrane and a testing by the combination of the radon membrane by the soil depressurization system. Finally, the better obtained remedial efficiency was about 85%. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Di Felice, P.; Spadoni, M.
2013-04-01
MAHA is a database-centred software system for the storage and visualization of subsoil data used for the production of seismic microzonation maps in Italy. The application was implemented using open source software in order to grant its maximum diffusion and customization. A conceptual model of the subsoil, jointly developed by the Italian National Research Council and the National Department of Civil Protection, inspired the structure of the underlying database, consisting of 15 tables, 3 of which of spatial nature to accommodate geo-referenced data associated to points, lines and polygons. A web-GIS interface acts as a bridge between the user and the database, drives the input of geo-referenced data and enables the users to formulate different types of spatial queries. A series of forms designed "ad hoc" and enriched with combo boxes provide guided procedures to maximize the fluency of data entry and to reduce the possibility of erroneous typing. One of these procedures helps to transform the descriptions of the geological units (granular materials), given in technical paper documents by using a conversational style, into standardized numeric codes. Summary reports, produced in the pdf format, can be generated through decoding and graphic display of the parameters previously entered in the database. MAHA was approved by the national commission for seismic microzonation established by the Italian Prime Minister and, in the next years, it is expected to significantly support the entire process of map production in the urban areas more exposed to seismic hazard.
[Effect of long-term fertilizing regime on soil microbial diversity and soil property].
Li, Chenhua; Zhang, Caixia; Tang, Lisong; Xiong, Zhengqin; Wang, Baozhan; Jia, Zhongjun; Li, Yan
2014-03-04
To evaluate the effect of long-term fertilization on soil microbial community and soil chemical and physical properties. Using a high-throughput pyrosequencing technique, we studied microbial community in the 0-300 cm soil samples covering a 20-year field-experiment with different fertilization applications including inorganic fertilizer alone (N 300 kg/hm2, P2O5 150 kg/hm2 and K2O 60 kg/hm2) and inorganic fertilizer combined with straw (same application rate of N and P fertilizer combined with 5.4 t straw). Actinobacteria and alpha-proteobacteria were the predominant groups in the topsoil (0-20 cm). As the soil depth increased, the relative abundance of actinobacteria decreased whereas that of proteobacteria, especially gamma-proteobacteria and beta-proteobacteria increased and gradually became the dominant groups in the subsoil (20-300 cm). Long-term fertilizing applications significantly affected soil microbial communities throughout the soil profile, and increased the relative abundance of ammonia-oxidizing archaea at 0-40 cm depth. In addition, agriculture management, e. g. irrigation may be an important driving factor for the distribution of ammonia-oxidizing bacteria in soil profile. Total nitrogen and organic carbon contents were the most influential factors on microbial community in the topsoil and in the subsoil, respectively. Long-term fertilizer applications altered soil nutrient availability within the soil profile, which was likely to result in the different microbial community structure between the fertilizer treatments, especially for the subsoil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ren-Kou; Qafoku, Nikolla; Van Ranst, Eric
2016-01-25
This review paper attempts to summarize the progress made in research efforts conducted over the last years to study the surface chemical properties of the tropical and subtropical soils, usually called variable charge soils, and the way they response to different management practices. The paper is composed of an introductory section that provides a brief discussion on the surface chemical properties of these soils, and five other review sections. The focus of these sections is on the evolution of surface chemical properties during the development of the variable charge properties (second section), interactions between oppositely charged particles and the resultingmore » effects on the soil properties and especially on soil acidity (third section), the surface effects of low molecular weight organic acids sorbed to mineral surfaces and the chemical behavior of aluminum (fourth section), and the crop straw derived biochar induced changes of the surface chemical properties of these soils (fifth section). A discussion on the effect of climate change variables on the properties of the variable charge soils is included at the end of this review paper (sixth section).« less
Dynamic control of a homogeneous charge compression ignition engine
Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL
2008-06-03
A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.
Contrasting effects of deep ploughing of croplands and forests on SOC stocks and SOC bioavailability
NASA Astrophysics Data System (ADS)
Alcántara, Viridiana; Don, Axel; Vesterdal, Lars; Well, Reinhard; Nieder, Rolf
2016-04-01
Subsoils are essential within the global C cycle since they have a high soil organic carbon (SOC) storage capacity due to a high SOC saturation deficit. However, measures for enhancing SOC stocks commonly focus on topsoils. We assessed the long-term stability of topsoil SOC buried in cropland and forest subsoils by deep ploughing. Deep ploughing was promoted until the 1970s for breaking up hardpan and improving soil structure to optimize crop growth conditions. In forests deep ploughing is performed as a site preparation measure for afforestation of sandy soil aiming at increasing water availability in deeper layers and decreasing weed competition by burial of seeds. An effect of deep ploughing was the translocation of topsoil SOC into subsoils, with a concomitant mixing of SOC-poor subsoil material into the "new" topsoil horizon. Deep ploughed croplands and forests represent unique long-term "in-situ incubations" of SOC-rich material in subsoils in order to assess the effect of soil depth on SOC turnover. In this study, we sampled soil from five loamy and five sandy cropland sites as well as from five sandy forest sites, which were ploughed to 55-127 cm depth 25 to 53 years ago. Adjacent, equally managed but conventionally ploughed or not ploughed (forests) subplots were sampled as reference. On average 45 years after the deep ploughing operation, at the cropland sites, the deep ploughed soils contained 42±13 Mg ha-1 more SOC than the reference subplots down to 100 cm depth. On the contrary, at the forest sites, the SOC stocks of the deep ploughed soils contained 18±9 Mg ha-1 less SOC compared to the reference soils on average 38 years deep ploughing. These contrasting results can be explained, on the one hand, by the slower SOC accumulation in the newly formed topsoils of the deep ploughed forest soil (on average 48% lower SOC stocks in topsoil) compared to the croplands (on average 15% lower SOC stocks in topsoil). On the other hand, the buried topsoils at the forest sites exhibited similar bioavailability of SOC (measured as net C mineralization rates from short-term in-vitro incubations) as compared to the reference topsoils. In contrast, at the sandy cropland sites, net C mineralization rates were significantly lower (67%) in the buried topsoil material compared to the reference topsoil. Buried SOC in the sandy soils is thus highly stable. Together with these results, we will present data on SOC fractions and discuss their implications for our view on stability of buried SOC in croplands and forests. Our results show that deep ploughing contributes to SOC sequestration by enlarging the storage space for SOC-rich material but only under the preconditions that i) burial is accompanied by decrease in SOC bioavailability and ii) SOC accumulates considerably in the newly formed topsoil.
Chang, Yanping; Bu, Xiangpan; Niu, Weibo; Xiu, Yu; Wang, Huafang
2013-01-01
Relatively little information is available regarding the variability of microbial communities inhabiting deeper soil layers. We investigated the distribution of soil microbial communities down to 1.2 m in 5-year-old Robinia pseudoacacia 'Idaho' soil by 454 sequencing of the 16S RNA gene. The average number of sequences per sample was 12,802. The Shannon and Chao 1 indices revealed various relative microbial abundances and even distribution of microbial diversity for all evaluated sample depths. The predicted diversity in the topsoil exceeded that of the corresponding subsoil. The changes in the relative abundance of the major soil bacterial phyla showed decreasing, increasing, or no consistent trends with respect to sampling depth. Despite their novelty, members of the new candidate phyla OD1 and TM7 were widespread. Environmental variables affecting the bacterial community within the environment appeared to differ from those reported previously, especially the lack of detectable effect from pH. Overall, we found that the overall relative abundance fluctuated with the physical and chemical properties of the soil, root system, and sampling depth. Such information may facilitate forest soil management.
Model development for prediction of soil water dynamics in plant production.
Hu, Zhengfeng; Jin, Huixia; Zhang, Kefeng
2015-09-01
Optimizing water use in agriculture and medicinal plants is crucially important worldwide. Soil sensor-controlled irrigation systems are increasingly becoming available. However it is questionable whether irrigation scheduling based on soil measurements in the top soil could make best use of water for deep-rooted crops. In this study a mechanistic model was employed to investigate water extraction by a deep-rooted cabbage crop from the soil profile throughout crop growth. The model accounts all key processes governing water dynamics in the soil-plant-atmosphere system. Results show that the subsoil provides a significant proportion of the seasonal transpiration, about a third of water transpired over the whole growing season. This suggests that soil water in the entire root zone should be taken into consideration in irrigation scheduling, and for sensor-controlled irrigation systems sensors in the subsoil are essential for detecting soil water status for deep-rooted crops.
Analysis of the Vibration Propagation in the Subsoil
NASA Astrophysics Data System (ADS)
Jastrzębska, Małgorzata; Łupieżowiec, Marian; Uliniarz, Rafał; Jaroń, Artur
2015-02-01
The paper presents in a comprehensive way issues related to propagation in a soil environment of vibrations originating during sheet piling vibratory driving. Considerations carried out comprised the FEM analysis of initial-boundary behaviour of the subsoil during impacts accompanying the works performed. The analysis has used the authors' RU+MCC constitutive model, which can realistically describe complex deformation characteristics in soils in the field of small strains, which accompany the phenomenon of shock propagation. The basis for model creation and for specification of material parameters of the presented model consisted of first-class tests performed in a triaxial apparatus using proximity detectors guaranteeing a proper measurement of strains ranging from 10-1 to 10-3% and bender elements. Results obtained from numerical analyses were confronted with results of field tests consisting in measurements of acceleration amplitudes generated on the ground surface due to technological impacts versus the distance from vibration source.
Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil.
Johansen, Henrik; Rasmussen, Lars Holm; Olsen, Carl Erik; Bruun Hansen, Hans Christian
2007-02-01
Cyanogenic glycosides are common plant toxins. Toxic hydrogen cyanide originating from cyanogenic glycosides may affect soil processes and water quality. In this study, hydrolysis, degradation and sorption of dhurrin (4-hydroxymandelonitrile-beta-d-glucoside) produced by sorghum has been studied in order to assess its fate in soil. The log K(ow) of dhurrin was -1.18+/-0.08 (22 degrees C). Hydrolysis was a first-order reaction with respect to dhurrin and hydroxyl ion concentrations. Half lives ranged from 1.2h (pH 8.6; 25 degrees C) to 530d (pH 4; 25 degrees C). The activation energy of hydrolysis was 112+9kJ. At pH 5.8 and room temperature, addition of humic acids (50gl(-1)) increased the rate of hydrolysis tenfold, while addition of kaolinite or goethite (100-250gl(-1)) both decreased the rate considerably. No significant sorption to soil components could be observed. The degradation rates of dhurrin in top and subsoils of Oxisols, Ultisols, Alfisols and Mollisols were studied at 22 degrees C (25mgl(-1), soil:liquid 1:1 (w:V), pH 3.8-8.1). Half-lives were 0.25-2h for topsoils, and 5-288h in subsoils. Hydrolysis in solution explained up to 45% of the degradation in subsoils whereas the contribution in topsoils was less than 14%, indicating the importance of enzymatic degradation processes. The highest risk of dhurrin leaching will take place when the soil is a low activity acid shallow soil with low content of clay minerals, iron oxides and humic acids.
Determining and representing width of soil boundaries using electrical conductivity and MultiGrid
NASA Astrophysics Data System (ADS)
Greve, Mogens Humlekrog; Greve, Mette Balslev
2004-07-01
In classical soil mapping, map unit boundaries are considered crisp even though all experienced survey personnel are aware of the fact, that soil boundaries really are transition zones of varying width. However, classification of transition zone width on site is difficult in a practical survey. The objective of this study is to present a method for determining soil boundary width and a way of representing continuous soil boundaries in GIS. A survey was performed using the non-contact conductivity meter EM38 from Geonics Inc., which measures the bulk Soil Electromagnetic Conductivity (SEC). The EM38 provides an opportunity to classify the width of transition zones in an unbiased manner. By calculating the spatial rate of change in the interpolated EM38 map across the crisp map unit delineations from a classical soil mapping, a measure of transition zone width can be extracted. The map unit delineations are represented as transition zones in a GIS through a concept of multiple grid layers, a MultiGrid. Each layer corresponds to a soil type and the values in a layer represent the percentage of that soil type in each cell. As a test, the subsoil texture was mapped at the Vindum field in Denmark using both the classical mapping method with crisp representation of the boundaries and the new map with MultiGrid and continuous boundaries. These maps were then compared to an independent reference map of subsoil texture. The improvement of the prediction of subsoil texture, using continuous boundaries instead of crisp, was in the case of the Vindum field, 15%.
Heavy metal leaching from mine tailings as affected by plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, D.; Schwab, A.P.; Banks, M.K.
A column experiment was conducted to determine the impact of soil cover and plants on heavy metal leaching from mine tailings and heavy metal contaminated soil. Columns made of PVC were constructed with 30 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm of clean topsoil. Two grasses, tall fescue (Festuca arundinacea Schreb.) and big bluestem (Andropogon gerardii), were grown in the columns. The columns were leached at a slow rate for 1 yr with a 0.001 Mmore » CaCl{sub 2} solution under unsaturated conditions. The presence of both tall fescue and big bluestem increased Zn and Cd concentrations in the leachate. Lead concentrations in leachates were not affected by the presence of plants. Although plants generally reduced the total amount of water leached, total mass of Zn and Cd leached generally was not impacted by plants. Total mass of Pb leached was positively correlated with total leachate collected from each column. Covering the mine tailings with 60 cm of topsoil increased the mass of Zn and Cd leached relative to no topsoil. When the subsoil was absent, Zn and Cd leaching increased by as much as 20-fold, verifying the ability of soil to act as a sink for metals. Mine tailing remediation by establishing vegetation can reduce Pb movement but may enhance short-term Cd and Zn leaching. However, the changes were relatively small and do not outweigh the benefits of using vegetation in mine tailings reclamation.« less
Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia
2015-06-01
To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.
Soil Profile Observations Relating to Drouth Damage in Black Willow Stands
WIlliam R. Beaufait
1955-01-01
During drouth, black willow (Salix nigra Karsh.) is quite sensitive to subsoil differences. Surface inspection alone rarely gives an adequate clue to the quality of the variously stratified alluvial soils on which willow may occur.
NASA Astrophysics Data System (ADS)
Cárdenas-Soto, M.; Valdes, J. E.; Escobedo-Zenil, D.
2013-05-01
In June 2006, the base of the artificial lake in Chapultepec Park collapsed. 20 thousand liters of water were filtered to the ground through a crack increasing the dimensions of initial gap. Studies indicated that the collapse was due to saturated material associated with a sudden and massive water filtration process. Geological studies indicates that all the area of this section the subsoil is composed of vulcano-sedimentary materials that were economically exploited in the mid-20th century, leaving a series of underground mines that were rehabilitated for the construction of the Park. Currently, the Lake is rehabilitated and running for recreational activities. In this study we have applied two methods of seismic noise correlation; seismic interferometry (SI) in time domain and the Spatial Power Auto Correlation (SPAC) in frequency domain, in order to explore the 3D subsoil velocity structure. The aim is to highlight major variations in velocity that can be associated with irregularities in the subsoil that may pose a risk to the stability of the Lake. For this purpose we use 96 vertical geophones of 4.5 Hz with 5-m spacing that conform a semi-circular array that provide a length of 480 m around the lake zone. For both correlation methods, we extract the phase velocity associated with the dispersion characteristics between each pair of stations in the frequency range from 4 to 12 Hz. In the SPAC method the process was through the dispersion curve, and in SI method we use the time delay of the maximum amplitude in the correlation pulse, which was previously filtered in multiple frequency bands. The results of both processes were captured in 3D velocity volumes (in the case SI a process of traveltime tomography was applied). We observed that in the frequency range from 6 to 8 Hz, appear irregular structures, with high velocity contrast in relation with the shear wave velocity of surface layer (ten thick m of saturated sediments). One of these anomalies is related to areas where the lake was rehabilitated, but other ones are not reported in previous geophysical or geotechnical studies.
Wang, Neng Wei; Ge, Xiu Li; Li, Sheng Dong
2017-03-18
Conservation tillage and the weed diversity are two hot issues in the modern ecological agriculture. Although it is known that the diversity of weed would increase slightly in the farmland under conservation tillage, the interaction effects between the tillage and the nutrient management on the weed community are not clear. In this study, one wheat-maize rotation field located in Ji'nan, Shandong Province, was selected as the studying site. Different tillage methods (no-tillage, deep subsoiling, rotary tillage, deep tillage) and different nutrient managements (farmers routine, 480 kg N hm -2 per year; high production and efficiency, 360 kg N hm -2 per year; optimal management, 300 kg N hm -2 per year) were carried out for 3 years. The characteristics of the spring weed communities under different managements were investigated and compared. The results showed that there were 15 species in the spring weed communities in the test filed and Digitaria sanguinalis and Echinochloa crusgalli were the dominant species. The plots under no-tillage or deep subsoiling had higher weed densities compared with those under the deep tillage or rotary tillage. In terms of the effect of tillage on the weed community diversity, both species richness index and species evenness index were lowest but the community dominance index was highest in the plots under deep tillage. In terms of the effect of the nutrient management, with the increase of fertilizer application, both species richness and evenness index increased under the different tillage methods. The community dominance increased with the increasing fertilizer application under deep tillage or rotary tillage and vice versa under no-tillage, deep subsoiling. In terms of weed biomass, the plots under no-tillage or deep subsoiling had significantly higher weed biomass than those under the other two tillage methods. The plots under routine nutrient management had higher weed biomass than those under the other two nutrient managements. Among all these treatments, the plots under the combination treatment of no-tillage and routine nutrient management had the highest weed biomass. According to these results, it was implied that no-tillage and fertilization would improve species richness index, species evenness index, and the productivity of spring weed community in the wheat-maize farmland.
Vegetation-induced spatial variability of soil redox properties in wetlands
NASA Astrophysics Data System (ADS)
Szalai, Zoltán; Jakab, Gergely; Kiss, Klaudia; Ringer, Marianna; Balázs, Réka; Zacháry, Dóra; Horváth Szabó, Kata; Perényi, Katalin
2016-04-01
Vegetation induced land patches may result spatial pattern of on soil Eh and pH. These spatial pattern are mainly emerged by differences of aeration and exudation of assimilates. Present paper focuses on vertical extent and temporal dynamics of these patterns in wetlands. Two study sites were selected: 1. a plain wetland on calcareous sandy parent material (Ceglédbercel, Danube-Tisza Interfluve, Hungary); 2. headwater wetland with calcareous loamy parent material (Bátaapáti, Hungary). Two vegetation patches were studied in site 1: sedgy (dominated by Carex riparia) and reedy (dominated by Phragmites australis). Three patches were studied in site2: sedgy1 (dominated by C vulpina), sedgy 2 (C. riparia); nettle-horsetail (Urtica dioica and Equisetum arvense). Boundaries between patches were studied separately. Soil redox, pH and temperature studied by automated remote controlled instruments. Three digital sensors (Ponsell) were installed in each locations: 20cm and 40cm sensors represent the solum and 100 cm sensor monitors the subsoil). Groundwater wells were installed near to triplets for soil water sampling. Soil Eh, pH and temperature values were recorded in each 10 minutes. Soil water sampling for iron and DOC were carried out during saturated periods. Spatial pattern of soil Eh is clearly caused by vegetation. We measured significant differences between Eh values of the studied patches in the solum. We did not find this kinds horizontal differences in the subsoil. Boundaries of the patches usually had more reductive soil environment than the core areas. We have found temporal dynamics of the spatial redox pattern. Differences were not so well expressed during wintertime. These spatial patterns had influence on the DOC and iron content of porewater, as well. Highest temporal dynamics of soil redox properties and porewater iron could be found in the boundaries. These observations refer to importance patchiness of vegetation on soil chemical properties in wetlands. Authors are grateful to Hungarian Scientific research Fund (K100180)
Spatial relationships among cereal yields and selected soil physical and chemical properties.
Lipiec, Jerzy; Usowicz, Bogusław
2018-08-15
Sandy soils occupy large area in Poland (about 50%) and in the world. This study aimed at determining spatial relationships of cereal yields and the selected soil physical and chemical properties in three study years (2001-2003) on low productive sandy Podzol soil (Podlasie, Poland). The yields and soil properties in plough and subsoil layers were determined at 72-150 points. The test crops were: wheat, wheat and barley mixture and oats. To explore the spatial relationship between cereal yields and each soil property spatial statistics was used. The best fitting models were adjusted to empirical semivariance and cross-semivariance, which were used to draw maps using kriging. Majority of the soil properties and crop yields exhibited low and medium variability (coefficient of variation 5-70%). The effective ranges of the spatial dependence (the distance at which data are autocorrelated) for yields and all soil properties were 24.3-58.5m and 10.5-373m, respectively. Nugget to sill ratios showed that crop yields and soil properties were strongly spatially dependent except bulk density. Majority of the pairs in cross-semivariograms exhibited strong spatial interdependence. The ranges of the spatial dependence varied in plough layer between 54.6m for yield×pH up to 2433m for yield×silt content. Corresponding ranges in subsoil were 24.8m for crop yield×clay content in 2003 and 1404m for yield×bulk density. Kriging maps allowed separating sub-field area with the lowest yield and soil cation exchange capacity, organic carbon content and pH. This area had lighter color on the aerial photograph due to high content of the sand and low content of soil organic carbon. The results will help farmers at identifying sub-field areas for applying localized management practices to improve these soil properties and further spatial studies in larger scale. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Variable Charge Soils: Mineralogy and Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nik; Van Ranst, Eric; Noble, Andrew
2003-11-01
Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered variable charge soils (2). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH, ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate minerals such as kaolinite, mica, andmore » hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid. Highly weathered soils usually undergo isoeletric weathering and reach a “zero net charge” stage during their development. They have a slightly acidic to acidic soil solution pH, which is close to either point of zero net charge (PZNC) (3) or point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems. The coexistence and interactions of oppositely charged surfaces or particles confers a different pattern of physical and chemical behavior on the soil, relatively to a homogeneously charged system of temperate regions. In some variable charge soils (Oxisols and some Ultisols developed on ferromagnesian-rich parent materials) the surfaces of phyllosilicates are coated to a lesser or greater extent by amorphous or crystalline, oppositely charged nanoparticles of Fe and Al oxides. These coatings exhibit a high reactive surface area and help cementing larger particles with one another. As a result of these electrostatic interactions, stable microaggregates that are difficult to disperse are formed in variable charge soils. Most of highly weathered soils have reached the “advanced stage” of Jackson-Sherman weathering sequence that is characterized by the removal of Na, K, Ca, Mg, and Fe(II), the presence of Fe and Al polymers, and very dilute soil solutions with an ionic strength (IS) of less than 1 mmol L-1. The inter-penetration or overlapping of the diffuse double layers on oppositely charged surfaces may occur in these dilute systems. These diffuse layer interactions may affect the magnitude of the effective charge, i.e., the counter-ion charge (4). In addition, salt adsorption, which is defined as the simultaneous adsorption in equivalent amounts of the cation and anion of an electrolyte with no net release of other ions into the soil solution, appears to be a common phenomenon in these soils. They act as cation- and anion-exchangers and as salt-sorbers. The magnitude of salt adsorption depends strongly on initial IS in the soil solution and the presence in appreciable amounts of oppositely charged surfaces. Among the authors that have made illustrious contributions towards a better understanding of these fascinating soil systems are S. Matson, R.K. Schofield, van Olphen, M.E. Sumner, G.W. Thomas, G.P. Gillman, G. Uehara, B.K.G. Theng, K. Wada, N.J. Barrow, J.W. Bowden, R.J. Hunter and G. Sposito. This entry is mainly based on publications by these authors.« less
Assessment of mitigating embankment settlement with pile-supported approach slabs : final report.
DOT National Transportation Integrated Search
1999-12-01
Problems involving highway bridge approach settlement have been observed at many sites in Louisiana. In southeastern Louisiana, where subsoil settlement potential is the greatest, the bridge structures are usually lengthened in order to reduce the he...
Assessment of mitigating embankment settlement with pile-supported approach slabs : summary report.
DOT National Transportation Integrated Search
1999-12-01
Problems involving highway bridge approach settlement have been observed at many sites in Louisiana. In southeastern Louisiana, where subsoil settlement potential is the greatest, the bridge structures are usually lengthened in order to reduce the he...
19 CFR 10.762 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... “Person” means a natural person or an enterprise; (p) Preferential tariff treatment. “Preferential tariff... subsoil and their natural resources; (t) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.762 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... “Person” means a natural person or an enterprise; (p) Preferential tariff treatment. “Preferential tariff... subsoil and their natural resources; (t) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.762 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... “Person” means a natural person or an enterprise; (p) Preferential tariff treatment. “Preferential tariff... subsoil and their natural resources; (t) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.762 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... “Person” means a natural person or an enterprise; (p) Preferential tariff treatment. “Preferential tariff... subsoil and their natural resources; (t) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.762 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... “Person” means a natural person or an enterprise; (p) Preferential tariff treatment. “Preferential tariff... subsoil and their natural resources; (t) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
Flood effects on efflux and net production of nitrous oxide in river floodplain soils
NASA Astrophysics Data System (ADS)
Riaz, Muhammad; Bruderer, Christian; Niklaus, Pascal A.; Luster, Jörg
2016-04-01
Floodplain soils are often rich in nutrients and exhibit high spatial heterogeneity in terms of geomorphology, soil environmental conditions and substrate availability for processes involved in carbon and nutrient cycling. In addition, fluctuating water tables lead to temporally changing redox conditions. In such systems, there are ideal conditions for the occurrence of hot spots and moments of nitrous oxide emissions, a potent greenhouse gas. The factors that govern the spatial heterogeneity and dynamics of N2O formation in floodplain soils and the surface efflux of this gas are not fully understood. A particular issue is the contribution of N2O formation in the subsoil to surface efflux. We studied this question in the floodplain of a restored section of the Thur river (NE Switzerland) which is characterized by a flashy flow regime. As a consequence, the floodplain soils are unsaturated most of the time. We showed earlier that saturation during flood pulses leads to short phases of generally anoxic conditions followed by a drying phase with anoxic conditions within aggregates and oxic conditions in larger soil pores. The latter conditions are conducive for spatially closely-coupled nitrification-denitrification and related hot moments of nitrous oxide formation. In a floodplain zone characterized by about one meter of young, sandy sediments, that are mostly covered by the tall grass Phalaris arundinacea, we measured at several time points before and after a small flood event N2O surface efflux with the closed-chamber method, and assessed N2O concentrations in the soil air at four different depths using gas-permeable tubings. In addition, we calculated the N2O diffusivity in the soil from Radon diffusivity. The latter was estimated in-situ from the recovery of Radon concentration in the gas-permeable tubings after purging with ambient air. All these data were then used to calculate net N2O production rates at different soil depths with the gradient method. In addition, temperature, volumetric water content, as well as ammonium, nitrate and dissolved organic carbon in the soil solution were monitored at different depths in the observation plots. During not flood-affected conditions we observed weak diffusive gradients between subsoil and top soil, and net N2O production was maximum in the top soil. During the drying phase after a flood, diffusive gradients between subsoil and topsoil were more pronounced, and net N2O production in the subsoil increased. At all conditions, N2O efflux was more strongly correlated with N2O concentrations in the subsoil than those in the top soil. The complex interactions between soil moisture on one hand, and C and N substrate limitation on the other hand in determining N2O production at different soil depths will be discussed. Finally, the results will be put into the context of our earlier and ongoing studies that aim at elucidating the governing factors of spatial heterogeneity and dynamics of N2O emissions in floodplain soils.
Optimization of isolation of cellulose from orange peel using sodium hydroxide and chelating agents.
Bicu, Ioan; Mustata, Fanica
2013-10-15
Response surface methodology was used to optimize cellulose recovery from orange peel using sodium hydroxide (NaOH) as isolation reagent, and to minimize its ash content using ethylenediaminetetraacetic acid (EDTA) as chelating agent. The independent variables were NaOH charge, EDTA charge and cooking time. Other two constant parameters were cooking temperature (98 °C) and liquid-to-solid ratio (7.5). The dependent variables were cellulose yield and ash content. A second-order polynomial model was used for plotting response surfaces and for determining optimum cooking conditions. The analysis of coefficient values for independent variables in the regression equation showed that NaOH and EDTA charges were major factors influencing the cellulose yield and ash content, respectively. Optimum conditions were defined by: NaOH charge 38.2%, EDTA charge 9.56%, and cooking time 317 min. The predicted cellulose yield was 24.06% and ash content 0.69%. A good agreement between the experimental values and the predicted was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... regulations that concern fishing for fishery resources over which Russia exercises sovereign rights or fishery... entity of its government. Russian continental shelf or continental shelf of Russia means the seabed and subsoil of the submarine areas over which, consistent with international law, Russia exercises sovereign...
19 CFR 10.802 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... “Person” means a natural person or an enterprise; (p) Preferential tariff treatment. “Preferential tariff... seabed and subsoil and their natural resources; and (t) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.862 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... “Person” means a natural person or an enterprise; (n) Preferential tariff treatment. “Preferential tariff... seabed and subsoil and their natural resources; and (r) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.862 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... “Person” means a natural person or an enterprise; (n) Preferential tariff treatment. “Preferential tariff... seabed and subsoil and their natural resources; and (r) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.802 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... “Person” means a natural person or an enterprise; (p) Preferential tariff treatment. “Preferential tariff... seabed and subsoil and their natural resources; and (t) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.802 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... “Person” means a natural person or an enterprise; (p) Preferential tariff treatment. “Preferential tariff... seabed and subsoil and their natural resources; and (t) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.862 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... “Person” means a natural person or an enterprise; (n) Preferential tariff treatment. “Preferential tariff... seabed and subsoil and their natural resources; and (r) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.802 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... “Person” means a natural person or an enterprise; (p) Preferential tariff treatment. “Preferential tariff... seabed and subsoil and their natural resources; and (t) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.862 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... “Person” means a natural person or an enterprise; (n) Preferential tariff treatment. “Preferential tariff... seabed and subsoil and their natural resources; and (r) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
19 CFR 10.802 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... “Person” means a natural person or an enterprise; (p) Preferential tariff treatment. “Preferential tariff... seabed and subsoil and their natural resources; and (t) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. Import Requirements ...
Method for altering antibody light chain interactions
Stevens, Fred J.; Stevens, Priscilla Wilkins; Raffen, Rosemarie; Schiffer, Marianne
2002-01-01
A method for recombinant antibody subunit dimerization including modifying at least one codon of a nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in the interface segment of the light polypeptide variable region, the charged amino acid having a first polarity; and modifying at least one codon of the nucleic acid sequence to replace an amino acid occurring naturally in the antibody with a charged amino acid at a position in an interface segment of the heavy polypeptide variable region corresponding to a position in the light polypeptide variable region, the charged amino acid having a second polarity opposite the first polarity. Nucleic acid sequences which code for novel light chain proteins, the latter of which are used in conjunction with the inventive method, are also provided.
Amelioration of an Ultisol profile acidity using crop straws combined with alkaline slag.
Li, Jiu-yu; Masud, M M; Li, Zhong-yi; Xu, Ren-kou
2015-07-01
The acidity of Ultisols (pH <5) is detrimental to crop production. Technologies should be explored to promote base saturation and liming effect for amelioration of Ultisol pH. Column leaching experiments were conducted to investigate the amelioration effects of canola straw (CS) and peanut straw (PS) in single treatment and in combination whether with alkaline slag (AS) or with lime on Ultisol profile acidity. The treatment without liming materials was set as control, and the AS and lime in single treatment are set for comparison. Results indicated that all the liming materials increase soil profile pH and soil exchangeable base cations at the 0-40-cm depth, except that the lime had amelioration effect just on 0 to 15-cm profile. The amelioration effect of the liming materials on surface soil acidity was mainly dependent on the ash alkalinity in organic materials or acid neutralization capacity of inorganic materials. Specific adsorption of sulfate (SO4(2-)) or organic anions, decarboxylation of organic acids/anions, and the association of H(+) with organic anions induced a "liming effect" of crop residues and AS on subsoil acidity. Moreover, SO4(2-) and chloride (Cl(-)) in PS, CS, and AS primarily induced base cations to move downward to subsoil and exchange with exchangeable aluminum (Al(3+)) and protons (H(+)). These anions also promoted the exchangeable Al to leach out of the soil profile. The CS was more effective than PS in decreasing soil acidity in the subsoil, which mainly resulted from higher sulfur (S) and Cl content in CS compared to PS. The CS combined with AS was the better amendment choice in practical agricultural systems.
Atmakuru, Ramesh; Perumal Elumalai, Thirugnanam; Sivanandam, Sathiyanarayanan
2007-07-01
Long term stability of sulfosulfuron was investigated in subsoil under the natural wheat cropping conditions. Experiments were conducted by applying a commercial formulation of sulfosulfuron on soil at 50 g/ha and 100 g/ha. To understand the factors influencing the persistence of residues two different experiments were conducted. In one experiment wheat crop was cultivated once at the beginning of the two years study period and subsequently the plots were kept undisturbed for the remaining period. In another experiment cultivation of subsequent crops were continued during the study period. In both the cases sulfosulfuron was applied only once at the beginning of the study. Representative soil samples were collected from the depths viz., 0-5, 15, 30, 45, 60 and 90 cm on different pre determined sampling occasions 50, 100, 200, 300, 400, 500 and 600 days after the application of the herbicide. The collected soil samples were analyzed for the residues of sulfosulfuron. Under the influence of continuous cropping conditions residues of sulfosulfuron were found to be relatively low when compared with the soil samples collected from the agriculture plots maintained without any cultivation. The residues detected are in the range 0.001 to 0.017 microg/g. Samples collected from the depth, at 30 to 45 cm showed higher residual concentrations. Soil samples were also showed the presence of break down products. The data has been confirmed by LC-MS/MS. The relation between residue content of sulfosulfuron and the factors contributing the stability of herbicide concentration were also studied.
Chemical characterization of iron-mediated soil organic matter stabilization in tropical subsoils
NASA Astrophysics Data System (ADS)
Coward, E.; Plante, A. F.; Thompson, A.
2015-12-01
Tropical forest soils contribute disproportionately to the poorly-characterized and persistent deep soil carbon (C) pool. Highly-weathered and often extending one to two meters deep, these soils also contain an abundance of semicrystalline, Fe- and Al-containing short-range-order (SRO) minerals, metastable derivatives of framework silicate and ferromagnesian parent materials. SRO minerals are capable of soil organic matter (SOM) stabilization through sorption or co-precipitation, a faculty enhanced by their high specific surface area (SSA). As such, SRO-mediated organomineral associations may prove a critical, yet matrix-selective, driver of SOM stabilization capacity in tropical soils, particularly at depth. Surface (0-20 cm) and subsoil (50-80 cm) samples were taken from 20 quantitative soil pits dug in the Luquillo Critical Zone Observatory, located in northeast Puerto Rico. Soils were stratified across granodiorite and volcaniclastic parent materials, spanning primary mineral contents of 5 to 40%. Selective dissolution procedures were used to isolate distinct forms of Fe-C interactions: (1) sodium pyrophosphate to isolate organo-mineral complexes, (2) hydroxylamine and (3) oxalate to isolate SRO phases, and (4) inorganic dithionite to isolate crystalline Fe oxides. Extracts were analysed for dissolved organic C (DOC) and Fe and Al concentrations to estimate SOM associated with each mineral phase. Soils were also subjected to SSA analysis, 57Fe-Mössbauer spectroscopy and X-ray diffraction before and after extraction to determine the contribution of extracted mineral phases to SOM stabilization capacity. Preliminary results indicate a dominance of secondary (hydr)oxides and kaolin minerals in surface soils, strongly driven by parent material. With depth, however, we observe a marked shift towards SRO mineral phases across both parent materials, suggesting that SRO-mediated organomineral associations are significant contributors to observed C storage in tropical subsoils.
Comparison of soil organic carbon speciation using C NEXAFS and CPMAS 13C NMR spectroscopy.
Prietzel, Jörg; Müller, Svenja; Kögel-Knabner, Ingrid; Thieme, Jürgen; Jaye, Cherno; Fischer, Daniel
2018-07-01
We compared synchrotron-based C near-edge X-ray absorption fine structure (NEXAFS) and CPMAS 13 C nuclear magnetic resonance (NMR) spectroscopy with respect to their precision and accuracy to quantify different organic carbon (OC) species in defined mixtures of soil organic matter source compounds. We also used both methods to quantify different OC species in organic surface horizons of a Histic Leptosol as well as in mineral topsoil and subsoil horizons of two soils with different parent material, stage of pedogenesis, and OC content (Cambisol: 15-30 OC mgg -1 , Podzol: 0.9-7 OC mgg -1 ). CPMAS 13 C NMR spectroscopy was more accurate and precise (mean recovery of different C functional groups 96-103%) than C NEXAFS spectroscopy (mean recovery 92-113%). For organic surface and topsoil samples, NMR spectroscopy consistently yielded larger O-alkyl C percentages and smaller alkyl C percentages than C NEXAFS spectroscopy. For the Cambisol subsoil samples both methods performed well and showed similar C speciation results. NEXAFS spectroscopy yielded excellent spectra with a high signal-to-noise ratio also for OC-poor Podzol subsoil samples, whereas this was not the case for CPMAS 13 C NMR spectroscopy even after sample treatment with HF. Our results confirm the analytical power of CPMAS 13 C NMR spectroscopy for a reliable quantitative OC speciation in soils with >10mgOCg -1 . Moreover, they highlight the potential of synchrotron-based C NEXAFS spectroscopy as fast, non-invasive method to semi-quantify different C functional groups in soils with low C content (0.9-10mgg -1 ). Copyright © 2018 Elsevier B.V. All rights reserved.
Effects of Nitrogen Fertilization and Thinning Treatments on Subsurface Soil Carbon and Nitrogen
NASA Astrophysics Data System (ADS)
Gross, C. D.; James, J. N.; Harrison, R. B.
2016-12-01
Increases in intensively managed forest plantations have caused concern for the long-term productivity and sustainability of these stands, as decreased organic matter retention and shorter rotations can substantially impact soil nutrition both in the short- and long-term. This study aims to provide data for regional responses of soil carbon (C) and nitrogen (N) by depth to fertilization and thinning treatments. Soil was sampled at an intensively managed Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation in northwestern Oregon, USA. Nine 0.2-ha plots were sampled with at least three pits per plot. Management regimes included no treatment (control), fertilization (F+), minimal thinning (mT), repeated thinning (rT), and combination treatments (mTF+ and rTF+). Fertilized plots received a total of 1120 kg N ha-1 as urea over 16 years. Bulk density and chemical analysis samples were taken in the middle of succeeding soil layers at depths of 0.1, 0.2, 0.5, 1.0, and 1.5 m. Forest floor samples were collected from a randomly placed quadrat. Preliminary results show an increase in total soil C and N of 113 and 106%, respectively, on the mTF+ plot compared to a control plot. The subsoil, defined here as below 0.2 m, contained over 50% of both soil C and N on the mTF+ plot and experienced greater C and N increases than the surface soil following treatment. This study demonstrates that forest management practices over a relatively short time span (<30 years) can significantly alter subsoil, which comprises a substantial portion of biologically available C and N in terrestrial ecosystems. Subsoil processes are critical to our understanding of changes in soil quality and our ability to accurately assess changes in soil C and N reservoirs.
