Potter, Huntington
2017-01-01
Phenotypic variability is a fundamental feature of the human population and is particularly evident among people with Down syndrome and/or Alzheimer’s disease. Herein, we review current theories of the potential origins of this phenotypic variability and propose a novel mechanism based on our finding that the Alzheimer’s disease-associated Aβ peptide, encoded on chromosome 21, disrupts the mitotic spindle, induces abnormal chromosome segregation, and produces mosaic populations of aneuploid cells in all tissues of people with Alzheimer’s disease and in mouse and cell models thereof. Thus, individuals exposed to increased levels of the Aβ peptide should accumulate mosaic populations of aneuploid cells, with different chromosomes affected in different tissues and in different individuals. Specifically, people with Down syndrome, who express elevated levels of Aβ peptide throughout their lifetimes, would be predicted to accumulate additional types of aneuploidy, beyond trisomy 21 and including changes in their trisomy 21 status, in mosaic cell populations. Such mosaic aneuploidy would introduce a novel form of genetic variability that could potentially underlie much of the observed phenotypic variability among people with Down syndrome, and possibly also among people with Alzheimer’s disease. This mosaic aneuploidy theory of phenotypic variability in Down syndrome is supported by several observations, makes several testable predictions, and identifies a potential approach to reducing the frequency of some of the most debilitating features of Down syndrome, including Alzheimer’s disease. PMID:29516054
Phenotypic similarities and differences in patients with a p.Met112Ile mutation in SOX10.
Pingault, Veronique; Pierre-Louis, Laurence; Chaoui, Asma; Verloes, Alain; Sarrazin, Elisabeth; Brandberg, Goran; Bondurand, Nadege; Uldall, Peter; Manouvrier-Hanu, Sylvie
2014-09-01
Waardenburg syndrome (WS) is characterized by an association of pigmentation abnormalities and sensorineural hearing loss. Four types, defined on clinical grounds, have been delineated, but this phenotypic classification correlates imperfectly with known molecular anomalies. SOX10 mutations have been found in patients with type II and type IV WS (i.e., with Hirschsprung disease), more complex syndromes, and partial forms of the disease. The phenotype induced by SOX10 mutations is highly variable and, except for the neurological forms of the disease, no genotype-phenotype correlation has been characterized to date. There is no mutation hotspot in SOX10 and most cases are sporadic, making it particularly difficult to correlate the phenotypic and genetic variability. This study reports on three independent families with SOX10 mutations predicted to result in the same missense mutation at the protein level (p.Met112Ile), offering a rare opportunity to improve our understanding of the mechanisms underlying phenotypic variability. The pigmentation defects of these patients are very similar, and the neurological symptoms showed a somewhat similar evolution over time, indicating a potential partial genotype-phenotype correlation. However, variability in gastrointestinal symptoms suggests that other genetic factors contribute to the expression of these phenotypes. No correlation between the rs2435357 polymorphism of RET and the expression of Hirschsprung disease was found. In addition, one of the patients has esophageal achalasia, which has rarely been described in WS. © 2014 Wiley Periodicals, Inc.
Phenotypic similarities and differences in patients with a p.Met112Ile mutation in SOX10
Pingault, Veronique; Pierre-Louis, Laurence; Chaoui, Asma; Verloes, Alain; Sarrazin, Elisabeth; Brandberg, Goran; Bondurand, Nadege; Uldall, Peter; Manouvrier-Hanu, Sylvie
2014-01-01
Waardenburg syndrome (WS) is characterized by an association of pigmentation abnormalities and sensorineural hearing loss. Four types, defined on clinical grounds, have been delineated, but this phenotypic classification correlates imperfectly with known molecular anomalies. SOX10 mutations have been found in patients with type II and type IV WS (i.e., with Hirschsprung disease), more complex syndromes, and partial forms of the disease. The phenotype induced by SOX10 mutations is highly variable and, except for the neurological forms of the disease, no genotype-phenotype correlation has been characterized to date. There is no mutation hotspot in SOX10 and most cases are sporadic, making it particularly difficult to correlate the phenotypic and genetic variability. This study reports on three independent families with SOX10 mutations predicted to result in the same missense mutation at the protein level (p.Met112Ile), offering a rare opportunity to improve our understanding of the mechanisms underlying phenotypic variability. The pigmentation defects of these patients are very similar, and the neurological symptoms showed a somewhat similar evolution over time, indicating a potential partial genotype-phenotype correlation. However, variability in gastrointestinal symptoms suggests that other genetic factors contribute to the expression of these phenotypes. No correlation between the rs2435357 polymorphism of RET and the expression of Hirschsprung disease was found. In addition, one of the patients has esophageal achalasia, which has rarely been described in WS. PMID:24845202
Feinberg, Andrew P; Irizarry, Rafael A
2010-01-26
Neo-Darwinian evolutionary theory is based on exquisite selection of phenotypes caused by small genetic variations, which is the basis of quantitative trait contribution to phenotype and disease. Epigenetics is the study of nonsequence-based changes, such as DNA methylation, heritable during cell division. Previous attempts to incorporate epigenetics into evolutionary thinking have focused on Lamarckian inheritance, that is, environmentally directed epigenetic changes. Here, we propose a new non-Lamarckian theory for a role of epigenetics in evolution. We suggest that genetic variants that do not change the mean phenotype could change the variability of phenotype; and this could be mediated epigenetically. This inherited stochastic variation model would provide a mechanism to explain an epigenetic role of developmental biology in selectable phenotypic variation, as well as the largely unexplained heritable genetic variation underlying common complex disease. We provide two experimental results as proof of principle. The first result is direct evidence for stochastic epigenetic variation, identifying highly variably DNA-methylated regions in mouse and human liver and mouse brain, associated with development and morphogenesis. The second is a heritable genetic mechanism for variable methylation, namely the loss or gain of CpG dinucleotides over evolutionary time. Finally, we model genetically inherited stochastic variation in evolution, showing that it provides a powerful mechanism for evolutionary adaptation in changing environments that can be mediated epigenetically. These data suggest that genetically inherited propensity to phenotypic variability, even with no change in the mean phenotype, substantially increases fitness while increasing the disease susceptibility of a population with a changing environment.
High phenotypic variability in Gerstmann-Sträussler-Scheinker disease.
Smid, Jerusa; Studart, Adalberto; Landemberger, Michele Christine; Machado, Cleiton Fagundes; Nóbrega, Paulo Ribeiro; Canedo, Nathalie Henriques Silva; Schultz, Rodrigo Rizek; Naslavsky, Michel Satya; Rosemberg, Sérgio; Kok, Fernando; Chimelli, Leila; Martins, Vilma Regina; Nitrini, Ricardo
2017-06-01
Gerstmann-Sträussler-Scheinker is a genetic prion disease and the most common mutation is p.Pro102Leu. We report clinical, molecular and neuropathological data of seven individuals, belonging to two unrelated Brazilian kindreds, carrying the p.Pro102Leu. Marked differences among patients were observed regarding age at onset, disease duration and clinical presentation. In the first kindred, two patients had rapidly progressive dementia and three exhibited predominantly ataxic phenotypes with variable ages of onset and disease duration. In this family, age at disease onset in the mother and daughter differed by 39 years. In the second kindred, different phenotypes were also reported and earlier ages of onset were associated with 129 heterozygosis. No differences were associated with apoE genotype. In these kindreds, the codon 129 polymorphism could not explain the clinical variability and 129 heterozygosis was associated with earlier disease onset. Neuropathological examination in two patients confirmed the presence of typical plaques and PrPsc immunopositivity.
Microbiome Heterogeneity Characterizing Intestinal Tissue and Inflammatory Bowel Disease Phenotype.
Tyler, Andrea D; Kirsch, Richard; Milgrom, Raquel; Stempak, Joanne M; Kabakchiev, Boyko; Silverberg, Mark S
2016-04-01
Inflammatory bowel disease has been associated with differential abundance of numerous organisms when compared to healthy controls (HCs); however, few studies have investigated variability in the microbiome across intestinal locations and how this variability might be related to disease location and phenotype. In this study, we have analyzed the microbiome of a large cohort of individuals recruited at Mount Sinai Hospital in Toronto, Canada. Biopsies were taken from subjects with Crohn's disease, ulcerative colitis, and HC, and also individuals having undergone ileal pouch-anal anastomosis for treatment of ulcerative colitis or familial adenomatous polyposis. Microbial 16S rRNA was sequenced using the Illumina MiSeq platform. We observed a great deal of variability in the microbiome characterizing different sampling locations. Samples from pouch and afferent limb were comparable in microbial composition. When comparing sigmoid and terminal ileum samples, more differences were observed. The greatest number of differentially abundant microbes was observed when comparing either pouch or afferent limb samples to sigmoid or terminal ileum. Despite these differences, we were able to observe modest microbial variability between inflammatory bowel disease phenotypes and HCs, even when controlling for sampling location and additional experimental factors. Most detected associations were observed between HCs and Crohn's disease, with decreases in specific genera in the families Ruminococcaceae and Lachnospiraceae characterizing tissue samples from individuals with Crohn's disease. This study highlights important considerations when analyzing the composition of the microbiome and also provides useful insight into differences in the microbiome characterizing these seemingly related phenotypes.
McParland, D; Phillips, C M; Brennan, L; Roche, H M; Gormley, I C
2017-12-10
The LIPGENE-SU.VI.MAX study, like many others, recorded high-dimensional continuous phenotypic data and categorical genotypic data. LIPGENE-SU.VI.MAX focuses on the need to account for both phenotypic and genetic factors when studying the metabolic syndrome (MetS), a complex disorder that can lead to higher risk of type 2 diabetes and cardiovascular disease. Interest lies in clustering the LIPGENE-SU.VI.MAX participants into homogeneous groups or sub-phenotypes, by jointly considering their phenotypic and genotypic data, and in determining which variables are discriminatory. A novel latent variable model that elegantly accommodates high dimensional, mixed data is developed to cluster LIPGENE-SU.VI.MAX participants using a Bayesian finite mixture model. A computationally efficient variable selection algorithm is incorporated, estimation is via a Gibbs sampling algorithm and an approximate BIC-MCMC criterion is developed to select the optimal model. Two clusters or sub-phenotypes ('healthy' and 'at risk') are uncovered. A small subset of variables is deemed discriminatory, which notably includes phenotypic and genotypic variables, highlighting the need to jointly consider both factors. Further, 7 years after the LIPGENE-SU.VI.MAX data were collected, participants underwent further analysis to diagnose presence or absence of the MetS. The two uncovered sub-phenotypes strongly correspond to the 7-year follow-up disease classification, highlighting the role of phenotypic and genotypic factors in the MetS and emphasising the potential utility of the clustering approach in early screening. Additionally, the ability of the proposed approach to define the uncertainty in sub-phenotype membership at the participant level is synonymous with the concepts of precision medicine and nutrition. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Gonzaga-Jauregui, Claudia; Harel, Tamar; Gambin, Tomasz; Kousi, Maria; Griffin, Laurie B.; Francescatto, Ludmila; Ozes, Burcak; Karaca, Ender; Jhangiani, Shalini; Bainbridge, Matthew N.; Lawson, Kim S.; Pehlivan, Davut; Okamoto, Yuji; Withers, Marjorie; Mancias, Pedro; Slavotinek, Anne; Reitnauer, Pamela J; Goksungur, Meryem T.; Shy, Michael; Crawford, Thomas O.; Koenig, Michel; Willer, Jason; Flores, Brittany N.; Pediaditrakis, Igor; Us, Onder; Wiszniewski, Wojciech; Parman, Yesim; Antonellis, Anthony; Muzny, Donna M.; Katsanis, Nicholas; Battaloglu, Esra; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.
2015-01-01
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ~45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy associated genes in subjects versus controls; confirmed in a second ethnically discrete neuropathy cohort, suggesting mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HMPVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity. PMID:26257172
Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases.
Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Banecka-Majkutewicz, Zyta; Banecki, Bogdan; Węgrzyn, Alicja; Węgrzyn, Grzegorz
2014-03-01
Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70%) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal storage diseases are monogenic, clear genotype-phenotype correlations occur only in some cases. In this article, we present an overview on various factors and processes, both general and specific for certain disorders, that can significantly modulate expression of phenotypes in these diseases. On the basis of recent reports describing studies on both animal models and clinical data, we propose a hypothesis that efficiency of production of compounds that cannot be degraded due to enzyme deficiency might be especially important in modulation of phenotypes of patients suffering from lysosomal storage diseases.
Identification of clinical phenotypes in knee osteoarthritis: a systematic review of the literature.
Dell'Isola, A; Allan, R; Smith, S L; Marreiros, S S P; Steultjens, M
2016-10-12
Knee Osteoarthritis (KOA) is a heterogeneous pathology characterized by a complex and multifactorial nature. It has been hypothesised that these differences are due to the existence of underlying phenotypes representing different mechanisms of the disease. The aim of this study is to identify the current evidence for the existence of groups of variables which point towards the existence of distinct clinical phenotypes in the KOA population. A systematic literature search in PubMed was conducted. Only original articles were selected if they aimed to identify phenotypes of patients aged 18 years or older with KOA. The methodological quality of the studies was independently assessed by two reviewers and qualitative synthesis of the evidence was performed. Strong evidence for existence of specific phenotypes was considered present if the phenotype was supported by at least two high-quality studies. A total of 24 studies were included. Through qualitative synthesis of evidence, six main sets of variables proposing the existence of six phenotypes were identified: 1) chronic pain in which central mechanisms (e.g. central sensitisation) are prominent; 2) inflammatory (high levels of inflammatory biomarkers); 3) metabolic syndrome (high prevalence of obesity, diabetes and other metabolic disturbances); 4) Bone and cartilage metabolism (alteration in local tissue metabolism); 5) mechanical overload characterised primarily by varus malalignment and medial compartment disease; and 6) minimal joint disease characterised as minor clinical symptoms with slow progression over time. This study identified six distinct groups of variables which should be explored in attempts to better define clinical phenotypes in the KOA population.
Nghiem, Peter P.; Bello, Luca; Stoughton, William B.; López, Sara Mata; Vidal, Alexander H.; Hernandez, Briana V.; Hulbert, Katherine N.; Gourley, Taylor R.; Bettis, Amanda K.; Balog-Alvarez, Cynthia J.; Heath-Barnett, Heather; Kornegay, Joe N.
2017-01-01
Duchenne muscular dystrophy (DMD) is an X-chromosome-linked disorder and the most common monogenic disease in people. Affected boys are diagnosed at a young age, become non-ambulatory by their early teens, and succumb to cardiorespiratory failure by their thirties. Despite being a monogenic condition resulting from mutations in the DMD gene, affected boys have noteworthy phenotypic variability. Efforts have identified genetic modifiers that could modify disease progression and be pharmacologic targets. Dogs affected with golden retriever muscular dystrophy (GRMD) have absent dystrophin and demonstrate phenotypic variability at the functional, histopathological, and molecular level. Our laboratory is particularly interested in muscle metabolism changes in dystrophin-deficient muscle. We identified several metabolic alterations, including myofiber type switching from fast (type II) to slow (type I), reduced glycolytic enzyme expression, reduced and morphologically abnormal mitochondria, and differential AMP-kinase phosphorylation (activation) between hypertrophied and wasted muscle. We hypothesize that muscle metabolism changes are, in part, responsible for phenotypic variability in GRMD. Pharmacological therapies aimed at modulating muscle metabolism can be tested in GRMD dogs for efficacy. PMID:28955176
Allelic and Phenotypic Heterogeneity in ABCA4 mutations
Burke, Tomas R; Tsang, Stephen H
2011-01-01
Since the discovery of the ABCA4 gene as the cause of autosomal recessive Stargardt disease/fundus flavimaculatus much has been written of the phenotypic variability in ABCA4 retinopathy. In this review the authors discuss the findings seen on examination and the disease features detected using various clinical tests. Important differential diagnoses are presented and unusual presentations of ABCA4 disease highlighted. PMID:21510770
Tiedt, Hannes O; Benjamin, Beate; Niedeggen, Michael; Lueschow, Andreas
2018-02-22
In rare cases, patients with Alzheimer disease (AD) present at an early age and with a family history suggestive of an autosomal dominant mode of inheritance. Mutations of the presenilin-1 (PSEN1) gene are the most common causes of dementia in these patients. Early-onset and particularly familial AD patients frequently present with variable non-amnestic cognitive symptoms such as visual, language or behavioural changes as well as non-cognitive, e.g. motor, symptoms. To investigate the phenotypic variability in carriers of the PSEN1 S170F mutation. We report a family with 4 patients carrying the S170F mutation of whom 2 underwent detailed clinical examinations. We discuss our current findings in the context of previously reported S170F cases. The clinical phenotype was consistent regarding initial memory impairment and early onset in the late twenties found in all S170F patients. There were frequent non-amnestic cognitive changes and, at early stages of the disease, indications of a more pronounced disturbance of visuospatial abilities as compared to face and object recognition. Non-cognitive symptoms most often included myoclonus and cerebellar ataxia. A review of the available case reports indicates some phenotypic variability associated with the S170F mutation including different constellations of symptoms such as parkinsonism and delusions. The variable clinical findings associated with the S170F mutation highlight the relevance of atypical phenotypes in the context of research and under a clinical perspective. CSF sampling and detection of Aβ species may be essential to indicate AD pathology in unclear cases presenting with cognitive and motor symptoms at a younger age. © 2018 S. Karger AG, Basel.
Cohen, Mark; Appleby, Brian; Safar, Jiri G
2016-01-01
Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrP(Sc)). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ∼30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.
Picker-Minh, Sylvie; Mignot, Cyril; Doummar, Diane; Hashem, Mais; Faqeih, Eissa; Josset, Patrice; Dubern, Béatrice; Alkuraya, Fowzan S; Kraemer, Nadine; Kaindl, Angela M
2016-04-29
Infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) has been recently linked to biallelic mutation of the peptidyl-tRNA hydrolase 2 gene PTRH2. Two index patients with IMNEPD in the original report had multiple neurological symptoms such as postnatal microcephaly, intellectual disability, developmental delay, sensorineural deafness, cerebellar atrophy, ataxia, and peripheral neuropathy. In addition, distal muscle weakness and abnormalities of thyroid, pancreas, and liver were found. Here, we report five further IMNEPD patients with a different homozygous PTRH2 mutation, broaden the phenotypic spectrum of the disease and differentiate common symptoms and interindividual variability in IMNEPD associated with a unique mutation. We thereby hope to better define IMNEPD and promote recognition and diagnosis of this novel disease entity.
[Waardenburg syndrome. A heterogenic disorder with variable penetrance].
Apaydin, F; Bereketoglu, M; Turan, O; Hribar, K; Maassen, M M; Günhan, O; Zenner, H-P; Pfister, M
2004-06-01
Waardenburg syndrome (WS) is an autosomal dominant disorder characterised by pigmentary anomalies of the skin, hairs, eyes and various defects of other neural crest derived tissues. It accounts for over 2% of congenital hearing impairment. At least four types are recognized on the basis of clinical and genetic criteria. Based on a screening of congenitally hearing impaired children, 12 families with WS type II were detected. Of special interest was the phenotype of these families, in particular the reduced penetrance of hearing impairment within the families. In all cases a high variability of the disease phenotype was detected and the penetrance of the clinical traits varied accordingly. Therefore, it is not possible to predict the clinical phenotype even in a single family. Based on these studies, we plan to identify the pathogenetic cause of the disease in order to perform a detailed genotype/phenotype analysis.
Ars, Elisabet; Torra, Roser
2017-10-01
A significant percentage of adults (10%) and children (20%) on renal replacement therapy have an inherited kidney disease (IKD). The new genomic era, ushered in by the next generation sequencing techniques, has contributed to the identification of new genes and facilitated the genetic diagnosis of the highly heterogeneous IKDs. Consequently, it has also allowed the reclassification of diseases and has broadened the phenotypic spectrum of many classical IKDs. Various genetic, epigenetic and environmental factors may explain 'atypical' phenotypes. In this article, we examine different mechanisms that may contribute to phenotypic variability and also provide case examples that illustrate them. The aim of the article is to raise awareness, among nephrologists and geneticists, of rare presentations that IKDs may show, to facilitate diagnosis.
Investigating the Genetic Architecture of the PR Interval Using Clinical Phenotypes.
Mosley, Jonathan D; Shoemaker, M Benjamin; Wells, Quinn S; Darbar, Dawood; Shaffer, Christian M; Edwards, Todd L; Bastarache, Lisa; McCarty, Catherine A; Thompson, Will; Chute, Christopher G; Jarvik, Gail P; Crosslin, David R; Larson, Eric B; Kullo, Iftikhar J; Pacheco, Jennifer A; Peissig, Peggy L; Brilliant, Murray H; Linneman, James G; Witte, John S; Denny, Josh C; Roden, Dan M
2017-04-01
One potential use for the PR interval is as a biomarker of disease risk. We hypothesized that quantifying the shared genetic architectures of the PR interval and a set of clinical phenotypes would identify genetic mechanisms contributing to PR variability and identify diseases associated with a genetic predictor of PR variability. We used ECG measurements from the ARIC study (Atherosclerosis Risk in Communities; n=6731 subjects) and 63 genetically modulated diseases from the eMERGE network (Electronic Medical Records and Genomics; n=12 978). We measured pairwise genetic correlations (rG) between PR phenotypes (PR interval, PR segment, P-wave duration) and each of the 63 phenotypes. The PR segment was genetically correlated with atrial fibrillation (rG=-0.88; P =0.0009). An analysis of metabolic phenotypes in ARIC also showed that the P wave was genetically correlated with waist circumference (rG=0.47; P =0.02). A genetically predicted PR interval phenotype based on 645 714 single-nucleotide polymorphisms was associated with atrial fibrillation (odds ratio=0.89 per SD change; 95% confidence interval, 0.83-0.95; P =0.0006). The differing pattern of associations among the PR phenotypes is consistent with analyses that show that the genetic correlation between the P wave and PR segment was not significantly different from 0 (rG=-0.03 [0.16]). The genetic architecture of the PR interval comprises modulators of atrial fibrillation risk and obesity. © 2017 American Heart Association, Inc.
Gal, Moran; Levanon, Erez Y; Hujeirat, Yasir; Khayat, Morad; Pe'er, Jacob; Shalev, Stavit
2014-12-01
Developmental malformations of the vitreoretinal vasculature are a heterogeneous group of conditions with various modes of inheritance, and include familial exudative vitreoretinopathy (FEVR), persistent fetal vasculature (PFV), and Norrie disease. We investigated a large consanguineous kindred with multiple affected individuals exhibiting variable phenotypes of abnormal vitreoretinal vasculature, consistent with the three above-mentioned conditions and compatible with autosomal recessive inheritance. Exome sequencing identified a novel c.542G > T (p.C181F) apparently mutation in the TSPAN12 gene that segregated with the ocular disease in the family. The TSPAN12 gene was previously reported to cause dominant and recessive FEVR, but has not yet been associated with other vitreoretinal manifestations. The intra-familial clinical variability caused by a single mutation in the TSPAN12 gene underscores the complicated phenotype-genotype correlation of mutations in this gene, and suggests that there are additional genetic and environmental factors involved in the complex process of ocular vascularization during embryonic development. Our study supports considering PFV, FEVR, and Norrie disease a spectrum of disorders, with clinical and genetic overlap, caused by mutations in distinct genes acting in the Norrin/β-catenin signaling pathway. © 2014 Wiley Periodicals, Inc.
Phenotype/genotype correlations in Gaucher disease type 1: Clinical and therapeutic implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibille, A.; Eng, C.M.; Kim, S.J.
1993-06-01
Gaucher disease is the most frequent lysosomal storage disease and the most prevalent genetic disease among Ashkenazi Jews. Gaucher disease type 1 is characterized by marked variability of the phenotype and by the absence of neuronopathic involvement. To test the hypothesis that this phenotypic variability was due to genetic compounds of several different mutant alleles, 161 symptomatic patients with Gaucher disease type 1 (> 90% Ashkenazi Jewish) were analyzed for clinical involvement, and their genotypes were determined. Qualitative and quantitative measures of disease involvement included age at onset of the disease manifestations, hepatic and splenic volumes, age at splenectomy, andmore » severity of bony disease. High statistically significant differences (P < .005) were found in each clinical parameter in patients with the N370S/N370S genotype compared with those patients with the N370S/84GG, N370S/L444P, and N370/ genotypes. The symptomatic N370S homozygotes had onset of their disease two to three decades later than patients with the other genotypes. In addition, patients with the latter genotypes have much more severely involved livers, spleens, and bones and had a higher incidence of splenectomy at an earlier age. These predictive genotype analyses provide the basis for genetic care delivery and therapeutic recommendations in patients affected with Gaucher disease type 1. 38 refs., 1 fig., 4 tabs.« less
Phenotypes of organ involvement in sarcoidosis.
Schupp, Jonas Christian; Freitag-Wolf, Sandra; Bargagli, Elena; Mihailović-Vučinić, Violeta; Rottoli, Paola; Grubanovic, Aleksandar; Müller, Annegret; Jochens, Arne; Tittmann, Lukas; Schnerch, Jasmin; Olivieri, Carmela; Fischer, Annegret; Jovanovic, Dragana; Filipovic, Snežana; Videnovic-Ivanovic, Jelica; Bresser, Paul; Jonkers, René; O'Reilly, Kate; Ho, Ling-Pei; Gaede, Karoline I; Zabel, Peter; Dubaniewicz, Anna; Marshall, Ben; Kieszko, Robert; Milanowski, Janusz; Günther, Andreas; Weihrich, Anette; Petrek, Martin; Kolek, Vitezslav; Keane, Michael P; O'Beirne, Sarah; Donnelly, Seamas; Haraldsdottir, Sigridur Olina; Jorundsdottir, Kristin B; Costabel, Ulrich; Bonella, Francesco; Wallaert, Benoît; Grah, Christian; Peroš-Golubičić, Tatjana; Luisetti, Mauritio; Kadija, Zamir; Pabst, Stefan; Grohé, Christian; Strausz, János; Vašáková, Martina; Sterclova, Martina; Millar, Ann; Homolka, Jiří; Slováková, Alena; Kendrick, Yvonne; Crawshaw, Anjali; Wuyts, Wim; Spencer, Lisa; Pfeifer, Michael; Valeyre, Dominique; Poletti, Venerino; Wirtz, Hubertus; Prasse, Antje; Schreiber, Stefan; Krawczak, Michael; Müller-Quernheim, Joachim
2018-01-01
Sarcoidosis is a highly variable, systemic granulomatous disease of hitherto unknown aetiology. The GenPhenReSa (Genotype-Phenotype Relationship in Sarcoidosis) project represents a European multicentre study to investigate the influence of genotype on disease phenotypes in sarcoidosis.The baseline phenotype module of GenPhenReSa comprised 2163 Caucasian patients with sarcoidosis who were phenotyped at 31 study centres according to a standardised protocol.From this module, we found that patients with acute onset were mainly female, young and of Scadding type I or II. Female patients showed a significantly higher frequency of eye and skin involvement, and complained more of fatigue. Based on multidimensional correspondence analysis and subsequent cluster analysis, patients could be clearly stratified into five distinct, yet undescribed, subgroups according to predominant organ involvement: 1) abdominal organ involvement, 2) ocular-cardiac-cutaneous-central nervous system disease involvement, 3) musculoskeletal-cutaneous involvement, 4) pulmonary and intrathoracic lymph node involvement, and 5) extrapulmonary involvement.These five new clinical phenotypes will be useful to recruit homogenous cohorts in future biomedical studies. Copyright ©ERS 2018.
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is the etiologic agent of columnaris disease and severely affects various freshwater aquaculture fish species worldwide. The objectives of this study were to determine the phenotypic characteristics and genetic variability among F. columnare isolates isolated from red tilapi...
From genotype to phenotype; clinical variability in Lesch-Nyhan disease. The role of epigenetics.
Trigueros Genao, M; Torres, R J
2014-11-01
Lesch-Nyhan disease is a rare genetic disease characterized by a deficiency in the function of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). Patients affected by this disease experience hyperuricemia, motor disorders, mental retardation and, in the most severe cases, self-mutilation. Its clinical manifestations depend on the enzymatic activity of HGPRT, which is classically linked to the type of alteration in the HGPRT gene. More than 400 mutations of this gene have been found. At present, one of the controversial aspects of the disease is the relationship between the genotype and phenotype; cases have been described lacking a mutation, such as the patient presented in this article, as well as families who despite sharing the same genetic defect show disorders with differing severity. Epigenetic processes, which modify the genetic expression without changing the sequence of the deoxyribonucleic acid (DNA), could explain the clinical variability observed in this disease. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Gemenetzi, M; Lotery, A J
2013-11-01
To investigate phenotypic variability in terms of best-corrected visual acuity (BCVA) in patients with Stargardt disease (STGD) and confirmed ABCA4 mutations. Entire coding region analysis of the ABCA4 gene by direct sequencing of seven patients with clinical findings of STGD seen in the Retina Clinics of Southampton Eye Unit between 2002 and 2011.Phenotypic variables recorded were BCVA, fluorescein angiographic appearance, electrophysiology, and visual fields. All patients had heterozygous amino acid-changing variants (missense mutations) in the ABCA4 gene. A splice sequence change was found in a 30-year-old patient with severly affected vision. Two novel sequence changes were identified: a missense mutation in a mildly affected 44-year-old patient and a frameshift mutation in a severly affected 34-year-old patient. The identified ABCA4 mutations were compatible with the resulting phenotypes in terms of BCVA. Higher BCVAs were recorded in patients with missense mutations. Sequence changes, predicted to have more deleterious effect on protein function, resulted in a more severe phenotype. This case series of STGD patients demonstrates novel genotype/phenotype correlations, which may be useful to counselling of patients. This information may prove useful in selection of candidates for clinical trials in ABCA4 disease.
Conrad, Douglas J; Bailey, Barbara A; Hardie, Jon A; Bakke, Per S; Eagan, Tomas M L; Aarli, Bernt B
2017-01-01
Clinical phenotyping, therapeutic investigations as well as genomic, airway secretion metabolomic and metagenomic investigations can benefit from robust, nonlinear modeling of FEV1 in individual subjects. We demonstrate the utility of measuring FEV1 dynamics in representative cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) populations. Individual FEV1 data from CF and COPD subjects were modeled by estimating median regression splines and their predicted first and second derivatives. Classes were created from variables that capture the dynamics of these curves in both cohorts. Nine FEV1 dynamic variables were identified from the splines and their predicted derivatives in individuals with CF (n = 177) and COPD (n = 374). Three FEV1 dynamic classes (i.e. stable, intermediate and hypervariable) were generated and described using these variables from both cohorts. In the CF cohort, the FEV1 hypervariable class (HV) was associated with a clinically unstable, female-dominated phenotypes while stable FEV1 class (S) individuals were highly associated with the male-dominated milder clinical phenotype. In the COPD cohort, associations were found between the FEV1 dynamic classes, the COPD GOLD grades, with exacerbation frequency and symptoms. Nonlinear modeling of FEV1 with splines provides new insights and is useful in characterizing CF and COPD clinical phenotypes.
Ge, Tian; Nichols, Thomas E.; Ghosh, Debashis; Mormino, Elizabeth C.
2015-01-01
Measurements derived from neuroimaging data can serve as markers of disease and/or healthy development, are largely heritable, and have been increasingly utilized as (intermediate) phenotypes in genetic association studies. To date, imaging genetic studies have mostly focused on discovering isolated genetic effects, typically ignoring potential interactions with non-genetic variables such as disease risk factors, environmental exposures, and epigenetic markers. However, identifying significant interaction effects is critical for revealing the true relationship between genetic and phenotypic variables, and shedding light on disease mechanisms. In this paper, we present a general kernel machine based method for detecting effects of interaction between multidimensional variable sets. This method can model the joint and epistatic effect of a collection of single nucleotide polymorphisms (SNPs), accommodate multiple factors that potentially moderate genetic influences, and test for nonlinear interactions between sets of variables in a flexible framework. As a demonstration of application, we applied the method to data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of the interactions between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease (CVD) risk factors, on hippocampal volume measurements derived from structural brain magnetic resonance imaging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, demonstrate significant interactions with CVD risk factors on hippocampal volume, suggesting that CR1 and EPHA1 may play a role in influencing AD-related neurodegeneration in the presence of CVD risks. PMID:25600633
Mitochondrial threshold effects.
Rossignol, Rodrigue; Faustin, Benjamin; Rocher, Christophe; Malgat, Monique; Mazat, Jean-Pierre; Letellier, Thierry
2003-01-01
The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases. PMID:12467494
Recurrent Rearrangements of Chromosome 1q21.1 and Variable Pediatric Phenotypes
Mefford, Heather C.; Sharp, Andrew J.; Baker, Carl; Itsara, Andy; Jiang, Zhaoshi; Buysse, Karen; Huang, Shuwen; Maloney, Viv K.; Crolla, John A.; Baralle, Diana; Collins, Amanda; Mercer, Catherine; Norga, Koen; de Ravel, Thomy; Devriendt, Koen; Bongers, Ernie M.H.F.; de Leeuw, Nicole; Reardon, William; Gimelli, Stefania; Bena, Frederique; Hennekam, Raoul C.; Male, Alison; Gaunt, Lorraine; Clayton-Smith, Jill; Simonic, Ingrid; Park, Soo Mi; Mehta, Sarju G.; Nik-Zainal, Serena; Woods, C. Geoffrey; Firth, Helen V.; Parkin, Georgina; Fichera, Marco; Reitano, Santina; Giudice, Mariangela Lo; Li, Kelly E.; Casuga, Iris; Broomer, Adam; Conrad, Bernard; Schwerzmann, Markus; Räber, Lorenz; Gallati, Sabina; Striano, Pasquale; Coppola, Antonietta; Tolmie, John L.; Tobias, Edward S.; Lilley, Chris; Armengol, Lluis; Spysschaert, Yves; Verloo, Patrick; De Coene, Anja; Goossens, Linde; Mortier, Geert; Speleman, Frank; van Binsbergen, Ellen; Nelen, Marcel R.; Hochstenbach, Ron; Poot, Martin; Gallagher, Louise; Gill, Michael; McClellan, Jon; King, Mary-Claire; Regan, Regina; Skinner, Cindy; Stevenson, Roger E.; Antonarakis, Stylianos E.; Chen, Caifu; Estivill, Xavier; Menten, Björn; Gimelli, Giorgio; Gribble, Susan; Schwartz, Stuart; Sutcliffe, James S.; Walsh, Tom; Knight, Samantha J.L.; Sebat, Jonathan; Romano, Corrado; Schwartz, Charles E.; Veltman, Joris A.; de Vries, Bert B.A.; Vermeesch, Joris R.; Barber, John C.K.; Willatt, Lionel; Tassabehji, May; Eichler, Evan E.
2009-01-01
BACKGROUND Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients. METHODS We tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons. RESULTS We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P = 1.1×10−7). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in the nine children with mental retardation or autism spectrum disorder and other variable features (P = 0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies. CONCLUSIONS We have identified recurrent molecular lesions that elude syndromic classification and whose disease manifestations must be considered in a broader context of development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with these lesions may be most readily achieved on the basis of genotype rather than phenotype. PMID:18784092
Diagnostic Challenges in Retinitis Pigmentosa: Genotypic Multiplicity and Phenotypic Variability
Chang, Susie; Vaccarella, Leah; Olatunji, Sunday; Cebulla, Colleen; Christoforidis, John
2011-01-01
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders. Diagnosis can be challenging as more than 40 genes are known to cause non-syndromic RP and phenotypic expression can differ significantly resulting in variations in disease severity, age of onset, rate of progression, and clinical findings. We describe the clinical manifestations of RP, the more commonly known causative gene mutations, and the genotypic-phenotypic correlation of RP. PMID:22131872
Karadima, Georgia; Koutsis, Georgios; Raftopoulou, Maria; Floroskufi, Paraskewi; Karletidi, Karolina-Maria; Panas, Marios
2014-06-15
Charcot-Marie-Tooth (CMT) disease, the most common hereditary neuropathy, is clinically and genetically heterogeneous. X-linked CMT (CMTX) is usually caused by mutations in the gap junction protein b 1 gene (GJB1) coding for connexin 32 (Cx32). The clinical manifestations of CMTX are characterized by significant variability, with some patients exhibiting central nervous system (CNS) involvement. We report four novel mutations in GJB1, c.191G>A (p.Cys64Tyr), c.508G>T (p.Val170Phe), c.778A>G (p.Lys260Glu) and c.300C>G (p.His100Gln) identified in four unrelated Greek families. These mutations were characterized by variable phenotypic expression, including a family with the Roussy-Lévy syndrome, and three of them were associated with mild clinical CNS manifestations. Copyright © 2014. Published by Elsevier B.V.
Lucarelli, Marco; Bruno, Sabina Maria; Pierandrei, Silvia; Ferraguti, Giampiero; Stamato, Antonella; Narzi, Fabiana; Amato, Annalisa; Cimino, Giuseppe; Bertasi, Serenella; Quattrucci, Serena; Strom, Roberto
2015-01-01
Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype–phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex mutations) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocategories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least two components of the variability usually found in the genotype–phenotype relationship. One component seems to depend on the genetic variation of CFTR, the other component on the cumulative effect of variations in other genes and cellular pathways independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach for a better comprehension of the genotype–phenotype relationship. However, a change from an allele-oriented to a genotypic-oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway. PMID:25910067
Kulshreshtha, Bindu; Singh, Seerat; Arora, Arpita
2013-12-01
The phenotypic variability among PCOS could be due to differences in insulin patterns. Hyperinsulinemia commonly accompanies Diabetes Mellitus (DM), obesity, hypertension and CAD, though, to a variable degree. We speculate that a family history of these diseases could differentially affect the phenotype of PCOS. To study the effect of DM/CAD/HT and obesity on the phenotype of PCOS. PCOS patients and age matched controls were enquired for a family background of DM, hypertension, CAD and obesity among parents and grandparents. Regression modelling was employed to examine predictors of obesity and first symptom in PCOS patients. There were 88 PCOS women and 77 age-matched controls (46 lean, 31 obese). A high prevalence of DM, CAD, obesity and hypertension was observed among parents and grandparents of women with PCOS compared to controls. Hypertension and CAD manifested more in father's side of family. BMI of PCOS subjects was significantly related to parental DM and obesity after correcting for age. First symptom of weight gain was significantly associated with number of parents with DM (p = 0.02) and first symptom of irregular periods was associated with number of parents with hypertension (p = 0.06). A family background of DM/HT and obesity diseases affects the phenotype of PCOS.
Kindler syndrome: extension of FERMT1 mutational spectrum and natural history.
Has, Cristina; Castiglia, Daniele; del Rio, Marcela; Diez, Marta Garcia; Piccinni, Eugenia; Kiritsi, Dimitra; Kohlhase, Jürgen; Itin, Peter; Martin, Ludovic; Fischer, Judith; Zambruno, Giovanna; Bruckner-Tuderman, Leena
2011-11-01
Mutations in the FERMT1 gene (also known as KIND1), encoding the focal adhesion protein kindlin-1, underlie the Kindler syndrome (KS), an autosomal recessive skin disorder with an intriguing progressive phenotype comprising skin blistering, photosensitivity, progressive poikiloderma with extensive skin atrophy, and propensity to skin cancer. Herein we review the clinical and genetic data of 62 patients, and delineate the natural history of the disorder, for example, age at onset of symptoms, or risk of malignancy. Although most mutations are predicted to lead to premature termination of translation, and to loss of kindlin-1 function, significant clinical variability is observed among patients. There is an association of FERMT1 missense and in-frame deletion mutations with milder disease phenotypes, and later onset of complications. Nevertheless, the clinical variability is not fully explained by genotype-phenotype correlations. Environmental factors and yet unidentified modifiers may play a role. Better understanding of the molecular pathogenesis of KS should enable the development of prevention strategies for disease complications. © 2011 Wiley Periodicals, Inc.
From mild ataxia to huntington disease phenocopy: the multiple faces of spinocerebellar ataxia 17.
Koutsis, Georgios; Panas, Marios; Paraskevas, George P; Bougea, Anastasia M; Kladi, Athina; Karadima, Georgia; Kapaki, Elisabeth
2014-01-01
Introduction. Spinocerebellar ataxia 17 (SCA 17) is a rare autosomal dominant cerebellar ataxia (ADCA) caused by a CAG/CAA expansion in the TBP gene, reported from a limited number of countries. It is a very heterogeneous ADCA characterized by ataxia, cognitive decline, psychiatric symptoms, and involuntary movements, with some patients presenting with Huntington disease (HD) phenocopies. The SCA 17 expansion is stable during parent-child transmission and intrafamilial phenotypic homogeneity has been reported. However, significant phenotypic variability within families has also been observed. Report of the Family. We presently report a Greek family with a pathological expansion of 54 repeats at the SCA 17 locus that displayed remarkable phenotypic variability. Among 3 affected members, one presented with HD phenocopy; one with progressive ataxia, dementia, chorea, dystonia, and seizures, and one with mild slowly progressive ataxia with minor cognitive and affective symptoms. Conclusions. This is the first family with SCA 17 identified in Greece and highlights the multiple faces of this rare disorder, even within the same family.
From Mild Ataxia to Huntington Disease Phenocopy: The Multiple Faces of Spinocerebellar Ataxia 17
Panas, Marios; Paraskevas, George P.; Bougea, Anastasia M.; Karadima, Georgia; Kapaki, Elisabeth
2014-01-01
Introduction. Spinocerebellar ataxia 17 (SCA 17) is a rare autosomal dominant cerebellar ataxia (ADCA) caused by a CAG/CAA expansion in the TBP gene, reported from a limited number of countries. It is a very heterogeneous ADCA characterized by ataxia, cognitive decline, psychiatric symptoms, and involuntary movements, with some patients presenting with Huntington disease (HD) phenocopies. The SCA 17 expansion is stable during parent-child transmission and intrafamilial phenotypic homogeneity has been reported. However, significant phenotypic variability within families has also been observed. Report of the Family. We presently report a Greek family with a pathological expansion of 54 repeats at the SCA 17 locus that displayed remarkable phenotypic variability. Among 3 affected members, one presented with HD phenocopy; one with progressive ataxia, dementia, chorea, dystonia, and seizures, and one with mild slowly progressive ataxia with minor cognitive and affective symptoms. Conclusions. This is the first family with SCA 17 identified in Greece and highlights the multiple faces of this rare disorder, even within the same family. PMID:25349749
Ge, Tian; Nichols, Thomas E; Ghosh, Debashis; Mormino, Elizabeth C; Smoller, Jordan W; Sabuncu, Mert R
2015-04-01
Measurements derived from neuroimaging data can serve as markers of disease and/or healthy development, are largely heritable, and have been increasingly utilized as (intermediate) phenotypes in genetic association studies. To date, imaging genetic studies have mostly focused on discovering isolated genetic effects, typically ignoring potential interactions with non-genetic variables such as disease risk factors, environmental exposures, and epigenetic markers. However, identifying significant interaction effects is critical for revealing the true relationship between genetic and phenotypic variables, and shedding light on disease mechanisms. In this paper, we present a general kernel machine based method for detecting effects of the interaction between multidimensional variable sets. This method can model the joint and epistatic effect of a collection of single nucleotide polymorphisms (SNPs), accommodate multiple factors that potentially moderate genetic influences, and test for nonlinear interactions between sets of variables in a flexible framework. As a demonstration of application, we applied the method to the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of the interactions between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease (CVD) risk factors, on hippocampal volume measurements derived from structural brain magnetic resonance imaging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, demonstrate significant interactions with CVD risk factors on hippocampal volume, suggesting that CR1 and EPHA1 may play a role in influencing AD-related neurodegeneration in the presence of CVD risks. Copyright © 2015 Elsevier Inc. All rights reserved.
Variable Bone Fragility Associated With an Amish COL1A2 Variant and a Knock-in Mouse Model
Daley, Ethan; Streeten, Elizabeth A; Sorkin, John D; Kuznetsova, Natalia; Shapses, Sue A; Carleton, Stephanie M; Shuldiner, Alan R; Marini, Joan C; Phillips, Charlotte L; Goldstein, Steven A; Leikin, Sergey; McBride, Daniel J
2010-01-01
Osteogenesis imperfecta (OI) is a heritable form of bone fragility typically associated with a dominant COL1A1 or COL1A2 mutation. Variable phenotype for OI patients with identical collagen mutations is well established, but phenotype variability is described using the qualitative Sillence classification. Patterning a new OI mouse model on a specific collagen mutation therefore has been hindered by the absence of an appropriate kindred with extensive quantitative phenotype data. We benefited from the large sibships of the Old Order Amish (OOA) to define a wide range of OI phenotypes in 64 individuals with the identical COL1A2 mutation. Stratification of carrier spine (L1–4) areal bone mineral density (aBMD) Z-scores demonstrated that 73% had moderate to severe disease (less than −2), 23% had mild disease (−1 to −2), and 4% were in the unaffected range (greater than −1). A line of knock-in mice was patterned on the OOA mutation. Bone phenotype was evaluated in four F1 lines of knock-in mice that each shared approximately 50% of their genetic background. Consistent with the human pedigree, these mice had reduced body mass, aBMD, and bone strength. Whole-bone fracture susceptibility was influenced by individual genomic factors that were reflected in size, shape, and possibly bone metabolic regulation. The results indicate that the G610C OI (Amish) knock-in mouse is a novel translational model to identify modifying genes that influence phenotype and for testing potential therapies for OI. © 2010 American Society for Bone and Mineral Research PMID:19594296
Lee, Hyokyeong; Moody-Davis, Asher; Saha, Utsab; Suzuki, Brian M; Asarnow, Daniel; Chen, Steven; Arkin, Michelle; Caffrey, Conor R; Singh, Rahul
2012-01-01
Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Development of techniques for automated, high-throughput drug screening against these diseases, especially in whole-organism settings, constitutes one of the great challenges of modern drug discovery. We present a method for enabling high-throughput phenotypic drug screening against diseases caused by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic responses. This method consists of two key parts: first, biological image analysis is employed to automatically monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using techniques of time-series analysis. We present results on a number of algorithmic issues pertinent to the time-series representation of phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our method to recognize and rigorously group parasites based on the variability of their phenotypic response to different drugs. The methods and results presented in this paper enable automatic and quantitative scoring of high-throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze and stratify parasites based on their phenotypic response to drugs. Together, these advancements represent a significant breakthrough for the process of drug discovery against schistosomiasis in particular and can be extended to other helmintic diseases which together afflict a large part of humankind.
2012-01-01
Background Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Development of techniques for automated, high-throughput drug screening against these diseases, especially in whole-organism settings, constitutes one of the great challenges of modern drug discovery. Method We present a method for enabling high-throughput phenotypic drug screening against diseases caused by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic responses. This method consists of two key parts: first, biological image analysis is employed to automatically monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using techniques of time-series analysis. Results We present results on a number of algorithmic issues pertinent to the time-series representation of phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our method to recognize and rigorously group parasites based on the variability of their phenotypic response to different drugs. Conclusions The methods and results presented in this paper enable automatic and quantitative scoring of high-throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze and stratify parasites based on their phenotypic response to drugs. Together, these advancements represent a significant breakthrough for the process of drug discovery against schistosomiasis in particular and can be extended to other helmintic diseases which together afflict a large part of humankind. PMID:22369037
Lesch-Nyhan variant syndrome: variable presentation in 3 affected family members.
Sarafoglou, Kyriakie; Grosse-Redlinger, Krista; Boys, Christopher J; Charnas, Laurence; Otten, Noelle; Broock, Robyn; Nyhan, William L
2010-06-01
Lesch-Nyhan disease is an inborn error of purine metabolism that results from deficiency of the activity of hypoxanthine phosphoribosyltransferase (HPRT). The heterogeneity of clinical phenotypes seen in HPRT deficiency corresponds to an inverse relationship between HPRT enzyme activity and clinical severity. With rare exception, each mutation produces a stereotypical pattern of clinical disease; onset of neurologic symptoms occurs during infancy and is thought to be nonprogressive. To document a family in which a single HPRT gene mutation has led to 3 different clinical and enzymatic phenotypes. Case report. Settings A university-based outpatient metabolic clinic and a biochemical genetics laboratory. Patients Three males (2 infants and their grandfather) from the same family with Lesch-Nyhan variant, including one of the oldest patients with Lesch-Nyhan variant at diagnosis (65 years). Clinical and biochemical observations. Sequencing of 5 family members revealed a novel mutation c.550G>T in exon 7 of the HPRT gene. The considerably variable clinical phenotype corresponded with the variable enzymatic activity in the 3 males, with the grandfather being the most severely affected. The different phenotypes encountered in the enzymatic analysis of cultured fibroblasts from a single mutation in the same family is unprecedented. The significant decrease in the grandfather's HPRT enzymatic activity compared with that of his grandchildren could be a function of the Hayflick Limit Theory of cell senescence.
Drawnel, Faye M; Boccardo, Stefano; Prummer, Michael; Delobel, Frédéric; Graff, Alexandra; Weber, Michael; Gérard, Régine; Badi, Laura; Kam-Thong, Tony; Bu, Lei; Jiang, Xin; Hoflack, Jean-Christophe; Kiialainen, Anna; Jeworutzki, Elena; Aoyama, Natsuyo; Carlson, Coby; Burcin, Mark; Gromo, Gianni; Boehringer, Markus; Stahlberg, Henning; Hall, Benjamin J; Magnone, Maria Chiara; Kolaja, Kyle; Chien, Kenneth R; Bailly, Jacques; Iacone, Roberto
2014-11-06
Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC) model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Measuring the effect of inter-study variability on estimating prediction error.
Ma, Shuyi; Sung, Jaeyun; Magis, Andrew T; Wang, Yuliang; Geman, Donald; Price, Nathan D
2014-01-01
The biomarker discovery field is replete with molecular signatures that have not translated into the clinic despite ostensibly promising performance in predicting disease phenotypes. One widely cited reason is lack of classification consistency, largely due to failure to maintain performance from study to study. This failure is widely attributed to variability in data collected for the same phenotype among disparate studies, due to technical factors unrelated to phenotypes (e.g., laboratory settings resulting in "batch-effects") and non-phenotype-associated biological variation in the underlying populations. These sources of variability persist in new data collection technologies. Here we quantify the impact of these combined "study-effects" on a disease signature's predictive performance by comparing two types of validation methods: ordinary randomized cross-validation (RCV), which extracts random subsets of samples for testing, and inter-study validation (ISV), which excludes an entire study for testing. Whereas RCV hardwires an assumption of training and testing on identically distributed data, this key property is lost in ISV, yielding systematic decreases in performance estimates relative to RCV. Measuring the RCV-ISV difference as a function of number of studies quantifies influence of study-effects on performance. As a case study, we gathered publicly available gene expression data from 1,470 microarray samples of 6 lung phenotypes from 26 independent experimental studies and 769 RNA-seq samples of 2 lung phenotypes from 4 independent studies. We find that the RCV-ISV performance discrepancy is greater in phenotypes with few studies, and that the ISV performance converges toward RCV performance as data from additional studies are incorporated into classification. We show that by examining how fast ISV performance approaches RCV as the number of studies is increased, one can estimate when "sufficient" diversity has been achieved for learning a molecular signature likely to translate without significant loss of accuracy to new clinical settings.
Zaremba, J; Feil, S; Juszko, J; Myga, W; van Duijnhoven, G; Berger, W
1998-09-01
To describe the phenotypic variability in a Polish Norrie disease (ND) family associated with the missense mutation A63D. A patient with spared vision from a Polish ND family underwent detailed ophthalmological examinations including slit-lamp biomicroscopy, ultrasound (USG), angiography, Goldmann kinetic visual field, and electroretinography (ERG). Mutation screening was carried out using the single-strand conformation polymorphism (SSCP) technique and subsequent DNA sequencing of the coding part of the ND gene. A mutation was detected (exon 3, A63D) in a large Polish family with 12 affected males, all but one presenting with classical ND symptoms. In one male, partially preserved vision was observed up to 40 years of age (distance acuity of the right eye 1/50 and left eye 2/50). Slit-lamp examination revealed remnants of a persistent primary vitreous and hyaloid artery. Upon angiography, the retina was vascularized within the posterior pole but not in the periphery. The ERG revealed pathological changes characteristic for chorioretinal degenerations. Within one family, individuals with identical sequence alterations in the ND gene can show remarkable phenotypic variability of the ocular symptoms. These findings indicate the involvement of additional factors (epigenetic or genetic) in ocular pathogenesis of ND.
Granell, Raquel; Sterne, Jonathan A C; Henderson, John
2012-01-01
Asthma is a complex heterogeneous disease that has increased in prevalence in many industrialised countries. However, the causes of asthma inception remain elusive. Consideration of sub-phenotypes of wheezing may reveal important clues to aetiological risk factors. Longitudinal phenotypes capturing population heterogeneity in wheezing reports from birth to 7 years were derived using latent class analysis in the Avon Longitudinal Study of Parents and Children (ALSPAC). Probability of class membership was used to examine the association between five wheezing phenotypes (transient early, prolonged early, intermediate-onset, late-onset, persistent) and early life risk factors for asthma. Phenotypes had similar patterns and strengths of associations with early environmental factors. Comparing transient early with prolonged early wheezing showed a similar pattern of association with most exposure variables considered in terms of the direction of the effect estimates but with prolonged early wheezing tending to have stronger associations than transient early wheezing except for parity and day care attendance. Associations with early life risk factors suggested that prolonged early wheeze might be a severe form of transient early wheezing. Although differences were found in the associations of early life risk factors with individual phenotypes, these did not point to novel aetiological pathways. Persistent wheezing phenotype has features suggesting overlap of early and late-onset phenotypes.
Norrie disease: extraocular clinical manifestations in 56 patients.
Smith, Sharon E; Mullen, Thomas E; Graham, Dionne; Sims, Katherine B; Rehm, Heidi L
2012-08-01
Norrie disease (ND) is an X-linked recessive disorder characterized by congenital blindness, progressive sensorineural hearing loss and cognitive impairment. The ocular phenotype has been well described, while the extraocular manifestations of the disorder are not well understood. We present the data from the Norrie Disease Registry, which consists of 56 patients with detailed clinical histories and genotype data. This study represents the largest, detailed investigation into the phenotypic spectrum of ND to date and more importantly expands knowledge of the extraocular clinical manifestations. We identify several novel aspects of the syndrome that will improve the management of these patients. In particular, we expand our understanding of the neurologic manifestations in ND and identify a chronic seizure disorder in approximately 10% of all patients. In addition, details of the hearing phenotype are described including the median age of onset (12 years of age) and how genotype affects onset. Moreover, we find vascular disease to be a significant component of ND; and vascular health should be, in the future, a component of patient clinical care. In summary, the results expand our understanding of the phenotypic variability and genotypic heterogeneity in ND patients. Copyright © 2012 Wiley Periodicals, Inc.
High-throughput discovery of novel developmental phenotypes.
Dickinson, Mary E; Flenniken, Ann M; Ji, Xiao; Teboul, Lydia; Wong, Michael D; White, Jacqueline K; Meehan, Terrence F; Weninger, Wolfgang J; Westerberg, Henrik; Adissu, Hibret; Baker, Candice N; Bower, Lynette; Brown, James M; Caddle, L Brianna; Chiani, Francesco; Clary, Dave; Cleak, James; Daly, Mark J; Denegre, James M; Doe, Brendan; Dolan, Mary E; Edie, Sarah M; Fuchs, Helmut; Gailus-Durner, Valerie; Galli, Antonella; Gambadoro, Alessia; Gallegos, Juan; Guo, Shiying; Horner, Neil R; Hsu, Chih-Wei; Johnson, Sara J; Kalaga, Sowmya; Keith, Lance C; Lanoue, Louise; Lawson, Thomas N; Lek, Monkol; Mark, Manuel; Marschall, Susan; Mason, Jeremy; McElwee, Melissa L; Newbigging, Susan; Nutter, Lauryl M J; Peterson, Kevin A; Ramirez-Solis, Ramiro; Rowland, Douglas J; Ryder, Edward; Samocha, Kaitlin E; Seavitt, John R; Selloum, Mohammed; Szoke-Kovacs, Zsombor; Tamura, Masaru; Trainor, Amanda G; Tudose, Ilinca; Wakana, Shigeharu; Warren, Jonathan; Wendling, Olivia; West, David B; Wong, Leeyean; Yoshiki, Atsushi; MacArthur, Daniel G; Tocchini-Valentini, Glauco P; Gao, Xiang; Flicek, Paul; Bradley, Allan; Skarnes, William C; Justice, Monica J; Parkinson, Helen E; Moore, Mark; Wells, Sara; Braun, Robert E; Svenson, Karen L; de Angelis, Martin Hrabe; Herault, Yann; Mohun, Tim; Mallon, Ann-Marie; Henkelman, R Mark; Brown, Steve D M; Adams, David J; Lloyd, K C Kent; McKerlie, Colin; Beaudet, Arthur L; Bućan, Maja; Murray, Stephen A
2016-09-22
Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.
High-throughput discovery of novel developmental phenotypes
Dickinson, Mary E.; Flenniken, Ann M.; Ji, Xiao; Teboul, Lydia; Wong, Michael D.; White, Jacqueline K.; Meehan, Terrence F.; Weninger, Wolfgang J.; Westerberg, Henrik; Adissu, Hibret; Baker, Candice N.; Bower, Lynette; Brown, James M.; Caddle, L. Brianna; Chiani, Francesco; Clary, Dave; Cleak, James; Daly, Mark J.; Denegre, James M.; Doe, Brendan; Dolan, Mary E.; Edie, Sarah M.; Fuchs, Helmut; Gailus-Durner, Valerie; Galli, Antonella; Gambadoro, Alessia; Gallegos, Juan; Guo, Shiying; Horner, Neil R.; Hsu, Chih-wei; Johnson, Sara J.; Kalaga, Sowmya; Keith, Lance C.; Lanoue, Louise; Lawson, Thomas N.; Lek, Monkol; Mark, Manuel; Marschall, Susan; Mason, Jeremy; McElwee, Melissa L.; Newbigging, Susan; Nutter, Lauryl M.J.; Peterson, Kevin A.; Ramirez-Solis, Ramiro; Rowland, Douglas J.; Ryder, Edward; Samocha, Kaitlin E.; Seavitt, John R.; Selloum, Mohammed; Szoke-Kovacs, Zsombor; Tamura, Masaru; Trainor, Amanda G; Tudose, Ilinca; Wakana, Shigeharu; Warren, Jonathan; Wendling, Olivia; West, David B.; Wong, Leeyean; Yoshiki, Atsushi; MacArthur, Daniel G.; Tocchini-Valentini, Glauco P.; Gao, Xiang; Flicek, Paul; Bradley, Allan; Skarnes, William C.; Justice, Monica J.; Parkinson, Helen E.; Moore, Mark; Wells, Sara; Braun, Robert E.; Svenson, Karen L.; de Angelis, Martin Hrabe; Herault, Yann; Mohun, Tim; Mallon, Ann-Marie; Henkelman, R. Mark; Brown, Steve D.M.; Adams, David J.; Lloyd, K.C. Kent; McKerlie, Colin; Beaudet, Arthur L.; Bucan, Maja; Murray, Stephen A.
2016-01-01
Approximately one third of all mammalian genes are essential for life. Phenotypes resulting from mouse knockouts of these genes have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5000 knockout mouse lines, we have identified 410 lethal genes during the production of the first 1751 unique gene knockouts. Using a standardised phenotyping platform that incorporates high-resolution 3D imaging, we identified novel phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes identified in our screen, thus providing a novel dataset that facilitates prioritization and validation of mutations identified in clinical sequencing efforts. PMID:27626380
Clinical and genetic characterization of a founder PKHD1 mutation in Afrikaners with ARPKD.
Lambie, Lindsay; Amin, Rasheda; Essop, Fahmida; Cnaan, Avital; Krause, Amanda; Guay-Woodford, Lisa M
2015-02-01
Autosomal recessive polycystic kidney disease (ARPKD; MIM 263200) occurs in 1:20,000 live births. Disease expression is widely variable, with approximately 30 % of affected neonates dying perinatally, while others survive to adulthood. Mutations at the PKHD1 locus are responsible for all typical presentations. The objectives of this study were to define the clinical and genetic characteristics in a cohort of South African patients of Afrikaner origin, a population with a high prevalence of ARPKD. DNA from the cohort was analyzed for background haplotypes and the p.M627K mutation previously identified in two unrelated Afrikaner patients. The clinical phenotype of the homozygous group was characterized. Analysis of 36 Afrikaner families revealed that 27 patients, from 24 (67 %) families, were homozygous for the p.M627K substitution, occurring on a common haplotype. The clinical phenotype of the homozygous individuals was variable. Our data provide strong evidence that the p.M627K substitution is a founder mutation in the Afrikaner population and can be used for streamlined diagnostic testing for at-risk pregnancies. The observed clinical variability suggests that disease expression is modulated by other genetic loci or by gene-environment interactions.
Protein Interactome of Muscle Invasive Bladder Cancer
Bhat, Akshay; Heinzel, Andreas; Mayer, Bernd; Perco, Paul; Mühlberger, Irmgard; Husi, Holger; Merseburger, Axel S.; Zoidakis, Jerome; Vlahou, Antonia; Schanstra, Joost P.; Mischak, Harald; Jankowski, Vera
2015-01-01
Muscle invasive bladder carcinoma is a complex, multifactorial disease caused by disruptions and alterations of several molecular pathways that result in heterogeneous phenotypes and variable disease outcome. Combining this disparate knowledge may offer insights for deciphering relevant molecular processes regarding targeted therapeutic approaches guided by molecular signatures allowing improved phenotype profiling. The aim of the study is to characterize muscle invasive bladder carcinoma on a molecular level by incorporating scientific literature screening and signatures from omics profiling. Public domain omics signatures together with molecular features associated with muscle invasive bladder cancer were derived from literature mining to provide 286 unique protein-coding genes. These were integrated in a protein-interaction network to obtain a molecular functional map of the phenotype. This feature map educated on three novel disease-associated pathways with plausible involvement in bladder cancer, namely Regulation of actin cytoskeleton, Neurotrophin signalling pathway and Endocytosis. Systematic integration approaches allow to study the molecular context of individual features reported as associated with a clinical phenotype and could potentially help to improve the molecular mechanistic description of the disorder. PMID:25569276
The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice.
Ingvorsen, C; Karp, N A; Lelliott, C J
2017-04-10
Metabolic disorders are commonly investigated using knockout and transgenic mouse models on the C57BL/6N genetic background due to its genetic susceptibility to the deleterious metabolic effects of high-fat diet (HFD). There is growing awareness of the need to consider sex in disease progression, but limited attention has been paid to sexual dimorphism in mouse models and its impact in metabolic phenotypes. We assessed the effect of HFD and the impact of sex on metabolic variables in this strain. We generated a reference data set encompassing glucose tolerance, body composition and plasma chemistry data from 586 C57BL/6N mice fed a standard chow and 733 fed a HFD collected as part of a high-throughput phenotyping pipeline. Linear mixed model regression analysis was used in a dual analysis to assess the effect of HFD as an absolute change in phenotype, but also as a relative change accounting for the potential confounding effect of body weight. HFD had a significant impact on all variables tested with an average absolute effect size of 29%. For the majority of variables (78%), the treatment effect was modified by sex and this was dominated by male-specific or a male stronger effect. On average, there was a 13.2% difference in the effect size between the male and female mice for sexually dimorphic variables. HFD led to a significant body weight phenotype (24% increase), which acts as a confounding effect on the other analysed variables. For 79% of the variables, body weight was found to be a significant source of variation, but even after accounting for this confounding effect, similar HFD-induced phenotypic changes were found to when not accounting for weight. HFD and sex are powerful modifiers of metabolic parameters in C57BL/6N mice. We also demonstrate the value of considering body size as a covariate to obtain a richer understanding of metabolic phenotypes.
Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco
2010-01-01
RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386
Cunha, Pedro Guimarães; Cotter, Jorge; Oliveira, Pedro; Vila, Isabel; Sousa, Nuno
2014-06-01
Cardiovascular disease and dementia are growing medical and social problems in aging societies. Appropriate knowledge of cardiovascular disease and cognitive decline risk factors (RFs) are critical for global CVR health preventive intervention. Many epidemiological studies use case definition based on data collected/measured in a single visit, a fact that can overestimate prevalence rates and distant from clinical practice demanding criteria. Portugal displays an elevated stroke mortality rate. However, population's global CV risk characterization is limited, namely, considering traditional/nontraditional RF and new intermediate phenotypes of CV and renal disease. Association of hemodynamic variables (pulse wave velocity and central blood pressure) with global CVR stratification, cognitive performance, and kidney disease are practically inexistent at a dwelling population level. After reviewing published data, we designed a population-based cohort study to analyze the prevalence of these cardiovascular RFs and intermediate phenotypes, using random sampling of adult dwellers living in 2 adjacent cities. Strict definition of phenotypes was planned: subjects were observed twice, and several hemodynamic and other biological variables measured at least 3 months apart. Three thousand thirty-eight subjects were enrolled, and extensive data collection (including central and peripheral blood pressure, pulse wave velocity), sample processing, and biobank edification were carried out. One thousand forty-seven cognitive evaluations were performed. Seeking for CV risk reclassification, early identification of subjects at risk, and evidence of early vascular aging and cognitive and renal function decline, using the strict daily clinical practice criteria, will lead to better resource allocation in preventive measures at a population level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guay-Woodford, L.M.; Hopkins, S.D.; Waldo, F.B.
Autosomal recessive polycystic kidney disease (ARPKD) is a one of the most common hereditary renal cystic diseases in children. Its clinical spectrum is widely variable with most cases presenting in infancy. Most affected neonates die within the first few hours of life. At present, prenatal diagnosis relies on fetal sonography, which is often imprecise in detecting even the severe form of the disease. Recently, in a cohort of families with mostly milder ARPKD phenotypes, an ARPKD locus was mapped to a 13-cM region of chromosome 6p21-cen. To determine whether severe perinatal ARPKD also maps to chromosome 6p, we have analyzedmore » the segregation of seven microsatellite markers from the ARPKD interval in 22 families with the severe phenotype. In the majority of the affected infants, ARPKD was documented by hisopathology. Our data confirm linkage and refine the ARPKD region to a 3.8-cM interval, delimited by the markers D6S465/D6S427/D6S436/D6S272 and D6S466. Taken together, these results suggest that, despite the wide variability in clinical phenotypes, there is a single ARPKD gene. These linkage data and the absence of genetic heterogeneity in all families tested to date have important implications for DNA-based prenatal diagnoses as well as for the isolation of the ARPKD gene. 22 refs., 4 figs., 1 tab.« less
Konold, Timm; Lee, Yoon Hee; Stack, Michael J; Horrocks, Claire; Green, Robert B; Chaplin, Melanie; Simmons, Marion M; Hawkins, Steve AC; Lockey, Richard; Spiropoulos, John; Wilesmith, John W; Wells, Gerald AH
2006-01-01
Background Given the theoretical proposal that bovine spongiform encephalopathy (BSE) could have originated from sheep scrapie, this study investigated the pathogenicity for cattle, by intracerebral (i.c.) inoculation, of two pools of scrapie agents sourced in Great Britain before and during the BSE epidemic. Two groups of ten cattle were each inoculated with pools of brain material from sheep scrapie cases collected prior to 1975 and after 1990. Control groups comprised five cattle inoculated with sheep brain free from scrapie, five cattle inoculated with saline, and for comparison with BSE, naturally infected cattle and cattle i.c. inoculated with BSE brainstem homogenate from a parallel study. Phenotypic characterisation of the disease forms transmitted to cattle was conducted by morphological, immunohistochemical, biochemical and biological methods. Results Disease occurred in 16 cattle, nine inoculated with the pre-1975 inoculum and seven inoculated with the post-1990 inoculum, with four cattle still alive at 83 months post challenge (as at June 2006). The different inocula produced predominantly two different disease phenotypes as determined by histopathological, immunohistochemical and Western immunoblotting methods and biological characterisation on transmission to mice, neither of which was identical to BSE. Whilst the disease presentation was uniform in all scrapie-affected cattle of the pre-1975 group, the post-1990 inoculum produced a more variable disease, with two animals sharing immunohistochemical and molecular profile characteristics with animals in the pre-1975 group. Conclusion The study has demonstrated that cattle inoculated with different pooled scrapie sources can develop different prion disease phenotypes, which were not consistent with the phenotype of BSE of cattle and whose isolates did not have the strain typing characteristics of the BSE agent on transmission to mice. PMID:17044917
Neural/Bayes network predictor for inheritable cardiac disease pathogenicity and phenotype.