Zhang, Li; Zhang, Li; Wu, Dong-Xia; Zhang, Jun-Jun
2014-06-01
In order to clarify the effects of tillage patterns on farmland weed community structure and crop production characteristics, based on 10 years location experiment with no-tillage, subsoiling and conventional tillage in the cold and arid region of North China, and supplementary experiment of plowing after 10 years no-tillage and subsoiling, oat was planted in 2 soils under different tillage patterns, and field weed total density, dominant weed types, weed diversity index, field weed biomass and oats yield were measured. The results showed that the regional weed community was dominated by foxtail weed (Setaira viridis); the weed density under long-term no-tillage was 2.20-5.14 times of tillage at different growing stages of oat, but there were no significant differences between conditional tillage and plowing after long-term no-tillage and subsoiling. Field weed Shannon diversity indices were 0.429 and 0.531, respectively, for sandy chestnut soil and loamy meadow soil under no-tillage conditions, and field weed biomass values were 1.35 and 2.26 times of plowing treatment, while the oat biomass values were only 2807.4 kg x hm(-2) and 4053.9 kg x hm(-2), decreased by 22.3% and 46.2%, respectively. The results showed that the weed community characteristics were affected by both tillage patterns and soil types. Long-term no-tillage farmland in the cold and arid region of North China could promote the natural evolution of plant communities by keeping more perennial weeds, and the plowing pattern lowered the annual weed density, eliminated perennial weeds with shallow roots, and stimulated perennial weeds with deep roots.
Code of Federal Regulations, 2010 CFR
2010-04-01
... variable life insurance contractholders required pursuant to Rule 6e-2 (§ 270.6e-2 of this chapter). [41 FR... withdrawal right and statement of charges for variable life insurance contractholders required pursuant to Rule 6e-2 (§ 270.6e-2 of this chapter). 274.303 Section 274.303 Commodity and Securities Exchanges...
Code of Federal Regulations, 2013 CFR
2013-10-01
... laws and regulations that concern fishing for fishery resources over which Russia exercises sovereign... Russia means the seabed and subsoil of the submarine areas over which, consistent with international law, Russia exercises sovereign rights. Russian Economic Zone or Russian EZ means a zone of waters off the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... laws and regulations that concern fishing for fishery resources over which Russia exercises sovereign... Russia means the seabed and subsoil of the submarine areas over which, consistent with international law, Russia exercises sovereign rights. Russian Economic Zone or Russian EZ means a zone of waters off the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... laws and regulations that concern fishing for fishery resources over which Russia exercises sovereign... Russia means the seabed and subsoil of the submarine areas over which, consistent with international law, Russia exercises sovereign rights. Russian Economic Zone or Russian EZ means a zone of waters off the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... laws and regulations that concern fishing for fishery resources over which Russia exercises sovereign... Russia means the seabed and subsoil of the submarine areas over which, consistent with international law, Russia exercises sovereign rights. Russian Economic Zone or Russian EZ means a zone of waters off the...
19 CFR 10.502 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... natural person or an enterprise; (n) Preferential tariff treatment. “Preferential tariff treatment” means... its national laws and international law for the purpose of exploration and exploitation of the natural... States may exercise rights with respect to the seabed and subsoil and their natural resources; and (s...
19 CFR 10.502 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... natural person or an enterprise; (n) Preferential tariff treatment. “Preferential tariff treatment” means... its national laws and international law for the purpose of exploration and exploitation of the natural... States may exercise rights with respect to the seabed and subsoil and their natural resources; and (s...
19 CFR 10.502 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... natural person or an enterprise; (n) Preferential tariff treatment. “Preferential tariff treatment” means... its national laws and international law for the purpose of exploration and exploitation of the natural... States may exercise rights with respect to the seabed and subsoil and their natural resources; and (s...
19 CFR 10.502 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... natural person or an enterprise; (n) Preferential tariff treatment. “Preferential tariff treatment” means... its national laws and international law for the purpose of exploration and exploitation of the natural... States may exercise rights with respect to the seabed and subsoil and their natural resources; and (s...
19 CFR 10.502 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... natural person or an enterprise; (n) Preferential tariff treatment. “Preferential tariff treatment” means... its national laws and international law for the purpose of exploration and exploitation of the natural... States may exercise rights with respect to the seabed and subsoil and their natural resources; and (s...
A field evaluation of subsurface and surface runoff. II. Runoff processes
Pilgrim, D.H.; Huff, D.D.; Steele, T.D.
1978-01-01
Combined use of radioisotope tracer, flow rate, specific conductance and suspended-sediment measurements on a large field plot near Stanford, California, has provided more detailed information on surface and subsurface storm runoff processes than would be possible from any single approach used in isolation. Although the plot was surficially uniform, the runoff processes were shown to be grossly nonuniform, both spatially over the plot, and laterally and vertically within the soil. The three types of processes that have been suggested as sources of storm runoff (Horton-type surface runoff, saturated overland flow, and rapid subsurface throughflow) all occurred on the plot. The nonuniformity of the processes supports the partial- and variable-source area concepts. Subsurface storm runoff occurred in a saturated layer above the subsoil horizon, and short travel times resulted from flow through macropores rather than the soil matrix. Consideration of these observations would be necessary for physically realistic modeling of the storm runoff process. ?? 1978.
NASA Astrophysics Data System (ADS)
Ovidiu, Avram; Rusu, Emil; Maftei, Raluca-Mihaela; Ulmeanu, Antonio; Scutelnicu, Ioan; Filipciuc, Constantina; Tudor, Elena
2017-12-01
Electrometry is most frequently applied geophysical method to examine dynamical phenomena related to the massive salt presence due to resistivity contrasts between salt, salt breccia and geological covering formations. On the vertical resistivity sections obtained with VES devices these three compartments are clearly differentiates by high resistivity for the massive salt, very low for salt breccia and variable for geological covering formations. When the land surface is inclined, shallow formations are moving gravitationally on the salt back, producing a landslide. Landslide monitoring involves repeated periodically measurements of geoelectrical profiles into a grid covering the slippery surface, in the same conditions (climate, electrodes position, instrument and measurement parameters). The purpose of monitoring landslides in Slanic Prahova area, was to detect the changes in resistivity distribution profiles to superior part of subsoil measured in 2014 and 2015. Measurement grid include several representative cross sections in susceptibility to landslides point of view. The results are graphically represented by changing the distribution of topography and resistivity differences between the two sets of geophysical measurements.
NASA Astrophysics Data System (ADS)
Florindo, F.; Sapia, V.; Marchetti, M.
2017-12-01
We present preliminary results of a multidisciplinary geophysical investigation applied to the subsoil imaging of the archaeological site of Cocciano, near Rome. The area was place of a series of archaeological findings, which are generally recognized as the remains of a vast Roman villa of the imperial age, notably attributed to Emperor Tiberius. We acquired capacitive coupled resistivity data along two parallel profiles and we performed a magnetic survey over a small subset of the survey area. The recovered resistivity models suggest the presence of a shallow, sub-horizontal, resistive layer (ρ > 350 Ωm), of slightly variable thickness (2 - 3 m), which we interpret as the response of ancient substructions overlying a relatively low-resistive layer, which we ascribe to the geological substratum. Processed magnetic data show a clear magnetic signature aligned to form a curve-shaped anomaly right at the prosecution of a nearby, partially exposed, ancient wall.
Natural versus anthropogenic subsidence of Venice.
Tosi, Luigi; Teatini, Pietro; Strozzi, Tazio
2013-09-26
We detected land displacements of Venice by Persistent Scatterer Interferometry using ERS and ENVISAT C-band and TerraSAR-X and COSMO-SkyMed X-band acquisitions over the periods 1992-2010 and 2008-2011, respectively. By reason of the larger observation period, the C-band sensors was used to quantify the long-term movements, i.e. the subsidence component primarily ascribed to natural processes. The high resolution X-band satellites reveal a high effectiveness to monitor short-time movements as those induced by human activities. Interpolation of the two datasets and removal of the C-band from the X-band map allows discriminating between the natural and anthropogenic components of the subsidence. A certain variability characterizes the natural subsidence (0.9 ± 0.7 mm/yr), mainly because of the heterogeneous nature and age of the lagoon subsoil. The 2008 displacements show that man interventions are responsible for movements ranging from -10 to 2 mm/yr. These displacements are generally local and distributed along the margins of the city islands.
The magnetic susceptibility of soils in Krakow, southern Poland
NASA Astrophysics Data System (ADS)
Wojas, Anna
2017-06-01
Studies into the magnetic susceptibility have been used to assess the soils contamination in the Krakow area. The results of topsoil (over a 2 × 2 km grid), subsoil (37 shallow holes) and soil samples (112) measurements were presented as maps of soil magnetic susceptibility (both volume and mass) illustrating the distribution of parameters in topsoil horizon (0-10 cm) and differential magnetic susceptibility maps between topsoil horizon and subsoil (40-60 cm). All evidence leads to the finding that the highest values of magnetic susceptibility of soil are found exclusively in industrial areas. Taking into consideration the type of land use, the high median value (89.8 × 10-8 m3kg-1) was obtained for samples of cultivated soils and is likely to be connected with occurrence of fertile soil (chernozem). Moreover, enrichment of soils with Pb and Zn accompanies magnetic susceptibility anomalies in the vicinity of the high roads and in the steelworks area, respectively.
NASA Astrophysics Data System (ADS)
Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.
2015-07-01
Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.
Transverse Motion of a Particle with an Oscillating Charge and Variable Mass in a Magnetic Field
NASA Astrophysics Data System (ADS)
Alisultanov, Z. Z.; Ragimkhanov, G. B.
2018-03-01
The problem of motion of a particle with an oscillating electric charge and variable mass in an uniform magnetic field has been solved. Three laws of mass variation have been considered: linear growth, oscillations, and stepwise growth. Analytical expressions for the particle velocity at different time dependences of the particle mass are obtained. It is established that simultaneous consideration of changes in the mass and charge leads to a significant change in the particle trajectory.
Scaling of Device Variability and Subthreshold Swing in Ballistic Carbon Nanotube Transistors
NASA Astrophysics Data System (ADS)
Cao, Qing; Tersoff, Jerry; Han, Shu-Jen; Penumatcha, Ashish V.
2015-08-01
In field-effect transistors, the inherent randomness of dopants and other charges is a major cause of device-to-device variability. For a quasi-one-dimensional device such as carbon nanotube transistors, even a single charge can drastically change the performance, making this a critical issue for their adoption as a practical technology. Here we calculate the effect of the random charges at the gate-oxide surface in ballistic carbon nanotube transistors, finding good agreement with the variability statistics in recent experiments. A combination of experimental and simulation results further reveals that these random charges are also a major factor limiting the subthreshold swing for nanotube transistors fabricated on thin gate dielectrics. We then establish that the scaling of the nanotube device uniformity with the gate dielectric, fixed-charge density, and device dimension is qualitatively different from conventional silicon transistors, reflecting the very different device physics of a ballistic transistor with a quasi-one-dimensional channel. The combination of gate-oxide scaling and improved control of fixed-charge density should provide the uniformity needed for large-scale integration of such novel one-dimensional transistors even at extremely scaled device dimensions.
Uneven nutrient load and potential offsite loss
USDA-ARS?s Scientific Manuscript database
Landscape and management often results in uneven nutrient loads within a field. The hypotheses of this study are that: 1) phosphorus accumulates at low areas in the landscape adjacent to waterways; and 2) nitrate at lower landscape positions will be decreased in the subsoil due to denitrification an...
30 CFR 817.22 - Topsoil and subsoil.
Code of Federal Regulations, 2011 CFR
2011-07-01
...— (i) Occur at the site of small structures, such as power poles, signs, or fence lines; or (ii) Will... contaminants and unnecessary compaction that would interfere with revegetation; (iii) Be protected from wind... disturbances will result from facilities such as support facilities and preparation plants and where...
30 CFR 816.22 - Topsoil and subsoil.
Code of Federal Regulations, 2011 CFR
2011-07-01
... site of small structures, such as power poles, signs, or fence lines; or (ii) Will not destroy the... unnecessary compaction that would interfere with revegetation; (iii) Be protected from wind and water erosion... from facilities such as support facilities and preparation plants and where stockpiling of materials...
30 CFR 817.22 - Topsoil and subsoil.
Code of Federal Regulations, 2010 CFR
2010-07-01
...— (i) Occur at the site of small structures, such as power poles, signs, or fence lines; or (ii) Will... contaminants and unnecessary compaction that would interfere with revegetation; (iii) Be protected from wind... disturbances will result from facilities such as support facilities and preparation plants and where...
30 CFR 816.22 - Topsoil and subsoil.
Code of Federal Regulations, 2010 CFR
2010-07-01
... site of small structures, such as power poles, signs, or fence lines; or (ii) Will not destroy the... unnecessary compaction that would interfere with revegetation; (iii) Be protected from wind and water erosion... from facilities such as support facilities and preparation plants and where stockpiling of materials...
Vehicle charging and potential on the STS-3 mission
NASA Technical Reports Server (NTRS)
Williamson, R.
1983-01-01
An electron gun with fast pulse capability was used in the vehicle charging and potential experiment carried on the OSS-1 pallet to study dielectric charging, return current mechanisms, and the techniques required to manage the electrical charging of the orbiter. Return currents and charging of the dielectrics were measured during electron beam emission and plasma characteristics in the payload bay were determined in the absence of electron beam emission. The fast pulse electron generator, charge current probes, spherical retarding potential analyzer, and the digital control interface unit which comprise the experiment are described. Results show that the thrusters produce disturbances which are variable in character and magnitude. Strong ram/wake effects were seen in the ion densities in the bay. Vehicle potentials are variable with respect to the plasma and depend upon location on the vehicle relative to the main engine nozzles, the vehicle attitude, and the direction of the geomagnetic field.
NASA Astrophysics Data System (ADS)
Hobley, E.; Honermeier, B.; Don, A.; Gocke, M. I.; Amelung, W.; Kogel-Knabner, I.
2016-12-01
We investigated the effects of pre-crops with and without biological nitrogen fixation capacity (fava beans, clover mulch, fodder maize) and fertilization (no fertilizer, NPK fertilizer, PK fertilizer) on soil physico-chemical properties (bulk density, electrical conductivity, soil organic carbon (SOC) concentration and stocks, N concentration and stocks) and their depth distribution (down to 1 m) at a long-term field experiment set up in 1982 in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the entire soil profile. The soil was physically and chemically affected by the type of pre-crop. Plots with fava beans and maize had lower bulk densities in the subsoil than those with clover. Pre-crop type also significantly affected the depth distribution of both N and SOC. Specifically, clover pre-cropping led to an enrichment of N at the surface compared with fava beans and maize. SOC enrichment at the surface was also observed under clover, with the effect most pronounced under PK fertilization. Combined with the bulk density effects, this shift in N distribution resulted in significantly higher N stocks under clover than under fava beans. However, the total stocks of SOC were not affected by pre-crop or fertilizer regime. Our results indicate that humans influence C and N cycling and distribution in soils through the selection of pre-crops and that the influence of crop type is greater than that of fertilization regimes. Pre-cropping with clover, which is used as a mulch, leads to N enrichment in the topsoil, reducing the need for N fertilizer for the subsequent cereal crop. In contrast, the use of fava beans as a pre-crop does not lead to N enrichment. We believe this is due to the greater rooting depth of fava beans compared with clover, resulting in lower bulk density in the subsoil and associated lower stocks. Additionally, the harvest of fava beans removes N-rich biomass from the soil, lowering N-input. Lastly, the uptake of water at depth may facilitate subsoil N uptake, so that fava bean N is utilized by the cereal crop but does not lead to its enrichment in the subsoil.
NASA Astrophysics Data System (ADS)
Chavez, R. E.; Tejero, A.; Cifuentes, G.; Garcia-Serrano, A.; Argote-Espino, D. L.; HernaNdez-Quintero, J. E.; Ortega, V.
2017-12-01
The Pyramid of La Luna is found within the archaeological site of Teotihuacan, located to the NE of Mexico City. This pre-Hispanic city was developed between 250 AD and 450 AD, with a population of 100,000 people. The most important edifices are the pyramids of El Sol and La Luna. The pyramid of El Sol is one of the largest pre-Hispanic structures found nowadays in Mexico (a square basement of approximately 200m X 225 m). The pyramid of La Luna (with a base of 140m X 150m), smaller in size is located towards the northern portion of this ancient city. At its front, a big plaza is found surrounded by pyramids of different ages. Previous archaeological studies carried out within the plaza, discovered small shallow pipes for water discharge. Then, it is possible to find deeper structures within the Square. A geophysical work was carried out in the Plaza of La Luna employing the ERT-3D to build a 3D resistivity model. Four ERT profiles were deployed in the area in the E-W direction, with a length of 80 m each; electrodes were inserted 3 m apart. A roll-along technique was employed to obtain a 3D view of the plaza subsoil. Gradient (G), Equatorial (Eq), and Minimum Coupling (MC) arrays were applied. A total of 2,600 apparent resistivity observations were acquired. Also, the pyramid was surrounded with 105 electrodes to illuminate this structure subsoil, employing the 'L' and 'Corner' arrays and the already mentioned settings. Electrodes were separated 5 m for the E and N sides, and 6 m for the W and S sides, topographic correction was added to the interpretation. 7,200 apparent resistivity values were obtained. Processing of the data included noise filtering, real electrode position and removing of spikes. Finally, the data were inverted to compute a 3D resistivity distribution of the subsoil. Preliminary results obtained indicate the presence of high resistivity anomalies probably associated to infill or archaeological features. However, an interesting resistivity signature was determined at 8m deep, which possesses a SW-NE direction and apparently ends beneath the NE portion of the Pyramid of La Luna. Beneath the pyramid's center, the resistivity model interpreted depicts an important resistivity anomaly (about 350 Ohm-m and 10 m in diameter), which may indicate the presence of a cavity(?).
NASA Astrophysics Data System (ADS)
Khemis, Chiheb; Abrougui, Khaoula; Ren, Lidong; Mutuku, Eunice Ann; Chehaibi, Sayed; Cornelis, Wim
2017-04-01
Vegetables in Tunisia demand frequent tractor traffic for soil tillage, cultural operations and phytosanitary treatment, resulting in soil compaction. This study evaluates the effects of four levels of compaction by using different loads and tyre pressures of tractors, i.e., load 1 (C1) = 1460 kg, load 2 (C2) = 3100 kg, tyre pressure 1 (C3) = 800 kg cm-2, tyre pressure 2 (C4) = 1500 kg cm-2 on the hydraulic and physical properties of a sandy loam (10% clay, 20% silt, 68% sand) under three natural moisture conditions H0, H1 (15 days later), H2 (30 days later). At H0 average water content between 0 and 30 cm depth varied from 0.04 to 0.06 kg kg-1, at H1 between 0.13 and 0.07 kg kg-1, and at H2 between 0.10 and 0.09 kg kg-1. Each test run was limited to one pass. Undisturbed soil cores were collected in the topsoil (0-10 cm), at 10-20 cm and in the subsoil (20-30 cm) below the trace of the wheel at sites in the Higher Institute of Agronomy of Chott Mariam, Sousse, Tunisia. Soil compaction level was determined by penetration resistance using a penetrologger. Porosity, bulk density and permeability were then determined to evaluate the impact of the four load/tyre pressure combinations at the three moisture conditions on soil compaction. Prior to the experiment (C0), bulk density was 1.4 Mg m-3. After the tractor pass, the highest degree of compaction was observed with tractor load C2 and tyre pressure C4 which significantly changed soil bulk density resulting in values of up to 1.71 Mg m-3 in the topsoil and compacted subsoil under H2, which is significantly above the critical value of 1.6 Mg m-3 for soils with clay content below 17.5%. The high degree of compaction significantly affected penetration resistance and porosity of both topsoil and subsoil layers accordingly. Permeability was significantly reduced as a result of the induced compaction. The results demonstrate that different degrees of soil compaction under different moisture levels could greatly influence hydraulic and physical properties in different ways. Even under relatively low water contents, i.e., below or near field capacity, substantial top and subsoil compaction was induced after one tractor pass.
Carbon and 14C distribution in tropical and subtropical agricultural soils
NASA Astrophysics Data System (ADS)
Prastowo, Erwin; Grootes, Pieter; Nadeau, Marie
2016-04-01
Paddy soil management affects, through the alternating anoxic and oxic conditions it creates, the transport and stabilisation of soil organic matter (SOM). Irrigation water may percolate more organic materials - dissolved (DOM) and colloidal - into the subsoil during anoxic conditions. Yet a developed ploughpan tends to prevent C from going deeper in the subsoil and partly decouple C distribution in top and sub soil. We investigate the influence of different soil type and environment. We observed the C and 14C distribution in paddy and non-paddy soil profiles in three different soil types from four different climatic regions of tropical Indonesia, and subtropical China. Locations were Sukabumi (Andosol, ca. 850 m a.s.l), Bogor (clayey Alisol, ca. 240 m a.s.l), and Ngawi (Vertisol, ca. 70 m a.s.l) in Jawa, Indonesia, and Cixi (Alisol(sandy), ca. 4 - 6 m a.s.l) in Zhejiang Province, China. We compared rice paddies with selected neighbouring non-paddy fields and employed AMS 14C as a tool to study C dynamics from bulk, alkali soluble-humic, and insoluble humin samples, and macrofossils (plant remains, charcoal). Our data suggest that vegetation type determines the quantity and quality of biomass introduced as litter and root material in top and subsoil, and thus contributes to the soil C content and profile, which fits the 14C signal distribution, as well as 13C in Ngawi with C4 sugar cane as upland crop. 14C concentrations for the mobile humic acid fraction were generally higher than for bulk samples from the same depth, except when recent plant and root debris led to high 14C levels in near-surface samples. The difference in sampling, - averaged layer for bulk sample and 1-cm layer thickness for point sample - shows gradients in C and 14C across the layers, which could be a reason for discrepancies between the two. High 14C concentrations - in Andosol Sukabumi up to 111 pMC - exceed the atmospheric 14CO2concentration in the sampling year in 2012 (˜ 103 pMC) and reflect stored organic material from earlier years with a higher atmospheric bomb 14C content. Direct inputs of plant material into the subsoil is indicated by young organic remains with more than 103 pMC below 0.8 m depth. In combination with 13C observation, it is quite obvious that introduction of young C took place in both paddy and non-paddy.
Mapping CO2 emission in highly urbanized region using standardized microbial respiration approach
NASA Astrophysics Data System (ADS)
Vasenev, V. I.; Stoorvogel, J. J.; Ananyeva, N. D.
2012-12-01
Urbanization is a major recent land-use change pathway. Land conversion to urban has a tremendous and still unclear effect on soil cover and functions. Urban soil can act as a carbon source, although its potential for CO2 emission is also very high. The main challenge in analysis and mapping soil organic carbon (SOC) in urban environment is its high spatial heterogeneity and temporal dynamics. The urban environment provides a number of specific features and processes that influence soil formation and functioning and results in a unique spatial variability of carbon stocks and fluxes at short distance. Soil sealing, functional zoning, settlement age and size are the predominant factors, distinguishing heterogeneity of urban soil carbon. The combination of these factors creates a great amount of contrast clusters with abrupt borders, which is very difficult to consider in regional assessment and mapping of SOC stocks and soil CO2 emission. Most of the existing approaches to measure CO2 emission in field conditions (eddy-covariance, soil chambers) are very sensitive to soil moisture and temperature conditions. They require long-term sampling set during the season in order to obtain relevant results. This makes them inapplicable for the analysis of CO2 emission spatial variability at the regional scale. Soil respiration (SR) measurement in standardized lab conditions enables to overcome this difficulty. SR is predominant outgoing carbon flux, including autotrophic respiration of plant roots and heterotrophic respiration of soil microorganisms. Microbiota is responsible for 50-80% of total soil carbon outflow. Microbial respiration (MR) approach provides an integral CO2 emission results, characterizing microbe CO2 production in optimal conditions and thus independent from initial difference in soil temperature and moisture. The current study aimed to combine digital soil mapping (DSM) techniques with standardized microbial respiration approach in order to analyse and map CO2 emission and its spatial variability in highly urbanized Moscow region. Moscow region with its variability of bioclimatic conditions and high urbanization level (10 % from the total area) was chosen as an interesting case study. Random soil sampling in different soil zones (4) and land-use types (3 non-urban and 3 urban) was organized in Moscow region in 2010-2011 (n=242). Both topsoil (0-10 cm) and subsoil (10-150 cm) were included. MR for each point was analysed using standardized microbial (basal) respiration approach, including the following stages: 1) air dried soil samples were moisturised up to 55% water content and preincubated (7 days, 22° C) in a plastic bag with air exchange; 2) soil MR (in μg CO2-C g-1) was measured as the rate of CO2 production (22° C, 24 h) after incubating 2g soil with 0.2 μl distilled water; 3) the MR results were used to estimate CO2 emission (kg C m-2 yr-1). Point MR and CO2 emission results obtained were extrapolated for the Moscow region area using regression model. As a result, two separate CO2 maps for topsoil and subsoil were created. High spatial variability was demonstrated especially for the urban areas. Thus standardized MR approach combined with DSM techniques provided a unique opportunity for spatial analysis of soil carbon temporal dynamics at the regional scale.
Dodd, Ashley C; Lakomkin, Nikita; Bulka, Catherine; Thakore, Rachel; Collinge, Cory A; Sethi, Manish K
2016-12-01
We investigated geographic variations in Medicare spending for DRG 536 (hip and pelvis fracture). We identified 22,728 patients. The median number of charges, discharges, and payments were recorded. Hospitals were aggregated into core based statistical (CBS) areas and the coefficient of variation (CV) was calculated for each area. On average, hospitals charged 3.75 times more than they were reimbursed. Medicare charges and reimbursements demonstrated variability within each area. Geographic variation in Medicare spending for hip fractures is currently unexplained. It is imperative for orthopedists to understand drivers behind such high variability in hospital charges for management of hip and pelvis fractures.
Long term soil pH change in rainfed cropping systems: is acidification systemic?
USDA-ARS?s Scientific Manuscript database
Many soils throughout the northern Great Plains developed from deep, moderately-weathered glacial and loess deposits under prairie vegetation. Soils of this type are typically neutral to slightly acidic in near-surface depths, and slightly to strongly alkaline in subsoil depths, with high buffer cap...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY... composing part of the surface of the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Garbage...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY... composing part of the surface of the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Garbage...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY... composing part of the surface of the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Garbage...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY... composing part of the surface of the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Garbage...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY... composing part of the surface of the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Garbage...
The economic feasibility and limitations of technologies investigated will be evaluated, including for liquid foam insulation, subsoil heat storages, and compost exhaust heating. These systems will save most of the energy and money spent to heat greenhouses in exchange for a h...
Standard Penetration Test and Relative Density
1971-02-01
Se OPSeS Debido a que el agua subterranea granclemente influve la resistencia a suelo, se establecio una relacion empirica entre el nurmero de golpes...de laboratorio ejecutados con un penetr6metro est’tico pequeno. INTRODUCTION One of the main problems encountered in subsoil e’xploration is in situ
USDA-ARS?s Scientific Manuscript database
Arid land cryptobiotic soil crusts govern water infiltration, soil aggregate stability and nutrient cycling between soil microbial communities and vascular plants. Surface mining involves removal of topsoil and associated crust and storage in mixed mounds for extended periods. The exposed subsoil an...
Radar Cuts Subsoil Survey Costs
NASA Technical Reports Server (NTRS)
Johnson, R.; Glaccum, R.
1984-01-01
Soil features located with minimum time and labor. Ground-penetrating radar (GPR) system supplements manual and mechanical methods in performing subsurface soil survey. Mobile system obtains graphic profile of soil discontinuities and interfaces as function of depth. One or two test borings necessary to substantiate soil profile. GPR proves useful as reconnaissance tool.
Code of Federal Regulations, 2012 CFR
2012-01-01
... including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Europe. The continent of Europe, the British Isles, Iceland, the Azores, and the... authority to act in his/her stead has been or may hereafter be delegated. Soil. The loose surface material...
Code of Federal Regulations, 2011 CFR
2011-01-01
... the globe, in distinction from the firm rock, and including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Europe. The continent of Europe... stead has been or may hereafter be delegated. Soil. The loose surface material of the earth in which...
Code of Federal Regulations, 2013 CFR
2013-01-01
... including the soil and subsoil, as well as finely divided rock and other soil formation materials down to the rock layer. Europe. The continent of Europe, the British Isles, Iceland, the Azores, and the... authority to act in his/her stead has been or may hereafter be delegated. Soil. The loose surface material...
19 CFR 10.402 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Republic of Chile; (r) Person. “Person” means a natural person or an enterprise; (s) Preferential tariff... subsoil and their natural resources; (x) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. [CBP Dec. 05-07, 70 FR 10873, Mar. 7, 2005, as...
19 CFR 10.582 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... seabed and subsoil and their natural resources; (v) WTO. “WTO” means the World Trade Organization; and (w) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization... the United States and that country; (p) Person. “Person” means a natural person or an enterprise; (q...
19 CFR 10.582 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... seabed and subsoil and their natural resources; (v) WTO. “WTO” means the World Trade Organization; and (w) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization... the United States and that country; (p) Person. “Person” means a natural person or an enterprise; (q...
19 CFR 10.402 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Republic of Chile; (r) Person. “Person” means a natural person or an enterprise; (s) Preferential tariff... subsoil and their natural resources; (x) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. [CBP Dec. 05-07, 70 FR 10873, Mar. 7, 2005, as...
19 CFR 10.402 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Republic of Chile; (r) Person. “Person” means a natural person or an enterprise; (s) Preferential tariff... subsoil and their natural resources; (x) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. [CBP Dec. 05-07, 70 FR 10873, Mar. 7, 2005, as...
19 CFR 10.582 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... seabed and subsoil and their natural resources; (v) WTO. “WTO” means the World Trade Organization; and (w) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization... the United States and that country; (p) Person. “Person” means a natural person or an enterprise; (q...
19 CFR 10.1002 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... respect to the seabed and subsoil and their natural resources; (x) WTO. “WTO” means the World Trade Organization; and (y) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade... Republic of Korea; (r) Person. “Person” means a natural person or an enterprise; (s) Person of a Party...
19 CFR 10.582 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... seabed and subsoil and their natural resources; (v) WTO. “WTO” means the World Trade Organization; and (w) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization... the United States and that country; (p) Person. “Person” means a natural person or an enterprise; (q...
19 CFR 10.3002 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... “Party” means the United States or Colombia; (q) Person. “Person” means a natural person or an enterprise..., the United States may exercise rights with respect to the seabed and subsoil and their natural resources; (v) WTO. “WTO” means the World Trade Organization; and (w) WTO Agreement. “WTO Agreement” means...
19 CFR 10.1002 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... respect to the seabed and subsoil and their natural resources; (x) WTO. “WTO” means the World Trade Organization; and (y) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade... Republic of Korea; (r) Person. “Person” means a natural person or an enterprise; (s) Person of a Party...
19 CFR 10.402 - General definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Republic of Chile; (r) Person. “Person” means a natural person or an enterprise; (s) Preferential tariff... subsoil and their natural resources; (x) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. [CBP Dec. 05-07, 70 FR 10873, Mar. 7, 2005, as...
19 CFR 10.1002 - General definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... respect to the seabed and subsoil and their natural resources; (x) WTO. “WTO” means the World Trade Organization; and (y) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade... Republic of Korea; (r) Person. “Person” means a natural person or an enterprise; (s) Person of a Party...
19 CFR 10.402 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Republic of Chile; (r) Person. “Person” means a natural person or an enterprise; (s) Preferential tariff... subsoil and their natural resources; (x) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization of April 15, 1994. [CBP Dec. 05-07, 70 FR 10873, Mar. 7, 2005, as...
19 CFR 10.3002 - General definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... “Party” means the United States or Colombia; (q) Person. “Person” means a natural person or an enterprise..., the United States may exercise rights with respect to the seabed and subsoil and their natural resources; (v) WTO. “WTO” means the World Trade Organization; and (w) WTO Agreement. “WTO Agreement” means...
19 CFR 10.582 - General definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... seabed and subsoil and their natural resources; (v) WTO. “WTO” means the World Trade Organization; and (w) WTO Agreement. “WTO Agreement” means the Marrakesh Agreement Establishing the World Trade Organization... the United States and that country; (p) Person. “Person” means a natural person or an enterprise; (q...
A study of short test and charge retention test methods for nickel-cadmium spacecraft cells
NASA Technical Reports Server (NTRS)
Scott, W. R.
1975-01-01
Methods for testing nickel-cadmium cells for internal shorts and charge retention were studied. Included were (a) open circuit voltage decay after a brief charge, (b) open circuit voltage recovery after shorting, and (c) open circuit voltage decay and capacity loss after a full charge. The investigation included consideration of the effects of prior history, of conditioning cells prior to testing, and of various test method variables on the results of the tests. Sensitivity of the tests was calibrated in terms of equivalent external resistance. The results were correlated. It was shown that a large number of variables may affect the results of these tests. It is concluded that the voltage decay after a brief charge and the voltage recovery methods are more sensitive than the charged stand method, and can detect an internal short equivalent to a resistance of about (10,000/C)ohms where "C' is the numerical value of the capacity of the cell in ampere hours.
Reducing Demand Charges and Onsite Generation Variability Using Behind-the-Meter Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu P.; Myers, Kurt S.; Bush, Jason W.
Electric utilities in the United States are increasingly employing demand charges and/or real-time pricing. This directive is bringing potential opportunities in deploying behindthe-meter energy storage (BMES) systems for various grid functionalities. This study quantifies techno-economic benefits of BMES in reducing demand charge and smoothing load/generation intermittencies, and determines how those benefits vary with onsite distributed photovoltaic. We proposed a two-stage control algorithm, whereby the first stage proactively determines costoptimal BMES configuration for reducing peak-demands and demand charges, and the second stage adaptively compensates intermittent generations and short load spikes that may otherwise increase the demand charges. The performance of themore » proposed algorithm is evaluated through a 24 hours time sweep simulation performed using data from smart microgrid testbed at Idaho National Laboratory (INL). The simulation results demonstrated that this research provides a simple but effective solution for peak shaving, demand charge reductions, and smoothing onsite PV variability.« less
Patsahan, O; Ciach, A
2012-09-01
Effects of size and charge asymmetry between oppositely charged ions or particles on spatial inhomogeneities are studied for a large range of charge and size ratios. We perform a stability analysis of the primitive model of ionic systems with respect to periodic ordering using the collective variables-based theory. We extend previous studies [Ciach et al., Phys. Rev. E 75, 051505 (2007)] in several ways. First, we employ a nonlocal approximation for the reference hard-sphere fluid which leads to the Percus-Yevick pair direct correlation functions for the uniform case. Second, we use the Weeks-Chandler-Anderson regularization scheme for the Coulomb potential inside the hard core. We determine the relevant order parameter connected with the periodic ordering and analyze the character of the dominant fluctuations along the λ lines. We show that the above-mentioned modifications produce large quantitative and partly qualitative changes in the phase diagrams obtained previously. We discuss possible scenarios of the periodic ordering for the whole range of size and charge ratios of the two ionic species, covering electrolytes, ionic liquids, charged globular proteins or nanoparticles in aqueous solutions, and charge-stabilized colloids.
New Discrete Fibonacci Charge Pump Design, Evaluation and Measurement
NASA Astrophysics Data System (ADS)
Matoušek, David; Hospodka, Jiří; Šubrt, Ondřej
2017-06-01
This paper focuses on the practical aspects of the realisation of Dickson and Fibonacci charge pumps. Standard Dickson charge pump circuit solution and new Fibonacci charge pump implementation are compared. Both charge pumps were designed and then evaluated by LTspice XVII simulations and realised in a discrete form on printed circuit board (PCB). Finally, the key parameters as the output voltage, efficiency, rise time, variable power supply and clock frequency effects were measured.
78 FR 69118 - Information Collection Activities: General; Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... human, marine, and coastal environments; to ensure the public a fair and equitable return on the... ``operations in the [O]uter Continental Shelf should be conducted in a safe manner by well trained personnel... subsoil and seabed, or other occurrences which may cause damage to the environment or to property or...
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
Runoff processes in catchments with a small scale topography
NASA Astrophysics Data System (ADS)
Feyen, H.; Leuenberger, J.; Papritz, A.; Gysi, M.; Flühler, H.; Schleppi, P.
1996-05-01
How do runoff processes influence nitrogen export from forested catchments? To support nitrogen balance studies for three experimental catchments (1500m 2) in the Northern Swiss prealps water flow processes in the two dominating soil types are monitored. Here we present the results for an experimental wetland catchment (1500m 2) and for a delineated sloped soil plot (10m 2), both with a muck humus topsoil. Runoff measurements on both the catchment and the soil plot showed fast reactions of surface and subsurface runoff to rainfall inputs, indicating the dominance of fast-flow paths such as cracks and fissures. Three quarters of the runoff from the soil plot can be attributed to water flow in the gleyic, clayey subsoil, 20% to flow in the humic A horizon and only 5% to surface runoff. The water balance for the wetland catchment was closed. The water balance of the soil plot did not close. Due to vertical upward flow from the saturated subsoil into the upper layers, the surface runoff plus subsurface runoff exceeded the input (precipitation) to the plot.
Li, Jiuyu; Xu, Renkou
2007-02-01
Low-molecular-weight (LMW) organic acids may be adsorbed by soils and the adsorption could affect their biodegradation and efficiency in many soil processes. In the present study, the adsorption of phthalic acid and salicylic acid and their effect on the exchangeable Al capacity of variable-charge soils were investigated. The results indicated that phthalic acid and salicylic acid were adsorbed by four variable-charge soils to some extent, oxisols showed a greater adsorption capacity for organic acids than ultisols, and the ability of the four variable-charge soils to adsorb the organic acids at different pH generally followed the order Kunming oxisol > Xuwen oxisol > Jinxian ultisol > Lechang ultisol, which was closely related to their content of free iron oxides and amorphous iron and aluminum oxides. The adsorption of organic acids induced a decrease in the zeta potentials of soils and oxides. Goethite has greater adsorption capacity for organic acid than Xuwen oxisol and the adsorption of organic acids resulted in a bigger decrease in the zeta potential of goethite suspensions. After free iron oxides were removed, less organic acid was adsorbed by Xuwen oxisol and no change was observed in zeta potential for the soil suspension after organic acid was added. The presence of phthalic acid increased the capacity of exchangeable Al and the increment in the four variable-charge soils also followed the order Kunming oxisol > Xuwen oxisol > Lechang ultisol and Jinxian ultisol. The presence of salicylic acid increased the capacity of exchangeable Al in Kunming oxisol, Xuwen oxisol, and Jinxian ultisol, but decreased it in Lechang ultisol due to less adsorption of the acid and formation of soluble Al-salicylate complexes in solution. After free iron oxides were removed, less effect of organic acid on exchangeable Al was observed for Xuwen oxisol, which further confirmed that the iron oxides played a significant role in organic acid adsorption and had a consequent effect on the capacity of exchangeable Al in variable-charge soils. Therefore, the higher the content of iron oxides, the greater the adsorption of organic acids by soils and the greater the increase in soil exchangeable Al induced by the organic acids.
Cost accounting in a surgical unit in a teaching hospital--a pilot study.
Malalasekera, A P; Ariyaratne, M H; Fernando, R; Perera, D; Deen, K I
2003-09-01
Economic constraints remain one of the major limitations on the quality of health care even in industrialised countries. Improvement of quality will require optimising facilities within available resources. Our objective was to determine costs of surgery and to identify areas where cost reduction is possible. 80 patients undergoing routine major and intermediate surgery during a period of 6 months were selected at random. All consumables used and procedures carried out were documented. A unit cost was assigned to each of these. Costing was based on 3 main categories: preoperative (investigations, blood product related costs), operative (anaesthetic charges, consumables and theatre charges) and post-operative (investigations, consumables, hospital stay). Theatre charges included two components: fixed (consumables) and variable (dependent on time per operation). The indirect costs (e.g. administration costs, 'hotel' costs), accounted for 30%, of the total and were lower than similar costs in industrialised nations. The largest contributory factors (median, range) towards total cost were, basic hospital charges (30%; 15 to 63%); theatre charges fixed (23%; 6 to 35%) and variable (14%; 8 to 27%); and anaesthetic charges (15%; 1 to 36%). Cost reduction in patients undergoing surgery should focus on decreasing hospital stay, operating theatre time and anaesthetic expenditure. Although definite measures can be suggested from the study, further studies on these variables are necessary to optimise cost effectiveness of surgical units.
Time-lapse 3D electrical resistivity tomography to monitor soil-plant interactions
NASA Astrophysics Data System (ADS)
Boaga, Jacopo; Rossi, Matteo; Cassiani, Giorgio; Putti, Mario
2013-04-01
In this work we present the application of time-lapse non-invasive 3D micro- electrical tomography (ERT) to monitor soil-plant interactions in the root zone in the framework of the FP7 Project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). The goal of the study is to gain a better understanding of the soil-vegetation interactions by the use of non-invasive techniques. We designed, built and installed a 3D electrical tomography apparatus for the monitoring of the root zone of a single apple tree in an orchard located in the Trentino region, Northern Italy. The micro-ERT apparatus consists of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. We collected repeated ERT and TDR soil moisture measurements for one year and performed two different controlled irrigation tests: one during a very dry Summer and one during a very wet and highly dynamic plant growing Spring period. We also ran laboratory analyses on soil specimens, in order to evaluate the electrical response at different saturation steps. The results demonstrate that 3D micro-ERT is capable of characterizing subsoil conditions and monitoring root zone activities, especially in terms of root zone suction regions. In particular, we note that in very dry conditions, 3D micro ERT can image water plumes in the shallow subsoil produced by a drip irrigation system. In the very dynamic growing season, under abundant irrigation, micro 3D ERT can detect the main suction zones caused by the tree root activity. Even though the quantitative use of this technique for moisture content balance suffers from well-known inversion difficulties, even the pure imaging of the active root zone is a valuable contribution. However the integration of the measurements in a fully coupled hydrogeophysical inversion is the way forward for a better understanding of subsoil interactions between biomass, hydrosphere and atmosphere.
NASA Astrophysics Data System (ADS)
Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia
2014-05-01
Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community development which was soil horizon specific and its effects on soil microbial activity may impact on nutrient cycling.
Effects of Management on Soil Carbon Pools in California Rangeland Ecosystems
NASA Astrophysics Data System (ADS)
Silver, W. L.; Ryals, R.; Lewis, D. J.; Creque, J.; Wacker, M.; Larson, S.
2008-12-01
Rangeland ecosystems managed for livestock production represent the largest land-use footprint globally, covering more than one-quarter of the world's land surface (Asner et al. 2004). In California, rangelands cover an estimated 17 million hectares or approximately 40% of the land area (FRAP 2003). These ecosystems have considerable potential to sequester carbon (C) in soil and offset greenhouse gas emissions through changes in land management practices. Climate policies and C markets may provide incentives for rangeland managers to pursue strategies that optimize soil C storage, yet we lack a thorough understanding of the effects of management on soil C pools in rangelands over time and space. We sampled soil C pools on rangelands in a 260 km2 region of Marin and Sonoma counties to determine if patterns in soil C storage exist with management. Replicate soil samples were collected from 35 fields that spanned the dominant soil orders, plant communities, and management practices in the region while controlling for slope and bioclimatic zone (n = 1050). Management practices included organic amendments, intensive (dairy) and extensive (other) grazing practices, and subsoiling. Soil C pools ranged from approximately 50 to 140 Mg C ha-1 to 1 m depth, with a mean of 99 ± 22 (sd) Mg C ha-1. Differences among sites were due primarily to C concentrations, which exhibited a much larger coefficient of variation than bulk density at all depths. There were no statistically significant differences among the dominant soil orders. Subsoiling appeared to significantly increase soil C content in the top 50 cm, even though subsoiling had only occurred for the first time the previous Nov. Organic amendments also appeared to greatly increase soil C pools, and was the dominant factor that distinguished soil C pools in intensive and extensive land uses. Our results indicate that management has the potential to significantly increase soil C pools. Future research will determine the location of sequestered C within the soil matrix and its turnover time.
Almahayni, T
2014-12-01
The BIOMASS methodology was developed with the objective of constructing defensible assessment biospheres for assessing potential radiological impacts of radioactive waste repositories. To this end, a set of Example Reference Biospheres were developed to demonstrate the use of the methodology and to provide an international point of reference. In this paper, the performance of the Example Reference Biosphere model ERB 2B associated with the natural release scenario, discharge of contaminated groundwater to the surface environment, was evaluated by comparing its long-term projections of radionuclide dynamics and distribution in a soil-plant system to those of a process-based, transient advection-dispersion model (AD). The models were parametrised with data characteristic of a typical rainfed winter wheat crop grown on a sandy loam soil under temperate climate conditions. Three safety-relevant radionuclides, (99)Tc, (129)I and (237)Np with different degree of sorption were selected for the study. Although the models were driven by the same hydraulic (soil moisture content and water fluxes) and radiological (Kds) input data, their projections were remarkably different. On one hand, both models were able to capture short and long-term variation in activity concentration in the subsoil compartment. On the other hand, the Reference Biosphere model did not project any radionuclide accumulation in the topsoil and crop compartments. This behaviour would underestimate the radiological exposure under natural release scenarios. The results highlight the potential role deep roots play in soil-to-plant transfer under a natural release scenario where radionuclides are released into the subsoil. When considering the relative activity and root depth profiles within the soil column, much of the radioactivity was taken up into the crop from the subsoil compartment. Further improvements were suggested to address the limitations of the Reference Biosphere model presented in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.
Laceby, J Patrick; Huon, Sylvain; Onda, Yuichi; Vaury, Veronique; Evrard, Olivier
2016-12-01
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in radiocesium fallout contaminating coastal catchments of the Fukushima Prefecture. As the decontamination effort progresses, the potential downstream migration of radiocesium contaminated particulate matter from forests, which cover over 65% of the most contaminated region, requires investigation. Carbon and nitrogen elemental concentrations and stable isotope ratios are thus used to model the relative contributions of forest, cultivated and subsoil sources to deposited particulate matter in three contaminated coastal catchments. Samples were taken from the main identified sources: cultivated (n = 28), forest (n = 46), and subsoils (n = 25). Deposited particulate matter (n = 82) was sampled during four fieldwork campaigns from November 2012 to November 2014. A distribution modelling approach quantified relative source contributions with multiple combinations of element parameters (carbon only, nitrogen only, and four parameters) for two particle size fractions (<63 μm and <2 mm). Although there was significant particle size enrichment for the particulate matter parameters, these differences only resulted in a 6% (SD 3%) mean difference in relative source contributions. Further, the three different modelling approaches only resulted in a 4% (SD 3%) difference between relative source contributions. For each particulate matter sample, six models (i.e. <63 μm and <2 mm from the three modelling approaches) were used to incorporate a broader definition of potential uncertainty into model results. Forest sources were modelled to contribute 17% (SD 10%) of particulate matter indicating they present a long term potential source of radiocesium contaminated material in fallout impacted catchments. Subsoils contributed 45% (SD 26%) of particulate matter and cultivated sources contributed 38% (SD 19%). The reservoir of radiocesium in forested landscapes in the Fukushima region represents a potential long-term source of particulate contaminated matter that will require diligent management for the foreseeable future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Farming system context drives the value of deep wheat roots in semi-arid environments
Lilley, Julianne M.; Kirkegaard, John A.
2016-01-01
The capture of subsoil water by wheat roots can make a valuable contribution to grain yield on deep soils. More extensive root systems can capture more water, but leave the soil in a drier state, potentially limiting water availability to subsequent crops. To evaluate the importance of these legacy effects, a long-term simulation analysis at eight sites in the semi-arid environment of Australia compared the yield of standard wheat cultivars with cultivars that were (i) modified to have root systems which extract more water at depth and/or (ii) sown earlier to increase the duration of the vegetative period and hence rooting depth. We compared simulations with and without annual resetting of soil water to investigate the legacy effects of drier subsoils related to modified root systems. Simulated mean yield benefits from modified root systems declined from 0.1–0.6 t ha−1 when annually reset, to 0–0.2 t ha−1 in the continuous simulation due to a legacy of drier soils (mean 0–32mm) at subsequent crop sowing. For continuous simulations, predicted yield benefits of >0.2 t ha−1 from more extensive root systems were rare (3–10% of years) at sites with shallow soils (<1.0 m), but occurred in 14–44% of years at sites with deeper soils (1.6–2.5 m). Earlier sowing had a larger impact than modified root systems on water uptake (14–31 vs 2–17mm) and mean yield increase (up to 0.7 vs 0–0.2 t ha−1) and the benefits occurred on deep and shallow soils and in more years (9–79 vs 3–44%). Increasing the proportion of crops in the sequence which dry the subsoil extensively has implications for the farming system productivity, and the crop sequence must be managed tactically to optimize overall system benefits. PMID:26976814
Farming system context drives the value of deep wheat roots in semi-arid environments.
Lilley, Julianne M; Kirkegaard, John A
2016-06-01
The capture of subsoil water by wheat roots can make a valuable contribution to grain yield on deep soils. More extensive root systems can capture more water, but leave the soil in a drier state, potentially limiting water availability to subsequent crops. To evaluate the importance of these legacy effects, a long-term simulation analysis at eight sites in the semi-arid environment of Australia compared the yield of standard wheat cultivars with cultivars that were (i) modified to have root systems which extract more water at depth and/or (ii) sown earlier to increase the duration of the vegetative period and hence rooting depth. We compared simulations with and without annual resetting of soil water to investigate the legacy effects of drier subsoils related to modified root systems. Simulated mean yield benefits from modified root systems declined from 0.1-0.6 t ha(-1) when annually reset, to 0-0.2 t ha(-1) in the continuous simulation due to a legacy of drier soils (mean 0-32mm) at subsequent crop sowing. For continuous simulations, predicted yield benefits of >0.2 t ha(-1) from more extensive root systems were rare (3-10% of years) at sites with shallow soils (<1.0 m), but occurred in 14-44% of years at sites with deeper soils (1.6-2.5 m). Earlier sowing had a larger impact than modified root systems on water uptake (14-31 vs 2-17mm) and mean yield increase (up to 0.7 vs 0-0.2 t ha(-1)) and the benefits occurred on deep and shallow soils and in more years (9-79 vs 3-44%). Increasing the proportion of crops in the sequence which dry the subsoil extensively has implications for the farming system productivity, and the crop sequence must be managed tactically to optimize overall system benefits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Garzon-Garcia, Alexandra; Laceby, J Patrick; Olley, Jon M; Bunn, Stuart E
2017-01-01
Understanding the sources of sediment, organic matter and nitrogen (N) transferred from terrestrial to aquatic environments is important for managing the deleterious off-site impacts of soil erosion. In particular, investigating the sources of organic matter associated with fine sediment may also provide insight into carbon (C) and N budgets. Accordingly, the main sources of fine sediment, organic matter (indicated by total organic carbon), and N are determined for three nested catchments (2.5km 2 , 75km 2 , and 3076km 2 ) in subtropical Australia. Source samples included subsoil and surface soil, along with C 3 and C 4 vegetation. All samples were analysed for stable isotopes (δ 13 C, δ 15 N) and elemental composition (TOC, TN). A stable isotope mixing model (SIAR) was used to determine relative source contributions for different spatial scales (nested catchments), climatic conditions and flow stages. Subsoil was the main source of fine sediment for all catchments (82%, SD=1.15) and the main N source at smaller scales (55-76%, SD=4.6-10.5), with an exception for the wet year and at the larger catchment, where surface soil was the dominant N source (55-61%, SD=3.6-9.9), though contributions were dependent on flow (59-680m 3 /s). C 3 litter was the main source of organic C export for the two larger catchments (53%, SD=3.8) even though C 4 grasses dominate the vegetation cover in these catchments. The sources of fine sediment, organic matter and N differ in subtropical catchments impacted by erosion, with the majority of C derived from C 3 leaf litter and the majority of N derived from either subsoil or surface soil. Understanding these differences will assist management in reducing sediment, organic matter and N transfers in similar subtropical catchments while providing a quantitative foundation for testing C and N budgets. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Abhishek; Harinarayan, N. H.; Verma, Vishal; Anand, Saurabh; Borah, Uddipana; Bania, Mousumi
2018-04-01
Guwahati, the Gateway of India in the northeast, is a large business and development center. Past seismic scenarios suggest moderate to significant effects of regional earthquakes (EQs) in Guwahati in terms of liquefaction as well as building damages. Considering the role of local soil in amplifying EQ-generated ground motions and controlling surface damages, present study attempts seismic site classification of subsoil of Guwahati. Subsoil is explored based on 43 geophysical tests and 244 borelogs gathered from different resources. Based on the borehole data, 4 numbers of 2D cross-sections are developed from different parts of Guwahati, clearly indicating that a majority of the locations are composed of clay of intermediate to high plasticity while at specific locations only, layers of sand are found at selective depths. Further, seismic site classification based on 30 m average SPT-N suggests that a major part of Guwahati falls under seismic site class (SSC) D such as Balaji Temple and Airport. However, Assam Zoo, Pan Bazaar, IIT campus, Dhol Gobinda and Maligaon show SSC E clearly indicating the presence of soft soil deposits at these locations. Similar site classification is also attempted from MASW test-based 30 m average shear wave velocity (V S30). V S30-based site classification also categorizes most of Guwahati under SSC D. However, there are locations in the southern part of Guwahati which belong to SSC C as well. Mismatch in SSC based on two different test findings for Indian soil found here are consistent with previous studies. Further, three empirical correlations based on both SPT-N and V S profiles at 22 test locations are developed for: (1) clayey; (2) sandy and (3) all soil types. Proposed correlation for all soil types is validated graphically and is found closely matching with similar correlations for Turkey and Lucknow.
Molybdate adsorption from steel slag eluates by subsoils.
Matern, K; Rennert, T; Mansfeldt, T
2013-11-01
Steel slags are industrial by-products which are generated in large amounts worldwide, e.g. 150-230×10(6) Mg in 2012, and which are partly used for construction. Molybdenum (Mo) can be added during steel processing in order to harden the steel. The objective of this study was to evaluate the adsorption behaviour of molybdate (MoO4(2-)) from slag eluates in subsoils. Molybdate batch adsorption experiments were carried out with eluates obtained from two different kinds of steel slags (i) LD slag (Linz-Donawitz operation, LDS) and (ii) electric arc furnace slag (EAF) to assess the risk that may arise from the contamination of groundwater by the leaching of molybdate. Six different subsoils were chosen in order to provide a wide range of chemical properties (pH 4.0-7.6; dithionite-extractable Fe 0.73-14.7 g kg(-1)). Molybdate adsorption experiments were carried out at the pH of the steel slag eluates (pH 11-12) as well as at pH values adjusted to the soil pH. The data were evaluated with the Freundlich equation. Molybdate adsorption exhibited a maximum near pH 4 for steel slag eluates adjusted to the soil pH, and decreased rapidly with increasing pH until adsorption was virtually zero at pH>11. Adsorption was greater for soils with high amounts of dithionite-extractable Fe oxides. The extent and behaviour of molybdate adsorption from both eluates was similar. After a reaction time of 24h, the pH of the EAF slag eluate was lower than that of the LD steel slag eluate, which was caused by different acid buffer capacities. Some soils were able to decrease the pH of the EAF slag eluates by about 4 pH units, enhancing the adsorption of molybdate. Transport simulations indicated that molybdate discharge is low in acidic soils. Copyright © 2013 Elsevier Ltd. All rights reserved.
Spatial distribution of heterocyclic organic matter compounds at macropore surfaces in Bt-horizons
NASA Astrophysics Data System (ADS)
Leue, Martin; Eckhardt, Kai-Uwe; Gerke, Horst H.; Ellerbrock, Ruth H.; Leinweber, Peter
2017-04-01
The illuvial Bt-horizon of Luvisols is characterized by coatings of clay and organic matter (OM) at the surfaces of cracks, biopores and inter-aggregate spaces. The OM composition of the coatings that originate from preferential transport of suspended matter in macropores determines the physico-chemical properties of the macropore surfaces. The analysis of the spatial distribution of specific OM components such as heterocyclic N-compounds (NCOMP) and benzonitrile and naphthalene (BN+NA) could enlighten the effect of macropore coatings on the transport of colloids and reactive solutes during preferential flow and on OM turnover processes in subsoils. The objective was to characterize the mm-to-cm scale spatial distribution of NCOMP and BN+NA at intact macropore surfaces from the Bt-horizons of two Luvisols developed on loess and glacial till. In material manually separated from macropore surfaces the proportions of NCOMP and BN+NA were determined by pyrolysis-field ionization mass spectrometry (Py-FIMS). These OM compounds, likely originating from combustion residues, were found increased in crack coatings and pinhole fillings but decreased in biopore walls (worm burrows and root channels). The Py-FIMS data were correlated with signals from C=O and C=C groups and with signals from O-H groups of clay minerals as determined by Fourier transform infrared spectroscopy in diffuse reflectance mode (DRIFT). Intensive signals of C15 to C17 alkanes from long-chain alkenes as main components of diesel and diesel exhaust particulates substantiated the assumption that burning residues were prominent in the subsoil OM. The spatial distribution of NCOMP and BN+NA along the macropores was predicted by partial least squares regression (PLSR) using DRIFT mapping spectra from intact surfaces and was found closely related to the distribution of crack coatings and pinholes. The results emphasize the importance of clay coatings in the subsoil to OM sorption and stabilization. Differences between biopores and cracks suggest differences in the mass transport and OM turnover between these macropore types in Luvisols.
Cowen, T D; Meythaler, J M; DeVivo, M J; Ivie, C S; Lebow, J; Novack, T A
1995-09-01
To determine the relationship between early variables (initial Glasgow Coma Scale [GCS] scores, computed tomography [CT] findings, presence of skeletal trauma, age, length of acute hospitalization) and outcome variables (Functional Independence Measure [FIM] scores, rehabilitation length of stay [LOS], rehabilitation charges) in traumatic brain injury (TBI). Inception cohort. University tertiary care rehabilitation center. 91 patients with TBI. Inpatient rehabilitation. FIM, rehabilitation LOS, and rehabilitation charges. Patients in the severely impaired (GCS = 3 to 7) group showed significantly lower (p = .01) mean admission and discharge motor scores (21.26, 39.83) than patients in the mildly impaired (GCS = 13 to 15) group (38.86, 55.29). Cognitive scores were also significantly lower (p < .01) in the severely impaired group on admission (26.73 vs 54.14) and discharge (42.28 vs 66.48). These findings continued to be statistically significant (p < .01) after regression analysis accounted for the other early variables previously listed. Regression analysis also illustrated that longer acute hospitalization LOS was independently associated with significantly lower admission motor (p < .01) and cognitive (p = .05) scores, and significantly higher (p = .01) rehabilitation charges. Patients with CT findings of intracranial bleed with skull fracture had longer total LOS (70.88 vs 43.08 days; p < .05), rehabilitation LOS (30.01 vs 19.68 days; p < .10), and higher rehabilitation charges ($43,346 vs $25,780; p < .05). Paradoxically, those patients in a motor vehicle crash with an extremity bone fracture had significantly higher (p = .002; p = .04 after regression analysis) FIM cognitive scores on admission (48.30 vs 27.28) and discharge (64.74 vs 45.78) than those without a fracture. Finally, data available on rehabilitation admission were used to predict discharge outcomes. The percentage of explained variance for each outcome variable is as follows: discharge FIM motor score, 69.5%; discharge FIM cognitive score, 71.2%; rehabilitation LOS, 54.1%; rehabilitation charges, 61.1%. The most powerful predictor of LOS and charges was the admission FIM motor score (p < .001), followed by CT findings (p = .02) and age (p = .04). Information readily available on rehabilitation admission, particularly the FIM motor score, may be useful in predicting discharge FIM scores as well as utilization of medical rehabilitation resources. Earlier transfer to rehabilitation may result in higher functional status and lower rehabilitation charges, as well as lower acute hospitalization charges. The presence of extremity fractures encountered during a motor vehicle crash is associated with a more favorable outcome in TBI as evidenced by higher discharge FIM cognitive scores.
NASA Astrophysics Data System (ADS)
Devnita, Rina; Joy, Benny; Arifin, Mahfud; Hudaya, Ridha; Oktaviani, Nurul
2018-02-01
Soils in Indonesia are dominated by variable charge soils where the technology like fertilization did not give the same result as the soils with permanent charge. The objectives of this research is to increase some chemical characteristic of variable charge soils by using the high negative charge ameliorations like rock phosphate in nanoparticle combined with biofertilizer. The research used a complete randomized experimental design in factorial with two factors. The first factor was nanoparticle of rock phosphate consists of four doses on soil weight percentage (0%, 2.5%, 5.0% and 7.5%). The second factor was biofertilizer consisted of two doses (without biofertilizer and 1 g.kg-1 soil biofertilizer). The combination treatments replicated three times. Variable charge soil used was Andisol. Andisol and the treatments were incubated for 4 months. Soil samples were taken after one and four months during incubation period to be analyzed for P-retention, available P and potential P. The result showed that all combinations of rock phosphate and biofertilizer decreased the P-retention to 75-77% after one month. Independently, application of 7.5% of rock phosphate decreased P-retention to 87.22% after four months, increased available P (245.37 and 19.12 mg.kg-1) and potential P (1354.78 and 3000.99 mg/100) after one and four months. Independently, biofertilizer increased the P-retention to 91.66% after four months, decreased available P to 121.55 mg.kg-1 after one month but increased to 12.55 mg.kg-1 after four months, decreased potential P to 635.30 after one month but increased to 1810.40 mg.100 g-1 after four months.
BeTemper: thermal characterisation of the Belgian subsoil for shallow geothermal applications
NASA Astrophysics Data System (ADS)
Petitclerc, Estelle; Dusar, Michiel; Declercq, Pierre-Yves; Vanbrabant, Yves
2015-04-01
The current energy transition towards Renewable Energy Sources (RES) is mainly driven in Belgium by intermittent sources such as wind turbines and photovoltaic panels. Other sources are however available, such as biomass and geothermal resources. The latter can take various forms among which Ground Source Heat Pumps (GSHP). This Geothermal RES could be an important supply for the heating/cooling market, which represents 48% of the energy consumption in Belgium. The interest in using the ground as a source or storage device for thermal energy has grown considerably in the last few years and the market is expected to grow significantly by 2020 (Petitclerc, 2013). However, research in the thermal characteristics of the soil and subsoil is lagging behind the industrial technological development. Sizing errors of installations increasing the budget are therefore frequent and promising projects are abandoned. BeTemper was launched in 2014 for a period of 2 years. It aims to assess the shallow geothermal potential in Belgium through analysis of rock thermal properties from the surface to a depth of 150 m, which covers the standard depth for a vertical loop system currently installed in Belgium (75% of the GSHP market). The project focuses on laboratory thermal properties analyses (thermal conductivity (λ in W/m.K) and diffusivity (m²/s)) of about 400 rock samples corresponding to 30 different lithologies. Influences of water content, of porosity, of mineralogical composition and of mineralogical texture on these thermal parameters are studied. Thermal parameters measurements are performed with the high-resolution Thermal Conductivity Scanning method (Popov 1999, 2012) for both saturated and dry conditions. The mineralogical and petrological analyses are conducted thanks to different analytical equipments of the mineralogical and petrological laboratory at the RBINS-GSB. The proportion of the different mineralogical phases of samples are evaluated with the Panalytical X-ray Diffraction equipment, while the EDS (Energy-Dispersive X-ray Spectroscopy) and EBSD (Electron BackScattered Diffraction) modules is applied in order to evaluate the chemical and micro-textural content. Special attention is given to lithologies having a variable λ values to assess the influence of porosity and/or minor mineralogical phases on the heat transfer. The sample selection is conducted in order to be representative of the various lithologies composing the Belgian subsoil, taking into account their mineralogical composition, petrological texture along with their degree of alteration. A special emphasis is given to densely populated areas (eg. Sambre & Meuse valleys and large cities of Flanders). with the highest geothermal demands. Petitclerc, E., Dusar, M., Declercq, P-Y., Hoes, H., Laenen, B., Dagrain,F., Vanbrabant, Y., 2013. Overview and perspectives on shallow geothermal energy in Belgium. Proceedings SG6-12, EGC2013, Pisa, June 2013. Popov, Y., Bayuk, I., Parshin, A., Miklashevskiy, D., Novikov, S., Chekhonin, E., 2012. New methods and instruments for determination of reservoir thermal properties. Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30 - February 1, 2012. SGP-TR-194. Popov, Y., Pribnow, D.F.C., Sass, J.H, Williams, C., Burkhardt, H., 1999. Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 28, pp 253-276.
Ito, Akihiko; Wagai, Rota
2017-01-01
Clay-size minerals play important roles in terrestrial biogeochemistry and atmospheric physics, but their data have been only partially compiled at global scale. We present a global dataset of clay-size minerals in the topsoil and subsoil at different spatial resolutions. The data of soil clay and its mineralogical composition were gathered through a literature survey and aggregated by soil orders of the Soil Taxonomy for each of the ten groups: gibbsite, kaolinite, illite/mica, smectite, vermiculite, chlorite, iron oxide, quartz, non-crystalline, and others. Using a global soil map, a global dataset of soil clay-size mineral distribution was developed at resolutions of 2' to 2° grid cells. The data uncertainty associated with data variability and assumption was evaluated using a Monte Carlo method, and validity of the clay-size mineral distribution obtained in this study was examined by comparing with other datasets. The global soil clay data offer spatially explicit studies on terrestrial biogeochemical cycles, dust emission to the atmosphere, and other interdisciplinary earth sciences. PMID:28829435
Natural versus anthropogenic subsidence of Venice
Tosi, Luigi; Teatini, Pietro; Strozzi, Tazio
2013-01-01
We detected land displacements of Venice by Persistent Scatterer Interferometry using ERS and ENVISAT C-band and TerraSAR-X and COSMO-SkyMed X-band acquisitions over the periods 1992–2010 and 2008–2011, respectively. By reason of the larger observation period, the C-band sensors was used to quantify the long-term movements, i.e. the subsidence component primarily ascribed to natural processes. The high resolution X-band satellites reveal a high effectiveness to monitor short-time movements as those induced by human activities. Interpolation of the two datasets and removal of the C-band from the X-band map allows discriminating between the natural and anthropogenic components of the subsidence. A certain variability characterizes the natural subsidence (0.9 ± 0.7 mm/yr), mainly because of the heterogeneous nature and age of the lagoon subsoil. The 2008 displacements show that man interventions are responsible for movements ranging from −10 to 2 mm/yr. These displacements are generally local and distributed along the margins of the city islands. PMID:24067871
NASA Astrophysics Data System (ADS)
Hiltl, M.; Bauer, F.; Ernstson, K.; Mayer, W.; Neumair, A.; Rappenglück, M. A.
2011-03-01
SEM and TEM analyses of millimeter- to centimeter-sized particles from Holocene soils reveal a multi-stoichiometric iron silicide matrix containing purest crystals of titanium carbide and cubic moissanite. A cosmochemical origin is suggested.
Gale L. Wolters; Henry A. Pearson; Ronald E. Thill; V. Clark Baldwin; Alton Martin
1995-01-01
The response of woody and herbaceous vegetation to site preparation, subsoil texture, and fertilization was measured on the West Gulf Coastal Plain. The influences of these treatments on competing vegetation were short-term. Drastic soil disturbance and fertilization briefly increased herbage production. Shear-windrow and shear-disk were generally the most effective...
Addition of phosphorus to subsoil promotes root development of yellow birch
Merrill C. Hoyle
1965-01-01
Pot-culture studies have indicated that roots of yellow birch (Betula alleghaniensis Britton) develop more prolifically in humus than in sandy mineral soil (Hoyle 1965; Winget et al. 1963; Redmond 1954; and Tubbs 1963). This situation has also been observed during root-excavation studies (Redmond 1957; Spaulding and MacAloney 1931). Results of these...
ERIC Educational Resources Information Center
Weber, Carolyn A.; Rule, Audrey C.
2017-01-01
Curricular demands and best practices for middle school require interdisciplinary units. Arts integration can provide motivation and a new pathway to learning. This unit focused on inquiry into the natural history of artifacts and rocks recovered from the exposed subsoil of an area near Cedar Falls, Iowa that had been bulldozed as part of…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-30
..., and pipeline right-of-way. Operations on the OCS must preserve, protect, and develop oil and natural... protection of human, marine, and coastal environments; to ensure the public a fair and equitable return on... waters or subsoil and seabed, or other occurrences which may cause damage to the environment or to...
Challenges and limitations in studying the shrink-swell and crack dynamics of vertisol soils
USDA-ARS?s Scientific Manuscript database
The need to study the shrink-swell and crack properties of vertic soils has long been recognized given their dynamics in time and space, which modifies the physical properties that impact water and air movement in the soil, flow of water into the subsoil and ground water, and generally alter the hyd...
Dale G. Brockway; Gale L. Wolters; H.A. Pearson; Ronald E. Thill; V. Clark Baldwin; A. Martin
1998-01-01
In developing an improved understanding of the dynamics of understory plant composition and productivity in Coastal Plaii forest ecosystems, we examined theiniluenceof site preparation and phosphorus fertilization on the successional trends of shrubs and herbaceous plants growing on lands of widely ranging subsoil texture in Arkansas, Louisiana, and Texas which are...
HIGH RISE OR LOW RISE. A STUDY OF DECISION FACTORS IN RESIDENCE HALLS PLANNING.
ERIC Educational Resources Information Center
Educational Facilities Labs., Inc., New York, NY.
THE PURPOSE OF THIS REPORT IS TO SERVE COLLEGE OFFICIALS, HOUSING ADMINISTRATORS, PLANNING GROUPS AND ARCHITECTS BY FOCUSING ON THE DECISION FACTORS WHICH RELATE TO HIGH-RISE AND LOW-RISE STUDENT HOUSING. DECISION FACTORS INCLUDE--(1) LAND USE IMPLICATIONS, (2) SITE REQUIREMENTS--BUILDING CODES, SUB-SOIL CONSIDERATIONS, NATURAL TERRAIN,…
Enhancing the soil organic matter pool through biomass incorporation
Felipe G. Sanchez; Emily A. Carter; John F. Klepac
2003-01-01
A study was installed in the Upper Coastal Plain of South Carolina, USA that sought to examine the impact of incorporating downed slash materials into subsoil layers on soil chemical and physical properties as compared with the effect of slash materials left on the soil surface. Baseline levels of slash were estimated by establishing transects within harvested stands...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoffield, Don R; Smart, John; Salisbury, Shawn
2015-03-01
As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles andmore » utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.« less
Characterization of Defects in Scaled Mis Dielectrics with Variable Frequency Charge Pumping
NASA Astrophysics Data System (ADS)
Paulsen, Ronald Eugene
1995-01-01
Historically, the interface trap has been extensively investigated to determine the effects on device performance. Recently, much attention has been paid to trapping in near-interface oxide traps. Performance of high precision analog circuitry is affected by charge trapping in near-interface oxide traps which produces hysteresis, charge redistribution errors, and dielectric relaxation effects. In addition, the performance of low power digital circuitry, with reduced noise margins, may be drastically affected by the threshold voltage shifts associated with charge trapping in near -interface oxide traps. Since near-interface oxide traps may substantially alter the performance of devices, complete characterization of these defects is necessary. In this dissertation a new characterization technique, variable frequency charge pumping, is introduced which allows charge trapped at the interface to be distinguished from the charge trapped within the oxide. The new experimental technique is an extension of the charge pumping technique to low frequencies such that tunneling may occur from interface traps to near-interface oxide traps. A generalized charge pumping model, based on Shockley-Read-Hall statistics and trap-to-trap tunneling theory, has been developed which allows a more complete characterization of near-interface oxide traps. A pair of coupled differential equations governing the rate of change of occupied interface and near-interface oxide traps have been developed. Due to the experimental conditions in the charge pumping technique the equations may be decoupled, leading to an equation governing the rate of change of occupied interface traps and an equation governing the rate of change of occcupied near-interface oxide traps. Solving the interface trap equation and applying non-steady state charge dynamics leads to an interface trap component of the charge pumping current. In addition, solution to the near-interface oxide trap equation leads to an additional oxide trap component to the charge pumping current. Numerical simulations have been performed to support the analytical development of the generalized charge pumping model. By varying the frequency of the applied charge pumping waveform and monitoring the charge recombined per cycle, the contributions from interface traps may be separated from the contributions of the near-interface oxide traps. The generalized charge pumping model allows characterization of the density and spatial distribution of near-interface oxide traps from this variable frequency charge pumping technique. Characterization of interface and near-interface oxide trap generation has been performed on devices exposed to ionizing radiation, hot electron injection, and high -field/Fowler-Nordheim stressing. Finally, using SONOS nonvolatile memory devices, a framework has been established for experimentally determining not only the spatial distribution of near-interface oxide traps, but also the energetic distribution. An experimental approach, based on tri-level charge pumping, is discussed which allows the energetic distribution of near-interface oxide traps to be determined.
Dynamics of charged viscous dissipative cylindrical collapse with full causal approach
NASA Astrophysics Data System (ADS)
Shah, S. M.; Abbas, G.
2017-11-01
The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical source by using the Misner approach. To this end, we have considered the more general charged dissipative fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from such charged cylindrical dissipative source have been coupled with the causal transport equations for heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat coupling coefficients. The results are compared with the previous works in which such coefficients were excluded and viscosity variables do not satisfy the casual transportation equations.
Irrational Charge from Topological Order
NASA Astrophysics Data System (ADS)
Moessner, R.; Sondhi, S. L.
2010-10-01
Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.
Comparison of tillage equipment for improving soil conditions and root health in bareroot nurseries
Jennifer Juzwik; Kathryn Kromroy; Raymond Allmaras
2002-01-01
Two series of trials were conducted in northern bareroot forest nurseries to determine: 1) the effects of different incorporation implements and two chemical application rates on the efficacy of dazomet fumigation; and 2) soil penetration resistance in the vertical soil profile following sub-soiling by two different implements. When target pests were located > 18 cm...
Comparison of Tillage for Improving Soil Conditions and Root Health in Barefoot Nurseries
Jennifer Juzwik; Kathryn Kromroy; Raymond Allmaras
2002-01-01
Two series of trials were conducted in northern bareroot forest nurseries to determine: 1) the effects of different incorporation implements and two chemical application rates on the efficacy of dazomet fumigation; and 2) soil penetration resistance in the vertical soil profile following sub-soiling by two different implements. When target pests were located > 18 cm...
Use of Municipal Sewage Sludge for Improvement of Forest Sites in the Southeast
Charles R. Berry
1987-01-01
In eight field experiments dried municipal sewage sludge was applied to forest sites before planting of seedlings. In all cases, tree growth was faster on sludge-amended plots than on plots that received fertilizer and lime or no amendment. Deep subsoiling was beneficial regardless of Soil amendment. Where weeds were plentiful at the outset, they became serious...
Randy K. Kolka; Mathew F. Smidt
2004-01-01
Although numerous methods have been used to retire roads, new technologies have evolved that can potentially ameliorate soil damage, lessen ,the generation of nonpoint source pollution and increase tree productivity on forest roads. In this study we investigated the effects of three forest road amelioration techniques, subsoiling, recontouring and traditional...
C. H. Pham; Howard G. Halverson; Gordon M. Heisler
1978-01-01
Red maple (Acer rubrum L.) seedlings were grown in a greenhouse using three treatments: two soil horizons, two soil moisture regimes, and three nutrient levels. Fertilization increased growth under moist conditions on the more fertile topsoil. Under dry conditions, fertilization had no effect on growth in subsoil, and slightly increased growth in...
3D geophysical imaging for site-specific characterization plan of an old landfill.
Di Maio, R; Fais, S; Ligas, P; Piegari, E; Raga, R; Cossu, R
2018-06-01
As it is well-known, the characterization plan of an old landfill site is the first stage of the project for the treatment and reclamation of contaminated lands. It is a preliminary in-situ study, with collection of data related to pollution phenomena, and is aimed at defining the physical properties and the geometry of fill materials as well as the possible migration paths of pollutants to the surrounding environmental targets (subsoil and groundwater). To properly evaluate the extent and potential for subsoil contamination, waste volume and possible leachate emissions from the landfill have to be assessed. In such perspective, the integrated use of geophysical methods is an important tool as it allows a detailed 3D representation of the whole system, i.e. waste body and hosting environment (surrounding rocks). This paper presents a very accurate physical and structural characterization of an old landfill and encasing rocks obtained by an integrated analysis of data coming from a multi-methodological geophysical exploration. Moreover, drillings were carried out for waste sampling and characterization of the landfill body, as well as for calibration of the geophysical modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Impact of Preservation of Subsoil Water Act on Groundwater Depletion: The Case of Punjab, India.
Tripathi, Amarnath; Mishra, Ashok K; Verma, Geetanjali
2016-07-01
Indian states like Punjab and Haryana, epicenters of the Green Revolution, are facing severe groundwater shortages and falling water tables. Recognizing it as a serious concern, the Government of Punjab enacted the Punjab Preservation of Subsoil Water Act in 2009 (or the 2009 act) to slow groundwater depletion. The objective of this study is to assess the impact of this policy on groundwater depletion, using panel data from 1985 to 2011. Results from this study find a robust effect of the 2009 act on reducing groundwater depletion. Our models for pre-monsoon, post-monsoon, and overall periods of analysis find that since implementation of the 2009 act, groundwater tables have improved significantly. Second, our study reveals that higher shares of tube wells per total cropped area and increased population density have led to a significant decline in the groundwater tables. On the other hand, rainfall and the share of area irrigated by surface water have had an augmenting effect on groundwater resources. In the two models, pre-monsoon and post-monsoon, this study shows that seasonality plays a key role in determining the groundwater table in Punjab. Specifically, monsoon rainfall has a very prominent impact on groundwater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-04-10
The Louisiana Army Ammunition Plant (LAAP) is listed on the National Priorities List. The site is a 15,000-acre Federal facility located in Shreveport (Webster Parish), Louisiana. On-site ground water beneath 16 unlined surface impoundments near the southern boundary is contaminated. Access to LAAP is restricted and under 24-hour security. Contaminants include 2,4,6-trinitrotoluene (TNT), cyclonite (RDX), trinitrobenzene (TNB), and homocyclonite (HMX). Preliminary on-site sampling results have identified TNT (493,133 ppm in sediment/subsoil, 483,556 ppm in sludge, 1,033 ppm in surface soil, 7 ppm in surface water, and 18 ppm in ground water), RDX (60,224 ppm in sediment/subsoil, 602 ppm in surfacemore » soil, 60,224 ppm in sludge, and 14 ppm in ground water), TNB (2 ppm in surface water and 8 ppm in ground water), and HMX (4 ppm in ground water). Based on available information, the site is considered to be of potential public health concern because of the risk to human health caused by the possibility of human exposure to hazardous substances.« less
Wave equation datuming applied to S-wave reflection seismic data
NASA Astrophysics Data System (ADS)
Tinivella, U.; Giustiniani, M.; Nicolich, R.
2018-05-01
S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.
Nakatsuka, Hiroko; Tamura, Kenji
2016-01-01
Certain farms in Japan, namely unfertilised farms (UFs), have been able to maintain high productivity for over 40 years without applying fertilisers or composts. This study aimed to characterise the physicochemical, biological and micromorphological properties of soil in UFs compared with control farms in Eniwa and Nariita and to identify characteristics that are associated with crop productivity. In UFs, no plough pan was observed. The thickness of the effective soil depth (ESD) of UFs was greater than that of CFs. The concentrations of soil organic carbon, total nitrogen and nitrate-nitrogen in ESD of UFs were higher than those in ESD of CFs. Soil microstructure observations indicated the strong development of a granular microstructure with large amounts of void space and a high fractal dimension in both surface and subsoil horizons of UFs. Dry yield had a strong correlation with ESD thickness and fractal dimension of voids. Thus, the management of unfertilised cultivation promoted the development of soil aggregation in both A and B horizons. The increase in ESD, soil pore spaces and complexity with the development of subsoil structure improved the productivity of unfertilised cultivation.