Burghardt, Thomas P; Ajtai, Katalin
2018-04-11
The cardiac muscle sarcomere contains multiple proteins contributing to contraction energy transduction and its regulation during a heartbeat. Inheritable heart disease mutants affect most of them but none more frequently than the ventricular myosin motor and cardiac myosin binding protein c (mybpc3). These co-localizing proteins have mybpc3 playing a regulatory role to the energy transducing motor. Residue substitution and functional domain assignment of each mutation in the protein sequence decides, under the direction of a sensible disease model, phenotype and pathogenicity. The unknown model mechanism is decided here using a method combing neural and Bayes networks. Missense single nucleotide polymorphisms (SNPs) are clues for the disease mechanism summarized in an extensive database collecting mutant sequence location and residue substitution as independent variables that imply the dependent disease phenotype and pathogenicity characteristics in 4 dimensional data points (4ddps). The SNP database contains entries with the majority having one or both dependent data entries unfulfilled. A neural network relating causes (mutant residue location and substitution) and effects (phenotype and pathogenicity) is trained, validated, and optimized using fulfilled 4ddps. It then predicts unfulfilled 4ddps providing the implicit disease model. A discrete Bayes network interprets fulfilled and predicted 4ddps with conditional probabilities for phenotype and pathogenicity given mutation location and residue substitution thus relating the neural network implicit model to explicit features of the motor and mybpc3 sequence and structural domains. Neural/Bayes network forecasting automates disease mechanism modeling by leveraging the world wide human missense SNP database that is in place and expanding. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Phenotypic variability in familial prion diseases due to the D178N mutation
Zarranz, J; Digon, A; Atares, B; Rodriguez-Martine..., A; Arce, A; Carrera, N; Fernandez-Manchol..., I; Fernandez-Martine..., M; Fernandez-Maizteg..., C; Forcadas, I; Galdos, L; Gomez-Esteban, J; Ibanez, A; Lezcano, E; d Lopez; Marti-Masso, J; Mendibe, M; Urtasun, M; Uterga, J; Saracibar, N; Velasco, F; de Pancorbo, M M
2005-01-01
Background: Between January 1993 and December 2003, 19 patients with familial prion diseases due to the D178N mutation were referred to the regional epidemiological registry for spongiform encephalopathies in the Basque Country in Spain, a small community of some 2 100 000 inhabitants. Methods: Ten further patients belonging to the same pedigrees were retrospectively ascertained through neurological or neuropathological records. In four of the patients, the diagnosis was confirmed by analysing DNA obtained from paraffin blocks. In this article, we report on the clinical, genetic, and pathological features of the 23 patients carrying the D178N mutation confirmed by genetic molecular analysis. Haplotyping studies suggest a founder effect among Basque born families, explaining in part this unusually high incidence of the D178N mutation in a small community. Only two patients (8%) lack familial antecedents. Results: We have observed a phenotypic variability even among homozygous 129MM patients. Our findings challenge the currently accepted belief that MM homozygosity in codon 129 is always related to a fatal familial insomnia (FFI) phenotype. Indeed, seven out of 17 patients with a 129MM genotype in this series presented with a Creutzfeldt-Jakob disease (CJD) clinicopathological picture. Conclusions: The considerable clinical and pathological overlapping observed among homozygous 129MM patients favours the view that FFI and CJD178 are the extremes of a spectrum rather than two discrete and separate entities. Other genetic or environmental factors apart from the polymorphism in codon 129 may play a role in determining the phenotypic expression of the D178N mutation in the PRNP gene. PMID:16227536
Flex, Elisabetta; Jaiswal, Mamta; Pantaleoni, Francesca; Martinelli, Simone; Strullu, Marion; Fansa, Eyad K.; Caye, Aurélie; De Luca, Alessandro; Lepri, Francesca; Dvorsky, Radovan; Pannone, Luca; Paolacci, Stefano; Zhang, Si-Cai; Fodale, Valentina; Bocchinfuso, Gianfranco; Rossi, Cesare; Burkitt-Wright, Emma M.M.; Farrotti, Andrea; Stellacci, Emilia; Cecchetti, Serena; Ferese, Rosangela; Bottero, Lisabianca; Castro, Silvana; Fenneteau, Odile; Brethon, Benoît; Sanchez, Massimo; Roberts, Amy E.; Yntema, Helger G.; Van Der Burgt, Ineke; Cianci, Paola; Bondeson, Marie-Louise; Cristina Digilio, Maria; Zampino, Giuseppe; Kerr, Bronwyn; Aoki, Yoko; Loh, Mignon L.; Palleschi, Antonio; Di Schiavi, Elia; Carè, Alessandra; Selicorni, Angelo; Dallapiccola, Bruno; Cirstea, Ion C.; Stella, Lorenzo; Zenker, Martin; Gelb, Bruce D.; Cavé, Hélène; Ahmadian, Mohammad R.; Tartaglia, Marco
2014-01-01
RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2S2G mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease. PMID:24705357
Sharafi, Mastaneh; Rawal, Shristi; Fernandez, Maria Luz; Huedo-Medina, Tania B; Duffy, Valerie B
2018-05-08
Sensations from foods and beverages drive dietary choices, which in turn, affect risk of diet-related diseases. Perception of these sensation varies with environmental and genetic influences. This observational study aimed to examine associations between chemosensory phenotype, diet and cardiovascular disease (CVD) risk. Reportedly healthy women (n = 110, average age 45 ± 9 years) participated in laboratory-based measures of chemosensory phenotype (taste and smell function, propylthiouracil (PROP) bitterness) and CVD risk factors (waist circumference, blood pressure, serum lipids). Diet variables included preference and intake of sweet/high-fat foods, dietary restraint, and diet quality based on reported preference (Healthy Eating Preference Index-HEPI) and intake (Healthy Eating Index-HEI). We found that females who reported high preference yet low consumption of sweet/high-fat foods had the highest dietary restraint and depressed quinine taste function. PROP nontasters were more likely to report lower diet quality; PROP supertasters more likely to consume but not like a healthy diet. Multivariate structural models were fitted to identify predictors of CVD risk factors. Reliable latent taste (quinine taste function, PROP tasting) and smell (odor intensity) variables were identified, with taste explaining more variance in the CVD risk factors. Lower bitter taste perception was associated with elevated risk. In multivariate models, the HEPI completely mediated the taste-adiposity and taste-HDL associations and partially mediated the taste-triglyceride or taste-systolic blood pressure associations. The taste-LDL pathway was significant and direct. The HEI could not replace HEPI in adequate models. However, using a latent diet quality variable with HEPI and HEI, increased the strength of association between diet quality and adiposity or CVD risk factors. In conclusion, bitter taste phenotype was associated with CVD risk factors via diet quality, particularly when assessed by level of food liking/disliking. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhou, Chaomin; Li, Yongqiang; Shao, Xiaofei; Zou, Hequn
2018-01-25
Assessing and comparing the ability of the hypertriglyceridemic waist (HW) phenotype and anthropometric obesity indexes to identify subjects at high risk of chronic kidney disease (CKD) in a relatively lean population in South China. Using data from a community-based, cross-sectional study conducted in Zhuhai City, Southern China, we examined associations between the HW phenotype, anthropometric obesity indexes, and incident CKD risk in a relatively lean population. Multiple logistic regression analyses were used to evaluate the associations. The HW phenotype associated with CKD significantly in the unadjusted analysis (OR 3.53, 95% CI 1.65-7.52, P = 0.001). Further adjustment for gender, age, and other potential confounding variables had an impact on the odd ratios (OR); the OR decreased but still existed (OR 2.91, 95% 1.23-6.87, P = 0.016). The association of the HW phenotype with CKD remained significant after further adjustment for hypertension and diabetes. No significant association between the anthropometric indexes and incident CKD was found. The HW phenotype, but not the anthropometric indexes, is associated with an elevated risk of CKD in relatively lean subjects. The HW phenotype appears to be a better predictor of CKD than the anthropometric indexes. Level V, descriptive study.
EHR-based phenotyping: Bulk learning and evaluation.
Chiu, Po-Hsiang; Hripcsak, George
2017-06-01
In data-driven phenotyping, a core computational task is to identify medical concepts and their variations from sources of electronic health records (EHR) to stratify phenotypic cohorts. A conventional analytic framework for phenotyping largely uses a manual knowledge engineering approach or a supervised learning approach where clinical cases are represented by variables encompassing diagnoses, medicinal treatments and laboratory tests, among others. In such a framework, tasks associated with feature engineering and data annotation remain a tedious and expensive exercise, resulting in poor scalability. In addition, certain clinical conditions, such as those that are rare and acute in nature, may never accumulate sufficient data over time, which poses a challenge to establishing accurate and informative statistical models. In this paper, we use infectious diseases as the domain of study to demonstrate a hierarchical learning method based on ensemble learning that attempts to address these issues through feature abstraction. We use a sparse annotation set to train and evaluate many phenotypes at once, which we call bulk learning. In this batch-phenotyping framework, disease cohort definitions can be learned from within the abstract feature space established by using multiple diseases as a substrate and diagnostic codes as surrogates. In particular, using surrogate labels for model training renders possible its subsequent evaluation using only a sparse annotated sample. Moreover, statistical models can be trained and evaluated, using the same sparse annotation, from within the abstract feature space of low dimensionality that encapsulates the shared clinical traits of these target diseases, collectively referred to as the bulk learning set. Copyright © 2017 Elsevier Inc. All rights reserved.
Feltri, M. Laura; Wrabetz, Lawrence
2016-01-01
Globoid cell leukodystrophy (GLD, Krabbe disease) is due to autosomal recessive mutations in the lysosomal enzyme galactosylceramidase (GALC). Many GLD patients develop infantile-onset of progressive neurologic deterioration and death by 2 years of age, whereas others have a later-onset, milder disease. Cord blood transplant slows disease progression much more effectively when performed presymptomatically, highlighting the importance of early diagnosis. Current diagnosis is based on reduced GALC activity, DNA sequence, and clinical examination. However, presymptomatic diagnosis is hampered by imperfect genotype-GALC activity-phenotype correlations. In addition, three polymorphisms in the GALC gene are variably associated with disease mutations and have unknown effects on GALC activity and disease outcome. Here, we study mutations that cause infantile or later-onset GLD, and show that GALC activity is significantly lower in infantile versus later-onset mutants when measured in the lysosomal fraction, but not in whole-cell lysates. In parallel, infantile-onset mutant GALCs showed reduced trafficking to lysosomes and processing than later-onset mutant GALCs. Finally, the cis-polymorphisms also affected trafficking to the lysosome and processing of GALC. These differences potentially explain why the activity of different mutations appears similar in whole-cell extracts from lymphocytes, and suggest that measure of GALC activity in lysosomes may better predict the onset and severity of disease for a given GLD genotype. SIGNIFICANCE STATEMENT Globoid cell leukodystrophy (GLD, Krabbe disease) is diagnosed by measuring galactosylceramidase (GALC) activity and DNA analysis. However, genotype and phenotype often do not correlate due to considerable clinical variability, even for the same mutation, for unknown reasons. We find that altered trafficking to the lysosome and processing of GALC correlates with GLD severity and is modulated by cis-polymorphisms. Current diagnosis of GLD is based on GALC activity of total cell lysates from blood, which does not discriminate whether the activity comes from the lysosome or other subcellular organelles. Measurement of GALC activity in lysosomes may predict which infants are at high risk for the infantile phenotype while distinguishing other children who will develop later-onset phenotypes without onset of symptoms for years. PMID:26865610
Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis
Sun, Xingshen; Sui, Hongshu; Fisher, John T.; Yan, Ziying; Liu, Xiaoming; Cho, Hyung-Ju; Joo, Nam Soo; Zhang, Yulong; Zhou, Weihong; Yi, Yaling; Kinyon, Joann M.; Lei-Butters, Diana C.; Griffin, Michelle A.; Naumann, Paul; Luo, Meihui; Ascher, Jill; Wang, Kai; Frana, Timothy; Wine, Jeffrey J.; Meyerholz, David K.; Engelhardt, John F.
2010-01-01
Cystic fibrosis (CF) is a recessive disease that affects multiple organs. It is caused by mutations in CFTR. Animal modeling of this disease has been challenging, with species- and strain-specific differences in organ biology and CFTR function influencing the emergence of disease pathology. Here, we report the phenotype of a CFTR-knockout ferret model of CF. Neonatal CFTR-knockout ferrets demonstrated many of the characteristics of human CF disease, including defective airway chloride transport and submucosal gland fluid secretion; variably penetrant meconium ileus (MI); pancreatic, liver, and vas deferens disease; and a predisposition to lung infection in the early postnatal period. Severe malabsorption by the gastrointestinal (GI) tract was the primary cause of death in CFTR-knockout kits that escaped MI. Elevated liver function tests in CFTR-knockout kits were corrected by oral administration of ursodeoxycholic acid, and the addition of an oral proton-pump inhibitor improved weight gain and survival. To overcome the limitations imposed by the severe intestinal phenotype, we cloned 4 gut-corrected transgenic CFTR-knockout kits that expressed ferret CFTR specifically in the intestine. One clone passed feces normally and demonstrated no detectable ferret CFTR expression in the lung or liver. The animals described in this study are likely to be useful tools for dissecting CF disease pathogenesis and developing treatments. PMID:20739752
Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis.
Sun, Xingshen; Sui, Hongshu; Fisher, John T; Yan, Ziying; Liu, Xiaoming; Cho, Hyung-Ju; Joo, Nam Soo; Zhang, Yulong; Zhou, Weihong; Yi, Yaling; Kinyon, Joann M; Lei-Butters, Diana C; Griffin, Michelle A; Naumann, Paul; Luo, Meihui; Ascher, Jill; Wang, Kai; Frana, Timothy; Wine, Jeffrey J; Meyerholz, David K; Engelhardt, John F
2010-09-01
Cystic fibrosis (CF) is a recessive disease that affects multiple organs. It is caused by mutations in CFTR. Animal modeling of this disease has been challenging, with species- and strain-specific differences in organ biology and CFTR function influencing the emergence of disease pathology. Here, we report the phenotype of a CFTR-knockout ferret model of CF. Neonatal CFTR-knockout ferrets demonstrated many of the characteristics of human CF disease, including defective airway chloride transport and submucosal gland fluid secretion; variably penetrant meconium ileus (MI); pancreatic, liver, and vas deferens disease; and a predisposition to lung infection in the early postnatal period. Severe malabsorption by the gastrointestinal (GI) tract was the primary cause of death in CFTR-knockout kits that escaped MI. Elevated liver function tests in CFTR-knockout kits were corrected by oral administration of ursodeoxycholic acid, and the addition of an oral proton-pump inhibitor improved weight gain and survival. To overcome the limitations imposed by the severe intestinal phenotype, we cloned 4 gut-corrected transgenic CFTR-knockout kits that expressed ferret CFTR specifically in the intestine. One clone passed feces normally and demonstrated no detectable ferret CFTR expression in the lung or liver. The animals described in this study are likely to be useful tools for dissecting CF disease pathogenesis and developing treatments.
Doran, Mark; du Plessis, Daniel G; Ghadiali, Eric J; Mann, David M A; Pickering-Brown, Stuart; Larner, Andrew J
2007-10-01
Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) owing to the tau intron 10 + 16 mutation usually occurs with a prototypical frontotemporal dementia phenotype with prominent disinhibition and affective disturbances. To report a new FTDP-17 pedigree with the tau intron 10 + 16 mutation demonstrating a clinical phenotype suggestive of Alzheimer disease. Case reports. Regional neuroscience centers in northwest England. Patients We examined 4 members of a kindred in which 8 individuals were affected in 3 generations. All 4 patients reported memory difficulty. Marked anomia was also present, but behavioral disturbances were conspicuously absent in the early stages of disease. All patients had an initial clinical diagnosis of Alzheimer disease. No mutations were found in the presenilin or amyloid precursor protein genes. Pathologic examination of the proband showed features typical of FTDP-17, and tau gene analysis showed the intron 10 + 16 mutation. This pedigree illustrates the phenotypic variability of tau intron 10 + 16 mutations. In pedigrees with a clinical diagnosis of Alzheimer disease but without presenilin or amyloid precursor protein gene mutations, tau gene mutations may be found.
Gelpi, Ellen; Lladó, Albert; Clarimón, Jordi; Rey, Maria Jesús; Rivera, Rosa Maria; Ezquerra, Mario; Antonell, Anna; Navarro-Otano, Judith; Ribalta, Teresa; Piñol-Ripoll, Gerard; Pérez, Anna; Valldeoriola, Francesc; Ferrer, Isidre
2012-09-01
Basophilic inclusion body disease and neuronal intermediate filament inclusion disease (NIFID) are rare diseases included among frontotemporal lobar degenerations with FUS-positive inclusions (FTLD-FUS). We report clinical and pathologic features of 2 new patients and reevaluate neuropathologic characteristics of 2 previously described cases, including an early-onset case of basophilic inclusion body disease (aged 38 years) with a 5-year disease course and abundant FUS-positive inclusion bodies and 3 NIFID cases. One NIFID case (aged 37 years) presented with early-onset psychiatric disturbances and rapidly progressive cognitive decline. Two NIFID cases had later onset (aged 64 years and 70 years) and complex neurologic deficits. Postmortem neuropathologic studies in late-onset NIFID cases disclosed α-internexin-positive "hyaline conglomerate"-type inclusions that were positive with 1 commercial anti-FUS antibody directed to residues 200 and 250, but these were negative to amino acids 90 and 220 of human FUS. Early-onset NIFID had similar inclusions that were positive with both commercial anti-FUS antibodies. Genetic testing performed on all cases revealed no FUS gene mutations. These findings indicate that phenotypic variability in NIFID, including clinical manifestations and particular neuropathologic findings, may be related to the age at onset and individual differences in the evolution of lesions.
Cluster analysis in phenotyping a Portuguese population.
Loureiro, C C; Sa-Couto, P; Todo-Bom, A; Bousquet, J
2015-09-03
Unbiased cluster analysis using clinical parameters has identified asthma phenotypes. Adding inflammatory biomarkers to this analysis provided a better insight into the disease mechanisms. This approach has not yet been applied to asthmatic Portuguese patients. To identify phenotypes of asthma using cluster analysis in a Portuguese asthmatic population treated in secondary medical care. Consecutive patients with asthma were recruited from the outpatient clinic. Patients were optimally treated according to GINA guidelines and enrolled in the study. Procedures were performed according to a standard evaluation of asthma. Phenotypes were identified by cluster analysis using Ward's clustering method. Of the 72 patients enrolled, 57 had full data and were included for cluster analysis. Distribution was set in 5 clusters described as follows: cluster (C) 1, early onset mild allergic asthma; C2, moderate allergic asthma, with long evolution, female prevalence and mixed inflammation; C3, allergic brittle asthma in young females with early disease onset and no evidence of inflammation; C4, severe asthma in obese females with late disease onset, highly symptomatic despite low Th2 inflammation; C5, severe asthma with chronic airflow obstruction, late disease onset and eosinophilic inflammation. In our study population, the identified clusters were mainly coincident with other larger-scale cluster analysis. Variables such as age at disease onset, obesity, lung function, FeNO (Th2 biomarker) and disease severity were important for cluster distinction. Copyright © 2015. Published by Elsevier España, S.L.U.
Vyas, S; Enockson, C; Hernandez, L; Valentino, L A
2014-01-01
The phenotypic variability in haemophilia is well documented; however, the biological basis beyond factor VIII and IX activities to explain the differing clinical pictures of the disease remains unclear. It has therefore been of interest to explore other modulators of the disease's variability. Furthermore, a scoring system that reflects the multiple facets of haemophilia symptoms would be useful to compare patients via a comprehensive assessment tool. To this end, Schulman et al., created a measure known as the Haemophilia Severity Score (HSS) as one way to compare phenotypic severity. The aim of this study was to document the differing symptomatology of haemophilia patients using the HSS. Clinical data for 178 haemophilia patients without inhibitors were reviewed and annual incidence of haemarthrosis, orthopaedic joint scores and annual factor usage calculated. Each parameter was then entered into the formula to create the HSS for haemophilia A and B patients with mild, moderate and severe factor deficiencies. Variability in the HSS for patients with the same baseline level of factor was observed for all three deficiency levels and both haemophilia types. In addition, we found that moderate and severe haemophilic B patients tended to have more morbidity based on the above calculations than the haemophilic A counterparts. The HSS is a comprehensive tool that allows for easy numerical comparison of haemophilic patients and elucidates the variable clinical presentation of the disease. The HSS could be used to stratify patients via other possible modulators of haemophilia and discover other aetiologies of the disease. © 2013 John Wiley & Sons Ltd.
Identification of clinically relevant phenotypes in patients with Ebstein anomaly.
Cabrera, Rodrigo; Miranda-Fernández, Marta Catalina; Huertas-Quiñones, Victor Manuel; Carreño, Marisol; Pineda, Ivonne; Restrepo, Carlos M; Silva, Claudia Tamar; Quero, Rossi; Cano, Juan David; Manrique, Diana Carolina; Camacho, Camila; Tabares, Sebastián; García, Alberto; Sandoval, Néstor; Moreno Medina, Karen Julieth; Dennis Verano, Rodolfo José
2018-03-01
Ebstein anomaly (EA) is a heterogeneous congenital heart defect (CHD), frequently accompanied by diverse cardiac and extracardiac comorbidities, resulting in a wide range of clinical outcomes. Phenotypic characterization of EA patients has the potential to identify variables that influence prognosis and subgroups with distinct contributing factors. A comprehensive cross-sectional phenotypic characterization of 147 EA patients from one of the main referral institutions for CHD in Colombia was carried out. The most prevalent comorbidities and distinct subgroups within the patient cohort were identified through cluster analysis. The most prevalent cardiac comorbidities identified were atrial septal defect (61%), Wolff-Parkinson-White syndrome (WPW; 27%), and right ventricular outflow tract obstruction (25%). Cluster analysis showed that patients can be classified into 2 distinct subgroups with defined phenotypes that determine disease severity and survival. Patients in cluster 1 represented a particularly homogeneous subgroup with a milder spectrum of disease, including only patients with WPW and/or supraventricular tachycardia (SVT). Cluster 2 included patients with more diverse cardiovascular comorbidities. This study represents one of the largest phenotypic characterizations of EA patients reported. The data show that EA is a heterogeneous disease, very frequently associated with cardiovascular and noncardiovascular comorbidities. Patients with WPW and SVT represent a homogeneous subgroup that presents with a less severe spectrum of disease and better survival when adequately managed. This should be considered when searching for genetic causes of EA and in the clinical setting. © 2018 Wiley Periodicals, Inc.
Phenotypic variability in monozygotic twins with neurofibromatosis 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baser, M.E.; Ragge, N.K.; Riccardi, V.M.
Mutations in the neurofibromatosis 2 (NF2) tumor suppressor gene on chromosome 22q12 cause a clinically variable autosomal dominant syndrome characterized by bilateral vestibular schwannomas (VSs), other nervous system tumors, and early onset lenticular cataracts. We studied three pairs of monozygotic (MZ) twins with NF2, all with bilateral VSs, to separate genetic from nongenetic causes of clinical variability. The evaluation included gadolinium-enhanced high-resolution magnetic resonance imaging of the head and spine, neuro-ophthalmic examination with slit lamp, physical examination, and zygosity testing with microsatellite markers. Each MZ pair was concordant for general phenotypic subtype (mild or severe) and often for the affectedmore » organ systems. However, the MZ pairs were discordant for some features of disease presentation or progression. For example, all three pairs were discordant for presence or type of associated cranial tumors. We hypothesize that phenotypic differences between NF2 MZ twins are at least partly due to stochastic processes, such as the loss of the second NF2 allele or alleles of other genes. 42 refs., 1 tab.« less
Single nucleotide polymorphisms in the Mycobacterium bovis genome resolve phylogenetic relationships
USDA-ARS?s Scientific Manuscript database
Mycobacterium bovis isolates carry restricted allelic variation yet exhibit a range of disease phenotypes and host preferences. Conventional genotyping methods target small hyper-variable regions of their genome and provide anonymous biallelic information insufficient to develop phylogeny. To resolv...
Allelic variation of the FRMD7 gene in congenital idiopathic nystagmus.
Self, James E; Shawkat, Fatima; Malpas, Crispin T; Thomas, N Simon; Harris, Christopher M; Hodgkins, Peter R; Chen, Xiaoli; Trump, Dorothy; Lotery, Andrew J
2007-09-01
To perform a genotype-phenotype correlation study in an X-linked congenital idiopathic nystagmus pedigree (pedigree 1) and to assess the allelic variance of the FRMD7 gene in congenital idiopathic nystagmus. Subjects from pedigree 1 underwent detailed clinical examination including nystagmology. Screening of FRMD7 was undertaken in pedigree 1 and in 37 other congenital idiopathic nystagmus probands and controls. Direct sequencing confirmed sequence changes. X-inactivation studies were performed in pedigree 1. The nystagmus phenotype was extremely variable in pedigree 1. We identified 2 FRMD7 mutations. However, 80% of X-linked families and 96% of simplex cases showed no mutations. X-inactivation studies demonstrated no clear causal link between skewing and variable penetrance. We confirm profound phenotypic variation in X-linked congenital idiopathic nystagmus pedigrees. We demonstrate that other congenital nystagmus genes exist besides FRMD7. We show that the role of X inactivation in variable penetrance is unclear in congenital idiopathic nystagmus. Clinical Relevance We demonstrate that phenotypic variation of nystagmus occurs in families with FRMD7 mutations. While FRMD7 mutations may be found in some cases of X-linked congenital idiopathic nystagmus, the diagnostic yield is low. X-inactivation assays are unhelpful as a test for carrier status for this disease.
Shalev, Stavit Allon; Khayat, Morad; Etty, Daniel-Spiegl; Elpeleg, Orly
2015-03-01
Mutations in genes encoding the origin recognition complex subunits cause Meier-Gorlin syndrome. The disease manifests a triad of short stature, small ears, and small and/or absent patellae with variable expressivity. We report on the identification of a homozygous deleterious mutation in the ORC6 gene in previously described fetuses at the severe end of the Meier-Gorlin spectrum. The phenotype included severe intrauterine growth retardation, dislocation of knees, gracile bones, clubfeet, and small mandible and chest. To date, the clinical presentation of ORC6-associated Meier-Gorlin syndrome has been mild compared to other the phenotype associated with other loci. The present report expands the clinical phenotype associated with ORC6 mutations to include severely abnormal embryological development suggesting a possible genotype-phenotype correlation. © 2015 Wiley Periodicals, Inc.
Young, Tim M; Blakely, Emma L; Swalwell, Helen; Carter, Janet E; Kartsounis, Luke D; O'Donovan, Dominic G; Turnbull, Douglass M; Taylor, Robert W; de Silva, Rajith N
2010-11-01
Mitochondrial diseases are characterized by wide phenotypic and genetic variability, but presentations in adults with akinetic rigidity and hyperkinetic movement disorders are rare. To describe clinically a subject with progressive neurodegeneration characterized by psychosis, dementia, and akinesia-rigidity, and to associate this phenotype with a novel mitochondrial transfer RNA(Phe) (tRNA(Phe)) (MTTF) mutation. Case description and detailed laboratory investigations of a 57-year-old woman at a university teaching hospital and a specialist mitochondrial diagnostic laboratory. Histopathological findings indicated that an underlying mitochondrial abnormality was responsible for the subject's progressive neurological disorder, with mitochondrial genome sequencing revealing a novel m.586G>A MTTF mutation. The clinical phenotypes associated with mitochondrial disorders may include akinesia-rigidity and psychosis. Our findings further broaden the spectrum of neurological disease associated with mitochondrial tRNA(Phe) mutations.
Ning, P; Guo, Y F; Sun, T Y; Zhang, H S; Chai, D; Li, X M
2016-09-01
To study the distinct clinical phenotype of chronic airway diseases by hierarchical cluster analysis and two-step cluster analysis. A population sample of adult patients in Donghuamen community, Dongcheng district and Qinghe community, Haidian district, Beijing from April 2012 to January 2015, who had wheeze within the last 12 months, underwent detailed investigation, including a clinical questionnaire, pulmonary function tests, total serum IgE levels, blood eosinophil level and a peak flow diary. Nine variables were chosen as evaluating parameters, including pre-salbutamol forced expired volume in one second(FEV1)/forced vital capacity(FVC) ratio, pre-salbutamol FEV1, percentage of post-salbutamol change in FEV1, residual capacity, diffusing capacity of the lung for carbon monoxide/alveolar volume adjusted for haemoglobin level, peak expiratory flow(PEF) variability, serum IgE level, cumulative tobacco cigarette consumption (pack-years) and respiratory symptoms (cough and expectoration). Subjects' different clinical phenotype by hierarchical cluster analysis and two-step cluster analysis was identified. (1) Four clusters were identified by hierarchical cluster analysis. Cluster 1 was chronic bronchitis in smokers with normal pulmonary function. Cluster 2 was chronic bronchitis or mild chronic obstructive pulmonary disease (COPD) patients with mild airflow limitation. Cluster 3 included COPD patients with heavy smoking, poor quality of life and severe airflow limitation. Cluster 4 recognized atopic patients with mild airflow limitation, elevated serum IgE and clinical features of asthma. Significant differences were revealed regarding pre-salbutamol FEV1/FVC%, pre-salbutamol FEV1% pred, post-salbutamol change in FEV1%, maximal mid-expiratory flow curve(MMEF)% pred, carbon monoxide diffusing capacity per liter of alveolar(DLCO)/(VA)% pred, residual volume(RV)% pred, total serum IgE level, smoking history (pack-years), St.George's respiratory questionnaire(SGRQ) score, acute exacerbation in the past one year, PEF variability and allergic dermatitis (P<0.05). (2) Four clusters were also identified by two-step cluster analysis as followings, cluster 1, COPD patients with moderate to severe airflow limitation; cluster 2, asthma and COPD patients with heavy smoking, airflow limitation and increased airways reversibility; cluster 3, patients having less smoking and normal pulmonary function with wheezing but no chronic cough; cluster 4, chronic bronchitis patients with normal pulmonary function and chronic cough. Significant differences were revealed regarding gender distribution, respiratory symptoms, pre-salbutamol FEV1/FVC%, pre-salbutamol FEV1% pred, post-salbutamol change in FEV1%, MMEF% pred, DLCO/VA% pred, RV% pred, PEF variability, total serum IgE level, cumulative tobacco cigarette consumption (pack-years), and SGRQ score (P<0.05). By different cluster analyses, distinct clinical phenotypes of chronic airway diseases are identified. Thus, individualized treatments may guide doctors to provide based on different phenotypes.
Effect of genetic background on the dystrophic phenotype in mdx mice
Coley, William D.; Bogdanik, Laurent; Vila, Maria Candida; Yu, Qing; Van Der Meulen, Jack H.; Rayavarapu, Sree; Novak, James S.; Nearing, Marie; Quinn, James L.; Saunders, Allison; Dolan, Connor; Andrews, Whitney; Lammert, Catherine; Austin, Andrew; Partridge, Terence A.; Cox, Gregory A.; Lutz, Cathleen; Nagaraju, Kanneboyina
2016-01-01
Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits. PMID:26566673
2011-01-01
Background The kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA) (OMIM 225400) is a rare inheritable connective tissue disorder characterized by a deficiency of collagen lysyl hydroxylase 1 (LH1; EC 1.14.11.4) due to mutations in PLOD1. Biochemically this results in underhydroxylation of collagen lysyl residues and, hence, an abnormal pattern of lysyl pyridinoline (LP) and hydroxylysyl pyridinoline (HP) crosslinks excreted in the urine. Clinically the disorder is characterized by hypotonia and kyphoscoliosis at birth, joint hypermobility, and skin hyperelasticity and fragility. Severe hypotonia usually leads to delay in gross motor development, whereas cognitive development is reported to be normal. Methods We describe the clinical, biochemical and molecular characterisation, as well as electron microscopy findings of skin, in 15 patients newly diagnosed with this rare type of Ehlers-Danlos syndrome. Results Age at diagnosis ranged from 5 months to 27 years, with only 1/3 of the patients been diagnosed correctly in the first year of life. A similar disease frequency was found in females and males, however a broad disease severity spectrum (intra- and interfamilial), independent of molecular background or biochemical phenotype, was observed. Kyphoscoliosis, one of the main clinical features was not present at birth in 4 patients. Importantly we also noted the occurrence of vascular rupture antenatally and postnatally, as well as developmental delay in 5 patients. Conclusion In view of these findings we propose that EDS VIA is a highly variable clinical entity, presenting with a broad clinical spectrum, which may also be associated with cognitive delay and an increased risk for vascular events. Genotype/phenotype association studies and additional molecular investigations in more extended EDS VIA populations will be necessary to further elucidate the cause of the variability of the disease severity. PMID:21699693
Al Dhaibani, Muna A; El-Hattab, Ayman W; Ismayl, Omar; Suleiman, Jehan
2018-05-23
Mutations in B3GALNT2 , encoding a glycosyltransferase enzyme involved in α-dystroglycan glycosylation, have been recently associated with dystroglycanopathy, a well-recognized subtype of congenital muscular dystrophy (CMD). Only a few cases have been reported with B3GALNT2 -related dystroglycanopathy with variable severity ranging from mild CMD to severe muscle-eye-brain disease. Here, we describe a child with a novel homozygous nonsense mutation in B3GALNT2 . The affected child has severe neurological disease since birth, including muscle disease manifested as hypotonia, muscle weakness, and wasting with elevated creatine kinase, eye disease including microphthalmia and blindness, brain disease with extensive brain malformations including massive hydrocephalus, diffuse cobblestone-lissencephaly, deformed craniocervical junction, and pontocerebellar hypoplasia. The clinical and radiologic findings are compatible with a diagnosis of severe muscle-eye-brain disease and more specifically Walker-Warburg syndrome. A more distinct aspect of the clinical phenotype in this child is the presence of refractory epilepsy in the form of epileptic spasms, epileptic encephalopathy, and West syndrome, as well as sensorineural hearing loss. These findings could expand the phenotype of B3GALNT2 -related dystroglycanopathy. In this report, we also provide a detailed review of previously reported cases with B3GALNT2 -related dystroglycanopathy and compare them to our reported child. In addition, we study the genotype-phenotype correlation in these cases. Georg Thieme Verlag KG Stuttgart · New York.
Crohn Disease: Epidemiology, Diagnosis, and Management.
Feuerstein, Joseph D; Cheifetz, Adam S
2017-07-01
Crohn disease is a chronic idiopathic inflammatory bowel disease condition characterized by skip lesions and transmural inflammation that can affect the entire gastrointestinal tract from the mouth to the anus. For this review article, we performed a review of articles in PubMed through February 1, 2017, by using the following Medical Subject Heading terms: crohns disease, crohn's disease, crohn disease, inflammatory bowel disease, and inflammatory bowel diseases. Presenting symptoms are often variable and may include diarrhea, abdominal pain, weight loss, nausea, vomiting, and in certain cases fevers or chills. There are 3 main disease phenotypes: inflammatory, structuring, and penetrating. In addition to the underlying disease phenotype, up to a third of patients will develop perianal involvement of their disease. In addition, in some cases, extraintestinal manifestations may develop. The diagnosis is typically made with endoscopic and/or radiologic findings. Disease management is usually with pharmacologic therapy, which is determined on the basis of disease severity and underlying disease phenotype. Although the goal of management is to control the inflammation and induce a clinical remission with pharmacologic therapy, most patients will eventually require surgery for their disease. Unfortunately, surgery is not curative and patients still require ongoing therapy even after surgery for disease recurrence. Importantly, given the risks of complications from both Crohn disease and the medications used to treat the disease process, primary care physicians play an important role in optimizing the preventative care management to reduce the risk of complications. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Bozzola, E; Savasta, S; Peruzzi, C; Bozzola, M; Bona, G
2007-04-01
In infancy, the autosomal dominant inherited ataxias are severe neurological diseases, due to inherited mutations of ion channels. The main forms are: episodic ataxia type 1 (EA1), episodic ataxia type 2 (EA2), spinocerebellar ataxia type 6 (SCA6). EA1 is due to a mutation in KCNA1, the gene encoding human Kv1.1 on chromosome 12p13, which contributes as a subunit to the formation of potassium channels in motor nerve terminals and in many central nervous system neurones. To date, there are fifteen different mutations, which affect potassium channel's properties and lead to phenotypic variability and to different responses to therapy. EA2 can result from mutations in the CACNA1A gene, encoding calcium channels on chromosome 19p13.1 and widely distributed throughout the central nervous system. To date, associated with EA2, in the CACNA1A gene thirty different mutations have been described, resulting in altered or truncated protein products and, as a consequence, in nonfunctional calcium channels. There is phenotypic variability, also inside the same family, without correlation genotype-phenotype. SCA6 is a progressive neurodegenerative disease due to mutations of the CACNA1A gene. CACNA1A is responsible for both EA2 and SCA6. Nevertheless, the pathogenesis of the two diseases is different: SCA6 is associated with small expansion of a CAGn repeat, while EA2 is due to point mutations. Clinically, SCA6 is characterized by a slowly progressive development and by an inverse correlation between the number of repeats and the severity of the disease.
The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice
Ingvorsen, C; Karp, N A; Lelliott, C J
2017-01-01
Background: Metabolic disorders are commonly investigated using knockout and transgenic mouse models on the C57BL/6N genetic background due to its genetic susceptibility to the deleterious metabolic effects of high-fat diet (HFD). There is growing awareness of the need to consider sex in disease progression, but limited attention has been paid to sexual dimorphism in mouse models and its impact in metabolic phenotypes. We assessed the effect of HFD and the impact of sex on metabolic variables in this strain. Methods: We generated a reference data set encompassing glucose tolerance, body composition and plasma chemistry data from 586 C57BL/6N mice fed a standard chow and 733 fed a HFD collected as part of a high-throughput phenotyping pipeline. Linear mixed model regression analysis was used in a dual analysis to assess the effect of HFD as an absolute change in phenotype, but also as a relative change accounting for the potential confounding effect of body weight. Results: HFD had a significant impact on all variables tested with an average absolute effect size of 29%. For the majority of variables (78%), the treatment effect was modified by sex and this was dominated by male-specific or a male stronger effect. On average, there was a 13.2% difference in the effect size between the male and female mice for sexually dimorphic variables. HFD led to a significant body weight phenotype (24% increase), which acts as a confounding effect on the other analysed variables. For 79% of the variables, body weight was found to be a significant source of variation, but even after accounting for this confounding effect, similar HFD-induced phenotypic changes were found to when not accounting for weight. Conclusion: HFD and sex are powerful modifiers of metabolic parameters in C57BL/6N mice. We also demonstrate the value of considering body size as a covariate to obtain a richer understanding of metabolic phenotypes. PMID:28394359
Waardenburg syndrome type 4: report of two new cases caused by SOX10 mutations in Spain.
Fernández, Raquel M; Núñez-Ramos, Raquel; Enguix-Riego, M Valle; Román-Rodríguez, Francisco José; Galán-Gómez, Enrique; Blesa-Sánchez, Emilio; Antiñolo, Guillermo; Núñez-Núñez, Ramón; Borrego, Salud
2014-02-01
Shah-Waardenburg syndrome or Waardenburg syndrome type 4 (WS4) is a neurocristopathy characterized by the association of deafness, depigmentation and Hirschsprung disease. Three disease-causing genes have been identified so far for WS4: EDNRB, EDN3, and SOX10. SOX10 mutations, found in 45-55% of WS4 patients, are inherited in autosomal dominant way. In addition, mutations in SOX10 are also responsible for an extended syndrome involving peripheral and central neurological phenotypes, referred to as PCWH (peripheral demyelinating neuropathy, central dysmyelinating leucodystrophy, Waardenburg syndrome, Hirschsprung disease). Such mutations are mostly private, and a high intra- and inter-familial variability exists. In this report, we present a patient with WS4 and a second with PCWH due to SOX10 mutations supporting again the genetic and phenotypic heterogeneity of these syndromes. Interestingly, the WS4 family carries an insertion of 19 nucleotides in exon 5 of SOX10, which results in distinct phenotypes along three different generations: hypopigmentation in the maternal grandmother, hearing loss in the mother, and WS4 in the proband. Since mosaicism cannot explain the three different related-WS features observed in this family, we propose as the most plausible explanation the existence of additional molecular events, acting in an additive or multiplicative fashion, in genes or regulatory regions unidentified so far. On the other hand, the PCWH case was due to a de novo deletion in exon 5 of the gene. Efforts should be devoted to unravel the mechanisms underlying the intrafamilial phenotypic variability observed in the families affected, and to identify new genes responsible for the still unsolved WS4 cases. © 2013 Wiley Periodicals, Inc.
Chrna7 deficient mice manifest no consistent neuropsychiatric and behavioral phenotypes.
Yin, Jiani; Chen, Wu; Yang, Hongxing; Xue, Mingshan; Schaaf, Christian P
2017-01-03
The alpha7 nicotinic acetylcholine receptor, encoded by the CHRNA7 gene, has been implicated in various psychiatric and behavioral disorders, including schizophrenia, bipolar disorder, epilepsy, autism, Alzheimer's disease, and Parkinson's disease, and is considered a potential target for therapeutic intervention. 15q13.3 microdeletion syndrome is a rare genetic disorder, caused by submicroscopic deletions on chromosome 15q. CHRNA7 is the only gene in this locus that has been deleted entirely in cases involving the smallest microdeletions. Affected individuals manifest variable neurological and behavioral phenotypes, which commonly include developmental delay/intellectual disability, epilepsy, and autism spectrum disorder. Subsets of patients have short attention spans, aggressive behaviors, mood disorders, or schizophrenia. Previous behavioral studies suggested that Chrna7 deficient mice had attention deficits, but were normal in baseline behavioral responses, learning, memory, and sensorimotor gating. Given a growing interest in CHRNA7-related diseases and a better appreciation of its associated human phenotypes, an in-depth behavioral characterization of the Chrna7 deficient mouse model appeared prudent. This study was designed to investigate whether Chrna7 deficient mice manifest phenotypes related to those seen in human individuals, using an array of 12 behavioral assessments and electroencephalogram (EEG) recordings on freely-moving mice. Examined phenotypes included social interaction, compulsive behaviors, aggression, hyperactivity, anxiety, depression, and somatosensory gating. Our data suggests that mouse behavior and EEG recordings are not sensitive to decreased Chrna7 copy number.
Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype
Tsuda, Takeshi; Fitzgerald, Kristi K.
2017-01-01
Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy (XL-DCM) consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM) is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC) that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts. PMID:29367543
Molecular analysis of the XLRS1 gene in 4 females affected with X-linked juvenile retinoschisis.
Saleheen, Danish; Ali, Azam; Khanum, Shaheen; Ozair, Mohammad Z; Zaidi, Moazzam; Sethi, Muhammad J; Khan, Nadir; Frossard, Philippe
2008-10-01
X-linked juvenile retinoschisis (XLRS) is the most common cause of juvenile macular degeneration in males. Because of its X-linked mode of transmission, the disease is rare in females. In this article, we describe a mutation screen conducted on a family in which 4 female patients affected with XLRS presented with an unusually severe phenotype. DNA was extracted from peripheral blood, and the XLRS1 gene was amplified on DNA samples of all the available family members. The mutation screen was conducted by performing direct DNA sequencing using an MJ Research PTC-225 Peltier Thermal Cycler. A novel mutation, 588-593ins.C, was identified in exon 6 of the gene. The affected father was found to be heterozygous for the mutation, whereas all the female patients were homozygous for this mutation. The homozygosity of the mutation in the affected females led to severe phenotypes. The defective allele was expressed in infancy in 1 patient, whereas the disease manifested itself at variable ages in the other patients, reflecting a variation in the phenotype. This report describes a novel mutation in a family in which consanguinity has led to XLRS in 4 females. A variation in the phenotype of the disease is consistent with the published literature and suggests the involvement of genetic modifiers or environmental factors in influencing the clinical severity of the disease.
Epigenetics of human asthma and allergy: promises to keep.
Devries, Avery; Vercelli, Donata
2013-09-01
The interest in asthma epigenetics is high because epigenetic mechanisms likely contribute to the environmental origins of the disease and its phenotypic variability. This review presents the main findings of asthma epigenetics and the challenges that still delay progress. We examined the current literature on asthma epigenetics (31 reviews and 25 original data publications). We focused on DNA methylation studies in populations. Both genome-wide and candidate gene studies have explored DNA methylation in allergic disease. Genome-wide studies ask whether and which regions of the genome are differentially methylated in relation to the phenotype of interest. Identification of such regions provides clues about the identity of the genes, pathways and networks underpinning a phenotype and connects these networks to the phenotype through epigenetic mechanisms. Candidate gene studies examine DNA methylation in genes chosen because of their known or hypothesized role in immunity, responses to environmental stimuli or disease pathogenesis. Most existing studies in asthma and allergy focused on candidate genes involved in the response to environmental pollutants. Asthma epigenetics is still in its infancy. The paucity of primary literature originates from methodological and analytical challenges of genome-wide studies, the difficulties in interpreting small differences in DNA methylation, and the need to develop robust bioinformatic tools for pathway, network and system analyses of epigenetic data. Once these challenges have been overcome, epigenetic studies will likely provide important insights about the inception and pathogenesis of allergic disease and will help define disease endotypes.
Spondyloenchondrodysplasia Due to Mutations in ACP5: A Comprehensive Survey.
Briggs, Tracy A; Rice, Gillian I; Adib, Navid; Ades, Lesley; Barete, Stephane; Baskar, Kannan; Baudouin, Veronique; Cebeci, Ayse N; Clapuyt, Philippe; Coman, David; De Somer, Lien; Finezilber, Yael; Frydman, Moshe; Guven, Ayla; Heritier, Sébastien; Karall, Daniela; Kulkarni, Muralidhar L; Lebon, Pierre; Levitt, David; Le Merrer, Martine; Linglart, Agnes; Livingston, John H; Navarro, Vincent; Okenfuss, Ericka; Puel, Anne; Revencu, Nicole; Scholl-Bürgi, Sabine; Vivarelli, Marina; Wouters, Carine; Bader-Meunier, Brigitte; Crow, Yanick J
2016-04-01
Spondyloenchondrodysplasia is a rare immuno-osseous dysplasia caused by biallelic mutations in ACP5. We aimed to provide a survey of the skeletal, neurological and immune manifestations of this disease in a cohort of molecularly confirmed cases. We compiled clinical, genetic and serological data from a total of 26 patients from 18 pedigrees, all with biallelic ACP5 mutations. We observed a variability in skeletal, neurological and immune phenotypes, which was sometimes marked even between affected siblings. In total, 22 of 26 patients manifested autoimmune disease, most frequently autoimmune thrombocytopenia and systemic lupus erythematosus. Four patients were considered to demonstrate no clinical autoimmune disease, although two were positive for autoantibodies. In the majority of patients tested we detected upregulated expression of interferon-stimulated genes (ISGs), in keeping with the autoimmune phenotype and the likely immune-regulatory function of the deficient protein tartrate resistant acid phosphatase (TRAP). Two mutation positive patients did not demonstrate an upregulation of ISGs, including one patient with significant autoimmune disease controlled by immunosuppressive therapy. Our data expand the known phenotype of SPENCD. We propose that the OMIM differentiation between spondyloenchondrodysplasia and spondyloenchondrodysplasia with immune dysregulation is no longer appropriate, since the molecular evidence that we provide suggests that these phenotypes represent a continuum of the same disorder. In addition, the absence of an interferon signature following immunomodulatory treatments in a patient with significant autoimmune disease may indicate a therapeutic response important for the immune manifestations of spondyloenchondrodysplasia.
Hypertrophic Cardiomyopathy from A to Z: Genetics, Pathophysiology, Imaging, and Management.
Baxi, Ameya Jagdish; Restrepo, Carlos S; Vargas, Daniel; Marmol-Velez, Alejandro; Ocazionez, Daniel; Murillo, Horacio
2016-01-01
Hypertrophic cardiomyopathy (HCM) is a heterogeneous group of diseases related to sarcomere gene mutations exhibiting heterogeneous phenotypes with an autosomal dominant mendelian pattern of inheritance. The disorder is characterized by diverse phenotypic expressions and variable natural progression, which may range from dyspnea and/or syncope to sudden cardiac death. It is found across all racial groups and is associated with left ventricular hypertrophy in the absence of another systemic or cardiac disease. The management of HCM is based on a thorough understanding of the underlying morphology, pathophysiology, and clinical course. Imaging findings of HCM mirror the variable expressivity and penetrance heterogeneity, with the added advantage of diagnosis even in cases where a specific mutation may not yet be found. The diagnostic information obtained from imaging varies depending on the specific stage of HCM-phenotype manifestation, including the prehypertrophic, hypertrophic, and later stages of adverse remodeling into the burned-out phase of overt heart failure. However, subtle or obvious, these imaging findings become critical components in diagnosis, management, and follow-up of HCM patients. Although diagnosis of HCM traditionally relies on clinical assessment and transthoracic echocardiography, recent studies have demonstrated increased utility of multidetector computed tomography (CT) and particularly cardiac magnetic resonance (MR) imaging in diagnosis, phenotype differentiation, therapeutic planning, and prognostication. In this article, we provide an overview of the genetics, pathophysiology, and clinical manifestations of HCM, with the spectrum of imaging findings at MR imaging and CT and their contribution in diagnosis, risk stratification, and therapy. (©)RSNA, 2016.
Genotype and phenotype spectrum of NRAS germline variants.
Altmüller, Franziska; Lissewski, Christina; Bertola, Debora; Flex, Elisabetta; Stark, Zornitza; Spranger, Stephanie; Baynam, Gareth; Buscarilli, Michelle; Dyack, Sarah; Gillis, Jane; Yntema, Helger G; Pantaleoni, Francesca; van Loon, Rosa LE; MacKay, Sara; Mina, Kym; Schanze, Ina; Tan, Tiong Yang; Walsh, Maie; White, Susan M; Niewisch, Marena R; García-Miñaúr, Sixto; Plaza, Diego; Ahmadian, Mohammad Reza; Cavé, Hélène; Tartaglia, Marco; Zenker, Martin
2017-06-01
RASopathies comprise a group of disorders clinically characterized by short stature, heart defects, facial dysmorphism, and varying degrees of intellectual disability and cancer predisposition. They are caused by germline variants in genes encoding key components or modulators of the highly conserved RAS-MAPK signalling pathway that lead to dysregulation of cell signal transmission. Germline changes in the genes encoding members of the RAS subfamily of GTPases are rare and associated with variable phenotypes of the RASopathy spectrum, ranging from Costello syndrome (HRAS variants) to Noonan and Cardiofaciocutaneous syndromes (KRAS variants). A small number of RASopathy cases with disease-causing germline NRAS alterations have been reported. Affected individuals exhibited features fitting Noonan syndrome, and the observed germline variants differed from the typical oncogenic NRAS changes occurring as somatic events in tumours. Here we describe 19 new cases with RASopathy due to disease-causing variants in NRAS. Importantly, four of them harbored missense changes affecting Gly12, which was previously described to occur exclusively in cancer. The phenotype in our cohort was variable but well within the RASopathy spectrum. Further, one of the patients (c.35G>A; p.(Gly12Asp)) had a myeloproliferative disorder, and one subject (c.34G>C; p.(Gly12Arg)) exhibited an uncharacterized brain tumour. With this report, we expand the genotype and phenotype spectrum of RASopathy-associated germline NRAS variants and provide evidence that NRAS variants do not spare the cancer-associated mutation hotspots.
Platform for combined analysis of functional and biomolecular phenotypes of the same cell.
Kelbauskas, L; Ashili, S; Zeng, J; Rezaie, A; Lee, K; Derkach, D; Ueberroth, B; Gao, W; Paulson, T; Wang, H; Tian, Y; Smith, D; Reid, B; Meldrum, Deirdre R
2017-03-16
Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression.
Bretscher, P A
2014-01-01
It is well recognized that the physiological/pathological consequences of an immune response, against a foreign or a self-antigen, are often critically dependent on the class of immunity generated. Here we focus on how antigen interacts with the cells of the immune system to determine whether antigen predominantly generates Th1 or Th2 cells. We refer to this mechanism as the ‘decision criterion’ controlling the Th1/Th2 phenotype of the immune response. A plausible decision criterion should account for the variables of immunization known to affect the Th1/Th2 phenotype of the ensuing immune response. Documented variables include the nature of the antigen, in terms of its degree of foreignness, the dose of antigen and the time after immunization at which the Th1/Th2 phenotype of the immune response is assessed. These are quantitative variables made at the level of the system. In addition, the route of immunization is also critical. I describe a quantitative hypothesis as to the nature of the decision criterion, referred to as the Threshold Hypothesis. This hypothesis accounts for the quantitative variables of immunization known to affect the Th1/Th2 phenotype of the immune response generated. I suggest and illustrate how this is not true of competing, contemporary hypotheses. I outline studies testing predictions of the hypothesis and illustrate its potential utility in designing strategies to prevent or treat medical situations where a predominant Th1 response is required to contain an infection, such as those caused by HIV-1 and by Mycobacterium tuberculosis, or to contain cancers. PMID:24684592
Choi, In Young; Lim, HoTae; Estrellas, Kenneth; Mula, Jyothi; Cohen, Tatiana V; Zhang, Yuanfan; Donnelly, Christopher J; Richard, Jean-Philippe; Kim, Yong Jun; Kim, Hyesoo; Kazuki, Yasuhiro; Oshimura, Mitsuo; Li, Hongmei Lisa; Hotta, Akitsu; Rothstein, Jeffrey; Maragakis, Nicholas; Wagner, Kathryn R; Lee, Gabsang
2016-06-07
Duchenne muscular dystrophy (DMD) remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs). Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our "chemical-compound-based" strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFβ signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological "dual-SMAD" inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form "rescued" multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human "DMD-in-a-dish" model using hiPSC-based disease modeling. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Developmental mechanisms underlying variable, invariant and plastic phenotypes
Abley, Katie; Locke, James C. W.; Leyser, H. M. Ottoline
2016-01-01
Background Discussions of phenotypic robustness often consider scenarios where invariant phenotypes are optimal and assume that developmental mechanisms have evolved to buffer the phenotypes of specific traits against stochastic and environmental perturbations. However, plastic plant phenotypes that vary between environments or variable phenotypes that vary stochastically within an environment may also be advantageous in some scenarios. Scope Here the conditions under which invariant, plastic and variable phenotypes of specific traits may confer a selective advantage in plants are examined. Drawing on work from microbes and multicellular organisms, the mechanisms that may give rise to each type of phenotype are discussed. Conclusion In contrast to the view of robustness as being the ability of a genotype to produce a single, invariant phenotype, changes in a phenotype in response to the environment, or phenotypic variability within an environment, may also be delivered consistently (i.e. robustly). Thus, for some plant traits, mechanisms have probably evolved to produce plasticity or variability in a reliable manner. PMID:27072645
Latent Cognitive Phenotypes in De Novo Parkinson's Disease: A Person-Centered Approach.
LaBelle, Denise R; Walsh, Ryan R; Banks, Sarah J
2017-08-01
Cognitive impairment is an important aspect of Parkinson's disease (PD), but there is considerable heterogeneity in its presentation. This investigation aims to identify and characterize latent cognitive phenotypes in early PD. Latent class analysis, a data-driven, person-centered, cluster analysis was performed on cognitive data from the Parkinson's Progressive Markers Initiative baseline visit. This analytic method facilitates identification of naturally occurring endophenotypes. Resulting classes were compared across biomarker, symptom, and demographic data. Six cognitive phenotypes were identified. Three demonstrated consistent performance across indicators, representing poor ("Weak-Overall"), average ("Typical-Overall"), and strong ("Strong-Overall") cognition. The remaining classes demonstrated unique patterns of cognition, characterized by "Strong-Memory," "Weak-Visuospatial," and "Amnestic" profiles. The Amnestic class evidenced greater tremor severity and anosmia, but was unassociated with biomarkers linked with Alzheimer's disease. The Weak-Overall class was older and reported more non-motor features associated with cognitive decline, including anxiety, depression, autonomic dysfunction, anosmia, and REM sleep behaviors. The Strong-Overall class was younger, more female, and reported less dysautonomia and anosmia. Classes were unrelated to disease duration, functional independence, or available biomarkers. Latent cognitive phenotypes with focal patterns of impairment were observed in recently diagnosed individuals with PD. Cognitive profiles were found to be independent of traditional biomarkers and motoric indices of disease progression. Only globally impaired class was associated with previously reported indicators of cognitive decline, suggesting this group may drive the effects reported in studies using variable-based analysis. Longitudinal and neuroanatomical characterization of classes will yield further insight into the evolution of cognitive change in the disease. (JINS, 2017, 23, 551-563).
Phenotype-genotype correlations in a series of wolfram syndrome families.
Smith, Casey J A; Crock, Patricia A; King, Bruce R; Meldrum, Cliff J; Scott, Rodney J
2004-08-01
Wolfram syndrome is an extremely rare autosomal-recessive disorder that predisposes the development of type 1 diabetes in association with progressive optic atrophy. The genetic basis of this disease has been shown to be due to mutations in the WFS1 gene. The WFS1 gene encodes a novel transmembrane protein called wolframin, which recent evidence suggests may serve as a novel endoplasmic reticulum calcium channel in pancreatic beta-cells and neurons. Genotype-phenotype correlations in this syndrome are becoming apparent and may help in explaining some of the variable characteristics observed in this disease. In this report, we have studied 13 patients with Wolfram syndrome from nine families to further define the relationship between mutation site and type with specific disease characteristics. A severe phenotype was seen in patients with mutations in exon 4 and with a large deletion encompassing most of exon 8. In total, nine novel mutations were identified as well as three new silent polymorphisms. Similar to all other mutation reports, most causative changes identified in the WFS1 gene occurred in exon 8, and only one was identified outside this region in exon 4.
Cluster Analysis Identifies 3 Phenotypes within Allergic Asthma.
Sendín-Hernández, María Paz; Ávila-Zarza, Carmelo; Sanz, Catalina; García-Sánchez, Asunción; Marcos-Vadillo, Elena; Muñoz-Bellido, Francisco J; Laffond, Elena; Domingo, Christian; Isidoro-García, María; Dávila, Ignacio
Asthma is a heterogeneous chronic disease with different clinical expressions and responses to treatment. In recent years, several unbiased approaches based on clinical, physiological, and molecular features have described several phenotypes of asthma. Some phenotypes are allergic, but little is known about whether these phenotypes can be further subdivided. We aimed to phenotype patients with allergic asthma using an unbiased approach based on multivariate classification techniques (unsupervised hierarchical cluster analysis). From a total of 54 variables of 225 patients with well-characterized allergic asthma diagnosed following American Thoracic Society (ATS) recommendation, positive skin prick test to aeroallergens, and concordant symptoms, we finally selected 19 variables by multiple correspondence analyses. Then a cluster analysis was performed. Three groups were identified. Cluster 1 was constituted by patients with intermittent or mild persistent asthma, without family antecedents of atopy, asthma, or rhinitis. This group showed the lowest total IgE levels. Cluster 2 was constituted by patients with mild asthma with a family history of atopy, asthma, or rhinitis. Total IgE levels were intermediate. Cluster 3 included patients with moderate or severe persistent asthma that needed treatment with corticosteroids and long-acting β-agonists. This group showed the highest total IgE levels. We identified 3 phenotypes of allergic asthma in our population. Furthermore, we described 2 phenotypes of mild atopic asthma mainly differentiated by a family history of allergy. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Heyer, Christina M; Sundsbak, Jamie L; Abebe, Kaleab Z; Chapman, Arlene B; Torres, Vicente E; Grantham, Jared J; Bae, Kyongtae T; Schrier, Robert W; Perrone, Ronald D; Braun, William E; Steinman, Theodore I; Mrug, Michal; Yu, Alan S L; Brosnahan, Godela; Hopp, Katharina; Irazabal, Maria V; Bennett, William M; Flessner, Michael F; Moore, Charity G; Landsittel, Douglas; Harris, Peter C
2016-09-01
Autosomal dominant polycystic kidney disease (ADPKD) often results in ESRD but with a highly variable course. Mutations to PKD1 or PKD2 cause ADPKD; both loci have high levels of allelic heterogeneity. We evaluated genotype-phenotype correlations in 1119 patients (945 families) from the HALT Progression of PKD Study and the Consortium of Radiologic Imaging Study of PKD Study. The population was defined as: 77.7% PKD1, 14.7% PKD2, and 7.6% with no mutation detected (NMD). Phenotypic end points were sex, eGFR, height-adjusted total kidney volume (htTKV), and liver cyst volume. Analysis of the eGFR and htTKV measures showed that the PKD1 group had more severe disease than the PKD2 group, whereas the NMD group had a PKD2-like phenotype. In both the PKD1 and PKD2 populations, men had more severe renal disease, but women had larger liver cyst volumes. Compared with nontruncating PKD1 mutations, truncating PKD1 mutations associated with lower eGFR, but the mutation groups were not differentiated by htTKV. PKD1 nontruncating mutations were evaluated for conservation and chemical change and subdivided into strong (mutation strength group 2 [MSG2]) and weak (MSG3) mutation groups. Analysis of eGFR and htTKV measures showed that patients with MSG3 but not MSG2 mutations had significantly milder disease than patients with truncating cases (MSG1), an association especially evident in extreme decile populations. Overall, we have quantified the contribution of genic and PKD1 allelic effects and sex to the ADPKD phenotype. Intrafamilial correlation analysis showed that other factors shared by families influence htTKV, with these additional genetic/environmental factors significantly affecting the ADPKD phenotype. Copyright © 2016 by the American Society of Nephrology.
Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice
Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.
2017-01-01
Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060
A platform for high-throughput bioenergy production phenotype characterization in single cells
Kelbauskas, Laimonas; Glenn, Honor; Anderson, Clifford; Messner, Jacob; Lee, Kristen B.; Song, Ganquan; Houkal, Jeff; Su, Fengyu; Zhang, Liqiang; Tian, Yanqing; Wang, Hong; Bussey, Kimberly; Johnson, Roger H.; Meldrum, Deirdre R.
2017-01-01
Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers. PMID:28349963
Variably Protease-Sensitive Prionopathy: A New Sporadic Disease of the Prion Protein
Zou, Wen-Quan; Puoti, Gianfranco; Xiao, Xiangzhu; Yuan, Jue; Qing, Liuting; Cali, Ignazio; Shimoji, Miyuki; Langeveld, Jan P. M.; Castellani, Rudy; Notari, Silvio; Crain, Barbara; Schmidt, Robert E.; Geschwind, Michael; DeArmond, Stephen J.; Cairns, Nigel J.; Dickson, Dennis; Honig, Lawrence; Torres, Juan Maria; Mastrianni, James; Capellari, Sabina; Giaccone, Giorgio; Belay, Ermias D.; Schonberger, Lawrence B.; Cohen, Mark; Perry, George; Kong, Qingzhong; Parchi, Piero; Tagliavini, Fabrizio; Gambetti, Pierluigi
2011-01-01
Objective The objective of the study is to report 2 new genotypic forms of protease-sensitive prionopathy (PSPr), a novel prion disease described in 2008, in 11 subjects all homozygous for valine at codon 129 of the prion protein (PrP) gene (129VV). The 2 new PSPr forms affect individuals who are either homozygous for methionine (129MM) or heterozygous for methionine/valine (129MV). Methods Fifteen affected subjects with 129MM, 129MV, and 129VV underwent comparative evaluation at the National Prion Disease Pathology Surveillance Center for clinical, histopathologic, immunohistochemical, genotypical, and PrP characteristics. Results Disease duration (between 22 and 45 months) was significantly different in the 129VV and 129MV subjects. Most other phenotypic features along with the PrP electrophoretic profile were similar but distinguishable in the 3 129 genotypes. A major difference laid in the sensitivity to protease digestion of the disease-associated PrP, which was high in 129VV but much lower, or altogether lacking, in 129MV and 129MM. This difference prompted the substitution of the original designation with “variably protease-sensitive prionopathy” (VPSPr). None of the subjects had mutations in the PrP gene coding region. Interpretation Because all 3 129 genotypes are involved, and are associated with distinguishable phenotypes, VPSPr becomes the second sporadic prion protein disease with this feature after Creutzfeldt-Jakob disease, originally reported in 1920. However, the characteristics of the abnormal prion protein suggest that VPSPr is different from typical prion diseases, and perhaps more akin to subtypes of Gerstmann-Sträussler-Scheinker disease. PMID:20695009
Rinawi, Firas; Assa, Amit; Bashir, Husam; Peleg, Sarit; Shamir, Raanan
2017-08-01
Data on inflammatory bowel disease (IBD) phenotypes among the Arab population in Israel or in the neighboring Arab countries is scarce. We aimed to assess differences in disease phenotype among Arab and Jewish children living in Israel. We performed a retrospective chart review of pediatric IBD cases, which were diagnosed at the Schneider Children's Medical Center and Ha'Emek Medical Center in Israel between 2000 and 2014. Demographic, clinical, and phenotypic variables were compared between Arabs and Jews from Eastern (Sephardic) and Western (Ashkenazi) origin. Seventy-one Arab children with IBD were compared with 165 Ashkenazi and 158 Sephardic Jewish children. Age and gender did not differ between groups. Sephardic and Ashkenazi Jewish Crohn's disease (CD) patients had significantly more stenotic behavior (24 and 26 vs. 5%, p = 0.03) and less fistulzing perianal disease (15 and 11 vs. 31%, p = 0.014) compared with Arab patients. Arab children with ulcerative colitis (UC) had more severe disease at diagnosis compared to Sephardic and Ashkenazi Jews reflected by higher Pediatric UC Activity Index (45 vs. 35 and 35, respectively, p = 0.03). Arab patients had significantly lower proportion of anti-Saccharomyces cerevisiae antibodies positivity (in CD) and perinuclear anti-neutrophil cytoplasmic antibodies positivity (in UC) than both Sephardic and Ashkenazi Jewish children (23 vs. 53 and 65%, p = 0.002 and 35 vs. 60 and 75%, respectively, p = 0.002). Arab and Jewish children with IBD differ in disease characteristics and severity. Whether genetic or environmental factors are the cause for these differences is yet to be determined.
Chow, Dorothy K L; Sung, Joseph J Y; Wu, Justin C Y; Tsoi, Kelvin K F; Leong, Rupert W L; Chan, Francis K L
2009-04-01
According to the Montreal Classification, upper gastrointestinal tract phenotype L4 is uncommon in Caucasian patients with Crohn's disease (CD) but carries excess risk of recurrence. We studied the clinical course of CD in Chinese patients presenting with the L4 phenotype and factors predicting its occurrence upon longitudinal follow-up. This prospective cohort study included 132 Chinese CD patients (median age at diagnosis, 30.0 years, range: 14.0-77.0 years) who were followed for 770 person-years. Demographic data including disease behavior and location, details of surgery, and hospitalization were collected. The Kaplan-Meier method was used to estimate the probabilities of further hospitalization and major surgery followed by Cox proportional hazards regression to determine if clinical variables independently predicted the endpoints. The L4 phenotype was found in 30 (22.7%) patients at presentation. There were significantly more stricturing (46.7% versus 18.6%) and penetrating (30.0% versus 3.9%) phenotypes in the L4 group than in the non-L4 group (P < 0.0001). The 3-year cumulative probability of further hospitalization was 86.9% (95% confidence interval [CI]: 73.8%-100.0%) in the L4 group as compared with 49.3% (95% CI: 39.3%-59.3%) in the non-L4 group (log-rank test, P < 0.0001). The L4 phenotype independently predicted further hospitalization (adjusted hazards ratio [HR]: 2.1; 95% CI: 1.3-3.5). The cumulative probability of major surgery was significantly higher in the L4 than in the non-L4 group (P < 0.0001). Eighteen (17.6%) patients developed the L4 phenotype on follow-up and the stricturing phenotype predicted its occurrence (adjusted HR: 5.5; 95% CI: 2.2-14.0). Chinese CD patients more often had the L4 phenotype, which predicted the need of subsequent hospitalization.
Cervera-Acedo, C; Coloma, A; Huarte-Loza, E; Sierra-Carpio, M; Domínguez-Garrido, E
2017-10-31
Alport syndrome is an inherited renal disorder characterized by glomerular basement membrane lesions with hematuria, proteinuria and frequent hearing defects and ocular abnormalities. The disease is associated with mutations in genes encoding α3, α4, or α5 chains of type IV collagen, namely COL4A3 and COL4A4 in chromosome 2 and COL4A5 in chromosome X. In contrast to the well-known X-linked and autosomal recessive phenotypes, there is very little information about the autosomal dominant. In view of the wide spectrum of phenotypes, an exact diagnosis is sometimes difficult to achieve. We investigated a Spanish family with variable phenotype of autosomal dominant Alport syndrome using clinical, histological, and genetic analysis. Mutational analysis of COL4A3 and COL4A4 genes showed a novel heterozygous mutation (c. 998G > A; p.G333E) in exon 18 of the COL4A3 gene. Among relatives carrying the novel mutation, the clinical phenotype was variable. Two additional COL4A3 mutations were found, a Pro-Leu substitution in exon 48 (p.P1461L) and a Ser-Cys substitution in exon 49 (p.S1492C), non-pathogenics alone. Carriers of p.G333E and p.P1461L or p.S1492C mutations in COL4A3 gene appear to be more severely affected than carriers of only p.G333E mutation, and the clinical findings has an earlier onset. In this way, we could speculate on a synergistic effect of compound heterozygosity that could explain the different phenotype observed in this family.
Quantifying Disease Progression in Amyotrophic Lateral Sclerosis
Simon, Neil G; Turner, Martin R; Vucic, Steve; Al-Chalabi, Ammar; Shefner, Jeremy; Lomen-Hoerth, Catherine; Kiernan, Matthew C
2014-01-01
Amyotrophic lateral sclerosis (ALS) exhibits characteristic variability of onset and rate of disease progression, with inherent clinical heterogeneity making disease quantitation difficult. Recent advances in understanding pathogenic mechanisms linked to the development of ALS impose an increasing need to develop strategies to predict and more objectively measure disease progression. This review explores phenotypic and genetic determinants of disease progression in ALS, and examines established and evolving biomarkers that may contribute to robust measurement in longitudinal clinical studies. With targeted neuroprotective strategies on the horizon, developing efficiencies in clinical trial design may facilitate timely entry of novel treatments into the clinic. PMID:25223628
Nattero, Julieta; Leonhard, Gustavo; Gürtler, Ricardo E; Crocco, Liliana B
2015-12-01
Phenotypic plasticity is the ability of a genotype to display alternative phenotypes in different environments. Understanding how plasticity evolves and the factors that favor and constrain its evolution have attracted great interest. We investigated whether selection on phenotypic plasticity and costs of plasticity affect head and wing morphology in response to host-feeding sources in the major Chagas disease vector Triatoma infestans. Full-sib families were assigned to blood-feeding on either live pigeons or guinea pigs throughout their lives. We measured diet-induced phenotypic plasticity on wing and head size and shape; characterized selection on phenotypic plasticity for female and male fecundity rates, and evaluated costs of plasticity. Wing size and shape variables exhibited significant differences in phenotypic plasticity associated with host-feeding source in female and male bugs. Evidence of selection on phenotypic plasticity was detected in head size and shape for guinea pig-fed females. A lower female fecundity rate was detected in more plastic families for traits that showed selection on plasticity. These results provide insights into the morphological phenotypic plasticity of T. infestans, documenting fitness advantages of head size and shape for females fed on guinea pigs. This vector species showed measurable benefits of responding plastically to environmental variation rather than adopting a fixed development plan. The presence of cost of plasticity suggests constraints on the evolution of plasticity. Our study indicates that females fed on guinea pigs (and perhaps on other suitable mammalian hosts) have greater chances of evolving under selection on phenotypic plasticity subject to some constraints. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Xue; Sheng, Xunlun; Liu, Xiaoxing; Li, Huiping; Liu, Yani; Rong, Weining; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Zhao, Kanxing; Zhao, Chen
2014-01-01
USH2A mutations have been implicated in the disease etiology of several inherited diseases, including Usher syndrome type 2 (USH2), nonsyndromic retinitis pigmentosa (RP), and nonsyndromic deafness. The complex genetic and phenotypic spectrums relevant to USH2A defects make it difficult to manage patients with such mutations. In the present study, we aim to determine the genetic etiology and to characterize the correlated clinical phenotypes for three Chinese pedigrees with nonsyndromic RP, one with RP sine pigmento (RPSP), and one with USH2. Family histories and clinical details for all included patients were reviewed. Ophthalmic examinations included best corrected visual acuities, visual field measurements, funduscopy, and electroretinography. Targeted next-generation sequencing (NGS) was applied using two sequence capture arrays to reveal the disease causative mutations for each family. Genotype-phenotype correlations were also annotated. Seven USH2A mutations, including four missense substitutions (p.P2762A, p.G3320C, p.R3719H, and p.G4763R), two splice site variants (c.8223+1G>A and c.8559-2T>C), and a nonsense mutation (p.Y3745*), were identified as disease causative in the five investigated families, of which three reported to have consanguineous marriage. Among all seven mutations, six were novel, and one was recurrent. Two homozygous missense mutations (p.P2762A and p.G3320C) were found in one individual family suggesting a potential double hit effect. Significant phenotypic divergences were revealed among the five families. Three families of the five families were affected with early, moderated, or late onset RP, one with RPSP, and the other one with USH2. Our study expands the genotypic and phenotypic variability relevant to USH2A mutations, which would help with a clear insight into the complex genetic and phenotypic spectrums relevant to USH2A defects, and is complementary for a better management of patients with such mutations. We have also demonstrated that a targeted NGS approach is a valuable tool for the genetic diagnosis of USH2 and RP.