NASA Astrophysics Data System (ADS)
di Sipio, Eloisa; Zezza, Fulvio
2011-11-01
In lagoonal and marine environments, both historic monuments and recent buildings suffer from severe salt damage caused by sea flooding, sea-level rise and frequent storm events. Salt-water contamination of groundwater systems, a widespread phenomenon typical of coastal areas, can lead to a deterioration not only of the quality of fresh groundwater resources, but also of building materials in urban settlements. A general overview is given of the hydrogeological configuration of the subsoil of Venice (Italy), with particular reference to the shallow groundwater circulation. The relationship between the seawater in the subsoil and salt decay processes, due to salt crystallization, is highlighted. These processes affect civil constructions in Venice's historic center. Perched aquifers, influenced by tide variations and characterized by salt-water intrusion, favor the transport of salts within masonry walls through the action of rising damp. In fact, foundations, in direct contact with the aquifers, may become a preferential vehicle for the transportation of salt within buildings. Decay patterns of different building materials can be detected through non-destructive techniques, which can identify sea-salt damage and therefore assist in the preservation of cultural heritage in coastal areas.
Saleh, Shadi; Mourad, Yara; Dimassi, Hani; Hitti, Eveline
2016-03-18
As health care costs continue to increase worldwide, health care systems, and more specifically hospitals are facing continuous pressure to operate more efficiently. One service within the hospital sector whose cost structure has been modestly investigated is the Emergency Department (ED). The study aims to report on the distribution of ED resource use, as expressed in charges, and to determine predictors of/contributors to total ED charges at a major tertiary hospital in Lebanon. The study used data extracted from the ED discharge database for visits between July 31, 2012 and July 31, 2014. Patient visit bills were reported under six major categories: solutions, pharmacy, laboratory, physicians, facility, and radiology. Characteristics of ED visits were summarized according to patient gender, age, acuity score, and disposition. Univariate and multivariate analyses were conducted with total charges as the dependent variable. Findings revealed that the professional fee (40.9 %) followed by facility fee (26.1 %) accounted for the majority of the ED charges. While greater than 80 % of visit charges went to physician and facility fee for low acuity cases, these contributed to only 52 and 54 % of the high acuity presentations where ancillary services and solutions' contribution to the total charges increased. The total charges for males were $14 higher than females; age was a predictor of higher charges with total charges of patients greater than 60 years of age being around $113 higher than ages 0-18 after controlling for all other variables. Understanding the components and determinants of ED charges is essential to developing cost-containment interventions. Institutional modeling of charging patterns can be used to offer price estimates to ED patients who request this information and ultimately help create market competition to drive down costs.
Microprocessor control of photovoltaic systems
NASA Technical Reports Server (NTRS)
Millner, A. R.; Kaufman, D. L.
1984-01-01
The present low power CMOS microprocessor controller for photovoltaic power systems possesses three programs, which are respectively intended for (1) conventional battery-charging systems with state-of-charge estimation and sequential shedding of subarrays and loads, (2) maximum power-controlled battery-charging systems, and (3) variable speed dc motor drives. Attention is presently given to the development of this terrestrial equipment for spacecraft use.
A dynamic plug flow reactor model for a vanadium redox flow battery cell
NASA Astrophysics Data System (ADS)
Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie
2016-04-01
A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.
Role of Surface Charge Density in Nanoparticle-templated Assembly of Bromovirus Protein Cages
Daniel, Marie-Christine; Tsvetkova, Irina B.; Quinkert, Zachary T.; Murali, Ayaluru; De, Mrinmoy; Rotello, Vincent M.; Kao, C. Cheng; Dragnea, Bogdan
2010-01-01
Self-assembling icosahedral protein cages have potencially useful physical and chemical characteristics for a variety of nanotechnology applications, ranging from therapeutic or diagnostic vectors to building blocks for hierarchical materials. For application-specific functional control of protein cage assemblies, a deeper understanding of the interaction between the protein cage and its payload is necessary. Protein-cage encapsulated nanoparticles, with their well-defined surface chemistry, allow for systematic control over key parameters of encapsulation such as the surface charge, hydrophobicity, and size. Independent control over these variables allows experimental testing of different assembly mechanism models. Previous studies done with Brome mosaic virus capsids and negatively-charged gold nanoparticles indicated that the result of the self-assembly process depends on the diameter of the particle. However, in these experiments, the surface-ligand density was maintained at saturation levels, while the total charge and the radius of curvature remained coupled variables, making the interpretation of the observed dependence on the core size difficult. The current work furnishes evidence of a critical surface charge density for assembly through an analysis aimed at decoupling the surface charge the core size. PMID:20575505
Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion
NASA Astrophysics Data System (ADS)
Sen, Swati; Kundagrami, Arindam
2017-11-01
We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.
KP Equation in a Three-Dimensional Unmagnetized Warm Dusty Plasma with Variable Dust Charge
NASA Astrophysics Data System (ADS)
El-Shorbagy, Kh. H.; Mahassen, Hania; El-Bendary, Atef Ahmed
2017-12-01
In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-Coulomb waves in an unmagnetized warm dusty plasma consisting of electrons, ions, and charged dust particles. The grain charge fluctuation is incorporated through the current balance equation. Using the perturbation method, a Kadomtsev-Petviashvili (KP) equation is obtained. It has been shown that the charge fluctuation would modify the wave structures, and the waves in such systems are unstable due to high-order long wave perturbations.
Andrew W. Ezell; Mark W. Shankle
2004-01-01
Afforestation of abandoned agricultural land with hardwood seedlings is being conducted on thousands of acres in the South annually. More than 300,000 acres have been planted under the auspices of the Wetland Reserve Program, and other cost-share programs also promote the planting of hardwood species. Unfortunately, survival in many of these planting efforts has been...
USDA-ARS?s Scientific Manuscript database
Soil organic matter (SOM) contributes to soil processes and is found both in shallow and deep soil layers. Its activity can be affected by its chemical composition, yet knowledge is incomplete of how land use alters the structural composition of SOM throughout the profiles of different soil types. T...
ELECTRIC-FIELD-ENHANCED FABRIC FILTRATION OF ELECTRICALLY CHARGED FLYASH
The paper summarizes measurements in which both external electric field (applied by electrodes at the fabric surface) and flyash electrical charge (controlled by an upstream corona precharger) are independent variables in a factorial performance experiment carried out in a labora...
NASA Astrophysics Data System (ADS)
Dikpal, Ramesh L.; Renuka Prasad, T. J.; Satish, K.
2017-12-01
The quantitative analysis of drainage system is an important aspect of characterization of watersheds. Using watershed as a basin unit in morphometric analysis is the most logical choice because all hydrological and geomorphic processes occur within the watershed. The Budigere Amanikere watershed a tributary of Dakshina Pinakini River has been selected for case illustration. Geoinformatics module consisting of ArcGIS 10.3v and Cartosat-1 Digital Elevation Model (DEM) version 1 of resolution 1 arc Sec ( 32 m) data obtained from Bhuvan is effectively used. Sheet and gully erosion are identified in parts of the study area. Slope in the watershed indicating moderate to least runoff and negligible soil loss condition. Third and fourth-order sub-watershed analysis is carried out. Mean bifurcation ratio ( R b) 3.6 specify there is no dominant influence of geology and structures, low drainage density ( D d) 1.12 and low stream frequency ( F s) 1.17 implies highly infiltration subsoil material and low runoff, infiltration number ( I f)1.3 implies higher infiltration capacity, coarse drainage texture ( T) 3.40 shows high permeable subsoil, length of overland flow ( L g) 0.45 indicates under very less structural disturbances, less runoff conditions, constant of channel maintenance ( C) 0.9 indicates higher permeability of subsoil, elongation ratio ( R e) 0.58, circularity ratio ( R c) 0.75 and form factor ( R f) 0.26 signifies sub-circular to more elongated basin with high infiltration with low runoff. It was observed from the hypsometric curves and hypsometric integral values of the watershed along with their sub basins that the drainage system is attaining a mature stage of geomorphic development. Additionally, Hypsometric curve and hypsometric integral value proves that the infiltration capacity is high as well as runoff is low in the watershed. Thus, these mormometric analyses can be used as an estimator of erosion status of watersheds leading to prioritization for taking up soil and water conservation measures.
Wet-dry cycles impact DOM retention in subsurface soils
NASA Astrophysics Data System (ADS)
Olshansky, Yaniv; Root, Robert A.; Chorover, Jon
2018-02-01
Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM) with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet-dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet-dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw) horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps) with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet-dry
treatment) before introduction of the following DOM solution or were maintained under constant wetness (continually wet
treatment). Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses revealed that wet-dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM) data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet-dry cycles in affecting sorption reactions of DOM to a complex soil matrix. In the soil environment, where wet-dry cycles occur at different frequencies from site to site and along the soil profile, different interactions between DOM and soil surfaces are expected and need to be considered for the overall assessment of carbon dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairbank, Brian D.
2015-03-27
Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award bemore » transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified the DOE on February 13, 2014 that it would not be able to complete the project objectives before the recovery act awards deadline and submitted a mutual termination request to the DOE which was accepted.« less
NASA Astrophysics Data System (ADS)
Fritsch, E.; Allard, Th.; Benedetti, M. F.; Bardy, M.; do Nascimento, N. R.; Li, Y.; Calas, G.
2009-04-01
The development of podzols in lateritic landscapes of the upper Amazon basin contributes to the exportation of organic carbon and associated metals in the black waters of the Negro River watershed. We have investigated the distribution of Fe III in the clay-size fraction of eight organic-rich horizons of waterlogged plateau podzols, to unravel the weathering conditions and mechanisms that control its transfer to the rivers. The speciation and amount of Fe III stored in residual mineral phases of laterites, or bound to organic compounds of weakly and well-expressed podzols, were determined by electron paramagnetic resonance spectroscopy combined with chemical analyses. Reducing conditions restrict the production of organo-Fe complexes in the subsoil B-horizons of waterlogged podzols and most of the Fe 2+ released from the dissolution of Fe-oxides is exported to the rivers via the perched groundwater. However, significant amounts of diluted Fe III bound to organic ligands (Fe IIIOM) and nano Fe-oxides are produced at the margin of the depression in the topsoil A horizons of weakly expressed podzols due to shorter periods of anoxia. The downward translocation of organically bound metals from topsoil A to subsoil B-horizons of podzols occurs in shorter distances for Fe than it does for Al. This separation of secondary Fe species from Al species is attributed to the physical fractionation of their organic carriers in texture contrasted B-horizons of podzols, as well as to the effect of pH on metal speciation in soil solutions and metal binding onto soil organic ligands (mostly for Al). This leads us to consider the topsoil A horizons of weakly expressed podzols, as well as the subsoil Bh horizon of better-expressed ones, as the main sources for the transfer of Fe IIIOM to the rivers. The concentration of Fe IIIOM rises from soil sources to river colloids, suggesting drastic biogeochemical changes in more oxygenated black waters of the Negro River watershed. The contribution of soil organic matter to the transfer of Fe to rivers is likely at the origin of the peculiar Fe isotope pattern recently recognized in podzolic environments.
Tian, Shenzhong; Wang, Yu; Ning, Tangyuan; Zhao, Hongxiang; Wang, Bingwen; Li, Na; Li, Zengjia; Chi, Shuyun
2013-01-01
Appropriate tillage plays an important role in mitigating the emissions of greenhouse gases (GHG) in regions with higher crop yields, but the emission situations of some reduced tillage systems such as subsoiling, harrow tillage and rotary tillage are not comprehensively studied. The objective of this study was to evaluate the emission characteristics of GHG (CH4 and N2O) under four reduced tillage systems from October 2007 to August 2009 based on a 10-yr tillage experiment in the North China Plain, which included no-tillage (NT) and three reduced tillage systems of subsoil tillage (ST), harrow tillage (HT) and rotary tillage (RT), with the conventional tillage (CT) as the control. The soil under the five tillage systems was an absorption sink for CH4 and an emission source for N2O. The soil temperature positive impacted on the CH4 absorption by the soils of different tillage systems, while a significant negative correlation was observed between the absorption and soil moisture. The main driving factor for increased N2O emission was not the soil temperature but the soil moisture and the content of nitrate. In the two rotation cycle of wheat-maize system (10/2007-10/2008 and 10/2008-10/2009), averaged cumulative uptake fluxes of CH4 under CT, ST, HT, RT and NT systems were approximately 1.67, 1.72, 1.63, 1.77 and 1.17 t ha(-1) year(-1), respectively, and meanwhile, approximately 4.43, 4.38, 4.47, 4.30 and 4.61 t ha(-1) year(-1) of N2O were emitted from soil of these systems, respectively. Moreover, they also gained 33.73, 34.63, 32.62, 34.56 and 27.54 t ha(-1) yields during two crop-rotation periods, respectively. Based on these comparisons, the rotary tillage and subsoiling mitigated the emissions of CH4 and N2O as well as improving crop productivity of a wheat-maize cropping system.
Tian, Shenzhong; Wang, Yu; Ning, Tangyuan; Zhao, Hongxiang; Wang, Bingwen; Li, Na; Li, Zengjia; Chi, Shuyun
2013-01-01
Appropriate tillage plays an important role in mitigating the emissions of greenhouse gases (GHG) in regions with higher crop yields, but the emission situations of some reduced tillage systems such as subsoiling, harrow tillage and rotary tillage are not comprehensively studied. The objective of this study was to evaluate the emission characteristics of GHG (CH4 and N2O) under four reduced tillage systems from October 2007 to August 2009 based on a 10-yr tillage experiment in the North China Plain, which included no-tillage (NT) and three reduced tillage systems of subsoil tillage (ST), harrow tillage (HT) and rotary tillage (RT), with the conventional tillage (CT) as the control. The soil under the five tillage systems was an absorption sink for CH4 and an emission source for N2O. The soil temperature positive impacted on the CH4 absorption by the soils of different tillage systems, while a significant negative correlation was observed between the absorption and soil moisture. The main driving factor for increased N2O emission was not the soil temperature but the soil moisture and the content of nitrate. In the two rotation cycle of wheat-maize system (10/2007–10/2008 and 10/2008–10/2009), averaged cumulative uptake fluxes of CH4 under CT, ST, HT, RT and NT systems were approximately 1.67, 1.72, 1.63, 1.77 and 1.17 t ha−1 year−1, respectively, and meanwhile, approximately 4.43, 4.38, 4.47, 4.30 and 4.61 t ha−1 year−1 of N2O were emitted from soil of these systems, respectively. Moreover, they also gained 33.73, 34.63, 32.62, 34.56 and 27.54 t ha−1 yields during two crop-rotation periods, respectively. Based on these comparisons, the rotary tillage and subsoiling mitigated the emissions of CH4 and N2O as well as improving crop productivity of a wheat-maize cropping system. PMID:24019923
Effect of land-use change on soil organic carbon stocks in the Eastern Usambara Mountain (Tanzania)
NASA Astrophysics Data System (ADS)
Kirsten, Maximilian; Kaaya, Abel; Klinger, Thomas; Feger, Karl-Heinz
2014-05-01
A soil organic carbon (SOC) inventory, covering 10 sites with 5 different land-use systems (primary forest, secondary forest, tea plantation, home garden, and cropland) was conducted in the tropical monsoonal Eastern Usambara Mountains (EUM), NE Tanzania. At all sites the environmental factors such as climate and parent material, for soil formation (gneiss), as well as elevation and slope position are highly comparable. The evergreen submontane primary rain forest, which still exists in vast areas in the EUM and the well-known land-use history there provide nearly optimal conditions for the assessment of land-use change effects on soil properties, notably the SOC stocks. We collected horizon-wise samples from soil pit profiles. In addition, samples from fixed depth-intervals were taken from 8 augering points located systematically around each soil pit. The sampling scheme yielded a unique set of soil information (pedological, chemical, and physical) that favours a reliable assessment of SOC stocks and future analytical work on SOM quality and binding mechanisms. The investigated soils are characterized by high clay contents, which increase with depth. Soil pH varies between 3.5 and 5.4 over all land-use systems and horizons, higher pH values could be detected for the agricultural systems in the topsoil, the differences between agricultural and forest systems decrease in the subsoil. The potential cation exchange capacity is in most cases < 24 cmolc kg-1, furthermore the base saturation is always < 50 % in the subsoil. Thus, based on that analytical data all soils can be classified as Acrisols revealing the high comparability of the investigated sites. This is an excellent prerequisite for the 'false chronosequence' approach applied. Organic carbon (C) stocks in the soils from the investigated land-use systems cover a wide range between 17.1 and 24.2 kg m-2 (0-100 cm). Variability is even high in the subset of the 3 primary forests. Statistically significant differences between the forest and cropland systems occur in the uppermost depth interval 0-10 cm. Furthermore, the primary forests have higher, but not significantly different SOC stocks in the topsoil (0-40 cm) compared with the cropland systems. In all investigated soils the SOC stocks for the entire soil profiles (0-100 cm) are in a narrow range. This may give a hint on SOC relocation from the topsoil to the subsoil when forests were converted to cropland systems. Our results reveal that this land-use change has led to a shift in above- and belowground litter distribution and amount. Also slash and burn practises as well as burning of plant residues in arable farming are common in the EUM. Both phenomena may control SOC relocation as they are associated with a changed C input and/or the formation of C compounds that can be relocated in the profile. In all investigated soils high concentrations of dithionite- and oxalate- extractable iron and aluminum were analyzed. Hence, interaction of SOC with oxides formed by the two metals is here probably one of the main stabilization mechanisms of SOC. The relocation and stabilization processes of SOC are the key functions for the implementation of sustainable agriculture in the EUM, and the conducted study provide a suitable basis for our ongoing research in this region of the wet tropics of Africa.
Quantum and classical dissipation of charged particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.
2013-08-15
A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less
Dynamic Factorization in Large-Scale Optimization
1993-03-12
variable production charges, distribution via multiple modes, taxes, duties and duty drawback, and inventory charges. See Harrison, Arntzen , and Brown...Decomposition," presented at CORS/TIMS/ORSA meeting, Vancouver. British Columbia, Canada, May. Harrison, T. P., Arntzen , B. C., and Brown, G. G. 1992
Consideration of Cost of Care in Pediatric Emergency Transfer-An Opportunity for Improvement.
Gattu, Rajender K; De Fee, Ann-Sophie; Lichenstein, Richard; Teshome, Getachew
2017-05-01
Pediatric interhospital transfers are an economic burden to the health care, especially when deemed unnecessary. Physicians may be unaware of the cost implications of pediatric emergency transfers. A cost analysis may be relevant to reduce cost. To characterize children transferred from outlying emergency departments (EDs) to pediatric ED (PED) with a specific focus on transfers who were discharged home in 12 hours or less after transfer without intervention in PED and analyze charges associated with them. Charts of 352 patients (age, 0-18 years) transferred from 31 outlying EDs to PED during July 2009 to June 2010 were reviewed. Data were collected on the range, unit charge and volume of services provided in PED, length of stay, and final disposition. The average charge per patient transfer is calculated based on unit charge times total service units per 1000 patients per year and divided by 1000. Hospital charges were divided into fixed and variable. Of 352 patients transferred, 108 (30.7%) were admitted to pediatric inpatient service, 42 (11.9%) to intensive care; 36 (10.2%) went to the operating room, and 166 (47.2%) were discharged home. The average hospital charge per transfer was US $4843. Most (89%) of the charges were fixed, and 11% were variable. One hundred one (28.7%) patients were discharged home from PED in 12 hours or less without intervention. The hospital charges for these transfers were US $489,143. Significant number of transfers was discharged 12 hours or less without any additional intervention in PED. Fixed charges contribute to majority of total charges. Cost saving can be achieved by preventing unnecessary transfer.
Bumbaca Yadav, Daniela; Sharma, Vikas K.; Boswell, Charles Andrew; Hotzel, Isidro; Tesar, Devin; Shang, Yonglei; Ying, Yong; Fischer, Saloumeh K.; Grogan, Jane L.; Chiang, Eugene Y.; Urban, Konnie; Ulufatu, Sheila; Khawli, Leslie A.; Prabhu, Saileta; Joseph, Sean; Kelley, Robert F.
2015-01-01
The pharmacokinetic (PK) behavior of monoclonal antibodies in cynomolgus monkeys (cynos) is generally translatable to that in humans. Unfortunately, about 39% of the antibodies evaluated for PKs in cynos have fast nonspecific (or non-target-mediated) clearance (in-house data). An empirical model relating variable region (Fv) charge and hydrophobicity to cyno nonspecific clearance was developed to gauge the risk an antibody would have for fast nonspecific clearance in the monkey. The purpose of this study was to evaluate the predictability of this empirical model on cyno nonspecific clearance with antibodies specifically engineered to have either high or low Fv charge. These amino acid changes were made in the Fv region of two test antibodies, humAb4D5-8 and anti-lymphotoxin α. The humAb4D5-8 has a typical nonspecific clearance in cynos, and by making it more positively charged, the antibody acquires fast nonspecific clearance, and making it less positively charged did not impact its clearance. Anti-lymphotoxin α has fast nonspecific clearance in cynos, and making it more positively charged caused it to clear even faster, whereas making it less positively charged caused it to clear slower and within the typical range. These trends in clearance were also observed in two other preclinical species, mice and rats. The effect of modifying Fv charge on subcutaneous bioavailability was also examined, and in general bioavailability was inversely related to the direction of the Fv charge change. Thus, modifying Fv charge appears to impact antibody PKs, and the changes tended to correlate with those predicted by the empirical model. PMID:26491012
Dynamic Factorization in Large-Scale Optimization
1994-01-01
and variable production charges, distribution via multiple modes, taxes, duties and duty draw- back, and inventory charges. See Harrison, Arntzen and...34 Capital allocation and project selection via decomposition:’ presented at CORS/TIMS/ORSA meeting. Vancouver. Be ( 1989). T.P. Harrison. B.C. Arntzen and
Spatial distribution of enzyme driven reactions at micro-scales
NASA Astrophysics Data System (ADS)
Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian
2017-04-01
Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).
Lauer, K; Firnhaber, W
1984-10-01
In order to discover possible exogenous variables associated with a higher multiple sclerosis risk, the distribution of cases with definite and probable multiple sclerosis ascertained in the course of a micro-epidemiologic study in Southern Hesse was evaluated and compared with some environmental factors. The prevalence in 1980, the prevalence of cases with disease-onset within the region according to locality of onset and the rate of native Southern Hesse patients according to childhood residence all showed a similar geographical distribution, with the highest values in the south-eastern, mountainous part of the region. This district has a lower annual mean temperature, more annual snow-days and a higher annual precipitation compared to the remaining area. A statistical comparison revealed no association with industrial or agricultural activities, with a particular type of land use, with cattle, pig- or horse-breeding, or with sanitary or housing standards. On the other hand, a slight association with the soil type could be demonstrated, with higher rates on loam and clay subsoils when compared to predominantly sandy regions. Whether this finding has any significance or not remains to be clarified.
Modelling hydrological conditions in the maritime forest region of south-western Nova Scotia
NASA Astrophysics Data System (ADS)
Yanni, Shelagh; Keys, Kevin; Meng, Fan-Rui; Yin, Xiwei; Clair, Tom; Arp, Paul A.
2000-02-01
Hydrological processes and conditions were quantified for the Mersey River Basin (two basins: one exiting below Mill Falls, and one exiting below George Lake), the Roger's Brook Basin, Moosepit Brook, and for other selected locations at and near Kejimkujik National Park in Nova Scotia, Canada, from 1967 to 1990. Addressed variables included precipitation (rain, snow, fog), air temperature, stream discharge, snowpack accumulations, throughfall, soil and subsoil moisture, soil temperature and soil frost, at a monthly resolution. It was found that monthly per hectare stream discharge was essentially independent of catchment area from <20 km2 to more than 1000 km2. The forest hydrology model ForHyM2 was used to simulate monthly rates of stream discharge, throughfall and snowpack water equivalents for mature forest conditions. These simulations were in good agreement with the historical records once the contributions of fog and mist to the area-wide water budget were taken into account, each on a monthly basis. The resulting simulations establish a hydrologically consistent, continuous, comprehensive and partially verified record for basin-wide outcomes for all major hydrological processes and conditions, be these related to stream discharge, soil moisture, soil temperature, snowpack accumulations, soil frost, throughfall, interception and soil percolation.
A Physics Based Vehicle Terrain Interaction Model for Soft Soil off-Road Vehicle Simulations
2012-01-01
assumed terrain deformation, use of empirical relationships for the deformation, or finite/discrete element approaches for the terrain. A real-time...vertical columns of soil, and the deformation of each is modeled using visco-elasto-plastic compressibility relationships that relate subsoil pressures to...produced by tractive and turning forces will also be incorporated into the model. Both the vertical and horizontal force/displacement relationships
The problems and prospects of the public-private partnership in the Russian fuel and energy sector
NASA Astrophysics Data System (ADS)
Nikitenko, SM; Goosen, EV
2017-02-01
This article highlights some opportunities for shifting the paradigm for the development of natural resources in the Russian fuel and energy sector using public-private partnership instruments. It shows three main directions for developing public-private partnerships in the area of subsoil use and emphasizes the role of innovations in implementing the most promising projects in the fuel and energy sector of Russia.
Mohd S. Rahman; Michael G. Messina; Richard F. Fisher
2002-01-01
Substantial forest acreage in the south-central U.S. is seasonally water-logged due to an underlying fragipan. Severely restricted drainage in the non-growing season leads to a reduced subsoil zone, which restricts root respiration. The same sites may also be subjected to summer drought. These climatic and edaphic problems may result in low seedling survival and...
Vamerali, Teofilo; Bandiera, Marianna; Mosca, Giuliano
2011-05-01
Sunflower, alfalfa, fodder radish and Italian ryegrass were cultivated in severely As-Cd-Co-Cu-Pb-Zn-contaminated pyrite waste discharged in the past and capped with 0.15m of unpolluted soil at Torviscosa (Italy). Plant growth and trace element uptake were compared under ploughing and subsoiling tillages (0.3m depth), the former yielding higher contamination (∼30%) in top soil. Tillage choice was not critical for phytoextraction, but subsoiling enhanced above-ground productivity, whereas ploughing increased trace element concentrations in plants. Fodder radish and sunflower had the greatest aerial biomass, and fodder radish the best trace element uptake, perhaps due to its lower root sensitivity to pollution. Above-ground removals were generally poor (maximum of 33mgm(-2) of various trace elements), with Zn (62%) and Cu (18%) as main harvested contaminants. The most significant finding was of fine roots proliferation in shallow layers that represented a huge sink for trace element phytostabilisation. It is concluded that phytoextraction is generally far from being an efficient management option in pyrite waste. Sustainable remediation requires significant improvements of the vegetation cover to stabilise the site mechanically and chemically, and provide precise quantification of root turnover. Copyright © 2011 Elsevier Ltd. All rights reserved.
2018-01-01
The shallow groundwater of the multi-layered sedimentary basin aquifer of southwestern Nigeria was assessed based on its intrinsic vulnerability property. The vulnerability evaluation involves determining the protective cover and infiltration condition of the unsaturated zone in the basin. This was achieved using the PI (P stands for protective cover effectiveness of the overlying lithology and I indicates the degree of infiltration bypass) vulnerability method of the European vulnerability approach. The PI method specifically measures the protection cover and the degree to which the protective cover is bypassed. Intrinsic parameters assessed were the subsoil, lithology, topsoil, recharge and fracturing for the protective cover. The saturated hydraulic conductivity of topsoil, infiltration processes and the lateral surface and subsurface flow were evaluated for the infiltration bypassed. The results show moderate to very low vulnerability areas. Low vulnerability areas were characterised by lithology with massive sandstone and limestone, subsoils of sandy loam texture, high slopes and high depth to water table. The moderate vulnerability areas were characterised by high rainfall and high recharge, low water table, unconsolidated sandstones and alluvium lithology. The intrinsic vulnerability properties shown in vulnerability maps will be a useful tool in planning and monitoring land use activities that can be of impact in groundwater pollution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kieft, Thomas L.; Brockman, Fred J.
2001-01-17
The vadose zone is defined as the portion of the terrestrial subsurface that extends from the land surface downward to the water table. As such, it comprises the surface soil (the rooting zone), the underlying subsoil, and the capillary fringe that directly overlies the water table. The unsaturated zone between the rooting zone and the capillary fringe is termed the "intermediate zone" (Chapelle, 1993). The vadose zone has also been defined as the unsaturated zone, since the sediment pores and/or rock fractures are generally not completely water filled, but instead contain both water and air. The latter characteristic results inmore » the term "zone of aeration" to describe the vadose zone. The terms "vadose zone," "unsaturated zone", and "zone of aeration" are nearly synonymous, except that the vadose zone may contain regions of perched water that are actually saturated. The term "subsoil" has also been used for studies of shallow areas of the subsurface immediately below the rooting zone. This review focuses almost exclusively on the unsaturated region beneath the soil layer since there is already an extensive body of literature on surface soil microbial communities and process, e.g., Paul and Clark (1989), Metting (1993), Richter and Markowitz, (1995), and Sylvia et al. (1998); whereas the deeper strata of the unsaturated zone have only recently come under scrutiny for their microbiological properties.« less
Functional Villa Tugendhat and its Geological Subsoil - Design of a New Geotourism Place
NASA Astrophysics Data System (ADS)
Duraj, Miloš; Cheng, Xianfeng; Niemiec, Dominik; Arencibia Montero, Orlando; Durďák, Jan
2017-10-01
Functionalist villa Tugendhat deserves to be one of the UNESCO heritage sites. The author of this building was a prominent German architect, Ludwig Mies van der Rohe, who accepted the contract from Greta and Fritz Tugendhat. From today’s perspective, this building is one of the most important pre-war works of this architect. The 1928 architectural design was subsequently very quickly completed and the construction was completed in 1930. The Tugendhat family lived in a villa until 1938. During World War II it was confiscated by German occupation forces. At the end of the war, it was used by the Red Army and later served for the state. During this period, this building did not avoid warfare or later destruction of both the building and parts of the facility. The importance of this building was recognized in 1969, when the villa was placed on the State List of Cultural Monuments. In the 80’s was the first major renovation of the building, which is often criticized. The second, last reconstruction took place in the years 2010 - 2012. During these reconnaissance works there were also old, temporarily calming landslides, which were subsequently solved. For this reason, the site is suitable for geotourism as an example of architectural monuments versus geological subsoil.
NASA Astrophysics Data System (ADS)
Nikitenko, S. M.; Goosen, E. V.
2017-09-01
The article explores the possibility of using instruments of public-private partnership for a paradigm shift in subsoil use in the fuel and energy complex of Russia. The modern Russian fuel and energy complex (FEC) is characterized by high depreciation of production assets, technological inferiority compared to the developed countries, etc. The solution to all these problems seems to be closely connected with the transition from extensive use of natural resources to comprehensive mineral exploration (CME), with a stable socio-economic development of territories and mutually beneficial partnership between science, business and government based on the principles of public-private partnership (PPP). The article discussed the three main directions of PPP projects development in subsoil use. The first direction comprises the projects aimed at the establishment of core mineral resource businesses on the basis of concession agreements and production sharing contracts. The second direction concerns the projects focused on the development of territories and objects of industrial and social infrastructure in resource regions. The third direction is formed by the projects aimed at the development of new industries, focused on the creation of centers of innovative development, formation of markets for innovative products and innovative clusters in the energy industry.
Lebert, Matthias; Böken, Holger; Glante, Frank
2007-02-01
Soil compaction in agriculture induced by large-scale equipment is of growing concern. Heavy wheel loads used in arable cropping have the potential to cause irreversible damage to the subsoil structure and may lead to harmful soil compaction. In order to sustain or improve soil health or fitness on a sustainable basis, indicators are needed to assess the changes in the soil structure and the respective soil functions. This requires an adequate verification of methods for distinguishing between the impairment of soil structure and the disruption of soil functions, and for the respective subject of protection. In this article the link between existing models of soil physical prognosis, practical guidelines, and criteria for the identification of affected soil structure is demonstrated, and a viable concept to distinguish harmful changes to the soil is presented. The concept consists of methods for soil physical analysis such as "pre-compression stress" and "loading ratio", practical recommendations for best management practice, and an indicator-based model for the identification of harmful subsoil compaction derived from a research project for the German Federal Environmental Agency, making it possible to determine for a respective location the required level of action far beyond the common practice of precautions against harmful soil compaction.
Assessment and Control of Spacecraft Charging Risks on the International Space Station
NASA Technical Reports Server (NTRS)
Koontz, Steve; Edeen, Marybeth; Spetch, William; Dalton, Penni; Keening, Thomas
2003-01-01
Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on the ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies
Assessment and Control of International Space Station Spacecraft Charging Risks
NASA Astrophysics Data System (ADS)
Koontz, S.; Edeen, M.; Spetch, W.; Dalton, P.; Keeping, T.; Minow, J.
2003-12-01
Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging, albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies.
Do chemical gradients within soil aggregates reflect plant/soil interactions?
NASA Astrophysics Data System (ADS)
Krüger, Jaane; Hallas, Till; Kinsch, Lena; Stahr, Simon; Prietzel, Jörg; Lang, Friederike
2016-04-01
As roots and hyphae often accumulate at the surface of soil aggregates, their formation and turnover might be related to the bioavailability especially of immobile nutrients like phosphorus. Several methods have been developed to obtain specific samples from aggregate surfaces and aggregate cores and thus to investigate differences between aggregate shell and core. However, these methods are often complex and time-consuming; therefore most common methods of soil analysis neglect the distribution of nutrients within aggregates and yield bulk soil concentrations. We developed a new sequential aggregate peeling method to analyze the distribution of different nutrients within soil aggregates (4-20 mm) from four forest sites (Germany) differing in concentrations of easily available mineral P. Aggregates from three soil depths (Ah, BwAh, Bw) were isolated, air-dried, and peeled with a sieving machine performing four sieving levels with increasing sieving intensity. This procedure was repeated in quadruplicate, and fractions of the same sample and sieving level were pooled. Carbon and N concentration, citric acid-extractable PO4 and P, as well as total element concentrations (P, K, Mg, Ca, Al, Fe) were analyzed. Additionally, synchrotron-based P K-edge XANES spectroscopy was applied on selected samples to detect P speciation changes within the aggregates. The results reveal for most samples a significantly higher C and N concentration at the surface compared to the interior of the aggregates. Carbon and N gradients get more pronounced with increasing soil depth and decreasing P status of study sites. This might be explained by lower aggregate turnover rates of subsoil horizons and intense bioturbation on P-rich sites. This assumption is also confirmed by concentrations of citric acid-extractable PO4 and P: gradients within aggregates are getting more pronounced with increasing soil depth and decreasing P status. However, the direction of these gradients is site-specific: On P-rich study sites the results reveal a significant depletion of citric acid-extractable PO4 and P on aggregate surfaces in subsoil horizons, while at the other study sites a slight enrichment at the aggregate surfaces could be observed. Total P concentrations show no distinct gradients within topsoil aggregates, but a slight P enrichment at the surface of subsoil aggregates at the P-rich site. A strong correlation with the total Al concentrations may indicate a P speciation change within aggregates (e.g., due to acidification processes). These results were also confirmed by P K-edge XANES spectra of aggregate core and shell samples of the P-rich site: In the aggregate shells of topsoil as well as subsoil aggregates, organic P forms are most dominant (82 and 80 %, respectively) than in the aggregate interior (54 and 66%, respectively). Moreover, P in the shell seems to be completely associated to Al, whereas some of the P in the aggregate interior is bound to Fe and/or Ca. Overall, our results show that plant/soil interactions impact on small-scale distribution and bioavailability of nutrients by root uptake and root-induced aggregate engineering.
Schizophrenia and Crime: How Predictable Are Charges, Convictions and Violence?
ERIC Educational Resources Information Center
Heinrichs, R. Walter; Sam, Eleanor P.
2012-01-01
The schizophrenia-crime relationship was studied in 151 research participants meeting DSM-IV criteria for schizophrenia or schizoaffective disorder and with histories positive or negative for criminal charges, convictions and offences involving violence. These crime-related variables were regressed on a block of nine predictors reflecting…
Quantizing higher-spin gravity in free-field variables
NASA Astrophysics Data System (ADS)
Campoleoni, Andrea; Fredenhagen, Stefan; Raeymaekers, Joris
2018-02-01
We study the formulation of massless higher-spin gravity on AdS3 in a gauge in which the fundamental variables satisfy free field Poisson brackets. This gauge choice leaves a small portion of the gauge freedom unfixed, which should be further quotiented out. We show that doing so leads to a bulk version of the Coulomb gas formalism for W N CFT's: the generators of the residual gauge symmetries are the classical limits of screening charges, while the gauge-invariant observables are classical W N charges. Quantization in these variables can be carried out using standard techniques and makes manifest a remnant of the triality symmetry of W ∞[λ]. This symmetry can be used to argue that the theory should be supplemented with additional matter content which is precisely that of the Prokushkin-Vasiliev theory. As a further application, we use our formulation to quantize a class of conical surplus solutions and confirm the conjecture that these are dual to specific degenerate W N primaries, to all orders in the large central charge expansion.
S-World: A high resolution global soil database for simulation modelling (Invited)
NASA Astrophysics Data System (ADS)
Stoorvogel, J. J.
2013-12-01
There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property at a particular location given a specific soil type. The soil properties are predicted for each grid cell based on the soil type, the corresponding ranges of soil properties, and the co-variables. Step 4: Standard depth profiles are developed for each of the soil types using the diagnostic criteria of the soil types and soil profile information from the ISRIC-WISE database. The standard soil profiles are combined with the the predicted values for the topsoil and subsoil yielding unique soil profiles at each location. Step 5: In a final step, additional soil properties are added to the database using averages for the soil types and pedo-transfer functions. The methodology, denominated S-World (Soils of the World), results in readily available global maps with quantitative pedon data for modelling purposes. It forms the basis for the Global Gridded Crop Model Intercomparison carried out within AgMIP.
Geographic variations in hospital charges and Medicare payments for major joint arthroplasty.
Thakore, Rachel V; Greenberg, Sarah E; Bulka, Catherine M; Ehrenfeld, Jesse M; Obremskey, William T; Sethi, Manish K
2015-05-01
National data on hospital-level charges and Medicare payments have shown that joint arthroplasty is the most common surgical procedure among the elderly. Yet, no study has investigated micro and macro level geographic variations in hospital charges and payment. We used the Medicare Provider Charge Data to investigate Medicare payments and charges for 2750 hospitals accounting for 427,207 patients who underwent major joint arthroplasty and 932 hospitals for 18,714 patients who had a complication/comorbidity. We found a significant difference in hospital charges and payments based on geographic region (P<0.001). We concluded that hospital charges demonstrate a high variability even when using areas to control for differences in hospital wages and high variation in reimbursements in some areas remains unexplained by Medicare's current method of calculating reimbursement. Published by Elsevier Inc.
Wette, Patrick; Klassen, Ina; Holland-Moritz, Dirk; Herlach, Dieter M; Schöpe, Hans Joachim; Lorenz, Nina; Reiber, Holger; Palberg, Thomas; Roth, Stephan V
2010-04-07
In titration experiments with NaOH, we have determined the full phase diagram of charged colloidal spheres in dependence on the particle density n, the particle effective charge Z(eff) and the concentration of screening electrolyte c using microscopy, light and ultrasmall angle x-ray scattering (USAXS). For sufficiently large n, the system crystallizes upon increasing Z(eff) at constant c and melts upon increasing c at only slightly altered Z(eff). In contrast to earlier work, equilibrium phase boundaries are consistent with a universal melting line prediction from computer simulation, if the elasticity effective charge is used. This charge accounts for both counterion condensation and many-body effects.