Li, Huiping; Liu, Yani; Rong, Weining; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Zhao, Kanxing; Zhao, Chen
2014-01-01
USH2A mutations have been implicated in the disease etiology of several inherited diseases, including Usher syndrome type 2 (USH2), nonsyndromic retinitis pigmentosa (RP), and nonsyndromic deafness. The complex genetic and phenotypic spectrums relevant to USH2A defects make it difficult to manage patients with such mutations. In the present study, we aim to determine the genetic etiology and to characterize the correlated clinical phenotypes for three Chinese pedigrees with nonsyndromic RP, one with RP sine pigmento (RPSP), and one with USH2. Family histories and clinical details for all included patients were reviewed. Ophthalmic examinations included best corrected visual acuities, visual field measurements, funduscopy, and electroretinography. Targeted next-generation sequencing (NGS) was applied using two sequence capture arrays to reveal the disease causative mutations for each family. Genotype-phenotype correlations were also annotated. Seven USH2A mutations, including four missense substitutions (p.P2762A, p.G3320C, p.R3719H, and p.G4763R), two splice site variants (c.8223+1G>A and c.8559-2T>C), and a nonsense mutation (p.Y3745*), were identified as disease causative in the five investigated families, of which three reported to have consanguineous marriage. Among all seven mutations, six were novel, and one was recurrent. Two homozygous missense mutations (p.P2762A and p.G3320C) were found in one individual family suggesting a potential double hit effect. Significant phenotypic divergences were revealed among the five families. Three families of the five families were affected with early, moderated, or late onset RP, one with RPSP, and the other one with USH2. Our study expands the genotypic and phenotypic variability relevant to USH2A mutations, which would help with a clear insight into the complex genetic and phenotypic spectrums relevant to USH2A defects, and is complementary for a better management of patients with such mutations. We have also demonstrated that a targeted NGS approach is a valuable tool for the genetic diagnosis of USH2 and RP. PMID:25133613
Platform for combined analysis of functional and biomolecular phenotypes of the same cell
Kelbauskas, L.; Ashili, S.; Zeng, J.; Rezaie, A.; Lee, K.; Derkach, D.; Ueberroth, B.; Gao, W.; Paulson, T.; Wang, H.; Tian, Y.; Smith, D.; Reid, B.; Meldrum, Deirdre R.
2017-01-01
Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression. PMID:28300162
Alfonso, Pilar; Pampín, Sandra; García-Rodríguez, Beatriz; Tejedor, Teresa; Domínguez, Carmen; Rodríguez-Rey, Jose C; Giraldo, Pilar; Pocoví, Miguel
2011-01-30
Gaucher disease (GD) is a rare autosomal recessive disorder caused mainly by mutations in the glucocerebrosidase (GBA) gene. Great phenotypic variability has been observed among patients with the same genotype, suggesting other factors, such as polymorphic variants, might influence GD phenotypes. We previously reported the c.(-203)A>G (g.1256A>G) variant in exon 1 of the GBA gene in Spanish GD patients. We analyzed the frequency and transcriptional activity of the promoter carrying the G-allele using restriction isotyping, electrophoretic mobility shift assay, cell culture, transfection, and luciferase assays. We found the variant is present at a similar frequency to the control group. In our patients, the G-allele was always found in combination with another mutation in the same allele, and patients carrying the c.(-203)A>G variant showed a more severe GD phenotype. The promoter containing the G-allele showed a 35% reduction in promoter activity when transfected into HepG2 cells. The c.(-203)A>G variant seems to be a polymorphism resulting in a decrease in activity of the GBA promoter. The change, per se, is not enough to elicit a GD phenotype, but it may produce a more severe phenotype in GD patients when combined with an already defective GBA protein. Copyright © 2010 Elsevier B.V. All rights reserved.
Konno, Satoshi; Taniguchi, Natsuko; Makita, Hironi; Nakamaru, Yuji; Shimizu, Kaoruko; Shijubo, Noriharu; Fuke, Satoshi; Takeyabu, Kimihiro; Oguri, Mitsuru; Kimura, Hirokazu; Maeda, Yukiko; Suzuki, Masaru; Nagai, Katsura; Ito, Yoichi M; Wenzel, Sally E; Nishimura, Masaharu
2015-12-01
Smoking may have multifactorial effects on asthma phenotypes, particularly in severe asthma. Cluster analysis has been applied to explore novel phenotypes, which are not based on any a priori hypotheses. To explore novel severe asthma phenotypes by cluster analysis when including cigarette smokers. We recruited a total of 127 subjects with severe asthma, including 59 current or ex-smokers, from our university hospital and its 29 affiliated hospitals/pulmonary clinics. Twelve clinical variables obtained during a 2-day hospital stay were used for cluster analysis. After clustering using clinical variables, the sputum levels of 14 molecules were measured to biologically characterize the clinical clusters. Five clinical clusters were identified, including two characterized by high pack-year exposure to cigarette smoking and low FEV1/FVC. There were marked differences between the two clusters of cigarette smokers. One had high levels of circulating eosinophils, high IgE levels, and a high sinus disease score. The other was characterized by low levels of the same parameters. Sputum analysis revealed increased levels of IL-5 in the former cluster and increased levels of IL-6 and osteopontin in the latter. The other three clusters were similar to those previously reported: young onset/atopic, nonsmoker/less eosinophilic, and female/obese. Key clinical variables were confirmed to be stable and consistent 1 year later. This study reveals two distinct phenotypes of severe asthma in current and former cigarette smokers with potentially different biological pathways contributing to fixed airflow limitation. Clinical trial registered with www.umin.ac.jp (000003254).
Spectrum of Clinical Diseases Caused By Disorders of Primary Cilia
Aygun, Meral Gunay-; Hildebrandt, Friedhelm
2011-01-01
The ciliopathies are a category of diseases caused by disruption of the physiological functions of cilia. Ciliary dysfunction results in a broad range of phenotypes, including renal, hepatic, and pancreatic cyst formation; situs abnormalities; retinal degeneration; anosmia; cerebellar or other brain anomalies; postaxial polydactyly; bronchiectasis; and infertility. The specific clinical features are dictated by the subtype, structure, distribution, and function of the affected cilia. This review highlights the clinical variability caused by dysfunction of motile and nonmotile primary cilia and emphasizes the genetic heterogeneity and phenotypic overlap that are characteristics of these disorders. There is a need for additional research to understand the shared and unique functions of motile and nonmotile cilia and the pathophysiology resulting from mutations in cilia, basal bodies, or centrosomes. Increased understanding of ciliary biology will improve the diagnosis and management of primary ciliary dyskinesia, syndromic ciliopathies, and cilia-related cystic diseases. PMID:21926397
Romberg-Camps, M J L; Dagnelie, P C; Kester, A D M; Hesselink-van de Kruijs, M A M; Cilissen, M; Engels, L G J B; Van Deursen, C; Hameeteman, W H A; Wolters, F L; Russel, M G V M; Stockbrügger, R W
2009-02-01
Disease course in inflammatory bowel disease (IBD) is variable and difficult to predict. To optimize prognosis, it is of interest to identify phenotypic characteristics at disease onset and other prognostic factors that predict disease course. The aim of this study was to evaluate such factors in a population-based IBD group. IBD patients diagnosed between 1 January 1991 and 1 January 2003 were included. A follow-up questionnaire was developed and medical records were reviewed. Patients were classified according to phenotype at diagnosis and risk factors were registered. Disease severity, cumulative medication use, and "surgical" and "nonsurgical" recurrence rates were calculated as outcome parameters. In total, 476 Crohn's disease (CD), 630 ulcerative colitis (UC), and 81 indeterminate colitis (IC) patients were diagnosed. In CD (mean follow-up 7.6 years), 50% had undergone resective surgery. In UC (mean follow-up 7 years), colectomy rate was 8.3%. First year cumulative recurrence rates per 100 patient-years for CD, UC, and IC were 53, 44, and 42%, respectively. In CD, small bowel localization and stricturing disease were negative prognostic factors for surgery, as was young age. Overall recurrence rate was increased by young age and current smoking. In UC, extensive colitis increased surgical risk. In UC, older age at diagnosis initially increased recurrence risk but was subsequently protective. This population-based IBD study showed high recurrence rates in the first year. In CD, small bowel localization, stricturing disease, and young age were predictive for disease recurrence. In UC, extensive colitis and older age at diagnosis were negative prognostic predictors.
Lee, Seungyeoun; Kim, Yongkang; Kwon, Min-Seok; Park, Taesung
2015-01-01
Genome-wide association studies (GWAS) have extensively analyzed single SNP effects on a wide variety of common and complex diseases and found many genetic variants associated with diseases. However, there is still a large portion of the genetic variants left unexplained. This missing heritability problem might be due to the analytical strategy that limits analyses to only single SNPs. One of possible approaches to the missing heritability problem is to consider identifying multi-SNP effects or gene-gene interactions. The multifactor dimensionality reduction method has been widely used to detect gene-gene interactions based on the constructive induction by classifying high-dimensional genotype combinations into one-dimensional variable with two attributes of high risk and low risk for the case-control study. Many modifications of MDR have been proposed and also extended to the survival phenotype. In this study, we propose several extensions of MDR for the survival phenotype and compare the proposed extensions with earlier MDR through comprehensive simulation studies. PMID:26339630
Life at the extreme limit: phenotypic characteristics of supercentenarians in Okinawa.
Willcox, D Craig; Willcox, Bradley J; Wang, Nien-Chiang; He, Qimei; Rosenbaum, Matthew; Suzuki, Makoto
2008-11-01
As elite representatives of the rapidly increasing "oldest-old" population, centenarians have become an important model population for understanding human aging. However, as we are beginning to understand more about this important phenotype, another demographic group of even more elite survivors is emerging-so-called "supercentenarians" or those who survive 110-plus years. Little is known about these exceptional survivors. We assessed the Okinawa Centenarian Study (OCS) database for all information on supercentenarians. The database includes dates of birth and year of death for all residents of Okinawa 99 years old or older and a yearly geriatric assessment of all centenarians who consented, enabling prospective study of age-related traits. Of 20 potential supercentenarians identified, 15 had agreed to participate in the OCS interview, physical examination, and blood draw. Of these 15, 12 (3 men and 9 women) met our age validation criteria and were accepted as supercentenarians. Phenotypic variables studied include medical and social history, activities of daily living (ADLs), and clinical phenotypes (physiology, hematology, biochemistry, and immunology). Age at death ranged from 110 to 112 years. The majority of supercentenarians had minimal clinically apparent disease until late in life, with cataracts (42%) and fractures (33%) being common and coronary heart disease (8%), stroke (8%), cancer (0%), and diabetes (0%) rare or not evident on clinical examination. Functionally, most supercentenarians were independent in ADLs at age 100 years, and few were institutionalized before the age of 105 years. Most had normal clinical parameters at age 100 years, but by age 105 exhibited multiple clinical markers of frailty coincident with a rapid ADL decline. Supercentenarians displayed an exceptionally healthy aging phenotype where clinically apparent major chronic diseases and disabilities were markedly delayed, often beyond age 100. They had little clinical history of cardiovascular disease and reported no history of cancer or diabetes. This phenotype is consistent with a more elite phenotype than has been observed in prior studies of centenarians. The genetic and environmental antecedents of this exceptionally healthy aging phenotype deserve further study.
Pennisi, Elena Maria; Arca, Marcello; Bertini, Enrico; Bruno, Claudio; Cassandrini, Denise; D'amico, Adele; Garibaldi, Matteo; Gragnani, Francesca; Maggi, Lorenzo; Massa, Roberto; Missaglia, Sara; Morandi, Lucia; Musumeci, Olimpia; Pegoraro, Elena; Rastelli, Emanuele; Santorelli, Filippo Maria; Tasca, Elisabetta; Tavian, Daniela; Toscano, Antonio; Angelini, Corrado
2017-05-12
A small number of patients affected by Neutral Lipid Storage Diseases (NLSDs: NLSD type M with Myopathy and NLSD type I with Ichthyosis) have been described in various ethnic groups worldwide. However, relatively little is known about the progression and phenotypic variability of the disease in large specific populations. The aim of our study was to assess the natural history, disability and genotype-phenotype correlations in Italian patients with NLSDs. Twenty-one patients who satisfied the criteria for NLSDs were enrolled in a retrospective cross-sectional study to evaluate the genetic aspects, clinical signs at onset, disability progression and comorbidities associated with this group of diseases. During the clinical follow-up (range: 2-44 years, median: 17.8 years), two patients (9.5%, both with NLSD-I) died of hepatic failure, and a further five (24%) lost their ability to walk or needed help when walking after a mean period of 30.6 years of disease. None of the patients required mechanical ventilation. No patient required a heart transplant, one patient with NLSD-M was implanted with a cardioverter defibrillator for severe arrhythmias. The genotype/phenotype correlation analysis in our population showed that the same gene mutations were associated with a varying clinical onset and course. This study highlights peculiar aspects of Italian NLSD patients that differ from those observed in Japanese patients, who were found to be affected by a marked hypertrophic cardiopathy. Owing to the varying phenotypic expression of the same mutations, it is conceivable that some additional genetic or epigenetic factors affect the symptoms and progression in this group of diseases.
[Marfan syndrome in childhood and adolescence].
Magotteaux, S; Bulk, S; Farhat, N; Sakalihasan, N; Defraigne, J-O; Seghaye, M-Ch
2016-07-01
The Marfan syndrome is a systemic connective tissue disorder with autosomal dominant inheritance. A mutation of the fibrillin-1 gene, a glycoprotein which is the main constituent of the extracellular matrix, is the cause of the disease. The cardinal features involve the skeletal, ocular and cardiovascular systems. The expression of the Marfan syndrome varies from the severe neonatal presentation to the classical manifestations of the child and young adult, but also comprises isolated features. In children, phenotypical manifestations are age dependent. For these reasons, the diagnosis of Marfan syndrome might be lately revealed by its cardiovascular complications. We report the case of 2 siblings: it illustrates the phenotypic variability that might be observed in a same family, the phenotype evolution with age and the diagnosis challenge in childhood.
Disease-modifying genetic factors in cystic fibrosis.
Marson, Fernando A L
2018-05-01
To compile data from the past 10 years regarding the role of modifying genes in cystic fibrosis (CF). CF is a model disease for understanding of the action of modifying genes. Although it is a monogenic (CFTR) autosomal recessive disease, CF presents with wide phenotypic variability. In CF, variability occurs with different intensity among patients by each organ, being organ-specific, resulting from the mutual interaction of environmental and genetic factors, including CFTR mutations and various other genes, most of which are associated with inflammatory processes. In individuals, using precision medicine, gene modification studies have revealed individualized responses to drugs depending on particular CFTR mutations and modifying genes, most of which are alternative ion channels. Studies of modifying genes in CF allow: understanding of clinical variability among patients with the same CFTR genotype; evaluation of precision medicine; understanding of environmental and genetic effects at the organ level; understanding the involvement of genetic variants in inflammatory responses; improvements in genetic counseling; understanding the involvement of genetic variants in inflammatory responses in lung diseases, such as asthma; and understanding the individuality of the person with the disease.
Rutherford, Julienne N.; McDade, Thom W.; Feranil, Alan; Adair, Linda; Kuzawa, Christopher
2011-01-01
Cardiovascular disease (CVD) is a leading cause of death in the Philippines, although few studies here have examined the lipid profiles underlying disease risk. The isolated low high density lipoprotein cholesterol (HDL-c) phenotype has been implicated as a CVD risk factor, the prevalence of which exhibits significant variation across populations. To assess population variation in individual lipid components and their associations with diet and anthropometric characteristics, we compare lipid profiles in a population of adult Filipino women (n=1877) to U.S. women participating in the National Health and Nutrition Examination Survey (n=477). We conducted multilinear regression models to assess the relationship between lipid components and BMI and dietary variables in the two populations. We measured the prevalence of lipid phenotypes, and logistic regression models determined the predictors of the isolated low HDL-c phenotype. HDL-c was lower in the Philippines (40.8±0.2 mg/dL) than in NHANES (60.7±0.7 mg/dL). The prevalence of the isolated low HDL-c phenotype was 28.8%, compared to 2.10% in NHANES. High prevalence among Filipinos was relatively invariant across all levels of BMI, but was strongly inversely related to BMI in NHANES and exhibited only at the BMI>25 kg/m2 threshold. Diet did not predict the low-HDL phenotype in Filipinos. Filipino women exhibit a high prevalence of the isolated low HDL-c phenotype, which is largely decoupled from anthropometric factors. The relationship of CVD to population variation in dyslipidemia and body composition needs further study, particularly in populations where the burden of cardiovascular and metabolic disease is rapidly increasing. PMID:20199988
Reid, Emma S; Papandreou, Apostolos; Drury, Suzanne; Boustred, Christopher; Yue, Wyatt W; Wedatilake, Yehani; Beesley, Clare; Jacques, Thomas S; Anderson, Glenn; Abulhoul, Lara; Broomfield, Alex; Cleary, Maureen; Grunewald, Stephanie; Varadkar, Sophia M; Lench, Nick; Rahman, Shamima; Gissen, Paul; Clayton, Peter T; Mills, Philippa B
2016-11-01
Neurometabolic disorders are markedly heterogeneous, both clinically and genetically, and are characterized by variable neurological dysfunction accompanied by suggestive neuroimaging or biochemical abnormalities. Despite early specialist input, delays in diagnosis and appropriate treatment initiation are common. Next-generation sequencing approaches still have limitations but are already enabling earlier and more efficient diagnoses in these patients. We designed a gene panel targeting 614 genes causing inborn errors of metabolism and tested its diagnostic efficacy in a paediatric cohort of 30 undiagnosed patients presenting with variable neurometabolic phenotypes. Genetic defects that could, at least partially, explain observed phenotypes were identified in 53% of cases. Where biochemical abnormalities pointing towards a particular gene defect were present, our panel identified diagnoses in 89% of patients. Phenotypes attributable to defects in more than one gene were seen in 13% of cases. The ability of in silico tools, including structure-guided prediction programmes to characterize novel missense variants were also interrogated. Our study expands the genetic, clinical and biochemical phenotypes of well-characterized (POMGNT1, TPP1) and recently identified disorders (PGAP2, ACSF3, SERAC1, AFG3L2, DPYS). Overall, our panel was accurate and efficient, demonstrating good potential for applying similar approaches to clinically and biochemically diverse neurometabolic disease cohorts. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Common genetic variation drives molecular heterogeneity in human iPSCs.
Kilpinen, Helena; Goncalves, Angela; Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard; Stegle, Oliver; Gaffney, Daniel J
2017-06-15
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
Common genetic variation drives molecular heterogeneity in human iPSCs
Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard
2017-01-01
Induced pluripotent stem cell (iPSC) technology has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterisation of many existing iPSC lines limits their potential use for research and therapy. Here, we describe the systematic generation, genotyping and phenotyping of 711 iPSC lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative (HipSci: http://www.hipsci.org). Our study outlines the major sources of genetic and phenotypic variation in iPSCs and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPSC phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of rare, genomic copy number mutations that are repeatedly observed in iPSC reprogramming and present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells. PMID:28489815
Perricone, Carlo; Ciccacci, Cinzia; Ceccarelli, Fulvia; Di Fusco, Davide; Spinelli, Francesca Romana; Cipriano, Enrica; Novelli, Giuseppe; Valesini, Guido; Conti, Fabrizio; Borgiani, Paola
2013-10-01
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease. Although genetic factors confer susceptibility to the disease, only 15 % of the genetic contribution has been identified. TRAF3IP2 gene, associated with susceptibility to psoriatic arthritis and psoriasis, encodes for Act1, a negative regulator of adaptive immunity and a positive signaling adaptor in IL-17-mediated immune responses. The aim of this study was to assess the role of TRAF3IP2 gene variability in SLE susceptibility and disease phenotype in an Italian population. Two hundred thirty-nine consecutive SLE patients were enrolled. Study protocol included complete physical examination; the clinical and laboratory data were collected. Two hundred seventy-eight age- and ethnicity-matched healthy subjects served as controls. TRAF3IP2 polymorphisms (rs33980500, rs13190932, and rs13193677) were analyzed in both cases and controls. Genotype analysis was performed by allelic discrimination assays. A case-control association study and a genotype-phenotype correlation were performed. The rs33980500 and rs13193677 resulted significantly associated with SLE susceptibility (P = 0.021, odds ratio (OR) = 1.71, and P = 0.046, OR = 1.73, respectively). All three TRAF3IP2 single nucleotide polymorphisms resulted associated with the development of pericarditis; in particular, rs33980500 showed the strongest association (P = 0.002, OR 2.59). This association was further highlighted by binary logistic regression analysis. In conclusion, our data show for the first time the contribution of TRAF3IP2 genetic variability in SLE susceptibility, providing further suggestions that common variation in genes that function in the adaptive and innate arms of the immune system are important in establishing SLE risk. Our study also shows that this gene may affect disease phenotype and, particularly, the occurrence of pericarditis.
Corneal endothelial dysfunction in Pearson syndrome.
Kasbekar, Shivani A; Gonzalez-Martin, Jose A; Shafiq, Ayad E; Chandna, Arvind; Willoughby, Colin E
2013-01-01
Mitochondrial disorders are associated with well recognized ocular manifestations. Pearson syndrome is an often fatal, multisystem, mitochondrial disorder that causes variable bone marrow, hepatic, renal and pancreatic exocrine dysfunction. Phenotypic progression of ocular disease in a 12-year-old male with Pearson syndrome is described. This case illustrates phenotypic drift from Pearson syndrome to Kearns-Sayre syndrome given the patient's longevity. Persistent corneal endothelial failure was noted in addition to ptosis, chronic external ophthalmoplegia and mid-peripheral pigmentary retinopathy. We propose that corneal edema resulting from corneal endothelial metabolic pump failure occurs within a spectrum of mitochondrial disorders.
Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study.
Loza, Matthew J; Djukanovic, Ratko; Chung, Kian Fan; Horowitz, Daniel; Ma, Keying; Branigan, Patrick; Barnathan, Elliot S; Susulic, Vedrana S; Silkoff, Philip E; Sterk, Peter J; Baribaud, Frédéric
2016-12-15
Asthma is a disease of varying severity and differing disease mechanisms. To date, studies aimed at stratifying asthma into clinically useful phenotypes have produced a number of phenotypes that have yet to be assessed for stability and to be validated in independent cohorts. The aim of this study was to define and validate, for the first time ever, clinically driven asthma phenotypes using two independent, severe asthma cohorts: ADEPT and U-BIOPRED. Fuzzy partition-around-medoid clustering was performed on pre-specified data from the ADEPT participants (n = 156) and independently on data from a subset of U-BIOPRED asthma participants (n = 82) for whom the same variables were available. Models for cluster classification probabilities were derived and applied to the 12-month longitudinal ADEPT data and to a larger subset of the U-BIOPRED asthma dataset (n = 397). High and low type-2 inflammation phenotypes were defined as high or low Th2 activity, indicated by endobronchial biopsies gene expression changes downstream of IL-4 or IL-13. Four phenotypes were identified in the ADEPT (training) cohort, with distinct clinical and biomarker profiles. Phenotype 1 was "mild, good lung function, early onset", with a low-inflammatory, predominantly Type-2, phenotype. Phenotype 2 had a "moderate, hyper-responsive, eosinophilic" phenotype, with moderate asthma control, mild airflow obstruction and predominant Type-2 inflammation. Phenotype 3 had a "mixed severity, predominantly fixed obstructive, non-eosinophilic and neutrophilic" phenotype, with moderate asthma control and low Type-2 inflammation. Phenotype 4 had a "severe uncontrolled, severe reversible obstruction, mixed granulocytic" phenotype, with moderate Type-2 inflammation. These phenotypes had good longitudinal stability in the ADEPT cohort. They were reproduced and demonstrated high classification probability in two subsets of the U-BIOPRED asthma cohort. Focusing on the biology of the four clinical independently-validated easy-to-assess ADEPT asthma phenotypes will help understanding the unmet need and will aid in developing tailored therapies. NCT01274507 (ADEPT), registered October 28, 2010 and NCT01982162 (U-BIOPRED), registered October 30, 2013.
Szewczyk-Krolikowski, Konrad; Tomlinson, Paul; Nithi, Kannan; Wade-Martins, Richard; Talbot, Kevin; Ben-Shlomo, Yoav; Hu, Michele T M
2014-01-01
Identifying factors influencing phenotypic heterogeneity in Parkinson's Disease is crucial for understanding variability in disease severity and progression. Age and gender are two most basic epidemiological characteristics, yet their effect on expression of PD symptoms is not fully defined. We aimed to delineate effects of age and gender on the phenotype in an incident cohort of PD patients and healthy controls from the Oxford Parkinson Disease Centre (OPDC). Clinical features, including demographic and medical characteristics and non-motor and motor symptoms, were analyzed in a group of PD patients within 3 years of diagnosis and a group of healthy controls from the OPDC cohort. Disease features were stratified according to age and compared between genders, controlling for effects of common covariates. 490 PD patients and 176 healthy controls were analyzed. Stratification by age showed increased disease severity with age on motor scales. Some non-motor features showed similar trend, including cognition and autonomic features. Comparison across genders highlighted a pattern of increased severity and greater symptom symmetricality in the face, neck and arms in men with women having more postural problems. Amongst the non-motor symptoms, men had more cognitive impairment, greater rate of REM behavior disorder (RBD), more orthostatic hypotension and sexual dysfunction. Age in PD is a strong factor contributing to disease severity even after controlling for the effect of disease duration. Gender-related motor phenotype can be defined by a vertical split into more symmetrical upper-body disease in men and disease dominated by postural symptoms in women. Copyright © 2013 Elsevier Ltd. All rights reserved.
Genotyping of Mycobacterium intracellulare isolates and clinical characteristics of lung disease.
Kim, S-Y; Lee, S-T; Jeong, B-H; Park, H Y; Jeon, K; Kim, J-W; Shin, S J; Koh, W-J
2013-05-01
Variable number of tandem repeats (VNTR) loci were recently identified in Japanese isolates of Mycobacterium intracellulare. We hypothesised that some mycobacterial genotypes are more virulent than others, resulting in particular genotypes being associated with disease phenotype and progression. To evaluate the VNTR loci of M. intracellulare in clinical isolates from Korean patients, and investigate the association between mycobacterial genotype and disease phenotype and progression. In total, 70 M. intracellulare clinical isolates were genotyped using 16 M. intracellulare VNTR loci. VNTR typing showed strong discriminatory power and genetic diversity for molecular epidemiological studies of M. intracellulare. In a phylogenetic tree, the M. intracellulare clinical isolates were divided into two clusters (A and B). Cluster A was observed more frequently (77%) than Cluster B; however, there was no association between the clinical characteristics, disease progression, drug susceptibility and clusters based on VNTR genotyping. VNTR typing could be used for epidemiological studies of M. intracellulare lung disease; however, no association was found between the specific VNTR genotypes of M. intracellulare and the clinical characteristics of Korean patients.
Zhou, Jin J.; Cho, Michael H.; Lange, Christoph; Lutz, Sharon; Silverman, Edwin K.; Laird, Nan M.
2015-01-01
Many correlated disease variables are analyzed jointly in genetic studies in the hope of increasing power to detect causal genetic variants. One approach involves assessing the relationship between each phenotype and each single nucleotide polymorphism (SNP) individually and using a Bonferroni correction for the effective number of tests conducted. Alternatively, one can apply a multivariate regression or a dimension reduction technique, such as principal component analysis (PCA), and test for the association with the principal components (PC) of the phenotypes rather than the individual phenotypes. Inspired by the previous approaches of combining phenotypes to maximize heritability at individual SNPs, in this paper, we propose to construct a maximally heritable phenotype (MaxH) by taking advantage of the estimated total heritability and co-heritability. The heritability and co-heritability only need to be estimated once, therefore our method is applicable to genome-wide scans. MaxH phenotype is a linear combination of the individual phenotypes with increased heritability and power over the phenotypes being combined. Simulations show that the heritability and power achieved agree well with the theory for large samples and two phenotypes. We compare our approach with commonly used methods and assess both the heritability and the power of the MaxH phenotype. Moreover we provide suggestions for how to choose the phenotypes for combination. An application of our approach to a COPD genome-wide association study shows the practical relevance. PMID:26111731
Multivariate Analysis of Genotype-Phenotype Association.
Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela
2016-04-01
With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.
Diverse Functional Properties of Wilson Disease ATP7B Variants
Huster, Dominik; Kühne, Angelika; Bhattacharjee, Ashima; Raines, Lily; Jantsch, Vanessa; Noe, Johannes; Schirrmeister, Wiebke; Sommerer, Ines; Sabri, Osama; Berr, Frieder; Mössner, Joachim; Stieger, Bruno; Caca, Karel; Lutsenko, Svetlana
2012-01-01
BACKGROUND & AIMS Wilson disease is a severe disorder of copper metabolism caused by mutations in ATP7B, which encodes a copper-transporting adenosine triphosphatase. The disease presents with a variable phenotype that complicates the diagnostic process and treatment. Little is known about the mechanisms that contribute to the different phenotypes of the disease. METHODS We analyzed 28 variants of ATP7B from patients with Wilson disease that affected different functional domains; the gene products were expressed using the baculovirus expression system in Sf9 cells. Protein function was analyzed by measuring catalytic activity and copper (64Cu) transport into vesicles. We studied intracellular localization of variants of ATP7B that had measurable transport activities and were tagged with green fluorescent protein in mammalian cells using confocal laser scanning microscopy. RESULTS Properties of ATP7B variants with pathogenic amino-acid substitution varied greatly even if substitutions were in the same functional domain. Some variants had complete loss of catalytic and transport activity, whereas others lost transport activity but retained phosphor-intermediate formation or had partial losses of activity. In mammalian cells, transport-competent variants differed in stability and subcellular localization. CONCLUSIONS Variants in ATP7B associated with Wilson disease disrupt the protein’s transport activity, result in its mislocalization, and reduce its stability. Single assays are insufficient to accurately predict the effects of ATP7B variants the function of its product and development of Wilson disease. These findings will contribute to our understanding of genotype–phenotype correlation and mechanisms of disease pathogenesis. PMID:22240481
H syndrome: the first 79 patients.
Molho-Pessach, Vered; Ramot, Yuval; Camille, Frances; Doviner, Victoria; Babay, Sofia; Luis, Siekavizza Juan; Broshtilova, Valentina; Zlotogorski, Abraham
2014-01-01
H syndrome is an autosomal recessive genodermatosis with multisystem involvement caused by mutations in SLC29A3. We sought to investigate the clinical and molecular findings in 79 patients with this disorder. A total of 79 patients were included, of which 13 are newly reported cases. Because of the phenotypic similarity and molecular overlap with H syndrome, we included 18 patients with allelic disorders. For 31 patients described by others, data were gathered from the medical literature. The most common clinical features (>45% of patients) were hyperpigmentation, phalangeal flexion contractures, hearing loss, and short stature. Insulin-dependent diabetes mellitus and lymphadenopathy mimicking Rosai-Dorfman disease were each found in approximately 20%. Additional systemic features were described in less than 15% of cases. Marked interfamilial and intrafamilial clinical variability exists. Twenty mutations have been identified in SLC29A3, with no genotype-phenotype correlation. In the 31 patients described by others, data were collected from the medical literature. H syndrome is a multisystemic disease with clinical variability. Consequently, all SLC29A3-related diseases should be considered a single entity. Recognition of the pleomorphic nature of H syndrome is important for diagnosis of additional patients. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
X chromosome regulation: diverse patterns in development, tissues and disease
Deng, Xinxian; Berletch, Joel B.; Nguyen, Di K.; Disteche, Christine M.
2014-01-01
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations. PMID:24733023
Li, Ellen; Hamm, Christina M; Gulati, Ajay S; Sartor, R Balfour; Chen, Hongyan; Wu, Xiao; Zhang, Tianyi; Rohlf, F James; Zhu, Wei; Gu, Chi; Robertson, Charles E; Pace, Norman R; Boedeker, Edgar C; Harpaz, Noam; Yuan, Jeffrey; Weinstock, George M; Sodergren, Erica; Frank, Daniel N
2012-01-01
We tested the hypothesis that Crohn's disease (CD)-related genetic polymorphisms involved in host innate immunity are associated with shifts in human ileum-associated microbial composition in a cross-sectional analysis of human ileal samples. Sanger sequencing of the bacterial 16S ribosomal RNA (rRNA) gene and 454 sequencing of 16S rRNA gene hypervariable regions (V1-V3 and V3-V5), were conducted on macroscopically disease-unaffected ileal biopsies collected from 52 ileal CD, 58 ulcerative colitis and 60 control patients without inflammatory bowel diseases (IBD) undergoing initial surgical resection. These subjects also were genotyped for the three major NOD2 risk alleles (Leu1007fs, R708W, G908R) and the ATG16L1 risk allele (T300A). The samples were linked to clinical metadata, including body mass index, smoking status and Clostridia difficile infection. The sequences were classified into seven phyla/subphyla categories using the Naïve Bayesian Classifier of the Ribosome Database Project. Centered log ratio transformation of six predominant categories was included as the dependent variable in the permutation based MANCOVA for the overall composition with stepwise variable selection. Polymerase chain reaction (PCR) assays were conducted to measure the relative frequencies of the Clostridium coccoides - Eubacterium rectales group and the Faecalibacterium prausnitzii spp. Empiric logit transformations of the relative frequencies of these two microbial groups were included in permutation-based ANCOVA. Regardless of sequencing method, IBD phenotype, Clostridia difficile and NOD2 genotype were selected as associated (FDR ≤ 0.05) with shifts in overall microbial composition. IBD phenotype and NOD2 genotype were also selected as associated with shifts in the relative frequency of the C. coccoides--E. rectales group. IBD phenotype, smoking and IBD medications were selected as associated with shifts in the relative frequency of F. prausnitzii spp. These results indicate that the effects of genetic and environmental factors on IBD are mediated at least in part by the enteric microbiota.
Li, Ellen; Hamm, Christina M.; Gulati, Ajay S.; Sartor, R. Balfour; Chen, Hongyan; Wu, Xiao; Zhang, Tianyi; Rohlf, F. James; Zhu, Wei; Gu, Chi; Robertson, Charles E.; Pace, Norman R.; Boedeker, Edgar C.; Harpaz, Noam; Yuan, Jeffrey; Weinstock, George M.; Sodergren, Erica; Frank, Daniel N.
2012-01-01
We tested the hypothesis that Crohn’s disease (CD)-related genetic polymorphisms involved in host innate immunity are associated with shifts in human ileum–associated microbial composition in a cross-sectional analysis of human ileal samples. Sanger sequencing of the bacterial 16S ribosomal RNA (rRNA) gene and 454 sequencing of 16S rRNA gene hypervariable regions (V1–V3 and V3–V5), were conducted on macroscopically disease-unaffected ileal biopsies collected from 52 ileal CD, 58 ulcerative colitis and 60 control patients without inflammatory bowel diseases (IBD) undergoing initial surgical resection. These subjects also were genotyped for the three major NOD2 risk alleles (Leu1007fs, R708W, G908R) and the ATG16L1 risk allele (T300A). The samples were linked to clinical metadata, including body mass index, smoking status and Clostridia difficile infection. The sequences were classified into seven phyla/subphyla categories using the Naïve Bayesian Classifier of the Ribosome Database Project. Centered log ratio transformation of six predominant categories was included as the dependent variable in the permutation based MANCOVA for the overall composition with stepwise variable selection. Polymerase chain reaction (PCR) assays were conducted to measure the relative frequencies of the Clostridium coccoides – Eubacterium rectales group and the Faecalibacterium prausnitzii spp. Empiric logit transformations of the relative frequencies of these two microbial groups were included in permutation-based ANCOVA. Regardless of sequencing method, IBD phenotype, Clostridia difficile and NOD2 genotype were selected as associated (FDR ≤0.05) with shifts in overall microbial composition. IBD phenotype and NOD2 genotype were also selected as associated with shifts in the relative frequency of the C. coccoides – E. rectales group. IBD phenotype, smoking and IBD medications were selected as associated with shifts in the relative frequency of F. prausnitzii spp. These results indicate that the effects of genetic and environmental factors on IBD are mediated at least in part by the enteric microbiota. PMID:22719818
Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes.
Munganyinka, E; Ateka, E M; Kihurani, A W; Kanyange, M C; Tairo, F; Sseruwagi, P; Ndunguru, J
2018-02-01
Cassava brown streak disease (CBSD) was first observed on cassava ( Manihot esculenta ) in Rwanda in 2009. In 2014 eight major cassava-growing districts in the country were surveyed to determine the distribution and variability of symptom phenotypes associated with CBSD, and the genetic diversity of cassava brown streak viruses. Distribution of the CBSD symptom phenotypes and their combinations varied greatly between districts, cultivars and their associated viruses. The symptoms on leaf alone recorded the highest (32.2%) incidence, followed by roots (25.7%), leaf + stem (20.3%), leaf + root (10.4%), leaf + stem + root (5.2%), stem + root (3.7%), and stem (2.5%) symptoms. Analysis by RT-PCR showed that single infections of Ugandan cassava brown streak virus (UCBSV) were most common (74.2% of total infections) and associated with all the seven phenotypes studied. Single infections of Cassava brown streak virus (CBSV) were predominant (15.3% of total infections) in CBSD-affected plants showing symptoms on stems alone. Mixed infections (CBSV + UCBSV) comprised 10.5% of total infections and predominated in the combinations of leaf + stem + root phenotypes. Phylogenetic analysis and the estimates of evolutionary divergence, using partial sequences (210 nt) of the coat protein gene, revealed that in Rwanda there is one type of CBSV and an indication of diverse UCBSV. This study is the first to report the occurrence and distribution of both CBSV and UCBSV based on molecular techniques in Rwanda.
Yocgo, Rosita E; Geza, Ephifania; Chimusa, Emile R; Mazandu, Gaston K
2017-11-23
Advances in forward and reverse genetic techniques have enabled the discovery and identification of several plant defence genes based on quantifiable disease phenotypes in mutant populations. Existing models for testing the effect of gene inactivation or genes causing these phenotypes do not take into account eventual uncertainty of these datasets and potential noise inherent in the biological experiment used, which may mask downstream analysis and limit the use of these datasets. Moreover, elucidating biological mechanisms driving the induced disease resistance and influencing these observable disease phenotypes has never been systematically tackled, eliciting the need for an efficient model to characterize completely the gene target under consideration. We developed a post-gene silencing bioinformatics (post-GSB) protocol which accounts for potential biases related to the disease phenotype datasets in assessing the contribution of the gene target to the plant defence response. The post-GSB protocol uses Gene Ontology semantic similarity and pathway dataset to generate enriched process regulatory network based on the functional degeneracy of the plant proteome to help understand the induced plant defence response. We applied this protocol to investigate the effect of the NPR1 gene silencing to changes in Arabidopsis thaliana plants following Pseudomonas syringae pathovar tomato strain DC3000 infection. Results indicated that the presence of a functionally active NPR1 reduced the plant's susceptibility to the infection, with about 99% of variability in Pseudomonas spore growth between npr1 mutant and wild-type samples. Moreover, the post-GSB protocol has revealed the coordinate action of target-associated genes and pathways through an enriched process regulatory network, summarizing the potential target-based induced disease resistance mechanism. This protocol can improve the characterization of the gene target and, potentially, elucidate induced defence response by more effectively utilizing available phenotype information and plant proteome functional knowledge.
ACE Phenotyping as a Guide Toward Personalized Therapy With ACE Inhibitors.
Danilov, Sergei M; Tovsky, Stan I; Schwartz, David E; Dull, Randal O
2017-07-01
Angiotensin-converting enzyme (ACE) inhibitors (ACEI) are widely used in the management of cardiovascular diseases but with significant interindividual variability in the patient's response. To investigate whether interindividual variability in the response to ACE inhibitors is explained by the "ACE phenotype"-for example, variability in plasma ACE concentration, activity, and conformation and/or the degree of ACE inhibition in each individual. The ACE phenotype was determined in plasma of 14 patients with hypertension treated chronically for 4 weeks with 40 mg enalapril (E) or 20 mg E + 16 mg candesartan (EC) and in 20 patients with hypertension treated acutely with a single dose (20 mg) of E with or without pretreatment with hydrochlorothiazide. The ACE phenotyping included (1) plasma ACE concentration; (2) ACE activity (with 2 substrates: Hip-His-Leu and Z-Phe-His-Leu and calculation of their ratio); (3) detection of ACE inhibitors in patient's blood (indicator of patient compliance) and the degree of ACE inhibition (ie, adherence); and (4) ACE conformation. Enalapril reduced systolic and diastolic blood pressure in most patients; however, 20% of patients were considered nonresponders. Chronic treatment results in 40% increase in serum ACE concentrations, with the exception of 1 patient. There was a trend toward better response to ACEI among patients who had a higher plasma ACE concentration. Due to the fact that "20% of patients do not respond to ACEI by blood pressure drop," the initial blood ACE level could not be a predictor of blood pressure reduction in an individual patient. However, ACE phenotyping provides important information about conformational and kinetic changes in ACE of individual patients, and this could be a reason for resistance to ACE inhibitors in some nonresponders.
Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma.
Schatz, Michael; Hsu, Jin-Wen Y; Zeiger, Robert S; Chen, Wansu; Dorenbaum, Alejandro; Chipps, Bradley E; Haselkorn, Tmirah
2014-06-01
Asthma phenotyping can facilitate understanding of disease pathogenesis and potential targeted therapies. To further characterize the distinguishing features of phenotypic groups in difficult-to-treat asthma. Children ages 6-11 years (n = 518) and adolescents and adults ages ≥12 years (n = 3612) with severe or difficult-to-treat asthma from The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study were evaluated in this post hoc cluster analysis. Analyzed variables included sex, race, atopy, age of asthma onset, smoking (adolescents and adults), passive smoke exposure (children), obesity, and aspirin sensitivity. Cluster analysis used the hierarchical clustering algorithm with the Ward minimum variance method. The results were compared among clusters by χ(2) analysis; variables with significant (P < .05) differences among clusters were considered as distinguishing feature candidates. Associations among clusters and asthma-related health outcomes were assessed in multivariable analyses by adjusting for socioeconomic status, environmental exposures, and intensity of therapy. Five clusters were identified in each age stratum. Sex, atopic status, and nonwhite race were distinguishing variables in both strata; passive smoke exposure was distinguishing in children and aspirin sensitivity in adolescents and adults. Clusters were not related to outcomes in children, but 2 adult and adolescent clusters distinguished by nonwhite race and aspirin sensitivity manifested poorer quality of life (P < .0001), and the aspirin-sensitive cluster experienced more frequent asthma exacerbations (P < .0001). Distinct phenotypes appear to exist in patients with severe or difficult-to-treat asthma, which is related to outcomes in adolescents and adults but not in children. The study of the therapeutic implications of these phenotypes is warranted. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Bianchi, Laura; Gagliardi, Assunta; Maruelli, Silvia; Besio, Roberta; Landi, Claudia; Gioia, Roberta; Kozloff, Kenneth M.; Khoury, Basma M.; Coucke, Paul J.; Symoens, Sofie; Marini, Joan C.; Rossi, Antonio; Bini, Luca; Forlino, Antonella
2015-01-01
Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl+/− to investigate the molecular basis of OI phenotypic variability. Brtl+/− resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl+/− mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl+/− lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-β signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment. PMID:26264579
Joubert syndrome: A model for untangling recessive disorders with extreme genetic heterogeneity
R, Bachmann-Gagescu; JC, Dempsey; IG, Phelps; BJ, O’Roak; DM, Knutzen; TC, Rue; GE, Ishak; CR, Isabella; N, Gorden; J, Adkins; EA, Boyle; N, de Lacy; D, O’Day; A, Alswaid; AR, Devi; L, Lingappa; C, Lourenço; L, Martorell; À, Garcia-Cazorla; H, Ozyürek; G, Haliloğlu; B, Tuysuz; M, Topçu; P, Chance; MA, Parisi; I, Glass; J, Shendure; D, Doherty
2016-01-01
Background Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, cognitive impairment, abnormal eye movements, respiratory control disturbances, and a distinctive mid-hindbrain malformation. JS demonstrates substantial phenotypic variability and genetic heterogeneity. This study provides a comprehensive view of the current genetic basis, phenotypic range and gene-phenotype associations in JS. Methods We sequenced 27 JS-associated genes in 440 affected individuals (375 families) from a cohort of 532 individuals (440 families) with JS, using molecular inversion probe-based targeted capture and next generation sequencing. Variant pathogenicity was defined using the Combined Annotation Dependent Depletion (CADD) algorithm with an optimized score cut-off. Results We identified presumed causal variants in 62% of pedigrees, including the first B9D2 mutations associated with JS. 253 different mutations in 23 genes highlight the extreme genetic heterogeneity of JS. Phenotypic analysis revealed that only 34% of individuals have a “pure JS” phenotype. Retinal disease is present in 30% of individuals, renal disease in 25%, coloboma in 17%, polydactyly in 15%, liver fibrosis in 14% and encephalocele in 8%. Loss of CEP290 function is associated with retinal dystrophy, while loss of TMEM67 function is associated with liver fibrosis and coloboma, but we observe no clear-cut distinction between JS-subtypes. Conclusion This work illustrates how combining advanced sequencing techniques with phenotypic data addresses extreme genetic heterogeneity to provide diagnostic and carrier testing, guide medical monitoring for progressive complications, facilitate interpretation of genome-wide sequencing results in individuals with a variety of phenotypes, and enable gene-specific treatments in the future. PMID:26092869
Recent advances in understanding idiopathic pulmonary fibrosis
Daccord, Cécile; Maher, Toby M.
2016-01-01
Despite major research efforts leading to the recent approval of pirfenidone and nintedanib, the dismal prognosis of idiopathic pulmonary fibrosis (IPF) remains unchanged. The elaboration of international diagnostic criteria and disease stratification models based on clinical, physiological, radiological, and histopathological features has improved the accuracy of IPF diagnosis and prediction of mortality risk. Nevertheless, given the marked heterogeneity in clinical phenotype and the considerable overlap of IPF with other fibrotic interstitial lung diseases (ILDs), about 10% of cases of pulmonary fibrosis remain unclassifiable. Moreover, currently available tools fail to detect early IPF, predict the highly variable course of the disease, and assess response to antifibrotic drugs. Recent advances in understanding the multiple interrelated pathogenic pathways underlying IPF have identified various molecular phenotypes resulting from complex interactions among genetic, epigenetic, transcriptional, post-transcriptional, metabolic, and environmental factors. These different disease endotypes appear to confer variable susceptibility to the condition, differing risks of rapid progression, and, possibly, altered responses to therapy. The development and validation of diagnostic and prognostic biomarkers are necessary to enable a more precise and earlier diagnosis of IPF and to improve prediction of future disease behaviour. The availability of approved antifibrotic therapies together with potential new drugs currently under evaluation also highlights the need for biomarkers able to predict and assess treatment responsiveness, thereby allowing individualised treatment based on risk of progression and drug response. This approach of disease stratification and personalised medicine is already used in the routine management of many cancers and provides a potential road map for guiding clinical care in IPF. PMID:27303645
Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies
Ilkovski, Biljana; Pagnamenta, Alistair T.; O'Grady, Gina L.; Kinoshita, Taroh; Howard, Malcolm F.; Lek, Monkol; Thomas, Brett; Turner, Anne; Christodoulou, John; Sillence, David; Knight, Samantha J.L.; Popitsch, Niko; Keays, David A.; Anzilotti, Consuelo; Goriely, Anne; Waddell, Leigh B.; Brilot, Fabienne; North, Kathryn N.; Kanzawa, Noriyuki; Macarthur, Daniel G.; Taylor, Jenny C.; Kini, Usha; Murakami, Yoshiko; Clarke, Nigel F.
2015-01-01
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitously expressed in the human body and are important for various functions at the cell surface. Mutations in many GPI biosynthesis genes have been described to date in patients with multi-system disease and together these constitute a subtype of congenital disorders of glycosylation. We used whole exome sequencing in two families to investigate the genetic basis of disease and used RNA and cellular studies to investigate the functional consequences of sequence variants in the PIGY gene. Two families with different phenotypes had homozygous recessive sequence variants in the GPI biosynthesis gene PIGY. Two sisters with c.137T>C (p.Leu46Pro) PIGY variants had multi-system disease including dysmorphism, seizures, severe developmental delay, cataracts and early death. There were significantly reduced levels of GPI-anchored proteins (CD55 and CD59) on the surface of patient-derived skin fibroblasts (∼20–50% compared with controls). In a second, consanguineous family, two siblings had moderate development delay and microcephaly. A homozygous PIGY promoter variant (c.-540G>A) was detected within a 7.7 Mb region of autozygosity. This variant was predicted to disrupt a SP1 consensus binding site and was shown to be associated with reduced gene expression. Mutations in PIGY can occur in coding and non-coding regions of the gene and cause variable phenotypes. This article contributes to understanding of the range of disease phenotypes and disease genes associated with deficiencies of the GPI-anchor biosynthesis pathway and also serves to highlight the potential importance of analysing variants detected in 5′-UTR regions despite their typically low coverage in exome data. PMID:26293662
Mutations in PIGY: expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies.
Ilkovski, Biljana; Pagnamenta, Alistair T; O'Grady, Gina L; Kinoshita, Taroh; Howard, Malcolm F; Lek, Monkol; Thomas, Brett; Turner, Anne; Christodoulou, John; Sillence, David; Knight, Samantha J L; Popitsch, Niko; Keays, David A; Anzilotti, Consuelo; Goriely, Anne; Waddell, Leigh B; Brilot, Fabienne; North, Kathryn N; Kanzawa, Noriyuki; Macarthur, Daniel G; Taylor, Jenny C; Kini, Usha; Murakami, Yoshiko; Clarke, Nigel F
2015-11-01
Glycosylphosphatidylinositol (GPI)-anchored proteins are ubiquitously expressed in the human body and are important for various functions at the cell surface. Mutations in many GPI biosynthesis genes have been described to date in patients with multi-system disease and together these constitute a subtype of congenital disorders of glycosylation. We used whole exome sequencing in two families to investigate the genetic basis of disease and used RNA and cellular studies to investigate the functional consequences of sequence variants in the PIGY gene. Two families with different phenotypes had homozygous recessive sequence variants in the GPI biosynthesis gene PIGY. Two sisters with c.137T>C (p.Leu46Pro) PIGY variants had multi-system disease including dysmorphism, seizures, severe developmental delay, cataracts and early death. There were significantly reduced levels of GPI-anchored proteins (CD55 and CD59) on the surface of patient-derived skin fibroblasts (∼20-50% compared with controls). In a second, consanguineous family, two siblings had moderate development delay and microcephaly. A homozygous PIGY promoter variant (c.-540G>A) was detected within a 7.7 Mb region of autozygosity. This variant was predicted to disrupt a SP1 consensus binding site and was shown to be associated with reduced gene expression. Mutations in PIGY can occur in coding and non-coding regions of the gene and cause variable phenotypes. This article contributes to understanding of the range of disease phenotypes and disease genes associated with deficiencies of the GPI-anchor biosynthesis pathway and also serves to highlight the potential importance of analysing variants detected in 5'-UTR regions despite their typically low coverage in exome data. © The Author 2015. Published by Oxford University Press.
Nuclear Receptor Variants in Liver Disease
Müllenbach, Roman; Weber, Susanne N.; Lammert, Frank
2012-01-01
This review aims to provide a snapshot of the actual state of knowledge on genetic variants of nuclear receptors (NR) involved in regulating important aspects of liver metabolism. It recapitulates recent evidence for the application of NR in genetic diagnosis of monogenic (“Mendelian”) liver disease and their use in clinical diagnosis. Genetic analysis of multifactorial liver diseases such as viral hepatitis or fatty liver disease identifies key players in disease predisposition and progression. Evidence from these analyses points towards a role of NR polymorphisms in common diseases, linking regulatory networks to complex and variable phenotypes. The new insights into NR variants also offer perspectives and cautionary advice for their use as handles towards diagnosis and treatment. PMID:22523693
An inherited variable poly-T repeat genotype in TOMM40 in Alzheimer disease.
Roses, Allen D
2010-05-01
I coauthored a recently published research article describing a variable length, poly-T polymorphism in the TOMM40 gene, adjacent to apolipoprotein E (APOE) on chromosome 19, that accounts for the age at onset distribution for a complex disease, late-onset Alzheimer disease. These new data explain the mean age at disease onset for patients with the APOE4/4 genotype and differentiate 2 forms of TOMM40 poly-T polymorphisms linked to APOE, with each form associated with a different age at disease onset distribution. When linked to APOE3 (encoding the epsilon3 isoform of APOE), the longer TOMM40 poly-T repeats (19-39 nucleotides) at the rs10524523 (hereafter, 523) locus are associated with earlier age at onset and the shorter TOMM40 523 alleles (11-16 nucleotides) are associated with later age at onset. The data suggest that the poly-T alleles are codominant, with the age at onset phenotype determined by the 2 inherited 523 alleles, but with variable expressivity. Additional data will further refine the relationship between the length of the poly-T alleles and age at disease onset and determine if the relationship is linear.
Tang, Weijuan; Hazebroek, Jan; Zhong, Cathy; Harp, Teresa; Vlahakis, Chris; Baumhover, Brian; Asiago, Vincent
2017-06-28
We evaluated the variability of metabolites in various maize hybrids due to the effect of environment, genotype, phenotype as well as the interaction of the first two factors. We analyzed 480 forage and the same number of grain samples from 21 genetically diverse non-GM Pioneer brand maize hybrids, including some with drought tolerance and viral resistance phenotypes, grown at eight North American locations. As complementary platforms, both GC/MS and LC/MS were utilized to detect a wide diversity of metabolites. GC/MS revealed 166 and 137 metabolites in forage and grain samples, respectively, while LC/MS captured 1341 and 635 metabolites in forage and grain samples, respectively. Univariate and multivariate analyses were utilized to investigate the response of the maize metabolome to the environment, genotype, phenotype, and their interaction. Based on combined percentages from GC/MS and LC/MS datasets, the environment affected 36% to 84% of forage metabolites, while less than 7% were affected by genotype. The environment affected 12% to 90% of grain metabolites, whereas less than 27% were affected by genotype. Less than 10% and 11% of the metabolites were affected by phenotype in forage and grain, respectively. Unsupervised PCA and HCA analyses revealed similar trends, i.e., environmental effect was much stronger than genotype or phenotype effects. On the basis of comparisons of disease tolerant and disease susceptible hybrids, neither forage nor grain samples originating from different locations showed obvious phenotype effects. Our findings demonstrate that the combination of GC/MS and LC/MS based metabolite profiling followed by broad statistical analysis is an effective approach to identify the relative impact of environmental, genetic and phenotypic effects on the forage and grain composition of maize hybrids.
Newborn screening: A disease-changing intervention for glutaric aciduria type 1.
Boy, Nikolas; Mengler, Katharina; Thimm, Eva; Schiergens, Katharina A; Marquardt, Thorsten; Weinhold, Natalie; Marquardt, Iris; Das, Anibh M; Freisinger, Peter; Grünert, Sarah C; Vossbeck, Judith; Steinfeld, Robert; Baumgartner, Matthias R; Beblo, Skadi; Dieckmann, Andrea; Näke, Andrea; Lindner, Martin; Heringer, Jana; Hoffmann, Georg F; Mühlhausen, Chris; Maier, Esther M; Ensenauer, Regina; Garbade, Sven F; Kölker, Stefan
2018-05-01
Untreated individuals with glutaric aciduria type 1 (GA1) commonly present with a complex, predominantly dystonic movement disorder (MD) following acute or insidious onset striatal damage. Implementation of GA1 into newborn screening (NBS) programs has improved the short-term outcome. It remains unclear, however, whether NBS changes the long-term outcome and which variables are predictive. This prospective, observational, multicenter study includes 87 patients identified by NBS, 4 patients missed by NBS, and 3 women with GA1 identified by positive NBS results of their unaffected children. The study population comprises 98.3% of individuals with GA1 identified by NBS in Germany during 1999-2016. Overall, cumulative sensitivity of NBS is 95.6%, but it is lower (84%) for patients with low excreter phenotype. The neurologic outcome of patients missed by NBS is as poor as in the pre-NBS era, and the clinical phenotype of diagnosed patients depends on the quality of therapeutic interventions rather than noninterventional variables. Presymptomatic start of treatment according to current guideline recommendations clearly improves the neurologic outcome (MD: 7% of patients), whereas delayed emergency treatment results in acute onset MD (100%), and deviations from maintenance treatment increase the risk of insidious onset MD (50%). Independent of the neurologic phenotype, kidney function tends to decline with age, a nonneurologic manifestation not predicted by any variable included in this study. NBS is a beneficial, disease-changing intervention for GA1. However, improved neurologic outcome critically depends on adherence to recommended therapy, whereas kidney dysfunction does not appear to be impacted by recommended therapy. Ann Neurol 2018;83:970-979. © 2018 American Neurological Association.
Which ante mortem clinical features predict progressive supranuclear palsy pathology?
Respondek, Gesine; Kurz, Carolin; Arzberger, Thomas; Compta, Yaroslau; Englund, Elisabet; Ferguson, Leslie W; Gelpi, Ellen; Giese, Armin; Irwin, David J; Meissner, Wassilios G; Nilsson, Christer; Pantelyat, Alexander; Rajput, Alex; van Swieten, John C; Troakes, Claire; Josephs, Keith A; Lang, Anthony E; Mollenhauer, Brit; Müller, Ulrich; Whitwell, Jennifer L; Antonini, Angelo; Bhatia, Kailash P; Bordelon, Yvette; Corvol, Jean-Christophe; Colosimo, Carlo; Dodel, Richard; Grossman, Murray; Kassubek, Jan; Krismer, Florian; Levin, Johannes; Lorenzl, Stefan; Morris, Huw; Nestor, Peter; Oertel, Wolfgang H; Rabinovici, Gil D; Rowe, James B; van Eimeren, Thilo; Wenning, Gregor K; Boxer, Adam; Golbe, Lawrence I; Litvan, Irene; Stamelou, Maria; Höglinger, Günter U
2017-07-01
Progressive supranuclear palsy (PSP) is a neuropathologically defined disease presenting with a broad spectrum of clinical phenotypes. To identify clinical features and investigations that predict or exclude PSP pathology during life, aiming at an optimization of the clinical diagnostic criteria for PSP. We performed a systematic review of the literature published since 1996 to identify clinical features and investigations that may predict or exclude PSP pathology. We then extracted standardized data from clinical charts of patients with pathologically diagnosed PSP and relevant disease controls and calculated the sensitivity, specificity, and positive predictive value of key clinical features for PSP in this cohort. Of 4166 articles identified by the database inquiry, 269 met predefined standards. The literature review identified clinical features predictive of PSP, including features of the following 4 functional domains: ocular motor dysfunction, postural instability, akinesia, and cognitive dysfunction. No biomarker or genetic feature was found reliably validated to predict definite PSP. High-quality original natural history data were available from 206 patients with pathologically diagnosed PSP and from 231 pathologically diagnosed disease controls (54 corticobasal degeneration, 51 multiple system atrophy with predominant parkinsonism, 53 Parkinson's disease, 73 behavioral variant frontotemporal dementia). We identified clinical features that predicted PSP pathology, including phenotypes other than Richardson's syndrome, with varying sensitivity and specificity. Our results highlight the clinical variability of PSP and the high prevalence of phenotypes other than Richardson's syndrome. The features of variant phenotypes with high specificity and sensitivity should serve to optimize clinical diagnosis of PSP. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Phenotype variability and allelic heterogeneity in KMT2B-Associated disease.
Kawarai, Toshitaka; Miyamoto, Ryosuke; Nakagawa, Eiji; Koichihara, Reiko; Sakamoto, Takashi; Mure, Hideo; Morigaki, Ryoma; Koizumi, Hidetaka; Oki, Ryosuke; Montecchiani, Celeste; Caltagirone, Carlo; Orlacchio, Antonio; Hattori, Ayako; Mashimo, Hideaki; Izumi, Yuishin; Mezaki, Takahiro; Kumada, Satoko; Taniguchi, Makoto; Yokochi, Fusako; Saitoh, Shinji; Goto, Satoshi; Kaji, Ryuji
2018-04-05
Mutations in Lysine-Specific Histone Methyltransferase 2B gene (KMT2B) have been reported to be associated with complex early-onset dystonia. Almost all reported KMT2B mutations occurred de novo in the paternal germline or in the early development of the patient. We describe clinico-genetic features on four Japanese patients with novel de novo mutations and demonstrate the phenotypic spectrum of KMT2B mutations. We performed genetic studies, including trio-based whole exome sequencing (WES), in a cohort of Japanese patients with a seemingly sporadic early-onset generalized combined dystonia. Potential effects by the identified nucleotide variations were evaluated biologically. Genotype-phenotype correlations were also investigated. Four patients had de novo heterozygous mutations in KMT2B, c.309delG, c.1656dupC, c.3325_3326insC, and c.5636delG. Biological analysis of KMT2B mRNA levels showed a reduced expression of mutant transcript frame. All patients presented with motor milestone delay, microcephaly, mild psychomotor impairment, childhood-onset generalized dystonia and superimposed choreoathetosis or myoclonus. One patient cannot stand due to axial hypotonia associated with cerebellar dysfunction. Three patients had bilateral globus pallidal deep brain stimulation (DBS) with excellent or partial response. We further demonstrate the allelic heterogeneity and phenotypic variations of KMT2B-associated disease. Haploinsufficiency is one of molecular pathomechanisms underlying the disease. Cardinal clinical features include combined dystonia accompanying mild psychomotor disability. Cerebellum would be affected in KMT2B-associated disease. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ramírez-Prado, Dolores; Cortés, Ernesto; Aguilar-Segura, María Soledad; Gil-Guillén, Vicente Francisco
2016-01-01
In January 2012, a review of the cases of chromosome 15q24 microdeletion syndrome was published. However, this study did not include inferential statistics. The aims of the present study were to update the literature search and calculate confidence intervals for the prevalence of each phenotype using bootstrap methodology. Published case reports of patients with the syndrome that included detailed information about breakpoints and phenotype were sought and 36 were included. Deletions in megabase (Mb) pairs were determined to calculate the size of the interstitial deletion of the phenotypes studied in 2012. To determine confidence intervals for the prevalence of the phenotype and the interstitial loss, we used bootstrap methodology. Using the bootstrap percentiles method, we found wide variability in the prevalence of the different phenotypes (3–100%). The mean interstitial deletion size was 2.72 Mb (95% CI [2.35–3.10 Mb]). In comparison with our work, which expanded the literature search by 45 months, there were differences in the prevalence of 17% of the phenotypes, indicating that more studies are needed to analyze this rare disease. PMID:26925314
Systematic Association of Genes to Phenotypes by Genome and Literature Mining
Jensen, Lars J; Perez-Iratxeta, Carolina; Kaczanowski, Szymon; Hooper, Sean D; Andrade, Miguel A
2005-01-01
One of the major challenges of functional genomics is to unravel the connection between genotype and phenotype. So far no global analysis has attempted to explore those connections in the light of the large phenotypic variability seen in nature. Here, we use an unsupervised, systematic approach for associating genes and phenotypic characteristics that combines literature mining with comparative genome analysis. We first mine the MEDLINE literature database for terms that reflect phenotypic similarities of species. Subsequently we predict the likely genomic determinants: genes specifically present in the respective genomes. In a global analysis involving 92 prokaryotic genomes we retrieve 323 clusters containing a total of 2,700 significant gene–phenotype associations. Some clusters contain mostly known relationships, such as genes involved in motility or plant degradation, often with additional hypothetical proteins associated with those phenotypes. Other clusters comprise unexpected associations; for example, a group of terms related to food and spoilage is linked to genes predicted to be involved in bacterial food poisoning. Among the clusters, we observe an enrichment of pathogenicity-related associations, suggesting that the approach reveals many novel genes likely to play a role in infectious diseases. PMID:15799710
Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease.
Rice, Gillian I; Kitabayashi, Naoki; Barth, Magalie; Briggs, Tracy A; Burton, Annabel C E; Carpanelli, Maria Luisa; Cerisola, Alfredo M; Colson, Cindy; Dale, Russell C; Danti, Federica Rachele; Darin, Niklas; De Azua, Begoña; De Giorgis, Valentina; De Goede, Christian G L; Desguerre, Isabelle; De Laet, Corinne; Eslahi, Atieh; Fahey, Michael C; Fallon, Penny; Fay, Alex; Fazzi, Elisa; Gorman, Mark P; Gowrinathan, Nirmala Rani; Hully, Marie; Kurian, Manju A; Leboucq, Nicolas; Lin, Jean-Pierre S-M; Lines, Matthew A; Mar, Soe S; Maroofian, Reza; Martí-Sanchez, Laura; McCullagh, Gary; Mojarrad, Majid; Narayanan, Vinodh; Orcesi, Simona; Ortigoza-Escobar, Juan Dario; Pérez-Dueñas, Belén; Petit, Florence; Ramsey, Keri M; Rasmussen, Magnhild; Rivier, François; Rodríguez-Pombo, Pilar; Roubertie, Agathe; Stödberg, Tommy I; Toosi, Mehran Beiraghi; Toutain, Annick; Uettwiller, Florence; Ulrick, Nicole; Vanderver, Adeline; Waldman, Amy; Livingston, John H; Crow, Yanick J
2017-06-01
We investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1 . The clinicoradiological phenotype encompassed a spectrum of Aicardi-Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64-25.71) compared with controls (median: 0.93, IQR: 0.57-1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context. Georg Thieme Verlag KG Stuttgart · New York.
AUTOINFLAMMATORY PUSTULAR NEUTROPHILIC DISEASES
Naik, Haley B.; Cowen, Edward W.
2013-01-01
SYNOPSIS The inflammatory pustular dermatoses constitute a spectrum of non-infectious conditions ranging from localized involvement to generalized disease with associated acute systemic inflammation and multi-organ involvement. Despite the variability in extent and severity of cutaneous presentation, each of these diseases is characterized by non-infectious neutrophilic intra-epidermal microabscesses. Many share systemic findings including fever, elevated inflammatory markers, inflammatory bowel disease and/or osteoarticular involvement, suggesting potential common pathogenic links (Figure 1). The recent discoveries of several genes responsible for heritable pustular diseases have revealed a distinct link between pustular skin disease and regulation of innate immunity. These genetic advances have led to a deeper exploration of common pathways in pustular skin disease and offer the potential for a new era of biologic therapy which targets these shared pathways. This chapter provides a new categorization of inflammatory pustular dermatoses in the context of recent genetic and biologic insights. We will discuss recently-described monogenic diseases with pustular phenotypes, including deficiency of IL-1 receptor antagonist (DIRA), deficiency of the IL-36 receptor antagonist (DITRA), CARD14-associated pustular psoriasis (CAMPS), and pyogenic arthritis, pyoderma gangrenosum, acne (PAPA). We will then discuss how these new genetic advancements may inform how we view previously described pustular diseases, including pustular psoriasis and its clinical variants, with a focus on historical classification by clinical phenotype. PMID:23827244
X-linked adrenoleukodystrophy in heterozygous female patients: women are not just carriers.
Lourenço, Charles Marques; Simão, Gustavo Novelino; Santos, Antonio Carlos; Marques, Wilson
2012-07-01
X-linked adrenoleukodystrophy (X-ALD) is a recessive X-linked disorder associated with marked phenotypic variability. Female carriers are commonly thought to be normal or only mildly affected, but their disease still needs to be better described and systematized. To review and systematize the clinical features of heterozygous women followed in a Neurogenetics Clinic. We reviewed the clinical, biochemical, and neuroradiological data of all women known to have X-ADL. The nine women identified were classified into three groups: with severe and aggressive diseases; with slowly progressive, spastic paraplegia; and with mildly decreased vibratory sensation, brisk reflexes, and no complaints. Many of these women did not have a known family history of X-ALD. Heterozygous women with X-ADL have a wide spectrum of clinical manifestations, ranging from mild to severe phenotypes.
Moliterno, Alison R.; Williams, Donna M.; Rogers, Ophelia; Isaacs, Mary Ann; Spivak, Jerry L.