Solid state electrochromic light modulator
Cogan, Stuart F.; Rauh, R. David
1993-01-01
An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.
Solid state electrochromic light modulator
Cogan, Stuart F.; Rauh, R. David
1993-12-07
An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.
Solid state electrochromic light modulator
Cogan, Stuart F.; Rauh, R. David
1990-01-01
An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.
Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meintz, Andrew; Doubleday, Kate; Markel, Tony
System right-sizing is critical to the implementation of in-motion wireless power transfer (WPT) for electric vehicles. This study evaluates potential system designs for an on-demand employee shuttle by determining the required battery size based on the rated power at a variable number of charging locations. Vehicle power and state of charge are simulated over the drive cycle, based on position and velocity data at every second from the existing shuttle. Adding just one WPT location can halve the battery size. Many configurations are capable of self-sustaining with WPT, while others benefit from supplemental stationary charging.
Solid state electrochromic light modulator
Cogan, S.F.; Rauh, R.D.
1990-07-03
An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.
Electroscavenging and Inferred Effects on Precipitation Efficiency
NASA Astrophysics Data System (ADS)
Tinsley, B. A.
2002-12-01
The evaporation of charged droplets leaves charged aerosol particles that can act as cloud condensation nuclei and ice forming nuclei. New calculations of scavenging of such charged particles by droplets have been made, that now include the effects of inertia and variable particle density, and variable cloud altitudes ranging into the stratosphere. They show that the Greenfield Gap closes for particles of low density, or for high altitude clouds, or for a few hundred elementary charges on the particles. A few tens of elementary charges on the particles gives collision efficiencies typically an order of magnitude greater than that due to phoretic forces alone. The numerical integrations show that electroscavenging of ice forming nuclei leading to contact ice nucleation is competitive with deposition ice nucleation, for cloud top temperatures in the range 0§C to -15§C and droplet size distributions extending past 10-15 mm radius. This implies that for marine stratocumulus or nimbostratus clouds with tops just below freezing temperature, where precipitation is initiated by the Wegener-Bergeron-Findeisen process, the precipitation efficiency can be affected by the amount of charge on the ice-forming nuclei. This in turn depends on the extent of the (weak) electrification of the cloud. Similarly, electroscavenging of condensation nuclei can increase the average droplet size in successive cycles of cloud evaporation and formation, and can also affect precipitation efficiency.
Naval Law Review, Volume 57, 2009
2009-01-01
example, Chile, Ecuador, and Peru agreed to claim sovereign rights over the seabed and subsoil out to a distance of 200 nautical miles despite the fact...fear and nothing moves on freeways that are now effectively sealed by the abandoned cars. A car explodes outside a federal building in Long Beach ...memorandum of understanding between the Navy and Puerto Rico, regarding pollution at the Vieques range). 264 United States Dep’t of Justice v
Control rod drive hydraulic system
Ose, Richard A.
1992-01-01
A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.
NASA Astrophysics Data System (ADS)
Hutchison, Geoffrey Rogers
Theoretical studies on a variety of oligo- and polyheterocycles elucidate their optical and charge transport properties, suggesting new, improved transparent conductive polymers. First-principles calculations provide accurate methodologies for predicting both optical band gaps of neutral and cationic oligomers and intrinsic charge transfer rates. Multidimensional analysis reveals important motifs in chemical tailorability of oligoheterocycle optical and charge transport properties. The results suggest new directions for design of novel materials. Using both finite oligomer and infinite polymer calculations, the optical band gaps in polyheterocycles follow a modified particle-in-a-box formalism, scaling approximately as 1/N (where N is the number of monomer units) in short chains, saturating for long chains. Calculations demonstrate that band structure changes upon heteroatom substitution, (e.g., from polythiophene to polypyrrole) derive from heteroatom electron affinity. Further investigation of chemical variability in substituted oligoheterocycles using multidimensional statistics reveals the interplay between heteroatom and substituent in correlations between structure and redox/optical properties of neutral and cationic species. A linear correlation between band gaps of neutral and cationic species upon oxidation of conjugated oligomers, shows redshifts of optical absorption for most species and blueshifts for small band gap species. Interstrand charge-transport studies focus on two contributors to hopping-style charge transfer rates: internal reorganization energy and the electronic coupling matrix element. Statistical analysis of chemical variability of reorganization energies in oligoheterocycles proves the importance of reorganization energy in determining intrinsic charge transfer rates (e.g., charge mobility in unsubstituted oligothiophenes). Computed bandwidths across several oligothiophene crystal packing motifs show similar electron and hole bandwidths, and show that well-known tilted and herringbone motifs in oligothiophenes are driven by electrostatic repulsion. Tilted stacks exhibit intrinsic charge-transfer rates smaller than cofacial stacks, but with lower packing energy. Given similar electron and hole bandwidths, a charge injection model explains substitution-modulated majority carrier changes in n- and p-type oligothiophene field-effect transistors.
Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire
ERIC Educational Resources Information Center
Prentice, A.; Fatuzzo, M.; Toepker, T.
2015-01-01
By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.
NASA Astrophysics Data System (ADS)
Abbaspour, S.; Mohammad Moosavi Nejad, S.
2018-05-01
Charged Higgs bosons are predicted by some non-minimal Higgs scenarios, such as models containing Higgs triplets and two-Higgs-doublet models, so that the experimental observation of these bosons would indicate physics beyond the Standard Model. In the present work, we introduce a channel to indirect search for the charged Higgses through the hadronic decay of polarized top quarks where a top quark decays into a charged Higgs H+ and a bottom-flavored meson B via the hadronization process of the produced bottom quark, t (↑) →H+ + b (→ B + jet). To obtain the energy spectrum of produced B-mesons we present, for the first time, an analytical expression for the O (αs) corrections to the differential decay width of the process t →H+ b in presence of a massive b-quark in the General-Mass Variable-Flavor-Number (GM-VFN) scheme. We find that the most reliable predictions for the B-hadron energy spectrum are made in the GM-VFN scheme, specifically, when the Type-II 2HDM scenario is concerned.
NASA Astrophysics Data System (ADS)
Akin, Muge K.
2016-04-01
The term of ground improvement states to the modification of the engineering properties of soils. Jet-grouting is one of the grouting methods among various ground improvement techniques. During jet-grouting, different textures of columns can be obtained depending on the characteristics of surrounding subsoil as well as the adopted jet-grouting system for each site is variable. In addition to textural properties, strength and index parameters of jet-grout columns are highly affected by the adjacent soil. In this study, the physical and mechanical properties of jet-grout columns constructed at two different sites in silty and sandy soil conditions were determined by laboratory tests. A number of statistical relationships between physical and mechanical properties of soilcrete were established in this study in order to investigate the dependency of numerous variables. The relationship between qu and γd is more reliable for sandy soilcrete than that of silty columns considering the determination coefficients. Positive linear relationships between Vp and γd with significantly high determination coefficients were obtained for the jet-grout columns in silt and sand. The regression analyses indicate that the P-wave velocity is a very dominant parameter for the estimation of physical and mechanical properties of jet-grout columns and should be involved during the quality control of soilcrete material despite the intensive use of uniaxial compressive strength test. Besides, it is concluded that the dry unit weight of jet-grout column is a good indicator of the efficiency of employed operational parameters during jet-grouting.
Biodegradation Rates Assessment For An In Situ Bioremediation Process
NASA Astrophysics Data System (ADS)
Troquet, J.; Poutier, F.
Bioremediation methods seem a promising way of dealing with soil and subsoil con- tamination by organic substances. The biodegradation process is supported by micro- organisms which use the organic carbon from the pollutants as energy source and cells building blocks. However, bioremediation is not yet universally understood and its success is still an intensively debated issue because all soils and groundwater are not able to sustain biological growth and, then, cannot be successfully bioremediated. The outcome of each degradation process depends on several factors, which, such as oxygen transfer and pollutant bio-availability, can be controlled and are therefore key variables of such bioremediation processes. Then, it is essential to carry out a fea- sibility study based on pilot-testing before starting a remediation project in order to determine the best formulation of nutrients and bacteria to use for the specific condi- tions encountered. The scope of this work is to study the main parameters of the process and its physi- cal limiting steps in order to determine the biodegradation rates in a specific case of contamination. Several ground samples from an actual petroleum hydrocarbon con- taminated site have been laboratory tested. Five fixed bed column reactors, enabling the study of the influence of the different op- erating variables on the biodegradation kinetics, are used. The stoichiometric equation for bacteria growth and pollutant degradation has been established, allowing the de- termination of mass balances. Biodegradation monitoring is achieved by continuously measuring the emissions of carbon dioxide production and intermittently by analysing residual hydrocarbons. Results lead to the knowledge of biodegradation rates which allow to determine the treatment duration and cost.
NASA Astrophysics Data System (ADS)
Cárdenas-Soto, M.; Tejero, A.; Nava-Flores, M.; Zenil, D. E.; Vidal-Garcia, M.; Garcia-Serrano, A.
2016-12-01
In this work we build 3D Vs models using seismic tomography of ambient noise. The goal is to characterize the subsurface structure in order to explore the causes of a sudden mine collapse in the 2nd section of Chapultepec park, Mexico City, near to a recreation lake whose subsoil is composed of vulcano-sedimentary materials that were economically exploited in the mid-20th century, leaving a series of underground mines that were rehabilitated for the construction of the Park. In this site we record ambient noise continuously at a 250 Hz sampling rate by intervals of 30 min in three arrays of quadrangular shape with 64 - 4.5 Hz vertical geophones separated 2m. In order to confront the seismic interferometry results, we also obtain 3D models derivated from Electrical Resistivity Tomography (ERT), and inverted surface micro-gravity data. The correlograms show a well defined pulse for those pairs of receivers whose backazimut is perpendicular to the beltway, which is the main source that generates ambient noise. We show that pulses had a dispersive character due to that define a dispersion curve (fundamental mode of Rayleigh wave) whose velocity values are close to 700 m/s at a frequency of 5 Hz, and tend to average values of 380 m/s in frequencies close to 16 Hz. Then, we build tomography images from the maximum time of the envelope pulse filtering in 18 center frequencies between 4 to 16 Hz. Through the relationship f=Vs/4z we create a 3D model in function of the seudo-depth (z). This model allows to distinguish the irregularity of the subsoil around the mine colapse (5m depth), which underlies a competent structure (Vs>450 m/s) surrounded by vulcano sedimentary material with low Vs values (200 m/s). ERT model show that the low velocity zones are associated with saturation areas, result that is corroborated by low-density values derived from micro-gravity model. The results indicate that the collapse was produced by the hydrostatic imbalance of the competent materials, which are the artificial filling that covers the different mined areas.
The spatial extent of agriculturally-induced topsoil removal in the Midwestern United States
NASA Astrophysics Data System (ADS)
Thaler, E.; Larsen, I. J.; Yu, Q.; Keiluweit, M.
2017-12-01
Human-induced erosion of soil organic carbon (SOC) degrades soils, leading to decreased crop yields. Here we develop a novel approach for mapping the spatial distribution of complete topsoil loss in agricultural landscapes, focusing on the Midwestern U.S. We used the ferric iron index (FeI) derived from high-resolution satellite imagery to map Fe-rich subsoil exposed by the loss of carbon-rich topsoil. Integrating topographic curvature derived from high resolution topographic data with FeI values demonstrates that FeI values are lowest in concave hollows where eroded soil accumulates, and increase linearly with topographic curvature on convex hilltops. The relationship between FeI and curvature indicates diffusion-like erosion by tillage is a dominant mechanism of soil loss, a mechanism generally not included in soil loss prediction in the U.S. Moreover, the FeI and curvature data indicate SOC-rich topsoil has been completely removed from hilltops, exposing Fe-rich subsoil. This interpretation supported by measurements of FeI using laboratory spectra, extractable-Fe, and organic C from two soil profiles from native prairies, which preserve the pre-agricultural soil profile. FeI increased sharply from the topsoil through the subsoil and total C and extractable Fe content are negatively correlated in both profiles. We calculated topographic curvature for 3.8 x105 km2 of the formerly-glaciated Midwestern U.S. using LiDAR data and found that convex topography, where FeI values suggest topsoil has been completely stripped, covers half of the landscape. Assuming complete removal of original SOC on all hilltops, we estimate that 784 Tg of C has been removed since cultivation began in the mid-1800s and that the SOC decline results in billions of dollars in annual economic losses from decreased crop yields. Restoration of eroded SOC has been proposed as a method to sequester atmospheric CO2 while simultaneously increasing crop yields, and our estimates suggest that replenishing eroded SOC within the Midwestern U.S. to pre-settlement levels could sequester 2900 Tg of CO2, equivalent to more than half of 2016 U.S. CO2 emissions. Our study highlights both the necessity to incorporate tillage into soil erosion models and the potential for SOC restoration to increase crop yields and offset carbon emissions.
Molecular differentiation of subsoil biopores of different origin by PLFA analysis
NASA Astrophysics Data System (ADS)
Banfield, Callum; Pausch, Johanna; Kuzyakov, Yakov
2015-04-01
Biologically generated macropores (biopores) are a key factor for propagation of root growth, nutrient mobilisation and acquisition from the subsoil. However, biopores of different origin, i.e. root-derived, earthworm-derived or of mixed origin, are difficult to distinguish visually in the field. Therefore, the objective of this study was to test molecular differentiation by means of phospholipds fatty acids (PLFA). 24 samples of biopore content of the three aforementioned origins and 8 bulk soil samples were taken from two soil depths (45 - 75 cm; 75 - 105 cm) and extracted twice by a solution of methanol, chloroform and citrate/KOH buffer (pH 4, v:v:v = 1:2:0.8). Following separation of phospholipids, derivatisation was by hydrolysation using NaOH in MeOH and methylation by adding BF3 and heating at 80°C. After further purification and preparation, samples were measured by gas chromatography - mass spectrometry (GC-MS). Generally, the abundance of PLFA differed only slightly between the upper and lower soil depth. Gram negative bacteria (16:1w7c, 18:1w7c and Cy17:0) were the most abundant microbial group in both depths and show clear enrichment in biopores, especially in the mixed-pore type. A similiar pattern was observed for fungi (18:2w6,9), but it was less pronounced in the deeper section. Actinomycetes (10Me16:0 and 10Me18:0) in contrast, show the highest enrichment in root-derived pores. Interestingly, highest abundance of AM fungi (16:1w5c) was found not in root-derived pores, but in the mixed-pore type. Protozoa (20:4w6) occured significantly higher in the earthworm-derived biopores. The majority of the gram positive bacteria (a15:0, i15:0, i17:0 and a17:0) showed no significant preference of habitat, i.e. in this case pore type or bulk soil. This is indicative for general decomposers of old soil organic matter. Thus we showed, that PLFA analysis not only a valuable molecular proxy for the differentiation of biopore types, but also provides deep insight into the role of individual microbial functional groups in nutrient mobilisation and cycling in subsoils.
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.
A variable pressure method for characterizing nanoparticle surface charge using pore sensors.
Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff
2012-04-03
A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.
Wake excited in plasma by an ultrarelativistic pointlike bunch
Stupakov, G.; Breizman, B.; Khudik, V.; ...
2016-10-05
We study propagation of a relativistic electron bunch through a cold plasma assuming that the transverse and longitudinal dimensions of the bunch are much smaller than the plasma collisionless skin depth. Treating the bunch as a point charge and assuming that its charge is small, we derive a simplified system of equations for the plasma electrons and show that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. The equations demonstrate an ion cavity formed behind the driver. They are solved numerically and the scaling of the cavity parameters with the driver charge ismore » obtained. As a result, a numerical solution for the case of a positively charged driver is also found.« less
Phase-change memory function of correlated electrons in organic conductors
NASA Astrophysics Data System (ADS)
Oike, H.; Kagawa, F.; Ogawa, N.; Ueda, A.; Mori, H.; Kawasaki, M.; Tokura, Y.
2015-01-01
Phase-change memory (PCM), a promising candidate for next-generation nonvolatile memories, exploits quenched glassy and thermodynamically stable crystalline states as reversibly switchable state variables. We demonstrate PCM functions emerging from a charge-configuration degree of freedom in strongly correlated electron systems. Nonvolatile reversible switching between a high-resistivity charge-crystalline (or charge-ordered) state and a low-resistivity quenched state, charge glass, is achieved experimentally via heat pulses supplied by optical or electrical means in organic conductors θ -(BEDT-TTF)2X . Switching that is one order of magnitude faster is observed in another isostructural material that requires faster cooling to kinetically avoid charge crystallization, indicating that the material's critical cooling rate can be useful guidelines for pursuing a faster correlated-electron PCM function.
Landforms of the United States
Hack, John T.
1969-01-01
The United States contains a great variety of landforms which offer dramatic contrasts to a crosscountry traveler. Mountains and desert areas, tropical jungles and areas of permanently frozen subsoil, deep canyons and broad plains are examples of the Nation's varied surface. The present-day landforms the features that make up the face of the earth are products of the slow, sculpturing actions of streams and geologic processes that have been at work throughout the ages since the earth's beginning.
Landforms of the United States
Hack, John T.
1988-01-01
The United States contains a great variety of landforms which offer dramatic contrasts to a cross-country traveler. Mountains and desert areas, tropical jungles and areas of permanently frozen subsoil, and deep canyons and broad plains are examples of the Nation's varied surface. The presentday landforms the features that make up the face of the Earth are products of the slow sculpturing actions of streams and geologic processes that have been at work throughout the ages since the Earth's beginning.
2015-09-01
brown, and light gray loam 19-inches thick. The subsoil is mottled, light yellowish brown, yellowish brown, and pale brown clay 41-inches thick...areas of Solano loam and Pescadero clay loam. The Antioch soil has slightly concave slopes, and the San Ysidro soil has slightly convex slopes (Web...Infrastructure and utilities include transportation, water supply, sanitary sewage/wastewater natural gas, electrical, communications, and liquid fuels
Installation Restoration Program Records Search for Mountain Home Air Force Base, Idaho.
1983-07-01
ornamental plantings. Mammals found on and around the base include coyote, black-tailed jackrabbit, cottontail, Franklin’s ground squirrel, and yellow - bellied ...Water Well Location Map. ::HILLI L - -- - • Depthin Feet Natural Ground Level Top Soil & Yellow Clay Subsoil Grey Basalt Rock-Medium Hardi30" Casing Grey... marmot as well as several varieties of small rodents. Birds which commonly nest on the base include American robin, house finch, English sparrow
Wei, Z B; Guo, X F; Wu, Q T; Long, X X; Penn, C J
2011-08-01
Phytoextraction using hyperaccumulating plants is generally time-consuming and requires the cessation of agriculture. We coupled chelators and a co-cropping system to enhance phytoextraction rates, while allowing for agricultural production. An experiment on I m3 lysimeter beds was conducted with a co-cropping system consisting of the hyperaccumulator Sedum alfredii and low-accumulating corn (Zea Mays, cv. Huidan-4), with addition ofa mixture of chelators (MC), to assess the efficiency of chelator enhanced co-crop phytoextraction and the leaching risk caused by the chelator. The results showed that the addition of MC promoted the growth of S. alfredii in the first crop (spring-summer season) and significantly increased the metal phytoextraction. The DTPA-extractable and total metal concentrations in the topsoil were also reduced more significantly with the addition of MC compared with the control treatments. However, mono-cropped S. alfredii without MC was more suitable for maximizing S. alfredii growth and therefore phytoextraction of Zn and Cd during the autumn-winter seasons. No adverse impact to groundwater due to MC application was observed during the experiments with three crops and three MC applications. But elevated total Cd and Pb concentrations among subsoils compared to the initial subsoil concentrations were found for the co-crop + MC treatment after the third crop.
Iturbe, Rosario; Flores, Carlos; Flores, Rosa Ma; Torres, Luis G
2005-12-01
Many oil industry related sites have become contaminated due to the activities characteristic of this industry, such as oil exploration and production, refining, and petro-chemistry. In Mexico, reported hydrocarbon spills for the year 2000 amounted to 185203, equivalent to 6252 tons (PEMEX, 2000). The first step for the remediation of these polluted sites is to assess the size and intensity of the oil contamination affecting the subsoil and groundwater, followed by a health risk assessment to establish clean up levels. The aim of this work was to characterize the soil and water in a north-central Mexico Oil Storage and Distribution Station (ODSS), in terms of TPHs, gasoline and diesel fractions, BTEX, PAHs, MTBE, and some metals. Besides, measurements of the explosivity index along the ODSS were made and we describe and discuss the risk health assessment analysis performed at the ODSS, as well as the recommendations arising from it. Considering soils with TPH concentrations higher than 2000 mg kg(-1), the contaminated areas corresponding to the railway zone is about 12776.5 m2, to the south of the storage tanks is about 6558 m2, and to the south of the filling tanks is about 783 m2. Total area to be treated is about 20107 m2 (volume of 20107 m3), considering 1m depth.
Improving root-zone soil properties for Trembling Aspen in a reconstructed mine-site soil
NASA Astrophysics Data System (ADS)
Dyck, M. F.; Sabbagh, P.; Bockstette, S.; Landhäusser, S.; Pinno, B.
2014-12-01
Surface mining activities have significantly depleted natural tree cover, especially trembling aspen (Populus tremuloides), in the Boreal Forest and Aspen Parkland Natural Regions of Alberta. The natural soil profile is usually destroyed during these mining activities and soil and landscape reconstruction is typically the first step in the reclamation process. However, the mine tailings and overburden materials used for these new soils often become compacted during the reconstruction process because they are subjected to high amounts of traffic with heavy equipment. Compacted soils generally have low porosity and low penetrability through increased soil strength, making it difficult for roots to elongate and explore the soil. Compaction also reduces infiltration capacity and drainage, which can cause excessive runoff and soil erosion. To improve the pore size distribution and water transmission, subsoil ripping was carried out in a test plot at Genesee Prairie Mine, Alberta. Within the site, six replicates with two treatments each, unripped (compacted) and ripped (decompacted), were established with 20-m buffers between them. The main objective of this research was to characterize the effects of subsoil ripping on soil physical properties and the longevity of those effects.as well as soil water dynamics during spring snowmelt. Results showed improved bulk density, pore size distribution and water infiltration in the soil as a result of the deep ripping, but these improvements appear to be temporary.
Fach, S; Dierkes, C
2011-01-01
The focus in this work was on subsoil infiltration of stormwater from parking lots. With regard to operation, reduced infiltration performance due to clogging and pollutants in seepage, which may contribute to contaminate groundwater, are of interest. The experimental investigation covered a pervious pavement with a subjacent infiltration trench draining an impervious area of 2 ha. In order to consider seasonal effects on the infiltration performance, the hydraulic conductivity was measured tri-monthly during monitoring with a mobile sprinkling unit. To assess natural deposits jointing, road bed, gravel of infiltration trenches and subsoil were analysed prior to commencement of monitoring for heavy metals, polycyclic aromatic and mineral oil type hydrocarbons. Furthermore, from 22 storm events, water samples of rainfall, surface runoff, seepage and ground water were analysed with regard to the above mentioned pollutants. The study showed that the material used for the joints had a major impact on the initial as well as the final infiltration rates. Due to its poor hydraulic conductivity, limestone gravel should not be used as jointing. Furthermore, it is recommended that materials for the infiltration facilities are ensured free of any contaminants prior to construction. Polycyclic aromatic and mineral oil type hydrocarbons were, with the exception of surface runoff, below detection limits. Heavy metal concentrations of groundwater were with the exception of lead (because of high background concentrations), below the permissible limits.
Butera, Stefania; Trapp, Stefan; Astrup, Thomas F; Christensen, Thomas H
2015-11-15
We investigated the retention of Cr(VI) in three subsoils with low organic matter content in laboratory experiments at concentration levels relevant to represent leachates from construction and demolition waste (C&DW) reused as unbound material in road construction. The retention mechanism appeared to be reduction and subsequent precipitation as Cr(III) on the soil. The reduction process was slow and in several experiments it was still proceeding at the end of the six-month experimental period. The overall retention reaction fit well with a second-order reaction governed by actual Cr(VI) concentration and reduction capacity of the soil. The experimentally determined reduction capacities and second-order kinetic parameters were used to model, for a 100-year period, the one-dimensional migration of Cr(VI) in the subsoil under a layer of C&DW. The resulting Cr(VI) concentration would be negligible below 7-70 cm depth. However, in rigid climates and with high water infiltration through the road pavement, the reduction reaction could be so slow that Cr(VI) might migrate as deep as 200 cm under the road. The reaction parameters and the model can form the basis for systematically assessing under which scenarios Cr(VI) from C&DW could lead to an environmental issue for ground- and receiving surface waters. Copyright © 2015 Elsevier B.V. All rights reserved.
French, Helen K; van der Zee, Sjoerd E A T M
2014-01-01
This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated.
Chiang, Po-Neng; Tong, Ou-Yang; Chiou, Chyow-San; Lin, Yu-An; Wang, Ming-Kuang; Liu, Cheng-Chung
2016-01-15
A liquid fertilizer obtained through food-waste composting can be used for the preparation of a dissolved organic carbon (DOC) solution. In this study, we used the DOC solutions for the remediation of a Zn-contaminated soil (with Zn concentrations up to 992 and 757 mg kg(-1) in topsoil and subsoil, respectively). We then determined the factors that affect Zn removal, such as pH, initial concentration of DOC solution, and washing frequency. Measurements using a Fourier Transform infrared spectrometer (FT-IR) revealed that carboxyl and amide were the major functional groups in the DOC solution obtained from the liquid fertilizer. Two soil washes using 1,500 mg L(-1) DOC solution with a of pH 2.0 at 25°C removed about 43% and 21% of the initial Zn from the topsoil and subsoil, respectively. Following this treatment, the pH of the soil declined from 5.4 to 4.1; organic matter content slightly increased from 6.2 to 6.5%; available ammonium (NH4(+)-N) content increased to 2.4 times the original level; and in the topsoil, the available phosphorus content and the exchangeable potassium content increased by 1.65 and 2.53 times their initial levels, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Grain Boundary Effect on Charge Transport in Pentacene Thin Films
NASA Astrophysics Data System (ADS)
Weis, Martin; Gmucová, Katarína; Nádaždy, Vojtech; Majková, Eva; Haško, Daniel; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2011-04-01
We report on charge transport properties of polycrystalline pentacene films with variable average grain size in the range from 0.1 to 0.3 µm controlled by the preparation technology. We illustrate with the organic field-effect transistors decrease of the effective mobility and presence of traps with decrease of the grain size. Analysis of the charge transfer excitons reveals decrease of the mobile charge density and the steady-state voltammetry showed significant increase of oxygen- and hydrogen-related defects. We also briefly discuss accumulation of the defects on the grain boundary and show relation between the defect density and grain boundary length.
Specifying the ISS Plasma Environment
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Diekmann, Anne; Neergaard, Linda; Bui, Them; Mikatarian, Ronald; Barsamian, Hagop; Koontz, Steven
2002-01-01
Quantifying the spacecraft charging risks and corresponding hazards for the International Space Station (ISS) requires a plasma environment specification describing the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IN) model typically only provide estimates of long term (seasonal) mean Te and Ne values for the low Earth orbit environment. Knowledge of the Te and Ne variability as well as the likelihood of extreme deviations from the mean values are required to estimate both the magnitude and frequency of occurrence of potentially hazardous spacecraft charging environments for a given ISS construction stage and flight configuration. This paper describes the statistical analysis of historical ionospheric low Earth orbit plasma measurements used to estimate Ne, Te variability in the ISS flight environment. The statistical variability analysis of Ne and Te enables calculation of the expected frequency of occurrence of any particular values of Ne and Te, especially those that correspond to possibly hazardous spacecraft charging environments. The database used in the original analysis included measurements from the AE-C, AE-D, and DE-2 satellites. Recent work on the database has added additional satellites to the database and ground based incoherent scatter radar observations as well. Deviations of the data values from the IRI estimated Ne, Te parameters for each data point provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output.
El-Shishtawy, A M; Atwia, M G; El-Gohary, A; Parizek, R R
2013-06-01
Hierakonpolis, Greek for City of the Hawk, nearly 25 km NW of Idfu (Egypt), is an important and extensive archaeological discovery covering a large area. Its richness in archaeological artifacts makes it a valuable site. It has a valid claim to be the first nation state, as indicated by the Palette of Narmer discovered in its main mound. Geological and hydrogeological investigations at the Hierakonpolis Temple Town site documented nearly a 4.0-m water table rise from as early as 1892 to the present. In addition to the rising water levels, the increase of both subsoil water salinity and humidity threatens and damages fragile carvings and paintings within tombs in Kingdom Hill, the foundation stability of the site, and the known and still to be discovered artifact that recent pottery finds dates at least 4,000 BCE. Representative rock and soil samples obtained from drilled cores in the study area were chosen for conducting detailed grain size and X-ray analysis, light and heavy mineral occurrences, distribution of moisture and total organic matter, and scanning electron microscopy investigations. Mineralogical analysis of clays indicated that the soil samples are composed of smectite/illite mixed layers with varying proportions of smectite to illite. Kaolinite is the second dominant clay constituent, besides occasional chlorite. Swelling of the clay portion of the soil, due to the presence of capillary groundwater, in contact with buried mudbrick walls expands and causes severe damage to important exposed and buried mudbrick structures, including the massive ancient "fort" believed to date from the Second Dynasty (from 2,890 to 2,686 BC). The "fort" is 1.0 km south of the Temple Town mounds near to confluence of Wadi Abu Sufian. Groundwater samples from the shallow aquifer close by the intersection of Wadi Abu Sufian and the Nile flood plain were analyzed for chemical composition and stable isotope ratios. The groundwater in the upper zone (subsoil water) within fine-grained Nile alluvium is characterized by high salinity which varies from 415 to 4,500 mg/L total dissolved solids. In contrast, most of the groundwater samples in the lower zone (Quaternary aquifer) are characterized by a low salinity in the order of 164-792 mg/L. Values of δD and δO(18) obtained from this deep (9-20 m) aquifer ranged from 16.98 to 19.87 ‰ and from 1.67 to 2.99 ‰, respectively. These values indicated that the Quaternary aquifer waters are recharged directly from recent Nile water. Subsoil water is very shallow in the area; it ranged from 0 to 2.6 m with a mean of 1.1 m within the main mound of the Hierakonpolis Temple Town site by 2003, in contrast to its more than 4.5-m depth in 1897. The exposure of subsoil water to increased evaporation is expected, with a consequent increase in the concentrations of dissolved solids and usually large proportions of chloride and sulfate. Artifacts recovered from the Temple Town site are becoming damaged and destroyed by crystallization processes caused by repeated wetting and drying of salt and the accumulation of new salts.
Controls on the dynamics of dissolved organic matter in soils: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalbitz, K.; Solinger, S.; Park, J.H.
Dissolved organic matter (DOM) in soils plays an important role in the biogeochemistry of carbon, nitrogen, and phosphorus, in pedogenesis, and in the transport of pollutants in soils. The aim of this review is to summarize the recent literature about controls on DOM concentrations and fluxes in soils. The authors focus on comparing results between laboratory and field investigations and on the differences between the dynamics of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP). Both laboratory and field studies show that litter and humus are the most important DOM sources in soils. However, it is impossible to quantifymore » the individual contributions of each of these sources to DOM release. In addition, it is not clear how changes in the pool sizes of litter or humus may affect DOM release. High microbial activity, high fungal abundance, and any conditions that enhance mineralization all promote high DOM concentrations. However, under field conditions, hydrologic variability in soil horizons with high carbon contents may be more important than biotic controls. In subsoil horizons with low carbon contents, DOM may be adsorbed strongly to mineral surfaces, resulting in low DOM concentrations in the soil solution. There are strong indications that microbial degradation of DOM also controls the fate of DOM in the soil.« less
Water age and stream solute dynamics at the Hubbard Brook Experimental Forest (US)
NASA Astrophysics Data System (ADS)
Botter, Gianluca; Benettin, Paolo; McGuire, Kevin; Rinaldo, Andrea
2016-04-01
The contribution discusses experimental and modeling results from a headwater catchment at the Hubbard Brook Experimental Forest (New Hampshire, USA) to explore the link between stream solute dynamics and water age. A theoretical framework based on water age dynamics, which represents a general basis for characterizing solute transport at the catchment scale, is used to model both conservative and weathering-derived solutes. Based on the available information about the hydrology of the site, an integrated transport model was developed and used to estimate the relevant hydrochemical fluxes. The model was designed to reproduce the deuterium content of streamflow and allowed for the estimate of catchment water storage and dynamic travel time distributions (TTDs). Within this framework, dissolved silicon and sodium concentration in streamflow were simulated by implementing first-order chemical kinetics based explicitly on dynamic TTD, thus upscaling local geochemical processes to catchment scale. Our results highlight the key role of water stored within the subsoil glacial material in both the short-term and long-term solute circulation at Hubbard Brook. The analysis of the results provided by the calibrated model allowed a robust estimate of the emerging concentration-discharge relationship, streamflow age distributions (including the fraction of event water) and storage size, and their evolution in time due to hydrologic variability.
Modeling coupled sorption and transformation of 17β-estradiol-17-sulfate in soil-water systems
NASA Astrophysics Data System (ADS)
Bai, Xuelian; Shrestha, Suman L.; Casey, Francis X. M.; Hakk, Heldur; Fan, Zhaosheng
2014-11-01
Animal manure is the primary source of exogenous free estrogens in the environment, which are known endocrine-disrupting chemicals to disorder the reproduction system of organisms. Conjugated estrogens can act as precursors to free estrogens, which may increase the total estrogenicity in the environment. In this study, a comprehensive model was used to simultaneously simulate the coupled sorption and transformation of a sulfate estrogen conjugate, 17β-estradiol-17-sulfate (E2-17S), in various soil-water systems (non-sterile/sterile; topsoil/subsoil). The simulated processes included multiple transformation pathways (i.e. hydroxylation, hydrolysis, and oxidation) and mass transfer between the aqueous, reversibly sorbed, and irreversibly sorbed phases of all soils for E2-17S and its metabolites. The conceptual model was conceived based on a series of linear sorption and first-order transformation expressions. The model was inversely solved using finite difference to estimate process parameters. A global optimization method was applied for the inverse analysis along with variable model restrictions to estimate 36 parameters. The model provided a satisfactory simultaneous fit (R2adj = 0.93 and d = 0.87) of all the experimental data and reliable parameter estimates. This modeling study improved the understanding on fate and transport of estrogen conjugates under various soil-water conditions.
7 CFR 1980.423 - Interest rates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... variable as long as they are legal. Interest rates will be those rates customarily charged borrowers in... and borrower. The variable interest rate may be adjusted at different intervals during the term of the... areas, whether the monetary recovery would be increased by proceeding immediately to liquidation, if...
NASA Astrophysics Data System (ADS)
Campbell, Timothy; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Ogata, Shuji; Rodgers, Stephen
1999-06-01
Oxidation of aluminum nanoclusters is investigated with a parallel molecular-dynamics approach based on dynamic charge transfer among atoms. Structural and dynamic correlations reveal that significant charge transfer gives rise to large negative pressure in the oxide which dominates the positive pressure due to steric forces. As a result, aluminum moves outward and oxygen moves towards the interior of the cluster with the aluminum diffusivity 60% higher than that of oxygen. A stable 40 Å thick amorphous oxide is formed; this is in excellent agreement with experiments.
Sayiner, Mehmet; Otgonsuren, Munkhzul; Cable, Rebecca; Younossi, Issah; Afendy, Mariam; Golabi, Pegah; Henry, Linda; Younossi, Zobair M
2017-03-01
Nonalcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease worldwide with tremendous clinical burden. The economic burden of NAFLD is not well studied. To assess the economic burden of NAFLD. Medicare beneficiaries (January 1, 2010 to December 31, 2010) with NAFLD diagnosis by International Classification of Diseases, Ninth Revision codes in the absence of other liver diseases were selected. Inpatient and outpatient resource utilization parameters were total charges and total provider payments. NAFLD patients with compensated cirrhosis (CC) were compared with decompensated cirrhosis (DC). A total of 976 inpatients and 4742 outpatients with NAFLD were included-87% were white, 36% male, 30% had cardiovascular disease (CVD) or metabolic syndrome conditions, and 12% had cirrhosis. For inpatients, median total hospital charge was $36,289. NAFLD patients with cirrhosis had higher charges and payments than noncirrhotic NAFLD patients ($61,151 vs. $33,863 and $18,804 vs. $10,146, P<0.001). Compared with CC, NAFLD patients with DC had higher charges and payments (P<0.02). For outpatients, median total charge was $9,011. NAFLD patients with cirrhosis had higher charges and payments than noncirrhotic NAFLD patients ($12,049 vs. $8,830 and $2,586 vs. $1,734, P<0.001). Compared with CC, DC patients had higher total charges ($15,187 vs. $10,379, P=0.04). In multivariate analysis, variables associated with increased inpatient resource utilization were inpatient mortality, DC, and CVD; for outpatients, having CVD, obesity, and hypertension (all P<0.001). NAFLD is associated with significant economic burden to Medicare. Presence of cirrhosis and CVD are associated with increased resource utilization.
Sayiner, Mehmet; Otgonsuren, Munkhzul; Cable, Rebecca; Younossi, Issah; Afendy, Mariam; Golabi, Pegah; Henry, Linda
2017-01-01
Background: Nonalcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease worldwide with tremendous clinical burden. The economic burden of NAFLD is not well studied. Goal: To assess the economic burden of NAFLD. Study: Medicare beneficiaries (January 1, 2010 to December 31, 2010) with NAFLD diagnosis by International Classification of Diseases, Ninth Revision codes in the absence of other liver diseases were selected. Inpatient and outpatient resource utilization parameters were total charges and total provider payments. NAFLD patients with compensated cirrhosis (CC) were compared with decompensated cirrhosis (DC). Results: A total of 976 inpatients and 4742 outpatients with NAFLD were included—87% were white, 36% male, 30% had cardiovascular disease (CVD) or metabolic syndrome conditions, and 12% had cirrhosis. For inpatients, median total hospital charge was $36,289. NAFLD patients with cirrhosis had higher charges and payments than noncirrhotic NAFLD patients ($61,151 vs. $33,863 and $18,804 vs. $10,146, P<0.001). Compared with CC, NAFLD patients with DC had higher charges and payments (P<0.02). For outpatients, median total charge was $9,011. NAFLD patients with cirrhosis had higher charges and payments than noncirrhotic NAFLD patients ($12,049 vs. $8,830 and $2,586 vs. $1,734, P<0.001). Compared with CC, DC patients had higher total charges ($15,187 vs. $10,379, P=0.04). In multivariate analysis, variables associated with increased inpatient resource utilization were inpatient mortality, DC, and CVD; for outpatients, having CVD, obesity, and hypertension (all P<0.001). Conclusions: NAFLD is associated with significant economic burden to Medicare. Presence of cirrhosis and CVD are associated with increased resource utilization. PMID:27332747
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwab, Oliver; Karlsruhe Institute of Technology, Institute for Geography and Geoecology, Adenauerring 20, 76131 Karlsruhe; Bayer, Peter, E-mail: bayer@erdw.ethz.ch
Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources suchmore » as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk assessment, for the design of waste management strategies, particularly in the construction sector.« less
Dynamic Eigenvalue Problem of Concrete Slab Road Surface
NASA Astrophysics Data System (ADS)
Pawlak, Urszula; Szczecina, Michał
2017-10-01
The paper presents an analysis of the dynamic eigenvalue problem of concrete slab road surface. A sample concrete slab was modelled using Autodesk Robot Structural Analysis software and calculated with Finite Element Method. The slab was set on a one-parameter elastic subsoil, for which the modulus of elasticity was separately calculated. The eigen frequencies and eigenvectors (as maximal vertical nodal displacements) were presented. On the basis of the results of calculations, some basic recommendations for designers of concrete road surfaces were offered.
Final Environmental Assessment (EA) for Replacement of the Wastewater Lift Station (Building 510)
2013-03-01
ensure that wastewater from FEW continues to be safely and efficiently moved to the City of Cheyenne sanitary sewer system. The lift station is...from four to six inches. The subsoil is primarily alluvial clay that extends from a depth of approximately 6 to 36 inches. 8.4. Air Quality. Under...Disposal 8.6.1. Sanitary Sewer System A National Pollutant Discharge Elimination System (NPDES) permit issued by the WYDEQ is in place to allow discharge
Environmental Assessment (EA) for Replacement of the Wastewater Lift Station (Building 510)
2013-04-13
ensure that wastewater from FEW continues to be safely and efficiently moved to the City of Cheyenne sanitary sewer system. The lift station is...from four to six inches. The subsoil is primarily alluvial clay that extends from a depth of approximately 6 to 36 inches. 8.4. Air Quality. Under...Disposal 8.6.1. Sanitary Sewer System A National Pollutant Discharge Elimination System (NPDES) permit issued by the WYDEQ is in place to allow discharge
2012-05-01
tilted metamorphic rock . Typically, the surface layer of the soil is a brown gravelly silt with sand, about 4 inches thick. The subsoil is yellowish red...site setup, the placement of 200 seed items for use in measuring the capabilities of the advanced EMI sensors tested, the subsequent collection of...advanced sensors. The second team was responsible for the cued survey of 1,491 of the 2,143 targets using the MetalMapper, one of the advanced
Local Hydrological effects in Membach, Belgium: influence on the long term gravity variation
NASA Astrophysics Data System (ADS)
van Camp, M.; Dassargues, A.; Vanneste, K.; Verbeeck, K.; Warnant, R.
2003-04-01
Absolute (AG) and superconducting (SG) gravity measurements have been performed since 1996 at the underground Membach Station (Ardenne, eastern Belgium). Two effects can be distinguished: one seasonal-like and a long-term geophysical trend. The first effect is a 5 µGal seasonal-like term due most probably and mainly to hydrological variations. To determine the thickness of the porous unconsolidated layer covering the fissured bed-rock (low-porosity argillaceous sandstone with quartzitic beds) through which the tunnel was excavated, geophysical prospecting has been undertaken above the Membach station. This shows that the thickness of the weathered zone covering the bedrock can be highly variable between zero and 10 meters (possibly due to palaeo mudflows linked to periglacial conditions in the area). This leads to highly variable (in space) saturation capacity of the subsoil above the gallery. The extensive geological researches will allow us to correct the gravity variations induced by the variable mass of water stored in the shallow partially saturated soil. This work can be essential to correct local effects that can mask regional effects such as changes in continental water storage. Local effects, indeed, could prevent the combination of satellite data (e.g. GRACE) with ground-based gravity measurements. On the other hand, studying the local seasonal variations also contributes to investigate the influence of the water storage variations in small river basins on the time dependent gravity field. The second effect is the detection of a very low geophysical trend in gravity of -0.5+/-0.1 µGal/year. The SG drift, the hydrological effects, and the origin of the low trend are discussed. In particular, we show a good correlation between the gravity measurements and the continuous GPS measurements being made since 1997 at 3 km from the station. Possible crustal deformations could be linked to active faults in the Ardenne and/or bordering the Roer Valley Graben, or perhaps linked to the Eifel plume.
Cortese, Claudio G; Colombo, Lara; Ghislieri, Chiara
2010-01-01
The aim of the present study was to develop a research model explaining the causal relationship between certain antecedents (job and emotional charge, supportive management and colleagues), work-family conflict (WFC) and job satisfaction. Many research projects in health organizations have highlighted the link between high WFC and lower levels of job satisfaction. The study of these variables is important in understanding the processes of professional nurse retention. The survey was conducted using a questionnaire administered to 351 professional nurses working in a major North Italian hospital. The questionnaire measures six variables: WFC, job satisfaction, job demand, emotional charge, supportive management and supportive colleagues. The data confirmed the connection between WFC and job satisfaction, and showed the importance of some WFC predictors, such as supportive management, emotional charge and job demand, not only for their connections with WFC but also for their direct associations with job satisfaction. WFC, in health organizations, can contribute to a decrease of nurses' job satisfaction. Nursing management could achieve its aim of reducing WFC through the improvement of support from nurse coordinators, the specific organization of work models, ad hoc family-friendly policies and individual counselling programmes for nurses.
EBQ code: Transport of space-charge beams in axially symmetric devices
NASA Astrophysics Data System (ADS)
Paul, A. C.
1982-11-01
Such general-purpose space charge codes as EGUN, BATES, WODF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.
NASA Astrophysics Data System (ADS)
Neubauer, Jeremy; Wood, Eric
2014-07-01
Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility due to factors including driver range anxiety and access to charging infrastructure. In this paper we apply NREL's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to range anxiety and different charging infrastructure scenarios, including variable time schedules, power levels, and locations (home, work, and public installations). We find that the effects of range anxiety can be significant, but are reduced with access to additional charging infrastructure. We also find that (1) increasing home charging power above that provided by a common 15 A, 120 V circuit offers little added utility, (2) workplace charging offers significant utility benefits to select high mileage commuters, and (3) broadly available public charging can bring many lower mileage drivers to near-100% utility while strongly increasing the achieved miles of high mileage drivers.
Rover wheel charging on the lunar surface
NASA Astrophysics Data System (ADS)
Jackson, Telana L.; Farrell, William M.; Zimmerman, Michael I.
2015-03-01
The environment at the Moon is dynamic, with highly variable solar wind plasma conditions at the lunar dayside, terminator, and night side regions. Moving objects such as rover wheels will charge due to contact electrification with the surface, but the degree of charging is controlled by the local plasma environment. Using a dynamic charging model of a wheel, it is demonstrated herein that moving tires will tribocharge substantially when venturing into plasma-current starved regions such as polar craters or the lunar nightside. The surface regolith distribution and the overall effect on charge accumulation of grains cohesively sticking to the rover tire has been incorporated into the model. It is shown that dust sticking can limit the overall charge accumulated on the system. However charge dissipation times are greatly increased in shadowed regions and can present a potential hazard to astronauts and electrical systems performing extra-vehicular activities. We show that dissipation times change with wheel composition and overall system tribocharging is dependent upon wheel velocity.
Sistrom, Christopher Lee; McKay, Niccie L
2005-06-01
This study examined financial data reported by Florida hospitals concerning costs, charges, and revenues related to imaging services. Financial reports to the Florida Hospital Uniform Reporting System by all licensed acute care facilities for fiscal year 2002 were used to calculate four financial indices on a per procedure basis. These included charge, net revenue, operating expense (variable cost), and contribution margin. Analysis, stratified by cost center (imaging modality), tested the effects of bed size, ownership, teaching status, and urban or rural status on the four indices. The mean operating expense and charge per procedure were as follows: computed tomography (CT): $51 and $1565; x-ray and ultrasound: $55 and $410; nuclear medicine (NM): $135 and $1138; and magnetic resonance imaging (MRI): $165 and $2048. With all four modalities, for-profit hospitals had higher charges than not-for-profit and public facilities. Excepting NM, however, the difference by ownership disappeared when considering net revenue. Operating expense did not differ by ownership type or bed size. Operating expense (variable cost) per procedure is considerably lower for CT than for MRI. Consequently, when diagnostically equivalent, CT is preferable to MRI in terms of costs for hospitals. If the cost structure of nonhospital imaging is at all similar to hospitals, the profit potential for performing CT and MRI seems to be substantial, which has relevance to the issue of imaging self-referral.
Exp(1076) Shades of Black: Aspects of Black Hole Microstates
NASA Astrophysics Data System (ADS)
Vasilakis, Orestis
In this thesis we examine smooth supergravity solutions known as "microstate geometries". These solutions have neither a horizon, nor a singularity, yet they have the same asymptotic structure and conserved charges as black holes. Specifically we study supersymmetric and extremal non-supersymmetric solutions. The goal of this program is to construct enough microstates to account for the correct scaling behavior of the black hole entropy with respect to the charges within the supergravity approximation. For supersymmetric systems that are ⅛-BPS, microstate geometries account so far only for Q5/4 of the total entropy S ˜ Q3/2, while for non-supersymmetric systems the known microstate geometries are sporadic. For the supersymmetric case we construct solutions with three and four charges. Five-dimensional systems with three and four charges are ⅛-BPS. Thus they admit macroscopic horizons making the supergravity approximation valid. For the three-charge case we present some steps towards the construction of the superstratum, a microstate geometry depending on arbitrary functions of two variables, which is expected to provide the necessary entropy for this class of solutions. Specifically we construct multiple concentric solutions with three electric and two dipole magnetic charges which depend on arbitrary functions of two variables and examine their properties. These solutions have no KKM charge and thus are singular. For the four-charge case we construct microstate geometries by extending results available in the literature for three charges. We find smooth solutions in terms of bubbled geometries with ambipolar Gibbons-Hawking base space and by constructing the relevant supertubes. In the non-supersymmetric case we work with a three-charge system of extremal black holes known as almost-BPS, which provides a controlled way of breaking sypersymmetry. By using supertubes we construct the first systematic example of a family of almost-BPS microstate geometries and examine the moduli space of solutions. Furthermore by using brane probe analysis we show that, despite the breaking of supersymmetry, almost-BPS solutions receive no quantum corrections and thus must be subject to some kind of non-renormalization theorem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.H.; Lee, K.H.
2007-08-15
Emissions remain a critical issue affecting engine design and operation, while energy conservation is becoming increasingly important. One approach to favorably address these issues is to achieve homogeneous charge combustion and stratified charge combustion at lower peak temperatures with a variable compression ratio, a variable intake temperature and a trapped rate of the EGR using NVO (negative valve overlap). This experiment was attempted to investigate the origins of these lower temperature auto-ignition phenomena with SCCI and CAI using gasoline fuel. In case of SCCI, the combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition (SCCI) engine according to intake temperaturemore » and compression ratio was examined. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing on the CAI combustion area. In addition, the effect of injection timing on combustion factors such as the start of combustion, its duration and its heat release rate was also investigated. (author)« less
High-order space charge effects using automatic differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, Michael F.; Bruhwiler, David L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996
1997-02-01
The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of amore » Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach.« less
What is the effect of local controls on the temporal stability of soil water contents?
NASA Astrophysics Data System (ADS)
Martinez, G.; Pachepsky, Y. A.; Vereecken, H.; Vanderlinden, K.; Hardelauf, H.; Herbst, M.
2012-04-01
Temporal stability of soil water content (TS SWC) reflects the spatio-temporal organization of SWC. Factors and their interactions that control this organization, are not completely understood and have not been quantified yet. It is understood that these factors should be classified into groups of local and non-local controls. This work is a first attempt to evaluate the effects of soil properties at a certain location as local controls Time series of SWC were generated by running water flow simulations with the HYDRUS6 code. Bare and grassed sandy loam, loam and clay soils were represented by sets of 100 independent soil columns. Within each set, values of saturated hydraulic conductivity (Ks) were generated randomly assuming for the standard deviation of the scaling factor of ln Ks a value ranging from 0.1 to 1.0. Weather conditions were the same for all of the soil columns. SWC at depths of 0.05 and 0.60 m, and the average water content of the top 1 m were analyzed. The temporal stability was characterized by calculating the mean relative differences (MRD) of soil water content. MRD distributions from simulations, developed from the log-normal distribution of Ks, agreed well with the experimental studies found in the literature. Generally, Ks was the leading variable to define the MRD rank for a specific location. Higher MRD corresponded to the lowest values of Ks when a single textural class was considered. Higher MRD were found in the finer texture when mixtures of textural classes were considered and similar values of Ks were compared. The relationships between the spread of the MRD distributions and the scaling factor of ln Ks were nonlinear. Variation in MRD was higher in coarser textures than in finer ones and more variability was seen in the topsoil than in the subsoil. Established vegetation decreased variability of MRD in the root zone and increased variability below. The dependence of MRD on Ks opens the possibility of using SWC sensor networks to relate variations of MRD of measured SWC time series to spatial variations of Ks. TS of SWC can provide information on Ks variability at ungauged watersheds if the effect of non-local controls of SWC on TS is not significant. Using the spatiotemporal statistics to convert the information about the temporal variability of soil moisture into information about the spatial variability of soil hydraulic properties presents an interesting avenue for further exploration.
Charge control microcomputer device for vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishita, M.; Kouge, S.
1986-10-14
This patent describes a charge control microcomputer device for a vehicle, comprising: speed changing means for transmitting the output torque of an engine. The speed changing means includes a slip clutch means having an output with a variable slippage amount with respect to its input and controlled in accordance with an operating instruction. The speed changing means further includes a speed change gear for changing the rotational speed input thereto at an output thereto, the speed change gear receiving the output of the slip clutch means; a charging generator driven by the output of the speed change gear; a batterymore » charged by an output voltage of the charging generator; a voltage regulator for controlling the output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving data from the engine, to control the engine, the engine data comprising at least an engine speed signal; a charge control microcomputer for processing engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage data from the changing generator; and a display unit for displaying detection data, including fault detection data, form the charge control microcomputer.« less
Explicit construction of BRST charge of noncommutative D-brane system
NASA Astrophysics Data System (ADS)
Hong, Soon-Tae
2006-01-01
In the BRST BFV scheme for noncommutative D-branes with constant NS B-field, introducing ghost degrees of freedom we construct the gauge-fixed Hamiltonian and corresponding effective Lagrangian invariant under nilpotent BRST charge. It is also shown that the presence of auxiliary variables introduced via the improved Dirac formalism plays a crucial role in the construction of the BRST invariant Lagrangian.
ERIC Educational Resources Information Center
Trostek, Jonas R.
2016-01-01
Previous research on how students' acceptance of emotionally charged theories relates to their understanding is based on the measurement of acceptance and understanding as two separate variables. As an alternative, the present study takes a qualitative approach with the aim of exploring what 24 upper-secondary school students accept when they come…
Singularity-free solutions for anisotropic charged fluids with Chaplygin equation of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahaman, Farook; Ray, Saibal; Jafry, Abdul Kayum
2010-11-15
We extend the Krori-Barua analysis of the static, spherically symmetric, Einstein-Maxwell field equations and consider charged fluid sources with anisotropic stresses. The inclusion of a new variable (tangential pressure) allows the use of a nonlinear, Chaplygin-type equation of state with coefficients fixed by the matching conditions at the boundary of the source. Some physical features are briefly discussed.
Specification of the ISS Plasma Environment Variability
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Neergaard, Linda F.; Bui, Them H.; Mikatarian, Ronald R.; Barsamian, H.; Koontz, Steven L.
2002-01-01
Quantifying the spacecraft charging risks and corresponding hazards for the International Space Station (ISS) requires a plasma environment specification describing the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IRI) model typically only provide estimates of long term (seasonal) mean Te and Ne values for the low Earth orbit environment. Knowledge of the Te and Ne variability as well as the likelihood of extreme deviations from the mean values are required to estimate both the magnitude and frequency of occurrence of potentially hazardous spacecraft charging environments for a given ISS construction stage and flight configuration. This paper describes the statistical analysis of historical ionospheric low Earth orbit plasma measurements used to estimate Ne, Te variability in the ISS flight environment. The statistical variability analysis of Ne and Te enables calculation of the expected frequency of Occurrence of any particular values of Ne and Te, especially those that correspond to possibly hazardous spacecraft charging environments. The database used in the original analysis included measurements from the AE-C, AE-D, and DE-2 satellites. Recent work on the database has added additional satellites to the database and ground based incoherent scatter radar observations as well. Deviations of the data values from the IRI estimated Ne, Te parameters for each data point provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output. This technique, while developed specifically for the Space Station analysis, can also be generalized to provide ionospheric plasma environment risk specification models for low Earth orbit over an altitude range of 200 km through approximately 1000 km.
Somarathna, P D S N; Minasny, Budiman; Malone, Brendan P; Stockmann, Uta; McBratney, Alex B
2018-08-01
Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data. Copyright © 2018 Elsevier B.V. All rights reserved.
Physical parameters of Fluvisols on flooded and non-flooded terraces
NASA Astrophysics Data System (ADS)
Kercheva, Milena; Sokołowska, Zofia; Hajnos, Mieczysław; Skic, Kamil; Shishkov, Toma
2017-01-01
The heterogeneity of soil physical properties of Fluvisols, lack of large pristine areas, and different moisture regimes on non-flooded and flooded terraces impede the possibility to find a soil profile which can serve as a baseline for estimating the impact of natural or anthropogenic factors on soil evolution. The aim of this study is to compare the pore size distribution of pristine Fluvisols on flooded and non-flooded terraces using the method of the soil water retention curve, mercury intrusion porosimetry, nitrogen adsorption isotherms, and water vapour sorption. The pore size distribution of humic horizons of pristine Fluvisols on the non-flooded terrace differs from pore size distribution of Fluvisols on the flooded terrace. The peaks of textural and structural pores are higher in the humic horizons under more humid conditions. The structural characteristics of subsoil horizons depend on soil texture and evolution stage. The peaks of textural pores at about 1 mm diminish with lowering of the soil organic content. Structureless horizons are characterized by uni-modal pore size distribution. Although the content of structural pores of the subsoil horizons of Fluvisols on the non-flooded terrace is low, these pores are represented by biopores, as the coefficient of filtration is moderately high. The difference between non-flooded and flooded profiles is well expressed by the available water storage, volume and mean radius of pores, obtained by mercury intrusion porosimetry and water desorption, which are higher in the surface horizons of frequently flooded Fluvisols.
Carbon turnover in an agricultural sub-soil
NASA Astrophysics Data System (ADS)
Collins, Chris
2010-05-01
Maize was added to a grassland subsoil (10 - 50 cm) and the fate of the carbon from the plant material followed for 520 days with nine sampling points over an exponential time series. The carbon and delta 13C signature in five soil fractions: POM (particulate organic matter), fine sand, coarse silt, fine silt and clay were monitored. Over the course of the experiment there was a 57% decline in the total C of the soil principally from the particulate organic matter which contained the added maize equivalent to a half life of 533 days. A single exponential was the best fit to the data indicating that the slower turnover pools proposed in models such as Roth C were not observed in the time course of this experiment. Carbon rapidly entered the fine sand and coarse silt fractions, it then passed into the clay fraction. The fine silt fraction was not significantly changed. The maize carbon showed a delay to this pattern, but there was accumulation of maize carbon in the fine sand and fine silt fractions. The largest increases in % carbon as a consequence of the introduction of the maize carbon were of the following order clay > fine sand > coarse silt >fine silt. The results suggest that all these fractions are actively being turnover in this soil and that carbon is most protected in the fine sand and silt fractions, not clay as has been observed by other workers. The results are also discussed in the wider contexts of representative pools for modeling.
Coupled mobilization of dissolved organic matter and metals (Cu and Zn) in soil columns
NASA Astrophysics Data System (ADS)
Zhao, Lu Y. L.; Schulin, Rainer; Weng, Liping; Nowack, Bernd
2007-07-01
Dissolved organic carbon (DOC) is a key component involved in metal displacement in soils. In this study, we investigated the concentration profiles of soil-borne DOC, Cu and Zn at various irrigation rates with synthetic rain water under quasi steady-state conditions, using repacked soil columns with a metal-polluted topsoil and two unpolluted subsoils. Soil solution was collected using suction cups installed at centimeter intervals over depth. In the topsoil the concentrations of DOC, dissolved metals (Zn and Cu), major cations (Ca 2+ and Mg 2+) and anions ( NO3- and SO42-) increased with depth. In the subsoil, the Cu and Zn concentrations dropped to background levels within 2 cm. All compounds were much faster mobilized in the first 4 cm than in the rest of the topsoil. DOC and Cu concentrations were higher at higher flow rates for a given depth, whereas the concentrations of the other ions decreased with increasing flow rate. The decomposition of soil organic matter resulted in the formation of DOC, SO42-, and NO3- and was the main driver of the system. Regression analysis indicated that Cu mobilization was governed by DOC, whereas Zn mobilization was primarily determined by Ca and to a lesser extent by DOC. Labile Zn and Cu 2+ concentrations were well predicted by the NICA-Donnan model. The results highlight the value of high-resolution in-situ measurements of DOC and metal mobilization in soil profiles.
Phosphorus exchangeability and leaching losses from two grassland soils.
Sinaj, S; Stamm, C; Toor, G S; Condron, L M; Hendry, T; Di, H J; Cameron, K C; Frossard, E
2002-01-01
Although phosphate phosphorus (P) is strongly sorbed in many soils, it may be quickly transported through the soil by preferential flow. Under flood irrigation, preferential flow is especially pronounced and associated solute losses may be important. Phosphorus losses induced by flood irrigation were investigated in a lysimeter study. Detailed soil chemical analyses revealed that P was very mobile in the topsoil, but the higher P-fixing capacity of the subsoil appeared to restrict P mobility. Application of a dye tracer enabled preferential flow pathways to be identified. Soil sampling according to dye staining patterns revealed that exchangeable P was significantly greater in preferential flow areas as compared with the unstained soil matrix. This could be partly attributed to the accumulation of organic carbon and P, together with enhanced leaching of Al- and Fe-oxides in the preferential flow areas, which resulted in reduced P sorption. The irrigation water caused a rapid hydrologic response by displacement of resident water from the subsoil. Despite the occurrence of preferential flow, most of the outflowing water was resident soil water and very low in P. In these soils the occurrence of preferential flow per se is not sufficient to cause large P losses even if the topsoil is rich in P. It appears that the P was retained in lower parts of the soil profile characterized by a very high P-fixing capacity. This study demonstrates the risks associated with assessing potential P losses on the basis of P mobility in the topsoil alone.
Environmental implications of high metal content in soils of a titanium mining zone in Kenya.
Maina, David M; Ndirangu, Douglas M; Mangala, Michael M; Boman, Johan; Shepherd, Keith; Gatari, Michael J
2016-11-01
Mining activities contribute to an increase of specific metal contaminants in soils. This may adversely affect plant life and consequently impact on animal and human health. The objective of this study was to obtain the background metal concentrations in soils around the titanium mining in Kwale County for monitoring its environmental impacts. Forty samples were obtained with half from topsoils and the other from subsoils. X-ray fluorescence spectrometry was used to determine the metal content of the soil samples. High concentrations of Ti, Mn, Fe, and Zr were observed where Ti concentrations ranged from 0.47 to 2.8 %; Mn 0.02 to 3.1 %; Fe 0.89 to 3.1 %; and Zr 0.05 to 0.85 %. Using ratios of elemental concentrations in topsoil to subsoil method and enrichment factors concept, the metals were observed to be of geogenic origin with no anthropogenic input. The high concentrations of Mn and Fe may increase their concentration levels in the surrounding agricultural lands through deposition, thereby causing contamination on the land and the cultivated food crops. The latter can cause adverse human health effects. In addition, titanium mining will produce tailings containing low-level titanium concentrations, which will require proper disposal to avoid increasing titanium concentrations in the soils of the region since it has been observed to be phytotoxic to plants at high concentrations. The results of this study will serve as reference while monitoring the environmental impact by the titanium mining activities.
Evaluation of carbon saturation across gradients of cropping systems diversity and soil depth
NASA Astrophysics Data System (ADS)
Castellano, Michael; Poffenbarger, Hanna; Cambardella, Cindy; Liebman, Matt; Mallarino, Antonio; Olk, Dan; Russell, Ann; Six, Johan
2017-04-01
Growing evidence indicates arable soils in the US Maize Belt are effectively carbon-saturated. We hypothesized that: 1) surface soil mineral-associated soil organic carbon (SOC) stocks in these systems are effectively carbon-saturated and 2) diverse cropping systems with greater belowground C inputs would increase subsoil SOC stocks because subsoils have large C saturation deficit. Using three long-term field trials in Iowa (study durations of 60, 35, and 12 years), we examined the effects of cropping system diversity (maize-soybean-oat/alfalfa-alfalfa or corn-corn-oat/alfalfa-alfalfa vs. maize-soybean rotation) on SOC content at different depths (0-100 cm) throughout the soil profile. Average annual C inputs were similar for both cropping systems, but the proportion of C delivered belowground was approximately twice as great in the extended rotations. Within and across cropping systems and the three field trial locations, there was a positive linear relationship between total SOC and the concentration of SOC in the mineral-associated fraction, indicating mineral-associated SOC stocks are not saturated. Organic C accumulation was observed at depth (15-100 cm) but not at the surface (0-15 cm) across all sites and rotations. These data suggest surface SOC stocks may have reached equilibrium rather than effective C saturation. In the absence of experiments that manipulate C inputs, the relationship between total SOC and the concentration of SOC in the mineral-associated fraction is frequently used as a proxy for C-saturation, and this relationship should be further explored.
Humanitarian IED clearance in Colombia
NASA Astrophysics Data System (ADS)
Hendrickx, J. M. H.; Molina, A.; Diaz, D.; Grasmueck, M.; Moreno, H. A.; Hernández, R. D.
2008-04-01
The development of Improvised Explosive Devices (IED's) by insurgents in Colombia is characterized by a quick response to counter IED measures. Many current IED's do not contain any metal parts and can have any shape or form. Due to the low metal content or the absence of any metal parts, sensors based on metal detection are not useful anymore. Due to the wide variety of sizes, shapes, and enclosure materials of current IED's, one and two-dimensional GPR sensors using a "library" of known shapes as well as acoustic sensors using material characteristic frequencies have become ineffective. Therefore, the Colombian experience strongly suggests that chemical sensors are the way for IED detection in soils since they do not depend on IED metal content, size, or shape but only on the presence of explosives, a necessary ingredient for any IED. Promising recently developed chemical sensors make use of semiconducting organic polymers (SOPs) such as FIDO and laser-induced breakdown spectroscopy (LIBS). Once an explosive has been detected, the IED needs to be identified and located. Therefore, there is a need for three-dimensional high resolution scans for identification of all subsoil features including rocks, roots, and IED's. The recently developed 3D-GPR (Ground Penetrating Radar) can map all features of the subsoil with a spatial resolution of about 2 cm or less. The objectives of this contribution are to inform about the IED problem in Colombia and how novel technologies may contribute to humanitarian IED clearance under humid tropical conditions.
Yang, Li; Luo, Chunling; Liu, Yue; Quan, Lingtong; Chen, Yahua; Shen, Zhenguo
2013-02-01
In this study, a novel experimental setup (one pot placed above another) was used to investigate the residual effects of EDDS application on plant growth and metal uptake. Two plant species, garland chrysanthemum and ryegrass, were grown in the upper pots (mimicking the upper soil layers) and were harvested 7 days after EDDS application. During this period the upper pots were watered twice. The lower pots (mimicking the subsoil under the upper soil layers) served as leachate collectors. Thereafter, the two pots were separated, and the same plants were grown in the upper and lower pots in two continuous croppings. Results showed that EDDS application restrained the growth of the first crop and resulted in a dramatic enhancement of Cu accumulation in plants grown in the upper pots. However, no negative growth effects were identified for the second and third crops, which were harvested 81 and 204 days after the EDDS application, respectively. In the lower pots, the leachate from the upper pots after EDDS application exhibited the increased total and CaCl(2)-extractable Cu concentrations in the soil. However, the growth of garland chrysanthemum and ryegrass, and their shoot Cu concentrations were unaffected. These data suggest that the residual risk associated with EDDS application was limited, and that subsoil to which EDDS leachate was applied may exhibit reduced Cu bioavailability for plants due to the biodegradation of EDDS. Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of variables upon pyrotechnically induced shock response spectra
NASA Technical Reports Server (NTRS)
Smith, J. L.
1986-01-01
Throughout the aerospace industry, large variations of 50 percent (6 dB) or more are continually noted for linear shaped charge (LSC) generated shock response spectra (SRS) from flight data (from the exact same location on different flights) and from plate tests (side by side measurements on the same test). A research program was developed to investigate causes of these large SRS variations. A series of ball drop calibration tests to verify calibration of accelerometers and a series of plate tests to investigate charge and assembly variables were performed. The resulting data were analyzed to determine if and to what degree manufacturing and assembly variables, distance from the shock source, data acquisition instrumentation, and shock energy propagation affect the SRS. LSC variables consisted of coreload, standoff, and apex angle. The assembly variable was the torque on the LSC holder. Other variables were distance from source of accelerometers, accelerometer mounting methods, and joint effects. Results indicated that LSC variables did not affect SRS as long as the plate was severed. Accelerometers mounted on mounting blocks showed significantly lower levels above 5000 Hz. Lap joints did not affect SRS levels. The test plate was mounted in an almost free-free state; therefore, distance from the source did not affect the SRS. Several varieties and brands of accelerometers were used, and all but one demonstrated very large variations in SRS.
Carbon, Claus-Christian; Gebauer, Fabian
2017-10-01
The Safe-Range-Inventory (SRI) was constructed in order to help public authorities to improve the charging infrastructures for electric vehicles [1; 10.1016/j.trf.2017.04.011]. Specifically, the impact of fast (vs slow) charging stations on people's range anxiety was examined. Ninety-seven electric vehicle users from Germany (81 male; M age =46.3 years, SD =12.1) were recruited to participate in the experimental design. Statistical analyses were conducted using ANOVA for repeated measures to test for interaction effects of available charging stations and remaining range with the dependent variable range anxiety . The full data set is publicly available via https://osf.io/bveyw/ (Carbon and Gebauer, 2017) [2].
Ion funnel ion trap and process
Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA
2011-02-15
An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.
Simulation of Charged Systems in Heterogeneous Dielectric Media via a True Energy Functional
NASA Astrophysics Data System (ADS)
Jadhao, Vikram; Solis, Francisco J.; de la Cruz, Monica Olvera
2012-11-01
For charged systems in heterogeneous dielectric media, a key obstacle for molecular dynamics (MD) simulations is the need to solve the Poisson equation in the media. This obstacle can be bypassed using MD methods that treat the local polarization charge density as a dynamic variable, but such approaches require access to a true free energy functional, one that evaluates to the equilibrium electrostatic energy at its minimum. In this Letter, we derive the needed functional. As an application, we develop a Car-Parrinello MD method for the simulation of free charges present near a spherical emulsion droplet separating two immiscible liquids with different dielectric constants. Our results show the presence of nonmonotonic ionic profiles in the dielectric with a lower dielectric constant.
An Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doubleday, Kate; Meintz, Andrew; Markel, Tony
System right-sizing is critical to implementation of in-motion wireless power transfer (WPT) for electric vehicles. This study introduces a modeling tool, WPTSim, which uses one-second speed, location, and road grade data from an on-demand employee shuttle in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of charging locations. Adding just one WPT location can more than halve the battery capacity needed. Many configurations are capable ofmore » being self sustaining with WPT, while others benefit from supplemental stationary charging.« less
NASA Astrophysics Data System (ADS)
Orr, Alison; McCarthy, Valerie; Meehan, Robert; Flynn, Raymond
2010-05-01
The rural population of Ireland relies almost exclusively on on-site treatment systems for disposal of waste water. Septic tank systems, which discharge effluent to ground, constitute the dominant means of waste water disposal. Many of the areas that employ this technology rely on private or small group groundwater supplies, often located in close proximity of septic tanks. Since many of these water supplies provide raw groundwater to consumers, septic tank effluent (STE) can pose a significant hazard to the microbiological quality of drinking water. T-tests (infiltration testing) carried out prior to tank installation aim to assess the capacity of subsoils to receive STE. Tests completed across Ireland indicate that many existing septic tank systems are located in low permeability subsoils. These subsoils are assumed to afford significant protection to the microbiological quality of groundwater in the underlying bedrock units. A two year investigation in the Lough Muckno Catchment in Co. Monaghan, investigating the impact of STE on water quality, involved carrying out T-tests at three sites where effluent discharged to a dense, silty, ‘fractured' glacial till derived from the underlying bedrock and containing clasts of low grade metamorphic Ordovician and Silurian sandstone and shale. Analysis of groundwater samples collected from 28 piezometers straddling the water table within the till, down-gradient of septic tank systems at two sites, permitted faecal indicator microorganism (FIO) levels in near-surface groundwater to be established. Associated hydraulic conductivity tests (slug tests) at all three sites permitted an evaluation of the levels of horizontal hydraulic conductivity heterogeneity present in the till. Slug test results suggest that till median hydraulic conductivities range from 1.1x10-4 cm/s to 1.1x10-5 cm/s, with variability of up to 2 orders of magnitude across each site. On the other hand no significant differences in properties existed between sites. T-test results ranged from 37.96 min/25mm to 98.26 min/25mm, suggesting hydraulic conductivities of the order of 1.1x10-3 cm/s to 4.24x10-4 cm/s. The contrast in hydraulic conductivity between T-test and slug test results may reflect slight anisotropy within the till, with water flowing vertically a little more easily than horizontally, under equivalent gradients. Despite the low hydraulic conductivities and the low hydraulic gradients observed at each site, analyses of water samples collected from up to 115 metres from septic tank discharge points consistently detected FIOs. The results of the study highlight the possibility of viable pathogenic microorganisms being transported considerable distances from septic tanks through fine-grained glacial tills. Given limited survival times of FIOs outside of their host organisms, study findings suggest that travel times in the till separating septic tanks from monitoring points are of the order of 10s of days, despite similarly low hydraulic conductivities determined independently by the T-test and slug test methods. The microbiological results, coupled to hydraulic measurements, point to very low effective porosities in the till that may possibly relate to fracturing. Moreover, hydraulic conductivity anisotropy suggests that contaminants may flow equally easily to depth. However, the exact levels of protection provided by the till will be a function of effective porosity variation with depth; the role played by fractures remains to be investigated but could prove to be potentially significant. Overall, the results of the study suggest that the levels of protection afforded by fine-grained Irish tills to bedrock aquifers may be considerably lower than originally assumed.
Wang, Li; Li, Jun; Li, Juan; Bai, Wei-Xia
2014-03-01
A field experiment on effects of tillage rotation and fertilization on corn continuous cropping-practiced lands was carried out in Heyang of Shaanxi in 2007-2012. The tillage types included annual rotation of no-tillage and subsoiling (NT-ST), subsoiling and conventional tillage (ST-CT), or conventional tillage and no-tillage (CT-NT), and yearly practice of no tillage (NT-NT), subsoiling (ST-ST) or conventional tillage (CT-CT). The fertilization treatments included balanced fertilization, low-rate fertilization and conventional fertilization, which were separately practiced against the different tillage types. The experiment investigated compositions, mean mass diameters (MWD), geometrical mean diameters (GMD) and fraction dimension numbers (D) of soil aggregates in 0-40 cm soil and contents of organic carbon in 0-60 cm soil. The results indicated that: 1) The increased tillage intensity caused the reduced mechanical stability and content of soil aggregates and increased soil organic carbon loss. No-tillage or tillage rotation increased the MWD, GMD and contents of soil organic carbon and soil aggregates with diameters of more than 0.25 mm, but decreased D. Under the same fertilization treatment, the contents of soil aggregates with diameters of more than 0.25 mm were ranked in the order of NT-NT>NT-ST>NT-CT>ST-ST>CT-ST>CT-CT, and under the same tillage rotations, the soil aggregates were more stable with the balanced or low- rate fertilization than with the conventional fertilization. 2) Mathematical fractal dimension fitting of soil aggregates indicated that the fractal dimension numbers of soil aggregates ranged within 2.247-2.681 by dry sieving and 2.897-2.976 by wet sieving. In 0-30 cm soil, the fractal dimension numbers of soil aggregates were significantly lower under no-tillage or tillage rotation than under conventional tillage, and in 0-40 cm soil, the fractal dimensions of soil aggregates increased with soil depth, and tended to stabilize at the soil depth of 40 cm. 3) The different fertilization treatments exerted significantly different influences on the contents of soil organic carbon (P < 0.05), which tended to decline with soil depth. Compared to the conventional fertilization, the balanced fertilization increased the content of soil organic carbon by 6.9%, and the contents of soil organic carbon increased as the diameters of soil aggregates increased. The correlation analysis showed that the contents of soil aggregates with diameters of 0.25-2 mm significantly affected the content of soil organic carbon, with the coefficient of determination being 0.848 (P < 0.01).
NASA Astrophysics Data System (ADS)
Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus
2015-04-01
Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently cooler and moister climate) the total concentrations of Ca, Mg and K in the aqueous extracts decreased, the relative ionic contribution by K decreased, while the ionic contribution by Ca increased. Thus, a shift in vegetation due to climate change seems to affect the ionic composition - but not the ionic load - of the soil solution. In the case of a shift from forest - to - sagebrush and tundra - to - forest or sagebrush, the relative contribution by K strongly increases at the expense of Ca. We hypothesize that K should play an important role in future biogeochemical cycles under the assumptions of climate warming and subsequent vegetation shifts to higher altitudes.
NASA Astrophysics Data System (ADS)
Dorodnikov, Maxim; Silvennoinen, Hanna; Martikainen, Pertti; Dörsch, Peter
2015-04-01
Anaerobic oxidation of methane (AOM) is a process of methane (CH4) consumption under anoxic conditions driven by microorganisms, which oxidize CH4 with various alternate electron acceptors (AEA): sulfate, nitrate, nitrite, metals-(Fe, Mn, Cu), organic compounds. AOM is common in marine ecosystems, where microbial sulfate reduction (SR) consumes most of the CH4 produced in sediments. Despite the global significance of AOM, the exact mechanisms and relevance of the process in terrestrial ecosystems are almost unknown. In the current study the occurrence of AOM was tested for two organic soil horizons (30 and 40 cm depth) and one mineral sub-soil (sand, 50 cm depth) of a cultivated boreal peatland (Linnansuo, Eastern Finland, energy crop Phalaris arundinacea - reed canarygrass) under controlled conditions with the addition of 13C-labeled CH4 and two common AEAs - SO4-2 and Fe+3. Concentrations of CH4, CO2 and O2 were continuously measured during 10 days of incubation and CO2 was sampled periodically under anaerobic conditions for stable 13C analysis. Oxygen dynamics revealed negligible O2 contamination during incubation and its trace amounts (0.05-0.8% from the atmospheric) were accounted in the net CH4 uptake. Application of 13C-enriched CH4 (4.9 atom%) allowed to track the label in CO2 as the end-product of AOM. The highest 13CO2 enrichment (up to 60‰) was observed in mineral sub-soil, however AOM was quantitatively more pronounced in the upper 30 cm horizon (2.1 vs. 0.2 μg CO2 g soil DW-1 in the 50 cm sub-soil). The highest AOM rate of 8.9 ng CO2 g soil DW-1 h-1 was estimated for the control treatment where no AEAs were added indicating sufficient amount of naturally available AEAs, likely organic compounds. This rate was 50 times more intensive (on the C basis) than the CH4 production potential of the same soil. In contrast, external AEAs decreased AOM rates but added Fe+3 stimulated decomposition of native SOM (as seen from the most depleted 13CO2 signatures). Thus, the experiments revealed that this organic soil had capacity for AOM with its natural electron acceptors. Further AOM assessments may change the existing concept of carbon/CH4 cycling in terrestrial ecosystems and will improve current process-based models of regional and global carbon balance.