2008-01-01
(1) Objective The myeloproliferative disorders (MPD), polycythemia vera (PV), essential thrombocytosis (ET) and primary myelofibrosis (PMF) differ phenotypically but share the same JAK2V617F mutation. We examined the relationship of the quantitative JAK2V617F allele burden to MPD disease phenotype among the three MPD classes and within PV. (2) Methods We measured the JAK2V617F allele percentage in genomic DNA from neutrophils, CD34+ cells, and cloned progenitors in 212 JAK2V617F –positive MPD patients and correlated the allele burdens to both disease class and disease features. (3) Results In ET and PV, the mean CD34+ cell JAK2V617F allele burdens were lower than the corresponding neutrophil allele burdens, but these were equivalent in PMF. JAK2WT progenitors were present in ET and PV when the CD34+ JAK2V617F allele burden was lower than the neutrophil allele burden, but not in PV and PMF subjects in whom the CD34+ cell and neutrophil allele burdens were similar. CD34+ cell JAK2V617F clonal dominance, defined as coherence between the CD34+ cell and neutrophil JAK2V617F allele burdens, was present in 24% of ET, 56% of PV and 93% of PMF patients, and was independent of the CD34+ cell JAK2V617F genotype. Clonally-dominant PV patients had significantly longer disease durations, higher white cell counts and larger spleens than nondominant PV patients. (4) Conclusions We conclude that the extent of JAK2V617F CD34+ cell clonal dominance is associated with disease phenotype within the MPD, and in PV, is associated with extramedullary disease, leukocytosis and disease duration. PMID:18723264
de Goede, Christian; Yue, Wyatt W; Yan, Guanhua; Ariyaratnam, Shyamala; Chandler, Kate E; Downes, Laura; Khan, Nasaim; Mohan, Meyyammai; Lowe, Martin; Banka, Siddharth
2016-03-01
Next Generation Sequencing (NGS) is a useful tool in diagnosis of rare disorders but the interpretation of data can be challenging in clinical settings. We present results of extended studies on a family of multiple members with global developmental delay and learning disability, where another research group postulated the underlying cause to be a homozygous RABL6 missense variant. Using data from the Exome Variant Server, we show that missense RABL6 variants are unlikely to cause early onset rare developmental disorder. Protein structural analysis, cellular functional studies and reverse phenotyping proved that the condition in this family is due to a homozygous INPP5E mutation. An in-depth review of mutational and phenotypic spectrum associated with INPP5E demonstrated that mutations in this gene lead to a range of cilliopathy-phenotypes. We use this study as an example to demonstrate the importance of careful clinical evaluation of multiple family members, reverse phenotyping, considering the unknown phenotypic variability of rare diseases, utilizing publically available genomic databases and conducting appropriate bioinformatics and functional studies while interpreting results from NGS in uncertain cases. We emphasize that interpretation of NGS data is an iterative process and its dynamic nature should be explained to patients and families. Our study shows that developmental delay, intellectual disability, hypotonia and ocular motor apraxia are common in INPP5E-related disorders and considerable intra-familial phenotypic variability is possible. We have compiled the INPP5E mutational spectrum and provided novel insights into their molecular mechanisms. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk
2012-10-01
The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.
Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk
2012-01-01
The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.
Post, Andrew R.; Kurc, Tahsin; Cholleti, Sharath; Gao, Jingjing; Lin, Xia; Bornstein, William; Cantrell, Dedra; Levine, David; Hohmann, Sam; Saltz, Joel H.
2013-01-01
Objective To create an analytics platform for specifying and detecting clinical phenotypes and other derived variables in electronic health record (EHR) data for quality improvement investigations. Materials and Methods We have developed an architecture for an Analytic Information Warehouse (AIW). It supports transforming data represented in different physical schemas into a common data model, specifying derived variables in terms of the common model to enable their reuse, computing derived variables while enforcing invariants and ensuring correctness and consistency of data transformations, long-term curation of derived data, and export of derived data into standard analysis tools. It includes software that implements these features and a computing environment that enables secure high-performance access to and processing of large datasets extracted from EHRs. Results We have implemented and deployed the architecture in production locally. The software is available as open source. We have used it as part of hospital operations in a project to reduce rates of hospital readmission within 30 days. The project examined the association of over 100 derived variables representing disease and co-morbidity phenotypes with readmissions in five years of data from our institution’s clinical data warehouse and the UHC Clinical Database (CDB). The CDB contains administrative data from over 200 hospitals that are in academic medical centers or affiliated with such centers. Discussion and Conclusion A widely available platform for managing and detecting phenotypes in EHR data could accelerate the use of such data in quality improvement and comparative effectiveness studies. PMID:23402960
Aging Research Using Mouse Models
Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.
2015-01-01
Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080
Quantitative Stratification of Diffuse Parenchymal Lung Diseases
Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Maldonado, Fabien; Peikert, Tobias; Moua, Teng; Ryu, Jay H.; Bartholmai, Brian J.; Robb, Richard A.
2014-01-01
Diffuse parenchymal lung diseases (DPLDs) are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes) and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients. PMID:24676019
Co-clustering phenome–genome for phenotype classification and disease gene discovery
Hwang, TaeHyun; Atluri, Gowtham; Xie, MaoQiang; Dey, Sanjoy; Hong, Changjin; Kumar, Vipin; Kuang, Rui
2012-01-01
Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways. PMID:22735708
Connecting the Human Variome Project to nutrigenomics.
Kaput, Jim; Evelo, Chris T; Perozzi, Giuditta; van Ommen, Ben; Cotton, Richard
2010-12-01
Nutrigenomics is the science of analyzing and understanding gene-nutrient interactions, which because of the genetic heterogeneity, varying degrees of interaction among gene products, and the environmental diversity is a complex science. Although much knowledge of human diversity has been accumulated, estimates suggest that ~90% of genetic variation has not yet been characterized. Identification of the DNA sequence variants that contribute to nutrition-related disease risk is essential for developing a better understanding of the complex causes of disease in humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) is an international effort to systematically identify genes, their mutations, and their variants associated with phenotypic variability and indications of human disease or phenotype. Since nutrigenomic research uses genetic information in the design and analysis of experiments, the HVP is an essential collaborator for ongoing studies of gene-nutrient interactions. With the advent of next generation sequencing methodologies and the understanding of the undiscovered variation in human genomes, the nutrigenomic community will be generating novel sequence data and results. The guidelines and practices of the HVP can guide and harmonize these efforts.
Connecting the Human Variome Project to nutrigenomics
Evelo, Chris T.; Perozzi, Giuditta; van Ommen, Ben; Cotton, Richard
2010-01-01
Nutrigenomics is the science of analyzing and understanding gene–nutrient interactions, which because of the genetic heterogeneity, varying degrees of interaction among gene products, and the environmental diversity is a complex science. Although much knowledge of human diversity has been accumulated, estimates suggest that ~90% of genetic variation has not yet been characterized. Identification of the DNA sequence variants that contribute to nutrition-related disease risk is essential for developing a better understanding of the complex causes of disease in humans, including nutrition-related disease. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) is an international effort to systematically identify genes, their mutations, and their variants associated with phenotypic variability and indications of human disease or phenotype. Since nutrigenomic research uses genetic information in the design and analysis of experiments, the HVP is an essential collaborator for ongoing studies of gene–nutrient interactions. With the advent of next generation sequencing methodologies and the understanding of the undiscovered variation in human genomes, the nutrigenomic community will be generating novel sequence data and results. The guidelines and practices of the HVP can guide and harmonize these efforts. PMID:28300226
[Graves disease and IgA deficiency as manifestations of 22q11.2 deletion syndrome].
Silva, João Miguel de Almeida; Silva, Cecília Pereira; Melo, Flavio Fernando Nogueira de; Silva, Luis Alberto A; Utagawa, Claudia Yamada
2010-08-01
The 22q11.2 deletion syndrome (22q11.2DS) is related to a high phenotypic variability including the velocardiofacial/DiGeorge spectrum. Autoimmune, endocrine and immunodeficiency manifestations have been reportedly associated with the syndrome. The objective of this study was to report a case of 22q11.2DS associated with IgA deficiency and Graves disease and review literature in order to verify the frequency of syndrome alterations. Autoimmune disorders have been increasingly related to 22q11.2DS, and new phenotypes are being incorporated in the clinical spectrum of this syndrome. In our study we found that Graves disease in association with 22q11.2DS was reported in only sixteen patients, and fifteen cases were described in the last 13 years. Based on the incidence and on the amplitude of this recognized spectrum, we reinforce the findings of literature that Graves disease should be included on the 22q11.2DS manifestations, which would lead us to seek it with 22q11.2 deletion patients.
NASA Astrophysics Data System (ADS)
Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.
2015-06-01
Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.
Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross
Ferris, Martin T.; Aylor, David L.; Bottomly, Daniel; Whitmore, Alan C.; Aicher, Lauri D.; Bell, Timothy A.; Bradel-Tretheway, Birgit; Bryan, Janine T.; Buus, Ryan J.; Gralinski, Lisa E.; Haagmans, Bart L.; McMillan, Leonard; Miller, Darla R.; Rosenzweig, Elizabeth; Valdar, William; Wang, Jeremy; Churchill, Gary A.; Threadgill, David W.; McWeeney, Shannon K.; Katze, Michael G.; Pardo-Manuel de Villena, Fernando; Baric, Ralph S.; Heise, Mark T.
2013-01-01
Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for these confounding environmental variables in a system that models the levels of genetic diversity found in outbred populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication, virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated, with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema, neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel Mx1 allele that showed reduced ability to inhibit viral replication, while maintaining protection from weight loss. PMID:23468633
Alsultan, Abdulrahman; Alabdulaali, Mohammed K.; Griffin, Paula J.; AlSuliman, Ahmed M.; Ghabbour, Hazem A.; Sebastiani, Paola; Albuali, Waleed H.; Al-Ali, Amein K.; Chui, David H.K.; Steinberg, Martin H.
2014-01-01
Summary Sickle cell disease (SCD) in Saudi patients from the Eastern Province is associated with the Arab-Indian (AI) HBB (β-globin gene) haplotype. The phenotype of AI SCD in children was described as benign and was attributed to their high fetal haemoglobin (HbF). We conducted a hospital-based study to assess the pattern of SCD complications in adults. A total of 104 patients with average age of 27 years were enrolled. Ninety-six percent of these patients reported history of painful crisis; 47% had at least one episode of acute chest syndrome, however, only 15% had two or more episodes; symptomatic osteonecrosis was reported in 18%; priapism in 17%; overt stroke in 6%; none had leg ulcers. The majority of patients had persistent splenomegaly and 66% had gallstones. Half of the patients co-inherited α-thalassaemia and about one third had glucose-6-phosphate dehydrogenase deficiency. Higher HbF correlated with higher rate of splenic sequestration but not with other phenotypes. The phenotype of adult patients with AI SCD is not benign despite their relatively high HbF level. This is probably due to the continued decline in HbF level in adults and the heterocellular and variable distribution of HbF amongst F-cells. PMID:24224700
Wei, Wen-Hua; Bowes, John; Plant, Darren; Viatte, Sebastien; Yarwood, Annie; Massey, Jonathan; Worthington, Jane; Eyre, Stephen
2016-04-25
Genotypic variability based genome-wide association studies (vGWASs) can identify potentially interacting loci without prior knowledge of the interacting factors. We report a two-stage approach to make vGWAS applicable to diseases: firstly using a mixed model approach to partition dichotomous phenotypes into additive risk and non-additive environmental residuals on the liability scale and secondly using the Levene's (Brown-Forsythe) test to assess equality of the residual variances across genotype groups per marker. We found widespread significant (P < 2.5e-05) vGWAS signals within the major histocompatibility complex (MHC) across all three study cohorts of rheumatoid arthritis. We further identified 10 epistatic interactions between the vGWAS signals independent of the MHC additive effects, each with a weak effect but jointly explained 1.9% of phenotypic variance. PTPN22 was also identified in the discovery cohort but replicated in only one independent cohort. Combining the three cohorts boosted power of vGWAS and additionally identified TYK2 and ANKRD55. Both PTPN22 and TYK2 had evidence of interactions reported elsewhere. We conclude that vGWAS can help discover interacting loci for complex diseases but require large samples to find additional signals.
Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes.
Torraco, Alessandra; Ardissone, Anna; Invernizzi, Federica; Rizza, Teresa; Fiermonte, Giuseppe; Niceta, Marcello; Zanetti, Nadia; Martinelli, Diego; Vozza, Angelo; Verrigni, Daniela; Di Nottia, Michela; Lamantea, Eleonora; Diodato, Daria; Tartaglia, Marco; Dionisi-Vici, Carlo; Moroni, Isabella; Farina, Laura; Bertini, Enrico; Ghezzi, Daniele; Carrozzo, Rosalba
2017-01-01
Defects of the Fe/S cluster biosynthesis represent a subgroup of diseases affecting the mitochondrial energy metabolism. In the last years, mutations in four genes (NFU1, BOLA3, ISCA2 and IBA57) have been related to a new group of multiple mitochondrial dysfunction syndromes characterized by lactic acidosis, hyperglycinemia, multiple defects of the respiratory chain complexes, and impairment of four lipoic acid-dependent enzymes: α-ketoglutarate dehydrogenase complex, pyruvic dehydrogenase, branched-chain α-keto acid dehydrogenase complex and the H protein of the glycine cleavage system. Few patients have been reported with mutations in IBA57 and with variable clinical phenotype. Herein, we describe four unrelated patients carrying novel mutations in IBA57. All patients presented with combined or isolated defect of complex I and II. Clinical features varied widely, ranging from fatal infantile onset of the disease to acute and severe psychomotor regression after the first year of life. Brain MRI was characterized by cavitating leukodystrophy. The identified mutations were never reported previously and all had a dramatic effect on IBA57 stability. Our study contributes to expand the array of the genotypic variation of IBA57 and delineates the leukodystrophic pattern of IBA57 deficient patients.
Cluster analysis of obesity and asthma phenotypes.
Sutherland, E Rand; Goleva, Elena; King, Tonya S; Lehman, Erik; Stevens, Allen D; Jackson, Leisa P; Stream, Amanda R; Fahy, John V; Leung, Donald Y M
2012-01-01
Asthma is a heterogeneous disease with variability among patients in characteristics such as lung function, symptoms and control, body weight, markers of inflammation, and responsiveness to glucocorticoids (GC). Cluster analysis of well-characterized cohorts can advance understanding of disease subgroups in asthma and point to unsuspected disease mechanisms. We utilized an hypothesis-free cluster analytical approach to define the contribution of obesity and related variables to asthma phenotype. In a cohort of clinical trial participants (n = 250), minimum-variance hierarchical clustering was used to identify clinical and inflammatory biomarkers important in determining disease cluster membership in mild and moderate persistent asthmatics. In a subset of participants, GC sensitivity was assessed via expression of GC receptor alpha (GCRα) and induction of MAP kinase phosphatase-1 (MKP-1) expression by dexamethasone. Four asthma clusters were identified, with body mass index (BMI, kg/m(2)) and severity of asthma symptoms (AEQ score) the most significant determinants of cluster membership (F = 57.1, p<0.0001 and F = 44.8, p<0.0001, respectively). Two clusters were composed of predominantly obese individuals; these two obese asthma clusters differed from one another with regard to age of asthma onset, measures of asthma symptoms (AEQ) and control (ACQ), exhaled nitric oxide concentration (F(E)NO) and airway hyperresponsiveness (methacholine PC(20)) but were similar with regard to measures of lung function (FEV(1) (%) and FEV(1)/FVC), airway eosinophilia, IgE, leptin, adiponectin and C-reactive protein (hsCRP). Members of obese clusters demonstrated evidence of reduced expression of GCRα, a finding which was correlated with a reduced induction of MKP-1 expression by dexamethasone Obesity is an important determinant of asthma phenotype in adults. There is heterogeneity in expression of clinical and inflammatory biomarkers of asthma across obese individuals. Reduced expression of the dominant functional isoform of the GCR may mediate GC insensitivity in obese asthmatics.
Patient characteristics, treatment patterns, and health outcomes among COPD phenotypes.
Allen-Ramey, Felicia C; Gupta, Shaloo; DiBonaventura, Marco DaCosta
2012-01-01
Recent literature has suggested that emphysema and chronic bronchitis, traditionally considered to be entities overlapping within chronic obstructive pulmonary disease (COPD), may be distinct disorders. Few studies have examined the differences in patient characteristics and health outcomes between these conditions. This study examined whether COPD phenotypes represent distinct patient populations, in a large nationally representative US sample. Data were obtained from the 2010 US National Health and Wellness Survey (NHWS). NHWS respondents (n = 75,000) were categorized as a COPD phenotype based on their self-reported diagnosis of COPD only (n = 970), emphysema only (n = 399), or chronic bronchitis only (n = 2071). Phenotypes were compared on demographics, health characteristics, treatment patterns, health outcomes, work productivity, and resource use. Variables were compared using Chi-square and analysis of variance tests for categorical and continuous outcomes, respectively. Health outcomes were also examined using regression modeling, controlling for demographic and health characteristic covariates. Patients with chronic bronchitis were significantly younger (51.38 years versus 63.24 years for COPD versus 63.30 years for emphysema, P < 0.05) and more likely to be employed (46.98% versus 23.81% for COPD versus 28.33% for emphysema, P < 0.05). Relative to the other phenotypes, patients with chronic bronchitis were also significantly more likely to be female, nonwhite, and to exercise currently (all P < 0.05), and were significantly less likely to be a current or former smoker (P < 0.05). Controlling for demographic and health characteristics, patients self-identified as having COPD only reported significantly worse physical quality of life (adjusted mean 36.69) and health utilities (adjusted mean 0.65) and significantly more absenteeism (adjusted mean 7.08%), presenteeism (adjusted mean 30.73%), overall work impairment (adjusted mean 34.06%), and activity impairment (adjusted mean 46.59%) than the other phenotypes (all P < 0.05). These results suggest considerable heterogeneity among different COPD phenotypes with respect to demographics, health characteristics, disease characteristics, treatment patterns, and health outcomes. Research aimed at understanding the differences in patient characteristics and disease presentation of these phenotypes could be used to guide treatment recommendations.
A simple algorithm for the identification of clinical COPD phenotypes.
Burgel, Pierre-Régis; Paillasseur, Jean-Louis; Janssens, Wim; Piquet, Jacques; Ter Riet, Gerben; Garcia-Aymerich, Judith; Cosio, Borja; Bakke, Per; Puhan, Milo A; Langhammer, Arnulf; Alfageme, Inmaculada; Almagro, Pere; Ancochea, Julio; Celli, Bartolome R; Casanova, Ciro; de-Torres, Juan P; Decramer, Marc; Echazarreta, Andrés; Esteban, Cristobal; Gomez Punter, Rosa Mar; Han, MeiLan K; Johannessen, Ane; Kaiser, Bernhard; Lamprecht, Bernd; Lange, Peter; Leivseth, Linda; Marin, Jose M; Martin, Francis; Martinez-Camblor, Pablo; Miravitlles, Marc; Oga, Toru; Sofia Ramírez, Ana; Sin, Don D; Sobradillo, Patricia; Soler-Cataluña, Juan J; Turner, Alice M; Verdu Rivera, Francisco Javier; Soriano, Joan B; Roche, Nicolas
2017-11-01
This study aimed to identify simple rules for allocating chronic obstructive pulmonary disease (COPD) patients to clinical phenotypes identified by cluster analyses.Data from 2409 COPD patients of French/Belgian COPD cohorts were analysed using cluster analysis resulting in the identification of subgroups, for which clinical relevance was determined by comparing 3-year all-cause mortality. Classification and regression trees (CARTs) were used to develop an algorithm for allocating patients to these subgroups. This algorithm was tested in 3651 patients from the COPD Cohorts Collaborative International Assessment (3CIA) initiative.Cluster analysis identified five subgroups of COPD patients with different clinical characteristics (especially regarding severity of respiratory disease and the presence of cardiovascular comorbidities and diabetes). The CART-based algorithm indicated that the variables relevant for patient grouping differed markedly between patients with isolated respiratory disease (FEV 1 , dyspnoea grade) and those with multi-morbidity (dyspnoea grade, age, FEV 1 and body mass index). Application of this algorithm to the 3CIA cohorts confirmed that it identified subgroups of patients with different clinical characteristics, mortality rates (median, from 4% to 27%) and age at death (median, from 68 to 76 years).A simple algorithm, integrating respiratory characteristics and comorbidities, allowed the identification of clinically relevant COPD phenotypes. Copyright ©ERS 2017.
Corruption of the intra-gene DNA methylation architecture is a hallmark of cancer.
Bartlett, Thomas E; Zaikin, Alexey; Olhede, Sofia C; West, James; Teschendorff, Andrew E; Widschwendter, Martin
2013-01-01
Epigenetic processes--including DNA methylation--are increasingly seen as having a fundamental role in chronic diseases like cancer. It is well known that methylation levels at particular genes or loci differ between normal and diseased tissue. Here we investigate whether the intra-gene methylation architecture is corrupted in cancer and whether the variability of levels of methylation of individual CpGs within a defined gene is able to discriminate cancerous from normal tissue, and is associated with heterogeneous tumour phenotype, as defined by gene expression. We analysed 270985 CpGs annotated to 18272 genes, in 3284 cancerous and 681 normal samples, corresponding to 14 different cancer types. In doing so, we found novel differences in intra-gene methylation pattern across phenotypes, particularly in those genes which are crucial for stem cell biology; our measures of intra-gene methylation architecture are a better determinant of phenotype than measures based on mean methylation level alone (K-S test [Formula: see text] in all 14 diseases tested). These per-gene methylation measures also represent a considerable reduction in complexity, compared to conventional per-CpG beta-values. Our findings strongly support the view that intra-gene methylation architecture has great clinical potential for the development of DNA-based cancer biomarkers.
A high-content platform to characterise human induced pluripotent stem cell lines.
Leha, Andreas; Moens, Nathalie; Meleckyte, Ruta; Culley, Oliver J; Gervasio, Mia K; Kerz, Maximilian; Reimer, Andreas; Cain, Stuart A; Streeter, Ian; Folarin, Amos; Stegle, Oliver; Kielty, Cay M; Durbin, Richard; Watt, Fiona M; Danovi, Davide
2016-03-01
Induced pluripotent stem cells (iPSCs) provide invaluable opportunities for future cell therapies as well as for studying human development, modelling diseases and discovering therapeutics. In order to realise the potential of iPSCs, it is crucial to comprehensively characterise cells generated from large cohorts of healthy and diseased individuals. The human iPSC initiative (HipSci) is assessing a large panel of cell lines to define cell phenotypes, dissect inter- and intra-line and donor variability and identify its key determinant components. Here we report the establishment of a high-content platform for phenotypic analysis of human iPSC lines. In the described assay, cells are dissociated and seeded as single cells onto 96-well plates coated with fibronectin at three different concentrations. This method allows assessment of cell number, proliferation, morphology and intercellular adhesion. Altogether, our strategy delivers robust quantification of phenotypic diversity within complex cell populations facilitating future identification of the genetic, biological and technical determinants of variance. Approaches such as the one described can be used to benchmark iPSCs from multiple donors and create novel platforms that can readily be tailored for disease modelling and drug discovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Parkinson's Disease Subtypes in the Oxford Parkinson Disease Centre (OPDC) Discovery Cohort.
Lawton, Michael; Baig, Fahd; Rolinski, Michal; Ruffman, Claudio; Nithi, Kannan; May, Margaret T; Ben-Shlomo, Yoav; Hu, Michele T M
2015-01-01
Within Parkinson's there is a spectrum of clinical features at presentation which may represent sub-types of the disease. However there is no widely accepted consensus of how best to group patients. Use a data-driven approach to unravel any heterogeneity in the Parkinson's phenotype in a well-characterised, population-based incidence cohort. 769 consecutive patients, with mean disease duration of 1.3 years, were assessed using a broad range of motor, cognitive and non-motor metrics. Multiple imputation was carried out using the chained equations approach to deal with missing data. We used an exploratory and then a confirmatory factor analysis to determine suitable domains to include within our cluster analysis. K-means cluster analysis of the factor scores and all the variables not loading into a factor was used to determine phenotypic subgroups. Our factor analysis found three important factors that were characterised by: psychological well-being features; non-tremor motor features, such as posture and rigidity; and cognitive features. Our subsequent five cluster model identified groups characterised by (1) mild motor and non-motor disease (25.4%), (2) poor posture and cognition (23.3%), (3) severe tremor (20.8%), (4) poor psychological well-being, RBD and sleep (18.9%), and (5) severe motor and non-motor disease with poor psychological well-being (11.7%). Our approach identified several Parkinson's phenotypic sub-groups driven by largely dopaminergic-resistant features (RBD, impaired cognition and posture, poor psychological well-being) that, in addition to dopaminergic-responsive motor features may be important for studying the aetiology, progression, and medication response of early Parkinson's.
Loewen, Carin A; Ganetzky, Barry
2018-04-01
Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions in vivo are sparse. Here we describe the characterization of a mutation in Drosophila ND23 , a nuclear gene encoding a highly conserved subunit of mitochondrial complex 1. This characterization led to the discovery of a mito-nuclear interaction that affects the ND23 mutant phenotype. ND23 mutants exhibit reduced lifespan, neurodegeneration, abnormal mitochondrial morphology, and decreased ATP levels. These phenotypes are similar to those observed in patients with Leigh syndrome, which is caused by mutations in a number of nuclear genes that encode mitochondrial proteins, including the human ortholog of ND23 A key feature of Leigh syndrome, and other mitochondrial disorders, is unexpected and unexplained phenotypic variability. We discovered that the phenotypic severity of ND23 mutations varies depending on the maternally inherited mitochondrial background. Sequence analysis of the relevant mitochondrial genomes identified several variants that are likely candidates for the phenotypic interaction with mutant ND23 , including a variant affecting a mitochondrially encoded component of complex I. Thus, our work provides an in vivo demonstration of the phenotypic importance of mito-nuclear interactions in the context of mitochondrial disease. Copyright © 2018 by the Genetics Society of America.
Hellenbroich, Y; Tzivras, G; Neppert, B; Schwinger, E; Zühlke, C
2001-01-01
Five autosomal dominantly inherited corneal dystrophies are caused by missense mutations in the betaIGH3 gene on chromosome 5q31. Here we describe the clinical features and the analysis of the betaIGH3 gene in a Greek four-generation family with lattice corneal dystrophy type 1 (CDL1). Sequencing of the betaIGH3 cDNA from an affected family member revealed the R124C mutation. More recent data indicate that this is probably a mutation hot spot in CDL1. We could not find a common haplotype with another CDL1 family with the R124C mutation demonstrating that this mutation occurs independently in different families. The clinical course of the disease showed a remarkable variability between the affected family members. To investigate a possible role between the phenotypic variability and apolipoprotein E (ApoE), which co-localises with amyloid deposits in CDL1, we determined the ApoE genotype of all family members. The resulting data revealed no association with the variable clinical course. Copyright 2001 S. Karger AG, Basel
Mapping Gene Associations in Human Mitochondria using Clinical Disease Phenotypes
Scharfe, Curt; Lu, Henry Horng-Shing; Neuenburg, Jutta K.; Allen, Edward A.; Li, Guan-Cheng; Klopstock, Thomas; Cowan, Tina M.; Enns, Gregory M.; Davis, Ronald W.
2009-01-01
Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes. PMID:19390613
Lenassi, Eva; Vincent, Ajoy; Li, Zheng; Saihan, Zubin; Coffey, Alison J; Steele-Stallard, Heather B; Moore, Anthony T; Steel, Karen P; Luxon, Linda M; Héon, Elise; Bitner-Glindzicz, Maria; Webster, Andrew R
2015-01-01
Defects in USH2A cause both isolated retinal disease and Usher syndrome (ie, retinal disease and deafness). To gain insights into isolated/nonsyndromic USH2A retinopathy, we screened USH2A in 186 probands with recessive retinal disease and no hearing complaint in childhood (discovery cohort) and in 84 probands with recessive retinal disease (replication cohort). Detailed phenotyping, including retinal imaging and audiological assessment, was performed in individuals with two likely disease-causing USH2A variants. Further genetic testing, including screening for a deep-intronic disease-causing variant and large deletions/duplications, was performed in those with one likely disease-causing change. Overall, 23 of 186 probands (discovery cohort) were found to harbour two likely disease-causing variants in USH2A. Some of these variants were predominantly associated with nonsyndromic retinal degeneration (‘retinal disease-specific'); these included the common c.2276 G>T, p.(Cys759Phe) mutation and five additional variants: c.2802 T>G, p.(Cys934Trp); c.10073 G>A, p.(Cys3358Tyr); c.11156 G>A, p.(Arg3719His); c.12295-3 T>A; and c.12575 G>A, p.(Arg4192His). An allelic hierarchy was observed in the discovery cohort and confirmed in the replication cohort. In nonsyndromic USH2A disease, retinopathy was consistent with retinitis pigmentosa and the audiological phenotype was variable. USH2A retinopathy is a common cause of nonsyndromic recessive retinal degeneration and has a different mutational spectrum to that observed in Usher syndrome. The following model is proposed: the presence of at least one ‘retinal disease-specific' USH2A allele in a patient with USH2A-related disease results in the preservation of normal hearing. Careful genotype–phenotype studies such as this will become increasingly important, especially now that high-throughput sequencing is widely used in the clinical setting. PMID:25649381
Phenotype Variation in Human Immunodeficiency virus Type 1 Transmission and Disease Progression
Cavarelli, Mariangela; Scarlatti, Gabriella
2009-01-01
Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed. PMID:19893208
Phenotype variation in human immunodeficiency virus type 1 transmission and disease progression.
Cavarelli, Mariangela; Scarlatti, Gabriella
2009-01-01
Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly CCR5 and CXCR4. Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. Thus, R5 and X4 virus use respectively CCR5 and CXCR4, whereas R5X4 virus can use either CCR5 or CXCR4. This review describes the central role played by co-receptor expression and usage for HIV-1 cell tropism, transmission and pathogenesis. We discuss various hypotheses proposed to explain the preferential transmission of R5 viruses and the mechanisms driving the change of HIV-1 co-receptor usage in the course of infection. Recent insights in the intrinsic variability of R5 viruses and their role in influencing disease progression in both adults and children are also discussed.
Clinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies
Jordanova, Albena
2014-01-01
Hereditary spinal muscular atrophy is a motor neuron disorder characterized by muscle weakness and atrophy due to degeneration of the anterior horn cells of the spinal cord. Initially, the disease was considered purely as an autosomal recessive condition caused by loss-of-function SMN1 mutations on 5q13. Recent developments in next generation sequencing technologies, however, have unveiled a growing number of clinical conditions designated as non-5q forms of spinal muscular atrophy. At present, 16 different genes and one unresolved locus are associated with proximal non-5q forms, having high phenotypic variability and diverse inheritance patterns. This review provides an overview of the current knowledge regarding the phenotypes, causative genes, and disease mechanisms associated with proximal SMN1-negative spinal muscular atrophies. We describe the molecular and cellular functions enriched among causative genes, and discuss the challenges in the post-genomics era of spinal muscular atrophy research. PMID:24970098
Lo, Mindy S
2016-12-01
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease known for its clinical heterogeneity. Over time, new insights into the complex genetic origin of SLE have started to explain some of this clinical variability. These findings, reviewed here, have also yielded important understanding in the immune mechanisms behind SLE pathogenesis. Several new monogenic disorders with lupus-like phenotype have been described. These can be organized into physiologic pathways that parallel mechanisms of disease in SLE. Examples include genes important for DNA damage repair (e.g., TREX1), nucleic acid sensing and type I interferon overproduction (e.g., STING, TREX1), apoptosis (FASLG), tolerance (PRKCD), and clearance of self-antigen (DNASE1L3). Further study of monogenic lupus may lead to better genotype/phenotype correlations in SLE. Eventually, the ability to understand individual patients according to their genetic profile may allow the development of more targeted and personalized approaches to therapy.
Avalos, Danny J; Mendoza-Ladd, Antonio; Zuckerman, Marc J; Bashashati, Mohammad; Alvarado, Andres; Dwivedi, Alok; Damas, Oriana M
2018-06-01
Inflammatory bowel disease (IBD) is a devastating immune-mediated disease on the rise in Hispanics living in the USA. Prior observational studies comparing IBD characteristics between Hispanics and non-Hispanic whites (NHW) have yielded mixed results. We performed a meta-analysis of observational studies examining IBD phenotype in Hispanics compared to NHW. We conducted a systematic search of US-based studies comparing IBD subtype (Ulcerative Colitis: UC or Crohn's disease: CD) and phenotype (disease location and behavior) between Hispanics and NHW. We evaluated differences in age at IBD diagnosis, the presence of family history and smoking history. A random effects model was chosen "a priori." Categorical and continuous variables were analyzed using odds ratio (OR) or standard mean difference (SMD), respectively. Seven studies were included with 687 Hispanics and 1586 NHW. UC was more common in Hispanics compared to NHW (OR 2.07, CI 1.13-3.79, p = 0.02). Location of disease was similar between Hispanics and NHW except for the presence of upper gastrointestinal CD, which was less common in Hispanics (OR 0.58, CI 0.32-1.06, p = 0.07). Hispanics were less likely to smoke (OR 0.48, CI 0.26-0.89, p = 0.02) or have a family history of IBD (OR 0.35, CI 0.22-0.55, p < 0.001). CD behavior classified by Montreal classification and age at IBD diagnosis were similar between Hispanics and NHW. UC was more common among US Hispanics compared to NHW. Age at IBD diagnosis is similar for both Hispanics and NHW. For CD, disease behavior is similar, but Hispanics show a trend for less upper gastrointestinal involvement. A family history of IBD and smoking history were less common in Hispanics.
Yong, Pierre L; Orange, Jordan S; Sullivan, Kathleen E
2010-08-01
Recent studies suggest that patients with common variable immunodeficiency (CVID) and low numbers of switched memory B cells have lower IgG levels and higher rates of autoimmune disease, splenomegaly, and granulomatous disease; however, no prior literature has focused exclusively on pediatric cases. We examined the relationship between switched memory B cells and clinical and immunologic manifestations of CVID in a pediatric population. Forty-five patients were evaluated. Patients were categorized as Group I (<5 switched memory B cells/ml, n = 24) or Group II (> or =5 switched memory B cells/mL, n = 21). CD3(+) T-cell counts and CD19(+) B-cell levels were lower among Group I patients. Only those in Group I had meningitis, sepsis, bronchiectasis, granulomatous lung disease, autoimmune cytopenias, or hematologic malignancies. Segregation of pediatric patients into high risk (Group I) and average risk (Group II) may assist in targeting surveillance appropriately.
A knowledge based approach to matching human neurodegenerative disease and animal models
Maynard, Sarah M.; Mungall, Christopher J.; Lewis, Suzanna E.; Imam, Fahim T.; Martone, Maryann E.
2013-01-01
Neurodegenerative diseases present a wide and complex range of biological and clinical features. Animal models are key to translational research, yet typically only exhibit a subset of disease features rather than being precise replicas of the disease. Consequently, connecting animal to human conditions using direct data-mining strategies has proven challenging, particularly for diseases of the nervous system, with its complicated anatomy and physiology. To address this challenge we have explored the use of ontologies to create formal descriptions of structural phenotypes across scales that are machine processable and amenable to logical inference. As proof of concept, we built a Neurodegenerative Disease Phenotype Ontology (NDPO) and an associated Phenotype Knowledge Base (PKB) using an entity-quality model that incorporates descriptions for both human disease phenotypes and those of animal models. Entities are drawn from community ontologies made available through the Neuroscience Information Framework (NIF) and qualities are drawn from the Phenotype and Trait Ontology (PATO). We generated ~1200 structured phenotype statements describing structural alterations at the subcellular, cellular and gross anatomical levels observed in 11 human neurodegenerative conditions and associated animal models. PhenoSim, an open source tool for comparing phenotypes, was used to issue a series of competency questions to compare individual phenotypes among organisms and to determine which animal models recapitulate phenotypic aspects of the human disease in aggregate. Overall, the system was able to use relationships within the ontology to bridge phenotypes across scales, returning non-trivial matches based on common subsumers that were meaningful to a neuroscientist with an advanced knowledge of neuroanatomy. The system can be used both to compare individual phenotypes and also phenotypes in aggregate. This proof of concept suggests that expressing complex phenotypes using formal ontologies provides considerable benefit for comparing phenotypes across scales and species. PMID:23717278
Hypertelorism in Charcot-Marie-Tooth disease 1A from the common PMP22 duplication: A Case Report
Finsterer, Josef
2012-01-01
The 1.4Mb tandem-duplication in the PMP22 gene at 17p11.2 usually manifests as hereditary sensorimotor polyneuropathy with foot deformity, sensorineural hearing-loss, moderate developmental delay, and gait disturbance. Hypertelorism and marked phenotypic variability within a single family has not been reported. In a single family, the PMP22 tandem-duplication manifested as short stature, sensorimotor polyneuropathy, tremor, ataxia, sensorineural hearing-loss, and hypothyroidism in the 27 years-old index case, as mild facial dysmorphism, muscle cramps, tinnitus, intention tremor, bradydiadochokinesia, and sensorimotor polyneuropathy in the 31 year-old half-brother of the index-patient, and as sensorimotor polyneuropathy and foot-deformity in the father of the two. The half-brother additionally presented with hypertelorism, not previously reported in PMP22 tandem-duplication carriers. The presented cases show that the tandem-duplication 17p11.2 may present with marked intra-familial phenotype variability and that mild facial dysmorphism with stuck-out ears and hypertelorism may be a rare phenotypic feature of this mutation. The causal relation between facial dysmorphism and the PMP22 tandem-duplication, however, remains speculative. PMID:22496945
Follicular Dowling Degos disease: a rare variant of an evolving dermatosis.
Singh, Saurabh; Khandpur, Sujay; Verma, Parul; Singh, Manoj
2013-01-01
Dowling Degos disease is a rare, reticulate pigmentary disorder with variable phenotypic expression that manifests as hyperpigmented macules and reticulate pigmentary anomaly of the flexures. Many variants of this condition and its overlap with other reticulate pigmentary disorders have been reported in the literature. We present here two cases of DDD with follicular localization, both clinically and histologically. It was associated with ichthyosis vulgaris in one case. Follicular DDD is an uncommon variant of this evolving dermatosis. Our report supports the possible role for disordered follicular keratinisation in its pathogenesis.
Ghorbanoghli, Z; Nieuwenhuis, M H; Houwing-Duistermaat, J J; Jagmohan-Changur, S; Hes, F J; Tops, C M; Wagner, A; Aalfs, C M; Verhoef, S; Gómez García, E B; Sijmons, R H; Menko, F H; Letteboer, T G; Hoogerbrugge, N; van Wezel, T; Vasen, H F A; Wijnen, J T
2016-10-01
Familial adenomatous polyposis (FAP) is a dominantly inherited syndrome caused by germline mutations in the APC gene and characterized by the development of multiple colorectal adenomas and a high risk of developing colorectal cancer (CRC). The severity of polyposis is correlated with the site of the APC mutation. However, there is also phenotypic variability within families with the same underlying APC mutation, suggesting that additional factors influence the severity of polyposis. Genome-wide association studies identified several single nucleotide polymorphisms (SNPs) that are associated with CRC. We assessed whether these SNPs are associated with polyp multiplicity in proven APC mutation carriers. Sixteen CRC-associated SNPs were analysed in a cohort of 419 APC germline mutation carriers from 182 families. Clinical data were retrieved from the Dutch Polyposis Registry. Allele frequencies of the SNPs were compared for patients with <100 colorectal adenomas versus patients with ≥100 adenomas, using generalized estimating equations with the APC genotype as a covariate. We found a trend of association of two of the tested SNPs with the ≥100 adenoma phenotype: the C alleles of rs16892766 at 8q23.3 (OR 1.71, 95 % CI 1.05-2.76, p = 0.03, dominant model) and rs3802842 at 11q23.1 (OR 1.51, 95 % CI 1.03-2.22, p = 0.04, dominant model). We identified two risk variants that are associated with a more severe phenotype in APC mutation carriers. These risk variants may partly explain the phenotypic variability in families with the same APC gene defect. Further studies with a larger sample size are recommended to evaluate and confirm the phenotypic effect of these SNPs in FAP.
A rolling phenotype in Crohn's disease.
Irwin, James; Ferguson, Emma; Simms, Lisa A; Hanigan, Katherine; Carbonnel, Franck; Radford-Smith, Graham
2017-01-01
The Montreal classification of disease behaviour in Crohn's disease describes progression of disease towards a stricturing and penetrating phenotype. In the present paper, we propose an alternative representation of the long-term course of Crohn's disease complications, the rolling phenotype. As is commonly observed in clinical practice, this definition allows progression to a more severe phenotype (stricturing, penetrating) but also, regression to a less severe behaviour (inflammatory, or remission) over time. All patients diagnosed with Crohn's Disease between 01/01/1994 and 01/03/2008, managed at a single centre and observed for a minimum of 5 years, had development and resolution of all complications recorded. A rolling phenotype was defined at each time point based on all observed complications in the three years prior to the time point. Phenotype was defined as B1, B2, B3, or B23 (penetrating and stenotic). The progression over time of the rolling phenotype was compared to that of the cumulative Montreal phenotype. 305 patients were observed a median of 10.0 (Intraquartile range 7.3-13.7) years. Longitudinal progression of rolling phenotype demonstrated a consistent proportion of patients with B1 (70%), B2 (20%), B3 (5%) and B23 (5%) phenotypes. These proportions were observed regardless of initial phenotype. In contrast, the cumulative Montreal phenotype progressed towards a more severe phenotype with time (B1 (39%), B2 (26%), B3(35%) at 10 years). A rolling phenotype provides an alternative view of the longitudinal burden of intra-abdominal complications in Crohn's disease. From this viewpoint, 70% of patients have durable freedom from complication over time (>3 years).
Sarntivijai, Sirarat; Vasant, Drashtti; Jupp, Simon; Saunders, Gary; Bento, A Patrícia; Gonzalez, Daniel; Betts, Joanna; Hasan, Samiul; Koscielny, Gautier; Dunham, Ian; Parkinson, Helen; Malone, James
2016-01-01
The Centre for Therapeutic Target Validation (CTTV - https://www.targetvalidation.org/) was established to generate therapeutic target evidence from genome-scale experiments and analyses. CTTV aims to support the validity of therapeutic targets by integrating existing and newly-generated data. Data integration has been achieved in some resources by mapping metadata such as disease and phenotypes to the Experimental Factor Ontology (EFO). Additionally, the relationship between ontology descriptions of rare and common diseases and their phenotypes can offer insights into shared biological mechanisms and potential drug targets. Ontologies are not ideal for representing the sometimes associated type relationship required. This work addresses two challenges; annotation of diverse big data, and representation of complex, sometimes associated relationships between concepts. Semantic mapping uses a combination of custom scripting, our annotation tool 'Zooma', and expert curation. Disease-phenotype associations were generated using literature mining on Europe PubMed Central abstracts, which were manually verified by experts for validity. Representation of the disease-phenotype association was achieved by the Ontology of Biomedical AssociatioN (OBAN), a generic association representation model. OBAN represents associations between a subject and object i.e., disease and its associated phenotypes and the source of evidence for that association. The indirect disease-to-disease associations are exposed through shared phenotypes. This was applied to the use case of linking rare to common diseases at the CTTV. EFO yields an average of over 80% of mapping coverage in all data sources. A 42% precision is obtained from the manual verification of the text-mined disease-phenotype associations. This results in 1452 and 2810 disease-phenotype pairs for IBD and autoimmune disease and contributes towards 11,338 rare diseases associations (merged with existing published work [Am J Hum Genet 97:111-24, 2015]). An OBAN result file is downloadable at http://sourceforge.net/p/efo/code/HEAD/tree/trunk/src/efoassociations/. Twenty common diseases are linked to 85 rare diseases by shared phenotypes. A generalizable OBAN model for association representation is presented in this study. Here we present solutions to large-scale annotation-ontology mapping in the CTTV knowledge base, a process for disease-phenotype mining, and propose a generic association model, 'OBAN', as a means to integrate disease using shared phenotypes. EFO is released monthly and available for download at http://www.ebi.ac.uk/efo/.
The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities
Chong, Jessica X.; Buckingham, Kati J.; Jhangiani, Shalini N.; Boehm, Corinne; Sobreira, Nara; Smith, Joshua D.; Harrell, Tanya M.; McMillin, Margaret J.; Wiszniewski, Wojciech; Gambin, Tomasz; Coban Akdemir, Zeynep H.; Doheny, Kimberly; Scott, Alan F.; Avramopoulos, Dimitri; Chakravarti, Aravinda; Hoover-Fong, Julie; Mathews, Debra; Witmer, P. Dane; Ling, Hua; Hetrick, Kurt; Watkins, Lee; Patterson, Karynne E.; Reinier, Frederic; Blue, Elizabeth; Muzny, Donna; Kircher, Martin; Bilguvar, Kaya; López-Giráldez, Francesc; Sutton, V. Reid; Tabor, Holly K.; Leal, Suzanne M.; Gunel, Murat; Mane, Shrikant; Gibbs, Richard A.; Boerwinkle, Eric; Hamosh, Ada; Shendure, Jay; Lupski, James R.; Lifton, Richard P.; Valle, David; Nickerson, Deborah A.; Bamshad, Michael J.
2015-01-01
Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families. PMID:26166479
Nakagawa, Kenji; Gonzalez-Roca, Eva; Souto, Alejandro; Kawai, Toshinao; Umebayashi, Hiroaki; Campistol, Josep María; Cañellas, Jeronima; Takei, Syuji; Kobayashi, Norimoto; Callejas-Rubio, Jose Luis; Ortego-Centeno, Norberto; Ruiz-Ortiz, Estíbaliz; Rius, Fina; Anton, Jordi; Iglesias, Estibaliz; Jimenez-Treviño, Santiago; Vargas, Carmen; Fernandez-Martin, Julian; Calvo, Inmaculada; Hernández-Rodríguez, José; Mendez, María; Dordal, María Teresa; Basagaña, Maria; Bujan, Segundo; Yashiro, Masato; Kubota, Tetsuo; Koike, Ryuji; Akuta, Naoko; Shimoyama, Kumiko; Iwata, Naomi; Saito, Megumu K; Ohara, Osamu; Kambe, Naotomo; Yasumi, Takahiro; Izawa, Kazushi; Kawai, Tomoki; Heike, Toshio; Yagüe, Jordi; Nishikomori, Ryuta; Aróstegui, Juan I
2015-03-01
: Familial cold autoinflammatory syndrome, Muckle-Wells syndrome (MWS), and chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome are dominantly inherited autoinflammatory diseases associated to gain-of-function NLRP3 mutations and included in the cryopyrin-associated periodic syndromes (CAPS). A variable degree of somatic NLRP3 mosaicism has been detected in ≈35% of patients with CINCA. However, no data are currently available regarding the relevance of this mechanism in other CAPS phenotypes. To evaluate somatic NLRP3 mosaicism as the disease-causing mechanism in patients with clinical CAPS phenotypes other than CINCA and NLRP3 mutation-negative. NLRP3 analyses were performed by Sanger sequencing and by massively parallel sequencing. Apoptosis-associated Speck-like protein containing a CARD (ASC)-dependent nuclear factor kappa-light chain-enhancer of activated B cells (NF-κB) activation and transfection-induced THP-1 cell death assays determined the functional consequences of the detected variants. A variable degree (5.5-34.9%) of somatic NLRP3 mosaicism was detected in 12.5% of enrolled patients, all of them with a MWS phenotype. Six different missense variants, three novel (p.D303A, p.K355T and p.L411F), were identified. Bioinformatics and functional analyses confirmed that they were disease-causing, gain-of-function NLRP3 mutations. All patients treated with anti-interleukin1 drugs showed long-lasting positive responses. We herein show somatic NLRP3 mosaicism underlying MWS, probably representing a shared genetic mechanism in CAPS not restricted to CINCA syndrome. The data here described allowed definitive diagnoses of these patients, which had serious implications for gaining access to anti-interleukin 1 treatments under legal indication and for genetic counselling. The detection of somatic mosaicism is difficult when using conventional methods. Potential candidates should benefit from the use of modern genetic tools. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Lenassi, Eva; Saihan, Zubin; Cipriani, Valentina; Le Quesne Stabej, Polona; Moore, Anthony T; Luxon, Linda M; Bitner-Glindzicz, Maria; Webster, Andrew R
2014-02-01
To evaluate the phenotypic variability and natural history of ocular disease in a cohort of 28 individuals with MYO7A-related disease. Mutations in the MYO7A gene are the most common cause of Usher syndrome type 1, characterized by profound congenital deafness, vestibular arreflexia, and progressive retinal degeneration. Retrospective case series. Twenty-eight patients from 26 families (age range, 3-65 years; median, 32) with 2 likely disease-causing variants in MYO7A. Clinical investigations included fundus photography, optical coherence tomography, fundus autofluorescence (FAF) imaging, and audiologic and vestibular assessments. Longitudinal visual acuity and FAF data (over a 3-year period) were available for 20 and 10 study subjects, respectively. Clinical, structural, and functional characteristics. All patients with MYO7A mutations presented with features consistent with Usher type 1. The median visual acuity for the cohort was 0.39 logarithm of the minimum angle of resolution (logMAR; range, 0.0-2.7) and visual acuity in logMAR correlated with age (Spearman's rank correlation coefficient, r = 0.71; P<0.0001). Survival analysis revealed that acuity ≤ 0.22 logMAR was maintained in 50% of studied subjects until age 33.9; legal blindness based on loss of acuity (≥ 1.00 logMAR) or loss of field (≤ 20°) was reached at a median age of 40.6 years. Three distinct patterns were observed on FAF imaging: 13 of 22 patients tested had relatively preserved foveal autofluorescence surrounded by a ring of high density, 4 of 22 had increased signal in the fovea with no obvious hyperautofluorescent ring, and 5 of 22 had widespread hypoautofluorescence corresponding to retinal pigment epithelial atrophy. Despite a number of cases presenting with a milder phenotype, there seemed to be no obvious genotype-phenotype correlation. MYO7A-related ocular disease is variable. Central vision typically remains preserved at least until the third decade of life, with 50% of affected individuals reaching legal blindness by 40 years of age. Distinct phenotypic subsets were identified on FAF imaging. A specific allele, previously reported in nonsyndromic deafness, may be associated with a mild retinopathy. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Ananiadou, Sophia
2016-01-01
Biomedical literature articles and narrative content from Electronic Health Records (EHRs) both constitute rich sources of disease-phenotype information. Phenotype concepts may be mentioned in text in multiple ways, using phrases with a variety of structures. This variability stems partly from the different backgrounds of the authors, but also from the different writing styles typically used in each text type. Since EHR narrative reports and literature articles contain different but complementary types of valuable information, combining details from each text type can help to uncover new disease-phenotype associations. However, the alternative ways in which the same concept may be mentioned in each source constitutes a barrier to the automatic integration of information. Accordingly, identification of the unique concepts represented by phrases in text can help to bridge the gap between text types. We describe our development of a novel method, PhenoNorm, which integrates a number of different similarity measures to allow automatic linking of phenotype concept mentions to known concepts in the UMLS Metathesaurus, a biomedical terminological resource. PhenoNorm was developed using the PhenoCHF corpus—a collection of literature articles and narratives in EHRs, annotated for phenotypic information relating to congestive heart failure (CHF). We evaluate the performance of PhenoNorm in linking CHF-related phenotype mentions to Metathesaurus concepts, using a newly enriched version of PhenoCHF, in which each phenotype mention has an expert-verified link to a concept in the UMLS Metathesaurus. We show that PhenoNorm outperforms a number of alternative methods applied to the same task. Furthermore, we demonstrate PhenoNorm’s wider utility, by evaluating its ability to link mentions of various other types of medically-related information, occurring in texts covering wider subject areas, to concepts in different terminological resources. We show that PhenoNorm can maintain performance levels, and that its accuracy compares favourably to other methods applied to these tasks. PMID:27643689
The Multiple Faces of Non-Cystic Fibrosis Bronchiectasis. A Cluster Analysis Approach.
Martínez-García, Miguel Á; Vendrell, Montserrat; Girón, Rosa; Máiz-Carro, Luis; de la Rosa Carrillo, David; de Gracia, Javier; Olveira, Casilda
2016-09-01
The clinical presentation and prognosis of non-cystic fibrosis bronchiectasis are both very heterogeneous. To identify different clinical phenotypes for non-cystic fibrosis bronchiectasis and their impact on prognosis. Using a standardized protocol, we conducted a multicenter observational cohort study at six Spanish centers with patients diagnosed with non-cystic fibrosis bronchiectasis before December 31, 2005, with a 5-year follow-up from the bronchiectasis diagnosis. A cluster analysis was used to classify the patients into homogeneous groups by means of significant variables corresponding to different aspects of bronchiectasis (clinical phenotypes): age, sex, body mass index, smoking habit, dyspnea, macroscopic appearance of sputum, number of exacerbations, chronic colonization with Pseudomonas aeruginosa, FEV1, number of pulmonary lobes affected, idiopathic bronchiectasis, and associated chronic obstructive pulmonary disease. Survival analysis (Kaplan-Meier method and log-rank test) was used to evaluate the comparative survival of the different subgroups. A total of 468 patients with a mean age of 63 (15.9) years were analyzed. Of these, 58% were females, 39.7% had idiopathic bronchiectasis, and 29.3% presented with chronic Pseudomonas aeruginosa colonization. Cluster analysis showed four clinical phenotypes: (1) younger women with mild disease, (2) older women with mild disease, (3) older patients with severe disease who had frequent exacerbations, and (4) older patients with severe disease who did not have frequent exacerbations. The follow-up period was 54 months, during which there were 95 deaths. Mortality was low in the first and second groups (3.9% and 7.6%, respectively) and high for the third (37%) and fourth (40.8%) groups. The third cluster had a higher proportion of respiratory deaths than the fourth (77.8% vs. 34.4%; P < 0.001). Using cluster analysis, it is possible to separate patients with bronchiectasis into distinct clinical phenotypes with different prognoses.
The case-fatality rate of meningococcal disease in Catalonia, 1990-1997.
Domínguez, Angela; Cardeñosa, Neus; Pañella, Helena; Orcau, Angels; Companys, Maria; Alseda, Miquel; Oviedo, Manuel; Carmona, Glòria; Minguell, Sofia; Salleras, Lluis
2004-01-01
The objective was to analyse the case-fatality rate (CFR) of meningococcal disease (MD) in Catalonia, Spain. A retrospective study was carried out. Clinical histories of cases of MD reported for the period 1990-1997 in Catalonia were reviewed. For all cases, the variables gender, age, clinical type, y of presentation, province, phenotype and death by meningococcal disease were collected. The association between death and the other variables was studied by bivariate and unconditional logistic regression analysis. In the 2343 cases studied there were 146 deaths (6.2%) due to meningococcal disease. The CFR was higher in females (OR: 1.5, 95%CI: 1.1-2.1), in the 20 to 49 y (OR: 2.4, 95%CI: 1.2-4.9) and > or = 50 y (OR: 5.3, 95%CI: 2.8-10.1) age groups, in cases with septicaemia (OR: 2.4, 95%CI: 1.6-3.5), in the cases produced by serogroup A (OR: 4.7, 95%CI: 1.0-23.4) and in cases occurring during 1993 (OR: 2.1, 95%CI: 1.1-4.1) or in the province of Lleida (OR: 2.9, 95%CI: 1.2-7.2). In the multivariate analysis, death was associated with the 20-49 y age group (OR: 3.9, 95%CI: 1.8-8.4), the > or = 50 y age group (OR: 7.3, 95%CI: 3.6-14.7), septicaemia (OR: 3.1; 95%CI: 2.0-4.7) and residing in the province of Lleida (OR: 3.2; 95%CI: 1.2-8.5). The CFR of meningococcal disease in Catalonia was not associated with the emergent phenotype C:2b:P1.2,5 strain, which caused an outbreak in other regions of Spain.
Alao, O O; Araoye, M; Ojabo, C
2009-01-01
Sickle Cell Disease (SCD) is the commonest genetic disease worldwide. Of the sickle cell control strategies, premarital genetic counselling is increasingly practised in many countries of the world. Knowledge of the citizenry of a nation about SCD constitutes an important variable that influences the acceptability, practice and success of premarital genetic counselling. A study of students of Benue State University, Makurdi was carried out to determine their current level of knowledge. A cross sectional study involving 300 students of Benue State University, Makurdi; selected by a multistage stratified sampling technique, using self administered structured questionnaire, was carried out. Virtually all study respondents had at one time or the other heard about sickle cell disease. Based on the criteria used for knowledge scoring, less than half of the students (48%) demonstrated good knowledge. Overall Mean Score Knowledge (MSK) was 4.65 +/- 1.65. MSK was 4.58 +/- 1.66 and 4.74 +/- 1.64 for males and females respectively; there was no statistically significant difference (P > 0.05). However, having an affected relative suffering from sickle cell disease significantly influenced level of knowledge among study respondents (P < 0.05), but was not significantly associated with respondents knowing their haemoglobin phenotype. Only 141 students (47%) knew their haemoglobin phenotype. Level of knowledge about SCD did not significantly increase with age. Also, sex and religion did not significantly influence level of knowledge. The knowledge about SCD was poor and only a few knew their haemoglobin phenotype. If sickle cell disease control strategies must yield any significant results, more education about SCD, especially among students in tertiary institutions in Nigeria is recommended. The use of persons with SCD as peer educators/counsellors should be explored.
Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina
2018-01-01
Purpose Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Methods Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Results Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. Conclusions AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A. This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. PMID:29074494
Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina
2018-01-01
Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A . This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Homozygous TREM2 mutation in a family with atypical frontotemporal dementia.
Le Ber, Isabelle; De Septenville, Anne; Guerreiro, Rita; Bras, José; Camuzat, Agnès; Caroppo, Paola; Lattante, Serena; Couarch, Philippe; Kabashi, Edor; Bouya-Ahmed, Kawtar; Dubois, Bruno; Brice, Alexis
2014-10-01
TREM2 mutations were first identified in Nasu-Hakola disease, a rare autosomal recessive disease characterized by recurrent fractures because of bone cysts and presenile dementia. Recently, homozygous and compound heterozygous TREM2 mutations were identified in rare families with frontotemporal lobar degeneration (FTLD) but without bone involvement. We identified a p.Thr66Met heterozygous mutation in a new consanguineous Italian family. Two sibs had early onset autosomal recessive FTLD without severe bone disorders. Atypical signs were present in this family: early parietal and hippocampus involvement, parkinsonism, epilepsy, and corpus callosum thickness on brain magnetic resonance imaging. This study further demonstrates the implication of TREM2 mutations in FTLD phenotypes. It illustrates the variability of bone phenotype and underlines the frequency of atypical signs in TREM2 carriers. This and previous studies evidence that TREM2 mutation screening should be limited to autosomal recessive FTLD with atypical phenotypes characterized by: (1) a very young age at onset (20-50 years); (2) early parietal and hippocampal deficits; (3) the presence of seizures and parkinsonism; (4) suggestive extensive white matter lesions and corpus callosum thickness on brain magnetic resonance imaging. Copyright © 2014 Elsevier Inc. All rights reserved.
Homozygous TREM2 mutation in a family with atypical frontotemporal dementia
Bras, José; Camuzat, Agnès; Caroppo, Paola; Lattante, Serena; Couarch, Philippe; Kabashi, Edor; Bouya-Ahmed, Kawtar; Dubois, Bruno; Brice, Alexis
2014-01-01
TREM2 mutations were first identified in Nasu-Hakola disease, a rare autosomal recessive disease characterized by recurrent fractures because of bone cysts and presenile dementia. Recently, homozygous and compound heterozygous TREM2 mutations were identified in rare families with frontotemporal lobar degeneration (FTLD) but without bone involvement. We identified a p.Thr66Met heterozygous mutation in a new consanguineous Italian family. Two sibs had early onset autosomal recessive FTLD without severe bone disorders. Atypical signs were present in this family: early parietal and hippocampus involvement, parkinsonism, epilepsy, and corpus callosum thickness on brain magnetic resonance imaging. This study further demonstrates the implication of TREM2 mutations in FTLD phenotypes. It illustrates the variability of bone phenotype and underlines the frequency of atypical signs in TREM2 carriers. This and previous studies evidence that TREM2 mutation screening should be limited to autosomal recessive FTLD with atypical phenotypes characterized by: (1) a very young age at onset (20–50 years); (2) early parietal and hippocampal deficits; (3) the presence of seizures and parkinsonism; (4) suggestive extensive white matter lesions and corpus callosum thickness on brain magnetic resonance imaging. PMID:24910390
Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson’s disease
He, Naying; Huang, Pei; Ling, Huawei; Langley, Jason; Liu, Chunlei; Ding, Bei; Huang, Juan; Xu, Hongmin; Zhang, Yong; Zhang, Zhongping; Hu, Xiaoping; Chen, Shengdi; Yan, Fuhua
2016-01-01
Parkinson disease (PD) is a heterogeneous neurodegenerative disorder with variable clinicopathologic phenotypes and underlying neuropathologic mechanisms. Each clinical phenotype has a unique set of motor symptoms. Tremor is the most frequent initial motor symptom of PD and is the most difficult symptom to treat. The dentate nucleus (DN) is a deep iron rich nucleus in the cerebellum and may be involved in PD tremor. In this study, we test the hypothesis that DN iron may be elevated in tremor dominant PD patients using quantitative susceptibility mapping. Forty-three patients with PD [19 tremor dominant (TD)/24 akinetic-rigid dominant (AR)] and 48 healthy gender- and age-matched controls were recruited. Multi-echo gradient echo data were collected for each subject on a 3.0 T MR system. Inter-group susceptibility differences in bilateral DN were investigated and correlations of clinical features with susceptibility were also examined. In contrast to the AR group, the TD group was found to have increased susceptibility in the bilateral DN, when compared to healthy controls. In addition, susceptibility was positively correlated with tremor score in drug naive PD patients. These findings indicate that iron load within DN may make an important contribution to motor phenotypes in PD. Moreover, our results suggest that TD and AR phenotypes of PD can be differentiated on the basis of the susceptibility of the DN at least on the group level. PMID:27192177
Analysis of ABCA4 in mixed Spanish families segregating different retinal dystrophies.
Paloma, Eva; Coco, Rosa; Martínez-Mir, Amalia; Vilageliu, Lluïsa; Balcells, Susana; Gonzàlez-Duarte, Roser
2002-12-01
Genotype-phenotype correlations highlighted the function of ABCA4 in retinitis pigmentosa (RP),cone-rod dystrophy (CRD) and Stargardt/Fundus Flavimaculatus disease (STGD/FFM). Initial screening of ABCA4 variants showed a correlation between the type of mutation and the severity of the disease. In the present study we have undertaken mutational and haplotype analysis of ABCA4 in three mixed pedigrees segregating different retinal dystrophies. In family I, we have shown cosegregation of different ABCA4 alleles with CRD (homozygosity for L1940P) and three subtypes of STGD/FFM. The first, a mild form, consisting on fundus flavimaculatus-like distribution of flecks, but good visual acuity and absence of dark choroid, was found to cosegregate with alleles R1097C and F553L; the second, a conventional Stargardt phenotype was associated to alleles L1940P/R1097C and the third, displaying severely reduced visual acuity and dark choroid (named FFM), was associated to L1940P/F553L. In family II, segregating STGD and RP phenotypes, while the involvement of ABCA4 in STGD seems clear this is not the case for RP. Finally, in family III, also segregating STGD and RP, ABCA4 fails to explain either phenotype. Our data highlight the wide allelic heterogeneity involving this gene and support the genetic variability (beyond ABCA4) of mixed STGD/RP pedigrees. Copyright 2002 Wiley-Liss, Inc.
Harbaoui, Brahim; Courand, Pierre-Yves; Milon, Hughes; Fauvel, Jean-Pierre; Khettab, Fouad; Mechtouff, Laura; Cassar, Emmanuel; Girerd, Nicolas; Lantelme, Pierre
2015-11-01
The relationship between blood pressure (BP) and cardiovascular diseases has been extensively documented. However, the benefit of anti-hypertensive drugs differs according to the type of cardiovascular event. Aortic stiffness is tightly intertwined with BP and aorta cross-talk with small arteries. We endeavored to elucidate which BP component and type of vessel remodeling was predictive of the following outcomes: fatal myocardial infarction (MI), fatal stroke, renal -, coronary- or cerebrovascular-related deaths. Large vessel remodeling was estimated by an aortography-based aortic atherosclerosis score (ATS) while small vessel disease was documented by the presence of a hypertensive retinopathy. We included 1031 subjects referred for hypertension workup and assessed outcomes 30 years later. After adjustment for major risk factors, ATS and pulse pressure (PP) were predictive of coronary events while mean BP (MBP) and retinopathy were not. On the contrary, MBP was predictive of cerebrovascular and renal related deaths while ATS and PP were not. Retinopathy was only predictive of cerebrovascular related deaths. Lastly, the aortic atherosclerosis phenotype and increased PP identified patients prone to develop fatal MI whereas the retinopathy phenotype and increased MBP identified patients at higher risk of fatal stroke. These results illustrate the particular feature of the resistive coronary circulation comparatively to the brain and kidneys' low-resistance circulation. Our results advocate for a rational preventive strategy based on the identification of distinct clinical phenotypes. Accordingly, decreasing MBP levels could help preventing stroke in retinopathy phenotypes whereas targeting PP is possibly more efficient in preventing MI in atherosclerotic phenotypes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Pomaranski, E K; Reichley, S R; Yanong, R; Shelley, J; Pouder, D B; Wolf, J C; Kenelty, K V; Van Bonn, B; Oliaro, F; Byrne, B; Clothier, K A; Griffin, M J; Camus, A C; Soto, E
2018-01-01
Since 2012, low-to-moderate mortality associated with an Erysipelothrix sp. bacterium has been reported in ornamental fish. Histological findings have included facial cellulitis, necrotizing dermatitis and myositis, and disseminated coelomitis with abundant intralesional Gram-positive bacterial colonies. Sixteen Erysipelothrix sp. isolates identified phenotypically as E. rhusiopathiae were recovered from diseased cyprinid and characid fish. Similar clinical and histological changes were also observed in zebrafish, Danio rerio, challenged by intracoelomic injection. The Erysipelothrix sp. isolates from ornamental fish were compared phenotypically and genetically to E. rhusiopathiae and E. tonsillarum isolates recovered from aquatic and terrestrial animals from multiple facilities. Results demonstrated that isolates from diseased fish were largely clonal and divergent from E. rhusiopathiae and E. tonsillarum isolates from normal fish skin, marine mammals and terrestrial animals. All ornamental fish isolates were PCR positive for spaC, with marked genetic divergence (<92% similarity at gyrB, <60% similarity by rep-PCR) between the ornamental fish isolates and other Erysipelothrix spp. isolates. This study supports previous work citing the genetic variability of Erysipelothrix spp. spa types and suggests isolates from diseased ornamental fish may represent a genetically distinct species. © 2017 John Wiley & Sons Ltd.
Katsanos, Dimitris; Koneru, Sneha L.; Mestek Boukhibar, Lamia; Gritti, Nicola; Ghose, Ritobrata; Appleford, Peter J.; Doitsidou, Maria; Woollard, Alison; van Zon, Jeroen S.; Poole, Richard J.
2017-01-01
Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens. PMID:29108019
Mariani, Laura H; Kretzler, Matthias
2015-06-01
The diagnosis and treatment decisions in glomerular disease are principally based on renal pathology and nonspecific clinical laboratory measurements such as serum creatinine and urine protein. Using these classification approaches, patients have marked variability in rate of progression and response to therapy, exposing a significant number of patients to toxicity without benefit. Additionally, clinical trials are at risk of not being able to detect an efficacious therapy in relevant subgroups as patients with shared clinical-pathologic diagnoses have heterogeneous underlying pathobiology. To change this treatment paradigm, biomarkers that reflect the molecular mechanisms underlying the clinical-pathologic diagnoses are needed. Recent progress to identify such biomarkers has been aided by advances in molecular profiling, large-scale data generation and multi-scalar data integration, including prospectively collected clinical data. This article reviews the evolving success stories in glomerular disease biomarkers across the genotype-phenotype continuum and highlights opportunities to transition to precision medicine in glomerular disease. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Canafoglia, Laura; Gennaro, Elena; Capovilla, Giuseppe; Gobbi, Giuseppe; Boni, Antonella; Beccaria, Francesca; Viri, Maurizio; Michelucci, Roberto; Agazzi, Pamela; Assereto, Stefania; Coviello, Domenico A; Di Stefano, Maria; Rossi Sebastiano, Davide; Franceschetti, Silvana; Zara, Federico
2012-12-01
Unverricht-Lundborg disease (EPM1A) is frequently due to an unstable expansion of a dodecamer repeat in the CSTB gene, whereas other types of mutations are rare. EPM1A due to homozygous expansion has a rather stereotyped presentation with prominent action myoclonus. We describe eight patients with five different compound heterozygous CSTB point or indel mutations in order to highlight their particular phenotypical presentations and evaluate their genotype-phenotype relationships. We screened CSTB mutations by means of Southern blotting and the sequencing of the genomic DNA of each proband. CSTB messenger RNA (mRNA) aberrations were characterized by sequencing the complementary DNA (cDNA) of lymphoblastoid cells, and assessing the protein concentrations in the lymphoblasts. The patient evaluations included the use of a simplified myoclonus severity rating scale, multiple neurophysiologic tests, and electroencephalography (EEG)-polygraphic recordings. To highlight the particular clinical features and disease time-course in compound heterozygous patients, we compared some of their characteristics with those observed in a series of 40 patients carrying the common homozygous expansion mutation observed at the C. Besta Foundation, Milan, Italy. The eight compound heterozygous patients belong to six EPM1A families (out of 52; 11.5%) diagnosed at the Laboratory of Genetics of the Galliera Hospitals in Genoa, Italy. They segregated five different heterozygous point or indel mutations in association with the common dodecamer expansion. Four patients from three families had previously reported CSTB mutations (c.67-1G>C and c.168+1_18del); one had a novel nonsense mutation at the first exon (c.133C>T) leading to a premature stop codon predicting a short peptide; the other three patients from two families had a complex novel indel mutation involving the donor splice site of intron 2 (c.168+2_169+21delinsAA) and leading to an aberrant transcript with a partially retained intron. The protein dose (cystatin B/β-actin) in our heterozygous patients was 0.24 ± 0.02, which is not different from that assessed in patients bearing the homozygous dodecamer expansion. The compound heterozygous patients had a significantly earlier disease onset (7.4 ± 1.7 years) than the homozygous patients, and their disease presentations included frequent myoclonic seizures and absences, often occurring in clusters throughout the course of the disease. The seizures were resistant to the pharmacologic treatments that usually lead to complete seizure control in homozygous patients. EEG-polygraphy allowed repeated seizures to be recorded. Action myoclonus progressively worsened and all of the heterozygous patients older than 30 years were in wheelchairs. Most of the patients showed moderate to severe cognitive impairment, and six had psychiatric symptoms. EPM1A due to compound heterozygous CSTB mutations presents with variable but often markedly severe and particular phenotypes. Most of our patients presented with the electroclinical features of severe epilepsy, which is unexpected in homozygous patients, and showed frequent seizures resistant to pharmacologic treatment. The presence of variable phenotypes (even in siblings) suggests interactions with other genetic factors influencing the final disease presentation. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
van Bon, B W M; Mefford, H C; Menten, B; Koolen, D A; Sharp, A J; Nillesen, W M; Innis, J W; de Ravel, T J L; Mercer, C L; Fichera, M; Stewart, H; Connell, L E; Ounap, K; Lachlan, K; Castle, B; Van der Aa, N; van Ravenswaaij, C; Nobrega, M A; Serra-Juhé, C; Simonic, I; de Leeuw, N; Pfundt, R; Bongers, E M; Baker, C; Finnemore, P; Huang, S; Maloney, V K; Crolla, J A; van Kalmthout, M; Elia, M; Vandeweyer, G; Fryns, J P; Janssens, S; Foulds, N; Reitano, S; Smith, K; Parkel, S; Loeys, B; Woods, C G; Oostra, A; Speleman, F; Pereira, A C; Kurg, A; Willatt, L; Knight, S J L; Vermeesch, J R; Romano, C; Barber, J C; Mortier, G; Pérez-Jurado, L A; Kooy, F; Brunner, H G; Eichler, E E; Kleefstra, T; de Vries, B B A
2009-08-01
Recurrent 15q13.3 microdeletions were recently identified with identical proximal (BP4) and distal (BP5) breakpoints and associated with mild to moderate mental retardation and epilepsy. To assess further the clinical implications of this novel 15q13.3 microdeletion syndrome, 18 new probands with a deletion were molecularly and clinically characterised. In addition, we evaluated the characteristics of a family with a more proximal deletion between BP3 and BP4. Finally, four patients with a duplication in the BP3-BP4-BP5 region were included in this study to ascertain the clinical significance of duplications in this region. The 15q13.3 microdeletion in our series was associated with a highly variable intra- and inter-familial phenotype. At least 11 of the 18 deletions identified were inherited. Moreover, 7 of 10 siblings from four different families also had this deletion: one had a mild developmental delay, four had only learning problems during childhood, but functioned well in daily life as adults, whereas the other two had no learning problems at all. In contrast to previous findings, seizures were not a common feature in our series (only 2 of 17 living probands). Three patients with deletions had cardiac defects and deletion of the KLF13 gene, located in the critical region, may contribute to these abnormalities. The limited data from the single family with the more proximal BP3-BP4 deletion suggest this deletion may have little clinical significance. Patients with duplications of the BP3-BP4-BP5 region did not share a recognisable phenotype, but psychiatric disease was noted in 2 of 4 patients. Overall, our findings broaden the phenotypic spectrum associated with 15q13.3 deletions and suggest that, in some individuals, deletion of 15q13.3 is not sufficient to cause disease. The existence of microdeletion syndromes, associated with an unpredictable and variable phenotypic outcome, will pose the clinician with diagnostic difficulties and challenge the commonly used paradigm in the diagnostic setting that aberrations inherited from a phenotypically normal parent are usually without clinical consequences.