Liu, Dan; Zhang, Xia; Li, Jun; Wang, Xu-Dong
2018-02-01
An eight-year field experiment of straw returning was conducted on dark loessial soil in Weibei Highland to investigate the effects of tillage patterns on soil aggregate, soil organic carbon (SOC), corn yield and soil water use efficiency (WUE). There were six tillage patterns, including conventional tillage (CT/CT), no-tillage (NT/NT), subsoiling tillage (ST/ST), no-tillage/subsoiling tillage (NT/ST), conventional tillage/no-tillage (CT/NT) and conventional tillage/subsoiling tillage (CT/ST). The results showed that compared with CT/CT, the patterns of NT/NT, ST/ST and the rotational tillage patterns (NT/ST, CT/NT and CT/ST) decreased the mean mass diameter of soil mechanical stable aggregate. The patterns of NT/NT, ST/ST and NT/ST increased the content of soil water-stable aggregate with the particle size >0.25 mm (WR 0.25 ) and their mean mass diameter, especially in the depth of 20-50 cm. These patterns reduced the proportion of aggregate destruction (PAD). Compared with CT/CT, the patterns of NT/ST, CT/NT, NT/NT and ST/ST increased the content of SOC in 0-10 cm soil layer. The content of SOC decreased as the increases of soil depth for all tillage patterns, but the decrease in SOC of three single tillage patterns (ST/ST, NT/NT and CT/CT) was larger than that of three rotational tillage patterns. Compared with CT/CT, the other five tillage patterns increased soil water storage in 0-200 cm soil profile, crop yield and WUE in maize. The yield and WUE in NT/ST pattern were significantly increased by 15.1% and 27.5%, respectively. Both corn yield and WUE were significantly and positively correlated with soil water storage in 0-200 cm soil profile in field during the cropping and fallow periods. Moreover, soil water storage during the cropping period was positively correlated with WR 0.25 , but negatively correlated with PAD in 0-50 cm soil layer. Particularly, maize yield, WUE and soil water storage during the cropping period were closely related to WR 0.25 in 20-50 cm soil layer and PAD. Both WUE and soil water storage during the cropping period was correlated with the SOC content in 0-10 cm soil layer. With respect to the soil properties, crop yield and WUE, the tillage pattern of NT/ST was the best stratety in dark loessial soil for spring maize growth in Weibei Highland.
High voltage pulse generator. [Patent application
Fasching, G.E.
1975-06-12
An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.
Guidelines in CHARGE syndrome and the missing link: Cranial imaging
de Geus, Christa M.; Free, Rolien H.; Verbist, Berit M.; Sival, Deborah A.; Blake, Kim D.; Meiners, Linda C.
2017-01-01
“CHARGE syndrome” is a complex syndrome with high and extremely variable comorbidity. As a result, clinicians may struggle to provide accurate and comprehensive care, and this has led to the publication of several clinical surveillance guidelines and recommendations for CHARGE syndrome, based on both single case observations and cohort studies. Here we perform a structured literature review to examine all the existing advice. Our findings provide additional support for the validity of the recently published Trider checklist. We also identified a gap in literature when reviewing all guidelines and recommendations, and we propose a guideline for neuroradiological evaluation of patients with CHARGE syndrome. This is of importance, as patients with CHARGE are at risk for peri‐anesthetic complications, making recurrent imaging procedures under anesthesia a particular risk in clinical practice. However, comprehensive cranial imaging is also of tremendous value for timely diagnosis, proper treatment of symptoms and for further research into CHARGE syndrome. We hope the guideline for neuroradiological evaluation will help clinicians provide efficient and comprehensive care for individuals with CHARGE syndrome. PMID:29168326
Compensated gain control circuit for buck regulator command charge circuit
Barrett, David M.
1996-01-01
A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.
Compensated gain control circuit for buck regulator command charge circuit
Barrett, D.M.
1996-11-05
A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.
On error sources during airborne measurements of the ambient electric field
NASA Technical Reports Server (NTRS)
Evteev, B. F.
1991-01-01
The principal sources of errors during airborne measurements of the ambient electric field and charge are addressed. Results of their analysis are presented for critical survey. It is demonstrated that the volume electric charge has to be accounted for during such measurements, that charge being generated at the airframe and wing surface by droplets of clouds and precipitation colliding with the aircraft. The local effect of that space charge depends on the flight regime (air speed, altitude, particle size, and cloud elevation). Such a dependence is displayed in the relation between the collector conductivity of the aircraft discharging circuit - on one hand, and the sum of all the residual conductivities contributing to aircraft discharge - on the other. Arguments are given in favor of variability in the aircraft electric capacitance. Techniques are suggested for measuring from factors to describe the aircraft charge.
50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions
2017-01-01
From the beginning of life with the information-containing polymers until the present era of a plethora of water-based materials in health care industry and biotechnology, polyelectrolytes are ubiquitous with a broad range of structural and functional properties. The main attribute of polyelectrolyte solutions is that all molecules are strongly correlated both topologically and electrostatically in their neutralizing background of charged ions in highly polarizable solvent. These strong correlations and the necessary use of numerous variables in experiments on polyelectrolytes have presented immense challenges toward fundamental understanding of the various behaviors of charged polymeric systems. This Perspective presents the author’s subjective summary of several conceptual advances and the remaining persistent challenges in the contexts of charge and size of polymers, structures in homogeneous solutions, thermodynamic instability and phase transitions, structural evolution with oppositely charged polymers, dynamics in polyelectrolyte solutions, kinetics of phase separation, mobility of charged macromolecules between compartments, and implications to biological systems. PMID:29296029
Kalantarians, N.; Keppel, C.; Christy, M. E.
2017-09-12
A comparison study of world data for the structure function F 2 for Iron, as measured by both charged lepton and neutrino scattering experiments, is presented. Consistency of results for both charged lepton and neutrino scattering is observed for the full global data set in the valence regime. Consistency is also observed at low x for the various neutrino data sets, as well as for the charged lepton data sets, independently. However, data from the two probes exhibit differences on the order of 15% in the shadowing/anti-shadowing transition region where the Bjorken scaling variable x is < 0.15. This observationmore » is indicative that neutrino probes of nucleon structure might be sensitive to different nuclear effects than charged lepton probes. Details and results of the data comparison are here presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalantarians, N.; Keppel, C.; Christy, M. E.
A comparison study of world data for the structure function F 2 for Iron, as measured by both charged lepton and neutrino scattering experiments, is presented. Consistency of results for both charged lepton and neutrino scattering is observed for the full global data set in the valence regime. Consistency is also observed at low x for the various neutrino data sets, as well as for the charged lepton data sets, independently. However, data from the two probes exhibit differences on the order of 15% in the shadowing/anti-shadowing transition region where the Bjorken scaling variable x is < 0.15. This observationmore » is indicative that neutrino probes of nucleon structure might be sensitive to different nuclear effects than charged lepton probes. Details and results of the data comparison are here presented.« less
Asymmetric Wormholes via Electrically Charged Lightlike Branes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guendelman, E.; Kaganovich, A.; Nissimov, E.
2010-06-17
We consider a self-consistent Einstein-Maxwell-Kalb-Ramond system in the bulk D = 4 space-time interacting with a variable-tension electrically charged lightlike brane. The latter serves both as a material and charge source for gravity and electromagnetism, as well as it dynamically generates a bulk space varying cosmological constant. We find an asymmetric wormhole solution describing two 'universes' with different spherically symmetric black-hole-type geometries connected through a 'throat' occupied by the lightlike brane. The electrically neutral 'left universe' comprises the exterior region of Schwarzschild-de-Sitter (or pure Schwarzschild) space-time above the inner(Schwarzschild-type) horizon, whereas the electrically charged 'right universe' consists of the exteriormore » Reissner-Nordstroem (or Reissner-Nordstroem-de-Sitter) black hole region beyond the outer Reissner-Nordstroem horizon. All physical parameters of the wormhole are uniquely determined by two free parameters - the electric charge and Kalb-Ramond coupling of the lightlike brane.« less
Cotunneling and polaronic effect in granular systems
NASA Astrophysics Data System (ADS)
Ioselevich, A. S.; Sivak, V. V.
2017-06-01
We theoretically study the conductivity in arrays of metallic grains due to the variable-range multiple cotunneling of electrons with short-range (screened) Coulomb interaction. The system is supposed to be coupled to random stray charges in the dielectric matrix that are only loosely bounded to their spatial positions by elastic forces. The flexibility of the stray charges gives rise to a polaronic effect, which leads to the onset of Arrhenius-type conductivity behavior at low temperatures, replacing conventional Mott variable-range hopping. The effective activation energy logarithmically depends on temperature due to fluctuations of the polaron barrier heights. We present the unified theory that covers both weak and strong polaron effect regimes of hopping in granular metals and describes the crossover from elastic to inelastic cotunneling.
Study of smell and reproductive organs in a mouse model for CHARGE syndrome
Bergman, Jorieke EH; Bosman, Erika A; van Ravenswaaij-Arts, Conny MA; Steel, Karen P
2010-01-01
CHARGE syndrome is a multiple congenital anomaly syndrome characterised by Coloboma, Heart defects, Atresia of choanae, Retardation of growth and/or development, Genital hypoplasia, and Ear anomalies often associated with deafness. It is caused by heterozygous mutations in the CHD7 gene and shows a highly variable phenotype. Anosmia and hypogonadotropic hypogonadism occur in the majority of the CHARGE patients, but the underlying pathogenesis is unknown. Therefore, we studied the ability to smell and aspects of the reproductive system (reproductive performance, gonadotropin-releasing hormone (GnRH) neurons and anatomy of testes and uteri) in a mouse model for CHARGE syndrome, the whirligig mouse (Chd7Whi/+). We showed that Chromodomain Helicase DNA-binding protein 7 (Chd7) is expressed in brain areas involved in olfaction and reproduction during embryonic development. We observed poorer performance in the smell test in adult Chd7Whi/+ mice, secondary either to olfactory dysfunction or to balance disturbances. Olfactory bulb and reproductive organ abnormalities were observed in a proportion of Chd7Whi/+ mice. Hypothalamic GnRH neurons were slightly reduced in Chd7Whi/+ females and reproductive performance was slightly less in Chd7Whi/+ mice. This study shows that the penetrance of anosmia and hypogonadotropic hypogonadism is lower in Chd7Whi/+ mice than in CHARGE patients. Interestingly, many phenotypic features of the Chd7 mutation showed incomplete penetrance in our model mice, despite the use of inbred, genetically identical mice. This supports the theory that the extreme variability of the CHARGE phenotype in both humans and mice might be attributed to variations in the fetal microenvironment or to purely stochastic events. PMID:19809474
Investigation of electrostatic behavior of a lactose carrier for dry powder inhalers.
Chow, Keat Theng; Zhu, Kewu; Tan, Reginald B H; Heng, Paul W S
2008-12-01
This study aims to elucidate the electrostatic behavior of a model lactose carrier used in dry powder inhaler formulations by examining the effects of ambient relative humidity (RH), aerosolization air flow rate, repeated inhaler use, gelatin capsule and tapping on the specific charge (nC/g) of bulk and aerosolized lactose. Static and dynamic electrostatic charge measurements were performed using a Faraday cage connected to an electrometer. Experiments were conducted inside a walk-in environmental chamber at 25 degrees C and RHs of 20% to 80%. Aerosolization was achieved using air flow rates of 30, 45, 60 and 75 L/min. The initial charges of the bulk and capsulated lactose were a magnitude lower than the charges of tapped or aerosolized lactose. Dynamic charge increased linearly with aerosolization air flow rate and RH. Greater frictional forces at higher air flow rate induced higher electrostatic charges. Increased RH enhanced charge generation. Repeated inhaler use significantly influenced electrostatic charge due to repeated usage. This study demonstrated the significance of interacting influences by variables commonly encountered in the use DPI such as variation in patient's inspiratory flow rate, ambient RH and repeated inhaler use on the electrostatic behavior of a lactose DPI carrier.
PSO Based PI Controller Design for a Solar Charger System
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713
PSO based PI controller design for a solar charger system.
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).
Strain measurements by fiber Bragg grating sensors for in situ pile loading tests
NASA Astrophysics Data System (ADS)
Schmidt-Hattenberger, Cornelia; Straub, Tilmann; Naumann, Marcel; Borm, Günter; Lauerer, Robert; Beck, Christoph; Schwarz, Wolfgang
2003-07-01
A fiber Bragg grating (FBG) sensor network has been installed into a large diameter concrete pile on a real construction site. The intention was to monitor its deformation behavior during several quasi-static loading cycles. The skin friction between pile and subsoil affecting the ultimate bearing capacity of the pile as well as the settlement behavior of the structure under investigation has been derived from our measurements. A comparison between the results of the fiber Bragg grating sensors and conventional concrete strain gages (CSG) has shown excellent correspondence.
Equitability of Treatment in Army Judicial Proceedings (ETAJUP)
1993-12-01
difference associated with Black offenders has a MIN of -0.8 percent at the "More than 75%" in charges level. (c) Comment on Factor. In general, most cases...system. The analysis seeks to identify the most significant variables drawn from court-martial case records which distinguish membership in these groups...means and variances of the two classes are computed for each variable. The variable with the most statistically significant 1-test is selected to
NASA Technical Reports Server (NTRS)
Harkness, J. D.
1979-01-01
All evaluation tests were performed at room ambient pressure and temperature, with discharges at a 2 hour rate. Tests consisted of phenolphthalein leak tests, three capacity tests, an auxiliary electrode test, a charge retention test, an internal short test, a charge efficiency test, overcharge tests, and a pressure versus capacity test. Results of the tests and recommendations for improvements in manufacturing are presented.
Measurement of charged particle transverse momentum spectra in deep inelastic scattering
NASA Astrophysics Data System (ADS)
Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Beck, M.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Calvet, D.; Campbell, A. T.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; De Roeck, A.; De Wolf, E. A.; Dirkmann, M.; Dixon, P.; Di Nezza, P.; Dlugosz, W.; Dollfus, C.; Donovan, K. T.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Erdmann, W.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jansen, T.; Jönson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Levonian, S.; Lindström, G.; Lindstroem, M.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Liike, D.; Lytkin, L.; Magnussen, N.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Noyes, G. W.; Nunnemann, T.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Povh, B.; Prell, S.; Rabbertz, K.; Rädel, G.; Reimer, P.; Reinshagen, S.; Rick, H.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robmann, P.; Roloff, P. H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Sell, R.; Semenovy, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorni, I. O.; Smirnov, F.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, F.; Steinberg, F.; Steiner, H.; Steinhart, J.; Stella, B.; Stellbergr, A.; Stier, P. J.; Stiewe, J.; Stöβlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tagevˇský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tutas, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wenger, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zuber, K.; zurNedden, M.; Hl Collaboration
1997-02-01
Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x and Q using the H1 detector at the epcollider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.
Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger
Golshahi, Laleh; Longest, P. Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael
2015-01-01
Purpose Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Methods Variables of interest included combinations of model drug (i.e. albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1–5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. Results At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~ 0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1 % w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. Conclusions The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs. PMID:25823649
High-order space charge effects using automatic differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, M.F.; Bruhwiler, D.L.
1997-02-01
The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of amore » Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach. {copyright} {ital 1997 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Jiang, Cheng-Wei; Ni, I.-Chih; Tzeng, Shien-Der; Wu, Cen-Shawn; Kuo, Watson
2014-05-01
How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction.How the interparticle tunnelling affects the charge conduction of self-assembled gold nanoparticles is studied by three means: tuning the tunnel barrier width by different molecule modification and by substrate bending, and tuning the barrier height by high-dose electron beam exposure. All approaches indicate that the metal-Mott insulator transition is governed predominantly by the interparticle coupling strength, which can be quantified by the room temperature sheet resistance. The Hubbard gap, following the prediction of quantum fluctuation theory, reduces to zero rapidly as the sheet resistance decreases to the quantum resistance. At very low temperature, the fate of devices near the Mott transition depends on the strength of disorder. The charge conduction is from nearest-neighbour hopping to co-tunnelling between nanoparticles in Mott insulators whereas it is from variable-range hopping through charge puddles in Anderson insulators. When the two-dimensional nanoparticle network is under a unidirectional strain, the interparticle coupling becomes anisotropic so the average sheet resistance is required to describe the charge conduction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06627d
NASA Astrophysics Data System (ADS)
Xie, Dexuan; Jiang, Yi
2018-05-01
This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.
Evaluating the performance of microbial fuel cells powering electronic devices
NASA Astrophysics Data System (ADS)
Dewan, Alim; Donovan, Conrad; Heo, Deukhyoun; Beyenal, Haluk
A microbial fuel cell (MFC) is capable of powering an electronic device if we store the energy in an external storage device, such as a capacitor, and dispense that energy intermittently in bursts of high-power when needed. Therefore its performance needs to be evaluated using an energy-storing device such as a capacitor which can be charged and discharged rather than other evaluation techniques, such as continuous energy dissipation through a resistor. In this study, we develop a method of testing microbial fuel cell performance based on storing energy in a capacitor. When a capacitor is connected to a MFC it acts like a variable resistor and stores energy from the MFC at a variable rate. In practice the application of this method to testing microbial fuel cells is very challenging and time consuming; therefore we have custom-designed a microbial fuel cell tester (MFCT). The MFCT evaluates the performance of a MFC as a power source. It uses a capacitor as an energy storing device and waits until a desired amount of energy is stored then discharges the capacitor. The entire process is controlled using an analog-to-digital converter (ADC) board controlled by a custom-written computer program. The utility of our method and the MFCT is demonstrated using a laboratory microbial fuel cell (LMFC) and a sediment microbial fuel cell (SMFC). We determine (1) how frequently a MFC can charge a capacitor, (2) which electrode is current-limiting, (3) what capacitor value will allow the maximum harvested energy from a MFC, which is called the "optimum charging capacitor value," and (4) what capacitor charging potential will harvest the maximum energy from a MFC, which is called the "optimum charging potential." Using a LMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 108 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 300 mV. Using a SMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 5 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 500 mV. Our results demonstrate that the developed method and the MFCT can be used to evaluate and optimize energy harvesting when a MFC is used with a capacitor to power wireless sensors monitoring the environment.
2017-01-01
High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl2 concentration. Using DLVO theory with charge regulation, we determine from the measured force–distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca2+ ion adsorption, while Cl– adsorption at higher CaCl2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl– ions will co-adsorb, thereby changing the observed ordered surface structure. PMID:29140711
Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I
2017-12-19
High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.
Libisch, Balázs; French, Helen K; Hartnik, Thomas; Anton, Attila; Biró, Borbála
2012-01-01
A combined soil amendment was tested in microcosm experiments with an aim to enhance the aerobic biodegradation of propylene glycol (PG)-based aircraft de-icing fluids during and following the infiltration of contaminated snowmelt. A key objective under field conditions is to increase degradation of organic pollutants in the surface soil where higher microbial activity and plant rhizosphere effects may contribute to a more efficient biodegradation of PG, compared to subsoil ground layers, where electron acceptors and nutrients are often depleted. Microcosm experiments were set up in Petri dishes using 50 g of soil mixed with appropriate additives. The samples contained an initial de-icing fluid concentration of 10,000 mg/kg soil. A combined amendment using calcium peroxide, activated carbon and 1 x Hoagland solution resulted in significantly higher degradation rates for PG both at 4 and 22 degrees C. Most probable numbers of bacteria capable of utilizing 10,000 mg/kg de-icing fluid as a sole carbon source were about two orders of magnitude higher in the amended soil samples compared to unamended controls at both temperatures. The elevated numbers of such bacteria in surface soil may be a source of cells transported to the subsoil by snowmelt infiltration. The near-surface application of amendments tested here may enhance the growth of plants and plant roots in the contaminated area, as well as microbes to be found at greater depth, and hence increase the degradation of a contaminant plume present in the ground.
Numerical Modelling of Foundation Slabs with use of Schur Complement Method
NASA Astrophysics Data System (ADS)
Koktan, Jiří; Brožovský, Jiří
2017-10-01
The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.
Revegetation of high zinc and lead tailings with municipal biosolids and lime: greenhouse study.
Svendson, Alex; Henry, Chuck; Brown, Sally
2007-01-01
Acidic (pH 4.1) and high Cd, Pb, and Zn mine tailings (mean +/- SD: 17 +/- 0.4, 3800 +/- 100, and 3500 +/- 100 mg kg(-1), respectively) from an alluvial tailings deposit in Leadville, Colorado were amended with municipal biosolids (BS) (224 Mg ha(-1)) and different types of lime (calcium carbonate equivalent of 224 Mg ha(-1) CaCO3) in a greenhouse column study to test the ability of the amendments to neutralize surface and subsoil acidity and restore plant growth. The types of lime included coarse, agricultural, and fine-textured lime (CL, AL, and FL), sugar beet lime (SBL), and lime kiln dust (LK). The FL was also added alone. All treatments increased bulk pH in the amended horizon in comparison to the control, with the most significant increases observed in the FL, SBL+BS, and LK+BS treatments (7.33, 7.34, and 7.63, respectively). All treatments, excluding the FL, increased the pH in the horizon directly below the amended layer, with the most significant increases observed in the SBL+BS and LK+BS treatments (6.01 and 5.41, respectively). Significant decreases in 0.01 M Ca(NO3)2-extractable Zn and Cd were observed in the subsoil for all treatments that included BS, with the largest decrease in the SBL+BS treatment (344 and 3.9 versus 4 and 0.1 mg kg(-1) Zn and Cd, respectively). Plant growth of annual rye (Lolium multiflorum L.) was vigorous in all treatments that included BS with plant Zn, Cd, and Pb concentrations reduced over the control.
[Study on mechanism of SOM stabilization of paddy soils under long-term fertilizations].
Luo, Lu; Zhou, Ping; Tong, Cheng-Li; Shi, Hui; Wu, Jin-Shui; Huang, Tie-Ping
2013-02-01
Fourier transform infrared spectroscopy (FTIR) was applied to study the structure of soil organic matter (SOM) of paddy soils under long-term different fertilization treatments. The aim was to clarify the different distribution of SOM between different fertilization methods and between topsoil and subsoil, and to explore the stability mechanism of SOM under different fertilization treatments. The results showed that the content of topsoil organic carbon (SOC) was the highest under organic-inorganic fertilizations, with the increment of SOC by 18.5%, 12.9% and 18.4% under high organic manure (HOM), low organic manure (LOM) and straw returning (STW) respectively compared with no fertilization treatment (CK). The long-term fertilizations also changed the chemical structure of SOM. As compared with CK, different fertilization treatments increased the functional group absorbing intensity of chemical resistance compounds (aliphatic, aromaticity), carbohydrate and organo-silicon compounds, which was the most distinctive under treatments of HOM, LOM and STW. For example, the absorbing intensity of alkyl was 0.30, 0.25 and 0.29 under HOM, LOM and STW, respectively. These values were increased by 87% , 56% and 81% as compared with that under CK treatment. The functional group absorbing intensity of SOM in the topsoil was stronger than that in the subsoil, with the most distinctive difference under HOM, LOM and STW treatments. The present research indicated that the enhanced chemical resistance of functional group of SOM may contribute to the high contents of SOC in the paddy soils under long-term organic-inorganic fertilizations, which also suggested a chemical stabilization mechanism of SOM in the paddy soils.
Quantitative Interpretation of Tracks for Determination of Body Mass
Schanz, Tom; Lins, Yvonne; Viefhaus, Hanna; Barciaga, Thomas; Läbe, Sashima; Preuschoft, Holger; Witzel, Ulrich; Sander, P. Martin
2013-01-01
To better understand the biology of extinct animals, experimentation with extant animals and innovative numerical approaches have grown in recent years. This research project uses principles of soil mechanics and a neoichnological field experiment with an African elephant to derive a novel concept for calculating the mass (i.e., the weight) of an animal from its footprints. We used the elephant's footprint geometry (i.e., vertical displacements, diameter) in combination with soil mechanical analyses (i.e., soil classification, soil parameter determination in the laboratory, Finite Element Analysis (FEA) and gait analysis) for the back analysis of the elephant's weight from a single footprint. In doing so we validated the first component of a methodology for calculating the weight of extinct dinosaurs. The field experiment was conducted under known boundary conditions at the Zoological Gardens Wuppertal with a female African elephant. The weight of the elephant was measured and the walking area was prepared with sediment in advance. Then the elephant was walked across the test area, leaving a trackway behind. Footprint geometry was obtained by laser scanning. To estimate the dynamic component involved in footprint formation, the velocity the foot reaches when touching the subsoil was determined by the Digital Image Correlation (DIC) technique. Soil parameters were identified by performing experiments on the soil in the laboratory. FEA was then used for the backcalculation of the elephant's weight. With this study, we demonstrate the adaptability of using footprint geometry in combination with theoretical considerations of loading of the subsoil during a walk and soil mechanical methods for prediction of trackmakers weight. PMID:24204890
Sub-soil microbial activity under rotational cotton crops in Australia
NASA Astrophysics Data System (ADS)
Polain, Katherine; Knox, Oliver; Wilson, Brian; Pereg, Lily
2016-04-01
Soil microbial communities contribute significantly to soil organic matter formation, stabilisation and destabilisation, through nutrient cycling and biodegradation. The majority of soil microbial research examines the processes occurring in the top 0 cm to 30 cm of the soil, where organic nutrients are easily accessible. In soils such as Vertosols, the high clay content causes swelling and cracking. When soil cracking is coupled with rain or an irrigation event, a flush of organic nutrients can move down the soil profile, becoming available for subsoil microbial community use and potentially making a significant contribution to nutrient cycling and biodegradation in soils. At present, the mechanisms and rates of soil nutrient turnover (such as carbon and nitrogen) at depth under cotton rotations are mostly speculative and the process-response relationships remain unclear, although they are undoubtedly underpinned by microbial activity. Our research aims to determine the contribution and role of soil microbiota to the accumulation, cycling and mineralisation of carbon and nitrogen through the whole root profile under continuous cotton (Gossypium hirsutum) and cotton-maize rotations in regional New South Wales, Australia. Through seasonal work, we have established both baseline and potential microbial activity rates from 0 cm to 100 cm down the Vertosol profile, using respiration and colourimetric methods. Further whole soil profile analyses will include determination of microbial biomass and isotopic carbon signatures using phospholipid fatty acid (PLFA) methodology, identification of microbial communities (sequencing) and novel experiments to investigate potential rates of nitrogen mineralisation and quantification of associated genes. Our preliminary observations and the hypotheses tested in this three-year study will be presented.
NASA Astrophysics Data System (ADS)
Hall, Rebecca; Hallett, Paul; Raffan, Annette; Lilly, Allan; Baggaley, Nikki; Rowan, John; Crookes, Bill; Ball, Bruce
2017-04-01
Scotland is blessed with fertile and resilient soils that produce great cereal yields and whisky. However, there is worrying anecdotal evidence, confirmed by a small body of science, that some farming practices are causing widespread physical degradation of these soils. Studies from other UK regions have identified soil physical degradation by compaction, unstable seedbeds and erosion as a moderate to serious problem, depending on farming practice, soil properties and climate. In 2015/2016 we sampled 120 fields from 4 catchments in Scotland to describe the state of soil structure in the winter. To obtain a rapid assessment, we used the increasingly popular and easily interpretable Visual Evaluations of Soil Structure (VESS) and Subsoil Structure (SubVESS). We found severe soil structural degradation in 18% of topsoils and 9% of subsoils for 120 fields in 4 catchments. The severe 2015/2016 winter precipitation, the worst ever recorded, caused a 30% increase in occurrence of severely degraded topsoils, as determined from sampling some of the same fields before and after this unprecedented weather event. Run-off, erosion and nutrient losses were about 10X from degraded parts of fields such as tramlines than either within the field or at less trafficked boundaries. There was some agreement between areas identified as structurally degraded and those ranked as being susceptible to topsoil compaction using a simple model. Broad scale surveys that incorporate temporal sampling, such as the study reported here, are essential to provide regional assessments of soil degradation and to inform follow-on, targeted studies, where more in-depth analysis would be feasible.
NASA Astrophysics Data System (ADS)
Schulz, Adam
Lithium ion batteries (LIBs) are secondary (rechargeable) energy storage devices that lose the ability to store charge, or degrade, with time. This charge capacity loss stems from unwanted reactions such as the continual growth of the solid electrolyte interphase (SEI) layer on the negative carbonaceous electrode. Parasitic reactions consume mobile lithium, the byproducts of which deposit as SEI layer. Introducing various electrolyte additives and coatings on the positive electrode reduce the rate of SEI growth and lead to improved calendar lifetimes of LIBs respectively. There has been substantial work both electrochemically monitoring and computationally modeling the development of the SEI layer. Additionally, a plethora of spectroscopic techniques have been employed in an attempt to characterize the components of the SEI layer. Despite lithium being the charge carrier in LIBs, depth profiles of lithium in the SEI are few. Moreover, accurate depth profiles relating capacity loss to lithium in the SEI are virtually non-existent. Better quantification of immobilized lithium would lead to improved understanding of the mechanisms of capacity loss and allow for computational and electrochemical models dependent on true materials states. A method by which to prepare low variability, high energy density electrochemical cells for depth profiling with the non-destructive technique, lithium nuclear reaction analysis (Li-NRA), is presented here. Due to the unique and largely non-destructive nature of Li-NRA we are able to perform repeated measurement on the same sample and evaluate the variability of the technique. By using low variability electrochemical cells along with this precise spectroscopic technique, we are able to confidently report trends of lithium concentration while controlling variables such as charge state, age and electrolyte composition. Conversion of gamma intensity versus beam energy, rendered by NRA, to Li concentration as a function of depth requires calibration and modeling of the nuclear stopping power of the substrate (electrode material). A methodology to accurately convert characteristic gamma intensity versus beam energy raw data to Li % as a function of depth is presented. Depth profiles are performed on the electrodes of commercial LIBs charged to different states of charge and aged to different states of health. In-lab created Li-ion cells are prepared with different electrolytes and then depth profiled by Li-NRA. It was found lithium accumulates within the solid electrolyte interphase (SEI) layer with the square root of time, consistent with previous reports. When vinylene carbonate (VC) is introduced to electrolyte lithium accumulates at a rapidly reduced rate as compared to cells containing ethylene carbonte (EC). Additionally, lithium concentration within the positive electrode surface was observed to decrease linearly with time independent of electrolyte tested. Future experiments to be conducted to finish the work and the underpinnings of a materials based capacity loss model are proposed.
Deletions of VCX-A and NLGN4: A Variable Phenotype Including Normal Intellect
ERIC Educational Resources Information Center
Macarov, M.; Zeigler, M.; Newman, J. P.; Strich, D.; Sury, V.; Tennenbaum, A.; Meiner, V.
2007-01-01
Background: Patients with Xp22.3 interstitial and terminal deletions have been shown to be affected by intellectual disability (ID) or autism. Previously, "VCX-A" (variably charged protein X-A), located at Xp22.3, was introduced as a gene for ID and its presence was suggested to be sufficient to maintain normal mental development. Recent reports…
Assessment of the Electrification of the Road Transport Sector on Net System Emissions
NASA Astrophysics Data System (ADS)
Miller, James
As worldwide environmental consciousness grows, electric vehicles (EVs) are becoming more common and despite the incredible potential for emissions reduction, the net emissions of the power system supply side plus the transportation system are dependent on the generation matrix. Current EV charging patterns tend to correspond directly with the peak consumption hours and have the potential to increase demand sharply allowing for only a small penetration of Electric Vehicles. Using the National Household Travel Survey (NHTS) data a model is created for vehicle travel patterns using trip chaining. Charging schemes are modeled to include uncontrolled residential, uncontrolled residential/industrial charging, optimized charging and optimized charging with vehicle to grid discharging. A charging profile is then determined based upon the assumption that electric vehicles would directly replace a percentage of standard petroleum-fueled vehicles in a known system. Using the generation profile for the specified region, a unit commitment model is created to establish not only the generation dispatch, but also the net CO2 profile for variable EV penetrations and charging profiles. This model is then used to assess the impact of the electrification of the road transport sector on the system net emissions.
Puig-Ventosa, Ignasi; Sastre Sanz, Sergio
2017-11-01
Municipal waste charges have been widely acknowledged as a crucial tool for waste management at the local level. This is because they contribute to financing the costly provision of waste collection and treatment services and they can be designed to provide an economic stimulus to encourage citizens and local businesses to improve separate collection and recycling. This work presents a methodology to evaluate a sample of 125 municipal waste charges in Spain for the year 2015, covering 33.91% of the Spanish population. The qualitative benchmarking of municipal waste charges shows that flat fees are frequent, whereas variable fees are set according to criteria that are weakly related to waste generation. The average fee per household is €82.2 per year, which does not provide full cost recovery. The current configuration of municipal waste charges penalises taxpayers contributing to source separation of waste, while subsidising less environmentally friendly behaviours. In this sense, municipal waste charges in Spain are far from applying the polluter pays principle. Furthermore, it is argued that municipal waste charges are ineffective for promoting the proper application of the so-called 'waste hierarchy'.
Interlayer‐State‐Coupling Dependent Ultrafast Charge Transfer in MoS2/WS2 Bilayers
Zhang, Jin; Hong, Hao; Lian, Chao; Ma, Wei; Xu, Xiaozhi; Zhou, Xu; Fu, Huixia
2017-01-01
Light‐induced interlayer ultrafast charge transfer in 2D heterostructures provides a new platform for optoelectronic and photovoltaic applications. The charge separation process is generally hypothesized to be dependent on the interlayer stackings and interactions, however, the quantitative characteristic and detailed mechanism remain elusive. Here, a systematical study on the interlayer charge transfer in model MoS2/WS2 bilayer system with variable stacking configurations by time‐dependent density functional theory methods is demonstrated. The results show that the slight change of interlayer geometry can significantly modulate the charge transfer time from 100 fs to 1 ps scale. Detailed analysis further reveals that the transfer rate in MoS2/WS2 bilayers is governed by the electronic coupling between specific interlayer states, rather than the interlayer distances, and follows a universal dependence on the state‐coupling strength. The results establish the interlayer stacking as an effective freedom to control ultrafast charge transfer dynamics in 2D heterostructures and facilitate their future applications in optoelectronics and light harvesting. PMID:28932669
A Long DNA Segment in a Linear Nanoscale Paul Trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Sony nmn; Guan, Weihau; Reed, Mark A
2009-01-01
We study the dynamics of a linearly distributed line charge such as single stranded DNA (ssDNA) in a nanoscale, linear 2D Paul trap in vacuum. Using molecular dynamics simulations we show that a line charge can be trapped effectively in the trap for a well defined range of stability parameters. We investigated (i) a flexible bonded string of charged beads and (ii) a ssDNA polymer of variable length, for various trap parameters. A line charge undergoes oscillations or rotations as it moves, depending on its initial angle, the position of the center of mass and the velocity. The stability regionmore » for a strongly bonded line of charged beads is similar to that of a single ion with the same charge to mass ratio. Single stranded DNA as long as 40 nm does not fold or curl in the Paul trap, but could undergo rotations about the center of mass. However, we show that a stretching field in the axial direction can effectively prevent the rotations and increase the confinement stability.« less
Electrostatic charge characteristics of jet nebulized aerosols.
Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim
2010-06-01
Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from computational simulation models in the literature, the numbers of elementary charges per droplet estimated from the data were not high enough to potentially affect lung deposition.
Chicken scFvs with an Artificial Cysteine for Site-Directed Conjugation
Kim, Soohyun; Kim, Hyori; Chung, Junho
2016-01-01
For the site-directed conjugation of chemicals and radioisotopes to the chicken-derived single-chain variable fragment (scFv), we investigated amino acid residues replaceable with cysteine. By replacing each amino acid of the 157 chicken variable region framework residues (FR, 82 residues on VH and 75 on VL) with cysteine, 157 artificial cysteine mutants were generated and characterized. At least 27 residues on VL and 37 on VH could be replaced with cysteine while retaining the binding activity of the original scFv. We prepared three VL (L5, L6 and L7) and two VH (H13 and H16) mutants as scFv-Ckappa fusion proteins and showed that PEG-conjugation to the sulfhydryl group of the artificial cysteine was achievable in all five mutants. Because the charge around the cysteine residue affects the in vivo stability of thiol-maleimide conjugation, we prepared 16 charge-variant artificial cysteine mutants by replacing the flanking residues of H13 with charged amino acids and determined that the binding activity was not affected in any of the mutants except one. We prepared four charge-variant H13 artificial cysteine mutants (RCK, DCE, ECD and ECE) as scFv-Ckappa fusion proteins and confirmed that the reactivity of the sulfhydryl group on cysteine is active and their binding activity is retained after the conjugation process. PMID:26764487
Analysis of In-Route Wireless Charging for the Shuttle System at Zion National Park
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meintz, Andrew; Prohaska, Robert; Konan, Arnaud
System right-sizing is critical to implementation of wireless power transfer (WPT) for electric vehicles (EVs). This study will analyze potential WPT scenarios for the electrification of shuttle buses at Zion National Park utilizing a modelling tool developed by NREL called WPTSim. This tool uses second-by-second speed, location, and road grade data from the conventional shuttles in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of chargingmore » locations. The outcome of this work is an analysis of the design tradeoffs for the electrification of the shuttle fleet with wireless charging versus conventional overnight charging.« less
Method and apparatus for varying accelerator beam output energy
Young, Lloyd M.
1998-01-01
A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.
Surface charges for gravity and electromagnetism in the first order formalism
NASA Astrophysics Data System (ADS)
Frodden, Ernesto; Hidalgo, Diego
2018-02-01
A new derivation of surface charges for 3 + 1 gravity coupled to electromagnetism is obtained. Gravity theory is written in the tetrad-connection variables. The general derivation starts from the Lagrangian, and uses the covariant symplectic formalism in the language of forms. For gauge theories, surface charges disentangle physical from gauge symmetries through the use of Noether identities and the exactness symmetry condition. The surface charges are quasilocal, explicitly coordinate independent, gauge invariant and background independent. For a black hole family solution, the surface charge conservation implies the first law of black hole mechanics. As a check, we show the first law for an electrically charged, rotating black hole with an asymptotically constant curvature (the Kerr–Newman (anti-)de Sitter family). The charges, including the would-be mass term appearing in the first law, are quasilocal. No reference to the asymptotic structure of the spacetime nor the boundary conditions is required and therefore topological terms do not play a rôle. Finally, surface charge formulae for Lovelock gravity coupled to electromagnetism are exhibited, generalizing the one derived in a recent work by Barnich et al Proc. Workshop ‘ About Various Kinds of Interactions’ in honour of Philippe Spindel (4–5 June 2015, Mons, Belgium) C15-06-04 (2016 (arXiv:1611.01777 [gr-qc])). The two different symplectic methods to define surface charges are compared and shown equivalent.
Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou
2017-11-01
Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.
Pulse-height loss in the signal readout circuit of compound semiconductor detectors
NASA Astrophysics Data System (ADS)
Nakhostin, M.; Hitomi, K.
2018-06-01
Compound semiconductor detectors such as CdTe, CdZnTe, HgI2 and TlBr are known to exhibit large variations in their charge collection times. This paper considers the effect of such variations on the measurement of induced charge pulses by using resistive feedback charge-sensitive preamplifiers. It is shown that, due to the finite decay-time constant of the preamplifiers, the capacitive decay during the signal readout leads to a variable deficit in the measurement of ballistic signals and a digital pulse processing method is employed to correct for it. The method is experimentally examined by using sampled pulses from a TlBr detector coupled to a charge-sensitive preamplifier with 150 μs of decay-time constant and 20 % improvement in the energy resolution of the detector at 662 keV is achieved. The implications of the capacitive decay on the correction of charge-trapping effect by using depth-sensing technique are also considered.
Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.
Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A
2018-06-13
Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doubleday, Kate; Meintz, Andrew; Markel, Tony
System right-sizing is critical to implementation of in-motion wireless power transfer (WPT) for electric vehicles. This study introduces a modeling tool, WPTSim, which uses one-second speed, location, and road grade data from an on-demand employee shuttle in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of charging locations. Adding just one WPT location can more than halve the battery capacity needed. Many configurations are capable ofmore » being self sustaining with WPT, while others benefit from supplemental stationary charging.« less
Assessment and Control of Spacecraft Charging Risks on the International Space Station
NASA Technical Reports Server (NTRS)
Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni
2004-01-01
The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.
NASA Astrophysics Data System (ADS)
Bartczak, Witold M.; Kroh, Jerzy
The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.
Coherent production of ρ - mesons in charged current antineutrino-neon interactions in BEBC
NASA Astrophysics Data System (ADS)
Marage, P.; Aderholz, M.; Allport, P.; Armenise, N.; Baton, J. P.; Berggren, M.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Burkot, W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Guy, J.; Hamisi, F.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Katz, U. F.; Klein, H.; Matsinos, E.; Middleton, R. P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Schmitz, N.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.; Wittek, W.
1987-09-01
Coherent production of ρ - mesons in charged current antineutrino interactions on neon nuclei is studied in the BEBC bubble chamber exposed to the CERN SPS wide band beam. The cross section is measured to be (95±25)·10-40 cm2 per neon nucleus, averaged over the beam energy spectrum. The distributions of kinematical variables and the absolute value of the cross section are in agreement with theoretical predictions based on the CVC hypothesis and the vector meson dominance model.
Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals.
Feng, Xiong Han; Zhai, Li Mei; Tan, Wen Feng; Liu, Fan; He, Ji Zheng
2007-05-01
Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite> or =cryptomelane>todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb(2+), Cu(2+), Co(2+), Cd(2+) and Zn(2+), while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb(2+) among the tested heavy metals. Hydration tendency (pK(1)) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn(2+) varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0)>cryptomelane (422.6)>todorokite (59.7)>hausmannite (36.6).
NASA Astrophysics Data System (ADS)
Tondoh, E. J.; Forkuor, G.; Adegoke, J. O.
2017-12-01
The West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL) is an intergovernmental research organization established in 2012 as result of multilateral collaborations between the Republic of Germany and Governments of 10 West African countries. Its new research program termed WASCAL Research Action Plan (WRAP 2.0) aims to deploy first-class, demand-driven, and impact-oriented research to achieve development outcomes and deliver key science-based climate and environmental services. It's therefore structured around key flagships, including "Sustainable Agriculture and Food Security" with a focus on enhancing the adaptive capacity of socio-ecological landscapes through increased agricultural productivity. However, as land degradation is one of the major obstacles to sustainable agricultural production and food security in sub Saharan African, it's imperative to mitigate this complex multifaceted process which is particularly acute in West African drylands. This case study aims to diagnose the main constraints to sustainable agricultural intensification at landscape scale and derive best bet soil management practices. The methodological approach is built around biophysical survey at sites of 100 km2 organized around 16 clusters each composed of 10 georeferenced sampling plots in three semi-arid agro-ecological landscapes located in upper-west region of Ghana (Lambussie), southwestern Burkina Faso (Bondigui) and southwestern Mali (Finkolo). Soil samples were collected in both the topsoil (0-20cm) and subsoil (20-50) and key soil physical constraints were measured at each sampling point. Remote Sensing (RS) variables representing biomass, climate and topography were correlated with soil organic carbon (SOC) to determine the influence of these variables on soil health. Results revealed within and between site variations in SOC concentration, soil pH, soil fertility index (SFI), erosion prevalence and root depth restriction. Different RS variables were found to be positively correlated with SOC levels in the three study sites. These findings emphasize the need to prioritize fine scale and trade-off approaches when setting up recommended land management practices to overcome land degradation and sustainably increase agricultural production.
NASA Technical Reports Server (NTRS)
Snowden, Steven L.
2007-01-01
Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.
Polaris Instrument Development and PARI Experience
NASA Astrophysics Data System (ADS)
Stewart, Nathan
2011-01-01
At the Pisgah Astronomical Research Institute (PARI) in Rosman, NC I spent 8 weeks as the NC Space Grant/J. Donald Cline Astronomy Scholar. I developed multiple projects and assisted as a mentor to PARI Space Science Lab and Duke TIP high school gifted student program which both took place during my stay. My main focus was the development of the Polaris imaging telescope. This telescope is used to take images of the pulsating variable star Polaris. These readings are used to make seeing estimates for the air column above PARI. The system stores and archives images and analyzes them for magnitude change and movement of the stellar image. In addition to the Polaris project I developed a solar panel voltage and charge monitoring system which involved me working with charge controllers and photovoltaic technology. I developed a charging scheme using Flexmax 60 charge controller. Data is recorded and transmitted via optical fiber for analysis and correlation with solar zenith angle.
Sliding mode control based on Kalman filter dynamic estimation of battery SOC
NASA Astrophysics Data System (ADS)
He, Dongmeia; Hou, Enguang; Qiao, Xin; Liu, Guangmin
2018-06-01
Lithium-ion battery charge state of the accurate and rapid estimation of battery management system is the key technology. In this paper, an exponentially reaching law sliding-mode variable structure control algorithm based on Kalman filter is proposed to estimate the state of charge of Li-ion battery for the dynamic nonlinear system. The RC equivalent circuit model is established, and the model equation with specific structure is given. The proposed Kalman filter sliding mode structure is used to estimate the state of charge of the battery in the battery model, and the jitter effect can be avoided and the estimation performance can be improved. The simulation results show that the proposed Kalman filter sliding mode control has good accuracy in estimating the state of charge of the battery compared with the ordinary Kalman filter, and the error range is within 3%.
Transport of Charged Particles in Turbulent Magnetic Fields
NASA Astrophysics Data System (ADS)
Parashar, T.; Subedi, P.; Sonsrettee, W.; Blasi, P.; Ruffolo, D. J.; Matthaeus, W. H.; Montgomery, D.; Chuychai, P.; Dmitruk, P.; Wan, M.; Chhiber, R.
2017-12-01
Magnetic fields permeate the Universe. They are found in planets, stars, galaxies, and the intergalactic medium. The magnetic field found in these astrophysical systems are usually chaotic, disordered, and turbulent. The investigation of the transport of cosmic rays in magnetic turbulence is a subject of considerable interest. One of the important aspects of cosmic ray transport is to understand their diffusive behavior and to calculate the diffusion coefficient in the presence of these turbulent fields. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here, we will particularly focus on calculating diffusion coefficients of charged particles and magnetic field lines in a fully three-dimensional isotropic turbulent magnetic field with no mean field, which may be pertinent to many astrophysical situations. For charged particles in isotropic turbulence we identify different ranges of particle energy depending upon the ratio of the Larmor radius of the charged particle to the characteristic outer length scale of the turbulence. Different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical ideas are tested against results of detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields. We also discuss two different methods of generating random magnetic field to study charged particle propagation using numerical simulation. One method is the usual way of generating random fields with a specified power law in wavenumber space, using Gaussian random variables. Turbulence, however, is non-Gaussian, with variability that comes in bursts called intermittency. We therefore devise a way to generate synthetic intermittent fields which have many properties of realistic turbulence. Possible applications of such synthetically generated intermittent fields are discussed.
Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J
2015-01-01
High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption. PMID:25559441
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Shuangqing
We continue to investigate the separability of massive field equations for spin-0 and spin-1/2 charged particles in the general, nonextremal, rotating, charged, Chong-Cvetic-Lue-Pope black holes with two independent angular momenta and a nonzero cosmological constant in minimal D=5 gauged supergravity theory. We show that the complex Klein-Gordon equation and the modified Dirac equation with the inclusion of an extra counterterm can be separated by variables into purely radial and purely angular parts in this general Einstein-Maxwell-Chern-Simons background spacetime. A second-order symmetry operator that commutes with the complex Laplacian operator is constructed from the separated solutions and expressed compactly in termsmore » of a rank-2 Staeckel-Killing tensor which admits a simple diagonal form in the chosen pentad one-forms so that it can be understood as the square of a rank-3 totally antisymmetric tensor. A first-order symmetry operator that commutes with the modified Dirac operator is expressed in terms of a rank-3 generalized Killing-Yano tensor and its covariant derivative. The Hodge dual of this generalized Killing-Yano tensor is a generalized principal conformal Killing-Yano tensor of rank-2, which can generate a 'tower' of generalized (conformal) Killing-Yano and Staeckel-Killing tensors that are responsible for the whole hidden symmetries of this general, rotating, charged, Kerr-anti-de Sitter black hole geometry. In addition, the first laws of black hole thermodynamics have been generalized to the case that the cosmological constant can be viewed as a thermodynamical variable.« less
Boucek, Dana M; Lal, Ashwin K; Eckhauser, Aaron W; Weng, Hsin-Yi Cindy; Sheng, Xiaoming; Wilkes, Jacob F; Pinto, Nelangi M; Menon, Shaji C
2018-04-15
Pediatric heart transplantation (HT) is resource intensive. Event-driven pediatric databases do not capture data on resource use. The objective of this study was to evaluate resource utilization and identify associated factors during initial hospitalization for pediatric HT. This multicenter retrospective cohort study utilized the Pediatric Health Information Systems database (43 children's hospitals in the United States) of children ≤19 years of age who underwent transplant between January 2007 and July 2013. Demographic variables including site, payer, distance and time to center, clinical pre- and post-transplant variables, mortality, cost, and charge were the data collected. Total length of stay (LOS) and charge for the initial hospitalization were used as surrogates for resource use. Charges were inflation adjusted to 2013 dollars. Of 1,629 subjects, 54% were male, and the median age at HT was 5 years (IQR [interquartile range] 0 to 13). The median total and intensive care unit LOS were 51 (IQR 23 to 98) and 23 (IQR 9 to 58) days, respectively. Total charge and cost for hospitalization were $852,713 ($464,900 to $1,609,300) and $383,600 ($214,900 to $681,000) respectively. Younger age, lower volume center, southern region, and co-morbidities before transplant were associated with higher resource use. In later years, charges increased despite shorter LOS. In conclusion, this large multicenter study provides novel insight into factors associated with resource use in pediatric patients having HT. Peritransplant morbidities are associated with increased cost and LOS. Reducing costs in line with LOS will improve health-care value. Regional and center volume differences need further investigation for optimizing value-based care and efficient use of scarce resources. Copyright © 2018 Elsevier Inc. All rights reserved.
Wu, Yifei; Chin, William W; Wang, Yong; Burris, Thomas P
2003-03-07
The activation function 2 (AF-2)-dependent recruitment of coactivator is essential for gene activation by nuclear receptors. We show that the peroxisome proliferator-activated receptor gamma (PPARgamma) (NR1C3) coactivator-1 (PGC-1) requires both the intact AF-2 domain of PPARgamma and the LXXLL domain of PGC-1 for ligand-dependent and ligand-independent interaction and coactivation. Although the AF-2 domain of PPARgamma is absolutely required for PGC-1-mediated coactivation, this coactivator displayed a unique lack of requirement for the charge clamp of the ligand-binding domain of the receptor that is thought to be essential for LXXLL motif recognition. The mutation of a single serine residue adjacent to the core LXXLL motif of PGC-1 led to restoration of the typical charge clamp requirement. Thus, the unique structural features of the PGC-1 LXXLL motif appear to mediate an atypical mode of interaction with PPARgamma. Unexpectedly, we discovered that various ligands display variability in terms of their requirement for the charge clamp of PPARgamma for coactivation by PGC-1. This ligand-selective variable requirement for the charge clamp was coactivator-specific. Thus, distinct structural determinants, which may be unique for a particular ligand, are utilized by the receptor to recognize the coactivator. Our data suggest that even subtle differences in ligand structure are perceived by the receptor and translated into a unique display of the coactivator-binding surface of the ligand-binding domain, allowing for differential recognition of coactivators that may underlie distinct pharmacological profiles observed for ligands of a particular nuclear receptor.
Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J
2015-01-01
High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.
Øien, Alf H; Wiig, Helge
2016-07-07
Interstitial exclusion refers to the limitation of space available for plasma proteins and other macromolecules based on collagen and negatively charged glycosaminoglycans (GAGs) in the interstitial space. It is of particular importance to interstitial fluid and plasma volume regulation. Here we present a novel mechanical and mathematical model of the dynamic interactions of structural elements within the interstitium of the dermis at the microscopic level that may explain volume exclusion of charged and neutral macroparticles. At this level, the interstitium is considered to consist of elements called extracellular matrix (ECM) cells, again containing two main interacting structural components on a fluid background including anions and cations setting up osmotic forces: one smaller GAG component, having an intrinsic expansive electric force, and one bigger collagen component, having an intrinsic elastic force. Because of size differences, the GAG component interacts with a fraction of the collagen component only at normal hydration. This fraction, however, increases with rising hydration as a consequence of the modeled form of the interaction force between the GAGs and collagen. Collagen is locally displaced at variable degrees as hydration changes. Two models of GAGs are considered, having largely different geometries which demands different, but related, forms of GAG-collagen interaction forces. The effects of variable fixed charges on GAGs and of GAG density in tissue are evaluated taking into account observed volume exclusion properties of charged macromolecules as a function of tissue hydration. The presented models may improve our biophysical understanding of acting forces influencing tissue fluid dynamics. Such knowledge is significant when evaluating the transport of electrically charged and neutral macromolecules into and through the interstitium, and therefore to drug uptake and the therapeutic effects of macromolecular agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of a Li-Ion Nanobattery with Graphite Anode Using Molecular Dynamics Simulations
Ponce, Victor; Galvez-Aranda, Diego E.; Seminario, Jorge M.
2017-05-19
In this work, molecular dynamics simulations were performed of the initial charging of a Li-ion nanobattery with a graphite anode and lithium hexaflourphosphate (LiPF 6) salt dissolved in ethylene carbonate (CO 3C 2H 4) solvent as the electrolyte solution. The charging was achieved through the application of external electric fields simulating voltage sources. A variety of force fields were combined to simulate the materials of the nanobattery, including the solid electrolyte interphase, metal collectors, and insulator cover. Some of the force field parameters were estimated using ab initio methods and others were taken from the literature. We studied the behaviormore » of Li-ions traveling from cathode to anode through electrolyte solutions of concentrations 1.15 and 3.36 M. Time-dependent variables such as energy, temperature, volume, polarization, and mean square displacement are reported; a few of these variables, as well as others such as current, resistance, current density, conductivity, and resistivity are reported as a function of the external field and charging voltage. A solid electrolyte interphase (SEI) layer was also added to the model to study the mechanism behind the diffusion of the Li-ions through the SEI. As the battery is charged, the depletion of Li atoms in the cathode and their accumulation in the anode follow a linear increase of the polarizability in the solvent, until reaching a saturation point after which the charging of the battery stops, i.e., the energy provided by the external source decays to very low levels. Lastly, the nanobattery model containing the most common materials of a commercial lithium-ion battery is very useful to determine atomistic information that is difficult or too expensive to obtain experimentally; available data shows consistency with our results.« less
Electro-osmotic flow in coated nanocapillaries: a theoretical investigation.
Marini Bettolo Marconi, Umberto; Monteferrante, Michele; Melchionna, Simone
2014-12-14
Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated with charged polymers. The theoretical treatment is based on a three-dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated with a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent to the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determines their dependence on the ionic concentration.
Trauma systems and the costs of trauma care.
Goldfarb, M G; Bazzoli, G J; Coffey, R M
1996-01-01
OBJECTIVE. This study examines the cost of providing trauma services in trauma centers organized by publicly administered trauma systems, compared to hospitals not part of a formal trauma system. DATA SOURCES AND STUDY SETTING. Secondary administrative discharge abstracts for a national sample of severely injured trauma patients in 44 trauma centers and 60 matched control hospitals for the year 1987 were used. STUDY DESIGN. Retrospective univariate and multivariate analyses were conducted to examine the impact of formal trauma systems and trauma center designation on the costs of treating trauma patients. Key dependent variables included length of stay, charge per day per patient, and charge per hospital stay. Key impact variables were type of trauma system and level of trauma designation. Control variables included patient, hospital, and community characteristics. DATA COLLECTION/EXTRACTION METHODS. Data were selected for hospitals based on (1) a large national hospital discharge database, the Hospital Cost and Utilization Project, 1980-1987 (HCUP-2) and (2) a special survey of trauma systems and trauma designation undertaken by the Hospital Research and Educational Trust of the American Hospital Association. PRINCIPAL FINDINGS. The results show that publicly designated Level I trauma centers, which are the focal point of most trauma systems, have the highest charge per case, the highest average charge per day, and similar or longer average lengths of stay than other hospitals. These findings persist after controlling for patient injury and health status, and for demographic characteristics and hospital and community characteristics. CONCLUSIONS. Prior research shows that severely injured trauma patients have greater chances of survival when treated in specialized trauma centers. However, findings here should be of concern to the many states developing trauma systems since the high costs of Level I centers support limiting the number of centers designated at this level and/or reconsidering the requirements placed on these centers. PMID:8617611
Characterization of triple layers
NASA Astrophysics Data System (ADS)
Otero, Toribio F.; Cortes, M. Teresa
2001-07-01
We reported the characterization of a macroscopic electrochemomechanical actuator like triple layer (3x1 cm) formed by polypyrrole)/double- sided, non-conducting and flexible tape/ polypyrrole that works in liquid electrolytes under electrochemical control. This triple layer has characteristics of artificial muscle. The influence of variables that control the volume change in the polymer as electrolyte concentration, or temperature has been studied. Variations of time, energy and charge under different conditions are described. We have found that the triple layer acts, at the same time, as sensor and actuator. Therefore, physical magnitudes like the electrolyte concentration or the temperature in the cell can be obtained from electrical energy consumed by a muscle. We have evaluated the influence of variables as area of the triple layer or the trailing weight, which don't participate in the electrochemical reaction. We propose an explication to the results, which show a correlation between the trailed mass and the consumed charge required to move a constant angle those masses by the triple layer. When different surface areas of the triple layer has been evaluated we found that the consumed electrical charge is proportional to area (the mass) of the triple layer. The triple layer can make macroscopical movements in short times, their position is absolutely controlled with the electrical charge, and it has capacity to lift masses. These characteristics allow their use in the design of tools. So, we present a macroscopic tool constituted by two triple layers, which allows catch and translate objects in liquid medium (nipper).
NASA Astrophysics Data System (ADS)
Arifin, M.; Nurlaeny, N.; Devnita, R.; Fitriatin, B. N.; Sandrawati, A.; Supriatna, Y.
2018-02-01
Andisols has a great potential as agriculture land, however, it has a high phosphorus retention, variable charge characteristics and high value of zero net charge or pH0. The research is aimed to study the effects of nanoparticles of rock phosphate (NPRP) and biofertilizer (phosphate solubilizing bacteria/PSB) on soil pH, pHo (zero point of charge, ZPC) and organic-C in one subgroup of Andisols, namely Acrudoxic Durudands, Ciater Region West Java. The research was conducted from October 2016 to February 2017 in Soil Physics Laboratory and Laboratory of Soil Chemistry and Fertility, Soil Science Department, Faculty of Agriculture, Universitas Padjadjaran. This experiment used a completely randomized factorial design, consisting of two factors and three replications. The first factor was nanoparticles of rock phosphate consist of 4 doses 0; 25; 50 and 75 g/1 kg soil and the second factor was biofertilizer dose consist of g/1 kg soil and without biofertilizer. Total treatment combinations were 8 with 3 replications, so there were 24 experimental plots. The results showed that in general NPRR and biofertilizer will decrease the value of soil pH throughout the incubation periods. There is an interaction between nanoparticles of rock phosphate and biofertilizer in decreasing pHo in the first month of incubation, but after 4-month incubation period, NPRP increased. Interaction between 75 g nanoparticles of rock phosphate with 1 g biofertilizer/1 kg soil in fourth months of incubation decreased soil organic-C to 3.35%.
Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J.
2013-01-01
Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior. PMID:24062459
Mihalka, A.M.
1984-06-05
The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.
Comparison of the F2 Structure Function in Iron as Measured by Charged Lepton and Neutrino Probes
NASA Astrophysics Data System (ADS)
Kalantarians, Narbe; Christy, Eric; Keppel, Cynthia
2017-09-01
World data for the F2 structure function for Iron, as measured by multiple charged lepton and neutrino deep inelastic scattering experiments, are compared. Data obtained from charged lepton and neutrino scattering at larger values of x are in remarkably good agreement with a simple invocation of the 18/5 rule, while a discrepancy in the behavior of the data obtained from the different probes well beyond the data uncertainties is observed in the shadowing/anti-shadowing transition region where the Bjorken scaling variable x is less than 0.15. The data are compared to theoretical calculations. Details and results of the data comparison will be presented, along with future plans.
Hwang, Wang-Taek; Min, Misook; Jeong, Hyunhak; Kim, Dongku; Jang, Jingon; Yoo, Daekyung; Jang, Yeonsik; Kim, Jun-Woo; Yoon, Jiyoung; Chung, Seungjun; Yi, Gyu-Chul; Lee, Hyoyoung; Wang, Gunuk; Lee, Takhee
2016-11-25
We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.
Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J
2013-10-08
Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior.
NASA Astrophysics Data System (ADS)
Mary, Benjamin; Peruzzo, Luca; Boaga, Jacopo; Schmutz, Myriam; Wu, Yuxin; Hubbard, Susan S.; Cassiani, Giorgio
2017-04-01
Nowadays, best viticulture practices require the joint interpretation of climate and soils data. However, information about the soil structure and subsoil processes is often lacking, as point measurements, albeit precise, cannot ensure sufficient spatial coverage and resolution. Non-invasive methods can provide spatially extensive, high resolution information that, supported by traditional point-like data, help complete the complex picture of subsoil static and dynamic reality. So far very little emphasis has been given to investigating the role of soil properties and even less of roots activity on winegrapes. Vine plant's root systems play an important role in providing the minerals to the plants, but also control the water uptake and thus the water state of the vines, which is a key factor determining the grape quality potential. In this contribution we report about the measurements conducted since June 2016 in a vineyard near Bordeaux (France, Pessac Leognan Chateau). Two neighbor plants of different sizes have been selected. In order to spot small scale soil variations and root zone physical structure at the vicinity of the vine plants, we applied a methodology using longitudinal 2D tomography, 3D borehole-based electrical resistivity tomography and a variation of the mise-à-la-masse method (MALM) to assess the effect of plant roots on the current injection in the ground. Time-lapse measurements are particularly informative about the plant dynamics, and the focus is particularly applied on this approach. The time-lapse 3D ERT and MALM results are presented, and the potential to assimilate these data into a hydrological model that can account for the root water uptake as a function of atmospheric conditions is discussed.
Kang, Yijun; Gu, Xian; Hao, Yangyang; Hu, Jian
2016-03-01
The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge.
Environmental remediation following the Fukushima-Daiichi accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tagawa, A.; Miyahara, K.; Nakayama, S.
2013-07-01
A wide area of Fukushima Prefecture was contaminated with radioactivity released by the Fukushima Daiichi nuclear accident. The decontamination pilot projects conducted by JAEA aimed at demonstrating the applicability of different techniques to rehabilitate affected areas. As most radioactive cesium is concentrated at the top of the soil column and strongly bound to mineral surfaces, there are 3 options left to decrease the gamma dose rate (usually measured 1 m above the ground surface): the stripping of the contaminated topsoil (i.e. direct removal of cesium), the dilution by mixing and the soil profile inversion. The last two options do notmore » generate waste. As the half-distance of {sup 137}Cs gammas in soil is in the order of 5-6 cm (depending on density and water content), the shielding by 50 cm of uncontaminated deep soil would theoretically reduce gamma doses by about 3 orders of magnitude. Which option is employed depends basically on the Cesium concentration in the topsoil, averaged over a 15-cm thickness. The JAEA's decontamination pilot projects focus on soil profile inversion and topsoil stripping. Two different techniques have been tested for the soil profile inversion: one is the reversal tillage by which surface soil of thickness of several tens of cm is reversed by using a tractor plough and the other is the complete interchanging of contaminated topsoil with uncontaminated subsoil by using a back-hoe. Reversal tillage with a tractor plough cost about 30 yen/m{sup 2}, which is an order of magnitude lower than that of topsoil-subsoil interchange (about 300 yen/m{sup 2}). Topsoil stripping is significantly more costly (between 550 yen/m{sup 2} and 690 yen/m{sup 2} according to the equipment used)« less
Vadose Zone Flow and Transport of Dissolved Organic Carbon at Multiple Scales in Humid Regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, Philip M; Mayes, Melanie; Mulholland, Patrick J
2006-06-01
Scientists must embrace the necessity to offset global CO{sub 2} emissions regardless of politics. Efforts to enhance terrestrial organic carbon sequestration have traditionally focused on aboveground biomass and surface soils. An unexplored potential exists in thick lower horizons of widespread, mature soils such as Alfisols, Ultisols, and Oxisols. We present a case study of fate and transport of dissolved organic carbon (DOC) in a highly weathered Ultisol, involving spatial scales from the laboratory to the landscape. Our objectives were to interpret processes observed at various scales and provide an improved understanding of coupled hydrogeochemical mechanisms that control DOC mobility andmore » sequestration in deep subsoils within humid climatic regimes. Our approach is multiscale, using laboratory-scale batch and soil columns (0.2 by 1.0 m), an in situ pedon (2 by 2 by 3 m), a well-instrumented subsurface facility on a subwatershed (0.47 ha), and ephemeral and perennial stream discharge at the landscape scale (38.4 ha). Laboratory-scale experiments confirmed that lower horizons have the propensity to accumulate DOC, but that preferential fracture flow tends to limit sequestration. Intermediate-scale experiments demonstrated the beneficial effects of C diffusion into soil micropores. Field- and landscape-scale studies demonstrated coupled hydrological, geochemical, and microbiological mechanisms that limit DOC sequestration, and their sensitivity to local environmental conditions. Our results suggest a multi-scale approach is necessary to assess the propensity of deep subsoils to sequester organic C in situ. By unraveling fundamental organic C sequestration mechanisms, we improve the conceptual and quantitative understanding needed to predict and alter organic C budgets in soil systems.« less
Feigl, Viktória; Ujaczki, Éva; Vaszita, Emese; Molnár, Mónika
2017-10-01
Red mud can be applied as soil ameliorant to acidic, sandy and micronutrient deficient soils. There are still knowledge gaps regarding the effects of red mud on the soil microbial community. The Biolog EcoPlate technique is a promising tool for community level physiological profiling. This study presents a detailed evaluation of Biolog EcoPlate data from two case studies. In experiment "A" red mud from Ajka (Hungary) was mixed into acidic sandy soil in soil microcosms at 5-50 w/w%. In experiement "B" red mud soil mixture was mixed into low quality subsoil in a field experiment at 5-50 w/w%. According to average well color development, substrate average well color development and substrate richness 5-20% red mud increased the microbial activity of the acidic sandy soil over the short term, but the effect did not last for 10months. Shannon diversity index showed that red mud at up to 20% did not change microbial diversity over the short term, but the diversity decreased by the 10th month. 30-50% red mud had deteriorating effect on the soil microflora. 5-20% red mud soil mixture in the low quality subsoil had a long lasting enhancing effect on the microbial community based on all Biolog EcoPlate parameters. However, 50% red mud soil mixture caused a decrease in diversity and substrate richness. With the Biolog EcoPlate we were able to monitor the changes of the microbial community in red mud affected soils and to assess the amount of red mud and red mud soil mixture applicable for soil treatment in these cases. Copyright © 2017 Elsevier B.V. All rights reserved.
Schnecker, Jörg; Wild, Birgit; Hofhansl, Florian; Eloy Alves, Ricardo J.; Bárta, Jiří; Čapek, Petr; Fuchslueger, Lucia; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Hofer, Angelika; Kienzl, Sandra; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Šantrůčková, Hana; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Weltin, Georg; Richter, Andreas
2014-01-01
Enzyme-mediated decomposition of soil organic matter (SOM) is controlled, amongst other factors, by organic matter properties and by the microbial decomposer community present. Since microbial community composition and SOM properties are often interrelated and both change with soil depth, the drivers of enzymatic decomposition are hard to dissect. We investigated soils from three regions in the Siberian Arctic, where carbon rich topsoil material has been incorporated into the subsoil (cryoturbation). We took advantage of this subduction to test if SOM properties shape microbial community composition, and to identify controls of both on enzyme activities. We found that microbial community composition (estimated by phospholipid fatty acid analysis), was similar in cryoturbated material and in surrounding subsoil, although carbon and nitrogen contents were similar in cryoturbated material and topsoils. This suggests that the microbial community in cryoturbated material was not well adapted to SOM properties. We also measured three potential enzyme activities (cellobiohydrolase, leucine-amino-peptidase and phenoloxidase) and used structural equation models (SEMs) to identify direct and indirect drivers of the three enzyme activities. The models included microbial community composition, carbon and nitrogen contents, clay content, water content, and pH. Models for regular horizons, excluding cryoturbated material, showed that all enzyme activities were mainly controlled by carbon or nitrogen. Microbial community composition had no effect. In contrast, models for cryoturbated material showed that enzyme activities were also related to microbial community composition. The additional control of microbial community composition could have restrained enzyme activities and furthermore decomposition in general. The functional decoupling of SOM properties and microbial community composition might thus be one of the reasons for low decomposition rates and the persistence of 400 Gt carbon stored in cryoturbated material. PMID:24705618
Wang, Chao; White, Philip J; Li, Chunjian
2017-05-01
Effects of soil depth and plant growth stages on arbuscular mycorrhizal fungal (AMF) colonization and community structure in maize roots and their potential contribution to host plant phosphorus (P) nutrition under different P-fertilizer inputs were studied. Research was conducted on a long-term field experiment over 3 years. AMF colonization was assessed by AM colonization rate and arbuscule abundances and their potential contribution to host P nutrition by intensity of fungal alkaline phosphatase (ALP)/acid phosphatase (ACP) activities and expressions of ZmPht1;6 and ZmCCD8a in roots from the topsoil and subsoil layer at different growth stages. AMF community structure was determined by specific amplification of 18S rDNA. Increasing P inputs up to 75-100 kg ha -1 yr -1 increased shoot biomass and P content but decreased AMF colonization and interactions between AMF and roots. AM colonization rate, intensity of fungal ACP/ALP activities, and expression of ZmPht1;6 in roots from the subsoil were greater than those from topsoil at elongation and silking but not at the dough stage when plants received adequate or excessive P inputs. Neither P input nor soil depth influenced the number of AMF operational taxonomic units (OTUs) present in roots, but P-fertilizer input, in particular, influenced community composition and relative AMF abundance. In conclusion, although increasing P inputs reduce AMF colonization and influence AMF community structure, AMF can potentially contribute to plant P nutrition even in well-fertilized soils, depending on the soil layer in which roots are located and the growth stage of host plants.
NASA Astrophysics Data System (ADS)
Hennings, Nina; Kuzyakov, Yakov
2017-04-01
In many tropical areas, rainforests are being cleared in order to exploit timber and other forest products as well as plant crops for food, feed and fuel use. The determinants of different patterns of deforestation and the roles of resulting transformation systems of tropical riparian rainforests for ecological functions have yet received little attention in scientific research. Especially C stocks in riparian zones are strongly affected by climate and land use changes that lead to changes in water regime and ground water level drops. We investigated the effects of land transformations in riparian ecosystems of Sumatra, on soil C content, stocks and decomposability at the landscape scale. We compare C losses in transformation systems and rainforests and estimate the contribution of soil erosion and organic matter mineralization. Further, these losses are related to changing water level and temperature increase along increasing distance to the stream. This approach is based on changing δ13C values of SOC in the topsoil as compared to those in subsoil. The shift of δ13C of SOC in the topsoil from the linear regression calculated by δ13C value with log(SOC) in the topsoil represents the modification of the C turnover rate in the top soil. Erosion is estimated by the shift of the δ13C value of SOC in the subsoil under plantations. Further, the δ13C and δ15N soil profiles and their comparison with litter of local vegetation, can be used to estimate the contribution of autochthonous and allochthonous organics to soil C stocks. Preliminary results show strong increase of erosive losses, increased decomposition with land-use transformation and decrease of C stocks with decreasing water table.
NASA Astrophysics Data System (ADS)
Ofomola, M. O.; Iserhien-Emekeme, R. E.; Okocha, F. O.; Adeoye, T. O.
2018-06-01
An integrated geophysical and geotechnical investigation has been carried out at site III of the Delta State University, Abraka, Nigeria. This took place in a bid to generate information on the competence of the soil in withstanding stress and strain emanating from overburden or pore pressure, swelling, cracking and other anthropogenic activity in relation to civil engineering and building structures. An electromagnetic method employing the very low frequency (VLF) technique, and electrical resistivity employing the Wenner and the vertical electrical sounding techniques were used for this study. Soil samples were also collected at depth for geotechnical analysis. Isoresistivity slices generated from the data of 33 VES stations at 1 m showed generally low resistivity values of subsurface earth materials, classified as clayey sand, sandy clay or clay, and ranging from 60-300 Ωm. However, at depths of 3 and 5 m, the result showed a generally high resistivity distribution with values ranging from 500-6000 Ωm, which is an indication of competent Earth materials of fine to coarse grain sand. The results of the liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction and clay content of the soil samples vary from 10%-17%, 18%-29%, 3%-15%, 45-95 KN m-2, 31°-35° and 14%-22% respectively. The low cohesion, low clay content and high angle of internal friction of the soil at the encountered depth makes it competent for engineering foundation. It is concluded that the subsoil in the area, starting at a depth of 3 m, is a competent material for hosting engineering structures.
Cravotta, C.A.
1995-01-01
Stable isotopes of carbon (C), nitrogen (N), and sulfur (S) in nitrogen sources and nearby samples of topsoil, subsoil, runoff water, and stream water were measured to evaluate the feasibility of using isotopic data to identify nitrogen sources in stream water from forested, agricultural, or suburban land-use areas. Chemical and isotopic compositions were measured for six N-source types consisting of rain water, forest-leaf litter, synthetic fertilizer, farm-animal manure, municipal-sewage effluent and sludge, and septic-tank effluent and sludge. Compositions of topsoil, subsoil, runoff water, and stream water were measured to evaluate changes in compositions of transported N-containing materials near the N source. Animal manure, human waste (sewage plus septic), and forest-leaf litter can be distinguished on the basis of C; however, most N-sources can not be distinguished on the basis of N and S, owing to wide ranges of compositions and overlap among different N-source types. Although values of N for soil and runoff-water samples are qualitatively similar to those of the applied N source, values of C and S for runoff-water and stream-water samples appear to reflect the compositions of relatively large reservoirs of the elements in soil organic matter and minerals, respectively, and not the composition of the applied N source. Because of incomplete chemical transfor- mations, the ratio of organic carbon to total nitrogen for particulates in runoff or stream waters generally is lower than that for associated, nearby soils, and isotopic compositions commonly differ between particulate and dissolved fractions in the water.
A microtremor survey to define the subsoil structure in a mud volcano areas
NASA Astrophysics Data System (ADS)
Panzera, Francesco; D'Amico, Sebastiano; Lupi, Matteo; Karyono, Karyono; Mazzini, Adriano
2017-04-01
Mud erupting systems have been observed and studied in different localities on the planet. They are characterized by emissions of fluids and fragmented sedimentary rocks creating large structures with different morphologies. This is mainly due to the presence of clay-bearing strata that can be buoyant in the surrounding regions and over-pressured fluids that facilitate the formation of diapirs through sedimentary rocks. In this study, we investigate the Lusi mud erupting system mainly by using ambient vibration methods. In particular, thickness of the sediments and the body wave velocities have been investigated. Results are integrated with gravimetry and electrical resistivity data in order to locate the main geological discontinuities in the area as well as to reconstruct a 3D model of the buried structure. The approach commonly used for this type of studies is based on the ratio of the horizontal to vertical components of ground motion (HVSR) and on passive array techniques. The HVSR generally enables to recognize peaks that point out to the fundamental frequency of the site, which usually fit quite well the theoretical resonance curves. The combination of HVSR and shear wave velocity, coming from passive array techniques, enables to collect valuable information about the subsurface structures. Here we present new data collected at the mud volcano and sedimentary hosted hydrothermal system sites in order to investigate the depths of the main discontinuities and of the hypothesized hydrocarbon reservoirs. We present the case study of Salse di Nirano (northen Italy), Salinelle (Mt. Etna, Sicily) and Lusi hydrothermal systems (Indonesia). Our results indicate that the ambient vibrations study approach represents a swift and simplified methods that provides quick information on the shallow subsoil structure of the investigated areas.
Load dissipation by corn residue on tilled soil in laboratory and field-wheeling conditions.
Reichert, José M; Brandt, André A; Rodrigues, Miriam F; Reinert, Dalvan J; Braida, João A
2016-06-01
Crop residues may partially dissipate applied loads and reduce soil compaction. We evaluated the effect of corn residue on energy-applied dissipation during wheeling. The experiment consisted of a preliminary laboratory test and a confirmatory field test on a Paleaudalf soil. In the laboratory, an adapted Proctor test was performed with three energy levels, with and without corn residue. Field treatments consisted of three 5.1 Mg tractor wheeling intensities (0, 2, and 6), with and without 12 Mg ha(-1) corn residue on the soil surface. Corn residue on the soil surface reduced soil bulk density in the adapted Proctor test. By applying energy of 52.6 kN m m(-3) , soil dissipated 2.98% of applied energy, whereas with 175.4 kN m m(-3) a dissipation of 8.60% was obtained. This result confirms the hypothesis that surface mulch absorbs part of the compaction effort. Residue effects on soil compaction observed in the adapted Proctor test was not replicated under subsoiled soil field conditions, because of differences in applied pressure and soil conditions (structure, moisture and volume confinement). Nevertheless, this negative result does not mean that straw has no effect in the field. Such effects should be measured via stress transmission and compared to soil load-bearing capacity, rather than on bulk deformations. Wheeling by heavy tractor on subsoiled soil increased compaction, independently of surface residue. Two wheelings produced a significantly increase, but six wheelings did not further increase compaction. Reduced traffic intensity on recently tilled soil is necessary to minimize soil compaction, since traffic intensity show a greater effect than surface mulch on soil protection from excessive compaction. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Geotechnical Parameters of Alluvial Soils from in-situ Tests
NASA Astrophysics Data System (ADS)
Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jędrzej
2012-10-01
The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.
Geotechnical Parameters of Alluvial Soils from in-situ Tests
NASA Astrophysics Data System (ADS)
Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jedrzej
2012-10-01
The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the
Root carbon decomposition and microbial biomass response at different soil depths
NASA Astrophysics Data System (ADS)
Rumpel, C.
2012-12-01
The relationship between root litter addition and soil organic matter (SOM) formation in top- versus subsoils is unknown. The aim of this study was to investigate root litter decomposition and stabilisation in relation to microbial parameters in different soil depths. Our conceptual approach included incubation of 13C-labelled wheat roots at 30, 60 and 90 cm soil depth for 36 months under field conditions. Quantitative root carbon contribution to SOM was assessed, changes of bulk root chemistry studied by solid-state 13C NMR spectroscopy and lignin content and composition was assessed after CuO oxidation. Compound-specific isotope analysis allowed to assess the role of root lignin for soil C storage in the different soil depths. Microbial biomass and community structure was determined after DNA extraction. After three years of incubation, O-alkyl C most likely assigned to polysaccharides decreased in all soil depth compared to the initial root material. The degree of root litter decomposition assessed by the alkyl/O-alkyl ratio decreased with increasing soil depth, while aryl/O-alkyl ratio was highest at 60 cm depth. Root-derived lignin showed depth specific concentrations (30 < 90 < 60 cm). Its composition was soil depth independent suggesting that microbial communities in all three soil depths had similar degradation abilities. Microbial biomass C and fungi contribution increased after root litter addition. Their community structure changed after root litter addition and showed horizon specific dynamics. Our study shows that root litter addition can contribute to C storage in subsoils but did not influence C storage in topsoil. We conclude that specific conditions of single soil horizons have to be taken into account if root C dynamics are to be fully understood.