The Human Phenotype Ontology in 2017
Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; F. Laulederkind, Stanley J.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa; Robinson, Peter N.
2017-01-01
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology. PMID:27899602
The Human Phenotype Ontology in 2017
Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; ...
2016-11-24
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical softwaremore » tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.« less
The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease
Groza, Tudor; Köhler, Sebastian; Moldenhauer, Dawid; Vasilevsky, Nicole; Baynam, Gareth; Zemojtel, Tomasz; Schriml, Lynn Marie; Kibbe, Warren Alden; Schofield, Paul N.; Beck, Tim; Vasant, Drashtti; Brookes, Anthony J.; Zankl, Andreas; Washington, Nicole L.; Mungall, Christopher J.; Lewis, Suzanna E.; Haendel, Melissa A.; Parkinson, Helen; Robinson, Peter N.
2015-01-01
The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000 rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available. PMID:26119816
Friedman, Marcia A.; Miletta, Nathanial; Roe, Cheryl; Wang, Dongliang; Morrow, Bernice E.; Kates, Wendy R.; Higgins, Anne Marie; Shprintzen, Robert J.
2011-01-01
Objective Velo-cardio-facial syndrome (VCFS) is caused by a microdeletion of approximately 40 genes from one copy of chromosome 22. Expression of the syndrome is a variable combination of over 190 phenotypic characteristics. As of yet, little is known about how these phenotypes correlate with one another or whether there are predictable patterns of expression. Two of the most common phenotypic categories, congenital heart disease and cleft palate, have been proposed to have a common genetic relationship to the deleted T-box 1 gene (TBX1). The purpose of this study is to determine if congenital heart disease and cleft palate are correlated in a large cohort of human subjects with VCFS. Methods This study is a retrospective chart review including 316 Caucasian non-Hispanic subjects with FISH or CGH microarray confirmed chromosome 22q11.2 deletions. All subjects were evaluated by the interdisciplinary team at the Velo-Cardio-Facial Syndrome International Center at Upstate Medical University, Syracuse, NY. Each combination of congenital heart disease, cleft palates, and retrognathia was analyzed by chi square or Fisher exact test. Results For all categories of congenital heart disease and cleft palate or retrognathia no significant associations were found, with the exception of submucous cleft palate and retrognathia (nominal p=0.0325) and occult submucous cleft palate and retrognathia (nominal p=0.000013). Conclusions Congenital heart disease and cleft palate do not appear to be correlated in human subjects with VCFS despite earlier suggestions from animal models. Possible explanations include modification of the effect of TBX1 by genes outside of the 22q11.2 region that may further influence the formation of the palate or heart, or the presence of epigenetic factors that may effect genes within the deleted region, modifying genes elsewhere, or polymorphisms on the normal copy of chromosome 22. Lastly, it is possible that TBX1 plays a role in palate formation in some species, but not in humans. In VCFS, retrognathia is caused by an obtuse angulation of the skull base. It is unknown if the correlation between retrognathia and cleft palate in VCFS indicates a developmental sequence related to skull morphology, or direct gene effects of both anomalies. Much work remains to be done to fully understand the complex relationships between phenotypic characteristics in VCFS. PMID:21763005
Friedman, Marcia A; Miletta, Nathanial; Roe, Cheryl; Wang, Dongliang; Morrow, Bernice E; Kates, Wendy R; Higgins, Anne Marie; Shprintzen, Robert J
2011-09-01
Velo-cardio-facial syndrome (VCFS) is caused by a microdeletion of approximately 40 genes from one copy of chromosome 22. Expression of the syndrome is a variable combination of over 190 phenotypic characteristics. As of yet, little is known about how these phenotypes correlate with one another or whether there are predictable patterns of expression. Two of the most common phenotypic categories, congenital heart disease and cleft palate, have been proposed to have a common genetic relationship to the deleted T-box 1 gene (TBX1). The purpose of this study is to determine if congenital heart disease and cleft palate are correlated in a large cohort of human subjects with VCFS. This study is a retrospective chart review including 316 Caucasian non-Hispanic subjects with FISH or CGH microarray confirmed chromosome 22q11.2 deletions. All subjects were evaluated by the interdisciplinary team at the Velo-Cardio-Facial Syndrome International Center at Upstate Medical University, Syracuse, NY. Each combination of congenital heart disease, cleft palates, and retrognathia was analyzed by Chi square or Fisher exact test. For all categories of congenital heart disease and cleft palate or retrognathia no significant associations were found, with the exception of submucous cleft palate and retrognathia (nominal p=0.0325) and occult submucous cleft palate and retrognathia (nominal p=0.000013). Congenital heart disease and cleft palate do not appear to be correlated in human subjects with VCFS despite earlier suggestions from animal models. Possible explanations include modification of the effect of TBX1 by genes outside of the 22q11.2 region that may further influence the formation of the palate or heart, or the presence of epigenetic factors that may effect genes within the deleted region, modifying genes elsewhere, or polymorphisms on the normal copy of chromosome 22. Lastly, it is possible that TBX1 plays a role in palate formation in some species, but not in humans. In VCFS, retrognathia is caused by an obtuse angulation of the skull base. It is unknown if the correlation between retrognathia and cleft palate in VCFS indicates a developmental sequence related to skull morphology, or direct gene effects of both anomalies. Much work remains to be done to fully understand the complex relationships between phenotypic characteristics in VCFS. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Bechtel, N.; Scahill, R.I.; Rosas, H.D.; Acharya, T.; van den Bogaard, S.J.A.; Jauffret, C.; Say, M.J.; Sturrock, A.; Johnson, H.; Onorato, C.E.; Salat, D.H.; Durr, A.; Leavitt, B.R.; Roos, R.A.C.; Landwehrmeyer, G.B.; Langbehn, D.R.; Stout, J.C.; Tabrizi, S.J.; Reilmann, R.
2010-01-01
Objective: Motor signs are functionally disabling features of Huntington disease. Characteristic motor signs define disease manifestation. Their severity and onset are assessed by the Total Motor Score of the Unified Huntington's Disease Rating Scale, a categorical scale limited by interrater variability and insensitivity in premanifest subjects. More objective, reliable, and precise measures are needed which permit clinical trials in premanifest populations. We hypothesized that motor deficits can be objectively quantified by force-transducer-based tapping and correlate with disease burden and brain atrophy. Methods: A total of 123 controls, 120 premanifest, and 123 early symptomatic gene carriers performed a speeded and a metronome tapping task in the multicenter study TRACK-HD. Total Motor Score, CAG repeat length, and MRIs were obtained. The premanifest group was subdivided into A and B, based on the proximity to estimated disease onset, the manifest group into stages 1 and 2, according to their Total Functional Capacity scores. Analyses were performed centrally and blinded. Results: Tapping variability distinguished between all groups and subgroups in both tasks and correlated with 1) disease burden, 2) clinical motor phenotype, 3) gray and white matter atrophy, and 4) cortical thinning. Speeded tapping was more sensitive to the detection of early changes. Conclusion: Tapping deficits are evident throughout manifest and premanifest stages. Deficits are more pronounced in later stages and correlate with clinical scores as well as regional brain atrophy, which implies a link between structure and function. The ability to track motor phenotype progression with force-transducer-based tapping measures will be tested prospectively in the TRACK-HD study. GLOSSARY CoV = coefficient of variation; DBS = disease burden score; Freq = frequency; HD = Huntington disease; ICV = intracranial volume; IOI = interonset interval; ΔIOI = deviation from interonset interval; IPI = interpeak interval; ΔIPI = deviation from interpeak interval; ITI = intertap interval; log = logarithmic; MT = metronome tapping; ΔMTI = deviation from midtap interval; preHD = premanifest Huntington disease; RT = reaction time; ST = speeded tapping; TD = tap duration; TF = tapping force; TFC = Total Functional Capacity; UHDRS = Unified Huntington's Disease Rating Scale; UHDRS-TMS = Unified Huntington's Disease Rating Scale-Total Motor Score; VBM = voxel-based morphometry. PMID:21068430
A Hypomorphic RAG1 Mutation Resulting in a Phenotype Resembling Common Variable Immunodeficiency
Abolhassani, Hassan; Wang, Ning; Aghamohammadi, Asghar; Rezaei, Nima; Lee, Yu Nee; Frugoni, Francesco; Notrangelo, Luigi D.; Pan-Hammarström, Qiang; Hammarström, Lennart
2014-01-01
Background RAG1 deficiency presents a varied spectrum of combined immunodeficiency, ranging from a T−B−NK+type of disease to a T+B+NK+ phenotype. Objective To assess the genetic background of common variable immunodeficiency (CVID) patients. Methods A patient diagnosed with CVID, who was born in a consanguineous family and thus would be expected to show an autosomal recessive inheritance, was subjected to clinical evaluation, immunological assays, homozygosity gene mapping, exome sequencing, Sanger sequencing and functional analysis. Results The 14-year-old patient, who suffered from liver granuloma, extranodal marginal zone B cell lymphoma and autoimmune neutropenia, is presented with a clinical picture resembling CVID. Genetic analysis of this patient showed a homozygous hypomorphic RAG1 mutation (c.1073 G>A, p.C358Y) with a residual functional capacity of 48% of wild-type protein. Conclusion Our finding broadens the range of disorders associated with RAG1 mutations and may have important therapeutic implications. PMID:24996264
Epigenetics, epidemiology and mitochondrial DNA diseases
Chinnery, Patrick F; Elliott, Hannah R; Hudson, Gavin; Samuels, David C; Relton, Caroline L
2012-01-01
Over the last two decades, the mutation of mitochondrial DNA (mtDNA) has emerged as a major cause of inherited human disease. The disorders present clinically in at least 1 in 10 000 adults, but pathogenic mutations are found in approximately 1 in 200 of the background population. Mitochondrial DNA is maternally inherited and there can be marked phenotypic variability within the same family. Heteroplasmy is a significant factor and environmental toxins also appear to modulate the phenotype. Although genetic and biochemical studies have provided part of the explanation, a comprehensive understanding of the incomplete penetrance of these diseases is lacking—both at the population and family levels. Here, we review the potential role of epigenetic factors in the pathogenesis of mtDNA diseases and the contribution that epidemiological approaches can make to improve our understanding in this area. Despite being previously dismissed, there is an emerging evidence that mitochondria contain the machinery required to epigenetically modify mtDNA expression. In addition, the increased production of reactive oxygen species seen in several mtDNA diseases could lead to the epigenetic modification of the nuclear genome, including chromatin remodelling and alterations to DNA methylation and microRNA expression, thus contributing to the diverse pathophysiology observed in this group of diseases. These observations open the door to future studies investigating the role of mtDNA methylation in human disease. PMID:22287136
Louwers, Y V; Lao, O; Fauser, B C J M; Kayser, M; Laven, J S E
2014-10-01
It is well established that ethnicity is associated with the phenotype of polycystic ovary syndrome (PCOS). Self-reported ethnicity was shown to be an inaccurate proxy for ethnic origin in other disease traits, and it remains unclear how in PCOS patients self-reported ethnicity compares with a biological proxy such as genetic ancestry. We compared the impact of self-reported ethnicity versus genetic ancestry on PCOS and tested which of these 2 classifications better predicts the variability in phenotypic characteristics of PCOS. A total of 1499 PCOS patients from The Netherlands, comprising 11 self-reported ethnic groups of European, African, American, and Asian descent were genotyped with the Illumina 610K Quad BeadChip and merged with the data genotyped with the Illumina HumanHap650K available for the reference panel collected by the Human Genome Diversity Project (HGDP), in a collaboration with the Centre Etude Polymorphism Humain (CEPH), including 53 populations for ancestry reference. Algorithms for inferring genetic relationships among individuals, including multidimensional scaling and ADMIXTURE, were applied to recover genetic ancestry for each individual. Regression analysis was used to determine the best predictor for the variability in PCOS characteristics. The association between self-reported ethnicity and genetic ancestry was moderate. For amenorrhea, total follicle count, body mass index, SHBG, dehydroepiandrosterone sulfate, and insulin, mainly genetic ancestry clusters ended up in the final models (P values < .004), indicating that they explain a larger proportion of variability of these PCOS characteristics compared with self-reported ethnicity. Especially variability of insulin levels seems predominantly explained by genetic ancestry. Self-reported ancestry is not a perfect proxy for genetic ancestry in patients with PCOS, emphasizing that by using genetic ancestry data instead of self-reported ethnicity, PCOS-relevant misclassification can be avoided. Moreover, because genetic ancestry explained a larger proportion of phenotypic variability associated with PCOS than self-reported ethnicity, future studies should focus on genetic ancestry verification of PCOS patients for research questions and treatment as well as preventive strategies in these women.
Shea, A A; Bernhards, R C; Cote, C K; Chase, C J; Koehler, J W; Klimko, C P; Ladner, J T; Rozak, D A; Wolcott, M J; Fetterer, D P; Kern, S J; Koroleva, G I; Lovett, S P; Palacios, G F; Toothman, R G; Bozue, J A; Worsham, P L; Welkos, S L
2017-01-01
Burkholderia pseudomallei (Bp), the agent of melioidosis, causes disease ranging from acute and rapidly fatal to protracted and chronic. Bp is highly infectious by aerosol, can cause severe disease with nonspecific symptoms, and is naturally resistant to multiple antibiotics. However, no vaccine exists. Unlike many Bp strains, which exhibit random variability in traits such as colony morphology, Bp strain MSHR5848 exhibited two distinct and relatively stable colony morphologies on sheep blood agar plates: a smooth, glossy, pale yellow colony and a flat, rough, white colony. Passage of the two variants, designated "Smooth" and "Rough", under standard laboratory conditions produced cultures composed of > 99.9% of the single corresponding type; however, both could switch to the other type at different frequencies when incubated in certain nutritionally stringent or stressful growth conditions. These MSHR5848 derivatives were extensively characterized to identify variant-associated differences. Microscopic and colony morphology differences on six differential media were observed and only the Rough variant metabolized sugars in selective agar. Antimicrobial susceptibilities and lipopolysaccharide (LPS) features were characterized and phenotype microarray profiles revealed distinct metabolic and susceptibility disparities between the variants. Results using the phenotype microarray system narrowed the 1,920 substrates to a subset which differentiated the two variants. Smooth grew more rapidly in vitro than Rough, yet the latter exhibited a nearly 10-fold lower lethal dose for mice than Smooth. Finally, the Smooth variant was phagocytosed and replicated to a greater extent and was more cytotoxic than Rough in macrophages. In contrast, multiple locus sequence type (MLST) analysis, ribotyping, and whole genome sequence analysis demonstrated the variants' genetic conservation; only a single consistent genetic difference between the two was identified for further study. These distinct differences shown by two variants of a Bp strain will be leveraged to better understand the mechanism of Bp phenotypic variability and to possibly identify in vitro markers of infection.
The molecular genetics of von Willebrand disease.
Berber, Ergül
2012-12-01
Quantitative and/or qualitative deficiency of von Willebrand factor (vWF) is associated with the most common inherited bleeding disease von Willebrand disease (vWD). vWD is a complex disease with clinical and genetic heterogeneity. Incomplete penetrance and variable expression due to genetic and environmental factors contribute to its complexity. vWD also has a complex molecular pathogenesis. Some vWF gene mutations are associated with the affected vWF biosynthesis and multimerization, whereas others are associated with increased clearance and functional impairment. Moreover, in addition to a particular mutation, type O blood may result in the more severe phenotype. The present review aimed to provide a summary of the current literature on the molecular genetics of vWD. None declared.
Guideline of transthyretin-related hereditary amyloidosis for clinicians
2013-01-01
Transthyretin amyloidosis is a progressive and eventually fatal disease primarily characterized by sensory, motor, and autonomic neuropathy and/or cardiomyopathy. Given its phenotypic unpredictability and variability, transthyretin amyloidosis can be difficult to recognize and manage. Misdiagnosis is common, and patients may wait several years before accurate diagnosis, risking additional significant irreversible deterioration. This article aims to help physicians better understand transthyretin amyloidosis—and, specifically, familial amyloidotic polyneuropathy—so they can recognize and manage the disease more easily and discuss it with their patients. We provide guidance on making a definitive diagnosis, explain methods for disease staging and evaluation of disease progression, and discuss symptom mitigation and treatment strategies, including liver transplant and several pharmacotherapies that have shown promise in clinical trials. PMID:23425518
Kagawa, Rina; Kawazoe, Yoshimasa; Shinohara, Emiko; Imai, Takeshi; Ohe, Kazuhiko
2017-01-01
Phenotyping is an automated technique for identifying patients diagnosed with a particular disease based on electronic health records (EHRs). To evaluate phenotyping algorithms, which should be reproducible, the annotation of EHRs as a gold standard is critical. However, we have found that the different types of EHRs cannot be definitively annotated into CASEs or CONTROLs. The influence of such "possible patients" on phenotyping algorithms is unknown. To assess these issues, for four chronic diseases, we annotated EHRs by using information not directly referring to the diseases and developed two types of phenotyping algorithms for each disease. We confirmed that each disease included different types of possible patients. The performance of phenotyping algorithms differed depending on whether possible patients were considered as CASEs, and this was independent of the type of algorithms. Our results indicate that researchers must share annotation criteria for classifying the possible patients to reproduce phenotyping algorithms.
Phenotypic variability in Patau syndrome.
Caba, Lavinia; Rusu, Cristina; Butnariu, Lacramioara; Panzaru, Monica; Braha, Elena; Volosciuc, M; Popescu, Roxana; Gramescu, Mihaela; Bujoran, C; Martiniuc, Violeta; Covic, M; Gorduza, E V
2013-01-01
Patau syndrome has an incidence of 1/10.000-20.000, the clinical diagnosis being suggested by the triad cleft lip and palate, microphthalmia/anophthalmia and postaxial polydactyly. Most frequent cytogenetic abnormality is free and homogeneous trisomy 13 (80.0%), rarely being detected trisomy mosaics or Robertsonian translocations. The objective of the study was to identify phenotypic features of trisomy 13. The retrospective study was conducted on a trial group of 14 cases diagnosed cytogenetically with trisomy 13 between January 2000 and December 2012 at lasi Medical Genetics Centre. Of the 14 cases, 3 were evaluated pathologically (two aborted foetuses and one stillborn), 8 cases were detected in the neonatal period, and 3 in infancy. Clinical diagnosis was supported by the identification of a model of abnormal development, mainly characterized by: maxillary cleft (lip and palate--5 cases; lip--1 case), ocular abnormalities (microphthalmia/anophthalmia--7 cases; cyclopia--1 case), postaxial polydactyly (7 cases), scalp defects (6 cases), congenital heart anomalies (10 cases, 6 patients with atrial septal defect), complete holoprosencephaly (4 cases), ear abnormalities (11 cases), broad nasal root (10 cases). An important issue in confirming the phenotypic variability of Patau syndrome is that the classic clinical triad was identified only in one case. Patau syndrome is a disease with variable expression and is characterized by a pattern of abnormal prenatal development characterized by facial dysmorphia, polydactyly and severe birth defects (heart, brain) that generate an increased in utero and perinatal mortality.
Bullich, Gemma; Trujillano, Daniel; Santín, Sheila; Ossowski, Stephan; Mendizábal, Santiago; Fraga, Gloria; Madrid, Álvaro; Ariceta, Gema; Ballarín, José; Torra, Roser; Estivill, Xavier; Ars, Elisabet
2015-09-01
Genetic diagnosis of steroid-resistant nephrotic syndrome (SRNS) using Sanger sequencing is complicated by the high genetic heterogeneity and phenotypic variability of this disease. We aimed to improve the genetic diagnosis of SRNS by simultaneously sequencing 26 glomerular genes using massive parallel sequencing and to study whether mutations in multiple genes increase disease severity. High-throughput mutation analysis was performed in 50 SRNS and/or focal segmental glomerulosclerosis (FSGS) patients, a validation cohort of 25 patients with known pathogenic mutations, and a discovery cohort of 25 uncharacterized patients with probable genetic etiology. In the validation cohort, we identified the 42 previously known pathogenic mutations across NPHS1, NPHS2, WT1, TRPC6, and INF2 genes. In the discovery cohort, disease-causing mutations in SRNS/FSGS genes were found in nine patients. We detected three patients with mutations in an SRNS/FSGS gene and COL4A3. Two of them were familial cases and presented a more severe phenotype than family members with mutation in only one gene. In conclusion, our results show that massive parallel sequencing is feasible and robust for genetic diagnosis of SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and also in COL4A3 gene have increased disease severity.
Procopio, V; Manti, S; Bianco, G; Conti, G; Romeo, A; Maimone, F; Arrigo, T; Cutrupi, M C; Salpietro, C; Cuppari, C
2018-01-30
Uncertainty remains on the pathogenetic mechanisms, model of inheritance as well as genotype-phenotype correlation of FMF disease. To investigate the impact of genetic factors on the FMF phenotype and the disease inheritance model. A total of 107 FMF patients were enrolled. Patients were diagnosed clinically. All patients underwent genetic analysis of the FMF locus on 16p13.3. 9 distinct mutations were detected. Specifically, the 85.98% of patients showed a heterozygous genotype. The most common genotypes were p.Met680Ile/wt and p.Met694Val/wt. The most frequent clinical findings were fever, abdominal pain, joint pain, thoracic pain, and erysipelas-like erythema. Analysis of clinical data did not detect any significant difference in clinical phenotype among heterozygous, homozygous as well as compound homozygous subjects, further supporting the evidence that, contrary to the recessive autosomal inheritance, heterozygous patients fulfilled the criteria of clinical FMF. Moreover, subjects with p.Met694Val/wt and p.Met680Ile/wt genotype reported the most severe clinical phenotype. p.Ala744Ser/wt, p.Glu148Gln/Met680Ile, p.Met680Ile/Met680Ile, p.Met680Ile/Met694Val, p.Pro369Ser/wt, p.Met694Ile/wt, p.Glu148Gln/Glu148Gln, p.Lys695Arg/wt resulted in 100% pathogenicity. The existence of a "non classic" autosomal recessive inheritance as well as of an "atypical" dominant autosomal inheritance with incomplete penetrance and variable expressivity cannot be excluded in FMF. Copyright © 2017 Elsevier B.V. All rights reserved.
Phenome-driven disease genetics prediction toward drug discovery.
Chen, Yang; Li, Li; Zhang, Guo-Qiang; Xu, Rong
2015-06-15
Discerning genetic contributions to diseases not only enhances our understanding of disease mechanisms, but also leads to translational opportunities for drug discovery. Recent computational approaches incorporate disease phenotypic similarities to improve the prediction power of disease gene discovery. However, most current studies used only one data source of human disease phenotype. We present an innovative and generic strategy for combining multiple different data sources of human disease phenotype and predicting disease-associated genes from integrated phenotypic and genomic data. To demonstrate our approach, we explored a new phenotype database from biomedical ontologies and constructed Disease Manifestation Network (DMN). We combined DMN with mimMiner, which was a widely used phenotype database in disease gene prediction studies. Our approach achieved significantly improved performance over a baseline method, which used only one phenotype data source. In the leave-one-out cross-validation and de novo gene prediction analysis, our approach achieved the area under the curves of 90.7% and 90.3%, which are significantly higher than 84.2% (P < e(-4)) and 81.3% (P < e(-12)) for the baseline approach. We further demonstrated that our predicted genes have the translational potential in drug discovery. We used Crohn's disease as an example and ranked the candidate drugs based on the rank of drug targets. Our gene prediction approach prioritized druggable genes that are likely to be associated with Crohn's disease pathogenesis, and our rank of candidate drugs successfully prioritized the Food and Drug Administration-approved drugs for Crohn's disease. We also found literature evidence to support a number of drugs among the top 200 candidates. In summary, we demonstrated that a novel strategy combining unique disease phenotype data with system approaches can lead to rapid drug discovery. nlp. edu/public/data/DMN © The Author 2015. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark
Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical softwaremore » tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.« less
Auvinet, Bernard; Touzard, Claude; Montestruc, François; Delafond, Arnaud; Goeb, Vincent
2017-01-31
Gait disorders and gait analysis under single and dual-task conditions are topics of great interest, but very few studies have looked for the relevance of gait analysis under dual-task conditions in elderly people on the basis of a clinical approach. An observational study including 103 patients (mean age 76.3 ± 7.2, women 56%) suffering from gait disorders or memory impairment was conducted. Gait analysis under dual-task conditions was carried out for all patients. Brain MRI was performed in the absence of contra-indications. Three main gait variables were measured: walking speed, stride frequency, and stride regularity. For each gait variable, the dual task cost was computed and a quartile analysis was obtained. Nonparametric tests were used for all the comparisons (Wilcoxon, Kruskal-Wallis, Fisher or Chi 2 tests). Four clinical subgroups were identified: gait instability (45%), recurrent falls (29%), memory impairment (18%), and cautious gait (8%). The biomechanical severity of these subgroups was ordered according to walking speed and stride regularity under both conditions, from least to most serious as follows: memory impairment, gait instability, recurrent falls, cautious gait (p < 0.01 for walking speed, p = 0.05 for stride regularity). According to the established diagnoses of gait disorders, 5 main pathological subgroups were identified (musculoskeletal diseases (n = 11), vestibular diseases (n = 6), mild cognitive impairment (n = 24), central nervous system pathologies, (n = 51), and without diagnosis (n = 8)). The dual task cost for walking speed, stride frequency and stride regularity were different among these subgroups (p < 0.01). The subgroups mild cognitive impairment and central nervous system pathologies both showed together a higher dual task cost for each variable compared to the other subgroups combined (p = 0.01). The quartile analysis of dual task cost for stride frequency and stride regularity allowed the identification of 3 motor phenotypes (p < 0.01), without any difference for white matter hyperintensities, but with an increased Scheltens score from the first to the third motor phenotype (p = 0.05). Gait analysis under dual-task conditions in elderly people suffering from gait disorders or memory impairment is of great value in assessing the severity of gait disorders, differentiating between peripheral pathologies and central nervous system pathologies, and identifying motor phenotypes. Correlations between motor phenotypes and brain imaging require further studies.
Whelton, Seamus P; Silverman, Michael G; McEvoy, John W; Budoff, Matthew J; Blankstein, Ron; Eng, John; Blumenthal, Roger S; Szklo, Moyses; Nasir, Khurram; Blaha, Michael J
2015-12-01
This study sought to determine the predictors of healthy arterial aging. Long-term nondevelopment of coronary artery calcification (persistent CAC = 0) is a marker of healthy arterial aging. The predictors of this phenotype are not known. We analyzed 1,850 participants from MESA (Multi-Ethnic Study of Atherosclerosis) with baseline CAC = 0 who underwent a follow-up CAC scan at visit 5 (median 9.6 years after baseline). We examined the proportion with persistent CAC = 0 and calculated multivariable relative risks and area under the receiver operating characteristic curve for prediction of this healthy arterial aging phenotype. We found that 55% of participants (n = 1,000) had persistent CAC = 0, and these individuals were significantly more likely to be younger, female, and have fewer traditional risk factors (RF). Participants with an ASCVD (Atherosclerotic Cardiovascular Disease Risk Score) risk score <2.5% were 53% more likely to have healthy arterial aging than were participants with an ASCVD score ≥7.5%. There was no significant association between the Healthy Lifestyle variables (body mass index, physical activity, Mediterranean diet, and never smoking) and persistent CAC = 0. The area under the receiver operating characteristic curve incorporating age, sex, and ethnicity was 0.65, indicating fair to poor discrimination. No single traditional RF or combination of other risk factors increased the area under the receiver operating characteristic curve by more than 0.05. Whereas participants free of traditional cardiovascular disease RF were significantly more likely to have persistent CAC = 0, there was no single RF or specific low-risk RF phenotype that markedly improved the discrimination of persistent CAC = 0 over demographic variables. Therefore, we conclude that healthy arterial aging may be predominantly influenced by the long-term maintenance of a low cardiovascular disease risk profile or yet to be determined genetic factors rather than the absence of any specific RF cluster identified in late adulthood. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Ponti, Giovanni; Martorana, Davide; Pellacani, Giovanni; Ruini, Cristel; Loschi, Pietro; Baccarani, Alessio; De Santis, Giorgio; Pollio, Annamaria; Neri, Tauro Maria; Mandel, Victor Desmond; Maiorana, Antonio; Maccio, Livia; Maccaferri, Monia; Tomasi, Aldo
2014-06-01
Von Recklinghausen disease is a syndrome characterized by a wide phenotypic variability giving rise to both, cutaneous and visceral benign and malignant neoplasms. The first include cutaneous neurofibromas, subcutaneous and plexiform neurofibromas. The latter can undergo malignant transformation and/or determine elephantiasis neuromatosa. Visceral tumors may include malignant peripheral nerve sheet tumors, gastrointestinal stromal tumors, cerebral gliomas and abdominal neurofibromas. In the present study, the authors discuss the clinical and biomolecular characterization of a cohort of 20 families with a diagnosis of type 1 neurofibromatosis. Clinically, the cohort includes three probands with elephantiasis neuromatosa and a peculiarly high incidence of breast and gastrointestinal cancer. Among the 14 NF1 mutations documented, 10 encoding for a truncated protein have been associated to particularly aggressive clinical phenotypes including elephantiasis neuromatosa, malignant peripheral nerve sheet tumors, breast cancer, gastrointestinal stromal tumors. This effect on protein synthesis, rather than the type of NF1 mutation, is the key to the explanation of the genotype-phenotype correlations in the context of neurofibromatosis type 1. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Shamseldin, Hanan E; Khalifa, Ola; Binamer, Yousef M; Almutawa, Abdulmonem; Arold, Stefan T; Zaidan, Hamad; Alkuraya, Fowzan S
2017-01-01
Ectodermal dysplasia is a highly heterogeneous group of disorders that variably affect the derivatives of the ectoderm, primarily skin, hair, nails and teeth. TP63, itself mutated in ectodermal dysplasia, links many other ectodermal dysplasia disease genes through a regulatory network that maintains the balance between proliferation and differentiation of the epidermis and other ectodermal derivatives. The ectodermal knockout phenotype of five mouse genes that regulate and/or are regulated by TP63 (Irf6, Ikkα, Ripk4, Stratifin, and Kdf1) is strikingly similar and involves abnormal balance towards proliferation at the expense of differentiation, but only the first three have corresponding ectodermal phenotypes in humans. We describe a multigenerational Saudi family with an autosomal dominant form of hypohidrotic ectodermal dysplasia in which positional mapping and exome sequencing identified a novel variant in KDF1 that fully segregates with the phenotype. The recapitulation of the phenotype we observe in this family by the Kdf1-/- mouse suggests a causal role played by the KDF1 variant.
Villacís, Anita G; Grijalva, Mario J; Catalá, Silvia S
2010-11-01
Rhodnius ecuadoriensis is an important vector of Chagas disease in Ecuador. Whereas only sylvatic and peridomestic populations are common in Manabi province, this species occupies domestic, peridomestic, and sylvatic habitats in Loja province where high reinfestation of houses was observed. To explore the existence of phenetic changes linked to the domiciliation of the species, this study set out to analyze the wing and antennal phenotypes of R. ecuadoriensis in these two provinces where the vector presents different affinity for domestic habitats. The antennal phenotype and the wing size and shape distinguish the two geographical populations of R. ecuadoriensis. In Manabí, sylvatic and peridomestic specimens were very similar. In Loja, sylvatic and nonsylvatic (domestic and peridomestic) populations showed distinctive characteristics. Remarkable sexual dimorphism of wing and antenna, exclusive of domestic specimens, and high metric disparity in the wing shape of the domestic females point out the existence of a particular situation in this habitat. The results of this phenotypic analysis and previous evidence of behavioral differences support the hypothesis of disruptive selection acting upon R. ecuadoriensis populations.
Minireview: Genetic basis of heterogeneity and severity in sickle cell disease
Habara, Alawi
2016-01-01
Sickle cell disease, a common single gene disorder, has a complex pathophysiology that at its root is initiated by the polymerization of deoxy sickle hemoglobin. Sickle vasoocclusion and hemolytic anemia drive the development of disease complications. In this review, we focus on the genetic modifiers of disease heterogeneity. The phenotypic heterogeneity of disease is only partially explained by genetic variability of fetal hemoglobin gene expression and co-inheritance of α thalassemia. Given the complexity of pathophysiology, many different definitions of severity are possible complicating a full understanding of its genetic foundation. The pathophysiological complexity and the interlocking nature of the biological processes underpinning disease severity are becoming better understood. Nevertheless, useful genetic signatures of severity, regardless of how this is defined, are insufficiently developed to be used for treatment decisions and for counseling. PMID:26936084
Schofield, Paul N; Sundberg, John P; Hoehndorf, Robert; Gkoutos, Georgios V
2011-09-01
The systematic investigation of the phenotypes associated with genotypes in model organisms holds the promise of revealing genotype-phenotype relations directly and without additional, intermediate inferences. Large-scale projects are now underway to catalog the complete phenome of a species, notably the mouse. With the increasing amount of phenotype information becoming available, a major challenge that biology faces today is the systematic analysis of this information and the translation of research results across species and into an improved understanding of human disease. The challenge is to integrate and combine phenotype descriptions within a species and to systematically relate them to phenotype descriptions in other species, in order to form a comprehensive understanding of the relations between those phenotypes and the genotypes involved in human disease. We distinguish between two major approaches for comparative phenotype analyses: the first relies on evolutionary relations to bridge the species gap, while the other approach compares phenotypes directly. In particular, the direct comparison of phenotypes relies heavily on the quality and coherence of phenotype and disease databases. We discuss major achievements and future challenges for these databases in light of their potential to contribute to the understanding of the molecular mechanisms underlying human disease. In particular, we discuss how the use of ontologies and automated reasoning can significantly contribute to the analysis of phenotypes and demonstrate their potential for enabling translational research.
Soul, Jamie; Hardingham, Timothy E; Boot-Handford, Raymond P; Schwartz, Jean-Marc
2015-01-29
We describe a new method, PhenomeExpress, for the analysis of transcriptomic datasets to identify pathogenic disease mechanisms. Our analysis method includes input from both protein-protein interaction and phenotype similarity networks. This introduces valuable information from disease relevant phenotypes, which aids the identification of sub-networks that are significantly enriched in differentially expressed genes and are related to the disease relevant phenotypes. This contrasts with many active sub-network detection methods, which rely solely on protein-protein interaction networks derived from compounded data of many unrelated biological conditions and which are therefore not specific to the context of the experiment. PhenomeExpress thus exploits readily available animal model and human disease phenotype information. It combines this prior evidence of disease phenotypes with the experimentally derived disease data sets to provide a more targeted analysis. Two case studies, in subchondral bone in osteoarthritis and in Pax5 in acute lymphoblastic leukaemia, demonstrate that PhenomeExpress identifies core disease pathways in both mouse and human disease expression datasets derived from different technologies. We also validate the approach by comparison to state-of-the-art active sub-network detection methods, which reveals how it may enhance the detection of molecular phenotypes and provide a more detailed context to those previously identified as possible candidates.
Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease
Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.
2015-01-01
The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739
ABO, Secretor and Lewis histo-blood group systems influence the digestive form of Chagas disease.
Bernardo, Cássia Rubia; Camargo, Ana Vitória Silveira; Ronchi, Luís Sérgio; de Oliveira, Amanda Priscila; de Campos Júnior, Eumildo; Borim, Aldenis Albaneze; Brandão de Mattos, Cinara Cássia; Bestetti, Reinaldo Bulgarelli; de Mattos, Luiz Carlos
2016-11-01
Chagas disease, caused by Trypanosoma cruzi, can affect the heart, esophagus and colon. The reasons that some patients develop different clinical forms or remain asymptomatic are unclear. It is believed that tissue immunogenetic markers influence the tropism of T. cruzi for different organs. ABO, Secretor and Lewis histo-blood group systems express a variety of tissue carbohydrate antigens that influence the susceptibility or resistance to diseases. This study aimed to examine the association of ABO, secretor and Lewis histo-blood systems with the clinical forms of Chagas disease. We enrolled 339 consecutive adult patients with chronic Chagas disease regardless of gender (cardiomyopathy: n=154; megaesophagus: n=119; megacolon: n=66). The control group was composed by 488 healthy blood donors. IgG anti-T. cruzi antibodies were detected by ELISA. ABO and Lewis phenotypes were defined by standard hemagglutination tests. Secretor (FUT2) and Lewis (FUT3) genotypes, determined by Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), were used to infer the correct histo-blood group antigens expressed in the gastrointestinal tract. The proportions between groups were compared using the χ2 test with Yates correction and Fisher's exact test and the Odds Ratio (OR) and 95% Confidence Interval (95% CI) were calculated. An alpha error of 5% was considered significant with p-values <0.05 being corrected for multiple comparisons (pc). No statistically significant differences were found for the ABO (X 2 : 2.635; p-value=0.451), Secretor (X 2 : 0.056; p-value=0.812) or Lewis (X 2 : 2.092; p-value=0.351) histo-blood group phenotypes between patients and controls. However, B plus AB Secretor phenotypes were prevalent in pooled data from megaesophagus and megacolon patients (OR: 5.381; 95% CI: 1.230-23.529; p-value=0.011; pc=0.022) in comparison to A plus O Secretor phenotypes. The tissue antigen variability resulting from the combined action of ABO and Secretor histo-blood systems is associated with the digestive forms of Chagas disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Alves, Alexandre Alonso; Bhering, Leonardo Lopes; Rosado, Tatiana Barbosa; Laviola, Bruno Galvêas; Formighieri, Eduardo Fernandes; Cruz, Cosme Damião
2013-01-01
The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought. PMID:24130445
Alves, Alexandre Alonso; Bhering, Leonardo Lopes; Rosado, Tatiana Barbosa; Laviola, Bruno Galvêas; Formighieri, Eduardo Fernandes; Cruz, Cosme Damião
2013-09-01
The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought.
CT Metrics of Airway Disease and Emphysema in Severe COPD
Kim, Woo Jin; Silverman, Edwin K.; Hoffman, Eric; Criner, Gerard J.; Mosenifar, Zab; Sciurba, Frank C.; Make, Barry J.; Carey, Vincent; Estépar, Raúl San José; Diaz, Alejandro; Reilly, John J.; Martinez, Fernando J.; Washko, George R.
2009-01-01
Background: CT scan measures of emphysema and airway disease have been correlated with lung function in cohorts of subjects with a range of COPD severity. The contribution of CT scan-assessed airway disease to objective measures of lung function and respiratory symptoms such as dyspnea in severe emphysema is less clear. Methods: Using data from 338 subjects in the National Emphysema Treatment Trial (NETT) Genetics Ancillary Study, densitometric measures of emphysema using a threshold of −950 Hounsfield units (%LAA-950) and airway wall phenotypes of the wall thickness (WT) and the square root of wall area (SRWA) of a 10-mm luminal perimeter airway were calculated for each subject. Linear regression analysis was performed for outcome variables FEV1 and percent predicted value of FEV1 with CT scan measures of emphysema and airway disease. Results: In univariate analysis, there were significant negative correlations between %LAA-950 and both the WT (r = −0.28, p = 0.0001) and SRWA (r = −0.19, p = 0.0008). Airway wall thickness was weakly but significantly correlated with postbronchodilator FEV1% predicted (R = −0.12, p = 0.02). Multivariate analysis showed significant associations between either WT or SRWA (β = −5.2, p = 0.009; β = −2.6, p = 0.008, respectively) and %LAA-950 (β = −10.6, p = 0.03) with the postbronchodilator FEV1% predicted. Male subjects exhibited significantly thicker airway wall phenotypes (p = 0.007 for WT and p = 0.0006 for SRWA). Conclusions: Airway disease and emphysema detected by CT scanning are inversely related in patients with severe COPD. Airway wall phenotypes were influenced by gender and associated with lung function in subjects with severe emphysema. PMID:19411295
Kraker, Jessica; Viswanathan, Shiv Kumar; Knöll, Ralph; Sadayappan, Sakthivel
2016-01-01
The South Asian population, numbered at 1.8 billion, is estimated to comprise around 20% of the global population and 1% of the American population, and has one of the highest rates of cardiovascular disease. While South Asians show increased classical risk factors for developing heart failure, the role of population-specific genetic risk factors has not yet been examined for this group. Hypertrophic cardiomyopathy (HCM) is one of the major cardiac genetic disorders among South Asians, leading to contractile dysfunction, heart failure, and sudden cardiac death. This disease displays autosomal dominant inheritance, and it is associated with a large number of variants in both sarcomeric and non-sarcomeric proteins. The South Asians, a population with large ethnic diversity, potentially carries region-specific polymorphisms. There is high variability in disease penetrance and phenotypic expression of variants associated with HCM. Thus, extensive studies are required to decipher pathogenicity and the physiological mechanisms of these variants, as well as the contribution of modifier genes and environmental factors to disease phenotypes. Conducting genotype-phenotype correlation studies will lead to improved understanding of HCM and, consequently, improved treatment options for this high-risk population. The objective of this review is to report the history of cardiovascular disease and HCM in South Asians, present previously published pathogenic variants, and introduce current efforts to study HCM using induced pluripotent stem cell-derived cardiomyocytes, next-generation sequencing, and gene editing technologies. The authors ultimately hope that this review will stimulate further research, drive novel discoveries, and contribute to the development of personalized medicine with the aim of expanding therapeutic strategies for HCM. PMID:27840609
Clinical Applications of Molecular Genetic Discoveries
Marian, A.J.
2015-01-01
Genome-wide association studies (GWAS) of complex traits have mapped more than 15,000 common single nucleotide variants (SNVs). Likewise, applications of massively parallel nucleic acid sequencing technologies often referred to as Next Generation Sequencing, to molecular genetic studies of complex traits have catalogued a large number of rare variants (population frequency of <0.01) in cases with complex traits. Moreover, high throughput nucleic acid sequencing, variant burden analysis, and linkage studies are illuminating the presence of large number of SNVs in cases and families with single gene disorders. The plethora of the genetic variants has exposed the formidable challenge of identifying the causal and pathogenic variants from the enormous number of innocuous common and rare variants that exist in the population as well as in an individual genome. The arduous task of identifying the causal and pathogenic variants is further compounded by the pleiotropic effects of the variants, complexity of cis and trans interactions in the genome, variability in phenotypic expression of the disease, as well as phenotypic plasticity, and the multifarious determinants of the phenotype. Population genetic studies offer the initial roadmaps and have the potential to elucidate novel pathways involved in the pathogenesis of the disease. However, the genome of an individual is unique, rendering unambiguous identification of the causal or pathogenic variant in a single individual exceedingly challenging. Yet, the focus of the practice of medicine is on the individual, as Sir William Osler elegantly expressed in his insightful quotation: “The good physician treats the disease; the great physician treats the patient who has the disease.” The daunting task facing physicians, patients, and researchers alike is to apply the modern genetic discoveries to care of the individual with or at risk of the disease. PMID:26548329
Pierson, Christopher R.; Dulin-Smith, Ashley N.; Durban, Ashley N.; Marshall, Morgan L.; Marshall, Jordan T.; Snyder, Andrew D.; Naiyer, Nada; Gladman, Jordan T.; Chandler, Dawn S.; Lawlor, Michael W.; Buj-Bello, Anna; Dowling, James J.; Beggs, Alan H.
2012-01-01
X-linked myotubular myopathy (MTM) is a severe neuromuscular disease of infancy caused by mutations of MTM1, which encodes the phosphoinositide lipid phosphatase, myotubularin. The Mtm1 knockout (KO) mouse has a severe phenotype and its short lifespan (8 weeks) makes it a challenge to use as a model in the testing of certain preclinical therapeutics. Many MTM patients succumb early in life, but some have a more favorable prognosis. We used human genotype–phenotype correlation data to develop a myotubularin-deficient mouse model with a less severe phenotype than is seen in Mtm1 KO mice. We modeled the human c.205C>T point mutation in Mtm1 exon 4, which is predicted to introduce the p.R69C missense change in myotubularin. Hemizygous male Mtm1 p.R69C mice develop early muscle atrophy prior to the onset of weakness at 2 months. The median survival period is 66 weeks. Histopathology shows small myofibers with centrally placed nuclei. Myotubularin protein is undetectably low because the introduced c.205C>T base change induced exon 4 skipping in most mRNAs, leading to premature termination of myotubularin translation. Some full-length Mtm1 mRNA bearing the mutation is present, which provides enough myotubularin activity to account for the relatively mild phenotype, as Mtm1 KO and Mtm1 p.R69C mice have similar muscle phosphatidylinositol 3-phosphate levels. These data explain the basis for phenotypic variability among human patients with MTM1 p.R69C mutations and establish the Mtm1 p.R69C mouse as a valuable model for the disease, as its less severe phenotype will expand the scope of testable preclinical therapies. PMID:22068590
Martin, S; Sutherland, J.; Levin, A.; Klose, R.; Priston, M.; Heon, E.
2000-01-01
Glaucoma is a leading cause of irreversible blindness in Canada. Congenital glaucoma usually manifests during the first years of life and is characterised by severe visual loss and autosomal recessive inheritance. Two disease loci, on chromosomes 1p36 and 2p21, have been associated with various forms of congenital glaucoma. A branch of a large six generation family from a consanguineous Amish community in south western Ontario was affected with congenital glaucoma and was studied by linkage and mutational analysis to identify the glaucoma related genetic defects. Linkage analysis using the MLINK component of the LINKAGE package (v 5.1) showed evidence of linkage to the 2p21 region (Zmax=3.34, θ=0, D2S1348 and D2S1346). Mutational analysis of the primary candidate gene, CYP1B1, was done by direct cycle sequencing, dideoxy fingerprinting analysis, and fragment analysis. Two different disease causing mutations in exon 3, 1410del13 and 1505G→A, both segregated with the disease phenotype. The two different combinations of these alleles appeared to result in a variable expressivity of the phenotype. The compound heterozygote appeared to have a milder phenotype when compared to the homozygotes for the 13 bp deletion. The congenital glaucoma phenotype for this large inbred Amish family is the result of mutations in CYP1B1 (2p21). The molecular information derived from this study will be used to help identify carriers of the CYP1B1 mutation in this community and optimise the management of those at risk of developing glaucoma. Keywords: congenital glaucoma; CYP1B1; gene; genetic counselling PMID:10851252
Golpe, Rafael; Sanjuán López, Pilar; Cano Jiménez, Esteban; Castro Añón, Olalla; Pérez de Llano, Luis A
2014-08-01
Exposure to biomass smoke is a risk factor for chronic obstructive pulmonary disease (COPD). It is unknown whether COPD caused by biomass smoke has different characteristics to COPD caused by tobacco smoke. To determine clinical differences between these two types of the disease. Retrospective observational study of 499 patients with a diagnosis of COPD due to biomass or tobacco smoke. The clinical variables of both groups were compared. There were 122 subjects (24.4%) in the biomass smoke group and 377 (75.5%) in the tobacco smoke group. In the tobacco group, the percentage of males was higher (91.2% vs 41.8%, P<.0001) and the age was lower (70.6 vs 76.2 years, P<.0001). Body mass index and FEV1% values were higher in the biomass group (29.4±5.7 vs 28.0±5.1, P=.01, and 55.6±15.6 vs 47.1±17.1, P<.0001, respectively). The mixed COPD-asthma phenotype was more common in the biomass group (21.3% vs 5%, P<.0001), although this difference disappeared when corrected for gender. The emphysema phenotype was more common in the tobacco group (45.9% vs 31.9%, P=.009). The prevalence of the chronic bronchitis and exacerbator phenotypes, the comorbidity burden and the rate of hospital admissions were the same in both groups. Differences were observed between COPD caused by biomass and COPD caused by tobacco smoke, although these may be attributed in part to uneven gender distribution between the groups. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.
The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease
Groza, Tudor; Köhler, Sebastian; Moldenhauer, Dawid; ...
2015-06-25
The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000more » rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available.« less
Twin studies advance the understanding of gene-environment interplay in human nutrigenomics.
Pallister, Tess; Spector, Tim D; Menni, Cristina
2014-12-01
Investigations into the genetic architecture of diet-disease relationships are particularly relevant today with the global epidemic of obesity and chronic disease. Twin studies have demonstrated that genetic makeup plays a significant role in a multitude of dietary phenotypes such as energy and macronutrient intakes, dietary patterns, and specific food group intakes. Besides estimating heritability of dietary assessment, twins provide a naturally unique, case-control experiment. Due to their shared upbringing, matched genes and sex (in the case of monozygotic (MZ) twin pairs), and age, twins provide many advantages over classic epidemiological approaches. Future genetic epidemiological studies could benefit from the twin approach particularly where defining what is 'normal' is problematic due to the high inter-individual variability underlying metabolism. Here, we discuss the use of twins to generate heritability estimates of food intake phenotypes. We then highlight the value of discordant MZ pairs to further nutrition research through discovery and validation of biomarkers of intake and health status in collaboration with cutting-edge omics technologies.
Phenotypic variability and selection of lipid-producing microalgae in a microfluidic centrifuge
NASA Astrophysics Data System (ADS)
Estévez-Torres, André.; Mestler, Troy; Austin, Robert H.
2010-03-01
Isogenic cells are known to display various expression levels that may result in different phenotypes within a population. Here we focus on the phenotypic variability of a species of unicellular algae that produce neutral lipids. Lipid-producing algae are one of the most promising sources of biofuel. We have implemented a simple microfluidic method to assess lipid-production variability in a population of algae that relays on density differences. We will discuss the reasons of this variability and address the promising avenues of this technique for directing the evolution of algae towards high lipid productivity.
Pulmonary phenotypes associated with genetic variation in telomere-related genes.
Hoffman, Thijs W; van Moorsel, Coline H M; Borie, Raphael; Crestani, Bruno
2018-05-01
Genomic mutations in telomere-related genes have been recognized as a cause of familial forms of idiopathic pulmonary fibrosis (IPF). However, it has become increasingly clear that telomere syndromes and telomere shortening are associated with various types of pulmonary disease. Additionally, it was found that also single nucleotide polymorphisms (SNPs) in telomere-related genes are risk factors for the development of pulmonary disease. This review focuses on recent updates on pulmonary phenotypes associated with genetic variation in telomere-related genes. Genomic mutations in seven telomere-related genes cause pulmonary disease. Pulmonary phenotypes associated with these mutations range from many forms of pulmonary fibrosis to emphysema and pulmonary vascular disease. Telomere-related mutations account for up to 10% of sporadic IPF, 25% of familial IPF, 10% of connective-tissue disease-associated interstitial lung disease, and 1% of COPD. Mixed disease forms have also been found. Furthermore, SNPs in TERT, TERC, OBFC1, and RTEL1, as well as short telomere length, have been associated with several pulmonary diseases. Treatment of pulmonary disease caused by telomere-related gene variation is currently based on disease diagnosis and not on the underlying cause. Pulmonary phenotypes found in carriers of telomere-related gene mutations and SNPs are primarily pulmonary fibrosis, sometimes emphysema and rarely pulmonary vascular disease. Genotype-phenotype relations are weak, suggesting that environmental factors and genetic background of patients determine disease phenotypes to a large degree. A disease model is presented wherever genomic variation in telomere-related genes cause specific pulmonary disease phenotypes whenever triggered by environmental exposure, comorbidity, or unknown factors.
Recent Developments in Epigenetics of Acute and Chronic Kidney Diseases
Reddy, Marpadga A.; Natarajan, Rama
2015-01-01
The growing epidemic of obesity and diabetes, the aging population as well as prevalence of drug abuse has led to significant increases in the rates of the closely associated acute and chronic kidney diseases, including diabetic nephropathy. Furthermore, evidence shows that parental behavior and diet can affect the phenotype of subsequent generations via epigenetic transmission mechanisms. These data suggest a strong influence of the environment on disease susceptibility and that, apart from genetic susceptibility, epigenetic mechanisms need to be evaluated to gain critical new information about kidney diseases. Epigenetics is the study of processes that control gene expression and phenotype without alterations in the underlying DNA sequence. Epigenetic modifications, including cytosine DNA methylation and covalent post translational modifications of histones in chromatin are part of the epigenome, the interface between the stable genome and the variable environment. This dynamic epigenetic layer responds to external environmental cues to influence the expression of genes associated with disease states. The field of epigenetics has seen remarkable growth in the past few years with significant advances in basic biology, contributions to human disease, as well as epigenomics technologies. Further understanding of how the renal cell epigenome is altered by metabolic and other stimuli can yield novel new insights into the pathogenesis of kidney diseases. In this review, we have discussed the current knowledge on the role of epigenetic mechanisms (primarily DNA me and histone modifications) in acute and chronic kidney diseases, and their translational potential to identify much needed new therapies. PMID:25993323
Recent developments in epigenetics of acute and chronic kidney diseases.
Reddy, Marpadga A; Natarajan, Rama
2015-08-01
The growing epidemic of obesity and diabetes, the aging population as well as prevalence of drug abuse has led to significant increases in the rates of the closely associated acute and chronic kidney diseases, including diabetic nephropathy. Furthermore, evidence shows that parental behavior and diet can affect the phenotype of subsequent generations via epigenetic transmission mechanisms. These data suggest a strong influence of the environment on disease susceptibility and that, apart from genetic susceptibility, epigenetic mechanisms need to be evaluated to gain critical new information about kidney diseases. Epigenetics is the study of processes that control gene expression and phenotype without alterations in the underlying DNA sequence. Epigenetic modifications, including cytosine DNA methylation and covalent post-translational modifications of histones in chromatin, are part of the epigenome, the interface between the stable genome and the variable environment. This dynamic epigenetic layer responds to external environmental cues to influence the expression of genes associated with disease states. The field of epigenetics has seen remarkable growth in the past few years with significant advances in basic biology, contributions to human disease, as well as epigenomics technologies. Further understanding of how the renal cell epigenome is altered by metabolic and other stimuli can yield novel new insights into the pathogenesis of kidney diseases. In this review, we have discussed the current knowledge on the role of epigenetic mechanisms (primarily DNAme and histone modifications) in acute and chronic kidney diseases, and their translational potential to identify much needed new therapies.
Piantoni, S; Regola, F; Zanola, A; Andreoli, L; Dall'Ara, F; Tincani, A; Airo', P
2018-01-01
Background and objectives T-cell activation may be one of the pathogenic mechanisms of systemic lupus erythematosus (SLE). After repeated antigenic stimulation, T-cells undergo different modifications, leading to the differentiation into effector memory T-cells (CCR7-CD45RA-) and terminally differentiated effector memory (TDEM) T-cells (CCR7-CD45RA+). Similarly, down-modulation of CD28 may lead to the expansion of the CD28- T-cells, a subpopulation with peculiar effector activities. The aim of this study was the characterization of T-cell phenotype in a cohort of patients with SLE according to disease activity and damage index. Materials and methods Phenotypic analysis of peripheral blood T lymphocytes of 51 SLE patients and 21 healthy controls was done by flow-cytometry. SLE disease activity was evaluated by SLE Disease Activity Index-2000 (SLEDAI-2K) and damage by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index (SDI). The variations between different groups were evaluated by Mann-Whitney test. Bonferroni correction was applied to adjust for multiple comparisons ( p adj ). Spearman rank test was used to evaluate the correlations between quantitative variables. Results CD4+ lymphopenia was found among SLE patients. Patients showed a trend for a higher percentage of TDEM among the CD4+ T-cell subpopulation in comparison with healthy controls ( p = .04). SLE patients were divided into two groups according to disease activity: patients with SLEDAI-2K ≥ 6 ( n = 13) had a higher percentage of circulating CD4+ T-cells with CD28- phenotype ( p adj = .005) as well as those with an effector memory ( p adj = .004) and TDEM ( p adj = .002) phenotype and a trend of decrease of regulatory T-cells (TREGs) ( p = .02), in comparison with patients with low disease activity ( n = 38). Patients with damage (SDI ≥ 1) tended to show an expansion of TDEM among CD4+ T-cells as compared with patients with no damage ( p = .01). In SLE patients an inverse correlation was found between the percentages of TREGs and those of TDEM ( p < .01) or CD4 + CD28- ( p < .01) T-cells. Conclusions CD4+ T-cell subpopulations displaying phenotype characteristics of effector lymphocytes are proportionally expanded in patients with active SLE and a higher damage index. These findings may suggest a role of effector T-cells in the pathogenesis of the disease and in the mechanisms of damage in SLE.
Practical guidelines for familial combined hyperlipidemia diagnosis: an up-date
Gaddi, Antonio; Cicero, AFG; Odoo, FO; Poli A, A; Paoletti, R
2007-01-01
Familial combined hyperlidemia (FCH) is a common metabolic disorder characterized by: (a) increase in cholesterolemia and/or triglyceridemia in at least two members of the same family, (b) intra-individual and intrafamilial variability of the lipid phenotype, and (c) increased risk of premature coronary heart disease (CHD). FCH is very frequent and is one of the most common genetic hyperlipidemias in the general population (prevalence estimated: 0.5%–2.0%), being the most frequent in patients affected by CHD (10%) and among acute myocardial infarction survivors aged less than 60 (11.3%). This percentage increases to 40% when all the myocardial infarction survivors are considered without age limits. However, because of the peculiar variability of laboratory parameters, and because of the frequent overlapping with the features of metabolic syndrome, this serious disease is often not recognized and treated. The aim of this review is to define the main characteristics of the disease in order to simplify its detection and early treatment by all physicians by mean of practical guidelines. PMID:18200807
Practical guidelines for familial combined hyperlipidemia diagnosis: an up-date.
Gaddi, Antonio; Cicero, A F G; Odoo, F O; Poli, A A; Paoletti, R
2007-01-01
Familial combined hyperlidemia (FCH) is a common metabolic disorder characterized by: (a) increase in cholesterolemia and/or triglyceridemia in at least two members of the same family, (b) intra-individual and intrafamilial variability of the lipid phenotype, and (c) increased risk of premature coronary heart disease (CHD). FCH is very frequent and is one of the most common genetic hyperlipidemias in the general population (prevalence estimated: 0.5%-2.0%), being the most frequent in patients affected by CHD (10%) and among acute myocardial infarction survivors aged less than 60 (11.3%). This percentage increases to 40% when all the myocardial infarction survivors are considered without age limits. However, because of the peculiar variability of laboratory parameters, and because of the frequent overlapping with the features of metabolic syndrome, this serious disease is often not recognized and treated. The aim of this review is to define the main characteristics of the disease in order to simplify its detection and early treatment by all physicians by mean of practical guidelines.
Clinical characteristics of a sample of patients with cat eye syndrome.
Rosa, Rafael Fabiano Machado; Mombach, Rômulo; Zen, Paulo Ricardo Gazzola; Graziadio, Carla; Paskulin, Giorgio Adriano
2010-01-01
Cat eye syndrome is considered a rare chromosome disease with a highly variable phenotype. The objective of this paper was to describe the clinical characteristics of a sample of patients with cat eye syndrome who were seen at our service. This is a retrospective analysis of a sample of six patients with diagnoses of cat eye syndrome. All of these patients’ karyotypes exhibited the presence of an additional marker chromosome, inv dup(22)(pter->q11.2::q11.2->pter). One patient also exhibited mosaicism with a lineage that had a normal chromosomal constitution. Clinical and follow-up data were collected from the patients’ medical records. Fisher’s exact test was used to compare the frequencies observed in our study with figures given in the literature (P<0.05). The main abnormalities observed were preauricular tags and/or pits and anal atresia (both observed in 83% of cases). Coloboma of the iris, an important finding with this syndrome, was observed in two cases (33%). Congenital heart disease was detected in four patients (67%) and the main defect found was interatrial communication (75%). Uncommon findings included hemifacial microsomia combined with unilateral microtia and biliary atresia. Just one of these patients died, from chylothorax and sepsis. The phenotype observed in cat eye syndrome is highly variable and may be superimposed on the phenotype of the oculo-auriculo-vertebral spectrum. Although these patients usually have good prognosis, including from a neurological point of view, we believe that all patients with the syndrome should be assessed very early on for the presence of cardiac, biliary and anorectal malformations, which may avoid possible complications in the future, including patient deaths.
Overexpression of the Cytokine BAFF and Autoimmunity Risk.
Steri, Maristella; Orrù, Valeria; Idda, M Laura; Pitzalis, Maristella; Pala, Mauro; Zara, Ilenia; Sidore, Carlo; Faà, Valeria; Floris, Matteo; Deiana, Manila; Asunis, Isadora; Porcu, Eleonora; Mulas, Antonella; Piras, Maria G; Lobina, Monia; Lai, Sandra; Marongiu, Mara; Serra, Valentina; Marongiu, Michele; Sole, Gabriella; Busonero, Fabio; Maschio, Andrea; Cusano, Roberto; Cuccuru, Gianmauro; Deidda, Francesca; Poddie, Fausto; Farina, Gabriele; Dei, Mariano; Virdis, Francesca; Olla, Stefania; Satta, Maria A; Pani, Mario; Delitala, Alessandro; Cocco, Eleonora; Frau, Jessica; Coghe, Giancarlo; Lorefice, Lorena; Fenu, Giuseppe; Ferrigno, Paola; Ban, Maria; Barizzone, Nadia; Leone, Maurizio; Guerini, Franca R; Piga, Matteo; Firinu, Davide; Kockum, Ingrid; Lima Bomfim, Izaura; Olsson, Tomas; Alfredsson, Lars; Suarez, Ana; Carreira, Patricia E; Castillo-Palma, Maria J; Marcus, Joseph H; Congia, Mauro; Angius, Andrea; Melis, Maurizio; Gonzalez, Antonio; Alarcón Riquelme, Marta E; da Silva, Berta M; Marchini, Maurizio; Danieli, Maria G; Del Giacco, Stefano; Mathieu, Alessandro; Pani, Antonello; Montgomery, Stephen B; Rosati, Giulio; Hillert, Jan; Sawcer, Stephen; D'Alfonso, Sandra; Todd, John A; Novembre, John; Abecasis, Gonçalo R; Whalen, Michael B; Marrosu, Maria G; Meloni, Alessandra; Sanna, Serena; Gorospe, Myriam; Schlessinger, David; Fiorillo, Edoardo; Zoledziewska, Magdalena; Cucca, Francesco
2017-04-27
Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug-targetable pathways. Using case-control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus-specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence-based fine mapping, cross-population and cross-phenotype analyses, and gene-expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. A variant in TNFSF13B, encoding the cytokine and drug target B-cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease-risk allele was also associated with up-regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion-deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up-regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.).
Tuijnenburg, Paul; Lango Allen, Hana; Burns, Siobhan O; Greene, Daniel; Jansen, Machiel H; Staples, Emily; Stephens, Jonathan; Carss, Keren J; Biasci, Daniele; Baxendale, Helen; Thomas, Moira; Chandra, Anita; Kiani-Alikhan, Sorena; Longhurst, Hilary J; Seneviratne, Suranjith L; Oksenhendler, Eric; Simeoni, Ilenia; de Bree, Godelieve J; Tool, Anton T J; van Leeuwen, Ester M M; Ebberink, Eduard H T M; Meijer, Alexander B; Tuna, Salih; Whitehorn, Deborah; Brown, Matthew; Turro, Ernest; Thrasher, Adrian J; Smith, Kenneth G C; Thaventhiran, James E; Kuijpers, Taco W
2018-03-02
The genetic cause of primary immunodeficiency disease (PID) carries prognostic information. We conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource-Rare Diseases cohort. In the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses. Both sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21 low B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases. We show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Ausems, M G; ten Berg, K; Beemer, F A; Wokke, J H
2000-10-01
The intrafamilial variability of late-onset glycogen storage disease type II was studied in siblings of 18 patients and in reports in the literature. Siblings of seven of the 18 index cases opted for DNA testing or enzyme studies after being informed by the index case of the availability of testing, and after genetic counselling. Of the 12 siblings tested, five asymptomatic individuals were diagnosed (mean age, 32.8 years; range, 17-53). Intrafamilial variability in the age at onset (more than 10 years difference) or in the clinical symptoms was found in one of seven sibships tested in this study, and also in seven sibships reported in the literature. We advocate that testing should not be offered to healthy siblings of late-onset glycogen storage disease type II patients as a routine, because it is impossible to give a precise prognosis to an individual who is symptom-free, but has been identified with a glycogen storage disease type II genotype, nor is there any therapeutic intervention available.
Explaining the disease phenotype of intergenic SNP through predicted long range regulation
Chen, Jingqi; Tian, Weidong
2016-01-01
Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. PMID:27280978
Pillai, S G; Tang, Y; van den Oord, E; Klotsman, M; Barnes, K; Carlsen, K; Gerritsen, J; Lenney, W; Silverman, M; Sly, P; Sundy, J; Tsanakas, J; von Berg, A; Whyte, M; Ortega, H G; Anderson, W H; Helms, P J
2008-03-01
Asthma is a clinically heterogeneous disease caused by a complex interaction between genetic susceptibility and diverse environmental factors. In common with other complex diseases the lack of a standardized scheme to evaluate the phenotypic variability poses challenges in identifying the contribution of genes and environments to disease expression. To determine the minimum number of sets of features required to characterize subjects with asthma which will be useful in identifying important genetic and environmental contributors. Methods Probands aged 7-35 years with physician diagnosed asthma and symptomatic siblings were identified in 1022 nuclear families from 11 centres in six countries forming the Genetics of Asthma International Network. Factor analysis was used to identify distinct phenotypes from questionnaire, clinical, and laboratory data, including baseline pulmonary function, allergen skin prick test (SPT). Five distinct factors were identified:(1) baseline pulmonary function measures [forced expiratory volume in 1 s (FEV(1)) and forced vital capacity (FVC)], (2) specific allergen sensitization by SPT, (3) self-reported allergies, (4) symptoms characteristic of rhinitis and (5) symptoms characteristic of asthma. Replication in symptomatic siblings was consistent with shared genetic and/or environmental effects, and was robust across age groups, gender, and centres. Cronbach's alpha ranged from 0.719 to 0.983 suggesting acceptable internal scale consistencies. Derived scales were correlated with serum IgE, methacholine PC(20), age and asthma severity (interrupted sleep). IgE correlated with all three atopy-related factors, the strongest with the SPT factor whereas severity only correlated with baseline lung function, and with symptoms characteristic of rhinitis and of asthma. In children and adolescents with established asthma, five distinct sets of correlated patient characteristics appear to represent important aspects of the disease. Factor scores as quantitative traits may be better phenotypes in epidemiological and genetic analyses than those categories derived from the presence or absence of combinations of +ve SPTs and/or elevated IgE.
Novel Presenting Phenotype in a Child With Autosomal Dominant Best's Vitelliform Macular Dystrophy.
Abdalla, Yasmine F; De Salvo, Gabriella; Elsahn, Ahmad; Self, James E
2017-07-01
Best's macular dystrophy (BMD) usually manifests with visual failure in the first or second decade of life; however, there is a large variability in expressivity of the disease, and some patients have no manifestation other than a pathological electro-oculogram (EOG). Autosomal dominant Best's vitelliform macular dystrophy (AD-BVMD) has a very specific phenotype that varies with the stage of the disease. In recent years, the authors have seen description of another clinical entity known as autosomal recessive BMD. Herein, the authors describe a 5-year-old girl referred from a peripheral hospital for investigation with a positive family history of BMD. Clinical findings included best-corrected visual acuity of 0.325 and 0.300 in the right and left eyes, respectively, by Sonksen logMar test, full color vision, normal orthoptic examination, and a small degree of hyperopia consistent with age. Macular optical coherence tomography (OCT) showed intraretinal fluid cysts and EOG showed reduced Arden ratio. Genetic testing was done for the proband and her father, who were found to be heterozygous for c.37C>T p. (Arg13Cys). The proband's younger sister will be reviewed and followed up once of age. The authors identified a new phenotype of AD-BVMD; although this is a single patient, more young children with BMD can now be scanned with the availability of hand-held OCT with better knowledge of the phenotype. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:580-585.]. Copyright 2017, SLACK Incorporated.
Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson's disease.
He, Naying; Huang, Pei; Ling, Huawei; Langley, Jason; Liu, Chunlei; Ding, Bei; Huang, Juan; Xu, Hongmin; Zhang, Yong; Zhang, Zhongping; Hu, Xiaoping; Chen, Shengdi; Yan, Fuhua
2017-04-01
Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with variable clinicopathologic phenotypes and underlying neuropathologic mechanisms. Each clinical phenotype has a unique set of motor symptoms. Tremor is the most frequent initial motor symptom of PD and is the most difficult symptom to treat. The dentate nucleus (DN) is a deep iron-rich nucleus in the cerebellum and may be involved in PD tremor. In this study, we test the hypothesis that DN iron may be elevated in tremor-dominant PD patients using quantitative susceptibility mapping. Forty-three patients with PD [19 tremor dominant (TD)/24 akinetic rigidity (AR) dominant] and 48 healthy gender- and age-matched controls were recruited. Multi-echo gradient echo data were collected for each subject on a 3.0-T MR system. Inter-group susceptibility differences in the bilateral DN were investigated and correlations of clinical features with susceptibility were also examined. In contrast with the AR-dominant group, the TD group was found to have increased susceptibility in the bilateral DN when compared with healthy controls. In addition, susceptibility was positively correlated with tremor score in drug-naive PD patients. These findings indicate that iron load within the DN may make an important contribution to motor phenotypes in PD. Moreover, our results suggest that TD and AR-dominant phenotypes of PD can be differentiated on the basis of the susceptibility of the DN, at least at the group level. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Genetic Variability of 27 Traits in a Core Collection of Flax (Linum usitatissimum L.)
You, Frank M.; Jia, Gaofeng; Xiao, Jin; Duguid, Scott D.; Rashid, Khalid Y.; Booker, Helen M.; Cloutier, Sylvie
2017-01-01
Assessment of genetic variability of plant core germplasm is needed for efficient germplasm utilization in breeding improvement. A total of 391 accessions of a flax core collection, which preserves the variation present in the world collection of 3,378 accessions maintained by Plant Gene Resources of Canada (PGRC) and represents a broad range of geographical origins, different improvement statuses and two morphotypes, was evaluated in field trials in up to 8 year-location environments for 10 agronomic, eight seed quality, six fiber and three disease resistance traits. The large phenotypic variation in this subset was explained by morphotypes (22%), geographical origins (11%), and other variance components (67%). Both divergence and similarity between two basic morphotypes, namely oil or linseed and fiber types, were observed, whereby linseed accessions had greater thousand seed weight, seeds m−2, oil content, branching capability and resistance to powdery mildew while fiber accessions had greater straw weight, plant height, protein content and resistance to pasmo and fusarium wilt diseases, but they had similar performance in many traits and some of them shared common characteristics of fiber and linseed types. Weak geographical patterns within either fiber or linseed accessions were confirmed, but specific trait performance was identified in East Asia for fiber type, and South Asia and North America for linseed type. Relatively high broad-sense heritability was obtained for seed quality traits, followed by agronomic traits and resistance to powdery mildew and fusarium wilt. Diverse phenotypic and genetic variability in the flax core collection constitutes a useful resource for breeding. PMID:28993783
Genetic Variability of 27 Traits in a Core Collection of Flax (Linum usitatissimum L.).
You, Frank M; Jia, Gaofeng; Xiao, Jin; Duguid, Scott D; Rashid, Khalid Y; Booker, Helen M; Cloutier, Sylvie
2017-01-01
Assessment of genetic variability of plant core germplasm is needed for efficient germplasm utilization in breeding improvement. A total of 391 accessions of a flax core collection, which preserves the variation present in the world collection of 3,378 accessions maintained by Plant Gene Resources of Canada (PGRC) and represents a broad range of geographical origins, different improvement statuses and two morphotypes, was evaluated in field trials in up to 8 year-location environments for 10 agronomic, eight seed quality, six fiber and three disease resistance traits. The large phenotypic variation in this subset was explained by morphotypes (22%), geographical origins (11%), and other variance components (67%). Both divergence and similarity between two basic morphotypes, namely oil or linseed and fiber types, were observed, whereby linseed accessions had greater thousand seed weight, seeds m -2 , oil content, branching capability and resistance to powdery mildew while fiber accessions had greater straw weight, plant height, protein content and resistance to pasmo and fusarium wilt diseases, but they had similar performance in many traits and some of them shared common characteristics of fiber and linseed types. Weak geographical patterns within either fiber or linseed accessions were confirmed, but specific trait performance was identified in East Asia for fiber type, and South Asia and North America for linseed type. Relatively high broad-sense heritability was obtained for seed quality traits, followed by agronomic traits and resistance to powdery mildew and fusarium wilt. Diverse phenotypic and genetic variability in the flax core collection constitutes a useful resource for breeding.
García-Alzate, Roberto; Lozano-Arias, Daisy; Reyes-Lugo, Rafael Matías; Morocoima, Antonio; Herrera, Leidi; Mendoza-León, Alexis
2014-01-01
Triatoma maculata is a wild vector of Trypanosoma cruzi, the causative agent of Chagas disease; its incursion in the domestic habitat is scant. In order to establish the possible domestic habitat of T. maculata, we evaluated wing variability and polymorphism of genotypic markers in subpopulations of T. maculata that live in different habitats in Venezuela. As markers, we used the mtCyt b gene, previously apply to evaluate population genetic structure in triatomine species, and the β-tubulin gene region, a marker employed to study genetic variability in Leishmania subgenera. Adults of T. maculata were captured in the period 2012–2013 at domestic, peridomestic (PD), and wild areas of towns in the Venezuelan states of Anzoátegui, Bolívar, Portuguesa, Monagas, Nueva Esparta, and Sucre. The phenotypic analysis was conducted through the determination of the isometric size and conformation of the left wing of each insect (492 individuals), using the MorphoJ program. Results reveal that insects of the domestic habitat showed significant reductions in wing size and variations in anatomical characteristics associated with flying, in relation to the PD and wild habitats. The largest variability was found in Anzoátegui and Monagas. The genotypic variability was assessed by in silico sequence comparison of the molecular markers and PCR-RFLP assays, demonstrating a marked polymorphism for the markers in insects of the domestic habitat in comparison with the other habitats. The highest polymorphism was found for the β-tubulin marker with enzymes BamHI and KpnI. Additionally, the infection rate by T. cruzi was higher in Monagas and Sucre (26.8 and 37.0%, respectively), while in domestic habitats the infestation rate was highest in Anzoátegui (22.3%). Results suggest domestic habitat colonization by T. maculata that in epidemiological terms, coupled with the presence in this habitat of nymphs of the vector, represents a high risk of transmission of Chagas disease. PMID:25325053
Phenome-driven disease genetics prediction toward drug discovery
Chen, Yang; Li, Li; Zhang, Guo-Qiang; Xu, Rong
2015-01-01
Motivation: Discerning genetic contributions to diseases not only enhances our understanding of disease mechanisms, but also leads to translational opportunities for drug discovery. Recent computational approaches incorporate disease phenotypic similarities to improve the prediction power of disease gene discovery. However, most current studies used only one data source of human disease phenotype. We present an innovative and generic strategy for combining multiple different data sources of human disease phenotype and predicting disease-associated genes from integrated phenotypic and genomic data. Results: To demonstrate our approach, we explored a new phenotype database from biomedical ontologies and constructed Disease Manifestation Network (DMN). We combined DMN with mimMiner, which was a widely used phenotype database in disease gene prediction studies. Our approach achieved significantly improved performance over a baseline method, which used only one phenotype data source. In the leave-one-out cross-validation and de novo gene prediction analysis, our approach achieved the area under the curves of 90.7% and 90.3%, which are significantly higher than 84.2% (P < e−4) and 81.3% (P < e−12) for the baseline approach. We further demonstrated that our predicted genes have the translational potential in drug discovery. We used Crohn’s disease as an example and ranked the candidate drugs based on the rank of drug targets. Our gene prediction approach prioritized druggable genes that are likely to be associated with Crohn’s disease pathogenesis, and our rank of candidate drugs successfully prioritized the Food and Drug Administration-approved drugs for Crohn’s disease. We also found literature evidence to support a number of drugs among the top 200 candidates. In summary, we demonstrated that a novel strategy combining unique disease phenotype data with system approaches can lead to rapid drug discovery. Availability and implementation: nlp.case.edu/public/data/DMN Contact: rxx@case.edu PMID:26072493
Monogenic autoimmune diseases of the endocrine system.
Johnson, Matthew B; Hattersley, Andrew T; Flanagan, Sarah E
2016-10-01
The most common endocrine diseases, type 1 diabetes, hyperthyroidism, and hypothyroidism, are the result of autoimmunity. Clustering of autoimmune endocrinopathies can result from polygenic predisposition, or more rarely, may present as part of a wider syndrome due to a mutation within one of seven genes. These monogenic autoimmune diseases show highly variable phenotypes both within and between families with the same mutations. The average age of onset of the monogenic forms of autoimmune endocrine disease is younger than that of the common polygenic forms, and this feature combined with the manifestation of other autoimmune diseases, specific hallmark features, or both, can inform clinicians as to the relevance of genetic testing. A genetic diagnosis can guide medical management, give an insight into prognosis, inform families of recurrence risk, and facilitate prenatal diagnoses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shafie, Suraiya M.; Barria von-Bischhoffshausen, Fernando R.; Bateman, J. Bronwyn
2006-01-01
PURPOSE To document intrafamilial and interocular phenotypic variability of autosomal dominant cataract (ADC). DESIGN Prospective observational case series. METHODS We performed ophthalmologic examination in four Chilean ADC families. RESULTS The families exhibited variability with respect to morphology, location with the lens, color and density of cataracts among affected members. We documented asymmetry between eyes in the morphology, location within the lens, color and density of cataracts, and a variable rate of progression. CONCLUSIONS The cataracts in these families exhibit wide intrafamilial and interocular phenotypic variability, supporting the premise that the mutated genes are expressed differentially in individuals and between eyes; other genes or environmental factors may be the bases for this variability. Marked progression among some family members underscores the variable clinical course of a common mutation within a family. Like retinitis pigmentosa, classification of ADC will be most useful if based on the gene and specific mutation. PMID:16564818
Phenotype at diagnosis predicts recurrence rates in Crohn's disease.
Wolters, F L; Russel, M G; Sijbrandij, J; Ambergen, T; Odes, S; Riis, L; Langholz, E; Politi, P; Qasim, A; Koutroubakis, I; Tsianos, E; Vermeire, S; Freitas, J; van Zeijl, G; Hoie, O; Bernklev, T; Beltrami, M; Rodriguez, D; Stockbrügger, R W; Moum, B
2006-08-01
In Crohn's disease (CD), studies associating phenotype at diagnosis and subsequent disease activity are important for patient counselling and health care planning. To calculate disease recurrence rates and to correlate these with phenotypic traits at diagnosis. A prospectively assembled uniformly diagnosed European population based inception cohort of CD patients was classified according to the Vienna classification for disease phenotype at diagnosis. Surgical and non-surgical recurrence rates throughout a 10 year follow up period were calculated. Multivariate analysis was performed to classify risk factors present at diagnosis for recurrent disease. A total of 358 were classified for phenotype at diagnosis, of whom 262 (73.2%) had a first recurrence and 113 patients (31.6%) a first surgical recurrence during the first 10 years after diagnosis. Patients with upper gastrointestinal disease at diagnosis had an excess risk of recurrence (hazard ratio 1.54 (95% confidence interval (CI) 1.13-2.10)) whereas age >/=40 years at diagnosis was protective (hazard ratio 0.82 (95% CI 0.70-0.97)). Colonic disease was a protective characteristic for resective surgery (hazard ratio 0.38 (95% CI 0.21-0.69)). More frequent resective surgical recurrences were reported from Copenhagen (hazard ratio 3.23 (95% CI 1.32-7.89)). A mild course of disease in terms of disease recurrence was observed in this European cohort. Phenotype at diagnosis had predictive value for disease recurrence with upper gastrointestinal disease being the most important positive predictor. A phenotypic North-South gradient in CD may be present, illustrated by higher surgery risks in some of the Northern European centres.
Interplay of HIV-1 phenotype and neutralizing antibody response in pathogenesis of AIDS.
Scarlatti, G; Leitner, T; Hodara, V; Jansson, M; Karlsson, A; Wahlberg, J; Rossi, P; Uhlén, M; Fenyö, E M; Albert, J
1996-06-01
A majority of human immunodeficiency virus type 1 (HIV-1) infected individuals display a rapid loss of CD4+ lymphocytes with fast progression towards overt acquired immunodeficiency syndrome (AIDS). However, a small proportion of individuals infected by HIV-1 remain immunologically intact for many years. In order to identify factors that might influence the pathogenesis of HIV-1 infection, 21 Italian mothers and 11 Swedish homosexual men were studied for the presence of autologous neutralizing antibodies in serum, biological phenotype of virus isolates and envelope variable region 3 (V3) sequences. The results were compared to the risk of mother-to-child transmission and progression of the disease. The presence of a neutralizing antibody response to the autologous virus as well as a virus with slow replicative capacity were linked both to low risk of mother-to-child transmission and non-progression of the disease. Patients whose peripheral blood mononuclear cells contained a mutation in the tip of the V3 loop (Arg318 to serine, lysine or leucine) significantly more often had neutralizing antibodies to autologous virus isolates containing arginine at this position. Thus, it appears that the interplay and balance between neutralizing antibody response of the host and the biological phenotype of HIV-1 strongly influence pathogenesis.
Martín-Martín, Lourdes; López, Antonio; Vidriales, Belén; Caballero, María Dolores; Rodrigues, António Silva; Ferreira, Silvia Inês; Lima, Margarida; Almeida, Sérgio; Valverde, Berta; Martínez, Pilar; Ferrer, Ana; Candeias, Jorge; Ruíz-Cabello, Francisco; Buadesa, Josefa Marco; Sempere, Amparo; Villamor, Neus
2015-01-01
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of leukemia/lymphoma, whose diagnosis can be difficult to achieve due to its clinical and biological heterogeneity, as well as its overlapping features with other hematologic malignancies. In this study we investigated whether the association between the maturational stage of tumor cells and the clinico-biological and prognostic features of the disease, based on the analysis of 46 BPDCN cases classified into three maturation-associated subgroups on immunophenotypic grounds. Our results show that blasts from cases with an immature plasmacytoid dendritic cell (pDC) phenotype exhibit an uncommon CD56− phenotype, coexisting with CD34+ non-pDC tumor cells, typically in the absence of extramedullary (e.g. skin) disease at presentation. Conversely, patients with a more mature blast cell phenotype more frequently displayed skin/extramedullary involvement and spread into secondary lymphoid tissues. Despite the dismal outcome, acute lymphoblastic leukemia-type therapy (with central nervous system prophylaxis) and/or allogeneic stem cell transplantation appeared to be the only effective therapies. Overall, our findings indicate that the maturational profile of pDC blasts in BPDCN is highly heterogeneous and translates into a wide clinical spectrum -from acute leukemia to mature lymphoma-like behavior-, which may also lead to variable diagnosis and treatment. PMID:26056082
Pattern of retinal morphological and functional decay in a light-inducible, rhodopsin mutant mouse.
Gargini, Claudia; Novelli, Elena; Piano, Ilaria; Biagioni, Martina; Strettoi, Enrica
2017-07-18
Hallmarks of Retinitis Pigmentosa (RP), a family of genetic diseases, are a typical rod-cone-degeneration with initial night blindness and loss of peripheral vision, followed by decreased daylight sight and progressive visual acuity loss up to legal blindness. Great heterogeneity in nature and function of mutated genes, variety of mutations for each of them, variability in phenotypic appearance and transmission modality contribute to make RP a still incurable disease. Translational research relies on appropriate animal models mimicking the genetic and phenotypic diversity of the human pathology. Here, we provide a systematic, morphological and functional analysis of Rho Tvrm4 /Rho + rhodopsin mutant mice, originally described in 2010 and portraying several features of common forms of autosomal dominant RP caused by gain-of-function mutations. These mice undergo photoreceptor degeneration only when exposed briefly to strong, white light and allow controlled timing of induction of rod and cone death, which therefore can be elicited in adult animals, as observed in human RP. The option to control severity and retinal extent of the phenotype by regulating intensity and duration of the inducing light opens possibilities to exploit this model for multiple experimental purposes. Altogether, the unique features of this mutant make it an excellent resource for retinal degeneration research.
North, Kari E; Howard, Barbara V; Welty, Thomas K; Best, Lyle G; Lee, Elisa T; Yeh, J L; Fabsitz, Richard R; Roman, Mary J; MacCluer, Jean W
2003-02-15
The aims of the Strong Heart Family Study are to clarify the genetic determinants of cardiovascular disease (CVD) risk in American Indians and to map and identify genes for CVD susceptibility. The authors describe the design of the Strong Heart Family Study (conducted between 1998 and 1999) and evaluate the heritabilities of CVD risk factors in American Indians from this study. In the first phase of the study, approximately 950 individuals, aged 18 years or more, in 32 extended families, were examined. The examination consisted of a personal interview, physical examination, laboratory tests, and an ultrasound examination of the carotid arteries. The phenotypes measured during the physical examination included anthropometry, lipoproteins, blood pressure, glycemic status, and clotting factors. Heritabilities for CVD risk factor phenotypes were estimated using a variance component approach and the program SOLAR. After accounting for the effects of covariates, the authors detected significant heritabilities for many CVD risk factor phenotypes (e.g., high density lipoprotein cholesterol (heritability = 0.50) and diastolic blood pressure (heritability = 0.34)). These results suggest that heredity explains a substantial proportion of the variability of CVD risk factors and that these heritabilities are large enough to warrant a search for major risk factor genes.
Phenotypes Determined by Cluster Analysis in Moderate to Severe Bronchial Asthma.
Youroukova, Vania M; Dimitrova, Denitsa G; Valerieva, Anna D; Lesichkova, Spaska S; Velikova, Tsvetelina V; Ivanova-Todorova, Ekaterina I; Tumangelova-Yuzeir, Kalina D
2017-06-01
Bronchial asthma is a heterogeneous disease that includes various subtypes. They may share similar clinical characteristics, but probably have different pathological mechanisms. To identify phenotypes using cluster analysis in moderate to severe bronchial asthma and to compare differences in clinical, physiological, immunological and inflammatory data between the clusters. Forty adult patients with moderate to severe bronchial asthma out of exacerbation were included. All underwent clinical assessment, anthropometric measurements, skin prick testing, standard spirometry and measurement fraction of exhaled nitric oxide. Blood eosinophilic count, serum total IgE and periostin levels were determined. Two-step cluster approach, hierarchical clustering method and k-mean analysis were used for identification of the clusters. We have identified four clusters. Cluster 1 (n=14) - late-onset, non-atopic asthma with impaired lung function, Cluster 2 (n=13) - late-onset, atopic asthma, Cluster 3 (n=6) - late-onset, aspirin sensitivity, eosinophilic asthma, and Cluster 4 (n=7) - early-onset, atopic asthma. Our study is the first in Bulgaria in which cluster analysis is applied to asthmatic patients. We identified four clusters. The variables with greatest force for differentiation in our study were: age of asthma onset, duration of diseases, atopy, smoking, blood eosinophils, nonsteroidal anti-inflammatory drugs hypersensitivity, baseline FEV1/FVC and symptoms severity. Our results support the concept of heterogeneity of bronchial asthma and demonstrate that cluster analysis can be an useful tool for phenotyping of disease and personalized approach to the treatment of patients.
Oyarzabal, Alfonso; Martínez-Pardo, Mercedes; Merinero, Begoña; Navarrete, Rosa; Desviat, Lourdes R; Ugarte, Magdalena; Rodríguez-Pombo, Pilar
2013-02-01
This article describes a hitherto unreported involvement of the phosphatase PP2Cm, a recently described member of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, in maple syrup urine disease (MSUD). The disease-causing mutation was identified in a patient with a mild variant phenotype, involving a gene not previously associated with MSUD. SNP array-based genotyping showed a copy-neutral homozygous pattern for chromosome 4 compatible with uniparental isodisomy. Mutation analysis of the candidate gene, PPM1K, revealed a homozygous c.417_418delTA change predicted to result in a truncated, unstable protein. No PP2Cm mutant protein was detected in immunocytochemical or Western blot expression analyses. The transient expression of wild-type PPM1K in PP2Cm-deficient fibroblasts recovered 35% of normal BCKDH activity. As PP2Cm has been described essential for cell survival, apoptosis and metabolism, the impact of its deficiency on specific metabolic stress variables was evaluated in PP2Cm-deficient fibroblasts. Increases were seen in ROS levels along with the activation of specific stress-signaling MAP kinases. Similar to that described for the pyruvate dehydrogenase complex, a defect in the regulation of BCKDH caused the aberrant metabolism of its substrate, contributing to the patient's MSUD phenotype--and perhaps others. © 2012 WILEY PERIODICALS, INC.
An integrative, translational approach to understanding rare and orphan genetically based diseases
Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.
2013-01-01
PhenomeNet is an approach for integrating phenotypes across species and identifying candidate genes for genetic diseases based on the similarity between a disease and animal model phenotypes. In contrast to ‘guilt-by-association’ approaches, PhenomeNet relies exclusively on the comparison of phenotypes to suggest candidate genes, and can, therefore, be applied to study the molecular basis of rare and orphan diseases for which the molecular basis is unknown. In addition to disease phenotypes from the Online Mendelian Inheritance in Man (OMIM) database, we have now integrated the clinical signs from Orphanet into PhenomeNet. We demonstrate that our approach can efficiently identify known candidate genes for genetic diseases in Orphanet and OMIM. Furthermore, we find evidence that mutations in the HIP1 gene might cause Bassoe syndrome, a rare disorder with unknown genetic aetiology. Our results demonstrate that integration and computational analysis of human disease and animal model phenotypes using PhenomeNet has the potential to reveal novel insights into the pathobiology underlying genetic diseases. PMID:23853703
Toward a mtDNA locus-specific mutation database using the LOVD platform.
Elson, Joanna L; Sweeney, Mary G; Procaccio, Vincent; Yarham, John W; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H; Pitceathly, Robert D S; Thorburn, David R; Lott, Marie T; Wallace, Douglas C; Taylor, Robert W; McFarland, Robert
2012-09-01
The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. © 2012 Wiley Periodicals, Inc.
Toward a mtDNA Locus-Specific Mutation Database Using the LOVD Platform
Elson, Joanna L.; Sweeney, Mary G.; Procaccio, Vincent; Yarham, John W.; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H.; Pitceathly, Robert D.S.; Thorburn, David R.; Lott, Marie T.; Wallace, Douglas C.; Taylor, Robert W.; McFarland, Robert
2015-01-01
The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. PMID:22581690
Allman, Windy R.; Dey, Ranadhir; Liu, Lunhua; Siddiqui, Shafiuddin; Coleman, Adam S.; Bhattacharya, Parna; Yano, Masahide; Uslu, Kadriye; Takeda, Kazuyo; Nakhasi, Hira L.; Akkoyunlu, Mustafa
2015-01-01
The TNF family member, transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), is a key molecule for plasma cell maintenance and is required in infections where protection depends on antibody response. Here, we report that compared with WT mouse, TACI KO Μϕs expressed lower levels of Toll-like receptors (TLRs), CD14, myeloid differentiation primary response protein 88, and adaptor protein Toll/IL-1 receptor domain-containing adapter-inducing IFN-β and responded poorly to TLR agonists. Analysis of Μϕ phenotype revealed that, in the absence of TACI, Μϕs adapt the alternatively activated (M2) phenotype. Steady-state expression levels for M2 markers IL-4Rα, CD206, CCL22, IL-10, Arg1, IL1RN, and FIZZ1 were significantly higher in TACI KO Μϕ than in WT cells. Confirming their M2 phenotype, TACI-KO Mϕs were unable to control Leishmania major infection in vitro, and intradermal inoculation of Leishmania resulted in a more severe manifestation of disease than in the resistant C57BL/6 strain. Transfer of WT Μϕs to TACI KO mice was sufficient to significantly reduce disease severity. TACI is likely to influence Mϕ phenotype by mediating B cell-activating factor belonging to the TNF family (BAFF) and a proliferation inducing ligand (APRIL) signals because both these ligands down-regulated M2 markers in WT but not in TACI-deficient Μϕs. Moreover, treatment of Μϕs with BAFF or APRIL enhanced the clearance of Leishmania from cells only when TACI is expressed. These findings may have implications for understanding the shortcomings of host response in newborns where TACI expression is reduced and in combined variable immunodeficiency patients where TACI signaling is ablated. PMID:26170307
Moller, David R; Koth, Laura L; Maier, Lisa A; Morris, Alison; Drake, Wonder; Rossman, Milton; Leader, Joseph K; Collman, Ronald G; Hamzeh, Nabeel; Sweiss, Nadera J; Zhang, Yingze; O'Neal, Scott; Senior, Robert M; Becich, Michael; Hochheiser, Harry S; Kaminski, Naftali; Wisniewski, Stephen R; Gibson, Kevin F
2015-10-01
Sarcoidosis is a systemic disease characterized by noncaseating granulomatous inflammation with tremendous clinical heterogeneity and uncertain pathobiology and lacking in clinically useful biomarkers. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study is an observational cohort study designed to explore the role of the lung microbiome and genome in these two diseases. This article describes the design and rationale for the GRADS study sarcoidosis protocol. The study addresses the hypothesis that distinct patterns in the lung microbiome are characteristic of sarcoidosis phenotypes and are reflected in changes in systemic inflammatory responses as measured by peripheral blood changes in gene transcription. The goal is to enroll 400 participants, with a minimum of 35 in each of 9 clinical phenotype subgroups prioritized by their clinical relevance to understanding of the pathobiology and clinical heterogeneity of sarcoidosis. Participants with a confirmed diagnosis of sarcoidosis undergo a baseline visit with self-administered questionnaires, chest computed tomography, pulmonary function tests, and blood and urine testing. A research or clinical bronchoscopy with a research bronchoalveolar lavage will be performed to obtain samples for genomic and microbiome analyses. Comparisons will be made by blood genomic analysis and with clinical phenotypic variables. A 6-month follow-up visit is planned to assess each participant's clinical course. By the use of an integrative approach to the analysis of the microbiome and genome in selected clinical phenotypes, the GRADS study is powerfully positioned to inform and direct studies on the pathobiology of sarcoidosis, identify diagnostic or prognostic biomarkers, and provide novel molecular phenotypes that could lead to improved personalized approaches to therapy for sarcoidosis.
Koth, Laura L.; Maier, Lisa A.; Morris, Alison; Drake, Wonder; Rossman, Milton; Leader, Joseph K.; Collman, Ronald G.; Hamzeh, Nabeel; Sweiss, Nadera J.; Zhang, Yingze; O’Neal, Scott; Senior, Robert M.; Becich, Michael; Hochheiser, Harry S.; Kaminski, Naftali; Wisniewski, Stephen R.; Gibson, Kevin F.
2015-01-01
Sarcoidosis is a systemic disease characterized by noncaseating granulomatous inflammation with tremendous clinical heterogeneity and uncertain pathobiology and lacking in clinically useful biomarkers. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study is an observational cohort study designed to explore the role of the lung microbiome and genome in these two diseases. This article describes the design and rationale for the GRADS study sarcoidosis protocol. The study addresses the hypothesis that distinct patterns in the lung microbiome are characteristic of sarcoidosis phenotypes and are reflected in changes in systemic inflammatory responses as measured by peripheral blood changes in gene transcription. The goal is to enroll 400 participants, with a minimum of 35 in each of 9 clinical phenotype subgroups prioritized by their clinical relevance to understanding of the pathobiology and clinical heterogeneity of sarcoidosis. Participants with a confirmed diagnosis of sarcoidosis undergo a baseline visit with self-administered questionnaires, chest computed tomography, pulmonary function tests, and blood and urine testing. A research or clinical bronchoscopy with a research bronchoalveolar lavage will be performed to obtain samples for genomic and microbiome analyses. Comparisons will be made by blood genomic analysis and with clinical phenotypic variables. A 6-month follow-up visit is planned to assess each participant’s clinical course. By the use of an integrative approach to the analysis of the microbiome and genome in selected clinical phenotypes, the GRADS study is powerfully positioned to inform and direct studies on the pathobiology of sarcoidosis, identify diagnostic or prognostic biomarkers, and provide novel molecular phenotypes that could lead to improved personalized approaches to therapy for sarcoidosis. PMID:26193069
Wells, Jonathan C K
2017-03-01
In their seminal book "Worldwide variation in human growth," published in 1976, Eveleth and Tanner highlighted substantial variability within and between populations in the magnitude and schedule of human growth. In the four decades since then, research has clarified why growth variability is so closely associated with human health. First, growth patterns are strongly associated with body composition, both in the short- and long-term. Poor growth in early life constrains the acquisition of lean tissue, while compensatory "catch-up" growth may elevate body fatness. Second, these data are examples of the fundamental link between growth and developmental plasticity. Growth is highly sensitive to ecological stresses and stimuli during early "critical windows," but loses much of this sensitivity as it undergoes canalization during early childhood. Crucially, the primary source of stimuli during early "critical windows" is not the external environment itself, but rather maternal phenotype, which transduces the impact of ecological conditions. Maternal phenotype, representing many dimensions of "capital," thus generates a powerful impact on the developmental trajectory of the offspring. There is increasing evidence that low levels of maternal capital impact the offspring's size at birth, schedule of maturation, and body composition and physiological function in adulthood. While evidence has accrued of substantial heritability in adult height, it is clear that the pathway through which it is attained has major implications for metabolic phenotype. Integrating these perspectives is important for understanding how developmental plasticity may on the one hand contribute to adaptation, while on the other shape susceptibility to non-communicable disease. © 2017 Wiley Periodicals, Inc.
Marin, Benoît; Logroscino, Giancarlo; Boumédiene, Farid; Labrunie, Anaïs; Couratier, Philippe; Babron, Marie-Claude; Leutenegger, Anne Louise; Preux, Pierre Marie; Beghi, Ettore
2016-03-01
To review how the phenotype and outcome of amyotrophic lateral sclerosis (ALS) change with variations in population ancestral origin (PAO). Knowledge of how PAO modifies ALS phenotype may provide important insight into the risk factors and pathogenic mechanisms of the disease. We performed a systematic review and meta-analysis of the literature concerning differences in phenotype and outcome of ALS that relate to PAO. A review of 3111 records identified 78 population-based studies. The 40 that were included covered 40 geographical areas in 10 subcontinents. Around 12,700 ALS cases were considered. The results highlight the phenotypic heterogeneity of ALS at time of onset [age, sex ratio (SR), bulbar onset], age at diagnosis, occurrence of comorbidities in the first year after diagnosis, and outcome (survival). Subcontinent is a major explanatory factor for the variability of the ALS phenotype in population-based studies. Some markers of ALS phenotype were homogeneously distributed in western countries (SR, mean age at onset/diagnosis) but their distributions in other subcontinents were remarkably different. Other markers presented variations in European subcontinents (familial ALS, bulbar onset) and in other continents. As a consequence, ALS outcome strongly varied, with a median survival time from onset ranging from 24 months (Northern Europe) to 48 months (Central Asia). This review sets the scene for a collaborative study involving a wide international consortium to investigate, using a standard methodology, the link between ancestry, environment, and ALS phenotype.
Lin, Phoebe; Shankar, Suma P; Duncan, Jacque; Slavotinek, Anne; Stone, Edwin M; Rutar, Tina
2010-02-01
Norrie disease (ND) is caused by mutations in the ND pseudoglioma (NDP) gene (MIM 300658) located at chromosome Xp11.4-p11.3. ND is characterized by abnormal retinal vascular development and vitreoretinal disorganization presenting at birth. Systemic manifestations include sensorineural deafness, progressive mental disorder, behavioral and psychological problems, growth failure, and seizures. Other vitreoretinopathies that are associated with NDP gene mutations include X-linked familial exudative vitreoretinopathy, Coats disease, persistent fetal vasculature, and retinopathy of prematurity. Phenotypic variability associated with NDP gene mutations has been well documented in affected male patients. However, there are limited data on signs in female carriers, with mild peripheral retinal abnormalities reported in both carrier and noncarrier females of families with NDP gene mutations. Here, we report a family harboring a single base-pair deletion, c.268delC, in the NDP gene causing a severe ND phenotype in the male proband and peripheral retinal vascular abnormalities with dragged maculae similar to those observed in familial exudative vitreoretinopathy in his carrier mother. Copyright (c) 2010 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
Using cluster analysis to identify phenotypes and validation of mortality in men with COPD.
Chen, Chiung-Zuei; Wang, Liang-Yi; Ou, Chih-Ying; Lee, Cheng-Hung; Lin, Chien-Chung; Hsiue, Tzuen-Ren
2014-12-01
Cluster analysis has been proposed to examine phenotypic heterogeneity in chronic obstructive pulmonary disease (COPD). The aim of this study was to use cluster analysis to define COPD phenotypes and validate them by assessing their relationship with mortality. Male subjects with COPD were recruited to identify and validate COPD phenotypes. Seven variables were assessed for their relevance to COPD, age, FEV(1) % predicted, BMI, history of severe exacerbations, mMRC, SpO(2), and Charlson index. COPD groups were identified by cluster analysis and validated prospectively against mortality during a 4-year follow-up. Analysis of 332 COPD subjects identified five clusters from cluster A to cluster E. Assessment of the predictive validity of these clusters of COPD showed that cluster E patients had higher all cause mortality (HR 18.3, p < 0.0001), and respiratory cause mortality (HR 21.5, p < 0.0001) than those in the other four groups. Cluster E patients also had higher all cause mortality (HR 14.3, p = 0.0002) and respiratory cause mortality (HR 10.1, p = 0.0013) than patients in cluster D alone. COPD patient with severe airflow limitation, many symptoms, and a history of frequent severe exacerbations was a novel and distinct clinical phenotype predicting mortality in men with COPD.
Phenotypic Variability in the Coccolithophore Emiliania huxleyi.
Blanco-Ameijeiras, Sonia; Lebrato, Mario; Stoll, Heather M; Iglesias-Rodriguez, Debora; Müller, Marius N; Méndez-Vicente, Ana; Oschlies, Andreas
2016-01-01
Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean.
König, Jens Christian; Titieni, Andrea; Konrad, Martin
2018-01-01
Hereditary cystic kidney diseases comprise a complex group of genetic disorders representing one of the most common causes of end-stage renal failure in childhood. The main representatives are autosomal recessive polycystic kidney disease, nephronophthisis, Bardet-Biedl syndrome, and hepatocyte nuclear factor-1beta nephropathy. Within the last years, genetic efforts have brought tremendous progress for the molecular understanding of hereditary cystic kidney diseases identifying more than 70 genes. Yet, genetic heterogeneity, phenotypic variability, a lack of reliable genotype-phenotype correlations and the absence of disease-specific biomarkers remain major challenges for physicians treating children with cystic kidney diseases. To tackle these challenges comprehensive scientific approaches are urgently needed that match the ongoing "revolution" in genetics and molecular biology with an improved efficacy of clinical data collection. Network for early onset cystic kidney diseases (NEOCYST) is a multidisciplinary, multicenter collaborative combining a detailed collection of clinical data with translational scientific approaches addressing the genetic, molecular, and functional background of hereditary cystic kidney diseases. Consisting of seven work packages, including an international registry as well as a biobank, NEOCYST is not only dedicated to current scientific questions, but also provides a platform for longitudinal clinical surveillance and provides precious sources for high-quality research projects and future clinical trials. Funded by the German Federal Government, the NEOCYST collaborative started in February 2016. Here, we would like to introduce the rationale, design, and objectives of the network followed by a short overview on the current state of progress.
Next generation phenotyping using narrative reports in a rare disease clinical data warehouse.
Garcelon, Nicolas; Neuraz, Antoine; Salomon, Rémi; Bahi-Buisson, Nadia; Amiel, Jeanne; Picard, Capucine; Mahlaoui, Nizar; Benoit, Vincent; Burgun, Anita; Rance, Bastien
2018-05-31
Secondary use of data collected in Electronic Health Records opens perspectives for increasing our knowledge of rare diseases. The clinical data warehouse (named Dr. Warehouse) at the Necker-Enfants Malades Children's Hospital contains data collected during normal care for thousands of patients. Dr. Warehouse is oriented toward the exploration of clinical narratives. In this study, we present our method to find phenotypes associated with diseases of interest. We leveraged the frequency and TF-IDF to explore the association between clinical phenotypes and rare diseases. We applied our method in six use cases: phenotypes associated with the Rett, Lowe, Silver Russell, Bardet-Biedl syndromes, DOCK8 deficiency and Activated PI3-kinase Delta Syndrome (APDS). We asked domain experts to evaluate the relevance of the top-50 (for frequency and TF-IDF) phenotypes identified by Dr. Warehouse and computed the average precision and mean average precision. Experts concluded that between 16 and 39 phenotypes could be considered as relevant in the top-50 phenotypes ranked by descending frequency discovered by Dr. Warehouse (resp. between 11 and 41 for TF-IDF). Average precision ranges from 0.55 to 0.91 for frequency and 0.52 to 0.95 for TF-IDF. Mean average precision was 0.79. Our study suggests that phenotypes identified in clinical narratives stored in Electronic Health Record can provide rare disease specialists with candidate phenotypes that can be used in addition to the literature. Clinical Data Warehouses can be used to perform Next Generation Phenotyping, especially in the context of rare diseases. We have developed a method to detect phenotypes associated with a group of patients using medical concepts extracted from free-text clinical narratives.
Gidaro, Teresa; Modoni, Anna; Sabatelli, Mario; Tasca, Giorgio; Broccolini, Aldobrando; Mirabella, Massimiliano
2008-01-01
Mutations of the valosin-containing protein gene (VCP) are responsible for autosomal-dominant hereditary inclusion-body myopathy associated with frontotemporal dementia and Paget's disease of bone. We identified the p.R155C missense mutation in the VCP gene segregating in an Italian family with three affected siblings, two of whom had a progressive myopathy associated with dementia, whereas one exhibited a progressive myopathy and preclinical signs of Paget's disease of bone. Our study demonstrates that VCP mutations are found in patients of Italian background and may lead to a variable clinical phenotype even within the same kinship.
Calderón, Juan Francisco; Puga, Alonso R; Guzmán, M Luisa; Astete, Carmen Paz; Arriaza, Marta; Aracena, Mariana; Aravena, Teresa; Sanz, Patricia; Repetto, Gabriela M
2009-01-01
Microdeletion 22q11 in humans causes velocardiofacial and DiGeorge syndromes. Most patients share a common 3Mb deletion, but the clinical manifestations are very heterogeneous. Congenital heart disease is present in 50-80% of patients and is a significant cause of morbidity and mortality. The phenotypic variability suggests the presence of modifiers. Polymorphisms in the VEGFA gene, coding for the vascular endothelial growth factor A, have been associated with non-syndromic congenital heart disease, as well as with the presence of cardiovascular anomalies in patients with microdeletion 22q11. We evaluated the association of VEGFA polymorphisms c.-2578C>A (rs699947), c.-1154G>A (rs1570360) and c.-634C>G (rs2010963) with congenital heart disease in Chilean patients with microdeletion 22q11. The study was performed using case-control and family-based association designs. We evaluated 122 patients with microdeletion 22q11 and known anatomy of the heart and great vessels, and their parents. Half the patients had congenital heart disease. We obtained no evidence of association by either method of analysis. Our results provide further evidence of the incomplete penetrance of the cardiovascular phenotype of microdeletion 22ql 1, but do not support association between VEGFA promoter polymorphisms and the presence of congenital heart disease in Chilean patients with this syndrome.
Explaining the disease phenotype of intergenic SNP through predicted long range regulation.
Chen, Jingqi; Tian, Weidong
2016-10-14
Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Masino, Aaron J; Dechene, Elizabeth T; Dulik, Matthew C; Wilkens, Alisha; Spinner, Nancy B; Krantz, Ian D; Pennington, Jeffrey W; Robinson, Peter N; White, Peter S
2014-07-21
Exome sequencing is a promising method for diagnosing patients with a complex phenotype. However, variant interpretation relative to patient phenotype can be challenging in some scenarios, particularly clinical assessment of rare complex phenotypes. Each patient's sequence reveals many possibly damaging variants that must be individually assessed to establish clear association with patient phenotype. To assist interpretation, we implemented an algorithm that ranks a given set of genes relative to patient phenotype. The algorithm orders genes by the semantic similarity computed between phenotypic descriptors associated with each gene and those describing the patient. Phenotypic descriptor terms are taken from the Human Phenotype Ontology (HPO) and semantic similarity is derived from each term's information content. Model validation was performed via simulation and with clinical data. We simulated 33 Mendelian diseases with 100 patients per disease. We modeled clinical conditions by adding noise and imprecision, i.e. phenotypic terms unrelated to the disease and terms less specific than the actual disease terms. We ranked the causative gene against all 2488 HPO annotated genes. The median causative gene rank was 1 for the optimal and noise cases, 12 for the imprecision case, and 60 for the imprecision with noise case. Additionally, we examined a clinical cohort of subjects with hearing impairment. The disease gene median rank was 22. However, when also considering the patient's exome data and filtering non-exomic and common variants, the median rank improved to 3. Semantic similarity can rank a causative gene highly within a gene list relative to patient phenotype characteristics, provided that imprecision is mitigated. The clinical case results suggest that phenotype rank combined with variant analysis provides significant improvement over the individual approaches. We expect that this combined prioritization approach may increase accuracy and decrease effort for clinical genetic diagnosis.
Prediction of gene-phenotype associations in humans, mice, and plants using phenologs.
Woods, John O; Singh-Blom, Ulf Martin; Laurent, Jon M; McGary, Kriston L; Marcotte, Edward M
2013-06-21
Phenotypes and diseases may be related to seemingly dissimilar phenotypes in other species by means of the orthology of underlying genes. Such "orthologous phenotypes," or "phenologs," are examples of deep homology, and may be used to predict additional candidate disease genes. In this work, we develop an unsupervised algorithm for ranking phenolog-based candidate disease genes through the integration of predictions from the k nearest neighbor phenologs, comparing classifiers and weighting functions by cross-validation. We also improve upon the original method by extending the theory to paralogous phenotypes. Our algorithm makes use of additional phenotype data--from chicken, zebrafish, and E. coli, as well as new datasets for C. elegans--establishing that several types of annotations may be treated as phenotypes. We demonstrate the use of our algorithm to predict novel candidate genes for human atrial fibrillation (such as HRH2, ATP4A, ATP4B, and HOPX) and epilepsy (e.g., PAX6 and NKX2-1). We suggest gene candidates for pharmacologically-induced seizures in mouse, solely based on orthologous phenotypes from E. coli. We also explore the prediction of plant gene-phenotype associations, as for the Arabidopsis response to vernalization phenotype. We are able to rank gene predictions for a significant portion of the diseases in the Online Mendelian Inheritance in Man database. Additionally, our method suggests candidate genes for mammalian seizures based only on bacterial phenotypes and gene orthology. We demonstrate that phenotype information may come from diverse sources, including drug sensitivities, gene ontology biological processes, and in situ hybridization annotations. Finally, we offer testable candidates for a variety of human diseases, plant traits, and other classes of phenotypes across a wide array of species.
Khani, Marzieh; Alavi, Afagh; Nafissi, Shahriar; Elahi, Elahe
2015-07-06
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder in European populations. ALS can be sporadic ALS (SALS) or familial ALS (FALS). Among 20 known ALS genes, mutations in C9orf72 and superoxide dismutase 1 (SOD1) are the most common genetic causes of the disease. Whereas C9orf72 mutations are more common in Western populations, the contribution of SOD1 to ALS in Iran is more than C9orf72. At present, a clear genotype/phenotype correlation for ALS has not been identified. We aimed to perform mutation screening of SOD1 in a newly identified Iranian FALS patient and to assess whether a genotype/phenotype correlation for the identified mutation exists. The five exons of SOD1 and flanking intronic sequences of a FALS proband were screened for mutations by direct sequencing. The clinical features of the proband were assessed by a neuromuscular specialist (SN). The phenotypic presentations were compared to previously reported patients with the same mutation. Heterozygous c.260A > G mutation in SOD1 that causes Asn86Ser was identified in the proband. Age at onset was 34 years and site of the first presentation was in the lower extremities. Comparisons of clinical features of different ALS patients with the same mutation evidenced variable presentations. The c.260A > G mutation in SOD1 that causes Asn86Ser appears to cause ALS with variable clinical presentations.
Mandy, William; Charman, Tony; Puura, Kaija; Skuse, David
2014-01-01
The recent Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) reformulation of autism spectrum disorder has received empirical support from North American and UK samples. Autism spectrum disorder is an increasingly global diagnosis, and research is needed to discover how well it generalises beyond North America and the United Kingdom. We tested the applicability of the DSM-5 model to a sample of Finnish young people with autism spectrum disorder (n = 130) or the broader autism phenotype (n = 110). Confirmatory factor analysis tested the DSM-5 model in Finland and compared the fit of this model between Finnish and UK participants (autism spectrum disorder, n = 488; broader autism phenotype, n = 220). In both countries, autistic symptoms were measured using the Developmental, Diagnostic and Dimensional Interview. Replicating findings from English-speaking samples, the DSM-5 model fitted well in Finnish autism spectrum disorder participants, outperforming a Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) model. The DSM-5 model fitted equally well in Finnish and UK autism spectrum disorder samples. Among broader autism phenotype participants, this model fitted well in the United Kingdom but poorly in Finland, suggesting that cross-cultural variability may be greatest for milder autistic characteristics. We encourage researchers with data from other cultures to emulate our methodological approach, to map any cultural variability in the manifestation of autism spectrum disorder and the broader autism phenotype. This would be especially valuable given the ongoing revision of the International Classification of Diseases-11th Edition, the most global of the diagnostic manuals.
Jørgensen, Silje F; Reims, Henrik M; Frydenlund, Didrik; Holm, Kristian; Paulsen, Vemund; Michelsen, Annika E; Jørgensen, Kristin K; Osnes, Liv T; Bratlie, Jorunn; Eide, Tor J; Dahl, Christen P; Holter, Ellen; Tronstad, Rune R; Hanevik, Kurt; Brattbakk, Hans-Richard; Kaveh, Fatemeh; Fiskerstrand, Torunn; Kran, Anne-Marte B; Ueland, Thor; Karlsen, Tom H; Aukrust, Pål; Lundin, Knut E A; Fevang, Børre
2016-10-01
The objective of this study was to study the prevalence of gastrointestinal (GI) symptoms and histopathology in patients with common variable immunodeficiency (CVID) as well as linking the findings to GI infections and markers of systemic immune activation. In this cross-sectional study, we addressed GI symptoms in 103 patients and GI histopathological findings in 53 patients who underwent upper and lower endoscopic examination. The most frequent histopathological findings were linked to GI symptoms, B-cell phenotype, and markers of systemic immune activation (soluble (s)CD14, sCD25, and sCD163). Microarray analysis compared "celiac-like disease" in CVID to celiac disease. Screening for selected bacterial and viral infections in fecal samples and gut mucosal biopsies was performed. The main findings of this study were as follows: most common GI symptoms were bloating (34%), pain (30%), and diarrhea (26%). The most frequent histopathological findings were increased intraepithelial lymphocytes in the descending part of the duodenum, i.e., "celiac-like disease" (46% of patients), decreased numbers of plasma cells in GI tract mucosa (62%), and lymphoid hyperplasia (38%), none of which were associated with GI symptoms. Reduced plasma cells in GI mucosa were associated with B-cell phenotypic characteristics of CVID, and increased serum levels of sCD14 (P=0.025), sCD25 (P=0.01), and sCD163 (P=0.04). Microarray analyses distinguished between CVID patients with "celiac-like disease" and celiac disease. Positive tests for bacterial and viral infections were scarce both in fecal samples and gut mucosal biopsies, including PCR test for norovirus in biopsy specimens (0 positive tests). In conclusion, GI pathology is common in CVID, but does not necessarily cause symptoms. However, reduced plasma cells in GI mucosa were linked to systemic immune activation, "celiac-like disease" in CVID and true celiac disease appear to be different disease entities, as assessed by gene expression, and infections (including norovirus) are rarely a cause of the CVID enteropathy.
Saklatvala, Jake R; Dand, Nick; Simpson, Michael A
2018-05-01
The genetic diagnosis of rare monogenic diseases using exome/genome sequencing requires the true causal variant(s) to be identified from tens of thousands of observed variants. Typically a virtual gene panel approach is taken whereby only variants in genes known to cause phenotypes resembling the patient under investigation are considered. With the number of known monogenic gene-disease pairs exceeding 5,000, manual curation of personalized virtual panels using exhaustive knowledge of the genetic basis of the human monogenic phenotypic spectrum is challenging. We present improved probabilistic methods for estimating phenotypic similarity based on Human Phenotype Ontology annotation. A limitation of existing methods for evaluating a disease's similarity to a reference set is that reference diseases are typically represented as a series of binary (present/absent) observations of phenotypic terms. We evaluate a quantified disease reference set, using term frequency in phenotypic text descriptions to approximate term relevance. We demonstrate an improved ability to identify related diseases through the use of a quantified reference set, and that vector space similarity measures perform better than established information content-based measures. These improvements enable the generation of bespoke virtual gene panels, facilitating more accurate and efficient interpretation of genomic variant profiles from individuals with rare Mendelian disorders. These methods are available online at https://atlas.genetics.kcl.ac.uk/~jake/cgi-bin/patient_sim.py. © 2018 Wiley Periodicals, Inc.
Phenotype at diagnosis predicts recurrence rates in Crohn's disease
Wolters, F L; Russel, M G; Sijbrandij, J; Ambergen, T; Odes, S; Riis, L; Langholz, E; Politi, P; Qasim, A; Koutroubakis, I; Tsianos, E; Vermeire, S; Freitas, J; van Zeijl, G; Hoie, O; Bernklev, T; Beltrami, M; Rodriguez, D; Stockbrügger, R W; Moum, B
2006-01-01
Background In Crohn's disease (CD), studies associating phenotype at diagnosis and subsequent disease activity are important for patient counselling and health care planning. Aims To calculate disease recurrence rates and to correlate these with phenotypic traits at diagnosis. Methods A prospectively assembled uniformly diagnosed European population based inception cohort of CD patients was classified according to the Vienna classification for disease phenotype at diagnosis. Surgical and non‐surgical recurrence rates throughout a 10 year follow up period were calculated. Multivariate analysis was performed to classify risk factors present at diagnosis for recurrent disease. Results A total of 358 were classified for phenotype at diagnosis, of whom 262 (73.2%) had a first recurrence and 113 patients (31.6%) a first surgical recurrence during the first 10 years after diagnosis. Patients with upper gastrointestinal disease at diagnosis had an excess risk of recurrence (hazard ratio 1.54 (95% confidence interval (CI) 1.13–2.10)) whereas age ⩾40 years at diagnosis was protective (hazard ratio 0.82 (95% CI 0.70–0.97)). Colonic disease was a protective characteristic for resective surgery (hazard ratio 0.38 (95% CI 0.21–0.69)). More frequent resective surgical recurrences were reported from Copenhagen (hazard ratio 3.23 (95% CI 1.32–7.89)). Conclusions A mild course of disease in terms of disease recurrence was observed in this European cohort. Phenotype at diagnosis had predictive value for disease recurrence with upper gastrointestinal disease being the most important positive predictor. A phenotypic North‐South gradient in CD may be present, illustrated by higher surgery risks in some of the Northern European centres. PMID:16361306
Applications of Genomic Selection in Breeding Wheat for Rust Resistance.
Ornella, Leonardo; González-Camacho, Juan Manuel; Dreisigacker, Susanne; Crossa, Jose
2017-01-01
There are a lot of methods developed to predict untested phenotypes in schemes commonly used in genomic selection (GS) breeding. The use of GS for predicting disease resistance has its own particularities: (a) most populations shows additivity in quantitative adult plant resistance (APR); (b) resistance needs effective combinations of major and minor genes; and (c) phenotype is commonly expressed in ordinal categorical traits, whereas most parametric applications assume that the response variable is continuous and normally distributed. Machine learning methods (MLM) can take advantage of examples (data) that capture characteristics of interest from an unknown underlying probability distribution (i.e., data-driven). We introduce some state-of-the-art MLM capable to predict rust resistance in wheat. We also present two parametric R packages for the reader to be able to compare.
Chow, Dorothy K L; Leong, Rupert W L; Lai, Larry H; Wong, Grace L H; Leung, Wai-Keung; Chan, Francis K L; Sung, Joseph J Y
2008-04-01
Phenotypic evolution of Crohn's disease occurs in whites but has never been described in other populations. The Montreal classification may describe phenotypes more precisely. The aim of this study was to validate the Montreal classification through a longitudinal sensitivity analysis in detecting phenotypic variation compared to the Vienna classification. This was a retrospective longitudinal study of consecutive Chinese Crohn's disease patients. All cases were classified by the Montreal classification and the Vienna classification for behavior and location. The evolution of these characteristics and the need for surgery were evaluated. A total of 109 patients were recruited (median follow-up: 4 years, range: 6 months-18 years). Crohn's disease behavior changed 3 years after diagnosis (P = 0.025), with an increase in stricturing and penetrating phenotypes, as determined by the Montreal classification, but was only detected by the Vienna classification after 5 years (P = 0.015). Disease location remained stable on follow-up in both classifications. Thirty-four patients (31%) underwent major surgery during the follow-up period with the stricturing [P = 0.002; hazard ratio (HR): 3.3; 95% CI: 1.5-7.0] and penetrating (P = 0.03; HR: 5.8; 95% CI: 1.2-28.2) phenotypes according to the Montreal classification associated with the need for major surgery. In contrast, colonic disease was protective against a major operation (P = 0.02; HR: 0.3; 95% CI: 0.08-0.8). This is the first study demonstrating phenotypic evolution of Crohn's disease in a nonwhite population. The Montreal classification is more sensitive to behavior phenotypic changes than is the Vienna classification after excluding perianal disease from the penetrating disease category and was useful in predicting course and the need for surgery.
Behavioural phenotypes predict disease susceptibility and infectiousness
Araujo, Alessandra; Kirschman, Lucas
2016-01-01
Behavioural phenotypes may provide a means for identifying individuals that disproportionally contribute to disease spread and epizootic outbreaks. For example, bolder phenotypes may experience greater exposure and susceptibility to pathogenic infection because of distinct interactions with conspecifics and their environment. We tested the value of behavioural phenotypes in larval amphibians for predicting ranavirus transmission in experimental trials. We found that behavioural phenotypes characterized by latency-to-food and swimming profiles were predictive of disease susceptibility and infectiousness defined as the capacity of an infected host to transmit an infection by contacts. While viral shedding rates were positively associated with transmission, we also found an inverse relationship between contacts and infections. Together these results suggest intrinsic traits that influence behaviour and the quantity of pathogens shed during conspecific interactions may be an important contributor to ranavirus transmission. These results suggest that behavioural phenotypes provide a means to identify individuals more likely to spread disease and thus give insights into disease outbreaks that threaten wildlife and humans. PMID:27555652
Behavioural phenotypes predict disease susceptibility and infectiousness.
Araujo, Alessandra; Kirschman, Lucas; Warne, Robin W
2016-08-01
Behavioural phenotypes may provide a means for identifying individuals that disproportionally contribute to disease spread and epizootic outbreaks. For example, bolder phenotypes may experience greater exposure and susceptibility to pathogenic infection because of distinct interactions with conspecifics and their environment. We tested the value of behavioural phenotypes in larval amphibians for predicting ranavirus transmission in experimental trials. We found that behavioural phenotypes characterized by latency-to-food and swimming profiles were predictive of disease susceptibility and infectiousness defined as the capacity of an infected host to transmit an infection by contacts. While viral shedding rates were positively associated with transmission, we also found an inverse relationship between contacts and infections. Together these results suggest intrinsic traits that influence behaviour and the quantity of pathogens shed during conspecific interactions may be an important contributor to ranavirus transmission. These results suggest that behavioural phenotypes provide a means to identify individuals more likely to spread disease and thus give insights into disease outbreaks that threaten wildlife and humans. © 2016 The Author(s).
PCAN: phenotype consensus analysis to support disease-gene association.
Godard, Patrice; Page, Matthew
2016-12-07
Bridging genotype and phenotype is a fundamental biomedical challenge that underlies more effective target discovery and patient-tailored therapy. Approaches that can flexibly and intuitively, integrate known gene-phenotype associations in the context of molecular signaling networks are vital to effectively prioritize and biologically interpret genes underlying disease traits of interest. We describe Phenotype Consensus Analysis (PCAN); a method to assess the consensus semantic similarity of phenotypes in a candidate gene's signaling neighborhood. We demonstrate that significant phenotype consensus (p < 0.05) is observable for ~67% of 4,549 OMIM disease-gene associations, using a combination of high quality String interactions + Metabase pathways and use Joubert Syndrome to demonstrate the ease with which a significant result can be interrogated to highlight discriminatory traits linked to mechanistically related genes. We advocate phenotype consensus as an intuitive and versatile method to aid disease-gene association, which naturally lends itself to the mechanistic deconvolution of diverse phenotypes. We provide PCAN to the community as an R package ( http://bioconductor.org/packages/PCAN/ ) to allow flexible configuration, extension and standalone use or integration to supplement existing gene prioritization workflows.
Jiang, Li; Edwards, Stefan M; Thomsen, Bo; Workman, Christopher T; Guldbrandtsen, Bernt; Sørensen, Peter
2014-09-24
Prioritizing genetic variants is a challenge because disease susceptibility loci are often located in genes of unknown function or the relationship with the corresponding phenotype is unclear. A global data-mining exercise on the biomedical literature can establish the phenotypic profile of genes with respect to their connection to disease phenotypes. The importance of protein-protein interaction networks in the genetic heterogeneity of common diseases or complex traits is becoming increasingly recognized. Thus, the development of a network-based approach combined with phenotypic profiling would be useful for disease gene prioritization. We developed a random-set scoring model and implemented it to quantify phenotype relevance in a network-based disease gene-prioritization approach. We validated our approach based on different gene phenotypic profiles, which were generated from PubMed abstracts, OMIM, and GeneRIF records. We also investigated the validity of several vocabulary filters and different likelihood thresholds for predicted protein-protein interactions in terms of their effect on the network-based gene-prioritization approach, which relies on text-mining of the phenotype data. Our method demonstrated good precision and sensitivity compared with those of two alternative complex-based prioritization approaches. We then conducted a global ranking of all human genes according to their relevance to a range of human diseases. The resulting accurate ranking of known causal genes supported the reliability of our approach. Moreover, these data suggest many promising novel candidate genes for human disorders that have a complex mode of inheritance. We have implemented and validated a network-based approach to prioritize genes for human diseases based on their phenotypic profile. We have devised a powerful and transparent tool to identify and rank candidate genes. Our global gene prioritization provides a unique resource for the biological interpretation of data from genome-wide association studies, and will help in the understanding of how the associated genetic variants influence disease or quantitative phenotypes.
Synchrotron microCT imaging of soft tissue in juvenile zebrafish reveals retinotectal projections
NASA Astrophysics Data System (ADS)
Xin, Xuying; Clark, Darin; Ang, Khai Chung; van Rossum, Damian B.; Copper, Jean; Xiao, Xianghui; La Riviere, Patrick J.; Cheng, Keith C.
2017-02-01
Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity. Histopathology, the current clinical standard for diagnostic phenotyping, involves the microscopic study of tissue sections to assess qualitative aspects of tissue architecture, disease mechanisms, and physiological state. However, quantitative features of tissue architecture such as cellular composition and cell counting in tissue volumes can only be approximated due to characteristics of tissue sectioning, including incomplete sampling and the constraints of 2D imaging of 5 micron thick tissue slabs. We have used a small, vertebrate organism, the zebrafish, to test the potential of microCT for systematic macroscopic and microscopic morphological phenotyping. While cell resolution is routinely achieved using methods such as light sheet fluorescence microscopy and optical tomography, these methods do not provide the pancellular perspective characteristic of histology, and are constrained by the limited penetration of visible light through pigmented and opaque specimens, as characterizes zebrafish juveniles. Here, we provide an example of neuroanatomy that can be studied by microCT of stained soft tissue at 1.43 micron isotropic voxel resolution. We conclude that synchrotron microCT is a form of 3D imaging that may potentially be adopted towards more reproducible, large-scale, morphological phenotyping of optically opaque tissues. Further development of soft tissue microCT, visualization and quantitative tool development will enhance its utility.
Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.
2016-01-01
Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391
Quantitative fundus autofluorescence in recessive Stargardt disease.
Burke, Tomas R; Duncker, Tobias; Woods, Russell L; Greenberg, Jonathan P; Zernant, Jana; Tsang, Stephen H; Smith, R Theodore; Allikmets, Rando; Sparrow, Janet R; Delori, François C
2014-05-01
To quantify fundus autofluorescence (qAF) in patients with recessive Stargardt disease (STGD1). A total of 42 STGD1 patients (ages: 7-52 years) with at least one confirmed disease-associated ABCA4 mutation were studied. Fundus AF images (488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for variable laser power and detector sensitivity. The gray levels (GLs) of each image were calibrated to the reference, zero GL, magnification, and normative optical media density to yield qAF. Texture factor (TF) was calculated to characterize inhomogeneities in the AF image and patients were assigned to the phenotypes of Fishman I through III. Quantified fundus autofluorescence in 36 of 42 patients and TF in 27 of 42 patients were above normal limits for age. Young patients exhibited the relatively highest qAF, with levels up to 8-fold higher than healthy eyes. Quantified fundus autofluorescence and TF were higher in Fishman II and III than Fishman I, who had higher qAF and TF than healthy eyes. Patients carrying the G1916E mutation had lower qAF and TF than most other patients, even in the presence of a second allele associated with severe disease. Quantified fundus autofluorescence is an indirect approach to measuring RPE lipofuscin in vivo. We report that ABCA4 mutations cause significantly elevated qAF, consistent with previous reports indicating that increased RPE lipofuscin is a hallmark of STGD1. Even when qualitative differences in fundus AF images are not evident, qAF can elucidate phenotypic variation. Quantified fundus autofluorescence will serve to establish genotype-phenotype correlations and as an outcome measure in clinical trials.
Quantitative Fundus Autofluorescence in Recessive Stargardt Disease
Burke, Tomas R.; Duncker, Tobias; Woods, Russell L.; Greenberg, Jonathan P.; Zernant, Jana; Tsang, Stephen H.; Smith, R. Theodore; Allikmets, Rando; Sparrow, Janet R.; Delori, François C.
2014-01-01
Purpose. To quantify fundus autofluorescence (qAF) in patients with recessive Stargardt disease (STGD1). Methods. A total of 42 STGD1 patients (ages: 7–52 years) with at least one confirmed disease-associated ABCA4 mutation were studied. Fundus AF images (488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for variable laser power and detector sensitivity. The gray levels (GLs) of each image were calibrated to the reference, zero GL, magnification, and normative optical media density to yield qAF. Texture factor (TF) was calculated to characterize inhomogeneities in the AF image and patients were assigned to the phenotypes of Fishman I through III. Results. Quantified fundus autofluorescence in 36 of 42 patients and TF in 27 of 42 patients were above normal limits for age. Young patients exhibited the relatively highest qAF, with levels up to 8-fold higher than healthy eyes. Quantified fundus autofluorescence and TF were higher in Fishman II and III than Fishman I, who had higher qAF and TF than healthy eyes. Patients carrying the G1916E mutation had lower qAF and TF than most other patients, even in the presence of a second allele associated with severe disease. Conclusions. Quantified fundus autofluorescence is an indirect approach to measuring RPE lipofuscin in vivo. We report that ABCA4 mutations cause significantly elevated qAF, consistent with previous reports indicating that increased RPE lipofuscin is a hallmark of STGD1. Even when qualitative differences in fundus AF images are not evident, qAF can elucidate phenotypic variation. Quantified fundus autofluorescence will serve to establish genotype-phenotype correlations and as an outcome measure in clinical trials. PMID:24677105
Do, Bao Anh Julie; Lands, Larry C; Saint-Martin, Christine; Mascarella, Marco A; Manoukian, John J; Daniel, Sam J; Nguyen, Lily H P
2014-07-01
Numerous authors have sought to describe genotype-phenotype correlations in cystic fibrosis (CF), notably to pancreatic insufficiency and lung disease. However, few studies have focused on the association between the F508del genotype and response to sinus surgery. The objective of this study is to assess the effect of the F508del genotype on sinonasal disease severity and outcomes following functional endoscopic sinus surgery (FESS) in a pediatric population. A retrospective chart review of 153 children with CF seen at a tertiary care pediatric hospital from 1995 to 2008 was performed. Patients were classified into one of three groups according to F508del genotype, either as homozygous, heterozygous or not carrying a F508del mutation. The sinonasal disease phenotype of the three groups was compared based on clinical and radiological findings, extent of endoscopic sinus surgery and rate of revision surgery. The relationship between the F508del genotype and pancreatic insufficiency was confirmed (p<0.05). There was no association between the F508del genotype and increased need for FESS (p=0.75). Moreover, no association was established between F508del homozygosity and presence of nasal polyps, Lund-Mackay score, extent of surgery or length of postoperative hospitalization. The rates of revision surgery did not differ significantly among the three genotypes analyzed (p=0.59). There is no clear association between the F508del genotype and an increased need for FESS, extent of surgery, or revision surgery. Given the phenotypic variability of sinonasal disease in patients with CF, a prospective study is needed to better understand outcomes following FESS and the contribution of gene modifiers to this effect. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groza, Tudor; Köhler, Sebastian; Moldenhauer, Dawid
The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000more » rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available.« less
Von recklinghausens disease: a series of four cases with variable expression.
Arun, K P; Thomas Joseph, P; Jaishankar, H P; Abhinethra, M S
2015-03-01
Though neurofibromatosis type I (NFI) is a fairly common condition, it has a variable expressivity and penetrance. Here we present a series of cases with striking differences in the presentation especially in the oral cavity. NFI, also known as von Recklinghausen's neurofibromatosis, is an autosomal dominantly inherited neurogenetic disorder affecting 1:3000 newborn (Bongiorno et al., Oral Dis 12:125-129, 2006). About 50 % of NFI patients have no family history of the disease. There is no prevalence for gender or race in NFI. Expressivity in NFI is tremendously variable, but subtle phenotypic patterns may exist within subgroups of affected patients. Furthermore, 50 % of cases are sporadic and arise from germ cell mutation (Bongiorno et al., Oral Dis 12:125-129, 2006). The precise constellation of findings in any one individual is extremely variable, both within a family and between different families (Batsakis, Tumors of the head and neck: clinical and pathological considerations, 2nd edn. Williams and Wilkins, Baltimore, pp 313-333, 1979). Only 4-7 % of patients affected by neurofibromatosis exhibit oral manifestations (Güneri et al., Turk J Pediatr 48(2):155-158, 2006).
Pebrel-Richard, Céline; Debost-Legrand, Anne; Eymard-Pierre, Eléonore; Greze, Victoria; Kemeny, Stéphan; Gay-Bellile, Mathilde; Gouas, Laetitia; Tchirkov, Andreï; Vago, Philippe; Goumy, Carole; Francannet, Christine
2014-03-01
With the introduction of array comparative genomic hybridization (aCGH) techniques in the diagnostic setting of patients with developmental delay and congenital malformations, many new microdeletion syndromes have been recognized. One of these recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome, associated with variable clinical outcomes including developmental delay, autism spectrum disorder, epilepsy, and obesity, but also apparently normal phenotype. We report on a 16-year-old patient with developmental delay, exhibiting retinis pigmentosa with progressive visual failure from the age of 9 years, ataxia, and peripheral neuropathy. Chromosomal microarray analysis identified a 1.7-Mb 16p11.2 deletion encompassing the 593-kb common deletion (∼29.5 to ∼30.1 Mb; Hg18) and the 220-kb distal deletion (∼28.74 to ∼28.95 Mb; Hg18) that partially included the CLN3 gene. As the patient's clinical findings were different from usual 16p11.2 microdeletion phenotypes and showed some features reminiscent of juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease, OMIM 204200), we suspected and confirmed a mutation of the remaining CLN3 allele. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletion represents one explanation for the phenotypic variability observed in chromosomal deletion disorders.
Pebrel-Richard, Céline; Debost-Legrand, Anne; Eymard-Pierre, Eléonore; Greze, Victoria; Kemeny, Stéphan; Gay-Bellile, Mathilde; Gouas, Laetitia; Tchirkov, Andreï; Vago, Philippe; Goumy, Carole; Francannet, Christine
2014-01-01
With the introduction of array comparative genomic hybridization (aCGH) techniques in the diagnostic setting of patients with developmental delay and congenital malformations, many new microdeletion syndromes have been recognized. One of these recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome, associated with variable clinical outcomes including developmental delay, autism spectrum disorder, epilepsy, and obesity, but also apparently normal phenotype. We report on a 16-year-old patient with developmental delay, exhibiting retinis pigmentosa with progressive visual failure from the age of 9 years, ataxia, and peripheral neuropathy. Chromosomal microarray analysis identified a 1.7-Mb 16p11.2 deletion encompassing the 593-kb common deletion (∼29.5 to ∼30.1 Mb; Hg18) and the 220-kb distal deletion (∼28.74 to ∼28.95 Mb; Hg18) that partially included the CLN3 gene. As the patient's clinical findings were different from usual 16p11.2 microdeletion phenotypes and showed some features reminiscent of juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease, OMIM 204200), we suspected and confirmed a mutation of the remaining CLN3 allele. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletion represents one explanation for the phenotypic variability observed in chromosomal deletion disorders. PMID:23860047
Kumar, Shivendra; Ambreen, Heena; Variath, Murali T.; Rao, Atmakuri R.; Agarwal, Manu; Kumar, Amar; Goel, Shailendra; Jagannath, Arun
2016-01-01
Safflower (Carthamus tinctorius L.) is a dryland oilseed crop yielding high quality edible oil. Previous studies have described significant phenotypic variability in the crop and used geographical distribution and phenotypic trait values to develop core collections. However, the molecular diversity component was lacking in the earlier collections thereby limiting their utility in breeding programs. The present study evaluated the phenotypic variability for 12 agronomically important traits during two growing seasons (2011–12 and 2012–13) in a global reference collection of 531 safflower accessions, assessed earlier by our group for genetic diversity and population structure using AFLP markers. Significant phenotypic variation was observed for all the agronomic traits in the representative collection. Cluster analysis of phenotypic data grouped the accessions into five major clusters. Accessions from the Indian Subcontinent and America harbored maximal phenotypic variability with unique characters for a few traits. MANOVA analysis indicated significant interaction between genotypes and environment for both the seasons. Initially, six independent core collections (CC1–CC6) were developed using molecular marker and phenotypic data for two seasons through POWERCORE and MSTRAT. These collections captured the entire range of trait variability but failed to include complete genetic diversity represented in 19 clusters reported earlier through Bayesian analysis of population structure (BAPS). Therefore, we merged the three POWERCORE core collections (CC1–CC3) to generate a composite core collection, CartC1 and three MSTRAT core collections (CC4–CC6) to generate another composite core collection, CartC2. The mean difference percentage, variance difference percentage, variable rate of coefficient of variance percentage, coincidence rate of range percentage, Shannon's diversity index, and Nei's gene diversity for CartC1 were 11.2, 43.7, 132.4, 93.4, 0.47, and 0.306, respectively while the corresponding values for CartC2 were 9.3, 58.8, 124.6, 95.8, 0.46, and 0.301. Each composite core collection represented the complete range of phenotypic and genetic variability of the crop including 19 BAPS clusters. This is the first report describing development of core collections in safflower using molecular marker data with phenotypic values and geographical distribution. These core collections will facilitate identification of genetic determinants of trait variability and effective utilization of the prevalent diversity in crop improvement programs. PMID:27807441
Using multidimensional topological data analysis to identify traits of hip osteoarthritis.
Rossi-deVries, Jasmine; Pedoia, Valentina; Samaan, Michael A; Ferguson, Adam R; Souza, Richard B; Majumdar, Sharmila
2018-05-07
Osteoarthritis (OA) is a multifaceted disease with many variables affecting diagnosis and progression. Topological data analysis (TDA) is a state-of-the-art big data analytics tool that can combine all variables into multidimensional space. TDA is used to simultaneously analyze imaging and gait analysis techniques. To identify biochemical and biomechanical biomarkers able to classify different disease progression phenotypes in subjects with and without radiographic signs of hip OA. Longitudinal study for comparison of progressive and nonprogressive subjects. In all, 102 subjects with and without radiographic signs of hip osteoarthritis. 3T, SPGR 3D MAPSS T 1ρ /T 2 , intermediate-weighted fat-suppressed fast spin-echo (FSE). Multidimensional data analysis including cartilage composition, bone shape, Kellgren-Lawrence (KL) classification of osteoarthritis, scoring hip osteoarthritis with MRI (SHOMRI), hip disability and osteoarthritis outcome score (HOOS). Analysis done using TDA, Kolmogorov-Smirnov (KS) testing, and Benjamini-Hochberg to rank P-value results to correct for multiple comparisons. Subjects in the later stages of the disease had an increased SHOMRI score (P < 0.0001), increased KL (P = 0.0012), and older age (P < 0.0001). Subjects in the healthier group showed intact cartilage and less pain. Subjects found between these two groups had a range of symptoms. Analysis of this subgroup identified knee biomechanics (P < 0.0001) as an initial marker of the disease that is noticeable before the morphological progression and degeneration. Further analysis of an OA subgroup with femoroacetabular impingement (FAI) showed anterior labral tears to be the most significant marker (P = 0.0017) between those FAI subjects with and without OA symptoms. The data-driven analysis obtained with TDA proposes new phenotypes of these subjects that partially overlap with the radiographic-based classical disease status classification and also shows the potential for further examination of an early onset biomechanical intervention. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
König, Jens Christian; Titieni, Andrea; Konrad, Martin; Bergmann, C.
2018-01-01
Hereditary cystic kidney diseases comprise a complex group of genetic disorders representing one of the most common causes of end-stage renal failure in childhood. The main representatives are autosomal recessive polycystic kidney disease, nephronophthisis, Bardet–Biedl syndrome, and hepatocyte nuclear factor-1beta nephropathy. Within the last years, genetic efforts have brought tremendous progress for the molecular understanding of hereditary cystic kidney diseases identifying more than 70 genes. Yet, genetic heterogeneity, phenotypic variability, a lack of reliable genotype–phenotype correlations and the absence of disease-specific biomarkers remain major challenges for physicians treating children with cystic kidney diseases. To tackle these challenges comprehensive scientific approaches are urgently needed that match the ongoing “revolution” in genetics and molecular biology with an improved efficacy of clinical data collection. Network for early onset cystic kidney diseases (NEOCYST) is a multidisciplinary, multicenter collaborative combining a detailed collection of clinical data with translational scientific approaches addressing the genetic, molecular, and functional background of hereditary cystic kidney diseases. Consisting of seven work packages, including an international registry as well as a biobank, NEOCYST is not only dedicated to current scientific questions, but also provides a platform for longitudinal clinical surveillance and provides precious sources for high-quality research projects and future clinical trials. Funded by the German Federal Government, the NEOCYST collaborative started in February 2016. Here, we would like to introduce the rationale, design, and objectives of the network followed by a short overview on the current state of progress. PMID:29497606
Xu, Rong; Li, Li; Wang, QuanQiu
2013-01-01
Motivation: Systems approaches to studying phenotypic relationships among diseases are emerging as an active area of research for both novel disease gene discovery and drug repurposing. Currently, systematic study of disease phenotypic relationships on a phenome-wide scale is limited because large-scale machine-understandable disease–phenotype relationship knowledge bases are often unavailable. Here, we present an automatic approach to extract disease–manifestation (D-M) pairs (one specific type of disease–phenotype relationship) from the wide body of published biomedical literature. Data and Methods: Our method leverages external knowledge and limits the amount of human effort required. For the text corpus, we used 119 085 682 MEDLINE sentences (21 354 075 citations). First, we used D-M pairs from existing biomedical ontologies as prior knowledge to automatically discover D-M–specific syntactic patterns. We then extracted additional pairs from MEDLINE using the learned patterns. Finally, we analysed correlations between disease manifestations and disease-associated genes and drugs to demonstrate the potential of this newly created knowledge base in disease gene discovery and drug repurposing. Results: In total, we extracted 121 359 unique D-M pairs with a high precision of 0.924. Among the extracted pairs, 120 419 (99.2%) have not been captured in existing structured knowledge sources. We have shown that disease manifestations correlate positively with both disease-associated genes and drug treatments. Conclusions: The main contribution of our study is the creation of a large-scale and accurate D-M phenotype relationship knowledge base. This unique knowledge base, when combined with existing phenotypic, genetic and proteomic datasets, can have profound implications in our deeper understanding of disease etiology and in rapid drug repurposing. Availability: http://nlp.case.edu/public/data/DMPatternUMLS/ Contact: rxx@case.edu PMID:23828786
Kammermeier, Jochen; Dziubak, Robert; Pescarin, Matilde; Drury, Suzanne; Godwin, Heather; Reeve, Kate; Chadokufa, Sibongile; Huggett, Bonita; Sider, Sara; James, Chela; Acton, Nikki; Cernat, Elena; Gasparetto, Marco; Noble-Jamieson, Gabi; Kiparissi, Fevronia; Elawad, Mamoun; Beales, Phil L; Sebire, Neil J; Gilmour, Kimberly; Uhlig, Holm H; Bacchelli, Chiara; Shah, Neil
2017-01-01
Inflammatory bowel disease [IBD] presenting in early childhood is extremely rare. More recently, progress has been made to identify children with monogenic forms of IBD predominantly presenting very early in life. In this study, we describe the heterogeneous phenotypes and genotypes of patients with IBD presenting before the age of 2 years and establish phenotypic features associated with underlying monogenicity. Phenotype data of 62 children with disease onset before the age of 2 years presenting over the past 20 years were reviewed. Children without previously established genetic diagnosis were prospectively recruited for next-generation sequencing. In all, 62 patients [55% male] were identified. The median disease onset was 3 months of age (interquartile range [IQR]: 1 to 11). Conventional IBD classification only applied to 15 patients with Crohn's disease [CD]-like [24%] and three with ulcerative colitis [UC]-like [5%] phenotype; 44 patients [71%] were diagnosed with otherwise unclassifiable IBD. Patients frequently required parenteral nutrition [40%], extensive immunosuppression [31%], haematopoietic stem-cell transplantation [29%], and abdominal surgery [19%]. In 31% of patients, underlying monogenic diseases were established [EPCAM, IL10, IL10RA, IL10RB, FOXP3, LRBA, SKIV2L, TTC37, TTC7A]. Phenotypic features significantly more prevalent in monogenic IBD were: consanguinity, disease onset before the 6th month of life, stunting, extensive intestinal disease and histological evidence of epithelial abnormalities. IBD in children with disease onset before the age of 2 years is frequently unclassifiable into Crohn's disease and ulcerative colitis, particularly treatment resistant, and can be indistinguishable from monogenic diseases with IBD-like phenotype. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Dziubak, Robert; Pescarin, Matilde; Drury, Suzanne; Godwin, Heather; Reeve, Kate; Chadokufa, Sibongile; Huggett, Bonita; Sider, Sara; James, Chela; Acton, Nikki; Cernat, Elena; Gasparetto, Marco; Noble-Jamieson, Gabi; Kiparissi, Fevronia; Elawad, Mamoun; Beales, Phil L.; Sebire, Neil J.; Gilmour, Kimberly; Uhlig, Holm H.; Bacchelli, Chiara; Shah, Neil
2017-01-01
Abstract Objectives: Inflammatory bowel disease [IBD] presenting in early childhood is extremely rare. More recently, progress has been made to identify children with monogenic forms of IBD predominantly presenting very early in life. In this study, we describe the heterogeneous phenotypes and genotypes of patients with IBD presenting before the age of 2 years and establish phenotypic features associated with underlying monogenicity. Methods: Phenotype data of 62 children with disease onset before the age of 2 years presenting over the past 20 years were reviewed. Children without previously established genetic diagnosis were prospectively recruited for next-generation sequencing. Results: In all, 62 patients [55% male] were identified. The median disease onset was 3 months of age (interquartile range [IQR]: 1 to 11). Conventional IBD classification only applied to 15 patients with Crohn’s disease [CD]-like [24%] and three with ulcerative colitis [UC]-like [5%] phenotype; 44 patients [71%] were diagnosed with otherwise unclassifiable IBD. Patients frequently required parenteral nutrition [40%], extensive immunosuppression [31%], haematopoietic stem-cell transplantation [29%], and abdominal surgery [19%]. In 31% of patients, underlying monogenic diseases were established [EPCAM, IL10, IL10RA, IL10RB, FOXP3, LRBA, SKIV2L, TTC37, TTC7A]. Phenotypic features significantly more prevalent in monogenic IBD were: consanguinity, disease onset before the 6th month of life, stunting, extensive intestinal disease and histological evidence of epithelial abnormalities. Conclusions: IBD in children with disease onset before the age of 2 years is frequently unclassifiable into Crohn’s disease and ulcerative colitis, particularly treatment resistant, and can be indistinguishable from monogenic diseases with IBD-like phenotype. PMID:27302973
PhenoLines: Phenotype Comparison Visualizations for Disease Subtyping via Topic Models.
Glueck, Michael; Naeini, Mahdi Pakdaman; Doshi-Velez, Finale; Chevalier, Fanny; Khan, Azam; Wigdor, Daniel; Brudno, Michael
2018-01-01
PhenoLines is a visual analysis tool for the interpretation of disease subtypes, derived from the application of topic models to clinical data. Topic models enable one to mine cross-sectional patient comorbidity data (e.g., electronic health records) and construct disease subtypes-each with its own temporally evolving prevalence and co-occurrence of phenotypes-without requiring aligned longitudinal phenotype data for all patients. However, the dimensionality of topic models makes interpretation challenging, and de facto analyses provide little intuition regarding phenotype relevance or phenotype interrelationships. PhenoLines enables one to compare phenotype prevalence within and across disease subtype topics, thus supporting subtype characterization, a task that involves identifying a proposed subtype's dominant phenotypes, ages of effect, and clinical validity. We contribute a data transformation workflow that employs the Human Phenotype Ontology to hierarchically organize phenotypes and aggregate the evolving probabilities produced by topic models. We introduce a novel measure of phenotype relevance that can be used to simplify the resulting topology. The design of PhenoLines was motivated by formative interviews with machine learning and clinical experts. We describe the collaborative design process, distill high-level tasks, and report on initial evaluations with machine learning experts and a medical domain expert. These results suggest that PhenoLines demonstrates promising approaches to support the characterization and optimization of topic models.
2013-01-01
Background The body of disease mutations with known phenotypic relevance continues to increase and is expected to do so even faster with the advent of new experimental techniques such as whole-genome sequencing coupled with disease association studies. However, genomic association studies are limited by the molecular complexity of the phenotype being studied and the population size needed to have adequate statistical power. One way to circumvent this problem, which is critical for the study of rare diseases, is to study the molecular patterns emerging from functional studies of existing disease mutations. Current gene-centric analyses to study mutations in coding regions are limited by their inability to account for the functional modularity of the protein. Previous studies of the functional patterns of known human disease mutations have shown a significant tendency to cluster at protein domain positions, namely position-based domain hotspots of disease mutations. However, the limited number of known disease mutations remains the main factor hindering the advancement of mutation studies at a functional level. In this paper, we address this problem by incorporating mutations known to be disruptive of phenotypes in other species. Focusing on two evolutionarily distant organisms, human and yeast, we describe the first inter-species analysis of mutations of phenotypic relevance at the protein domain level. Results The results of this analysis reveal that phenotypic mutations from yeast cluster at specific positions on protein domains, a characteristic previously revealed to be displayed by human disease mutations. We found over one hundred domain hotspots in yeast with approximately 50% in the exact same domain position as known human disease mutations. Conclusions We describe an analysis using protein domains as a framework for transferring functional information by studying domain hotspots in human and yeast and relating phenotypic changes in yeast to diseases in human. This first-of-a-kind study of phenotypically relevant yeast mutations in relation to human disease mutations demonstrates the utility of a multi-species analysis for advancing the understanding of the relationship between genetic mutations and phenotypic changes at the organismal level. PMID:23819456
Watson, S; Daly, M; Dawood, B; Gissen, P; Makris, M; Mundell, S; Wilde, J; Mumford, A
2010-01-01
Platelet number or function disorders cause a range of bleeding symptoms from mild to severe. Patients with platelet dysfunction but normal platelet number are the most prevalent and typically have mild bleeding symptoms. The study of this group of patients is particularly difficult because of the lack of a gold-standard test of platelet function and the variable penetrance of the bleeding phenotype among affected individuals. The purpose of this short review is to discuss the way in which this group of patients can be investigated through platelet phenotyping in combination with targeted gene sequencing. This approach has been used recently to identify patients with mutations in key platelet activation receptors, namely those for ADP, collagen and thromboxane A2 (TxA2). One interesting finding from this work is that for some patients, mild bleeding is associated with heterozygous mutations in platelet proteins that are co-inherited with other genetic disorders of haemostasis such as type 1 von Willebrand's disease. Thus, the phenotype of mild bleeding may be multifactorial in some patients and may be considered to be a complex trait.
Pecci, Alessandro; Klersy, Catherine; Gresele, Paolo; Lee, Kieran J D; De Rocco, Daniela; Bozzi, Valeria; Russo, Giovanna; Heller, Paula G; Loffredo, Giuseppe; Ballmaier, Matthias; Fabris, Fabrizio; Beggiato, Eloise; Kahr, Walter H A; Pujol-Moix, Nuria; Platokouki, Helen; Van Geet, Christel; Noris, Patrizia; Yerram, Preethi; Hermans, Cedric; Gerber, Bernhard; Economou, Marina; De Groot, Marco; Zieger, Barbara; De Candia, Erica; Fraticelli, Vincenzo; Kersseboom, Rogier; Piccoli, Giorgina B; Zimmermann, Stefanie; Fierro, Tiziana; Glembotsky, Ana C; Vianello, Fabrizio; Zaninetti, Carlo; Nicchia, Elena; Güthner, Christiane; Baronci, Carlo; Seri, Marco; Knight, Peter J; Balduini, Carlo L; Savoia, Anna
2014-02-01
MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in the gene for nonmuscle myosin heavy chain IIA (NMMHC-IIA). MYH9-RD is characterized by a considerable variability in clinical evolution: patients present at birth with only thrombocytopenia, but some of them subsequently develop sensorineural deafness, cataract, and/or nephropathy often leading to end-stage renal disease (ESRD). We searched for genotype-phenotype correlations in the largest series of consecutive MYH9-RD patients collected so far (255 cases from 121 families). Association of genotypes with noncongenital features was assessed by a generalized linear regression model. The analysis defined disease evolution associated to seven different MYH9 genotypes that are responsible for 85% of MYH9-RD cases. Mutations hitting residue R702 demonstrated a complete penetrance for early-onset ESRD and deafness. The p.D1424H substitution associated with high risk of developing all the noncongenital manifestations of disease. Mutations hitting a distinct hydrophobic seam in the NMMHC-IIA head domain or substitutions at R1165 associated with high risk of deafness but low risk of nephropathy or cataract. Patients with p.E1841K, p.D1424N, and C-terminal deletions had low risk of noncongenital defects. These findings are essential to patients' clinical management and genetic counseling and are discussed in view of molecular pathogenesis of MYH9-RD. © 2013 WILEY PERIODICALS, INC.
Jonsson, Frida; Burstedt, Marie S; Sandgren, Ola; Norberg, Anna; Golovleva, Irina
2013-01-01
This study aimed to identify genetic mechanisms underlying severe retinal degeneration in one large family from northern Sweden, members of which presented with early-onset autosomal recessive retinitis pigmentosa and juvenile macular dystrophy. The clinical records of affected family members were analysed retrospectively and ophthalmological and electrophysiological examinations were performed in selected cases. Mutation screening was initially performed with microarrays, interrogating known mutations in the genes associated with recessive retinitis pigmentosa, Leber congenital amaurosis and Stargardt disease. Searching for homozygous regions with putative causative disease genes was done by high-density SNP-array genotyping, followed by segregation analysis of the family members. Two distinct phenotypes of retinal dystrophy, Leber congenital amaurosis and Stargardt disease were present in the family. In the family, four patients with Leber congenital amaurosis were homozygous for a novel c.2557C>T (p.Q853X) mutation in the CRB1 gene, while of two cases with Stargardt disease, one was homozygous for c.5461-10T>C in the ABCA4 gene and another was carrier of the same mutation and a novel ABCA4 mutation c.4773+3A>G. Sequence analysis of the entire ABCA4 gene in patients with Stargardt disease revealed complex alleles with additional sequence variants, which were evaluated by bioinformatics tools. In conclusion, presence of different genetic mechanisms resulting in variable phenotype within the family is not rare and can challenge molecular geneticists, ophthalmologists and genetic counsellors. PMID:23443024
Schurdak, Mark E; Pei, Fen; Lezon, Timothy R; Carlisle, Diane; Friedlander, Robert; Taylor, D Lansing; Stern, Andrew M
2018-01-01
Designing effective therapeutic strategies for complex diseases such as cancer and neurodegeneration that involve tissue context-specific interactions among multiple gene products presents a major challenge for precision medicine. Safe and selective pharmacological modulation of individual molecular entities associated with a disease often fails to provide efficacy in the clinic. Thus, development of optimized therapeutic strategies for individual patients with complex diseases requires a more comprehensive, systems-level understanding of disease progression. Quantitative systems pharmacology (QSP) is an approach to drug discovery that integrates computational and experimental methods to understand the molecular pathogenesis of a disease at the systems level more completely. Described here is the chemogenomic component of QSP for the inference of biological pathways involved in the modulation of the disease phenotype. The approach involves testing sets of compounds of diverse mechanisms of action in a disease-relevant phenotypic assay, and using the mechanistic information known for the active compounds, to infer pathways and networks associated with the phenotype. The example used here is for monogenic Huntington's disease (HD), which due to the pleiotropic nature of the mutant phenotype has a complex pathogenesis. The overall approach, however, is applicable to any complex disease.
Drug Discovery for Neglected Diseases: Molecular Target-Based and Phenotypic Approaches
2013-01-01
Drug discovery for neglected tropical diseases is carried out using both target-based and phenotypic approaches. In this paper, target-based approaches are discussed, with a particular focus on human African trypanosomiasis. Target-based drug discovery can be successful, but careful selection of targets is required. There are still very few fully validated drug targets in neglected diseases, and there is a high attrition rate in target-based drug discovery for these diseases. Phenotypic screening is a powerful method in both neglected and non-neglected diseases and has been very successfully used. Identification of molecular targets from phenotypic approaches can be a way to identify potential new drug targets. PMID:24015767
Enabling phenotypic big data with PheNorm.
Yu, Sheng; Ma, Yumeng; Gronsbell, Jessica; Cai, Tianrun; Ananthakrishnan, Ashwin N; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Liao, Katherine P; Cai, Tianxi
2018-01-01
Electronic health record (EHR)-based phenotyping infers whether a patient has a disease based on the information in his or her EHR. A human-annotated training set with gold-standard disease status labels is usually required to build an algorithm for phenotyping based on a set of predictive features. The time intensiveness of annotation and feature curation severely limits the ability to achieve high-throughput phenotyping. While previous studies have successfully automated feature curation, annotation remains a major bottleneck. In this paper, we present PheNorm, a phenotyping algorithm that does not require expert-labeled samples for training. The most predictive features, such as the number of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes or mentions of the target phenotype, are normalized to resemble a normal mixture distribution with high area under the receiver operating curve (AUC) for prediction. The transformed features are then denoised and combined into a score for accurate disease classification. We validated the accuracy of PheNorm with 4 phenotypes: coronary artery disease, rheumatoid arthritis, Crohn's disease, and ulcerative colitis. The AUCs of the PheNorm score reached 0.90, 0.94, 0.95, and 0.94 for the 4 phenotypes, respectively, which were comparable to the accuracy of supervised algorithms trained with sample sizes of 100-300, with no statistically significant difference. The accuracy of the PheNorm algorithms is on par with algorithms trained with annotated samples. PheNorm fully automates the generation of accurate phenotyping algorithms and demonstrates the capacity for EHR-driven annotations to scale to the next level - phenotypic big data. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Chang, Xingzhi; Jin, Yiwen; Zhao, Haijuan; Huang, Qionghui; Wang, Jingmin; Yuan, Yun; Han, Ying; Qin, Jiong
2013-03-01
Central core disease is a rare inherited neuromuscular disorder caused by mutations in ryanodine receptor type 1 gene. The clinical phenotype of the disease is highly variable. We report a Chinese pedigree with central core disease confirmed by the gene sequencing. All 3 patients in the family presented with mild proximal limb weakness. The serum level of creatine kinase was normal, and electromyography suggested myogenic changes. The histologic analysis of muscle biopsy showed identical central core lesions in almost all of the muscle fibers in the index case. Exon 90-106 in the C-terminal domain of the ryanodine receptor type 1 gene was amplified using polymerase chain reaction. One heterozygous missense mutation G14678A (Arg4893Gln) in exon 102 was identified in all 3 patients. This is the first report of a familial case of central core disease confirmed by molecular study in mainland China.
Fourier, Anthony; Portelius, Erik; Zetterberg, Henrik; Blennow, Kaj; Quadrio, Isabelle; Perret-Liaudet, Armand
2015-09-20
A panel of cerebrospinal fluid (CSF) biomarkers including total Tau (t-Tau), phosphorylated Tau protein at residue 181 (p-Tau) and β-amyloid peptides (Aβ42 and Aβ40), is frequently used as an aid in Alzheimer's disease (AD) diagnosis for young patients with cognitive impairment, for predicting prodromal AD in mild cognitive impairment (MCI) subjects, for AD discrimination in atypical clinical phenotypes and for inclusion/exclusion and stratification of patients in clinical trials. Due to variability in absolute levels between laboratories, there is no consensus on medical cut-off value for the CSF AD signature. Thus, for full implementation of this core AD biomarker panel in clinical routine, this issue has to be solved. Variability can be explained both by pre-analytical and analytical factors. For example, the plastic tubes used for CSF collection and storage, the lack of reference material and the variability of the analytical protocols were identified as important sources of variability. The aim of this review is to highlight these pre-analytical and analytical factors and describe efforts done to counteract them in order to establish cut-off values for core CSF AD biomarkers. This review will give the current state of recommendations. Copyright © 2015. Published by Elsevier B.V.
Characterization of Classical and Nonclassical Fabry Disease: A Multicenter Study
Wanner, Christoph; Hughes, Derralynn; Mehta, Atul; Oder, Daniel; Watkinson, Oliver T.; Elliott, Perry M.; Linthorst, Gabor E.; Wijburg, Frits A.; Biegstraaten, Marieke; Hollak, Carla E.
2017-01-01
Fabry disease leads to renal, cardiac, and cerebrovascular manifestations. Phenotypic differences between classically and nonclassically affected patients are evident, but there are few data on the natural course of classical and nonclassical disease in men and women. To describe the natural course of Fabry disease stratified by sex and phenotype, we retrospectively assessed event-free survival from birth to the first clinical visit (before enzyme replacement therapy) in 499 adult patients (mean age 43 years old; 41% men; 57% with the classical phenotype) from three international centers of excellence. We classified patients by phenotype on the basis of characteristic symptoms and enzyme activity. Men and women with classical Fabry disease had higher event rate than did those with nonclassical disease (hazard ratio for men, 5.63, 95% confidence interval, 3.17 to 10.00; P<0.001; hazard ratio for women, 2.88, 95% confidence interval, 1.54 to 5.40; P<0.001). Furthermore, men with classical Fabry disease had lower eGFR, higher left ventricular mass, and higher plasma globotriaosylsphingosine concentrations than men with nonclassical Fabry disease or women with either phenotype (P<0.001). In conclusion, before treatment with enzyme replacement therapy, men with classical Fabry disease had a history of more events than men with nonclassical disease or women with either phenotype; women with classical Fabry disease were more likely to develop complications than women with nonclassical disease. These data may support the development of new guidelines for the monitoring and treatment of Fabry disease and studies on the effects of intervention in subgroups of patients. PMID:27979989
Hall, Molly A; Dudek, Scott M; Goodloe, Robert; Crawford, Dana C; Pendergrass, Sarah A; Peissig, Peggy; Brilliant, Murray; McCarty, Catherine A; Ritchie, Marylyn D
2014-01-01
Environment-wide association studies (EWAS) provide a way to uncover the environmental mechanisms involved in complex traits in a high-throughput manner. Genome-wide association studies have led to the discovery of genetic variants associated with many common diseases but do not take into account the environmental component of complex phenotypes. This EWAS assesses the comprehensive association between environmental variables and the outcome of type 2 diabetes (T2D) in the Marshfield Personalized Medicine Research Project Biobank (Marshfield PMRP). We sought replication in two National Health and Nutrition Examination Surveys (NHANES). The Marshfield PMRP currently uses four tools for measuring environmental exposures and outcome traits: 1) the PhenX Toolkit includes standardized exposure and phenotypic measures across several domains, 2) the Diet History Questionnaire (DHQ) is a food frequency questionnaire, 3) the Measurement of a Person's Habitual Physical Activity scores the level of an individual's physical activity, and 4) electronic health records (EHR) employs validated algorithms to establish T2D case-control status. Using PLATO software, 314 environmental variables were tested for association with T2D using logistic regression, adjusting for sex, age, and BMI in over 2,200 European Americans. When available, similar variables were tested with the same methods and adjustment in samples from NHANES III and NHANES 1999-2002. Twelve and 31 associations were identified in the Marshfield samples at p<0.01 and p<0.05, respectively. Seven and 13 measures replicated in at least one of the NHANES at p<0.01 and p<0.05, respectively, with the same direction of effect. The most significant environmental exposures associated with T2D status included decreased alcohol use as well as increased smoking exposure in childhood and adulthood. The results demonstrate the utility of the EWAS method and survey tools for identifying environmental components of complex diseases like type 2 diabetes. These high-throughput and comprehensive investigation methods can easily be applied to investigate the relation between environmental exposures and multiple phenotypes in future analyses.
The Cohen syndrome: clinical and endocrinological studies of two new cases.
Balestrazzi, P; Corrini, L; Villani, G; Bolla, M P; Casa, F; Bernasconi, S
1980-01-01
This report concerns two new cases of the Cohen syndrome and gives further information on the variable phenotypical pattern of the disease. The frequency of major and minor clinical signs is reviewed from all the published reports. Among the minor signs we found previously undescribed skeletal abnormalities in one of our patients. The reported delay onset of puberty, which appears to be a frequent aspect of the syndrome, seems to occur without LH and FSH deficiency, as our patients show. Images PMID:6782211
Burk, Brittany R; Watts, Christopher R
2018-02-19
The physiological manifestations of Parkinson disease are heterogeneous, as evidenced by disease subtypes. Dysphonia has been well documented as an early and progressively significant impairment associated with the disease. The purpose of this study was to investigate how acoustic and aerodynamic measures of vocal function were affected by Parkinson tremor subtype (phenotype) in an effort to better understand the heterogeneity of voice impairment severity in Parkinson disease. This is a prospective case-control study. Thirty-two speakers with Parkinson disease assigned to tremor and nontremor phenotypes and 10 healthy controls were recruited. Sustained vowels and connected speech were recorded from each speaker. Acoustic measures of cepstral peak prominence (CPP) and aerodynamic measures of transglottal airflow (TAF) were calculated from the recorded acoustic and aerodynamic waveforms. Speakers with a nontremor dominant phenotype exhibited significantly (P < 0.05) lower CPP and higher TAF in vowels compared with the tremor dominant phenotype and control speakers, who were not different from each other. No significant group differences were observed for CPP or TAF in connected speech. When producing vowels, participants with nontremor dominant phenotype exhibited reduced phonation periodicity and elevated TAF compared with tremor dominant and control participants. This finding is consistent with differential limb-motor and cognitive impairments between tremor and nontremor phenotypes reported in the extant literature. Results suggest that sustained vowel production may be sensitive to phonatory control as a function of Parkinson tremor phenotype in mild to moderate stages of the disease. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
López-Rubio, Salvador; Chacon-Camacho, Oscar F.; Matsui, Rodrigo; Guadarrama-Vallejo, Dalia; Astiazarán, Mirena C.
2018-01-01
Purpose To describe the retinal clinical features of a group of Mexican patients with Stargardt disease carrying the uncommon p.Ala1773Val founder mutation in ABCA4. Methods Ten patients carrying the p.Ala1773Val mutation, nine of them homozygously, were included. Visual function studies included best-corrected visual acuity, electroretinography, Goldmann kinetic visual fields, and full-field electroretinography (ERG). In addition, imaging studies, such as optical coherence tomography (OCT), short-wave autofluorescence imaging, and quantitative analyses of hypofluorescence, were performed in each patient. Results Best-corrected visual acuities ranged from 20/200 to 4/200. The median age of the patients at diagnosis was 23.3 years. The majority of the patients had photophobia and nyctalopia, and were classified as Fishman stage 4 (widespread choriocapillaris atrophy, resorption of flecks, and greatly reduced ERG amplitudes). An atypical retinal pigmentation pattern was observed in the patients, and the majority showed cone-rod dystrophy on full-field ERG. In vivo retinal microstructure assessment with OCT demonstrated central retinal thinning, variable loss of photoreceptors, and three different patterns of structural retinal degeneration. Two dissimilar patterns of abnormal autofluorescence were observed. No apparent age-related differences in the pattern of retinal degeneration were observed. Conclusions The results indicate that this particular mutation in ABCA4 is associated with a severe retinal phenotype and thus, could be classified as null. Careful phenotyping of patients carrying specific mutations in ABCA4 is essential to enhance our understanding of disease expression linked to particular mutations and the resulting genotype–phenotype correlations. PMID:29422768
Berry, Elliot M
2011-10-01
Attempts have been made to replace the bio-medical approach with that of systems biology, which considers dynamic human behavior (internal factors) for chronic (rather than acute) disease management. They have not yet incorporated the Bio-psycho-social (BPS) model of Engel which adds patients' background and cultural beliefs (external factors) contributing to their susceptibility to, and coping strategies for, non-communicable diseases (NCDs) the increasing domain of global Public Health. The problem is how to include the social determinants of disease in a comprehensive model of care, especially in the management of chronic disease. The concept of "sociotype" is proposed as a framework for understanding the interactions between the social, cultural and environmental inputs that influence the growth, development and life-long behavior of a person, including relationships, lifestyle and coping strategies. Pre-/peri-natal influences on development and subsequent susceptibility to chronic disease are examples of interactions between the sociotype, genotype and phenotype. Disorders of the sociotype, encompassing social determinants (e.g. poverty, education, networking), of disease are major contributors to the increase in NCDs, as well as for mental illness and absenteeism. Thus, people are the product of a threefold cord--genotype, phenotype and sociotype. WHAT NEXT?: Holistic management of patients through the BPS model have to be aligned with the relevant elements of systems biology--context, space, time and robustness--that pertain to the sociotype. Medical curricula should balance basic sciences with disciplines such as psychology, sociology, anthropology and public health that attempt to explain human behavior and the social determinants of disease. This requires methodologies combining qualitative and quantitative research to study simultaneous interactions (and their possible mechanisms) between systems biology and the BPS model. The neologism "sociotype" highlights the importance of the social dimension of the BPS model in a novel and useful way. The sociotype, with its effects on genotype and phenotype, will bring psychosocial variables into a paradigm of medical practice to promote health and improve the management of chronic illness. Copyright © 2011 Elsevier Ltd. All rights reserved.
Phenotypic Variability in the Coccolithophore Emiliania huxleyi
Lebrato, Mario; Stoll, Heather M.; Iglesias-Rodriguez, Debora; Müller, Marius N.; Méndez-Vicente, Ana; Oschlies, Andreas
2016-01-01
Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean. PMID:27348427
Matching disease and phenotype ontologies in the ontology alignment evaluation initiative.
Harrow, Ian; Jiménez-Ruiz, Ernesto; Splendiani, Andrea; Romacker, Martin; Woollard, Peter; Markel, Scott; Alam-Faruque, Yasmin; Koch, Martin; Malone, James; Waaler, Arild
2017-12-02
The disease and phenotype track was designed to evaluate the relative performance of ontology matching systems that generate mappings between source ontologies. Disease and phenotype ontologies are important for applications such as data mining, data integration and knowledge management to support translational science in drug discovery and understanding the genetics of disease. Eleven systems (out of 21 OAEI participating systems) were able to cope with at least one of the tasks in the Disease and Phenotype track. AML, FCA-Map, LogMap(Bio) and PhenoMF systems produced the top results for ontology matching in comparison to consensus alignments. The results against manually curated mappings proved to be more difficult most likely because these mapping sets comprised mostly subsumption relationships rather than equivalence. Manual assessment of unique equivalence mappings showed that AML, LogMap(Bio) and PhenoMF systems have the highest precision results. Four systems gave the highest performance for matching disease and phenotype ontologies. These systems coped well with the detection of equivalence matches, but struggled to detect semantic similarity. This deserves more attention in the future development of ontology matching systems. The findings of this evaluation show that such systems could help to automate equivalence matching in the workflow of curators, who maintain ontology mapping services in numerous domains such as disease and phenotype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medori, R.; Tritschler, H.J.
1993-10-01
Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologicmore » findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.« less
Sanchez, Margaux; Bousquet, Jean; Le Moual, Nicole; Jacquemin, Bénédicte; Clavel-Chapelon, Françoise; Humbert, Marc; Kauffmann, Francine; Tubert-Bitter, Pascale; Varraso, Raphaëlle
2013-01-01
Variable expression is one aspect of the heterogeneity of asthma. We aimed to define a variable pattern, which is relevant in general health epidemiological cohorts. Our objectives were to assess whether: 1) asthma patterns defined using simple asthma questions through repeated measurements could reflect disease variability 2) these patterns may further be classified according to asthma severity/control. Among 70,428 French women, we used seven questionnaires (1992–2005) and a comprehensive reimbursement database (2004–2009) to define three reliable asthma patterns based on repeated positive answers to the ever asthma attack question: “never asthma” (n = 64,061); “inconsistent” (“yes” followed by “no”, n = 3,514); “consistent” (fully consistent positive answers, n = 2,853). The “Inconsistent” pattern was related to both long-term (childhood-onset asthma with remission in adulthood) and short-term (reported asthma attack in the last 12 months, associated with asthma medication) asthma variability, showing that repeated questions are relevant markers of the variable expression of asthma. Furthermore, in this pattern, the number of positive responses (1992–2005) predicted asthma drug consumption in subsequent years, a marker of disease severity. The “Inconsistent” pattern is a phenotype that may capture the variable expression of asthma. Repeated answers, even to a simple question, are too often neglected. PMID:23741466
Prick, Janine; de Haan, Gerald; Green, Anthony R; Kent, David G
2014-10-01
Myeloproliferative neoplasms (MPNs) are clonal hematological diseases in which cells of the myelo-erythroid lineage are overproduced and patients are predisposed to leukemic transformation. Hematopoietic stem cells are the suspected disease-initiating cells, and these cells must acquire a clonal advantage relative to nonmutant hematopoietic stem cells to perpetuate disease. In 2005, several groups identified a single gain-of-function point mutation in JAK2 that associated with the majority of MPNs, and subsequent studies have led to a comprehensive understanding of the mutational landscape in MPNs. However, confusion still exists as to how a single genetic aberration can be associated with multiple distinct disease entities. Many explanations have been proposed, including JAK2V617F homozygosity, individual patient heterogeneity, and the differential regulation of downstream JAK2 signaling pathways. Several groups have made knock-in mouse models expressing JAK2V617F and have observed divergent phenotypes, each recapitulating some aspects of disease. Intriguingly, most of these models do not observe a strong hematopoietic stem cell self-renewal advantage compared with wild-type littermate controls, raising the question of how a clonal advantage is established in patients with MPNs. This review summarizes the current molecular understanding of MPNs and the diversity of disease phenotypes and proposes that the increased proliferation induced by JAK2V617F applies a selection pressure on the mutant clone that results in highly diverse clonal evolution in individuals. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Yildirim, Erkan; Karabulut, Onur; Yuksel, Uygar Cagdas; Celik, Murat; Bugan, Baris; Gokoglan, Yalcin; Ulubay, Mustafa; Gungor, Mutlu; Koklu, Mustafa
2017-01-01
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder among reproductive-aged women. It is known to be associated with cardiovascular diseases. The aim of this study was to determine and compare the echocardiographic data of patients according to the phenotypes of PCOS. This study included 113 patients with PCOS and 52 controls. Patients were classified into four potential PCOS phenotypes. Laboratory analyses and echocardiographic measurements were performed. Left ventricular mass was calculated by using Devereux formula and was indexed to body surface area. Phenotype-1 PCOS patients had significantly higher homeostasis model assessment - insu-lin resistance (HOMA-IR) (p = 0.023), free testosterone (p < 0.001), LDL cholesterol levels (p < 0.001) and free androgen index (p < 0.001) compared with the control group. There were significant differences between groups regarding the septal thickness, posterior wall thickness, Left ventricular ejection frac-tion, E/A ratio and left ventricular mass index (for all, p < 0.05). PCOS patients with phenotype 1 and 2 had significantly higher left ventricular mass index than the control group (p < 0.001). In univariate and multivariate analyses, PCOS phenotype, modified Ferriman-Gallwey Score and estradiol were found as variables, which independently could affect the left ventricular mass index. This study showed that women in their twenties who specifically fulfilled criteria for PCOS phenotype-1 according to the Rotterdam criteria, had higher left ventricular mass index and decreased E/A ratio, which might be suggestive of early stage diastolic dysfunction. (Cariol J 2017; 24, 4: 364-373).
Alacrima as a Harbinger of Adrenal Insufficiency in a Child with Allgrove (AAA) Syndrome
Brown, Brande; Agdere, Levon; Muntean, Cornelia; David, Karen
2016-01-01
Patient: Female, 6 Final Diagnosis: Allgrove syndrome Symptoms: Achalasia • adrenal insufficiency • alacrima Medication: — Clinical Procedure: — Specialty: Pediatrics and Neonatology Objective: Rare disease Background: Allgrove syndrome, or triple “A” syndrome (3A syndrome), is a rare autosomal recessive syndrome with variable phenotype, and an estimated prevalence of 1 per 1,000,000 individuals. Patients usually display the triad of achalasia, alacrima, and adrenocorticotropin (ACTH) insensitive adrenal insufficiency, though the presentation is inconsistent. Case Report: Here, the authors report a case of Allgrove syndrome in a pediatric patient with delayed diagnosis in order to raise awareness of this potentially fatal disease as a differential diagnosis of alacrima. Conclusions: The prevalence of Allgrove syndrome may be much higher as a result of underdiagnosis and missed diagnosis due to the variable presentation and sudden unexplained childhood death from adrenal crisis. The authors review the characteristic symptoms of Allgrove syndrome in relation to the case study in order to avoid missed or delayed diagnosis, potentially decreasing morbidity, and mortality in those affected by this disease. PMID:27698338
Genetics and Beyond – The Transcriptome of Human Monocytes and Disease Susceptibility
Zeller, Tanja; Wild, Philipp; Szymczak, Silke; Rotival, Maxime; Schillert, Arne; Castagne, Raphaele; Maouche, Seraya; Germain, Marine; Lackner, Karl; Rossmann, Heidi; Eleftheriadis, Medea; Sinning, Christoph R.; Schnabel, Renate B.; Lubos, Edith; Mennerich, Detlev; Rust, Werner; Perret, Claire; Proust, Carole; Nicaud, Viviane; Loscalzo, Joseph; Hübner, Norbert; Tregouet, David; Münzel, Thomas; Ziegler, Andreas; Tiret, Laurence
2010-01-01
Background Variability of gene expression in human may link gene sequence variability and phenotypes; however, non-genetic variations, alone or in combination with genetics, may also influence expression traits and have a critical role in physiological and disease processes. Methodology/Principal Findings To get better insight into the overall variability of gene expression, we assessed the transcriptome of circulating monocytes, a key cell involved in immunity-related diseases and atherosclerosis, in 1,490 unrelated individuals and investigated its association with >675,000 SNPs and 10 common cardiovascular risk factors. Out of 12,808 expressed genes, 2,745 expression quantitative trait loci were detected (P<5.78×10−12), most of them (90%) being cis-modulated. Extensive analyses showed that associations identified by genome-wide association studies of lipids, body mass index or blood pressure were rarely compatible with a mediation by monocyte expression level at the locus. At a study-wide level (P<3.9×10−7), 1,662 expression traits (13.0%) were significantly associated with at least one risk factor. Genome-wide interaction analyses suggested that genetic variability and risk factors mostly acted additively on gene expression. Because of the structure of correlation among expression traits, the variability of risk factors could be characterized by a limited set of independent gene expressions which may have biological and clinical relevance. For example expression traits associated with cigarette smoking were more strongly associated with carotid atherosclerosis than smoking itself. Conclusions/Significance This study demonstrates that the monocyte transcriptome is a potent integrator of genetic and non-genetic influences of relevance for disease pathophysiology and risk assessment. PMID:20502693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fryburg, J.S.; Shashi, V.; Kelly, T.E.
1994-09-01
We present a 4 generation family in which an abnormal chromosome 3 with dup(3)(q25) segregated from great-grandmother to grandmother to son without phenotypic effect. The son`s 2 daughters have dysmorphic features, mild developmental delays and congenital heart disease. Both girls have the abnormal chr. 3 but are the only family members with the abnormality to have phenotypic effects. An unaffected son of the father has normal chromosomes. FISH with whole chromosome paints for chromosomes 1, 2, 6, 7, 8, 14, 18, and 22 excluded these as the origin of the extra material. Chromosome 3-specific paint revealed a uniform pattern, suggestingmore » that the extra material is from chromosome 3. Comparative genomic hybridization and DNA studies are pending. Possible explanations for the discordance in phenotypes between the 4th generation offspring and the first 3 generations include: an undetected rearrangement in the previous generations that is unbalanced in the two affected individuals; the chromosome abnormality may be a benign variant and unrelated to the phenotype; or, most likely, genomic imprinting. Genomic imprinting is suggested by the observation that a phenotypic effect was only seen after the chromosome was inherited from the father. The mothers in the first two generations appear to have passed the abnormal chr. 3 on without effect. This is an opportunity to delineate a region of the human genome affected by paternal imprinting.« less
Bristow, Michael R; Kao, David P; Breathett, Khadijah K; Altman, Natasha L; Gorcsan, John; Gill, Edward A; Lowes, Brian D; Gilbert, Edward M; Quaife, Robert A; Mann, Douglas L
2017-11-01
Diagnosis, prognosis, treatment, and development of new therapies for diseases or syndromes depend on a reliable means of identifying phenotypes associated with distinct predictive probabilities for these various objectives. Left ventricular ejection fraction (LVEF) provides the current basis for combined functional and structural phenotyping in heart failure by classifying patients as those with heart failure with reduced ejection fraction (HFrEF) and those with heart failure with preserved ejection fraction (HFpEF). Recently the utility of LVEF as the major phenotypic determinant of heart failure has been challenged based on its load dependency and measurement variability. We review the history of the development and adoption of LVEF as a critical measurement of LV function and structure and demonstrate that, in chronic heart failure, load dependency is not an important practical issue, and we provide hemodynamic and molecular biomarker evidence that LVEF is superior or equal to more unwieldy methods of identifying phenotypes of ventricular remodeling. We conclude that, because it reliably measures both left ventricular function and structure, LVEF remains the best current method of assessing pathologic remodeling in heart failure in both individual clinical and multicenter group settings. Because of the present and future importance of left ventricular phenotyping in heart failure, LVEF should be measured by using the most accurate technology and methodologic refinements available, and improved characterization methods should continue to be sought. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Farruggia, Piero; Di Marco, Floriana; Dufour, Carlo
2018-03-01
Pearson syndrome (PS) is a sporadic and very rare syndrome classically associated with single large-scale deletions of mitochondrial DNA and characterized by refractory sideroblastic anemia during infancy. Areas covered: This review presents an analysis and interpretation of the published data that forms the basis for our understanding of PS. PubMed, Google Scholarand Thompson ISI Web of Knowledge were searched for relevant data. Expert commentary: PS is a very rare mitochodrial disease that involves different organs and systems. Clinical phenotype is extremely variable and may change over the course of disease itself with the possibility both of worsenings and improvements. Outcome is invariably lethal and at the moment no cure is available. Accurate supportive treatment and follow up program in centres with experience in mitochondrial diseases and marrow failure may positively influence quality and duration of life.
Merging Electronic Health Record Data and Genomics for Cardiovascular Research
Hall, Jennifer L.; Ryan, John J.; Bray, Bruce E.; Brown, Candice; Lanfear, David; Newby, L. Kristin; Relling, Mary V.; Risch, Neil J.; Roden, Dan M.; Shaw, Stanley Y.; Tcheng, James E.; Tenenbaum, Jessica; Wang, Thomas N.; Weintraub, William S.
2017-01-01
The process of scientific discovery is rapidly evolving. The funding climate has influenced a favorable shift in scientific discovery toward the use of existing resources such as the electronic health record. The electronic health record enables long-term outlooks on human health and disease, in conjunction with multidimensional phenotypes that include laboratory data, images, vital signs, and other clinical information. Initial work has confirmed the utility of the electronic health record for understanding mechanisms and patterns of variability in disease susceptibility, disease evolution, and drug responses. The addition of biobanks and genomic data to the information contained in the electronic health record has been demonstrated. The purpose of this statement is to discuss the current challenges in and the potential for merging electronic health record data and genomics for cardiovascular research. PMID:26976545
Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; Balhoff, James P.; Borromeo, Charles; Brush, Matthew; Carbon, Seth; Conlin, Tom; Dunn, Nathan; Engelstad, Mark; Foster, Erin; Gourdine, J.P.; Jacobsen, Julius O.B.; Keith, Dan; Laraway, Bryan; Lewis, Suzanna E.; NguyenXuan, Jeremy; Shefchek, Kent; Vasilevsky, Nicole; Yuan, Zhou; Washington, Nicole; Hochheiser, Harry; Groza, Tudor; Smedley, Damian; Robinson, Peter N.; Haendel, Melissa A.
2017-01-01
The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype–phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype–phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species. PMID:27899636
Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; ...
2016-11-29
The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Nonhuman organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research datamore » can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.« less
Roser, Anna-Elisa; Tönges, Lars; Lingor, Paul
2017-01-01
Neurodegenerative diseases are characterized by the progressive degeneration of neurons in the central and peripheral nervous system (CNS, PNS), resulting in a reduced innervation of target structures and a loss of function. A shared characteristic of many neurodegenerative diseases is the infiltration of microglial cells into affected brain regions. During early disease stages microglial cells often display a rather neuroprotective phenotype, but switch to a more pro-inflammatory neurotoxic phenotype in later stages of the disease, contributing to the neurodegeneration. Activation of the Rho kinase (ROCK) pathway appears to be instrumental for the modulation of the microglial phenotype: increased ROCK activity in microglia mediates mechanisms of the inflammatory response and is associated with improved motility, increased production of reactive oxygen species (ROS) and release of inflammatory cytokines. Recently, several studies suggested inhibition of ROCK signaling as a promising treatment option for neurodegenerative diseases. In this review article, we discuss the contribution of microglial activity and phenotype switch to the pathophysiology of Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS), two devastating neurodegenerative diseases without disease-modifying treatment options. Furthermore, we describe how ROCK inhibition can influence the microglial phenotype in disease models and explore ROCK inhibition as a future treatment option for PD and ALS.
Lin, Frank Po-Yen; Pokorny, Adrian; Teng, Christina; Epstein, Richard J
2017-07-31
Vast amounts of clinically relevant text-based variables lie undiscovered and unexploited in electronic medical records (EMR). To exploit this untapped resource, and thus facilitate the discovery of informative covariates from unstructured clinical narratives, we have built a novel computational pipeline termed Text-based Exploratory Pattern Analyser for Prognosticator and Associator discovery (TEPAPA). This pipeline combines semantic-free natural language processing (NLP), regular expression induction, and statistical association testing to identify conserved text patterns associated with outcome variables of clinical interest. When we applied TEPAPA to a cohort of head and neck squamous cell carcinoma patients, plausible concepts known to be correlated with human papilloma virus (HPV) status were identified from the EMR text, including site of primary disease, tumour stage, pathologic characteristics, and treatment modalities. Similarly, correlates of other variables (including gender, nodal status, recurrent disease, smoking and alcohol status) were also reliably recovered. Using highly-associated patterns as covariates, a patient's HPV status was classifiable using a bootstrap analysis with a mean area under the ROC curve of 0.861, suggesting its predictive utility in supporting EMR-based phenotyping tasks. These data support using this integrative approach to efficiently identify disease-associated factors from unstructured EMR narratives, and thus to efficiently generate testable hypotheses.
Lemas, Dominick J; Klimentidis, Yann C; Aslibekyan, Stella; Wiener, Howard W; O'Brien, Diane M; Hopkins, Scarlett E; Stanhope, Kimber L; Havel, Peter J; Allison, David B; Fernandez, Jose R; Tiwari, Hemant K; Boyer, Bert B
2016-12-01
n-3 polyunsaturated fatty acid (n-3 PUFA) intake is associated with protection from obesity; however, the mechanisms of protection remain poorly characterized. The stearoyl CoA desaturase (SCD), insulin-sensitive glucose transporter (SLC2A4), and sterol regulatory element binding protein (SREBF1) genes are transcriptionally regulated by n-3 PUFA intake and harbor polymorphisms associated with obesity. The present study investigated how consumption of n-3 PUFA modifies associations between SCD, SLC2A4, and SREBF1 polymorphisms and anthropometric variables and metabolic phenotypes. Anthropometric variables and metabolic phenotypes were measured in a cross-sectional sample of Yup'ik individuals (n = 1135) and 33 polymorphisms were tested for main effects and interactions using linear models that account for familial correlations. n-3 PUFA intake was estimated using red blood cell nitrogen stable isotope ratios. SCD polymorphisms were associated with ApoA1 concentration and n-3 PUFA interactions with SCD polymorphisms were associated with reduced fasting cholesterol levels and waist-to-hip ratio. SLC2A4 polymorphisms were associated with hip circumference, high-density lipoprotein and ApoA1 concentrations. SREBF1 polymorphisms were associated with low-density lipoprotein and HOMA-IR and n-3 PUFA interactions were associated with reduced fasting insulin and HOMA-IR levels. The results suggest that an individual's genotype may interact with dietary n-3 PUFAs in ways that are associated with protection from obesity-related diseases in Yup'ik people. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lemas, Dominick J.; Klimentidis, Yann C.; Aslibekyan, Stella; Wiener, Howard W.; O’Brien, Diane M.; Hopkins, Scarlett E.; Stanhope, Kimber L.; Havel, Peter J.; Allison, David B.; Fernandez, Jose R.; Tiwari, Hemant K.; Boyer, Bert B.
2016-01-01
Scope n-3 polyunsaturated fatty acid (n-3 PUFA) intake is associated with protection from obesity, however, the mechanisms of protection remain poorly characterized. The stearoyl CoA desaturase (SCD), insulin sensitive glucose transporter (SLC2A4), and sterol regulatory element binding protein (SREBF1) genes are transcriptionally regulated by n-3 PUFA intake and harbor polymorphisms associated with obesity. The present study investigated how consumption of n-3 PUFA modifies associations between SCD, SLC2A4, and SREBF1 polymorphisms and anthropometric variables and metabolic phenotypes. Materials and Methods Anthropometric variables and metabolic phenotypes were measured in a cross-sectional sample of Yup’ik individuals (n=1135) and thirty-three polymorphisms were tested for main effects and interactions using linear models that account for familial correlations. n-3 PUFA intake was estimated using red blood cell nitrogen stable isotope ratios. SCD polymorphisms were associated with ApoA1 concentration and n-3 PUFA interactions with SCD polymorphisms were associated with reduced fasting cholesterol levels and waist-to-hip ratio. SLC2A4 polymorphisms were associated with hip circumference, high-density lipoprotein and ApoA1 concentrations. SREBF1 polymorphisms were associated with low-density lipoprotein and HOMA-IR and n-3 PUFA interactions were associated with reduced fasting insulin and HOMA-IR levels. Conclusion These results suggest that an individual’s genotype may interact with dietary n-3 PUFAs in ways that are associated with protection from obesity-related diseases in Yup’ik people. PMID:27467133
Leveraging Collaborative Filtering to Accelerate Rare Disease Diagnosis
Shen, Feichen; Liu, Sijia; Wang, Yanshan; Wang, Liwei; Afzal, Naveed; Liu, Hongfang
2017-01-01
In the USA, rare diseases are defined as those affecting fewer than 200,000 patients at any given time. Patients with rare diseases are frequently misdiagnosed or undiagnosed which may due to the lack of knowledge and experience of care providers. We hypothesize that patients’ phenotypic information available in electronic medical records (EMR) can be leveraged to accelerate disease diagnosis based on the intuition that providers need to document associated phenotypic information to support the diagnosis decision, especially for rare diseases. In this study, we proposed a collaborative filtering system enriched with natural language processing and semantic techniques to assist rare disease diagnosis based on phenotypic characterization. Specifically, we leveraged four similarity measurements with two neighborhood algorithms on 2010-2015 Mayo Clinic unstructured large patient cohort and evaluated different approaches. Preliminary results demonstrated that the use of collaborative filtering with phenotypic information is able to stratify patients with relatively similar rare diseases. PMID:29854225
Leveraging Collaborative Filtering to Accelerate Rare Disease Diagnosis.
Shen, Feichen; Liu, Sijia; Wang, Yanshan; Wang, Liwei; Afzal, Naveed; Liu, Hongfang
2017-01-01
In the USA, rare diseases are defined as those affecting fewer than 200,000 patients at any given time. Patients with rare diseases are frequently misdiagnosed or undiagnosed which may due to the lack of knowledge and experience of care providers. We hypothesize that patients' phenotypic information available in electronic medical records (EMR) can be leveraged to accelerate disease diagnosis based on the intuition that providers need to document associated phenotypic information to support the diagnosis decision, especially for rare diseases. In this study, we proposed a collaborative filtering system enriched with natural language processing and semantic techniques to assist rare disease diagnosis based on phenotypic characterization. Specifically, we leveraged four similarity measurements with two neighborhood algorithms on 2010-2015 Mayo Clinic unstructured large patient cohort and evaluated different approaches. Preliminary results demonstrated that the use of collaborative filtering with phenotypic information is able to stratify patients with relatively similar rare diseases.
Beck, James D; Moss, Kevin L; Morelli, Thiago; Offenbacher, Steven
2018-02-01
This paper focuses on the Periodontal Profile Class (PPC) System that may be more informative and representative of periodontitis phenotypes than current case definitions of periodontitis. This study illustrates the unique aspects of the PPC compared with other periodontal indices for studying associations between periodontal disease and prevalent systemic conditions. We computed odds ratios and 95% confidence intervals to compare associations between periodontal disease and prevalent systemic conditions using our new PPC and two traditional indices. We used the Bayesian Information Criterion (BIC) to determine the fit of the model and the magnitude of the contribution attributable to periodontal disease beyond traditional risk factors. The Atherosclerosis Risk in Communities (ARIC) Study (1996-1998) results were compared with results from the combined National Health and Nutrition Examination Survey 2009-2014 datasets. In the ARIC Study, high gingival inflammation, tooth loss, severe tooth loss, and severe disease PPC components were significantly associated with diabetes, coronary heart disease (CHD), high-sensitivity C-reactive protein, and interleukin (IL)-6, while only severe disease was associated with stroke. Severe disease was associated with CHD using the Centers for Disease Control/American Academy of Periodontology index, and the European Periodontal index was associated with CHD and IL-6. The addition of the PPC to traditional variables associated with prevalent diabetes, stroke, CHD, and systemic measures of inflammation resulted in very strong improvement of the overall models, while the traditional indices were less likely to be associated and, if present, the associations were weaker. The PPC system provides specific insight into the individuals and periodontal characteristics of the phenotype that are associated with systemic conditions that may be useful in designing treatment interventions. © 2018 American Academy of Periodontology.
Bolia, Rishi; Rosenbaum, Jeremy; Schildkraut, Vered; Hardikar, Winita; Oliver, Mark; Cameron, Donald; Alex, George
2018-04-01
A significant proportion of children with Crohn disease develop a secondary loss of response (LOR) to infliximab. Our aim was to study the impact of initial treatment strategies on secondary LOR. We reviewed the medical records of children with Crohn disease who received scheduled maintenance infliximab therapy for at least 12 months. We compared children who developed LOR with those who did not; with regards to their clinical and laboratory parameters, disease phenotype, and treatment strategy before developing LOR. A total of 73 children (median age at diagnosis 11 (2-16) years, 41 boys) who had received a median duration of 33 (13-110) months of infliximab therapy were included in the final analysis. LOR was seen in 25(34.2%). Demographic variables, disease phenotype (age, disease location, and behavior), inflammatory parameters, and pediatric Crohn disease activity index at induction with infliximab were similar between both groups. Children with LOR had a significantly greater number of flares of the disease when compared to those who did not have LOR (4 [1-8] vs 2 [1-5] P = 0.03). The choice of the concomitant immunomodulator-methotrexate (11/29 [37.9%]) versus azathioprine (11/36 [30.5%]) (P = 0.6) did not affect LOR rates. The median time-lag between diagnosis and induction with infliximab was significantly longer in children with LOR as compared to those who did not have an LOR (28 [4-90] months vs 12.5 [1-121] months, P = 0.004). Early use of infliximab in pediatric Crohn disease is associated with a decrease in secondary LOR. The type of concomitant immunomodulator used does not make a difference to LOR rates.
Moses, Shimon W; Parvari, Ruti
2002-03-01
Glycogen storage disease type IV (GSD-IV), also known as Andersen disease or amylopectinosis (MIM 23250), is a rare autosomal recessive disorder caused by a deficiency of glycogen branching enzyme (GBE) leading to the accumulation of amylopectin-like structures in affected tissues. The disease is extremely heterogeneous in terms of tissue involvement, age of onset and clinical manifestations. The human GBE cDNA is approximately 3-kb in length and encodes a 702-amino acid protein. The GBE amino acid sequence shows a high degree of conservation throughout species. The human GBE gene is located on chromosome 3p14 and consists of 16 exons spanning at least 118 kb of chromosomal DNA. Clinically the classic Andersen disease is a rapidly progressive disorder leading to terminal liver failure unless liver transplantation is performed. Several mutations have been reported in the GBE gene in patients with classic phenotype. Mutations in the GBE gene have also been identified in patients with the milder non-progressive hepatic form of the disease. Several other variants of GSD-IV have been reported: a variant with multi-system involvement including skeletal and cardiac muscle, nerve and liver; a juvenile polysaccharidosis with multi-system involvement but normal GBE activity; and the fatal neonatal neuromuscular form associated with a splice site mutation in the GBE gene. Other presentations include cardiomyopathy, arthrogryposis and even hydrops fetalis. Polyglucosan body disease, characterized by widespread upper and lower motor neuron lesions, can present with or without GBE deficiency indicating that different biochemical defects could result in an identical phenotype. It is evident that this disease exists in multiple forms with enzymatic and molecular heterogeneity unparalleled in the other types of glycogen storage diseases.
Hirsch, Ayal; Yarur, Andres J; Dezheng, Hou; Rodriquez, Dylan; Krugliak Cleveland, Noa; Ali, Tauseef; Hurst, Roger D; Umanskiy, Konstantin; Hyman, Neil; Colwell, Janice; Rubin, David T
2015-10-01
For medically refractory or obstructive Crohn's disease (CD), ostomy surgery remains an important therapeutic option. Outcomes and complications of this approach have not been well described in the era of biological therapies. Our study aims to characterize CD patients undergoing ostomy creation and assess outcome predictors. We performed a retrospective chart review of CD patients who underwent ostomy creation in our center from 2011 to 2014. Data collected include patient demographics, detailed disease- and surgery-related variables, and clinical outcomes after 26 weeks of follow-up. Of the 112 patients, 54 % were female, the median age was 39 years (range 19-78), the median disease duration was 13 years (range 0-50), 54 % had ileo-colonic disease, 55 % had stricturing phenotype, and 59 % had perianal disease. Sixty-two percent received end ostomies, and 38 % received loop ostomies. The leading indications for surgery were stricturing, fistulizing, and perianal disease (35 %). Forty-three (38 %) patients had 76 major complications, including dehydration (22 cases), intra-abdominal infection (16), and obstruction (14). Increased major postoperative complications correlated with penetrating disease (p = 0.02, odds ratio [OR] = 5.52, 95 % confidence interval [CI] = 1.25-24.42), the use of narcotics before surgery (p = 0.04, OR = 2.54, 95 % CI = 1.02-6.34), and loop ostomies (p = 0.004, OR = 4.2, 95 % CI = 1.57-11.23). Penetrating phenotype, the use of narcotics before surgery, and loop ostomies are associated with major complications in CD patients undergoing ostomy creation. These findings may influence risk management of CD patients needing ostomies.
Phenotypic variability of Cat-Eye syndrome.
Berends, M J; Tan-Sindhunata, G; Leegte, B; van Essen, A J
2001-01-01
Cat-Eye syndrome (CES) is a disorder with a variable pattern of multiple congenital anomalies of which coloboma of the iris and anal atresia are the best known. CES is cytogenetically characterised by the presence of an extra bisatellited marker chromosome, which represents an inverted dicentric duplication of a part of chromosome 22 (inv dup(22)). We report on three CES-patients who carry an inv dup(22) diagnosed with FISH studies. They show remarkable phenotypic variability. The cause of this variability is unknown. Furthermore, we review clinical features of 71 reported patients. Only 41% of the CES-patients have the combination of iris coloboma, anal anomalies and pre-auricular anomalies. Therefore, almost 60% of the CES-patients are hard to recognize by their phenotype alone. Mild to moderate mental retardation was found in 32% (16/50) of the cases. Mental retardation occurs more frequently in male CES-patients. There is no apparent phenotypic difference between mentally retarded and mentally normal CES-patients.
Ocular phenotypes associated with two mutations (R121W, C126X) in the Norrie disease gene.
Kellner, U; Fuchs, S; Bornfeld, N; Foerster, M H; Gal, A
1996-06-01
To describe the ocular phenotypes associated with 2 mutations in the Norrie disease gene including a manifesting carrier. Ophthalmological examinations were performed in 2 affected males and one manifesting carrier. Genomic DNA was analyzed by direct sequencing of the Norrie disease gene. Family I: A 29-year-old male had the right eye enucleated at the age of 3 years. His left eye showed severe temporal dragging of the retina and central scars. Visual acuity was 20/300. DNA analysis revealed a C-to-T transition of the first nucleotide in codon 121 predicting the replacement of arginine-121 by tryptophan (R121W). Both the mother and maternal grandmother carry the same mutation in heterozygous form. Family 2: A 3-month-old boy presented with severe temporal dragging of the retina on both eyes and subsequently developed retinal detachment. Visual acuity was limited to light perception. His mother's left eye was amaurotic and phthitic. Her right eye showed severe retinal dragging, visual acuity was reduced to 20/60. DNA analysis revealed a T-to-A transversion of the third nucleotide in codon 126 creating a stop codon (C126X). The mother and maternal grandmother were carriers. Mutations in the Norrie disease gene can lead to retinal malformations of variable severity both in hemizygous males and manifesting carriers.
Zhuang, Xiaodong; Guo, Yue; Ni, Ao; Yang, Daya; Liao, Lizhen; Zhang, Shaozhao; Zhou, Huimin; Sun, Xiuting; Wang, Lichun; Wang, Xueqin; Liao, Xinxue
2018-06-04
An environment-wide association study (EWAS) may be useful to comprehensively test and validate associations between environmental factors and cardiovascular disease (CVD) in an unbiased manner. Data from National Health and Nutrition Examination Survey (1999-2014) were randomly 50:50 spilt into training set and testing set. CVD was ascertained by a self-reported diagnosis of myocardial infarction, coronary heart disease or stroke. We performed multiple linear regression analyses associating 203 environmental factors and 132 clinical phenotypes with CVD in training set (false discovery rate < 5%) and significant factors were validated in the testing set (P < 0.05). Random forest (RF) model was used for multicollinearity elimination and variable importance ranking. Discriminative power of factors for CVD was calculated by area under the receiver operating characteristic (AUROC). Overall, 43,568 participants with 4084 (9.4%) CVD were included. After adjusting for age, sex, race, body mass index, blood pressure and socio-economic level, we identified 5 environmental variables and 19 clinical phenotypes associated with CVD in training and testing dataset. Top five factors in RF importance ranking were: waist, glucose, uric acid, and red cell distribution width and glycated hemoglobin. AUROC of the RF model was 0.816 (top 5 factors) and 0.819 (full model). Sensitivity analyses reveal no specific moderators of the associations. Our systematic evaluation provides new knowledge on the complex array of environmental correlates of CVD. These identified correlates may serve as a complementary approach to CVD risk assessment. Our findings need to be probed in further observational and interventional studies. Copyright © 2018. Published by Elsevier Ltd.
Factors Influencing the Phenotypic Expression of Hypertrophic Cardiomyopathy in Genetic Carriers.
Pérez-Sánchez, Inmaculada; Romero-Puche, Antonio José; García-Molina Sáez, Esperanza; Sabater-Molina, María; López-Ayala, José María; Muñoz-Esparza, Carmen; López-Cuenca, David; de la Morena, Gonzalo; Castro-García, Francisco José; Gimeno-Blanes, Juan Ramón
2018-03-01
Hypertrophic cardiomyopathy (HCM) is a disorder with variable expression. It is mainly caused by mutations in sarcomeric genes but the phenotype could be modulated by other factors. The aim of this study was to determine whether factors such as sex, systemic hypertension, or physical activity are modifiers of disease severity and to establish their role in age-related penetrance of HCM. We evaluated 272 individuals (mean age 49 ± 17 years, 57% males) from 72 families with causative mutations. The relationship between sex, hypertension, physical activity, and left ventricular hypertrophy was studied. The proportion of affected individuals increased with age. Men developed the disease 12.5 years earlier than women (adjusted median, 95%CI, -17.52 to -6.48; P < .001). Hypertensive patients were diagnosed with HCM later (10.8 years of delay) than normotensive patients (adjusted median, 95%CI, 6.28-17.09; P < .001). Individuals who performed physical activity were diagnosed with HCM significantly earlier (7.3 years, adjusted median, 95%CI, -14.49 to -1.51; P = .016). Sex, hypertension, and the degree of physical activity were not significantly associated with the severity of left ventricular hypertrophy. Adjusted survival both free from sudden death and from the combined event were not influenced by any of the exploratory variables. Men and athletes who are carriers of sarcomeric mutations are diagnosed earlier than women and sedentary individuals. Hypertensive carriers of sarcomeric mutations have a delayed diagnosis. Sex, hypertension, and physical activity are not associated with disease severity in carriers of HCM causative mutations. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Brown, C M; Rea, T J; Hamon, S C; Hixson, J E; Boerwinkle, E; Clark, A G; Sing, C F
2006-07-01
Apolipoproteins (apo) A-I and C-III are components of high-density lipoprotein-cholesterol (HDL-C), a quantitative trait negatively correlated with risk of cardiovascular disease (CVD). We analyzed the contribution of individual and pairwise combinations of single nucleotide polymorphisms (SNPs) in the APOA1/APOC3 genes to HDL-C variability to evaluate (1) consistency of published single-SNP studies with our single-SNP analyses; (2) consistency of single-SNP and two-SNP phenotype-genotype relationships across race-, gender-, and geographical location-dependent contexts; and (3) the contribution of single SNPs and pairs of SNPs to variability beyond that explained by plasma apo A-I concentration. We analyzed 45 SNPs in 3,831 young African-American (N=1,858) and European-American (N=1,973) females and males ascertained by the Coronary Artery Risk Development in Young Adults (CARDIA) study. We found three SNPs that significantly impact HDL-C variability in both the literature and the CARDIA sample. Single-SNP analyses identified only one of five significant HDL-C SNP genotype relationships in the CARDIA study that was consistent across all race-, gender-, and geographical location-dependent contexts. The other four were consistent across geographical locations for a particular race-gender context. The portion of total phenotypic variance explained by single-SNP genotypes and genotypes defined by pairs of SNPs was less than 3%, an amount that is miniscule compared to the contribution explained by variability in plasma apo A-I concentration. Our findings illustrate the impact of context-dependence on SNP selection for prediction of CVD risk factor variability.
Osteogenesis imperfecta type V: Genetic and clinical findings in eleven Chinese patients.
Liu, Yi; Wang, Jiawei; Ma, Doudou; Lv, Fang; Xu, Xiaojie; Xia, Weibo; Jiang, Yan; Wang, Ou; Xing, Xiaoping; Zhou, Peiran; Wang, Jianyi; Yu, Wei; Li, Mei
2016-11-01
Osteogenesis imperfecta (OI) type V is a rare inherited disease characterized by multiple fractures, intraosseous membrane calcification, and hypercallus formation. We investigate the causative gene, phenotype and also observe the effects of zoledronic acid in Chinese OI type V patients. The clinical phenotype and causative gene mutation was investigated in eleven patients with type V OI. Patients were given a dose of zoledronic acid 5mg intravenously. Fracture incidence and Z-score of bone mineral density (BMD) were evaluated. Serum levels of biomarkers such as cross linked C-telopeptide of type I collagen (β-CTX) and safety parameters were assessed. The c.-14C>T mutation in the 5' untranslated region of IFITM5 was detected in all patients. The phenotype was largely variable, and no significant correlation of genotype and phenotype was found. After one dose of zoledronic acid infusion, fracture incidence significantly dropped from 2fractures/year before treatment to 0fracture/year after treatment (P=0.01). Z score of lumbar spine BMD elevated from -2.6 to -1.3 (P<0.001). Serum β-CTX level decreased by 50% (P<0.05). No serious adverse event was found. No obvious correlation was found between the genotype and phenotype. Zoledronic acid had significantly skeletal protective effects in OI of type V. Copyright © 2016 Elsevier B.V. All rights reserved.
Tafazoli, Alireza; Eshraghi, Peyman; Pantaleoni, Francesca; Vakili, Rahim; Moghaddassian, Morteza; Ghahraman, Martha; Muto, Valentina; Paolacci, Stefano; Golyan, Fatemeh Fardi; Abbaszadegan, Mohammad Reza
2018-03-01
Noonan Syndrome (NS) is an autosomal dominant disorder with many variable and heterogeneous conditions. The genetic basis for 20-30% of cases is still unknown. This study evaluates Iranian Noonan patients both clinically and genetically for the first time. Mutational analysis of PTPN11 gene was performed in 15 Iranian patients, using PCR and Sanger sequencing at phase one. Then, as phase two, Next Generation Sequencing (NGS) in the form of targeted resequencing was utilized for analysis of exons from other related genes. Homology modelling for the novel founded mutations was performed as well. The genotype, phenotype correlation was done according to the molecular findings and clinical features. Previously reported mutation (p.N308D) in some patients and a novel mutation (p.D155N) in one of the patients were identified in phase one. After applying NGS methods, known and new variants were found in four patients in other genes, including: CBL (p. V904I), KRAS (p. L53W), SOS1 (p. I1302V), and SOS1 (p. R552G). Structural studies of two deduced novel mutations in related genes revealed deficiencies in the mutated proteins. Following genotype, phenotype correlation, a new pattern of the presence of intellectual disability in two patients was registered. NS shows strong variable expressivity along the high genetic heterogeneity especially in distinct populations and ethnic groups. Also possibly unknown other causative genes may be exist. Obviously, more comprehensive and new technologies like NGS methods are the best choice for detection of molecular defects in patients for genotype, phenotype correlation and disease management. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.
Mallick, Himel; Tiwari, Hemant K.
2016-01-01
Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice. PMID:27066062
Mallick, Himel; Tiwari, Hemant K
2016-01-01
Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice.
Bamm, Vladimir V; Geist, Arielle M; Harauz, George
2017-02-01
We have proposed that the myelin damage observed in multiple sclerosis (MS) may be partly mediated through the long-term release and degradation of extracellular hemoglobin (Hb) and the products of its oxidative degradation [Cellular and Molecular Life Sciences, 71, 1789-1798, 2014]. The protein haptoglobin (Hpt) binds extracellular Hb as a first line of defense, and can serve as a vascular antioxidant. Humans have two different Hpt alleles: Hpt1 and Hpt2, giving either homozygous Hpt1-1 or Hpt2-2 phenotypes, or a heterozygous Hpt1-2 phenotype. We questioned whether those geographic regions with higher frequency of the Hpt2 allele (conversely, lower frequency of Hpt1 allele) would correlate with an increased incidence of MS, because different Hpt phenotypes will have variable anti-oxidative potentials in protecting myelin from damage inflicted by extracellular Hb and its degradation products. To test this hypothesis, we undertook a systematic analysis of the literature on reported geographic distributions of Hpt alleles to compare them with data reported in the World Health Organization Atlas of worldwide MS prevalence. We found the frequency of the Hpt1 allele to be low in European and North American countries with a high prevalence of MS, consistent with our hypothesis. However, this correlation was not observed in China and India, countries with the lowest Hpt1 frequencies, yet low reported prevalence of MS. Nevertheless, this work shows the need for continued refinement of geographic patterns of MS prevalence, including data on ethnic or racial origin, and for new clinical studies to probe the observed correlation and evaluate Hpt phenotype as a predictor of disease variability and progression, severity, and/or comorbidity with cardiovascular disorders.
Cerruti Mainardi, Paola
2006-01-01
The Cri du Chat syndrome (CdCS) is a genetic disease resulting from a deletion of variable size occurring on the short arm of chromosome 5 (5p-). The incidence ranges from 1:15,000 to 1:50,000 live-born infants. The main clinical features are a high-pitched monochromatic cry, microcephaly, broad nasal bridge, epicanthal folds, micrognathia, abnormal dermatoglyphics, and severe psychomotor and mental retardation. Malformations, although not very frequent, may be present: cardiac, neurological and renal abnormalities, preauricular tags, syndactyly, hypospadias, and cryptorchidism. Molecular cytogenetic analysis has allowed a cytogenetic and phenotypic map of 5p to be defined, even if results from the studies reported up to now are not completely in agreement. Genotype-phenotype correlation studies showed a clinical and cytogenetic variability. The identification of phenotypic subsets associated with a specific size and type of deletion is of diagnostic and prognostic relevance. Specific growth and psychomotor development charts have been established. Two genes, Semaphorin F (SEMAF) and δ-catenin (CTNND2), which have been mapped to the "critical regions", are potentially involved in cerebral development and their deletion may be associated with mental retardation in CdCS patients. Deletion of the telomerase reverse transcriptase (hTERT) gene, localised to 5p15.33, could contribute to the phenotypic changes in CdCS. The critical regions were recently refined by using array comparative genomic hybridisation. The cat-like cry critical region was further narrowed using quantitative polymerase chain reaction (PCR) and three candidate genes were characterised in this region. The diagnosis is based on typical clinical manifestations. Karyotype analysis and, in doubtful cases, FISH analysis will confirm the diagnosis. There is no specific therapy for CdCS but early rehabilitative and educational interventions improve the prognosis and considerable progress has been made in the social adjustment of CdCS patients. PMID:16953888
Abdulridha-Aboud, Wissam; Kjellström, Ulrika; Andréasson, Sten
2016-01-01
Purpose To study the phenotype in two families with genetically identified autosomal dominant retinitis pigmentosa (adRP) focusing on macular structure and function. Methods Clinical data were collected at the Department of Ophthalmology, Lund University, Sweden, for affected and unaffected family members from two pedigrees with adRP. Examinations included optical coherence tomography (OCT), full-field electroretinography (ffERG), and multifocal electroretinography (mfERG). Molecular genetic screening was performed for known mutations associated with adRP. Results The mode of inheritance was autosomal dominant in both families. The members of the family with a mutation in the PRPF31 (p.IVS6+1G>T) gene had clinical features characteristic of RP, with severely reduced retinal rod and cone function. The degree of deterioration correlated well with increasing age. The mfERG showed only centrally preserved macular function that correlated well with retinal thinning on OCT. The family with a mutation in the RHO (p.R135W) gene had an extreme intrafamilial variability of the phenotype, with more severe disease in the younger generations. OCT showed pathology, but the degree of morphological changes was not correlated with age or with the mfERG results. The mother, with a de novo mutation in the RHO (p.R135W) gene, had a normal ffERG, and her retinal degeneration was detected merely with the reduced mfERG. Conclusions These two families demonstrate the extreme inter- and intrafamilial variability in the clinical phenotype of adRP. This is the first Swedish report of the clinical phenotype associated with a mutation in the PRPF31 (p.IVS6+1G>T) gene. Our results indicate that methods for assessment of the central retinal structure and function may improve the detection and characterization of the RP phenotype. PMID:27212874
Phenotypic variability in patients with ADA2 deficiency due to identical homozygous R169Q mutations.
Van Montfrans, Joris M; Hartman, Esther A R; Braun, Kees P J; Hennekam, Eric A M; Hak, Elisabeth A; Nederkoorn, Paul J; Westendorp, Willeke F; Bredius, Robbert G M; Kollen, Wouter J W; Schölvinck, Elisabeth H; Legger, G Elizabeth; Meyts, Isabelle; Liston, Adrian; Lichtenbelt, Klaske D; Giltay, Jacques C; Van Haaften, Gijs; De Vries Simons, Gaby M; Leavis, Helen; Sanders, Cornelis J G; Bierings, Marc B; Nierkens, Stefan; Van Gijn, Marielle E
2016-05-01
To determine the genotype-phenotype association in patients with adenosine deaminase-2 (ADA2) deficiency due to identical homozygous R169Q mutations inCECR1 METHODS: We present a case series of nine ADA2-deficient patients with an identical homozygous R169Q mutation. Clinical and diagnostic data were collected and available MRI studies were reviewed. We performed genealogy and haplotype analyses and measured serum ADA2 activity. ADA2 activity values were correlated to clinical symptoms. Age of presentation differed widely between the nine presented patients (range: 0 months to 8 years). The main clinical manifestations were (hepato)splenomegaly (8/9), skin involvement (8/9) and neurological involvement (8/9, of whom 6 encountered stroke). Considerable variation was seen in type, frequency and intensity of other symptoms, which included aplastic anaemia, acute myeloid leukaemia and cutaneous ulcers. Common laboratory abnormalities included cytopenias and hypogammaglobulinaemia. ADA2 enzyme activity in patients was significantly decreased compared with healthy controls. ADA2 activity levels tended to be lower in patients with stroke compared with patients without stroke. Genealogical studies did not identify a common ancestor; however, based on allele frequency, a North-West European founder effect can be noted. Three patients underwent haematopoietic cell transplantation, after which ADA2 activity was restored and clinical symptoms resolved. This case series revealed large phenotypic variability in patients with ADA2 deficiency though they were homozygous for the same R169Q mutation inCECR1 Disease modifiers, including epigenetic and environmental factors, thus seem important in determining the phenotype. Furthermore, haematopoietic cell transplantation appears promising for those patients with a severe clinical phenotype. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Combining Genotype, Phenotype, and Environment to Infer Potential Candidate Genes.
Talbot, Benoit; Chen, Ting-Wen; Zimmerman, Shawna; Joost, Stéphane; Eckert, Andrew J; Crow, Taylor M; Semizer-Cuming, Devrim; Seshadri, Chitra; Manel, Stéphanie
2017-03-01
Population genomic analysis can be an important tool in understanding local adaptation. Identification of potential adaptive loci in such analyses is usually based on the survey of a large genomic dataset in combination with environmental variables. Phenotypic data are less commonly incorporated into such studies, although combining a genome scan analysis with a phenotypic trait analysis can greatly improve the insights obtained from each analysis individually. Here, we aimed to identify loci potentially involved in adaptation to climate in 283 Loblolly pine (Pinus taeda) samples from throughout the species' range in the southeastern United States. We analyzed associations between phenotypic, molecular, and environmental variables from datasets of 3082 single nucleotide polymorphism (SNP) loci and 3 categories of phenotypic traits (gene expression, metabolites, and whole-plant traits). We found only 6 SNP loci that displayed potential signals of local adaptation. Five of the 6 identified SNPs are linked to gene expression traits for lignin development, and 1 is linked with whole-plant traits. We subsequently compared the 6 candidate genes with environmental variables and found a high correlation in only 3 of them (R2 > 0.2). Our study highlights the need for a combination of genotypes, phenotypes, and environmental variables, and for an appropriate sampling scheme and study design, to improve confidence in the identification of potential candidate genes. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mapping face encoding using functional MRI in multiple sclerosis across disease phenotypes.
Rocca, Maria A; Vacchi, Laura; Rodegher, Mariaemma; Meani, Alessandro; Martinelli, Vittorio; Possa, Francesca; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo
2017-10-01
Using fMRI during a face encoding (FE) task, we investigated the behavioral and fMRI correlates of FE in patients with relapse-onset multiple sclerosis (MS) at different stages of the disease and their relation with attentive-executive performance and structural MRI measures of disease-related damage. A fMRI FE task was administered to 75 MS patients (11 clinically isolated syndromes - CIS, 40 relapsing-remitting - RRMS - and 24 secondary progressive - SPMS) and 22 healthy controls (HC). fMRI activity during the face encoding condition was correlated with behavioral, clinical, neuropsychological and structural MRI variables. All study subjects activated brain regions belonging to face perception and encoding network, and deactivated areas of the default-mode network. Compared to HC, MS patients had the concomitant presence of areas of increased and decreased activations as well as increased and decreased deactivations. Compared to HC or RRMS, CIS patients experienced an increased recruitment of posterior-visual areas. Thalami, para-hippocampal gyri and right anterior cingulum were more activated in RRMS vs CIS or SPMS patients, while an increased recruitment of frontal areas was observed in SPMS vs RRMS. Areas of abnormal activations were significantly correlated with clinical, cognitive-behavioral and structural MRI measures. Abnormalities of FE network occur in MS and vary across disease clinical phenotypes. Early in the disease, an increased recruitment of areas typically devoted to face perception and encoding occurs. In SPMS patients, abnormal functional recruitment of frontal lobe areas might contribute to the severity of clinical manifestations.
Liccardo, Raffaella; De Rosa, Marina; Duraturo, Francesca
2018-01-01
Lynch syndrome is an autosomal dominant syndrome that can be subdivided into Lynch syndrome I, or site-specific colonic cancer, and Lynch syndrome II, or extracolonic cancers, particularly carcinomas of the stomach, endometrium, biliary and pancreatic systems, and urinary tract. Lynch syndrome is associated with point mutations and large rearrangements in DNA MisMatch Repair ( MMR ) genes. This syndrome shows a variable phenotypic expression in people who carry pathogenetic mutations. So far, a correlation in genotype-phenotype has not been definitely established. In this study, we describe 2 Lynch syndrome cases presenting with the same genotype but different phenotypes and discuss possible reasons for this.
Arsenault, Benoit J.; Lemieux, Isabelle; Després, Jean-Pierre; Wareham, Nicholas J.; Kastelein, John J.P.; Khaw, Kay-Tee; Boekholdt, S. Matthijs
2010-01-01
Background Screening for increased waist circumference and hypertriglyceridemia (the hypertriglyceridemic-waist phenotype) has been proposed as an inexpensive approach to identify patients with excess intra-abdominal adiposity and associated metabolic abnormalities. We examined the relationship between the hypertriglyceridemic-waist phenotype to the risk of coronary artery disease in apparently healthy individuals. Methods A total of 21 787 participants aged 45–79 years were followed for a mean of 9.8 (standard deviation 1.7) years. Coronary artery disease developed in 2109 of them during follow-up. The hypertriglyceridemic-waist phenotype was defined as a waist circumference of 90 cm or more and a triglyceride level of 2.0 mmol/L or more in men, and a waist circumference of 85 cm or more and a triglyceride level of 1.5 mmol/L or more in women. Results Compared with participants who had a waist circumference and triglyceride level below the threshold, those with the hypertriglyceridemic-waist phenotype had higher blood pressure indices, higher levels of apolipoprotein B and C-reactive protein, lower levels of high-density lipoprotein cholesterol and apolipoprotein A-I, and smaller low-density lipoprotein particles. Among men, those with the hypertriglyceridemic-waist phenotype had an unadjusted hazard ratio for future coronary artery disease of 2.40 (95% confidence interval [CI] 2.02–2.87) compared with men who did not have the phenotype. Women with the phenotype had an unadjusted hazard ratio of 3.84 (95% CI 3.20–4.62) compared with women who did not have the phenotype. Interpretation Among participants from a European cohort representative of a contemporary Western population, the hypertriglyceridemic-waist phenotype was associated with a deteriorated cardiometabolic risk profile and an increased risk for coronary artery disease. PMID:20643837
Saleha, Shamim; Ajmal, Muhammad; Jamil, Muhammad; Nasir, Muhammad; Hameed, Abdul
2016-01-01
To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.
Mutations in the Human Laminin β2 (LAMB2) Gene and the Associated Phenotypic Spectrum
Matejas, Verena; Hinkes, Bernward; Alkandari, Faisal; Al-Gazali, Lihadh; Annexstad, Ellen; Aytac, Mehmet B.; Barrow, Margaret; Bláhová, Kvĕta; Bockenhauer, Detlef; Cheong, Hae Il; Maruniak-Chudek, Iwona; Cochat, Pierre; Dötsch, Jörg; Gajjar, Priya; Hennekam, Raoul C.; Janssen, Françoise; Kagan, Mikhail; Kariminejad, Ariana; Kemper, Markus J.; Koenig, Jens; Kogan, Jillene; Kroes, Hester Y.; Kuwertz-Bröking, Eberhard; Lewanda, Amy F.; Medeira, Ana; Muscheites, Jutta; Niaudet, Patrick; Pierson, Michel; Saggar, Anand; Seaver, Laurie; Suri, Mohnish; Tsygin, Alexey; Wühl, Elke; Zurowska, Aleksandra; Uebe, Steffen; Hildebrandt, Friedhelm; Antignac, Corinne; Zenker, Martin
2010-01-01
Mutations of LAMB2 typically cause autosomal recessive Pierson syndrome, a disorder characterized by congenital nephrotic syndrome, ocular and neurologic abnormalities, but may occasionally be associated with milder or oligosymptomatic disease variants. LAMB2 encodes the basement membrane protein laminin β2 which is incorporated in specific heterotrimeric laminin isoforms and has an expression pattern corresponding to the pattern of organ manifestations in Pierson syndrome. Herein we review all previously reported and several novel LAMB2 mutations in relation to the associated phenotype in patients from 39 unrelated families. The majority of disease-causing LAMB2 mutations are truncating, consistent with the hypothesis that loss of laminin β2 function is the molecular basis of Pierson syndrome. While truncating mutations are distributed across the entire gene, missense mutations are clearly clustered in the N-terminal LN domain, which is important for intermolecular interactions. There is an association of missense mutations and small in frame deletions with a higher mean age at onset of renal disease and with absence of neurologic abnormalities, thus suggesting that at least some of these may represent hypomorphic alleles. Nevertheless, genotype alone does not appear to explain the full range of clinical variability, and therefore hitherto unidentified modifiers are likely to exist. PMID:20556798
Syrris, P; Carter, N D; Patton, M A
1999-11-05
Waardenburg syndrome (WS) comprises sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides. Four types of WS have been classified to date; in WS type IV (WS4), patients additionally have colonic aganglionosis (Hirschsprung disease, HSCR). Mutations in the endothelin-3 (EDN3), endothelin-B receptor (EDNRB), and Sox10 genes have been identified as causative for WS type IV. We screened a family with a combined WS-HSCR phenotype for mutations in the EDNRB locus using standard DNA mutation analysis and sequencing techniques. We have identified a novel nonsense mutation at codon 253 (CGA-->TGA, Arg-->STOP). This mutation leads to a premature end of the translation of EDNRB at exon 3, and it is predicted to produce a truncated and nonfunctional endothelin-B receptor. All affected relatives were heterozygous for the Arg(253)-->STOP mutation, whereas it was not observed in over 50 unrelated individuals used as controls. These data confirm the role of EDNRB in the cause of the Waardenburg-Hirschsprung syndrome and demonstrate that in WS-HSCR there is a lack of correlation between phenotype and genotype and a variable expression of disease even within the same family. Copyright 1999 Wiley-Liss, Inc.
Verheij, Johanna B G M; Sival, Deborah A; van der Hoeven, Johannes H; Vos, Yvonne J; Meiners, Linda C; Brouwer, Oebele F; van Essen, Anthonie J
2006-01-01
Shah-Waardenburg syndrome is a rare congenital disorder with variable clinical expression, characterised by aganglionosis of the rectosigmoïd (Hirschsprung disease), and abnormal melanocyte migration, resulting in pigmentary abnormalities and sensorineural deafness (Waardenburg syndrome). Mutations in the EDN, EDNRB and SOX10 genes can be found in patients with this syndrome. SOX10 mutations are specifically associated with a more severe phenotype called PCWH: peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease. Neuronal expression of SOX10 occurs in neural crest cells during early embryonic development and in glial cells of the peripheral and central nervous systems during late embryonic development and in adults. We present a 4-year-old girl with the PCWH phenotype associated with a de novo nonsense mutation (S384X) in SOX10. Main clinical features were mental retardation, peripheral neuropathy, deafness, Hirschsprung disease, distal arthrogryposis, white hairlock, and growth retardation. She presented with hypotonia, developmental delay, reduced peripheral nerve conduction velocities, and radiologically assessed central hypomyelination. Subsequently, the formation of abnormal myelin within the central and peripheral nervous system was functionally and radiologically assessed. Children presenting with features of Waardenburg syndrome and neurological dysfunction should be tested for mutations in the SOX10 gene to enable diagnosis and counselling.
Inverse relation between Braak stage and cerebrovascular pathology in Alzheimer predominant dementia
Goulding, J.; Signorini, D.; Chatterjee, S.; Nicoll, J.; Stewart, J.; Morris, R.; Lammie, G
1999-01-01
The most common neuropathological substrates of dementia are Alzheimer's disease, cerebrovascular disease, and dementia with Lewy bodies. A preliminary, retrospective postmortem analysis was performed of the relative burden of each pathology in 25 patients with predominantly Alzheimer's disease-type dementia. Log linear modelling was used to assess the relations between ApoE genotype, Alzheimer's disease, and cerebrovascular disease pathology scores. Sixteen of 18 cases (89%) with a Braak neuritic pathology score ⩽4 had, in addition, significant cerebrovascular disease, or dementia with Lewy bodies, or both. There was a significant inverse relation between cerebrovascular disease and Braak stage (p=0.015). The frequency of the ApoE-ε4 allele was 36.4%. No evidence was found for an association between possession of the ApoE-ε4 allele and any one pathological variable over another. In this series most brains from patients with dementia for which Alzheimer's disease is the predominant neuropathological substrate also harboured significant cerebrovascular disease or dementia with Lewy bodies. The data suggest that these diseases are perhaps pathogenetically distinct, yet conspire to produce the dementing phenotype. PMID:10519874
Dubinsky, Marla C.; Lin, Ying-Chao; Dutridge, Debra; Picornell, Yoana; Landers, Carol J.; Farrior, Sharmayne; Wrobel, Iwona; Quiros, Antonio; Vasiliauskas, Eric A.; Grill, Bruce; Israel, David; Bahar, Ron; Christie, Dennis; Wahbeh, Ghassan; Silber, Gary; Dallazadeh, Saied; Shah, Praful; Thomas, Danny; Kelts, Drew; Hershberg, Robert M.; Elson, Charles O.; Targan, Stephan R.; Taylor, Kent D.; Rotter, Jerome I.; Yang, Huiying
2007-01-01
BACKGROUND AND AIM Crohn’s disease (CD) is a heterogeneous disorder characterized by diverse clinical phenotypes. Childhood-onset CD has been described as a more aggressive phenotype. Genetic and immune factors may influence disease phenotype and clinical course. We examined the association of immune responses to microbial antigens with disease behavior and prospectively determined the influence of immune reactivity on disease progression in pediatric CD patients. METHODS Sera were collected from 196 pediatric CD cases and tested for immune responses: anti-I2, anti-outer membrane protein C (anti-OmpC), anti-CBir1 flagellin (anti-CBir1), and anti-Saccharomyces-cerevisiae (ASCA) using ELISA. Associations between immune responses and clinical phenotype were evaluated. RESULTS Fifty-eight patients (28%) developed internal penetrating and/or stricturing (IP/S) disease after a median follow-up of 18 months. Both anti-OmpC (p < 0.0006) and anti-I2 (p < 0.003) were associated with IP/S disease. The frequency of IP/S disease increased with increasing number of immune responses (p trend = 0.002). The odds of developing IP/S disease were highest in patients positive for all four immune responses (OR (95% CI): 11 (1.5–80.4); p = 0.03). Pediatric CD patients positive for ≥1 immune response progressed to IP/S disease sooner after diagnosis as compared to those negative for all immune responses (p < 0.03). CONCLUSIONS The presence and magnitude of immune responses to microbial antigens are significantly associated with more aggressive disease phenotypes among children with CD. This is the first study to prospectively demonstrate that the time to develop a disease complication in children is significantly faster in the presence of immune reactivity, thereby predicting disease progression to more aggressive disease phenotypes among pediatric CD patients. PMID:16454844
Taylor, Chelsea; Commander, Clayton W.; Collaco, Joseph M.; Strug, Lisa J.; Li, Weili; Wright, Fred A.; Webel, Aaron D.; Pace, Rhonda G.; Stonebraker, Jaclyn R.; Naughton, Kathleen; Dorfman, Ruslan; Sandford, Andrew; Blackman, Scott M.; Berthiaume, Yves; Paré, Peter; Drumm, Mitchell L.; Zielenski, Julian; Durie, Peter; Cutting, Garry R.; Knowles, Michael R.; Corey, Mary
2011-01-01
SUMMARY Genetic studies of lung disease in Cystic Fibrosis are hampered by the lack of a severity measure that accounts for chronic disease progression and mortality attrition. Further, combining analyses across studies requires common phenotypes that are robust to study design and patient ascertainment. Using data from the North American Cystic Fibrosis Modifier Consortium (Canadian Consortium for CF Genetic Studies, Johns Hopkins University CF Twin and Sibling Study, and University of North Carolina/Case Western Reserve University Gene Modifier Study), the authors calculated age-specific CF percentile values of FEV1 which were adjusted for CF age-specific mortality data. The phenotype was computed for 2061 patients representing the Canadian CF population, 1137 extreme phenotype patients in the UNC/Case Western study, and 1323 patients from multiple CF sib families in the CF Twin and Sibling Study. Despite differences in ascertainment and median age, our phenotype score was distributed in all three samples in a manner consistent with ascertainment differences, reflecting the lung disease severity of each individual in the underlying population. The new phenotype score was highly correlated with the previously recommended complex phenotype, but the new phenotype is more robust for shorter follow-up and for extreme ages. A disease progression and mortality adjusted phenotype reduces the need for stratification or additional covariates, increasing statistical power and avoiding possible distortions. This approach will facilitate large scale genetic and environmental epidemiological studies which will provide targeted therapeutic pathways for the clinical benefit of patients with CF. PMID:21462361
Bernstein, Charles N; Fried, Michael; Krabshuis, J H; Cohen, Henry; Eliakim, R; Fedail, Suleiman; Gearry, Richard; Goh, K L; Hamid, Saheed; Khan, Aamir Ghafor; LeMair, A W; Malfertheiner; Ouyang, Qin; Rey, J F; Sood, Ajit; Steinwurz, Flavio; Thomsen, Ole O; Thomson, Alan; Watermeyer, Gillian
2010-01-01
Inflammatory bowel disease (IBD) represents a group of idiopathic, chronic, inflammatory intestinal conditions. Its two main disease categories are: Crohn's disease (CD) and ulcerative colitis (UC), which feature both overlapping and distinct clinical and pathological features. While these diseases have, in the past, been most evident in the developed world, their prevalence in the developing world has been gradually increasing in recent decades. This poses unique issues in diagnosis and management which have been scarcely addressed in the literature or in extant guidelines. Depending on the nature of the complaints, investigations to diagnose either form of IBD or to assess disease activity will vary and will also be influenced by geographic variations in other conditions that might mimic IBD. Similarly, therapy varies depending on the phenotype of the disease being treated and available resources. The World Gastroenterology Organization has, accordingly, developed guidelines for diagnosing and treating IBD using a cascade approach to account for variability in resources in countries around the world.
Dumas, Marc-Emmanuel; Kinross, James; Nicholson, Jeremy K
2014-01-01
Metabolic syndrome, a cluster of risk factors for type 2 diabetes mellitus and cardiovascular disease, is becoming an increasing global health concern. Insulin resistance is often associated with metabolic syndrome and also typical hepatic manifestations such as nonalcoholic fatty liver disease. Profiling of metabolic products (metabolic phenotyping or metabotyping) has provided new insights into metabolic syndrome and nonalcoholic fatty liver disease. Data from nuclear magnetic resonance spectroscopy and mass spectrometry combined with statistical modeling and top-down systems biology have allowed us to analyze and interpret metabolic signatures in terms of metabolic pathways and protein interaction networks and to identify the genomic and metagenomic determinants of metabolism. For example, metabolic phenotyping has shown that relationships between host cells and the microbiome affect development of the metabolic syndrome and fatty liver disease. We review recent developments in metabolic phenotyping and systems biology technologies and how these methodologies have provided insights into the mechanisms of metabolic syndrome and nonalcoholic fatty liver disease. We discuss emerging areas of research in this field and outline our vision for how metabolic phenotyping could be used to study metabolic syndrome and fatty liver disease. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
The mitochondrial and kidney disease phenotypes of kd/kd mice under germfree conditions
Hallman, Troy M.; Peng, Min; Meade, Ray; Hancock, Wayne W.; Madaio, Michael P.; Gasser, David L.
2008-01-01
Interstitial nephritis occurs spontaneously in kd/kd mice, but the mechanisms leading to this disease have not been fully elucidated. The earliest manifestation of a phenotype is the appearance of ultrastructural defects in the mitochondria of mice as young as 42 days of age. To examine the influence of the environment on the phenotype, homozygous B6.kd/kd mice were transferred from specific pathogen-free (SPF) conditions to a germfree (GF) environment, and the development of the disease was observed. The GF state resulted in a highly significant reduction in the frequency of tubulointerstitial nephritis. In addition, GF conditions markedly reduced the appearance of the mitochondrial phenotype, with no sign of mitochondrial abnormalities in GF mice of up to 155 days of age. These results suggest that environmental factors are involved in the progression of all known manifestations of this disease phenotype. PMID:16337774
Fuchs, Helmut; Aguilar-Pimentel, Juan Antonio; Amarie, Oana V; Becker, Lore; Calzada-Wack, Julia; Cho, Yi-Li; Garrett, Lillian; Hölter, Sabine M; Irmler, Martin; Kistler, Martin; Kraiger, Markus; Mayer-Kuckuk, Philipp; Moreth, Kristin; Rathkolb, Birgit; Rozman, Jan; da Silva Buttkus, Patricia; Treise, Irina; Zimprich, Annemarie; Gampe, Kristine; Hutterer, Christine; Stöger, Claudia; Leuchtenberger, Stefanie; Maier, Holger; Miller, Manuel; Scheideler, Angelika; Wu, Moya; Beckers, Johannes; Bekeredjian, Raffi; Brielmeier, Markus; Busch, Dirk H; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Schmidt-Weber, Carsten; Stöger, Tobias; Wolf, Eckhard; Wurst, Wolfgang; Yildirim, Ali Önder; Zimmer, Andreas; Gailus-Durner, Valérie; Hrabě de Angelis, Martin
2017-09-29
Since decades, model organisms have provided an important approach for understanding the mechanistic basis of human diseases. The German Mouse Clinic (GMC) was the first phenotyping facility that established a collaboration-based platform for phenotype characterization of mouse lines. In order to address individual projects by a tailor-made phenotyping strategy, the GMC advanced in developing a series of pipelines with tests for the analysis of specific disease areas. For a general broad analysis, there is a screening pipeline that covers the key parameters for the most relevant disease areas. For hypothesis-driven phenotypic analyses, there are thirteen additional pipelines with focus on neurological and behavioral disorders, metabolic dysfunction, respiratory system malfunctions, immune-system disorders and imaging techniques. In this article, we give an overview of the pipelines and describe the scientific rationale behind the different test combinations. Copyright © 2017 Elsevier B.V. All rights reserved.
Defining the clinical course of multiple sclerosis
Reingold, Stephen C.; Cohen, Jeffrey A.; Cutter, Gary R.; Sørensen, Per Soelberg; Thompson, Alan J.; Wolinsky, Jerry S.; Balcer, Laura J.; Banwell, Brenda; Barkhof, Frederik; Bebo, Bruce; Calabresi, Peter A.; Clanet, Michel; Comi, Giancarlo; Fox, Robert J.; Freedman, Mark S.; Goodman, Andrew D.; Inglese, Matilde; Kappos, Ludwig; Kieseier, Bernd C.; Lincoln, John A.; Lubetzki, Catherine; Miller, Aaron E.; Montalban, Xavier; O'Connor, Paul W.; Petkau, John; Pozzilli, Carlo; Rudick, Richard A.; Sormani, Maria Pia; Stüve, Olaf; Waubant, Emmanuelle; Polman, Chris H.
2014-01-01
Accurate clinical course descriptions (phenotypes) of multiple sclerosis (MS) are important for communication, prognostication, design and recruitment of clinical trials, and treatment decision-making. Standardized descriptions published in 1996 based on a survey of international MS experts provided purely clinical phenotypes based on data and consensus at that time, but imaging and biological correlates were lacking. Increased understanding of MS and its pathology, coupled with general concern that the original descriptors may not adequately reflect more recently identified clinical aspects of the disease, prompted a re-examination of MS disease phenotypes by the International Advisory Committee on Clinical Trials of MS. While imaging and biological markers that might provide objective criteria for separating clinical phenotypes are lacking, we propose refined descriptors that include consideration of disease activity (based on clinical relapse rate and imaging findings) and disease progression. Strategies for future research to better define phenotypes are also outlined. PMID:24871874
From genotype to phenotype: genetics and medical practice in the new millennium.
Weatherall, D
1999-01-01
The completion of the human genome project will provide a vast amount of information about human genetic diversity. One of the major challenges for the medical sciences will be to relate genotype to phenotype. Over recent years considerable progress has been made in relating the molecular pathology of monogenic diseases to the associated clinical phenotypes. Studies of the inherited disorders of haemoglobin, notably the thalassaemias, have shown how even in these, the simplest of monogenic diseases, there is remarkable complexity with respect to their phenotypic expression. Although studies of other monogenic diseases are less far advanced, it is clear that the same level of complexity will exist. This information provides some indication of the difficulties that will be met when trying to define the genes that are involved in common multigenic disorders and, in particular, in trying to relate disease phenotypes to the complex interactions between many genes and multiple environmental factors. PMID:10670020
Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour
Vogel, David; Nicolis, Stamatios C.; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J. T.; Dussutour, Audrey
2015-01-01
Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: ‘slow–regular–social’, ‘fast–regular–social’ and ‘fast–irregular–asocial’. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. PMID:26609088
Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour.
Vogel, David; Nicolis, Stamatios C; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J T; Dussutour, Audrey
2015-11-22
Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: 'slow-regular-social', 'fast-regular-social' and 'fast-irregular-asocial'. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. © 2015 The Author(s).
Genetically determined heterogeneity of lung disease in a mouse model of airway mucus obstruction
Grubb, Barbara R.; Kelly, Elizabeth J.; Wilkinson, Kristen J.; Yang, Huifang; Geiser, Marianne; Randell, Scott H.; Boucher, Richard C.; O'Neal, Wanda K.
2012-01-01
Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na+ channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na+ absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na+ absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJ
Masotti, Cibele; Armelin-Correa, Lucia M; Splendore, Alessandra; Lin, Chin J; Barbosa, Angela; Sogayar, Mari C; Passos-Bueno, Maria Rita
2005-10-10
Treacher Collins syndrome (TCS) is an autosomal dominant craniofacial malformation caused by null mutations in the TCOF1 gene. High inter and intra familial clinical variability, ranging from mild malar hypoplasia to perinatal death due to airway collapse is observed, but, to date, no genotype-phenotype correlation has been reported. Considering haploinsufficiency as the molecular mechanism underlying the disease, we have hypothesized that mutations in the promoter region of the gene, which has never been previously characterized, in trans with a pathogenic mutation, could modulate the phenotype. Therefore, the aims of the present study were to determine the TCOF1 gene's core promoter and to identify mutations in this region that could contribute to the phenotypic variation observed in this syndrome. We have delimitated the minimal promoter to a region of less than 150 bp, with 63% of identity among 5 different species. We screened 1.2 kbp of the TCOF1 5' flanking sequence in the DNA obtained from 21 patients and 51 controls and identified four new single nucleotide polymorphisms (SNPs), one of which (-346C>T), was proved to be functional, as it decreased the promoter activity by 38%. Electrophoretic mobility shift assay (EMSA) analysis demonstrated that the -346T allele impairs DNA-binding to the YY1 transcription factor. This promoter variant represents a candidate allele to explain the clinical variability in patients bearing TCS.
Extreme intrafamilial variability of Saudi brothers with primary hyperoxaluria type 1.
Alfadhel, Majid; Alhasan, Khalid A; Alotaibi, Mohammed; Al Fakeeh, Khalid
2012-01-01
Primary hyperoxaluria type 1 (PH1) is characterized by progressive renal insufficiency culminating in end-stage renal disease, and a wide range of clinical features related to systemic oxalosis in different organs. It is caused by autosomal recessive deficiency of alanine:glyoxylate aminotransferase due to a defect in AGXT gene. Two brothers (one 6 months old; the other 2 years old) presented with acute renal failure and urinary tract infection respectively. PH1 was confirmed by high urinary oxalate level, demonstration of oxalate crystals in bone biopsy, and pathogenic homozygous known AGXT gene mutation. Despite the same genetic background, same sex, and shared environment, the outcome of the two siblings differs widely. While one of them died earlier with end-stage renal disease and multiorgan failure caused by systemic oxalosis, the older brother is pyridoxine responsive with normal development and renal function. Clinicians should be aware of extreme intrafamilial variability of PH1 and international registries are needed to characterize the genotype-phenotype correlation in such disorder.
Odes, Selwyn; Vardi, Hillel; Friger, Michael; Wolters, Frank; Hoie, Ole; Moum, Bjørn; Bernklev, Tomm; Yona, Hagit; Russel, Maurice; Munkholm, Pia; Langholz, Ebbe; Riis, Lene; Politi, Patrizia; Bondini, Paolo; Tsianos, Epameinondas; Katsanos, Kostas; Clofent, Juan; Vermeire, Severine; Freitas, João; Mouzas, Iannis; Limonard, Charles; O'Morain, Colm; Monteiro, Estela; Fornaciari, Giovanni; Vatn, Morten; Stockbrugger, Reinhold
2007-12-01
Crohn's disease (CD) is a chronic inflammation of the gastrointestinal tract associated with life-long high health care costs. We aimed to determine the effect of disease phenotype on cost. Clinical and economic data of a community-based CD cohort with 10-year follow-up were analyzed retrospectively in relation to Montreal classification phenotypes. In 418 patients, mean total costs of health care for the behavior phenotypes were: nonstricturing-nonpenetrating 1690, stricturing 2081, penetrating 3133 and penetrating-with-perianal-fistula 3356 €/patient-phenotype-year (P<0.001), and mean costs of surgical hospitalization 215, 751, 1293 and 1275 €/patient-phenotype-year respectively (P<0.001). Penetrating-with-perianal-fistula patients incurred significantly greater expenses than penetrating patients for total care, diagnosis and drugs, but not surgical hospitalization. Total costs were similar in the location phenotypes: ileum 1893, colon 1748, ileo-colonic 2010 and upper gastrointestinal tract 1758 €/patient-phenotype-year, but surgical hospitalization costs differed significantly, 558, 209, 492 and 542 €/patient-phenotype-year respectively (P<0.001). By multivariate analysis, the behavior phenotype significantly impacted total, medical and surgical hospitalization costs, whereas the location phenotype affected only surgical costs. Younger age at diagnosis predicted greater surgical expenses. Behavior is the dominant phenotype driving health care cost. Use of the Montreal classification permits detection of cost differences caused by perianal fistula.
Børud, Bente; Bårnes, Guro K; Brynildsrud, Ola Brønstad; Fritzsønn, Elisabeth; Caugant, Dominique A
2018-03-19
Species within the genus Neisseria display significant glycan diversity associated with the O -linked protein glycosylation ( pgl ) systems due to phase variation, polymorphic genes and gene content. The aim of this study was to examine in detail the pgl genotype and glycosylation phenotype in meningococcal isolates and the changes occurring during short-term asymptomatic carriage. Paired meningococcal isolates derived from 50 asymptomatic meningococcal carriers, taken about two months apart, were analyzed with whole genome sequencing. The O -linked protein glycosylation genes were characterized in detail using the Genome Comparator tool at the PubMLST.org database. Immunoblotting with glycan specific antibodies were used to investigate the protein glycosylation phenotype. All major pgl locus polymorphisms identified in N. meningitidis to date were present in our isolate collection, with the variable presence of pglG-pglH, both in combination with either pglB or pglB2. We identified significant changes and diversity in the pgl genotype and/or glycan phenotype in 96% of the paired isolates. There was also a high degree of glycan microheterogeneity, in which different variants of glycan structures were found at a given glycoprotein. The main mechanism responsible for the observed differences was phase variable expression of the involved glycosyltransferases and the O-acetyltransferase. To our knowledge, this is the first characterization of the pgl genotype and glycosylation phenotype in a larger strain collection. This study thus provides important insight into glycan diversity in N. meningitidis and phase variability changes that influence the expressed glycoform repertoire during meningococcal carriage. Importance Bacterial meningitis is a serious global health problem and one of the major causative organisms is Neisseria meningitidis , which is also a common commensal in the upper respiratory tract of healthy humans. In bacteria, numerous loci involved in biosynthesis of surface exposed antigenic structures that are involved in the interaction between bacteria and host, are frequently subjected to homologous recombination and phase variation. These mechanisms are well described in Neisseria, and phase variation provides the ability to change these structures reversibly in response to the environment. Protein glycosylation systems are becoming widely identified in bacteria, yet little is known about the mechanisms and evolutionary forces influencing glycan composition during carriage and disease. Copyright © 2018 American Society for Microbiology.
Interoperability between phenotype and anatomy ontologies.
Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich
2010-12-15
Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. http://bioonto.de/pmwiki.php/Main/PheneOntology.
Carolina Rojas, O; León-Cachón, Rafael B R; Pérez-Maya, Antonio Alí; Aguirre-Garza, Marcelino; Moreno-Treviño, María G; González, Gloria M
2015-05-01
Chromoblastomycosis is a chronic granulomatous disease caused frequently by fungi of the Fonsecaea genus. The objective of this study was the phenotypic and molecular identification of F. pedrosoi strains isolated from chromoblastomycosis patients in Mexico and Venezuela. Ten strains were included in this study. For phenotypic identification, we used macroscopic and microscopic morphologies, carbohydrate assimilation test, urea hydrolysis, cixcloheximide tolerance, proteolitic activity and the thermotolerance test. The antifungal activity of five drugs was evaluated against the isolates. Molecular identification was performed by sequencing the internal transcribed spacer (ITS) ribosomal DNA regions of the isolated strains. The physiological analysis and morphological features were variable and the precise identification was not possible. All isolates were susceptible to itraconazole, terbinafine, voriconazole and posaconazole. Amphotericin B was the least effective drug. The alignment of the 559-nucleotide ITS sequences from our strains compared with sequences of GenBank revealed high homology with F. pedrosoi (EU285266.1). In this study, all patients were from rural areas, six from Mexico and four from Venezuela. Ten isolates were identified by phenotypic and molecular analysis, using ITS sequence and demonstrated that nine isolates from Mexico and Venezuela were 100% homologous and one isolate showed a small genetic distance. © 2015 Blackwell Verlag GmbH.
A common cognitive, psychiatric, and dysmorphic phenotype in carriers of NRXN1 deletion
Viñas-Jornet, Marina; Esteba-Castillo, Susanna; Gabau, Elisabeth; Ribas-Vidal, Núria; Baena, Neus; San, Joan; Ruiz, Anna; Coll, Maria Dolors; Novell, Ramon; Guitart, Miriam
2014-01-01
Deletions in the 2p16.3 region that includes the neurexin (NRXN1) gene are associated with intellectual disability and various psychiatric disorders, in particular, autism and schizophrenia. We present three unrelated patients, two adults and one child, in whom we identified an intragenic 2p16.3 deletion within the NRXN1 gene using an oligonucleotide comparative genomic hybridization array. The three patients presented dual diagnosis that consisted of mild intellectual disability and autism and bipolar disorder. Also, they all shared a dysmorphic phenotype characterized by a long face, deep set eyes, and prominent premaxilla. Genetic analysis of family members showed two inherited deletions. A comprehensive neuropsychological examination of the 2p16.3 deletion carriers revealed the same phenotype, characterized by anxiety disorder, borderline intelligence, and dysexecutive syndrome. The cognitive pattern of dysexecutive syndrome with poor working memory and reduced attention switching, mental flexibility, and verbal fluency was the same than those of the adult probands. We suggest that in addition to intellectual disability and psychiatric disease, NRXN1 deletion is a risk factor for a characteristic cognitive and dysmorphic profile. The new cognitive phenotype found in the 2p16.3 deletion carriers suggests that 2p16.3 deletions might have a wide variable expressivity instead of incomplete penetrance. PMID:25614873
Addressing the challenges of phenotyping pediatric pulmonary vascular disease
Goss, Kara N.; Everett, Allen D.; Mourani, Peter M.; Baker, Christopher D.; Abman, Steven H.
2017-01-01
Pediatric pulmonary vascular disease (PVD) and pulmonary hypertension (PH) represent phenotypically and pathophysiologically diverse disease categories, contributing substantial morbidity and mortality to a complex array of pediatric conditions. Here, we review the multifactorial nature of pediatric PVD, with an emphasis on improved recognition, phenotyping, and endotyping strategies for pediatric PH. Novel tailored approaches to diagnosis and treatment in pediatric PVD, as well as the implications for long-term outcomes, are highlighted. PMID:28680562
Airway disease phenotypes in animal models of cystic fibrosis.
McCarron, Alexandra; Donnelley, Martin; Parsons, David
2018-04-02
In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.
Peters, R L; Allen, K J; Dharmage, S C; Lodge, C J; Koplin, J J; Ponsonby, A-L; Wake, M; Lowe, A J; Tang, M L K; Matheson, M C; Gurrin, L C
2015-05-01
Food allergy, eczema and wheeze are early manifestations of allergic disease and commonly co-occur in infancy although their interrelationship is not well understood. Data from population studies are essential to determine whether there are differential drivers of multi-allergy phenotypes. We aimed to define phenotypes and risk factors of allergic disease using latent class analysis (LCA). The HealthNuts study is a prospective, population-based cohort of 5276 12-month-old infants in Melbourne, Australia. LCA was performed using the following baseline data collected at age 12 months: food sensitization (skin prick test ≥ 2 mm) and allergy (oral food challenge) to egg, peanut and sesame; early (< 4 months) and late-onset eczema; and wheeze in the first year of life. Risk factors were modelled using multinomial logistic regression. Five distinct phenotypes were identified: no allergic disease (70%), non-food-sensitized eczema (16%), single egg allergy (9%), multiple food allergies (predominantly peanut) (3%) and multiple food allergies (predominantly egg) (2%). Compared to the baseline group of no allergic disease, shared risk factors for all allergic phenotypes were parents born overseas (particularly Asia), delayed introduction of egg, male gender (except for single egg allergy) and family history of allergic disease, whilst exposure to pet dogs was protective for all phenotypes. Other factors including filaggrin mutations, vitamin D and the presence of older siblings differed by phenotype. Multiple outcomes in infancy can be used to determine five distinct allergy phenotypes at the population level, which have both shared and separate risk factors suggesting differential mechanisms of disease. © 2014 John Wiley & Sons Ltd.
Assessment of metabolic phenotypic variability in children’s urine using 1H NMR spectroscopy
NASA Astrophysics Data System (ADS)
Maitre, Léa; Lau, Chung-Ho E.; Vizcaino, Esther; Robinson, Oliver; Casas, Maribel; Siskos, Alexandros P.; Want, Elizabeth J.; Athersuch, Toby; Slama, Remy; Vrijheid, Martine; Keun, Hector C.; Coen, Muireann
2017-04-01
The application of metabolic phenotyping in clinical and epidemiological studies is limited by a poor understanding of inter-individual, intra-individual and temporal variability in metabolic phenotypes. Using 1H NMR spectroscopy we characterised short-term variability in urinary metabolites measured from 20 children aged 8-9 years old. Daily spot morning, night-time and pooled (50:50 morning and night-time) urine samples across six days (18 samples per child) were analysed, and 44 metabolites quantified. Intraclass correlation coefficients (ICC) and mixed effect models were applied to assess the reproducibility and biological variance of metabolic phenotypes. Excellent analytical reproducibility and precision was demonstrated for the 1H NMR spectroscopic platform (median CV 7.2%). Pooled samples captured the best inter-individual variability with an ICC of 0.40 (median). Trimethylamine, N-acetyl neuraminic acid, 3-hydroxyisobutyrate, 3-hydroxybutyrate/3-aminoisobutyrate, tyrosine, valine and 3-hydroxyisovalerate exhibited the highest stability with over 50% of variance specific to the child. The pooled sample was shown to capture the most inter-individual variance in the metabolic phenotype, which is of importance for molecular epidemiology study design. A substantial proportion of the variation in the urinary metabolome of children is specific to the individual, underlining the potential of such data to inform clinical and exposome studies conducted early in life.
Identification of genetic elements in metabolism by high-throughput mouse phenotyping.
Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A; Schütt, Christine; Ravindranath, Aakash Chavan; Leuchtenberger, Stefanie; Sharma, Sapna; Kistler, Martin; Willershäuser, Monja; Brommage, Robert; Meehan, Terrence F; Mason, Jeremy; Haselimashhadi, Hamed; Hough, Tertius; Mallon, Ann-Marie; Wells, Sara; Santos, Luis; Lelliott, Christopher J; White, Jacqueline K; Sorg, Tania; Champy, Marie-France; Bower, Lynette R; Reynolds, Corey L; Flenniken, Ann M; Murray, Stephen A; Nutter, Lauryl M J; Svenson, Karen L; West, David; Tocchini-Valentini, Glauco P; Beaudet, Arthur L; Bosch, Fatima; Braun, Robert B; Dobbie, Michael S; Gao, Xiang; Herault, Yann; Moshiri, Ala; Moore, Bret A; Kent Lloyd, K C; McKerlie, Colin; Masuya, Hiroshi; Tanaka, Nobuhiko; Flicek, Paul; Parkinson, Helen E; Sedlacek, Radislav; Seong, Je Kyung; Wang, Chi-Kuang Leo; Moore, Mark; Brown, Steve D; Tschöp, Matthias H; Wurst, Wolfgang; Klingenspor, Martin; Wolf, Eckhard; Beckers, Johannes; Machicao, Fausto; Peter, Andreas; Staiger, Harald; Häring, Hans-Ulrich; Grallert, Harald; Campillos, Monica; Maier, Holger; Fuchs, Helmut; Gailus-Durner, Valerie; Werner, Thomas; Hrabe de Angelis, Martin
2018-01-18
Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.
Chatterjee, Aniruddha; Stockwell, Peter A.; Rodger, Euan J.; Duncan, Elizabeth J.; Parry, Matthew F.; Weeks, Robert J.; Morison, Ian M.
2015-01-01
The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript. PMID:26612583
A de novo SOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease.
Sznajer, Yves; Coldéa, Cristina; Meire, Françoise; Delpierre, Isabelle; Sekhara, Tayeb; Touraine, Renaud L
2008-04-15
Type 4 Waardenburg syndrome represents a well define entity caused by neural crest derivatives anomalies (melanocytes, intrinsic ganglion cells, central, autonomous and peripheral nervous systems) leading, with variable expressivity, to pigmentary anomalies, deafness, mental retardation, peripheral neuropathy, and Hirschsprung disease. Autosomal dominant mode of inheritance is prevalent when Sox10 gene mutation is identified. We report the natural history of a child who presented with synophrys, vivid blue eye, deafness, bilateral complete semicircular canals agenesis with mental retardation, subtle signs for peripheral neuropathy and lack of Hirschsprung disease. SOX10 gene sequencing identified "de novo" splice site mutation (c.698-2A > C). The present phenotype and the genotype findings underline the wide spectrum of SOX10 gene implication in unusual type 4 Waardenburg syndrome patient. Copyright 2008 Wiley-Liss, Inc.
Quantitative phenotyping of X-disease resistance in chokecherry using real-time PCR.
Huang, Danqiong; Walla, James A; Dai, Wenhao
2014-03-01
A quantitative real-time SYBR Green PCR (qPCR) assay has been developed to detect and quantify X-disease phytoplasmas in chokecherry. An X-disease phytoplasma-specific and high sensitivity primer pair was designed based on the 16S rRNA gene sequence of X-disease phytoplasmas. This primer pair was specific to the 16SrIII group (X-disease) phytoplasmas. The qPCR method can quantify phytoplasmas from a DNA mix (a mix of both chokecherry and X-disease phytoplasma DNA) at as low as 0.001 ng, 10-fold lower than conventional PCR using the same primer pair. A significant correlation between the copy number of phytoplasmas and visual phenotypic rating scores of X-disease resistance in chokecherry plants was observed. Disease resistant chokecherries had a significantly lower titer of X-disease phytoplasmas than susceptible plants. This suggests that the qPCR assay provides a more objective tool to phenotype phytoplasma disease severity, particularly for early evaluation of host resistance; therefore, this method will facilitate quantitative phenotyping of disease resistance and has great potential in enhancing plant breeding. Copyright © 2013 Elsevier B.V. All rights reserved.
2016-10-01
this is due, at least in part, to an additional acquired GOTF defect caused by the mutant protein that interferes with the secretion of WT C1INH. Our...overall hypothesis is that mutant C1INH proteins exert a variable GOTF phenotype that inhibit secretion of WT C1INH protein and worsen disease...will assess the mechanisms of the GOTF with a hypothesis that misfolding of mutant C1INH protein in the ER causes impairment of WT C1INH secretion
Seto, Toshiyuki; Yamamoto, Toshiyuki; Shimojima, Keiko; Shintaku, Haruo
2017-01-01
Osteogenesis imperfecta (OI) is a heterogeneous disorder that is characterized by bone fragility and systemic complications, and is mainly caused by gene mutations in COL1A1 or COL1A2. A novel COL1A1 splicing mutation, c.750+2T>A, was identified in a Japanese OI family. Only the proband in this family showed various complications, such as heart valve diseases and severe scoliosis. The clinical heterogeneity in the family is discussed in this study. PMID:28326186
[Pearson syndrome. Case report].
Cammarata-Scalisi, Francisco; López-Gallardo, Ester; Emperador, Sonia; Ruiz-Pesini, Eduardo; Da Silva, Gloria; Camacho, Nolis; Montoya, Julio
2011-09-01
Among the etiologies of anemia in the infancy, the mitochondrial cytopathies are infrequent. Pearson syndrome is diagnosed principally during the initial stages of life and it is characterized by refractory sideroblastic anemia with vacuolization of marrow progenitor cells, exocrine pancreatic dysfunction and variable neurologic, hepatic, renal and endocrine failures. We report the case of a 14 month-old girl evaluated by a multicentric study, with clinic and molecular diagnosis of Pearson syndrome, with the 4,977-base pair common deletion of mitochondrial DNA. This entity has been associated to diverse phenotypes within the broad clinical spectrum of mitochondrial disease.
Crean, Angela J.; Dwyer, John M.; Marshall, Dustin J.
2012-01-01
Sperm are the most diverse cell type known: varying not only among- and within- species, but also among- and within-ejaculates of a single male. Recently, the causes and consequences of variability in sperm phenotypes have received much attention, but the importance of within-ejaculate variability remains largely unknown. Correlative evidence suggests that reduced within-ejaculate variation in sperm phenotype increases a male’s fertilization success in competitive conditions; but the transgenerational consequences of within-ejaculate variation in sperm phenotype remain relatively unexplored. Here we examine the relationship between sperm longevity and offspring performance in a marine invertebrate with external fertilization, Styela plicata. Offspring sired by longer-lived sperm had higher performance compared to offspring sired by freshly-extracted sperm of the same ejaculate, both in the laboratory and the field. This indicates that within-ejaculate differences in sperm longevity can influence offspring fitness – a source of variability in offspring phenotypes that has not previously been considered. Links between sperm phenotype and offspring performance may constrain responses to selection on either sperm or offspring traits, with broad ecological and evolutionary implications. PMID:23155458
Defining a Contemporary Ischemic Heart Disease Genetic Risk Profile Using Historical Data.
Mosley, Jonathan D; van Driest, Sara L; Wells, Quinn S; Shaffer, Christian M; Edwards, Todd L; Bastarache, Lisa; McCarty, Catherine A; Thompson, Will; Chute, Christopher G; Jarvik, Gail P; Crosslin, David R; Larson, Eric B; Kullo, Iftikhar J; Pacheco, Jennifer A; Peissig, Peggy L; Brilliant, Murray H; Linneman, James G; Denny, Josh C; Roden, Dan M
2016-12-01
Continued reductions in morbidity and mortality attributable to ischemic heart disease (IHD) require an understanding of the changing epidemiology of this disease. We hypothesized that we could use genetic correlations, which quantify the shared genetic architectures of phenotype pairs and extant risk factors from a historical prospective study to define the risk profile of a contemporary IHD phenotype. We used 37 phenotypes measured in the ARIC study (Atherosclerosis Risk in Communities; n=7716, European ancestry subjects) and clinical diagnoses from an electronic health record (EHR) data set (n=19 093). All subjects had genome-wide single-nucleotide polymorphism genotyping. We measured pairwise genetic correlations (rG) between the ARIC and EHR phenotypes using linear mixed models. The genetic correlation estimates between the ARIC risk factors and the EHR IHD were modestly linearly correlated with hazards ratio estimates for incident IHD in ARIC (Pearson correlation [r]=0.62), indicating that the 2 IHD phenotypes had differing risk profiles. For comparison, this correlation was 0.80 when comparing EHR and ARIC type 2 diabetes mellitus phenotypes. The EHR IHD phenotype was most strongly correlated with ARIC metabolic phenotypes, including total:high-density lipoprotein cholesterol ratio (rG=-0.44, P=0.005), high-density lipoprotein (rG=-0.48, P=0.005), systolic blood pressure (rG=0.44, P=0.02), and triglycerides (rG=0.38, P=0.02). EHR phenotypes related to type 2 diabetes mellitus, atherosclerotic, and hypertensive diseases were also genetically correlated with these ARIC risk factors. The EHR IHD risk profile differed from ARIC and indicates that treatment and prevention efforts in this population should target hypertensive and metabolic disease. © 2016 American Heart Association, Inc.
Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells
Mungenast, Alison E.; Siegert, Sandra; Tsai, Li-Huei
2018-01-01
In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to study the impact of a distinct cell type in health and disease as well as performing therapeutic drug screens on a human genetic background. In particular, clinical trials for Alzheimer’s disease (AD) have been often failing. Two of the potential reasons are first, the species gap involved in proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying patient stratification, meaning subgrouping patients based on the disease severity due to the lack of phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our understanding of disease subtypes in AD. They allow researchers conducting in depth characterization of neural cells from both familial and sporadic AD patients as well as preclinical screens on human cells. In this review, we briefly outline the status quo of iPS cell research in neurological diseases along with the general advantages and pitfalls of these models. We summarize how genome-editing techniques such as CRISPR/Cas will allow researchers to reduce the problem of genomic variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then focus on current techniques for the differentiation of iPS cells into neural cell types that are relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture systems will be important for understanding AD phenotypes in a complex cellular milieu, and how both two- and three-dimensional iPS cell models can provide platforms for drug discovery and translational studies into the treatment of AD. PMID:26657644
Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells.
Mungenast, Alison E; Siegert, Sandra; Tsai, Li-Huei
2016-06-01
In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to study the impact of a distinct cell type in health and disease as well as performing therapeutic drug screens on a human genetic background. In particular, clinical trials for Alzheimer's disease (AD) have been failing. Two of the potential reasons are first, the species gap involved in proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying patient stratification, meaning subgrouping patients based on the disease severity due to the lack of phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our understanding of disease subtypes in AD. They allow researchers conducting in depth characterization of neural cells from both familial and sporadic AD patients as well as preclinical screens on human cells. In this review, we briefly outline the status quo of iPS cell research in neurological diseases along with the general advantages and pitfalls of these models. We summarize how genome-editing techniques such as CRISPR/Cas9 will allow researchers to reduce the problem of genomic variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then focus on current techniques for the differentiation of iPS cells into neural cell types that are relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture systems will be important for understanding AD phenotypes in a complex cellular milieu, and how both two- and three-dimensional iPS cell models can provide platforms for drug discovery and translational studies into the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.
Michaels, Maike Anna; Jendrek, Sebastian Torben; Korf, Tobias; Nitzsche, Thomas; Teegen, Bianca; Komorowski, Lars; Derer, Stefanie; Schröder, Torsten; Baer, Florian; Lehnert, Henrik; Büning, Jürgen; Fellerman, Klaus; Sina, Christian
2015-12-01
Inflammatory bowel disease (IBD) is characterized by a broad spectrum of clinical phenotypes with different outcomes. In the last decades, several IBD-associated autoantibodies have been identified and investigated for their diagnostic relevance. Autoantibodies against the pancreatic glycoproteins (PAB) CUB and zona pellucida-like domains-containing protein 1 (CUZD1), and glycoprotein 2 (GP2) have been demonstrated to possess high specificity for the diagnosis of IBD. Although several studies have shown significant interrelations of anti-GP2 positivity with disease phenotype, associations of clinical phenotypes with anti-CUZD1 are still unknown. The aim was to identify the association of clinical phenotypes with anti-CUZD1 and anti-GP2 in a well-defined German IBD cohort. Patients with IBD (224 patients with Crohn's disease and 136 patients with ulcerative colitis), who were tested for anti-GP2 and anti-CUZD1 immunoglobulin G and immunoglobulin A by indirect immunofluorescence on transfected cells between 2005 and 2013, were included. Serotype and specified phenotypic data were collected in retrospect and statistically analyzed. Both anti-GP2 (P < 0.001) and anti-CUZD1 (P < 0.001) were significantly more prevalent in patients with Crohn's disease than in ulcerative colitis. PAB positivity was associated with ileocolonic disease (P = 0.002), perianal disease (P = 0.011), immunosuppressive treatment (P = 0.036), and ASCA positivity (P = 0.036). Anti-CUZD1 positivity was associated with ileocolonic (P = 0.016) and perianal disease (P = 0.002), whereas anti-GP2 positivity was positively associated with stricturing behavior (P = 0.016). We found distinct clinical phenotypes to be associated with PAB positivity. Therefore, determination of PABs and their subgroup analysis might identify patients with complicated disease behavior. However, the clinical relevance of our findings should be further evaluated in prospective cohorts.
Abuamer, S; Shome, D K; Jaradat, A; Radhi, A; Bapat, J P; Sharif, K A; Al-Touq, J; Al-Asheeri, A; Al-Ajami, A
2017-02-01
Bahrain has high prevalence rates of sickle cell and thalassemia in the population. This study reports the frequencies and phenotypic characteristics of α- and/or β-thalassemia associated with sickle-cell disease (SCD) in a tertiary care hospital. Adult SCD patients (n = 200) were screened for the common α- and β-thalassemia alleles prevalent in the region using molecular techniques. Results of CBC, hemoglobin analysis, and average annual frequencies of severe pain episodes and numbers of transfused red cell units were documented. Patients were grouped on the basis of molecular studies as sickle-cell anemia (SS, n = 131), SS/α-thalassemia with three normal genes (n = 27), SS/α-thalassemia with two normal genes (n = 11), sickle-β-thalassemia (Sβ, n = 23), and Sβ with co-inherited α-thalassemia (n = 8). Identified α-thalassemia determinants were -α 3.7 (n = 52), -α 4.2 (n = 4), α T-Saudi α (n = 1), and α Hph α (n = 1). All β-thalassemia alleles were β 0 defects. Sickle-thalassemia association resulted in higher hemoglobin, hematocrit, and erythrocyte counts with reduced MCV and reticulocytes. Significant clinical associations were as follows: increased severe pain frequency with α-thalassemia (three-gene group); red cell transfusion with β-thalassemia alleles and female gender. One-third of patients with SCD co-inherited α- and/or β-thalassemia alleles and these associations explained some of the observed phenotypic variability. A low prevalence of nondeletion α-thalassemia alleles was observed in these patients. The most significant disease amelioration occurred in SCD associated with two α-thalassemia alleles. © 2016 John Wiley & Sons Ltd.
Multiple café au lait spots in familial patients with MAP2K2 mutation.
Takenouchi, Toshiki; Shimizu, Atsushi; Torii, Chiharu; Kosaki, Rika; Takahashi, Takao; Saya, Hideyuki; Kosaki, Kenjiro
2014-02-01
Recent advances in genetic diagnostic technologies have made the classic disease nosology highly complicated. This situation is exemplified by rasopathies, among which neurofibromatosis type 1 and Noonan syndrome represent prototypic entities. The former condition is characterized by multiple café au lait spots and neurofibromas, while the latter is characterized by distinct facial features, webbed neck, congenital heart disease, and a short stature. On rare occasions, the features of both neurofibromatosis and Noonan syndrome co-exist within an individual; such patients are diagnosed as having neurofibromatosis-Noonan syndrome. Here, we report familial patients with multiple café au lait spots and Noonan syndrome-like facial features. A mutation analysis unexpectedly revealed a mutation in MAP2K2 in both the propositus and his mother. The propositus fulfilled the diagnostic criteria for neurofibromatosis type 1, but his mother did not. Their phenotype was not consistent with that of cardio-facio-cutaneous syndrome, which is classically known to be associated with MAP2K2 mutations. The mother of the propositus had cervical cancer at the age of 23 years, consistent with the oncogenic tendency associated with rasopathies. The phenotypic combination of multiple café au lait spots and Noonan syndrome-like facial features suggested a diagnosis of neurofibromatosis-Noonan syndrome. Whether this condition represents a discrete disease entity or a variable expression of neurofibromatosis type 1 has long been debated. The present observation suggests that some perturbation in the RAS/MAPK signaling cascade results in multiple café au lait spots, a key diagnostic phenotype of rasopathies, although the exact mechanism remains to be elucidated. © 2013 Wiley Periodicals, Inc.
Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype.
Dowling, Damian K
2014-04-01
Disorders of the mitochondrial respiratory chain are heterogeneous in their symptoms and underlying genetics. Simple links between candidate mutations and expression of disease phenotype typically do not exist. It thus remains unclear how the genetic variation in the mitochondrial genome contributes to the phenotypic expression of complex traits and disease phenotypes. I summarize the basic genetic processes known to underpin mitochondrial disease. I highlight other plausible processes, drawn from the evolutionary biological literature, whose contribution to mitochondrial disease expression remains largely empirically unexplored. I highlight recent advances to the field, and discuss common-ground and -goals shared by researchers across medical and evolutionary domains. Mitochondrial genetic variance is linked to phenotypic variance across a variety of traits (e.g. reproductive function, life expectancy) fundamental to the upkeep of good health. Evolutionary theory predicts that mitochondrial genomes are destined to accumulate male-harming (but female-friendly) mutations, and this prediction has received proof-of-principle support. Furthermore, mitochondrial effects on the phenotype are typically manifested via interactions between mitochondrial and nuclear genes. Thus, whether a mitochondrial mutation is pathogenic in effect can depend on the nuclear genotype in which is it expressed. Many disease phenotypes associated with OXPHOS malfunction might be determined by the outcomes of mitochondrial-nuclear interactions, and by the evolutionary forces that historically shaped mitochondrial DNA (mtDNA) sequences. Concepts and results drawn from the evolutionary sciences can have broad, but currently under-utilized, applicability to the medical sciences and provide new insights into understanding the complex genetics of mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. Copyright © 2013. Published by Elsevier B.V.
Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies.
Hightower, Rylie M; Alexander, Matthew S
2018-01-01
Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018. © 2017 Wiley Periodicals, Inc.
Diagnosis of becker muscular dystrophy: Results of Re-analysis of DNA samples.
Straathof, Chiara S M; Van Heusden, Dave; Ippel, Pieternella F; Post, Jan G; Voermans, Nicol C; De Visser, Marianne; Brusse, Esther; Van Den Bergen, Janneke C; Van Der Kooi, Anneke J; Verschuuren, Jan J G M; Ginjaar, Hendrika B
2016-01-01
The phenotype of Becker muscular dystrophy (BMD) is highly variable, and the disease may be underdiagnosed. We searched for new mutations in the DMD gene in a cohort of previously undiagnosed patients who had been referred in the period 1985-1995. All requests for DNA analysis of the DMD gene in probands with suspected BMD were re-evaluated. If the phenotype was compatible with BMD, and no deletions or duplications were detected, DNA samples were screened for small mutations. In 79 of 185 referrals, no mutation was found. Analysis could be performed on 31 DNA samples. Seven different mutations, including 3 novel ones, were found. Long-term clinical follow-up is described. Refining DNA analysis in previously undiagnosed cases can identify mutations in the DMD gene and provide genetic diagnosis of BMD. A delayed diagnosis can still be valuable for the proband or the relatives of BMD patients. © 2015 Wiley Periodicals, Inc.
Genetic Modifiers of Duchenne and Facioscapulohumeral Muscular Dystrophies
Hightower, Rylie M.; Alexander, Matthew S.
2017-01-01
Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing (NGS) has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost, have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes including age of loss of ambulation, steroid-responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. Here we review and highlight recent findings on genetic modifiers of Duchenne and Facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. PMID:28877560
Nutrigenetics of the lipoprotein metabolism.
Garcia-Rios, Antonio; Perez-Martinez, Pablo; Delgado-Lista, Javier; Lopez-Miranda, Jose; Perez-Jimenez, Francisco
2012-01-01
It is well known that lipid metabolism is a cornerstone in the development of the commonest important chronic diseases worldwide, such as obesity, cardiovascular disease, or metabolic syndrome. In this regard, the area of lipid and lipoprotein metabolism is one of the areas in which the understanding of the development and progression of those metabolic disorders has been studied in greater depth. Thus, growing evidence has demonstrated that while universal recommendations might be appropriate for the general population, in this area there is great variability among individuals, related to a combination of environmental and genetic factors. Moreover, the interaction between genetic and dietary components has helped in understanding this variability. Therefore, with further study into the interaction between the most important genetic markers or single-nucleotide polymorphisms (SNPs) and diet, it may be possible to understand the variability in lipid metabolism, which could lead to an increase in the use of personalized nutrition as the best support to combat metabolic disorders. This review discusses some of the evidence in which candidate SNPs can affect the key players of lipid metabolism and how their phenotypic manifestations can be modified by dietary intake. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Value of Phenotypes in Knee Osteoarthritis Research.
Nelson, Fred R T
2018-01-01
Over the past decade, phenotypes have been used to help categorize knee osteoarthritis patients relative to being subject to disease, disease progression, and treatment response. A review of potential phenotype selection is now appropriate. The appeal of using phenotypes is that they most rely on simple physical examination, clinically routine imaging, and demographics. The purpose of this review is to describe the panoply of phenotypes that can be potentially used in osteoarthritis research. A search of PubMed was used singularly to review the literature on knee osteoarthritis phenotypes. Four phenotype assembly groups were based on physical features and noninvasive imaging. Demographics included metabolic syndrome (dyslipidemia, hypertension, obesity, and diabetes). Mechanical characteristics included joint morphology, alignment, the effect of injury, and past and present history. Associated musculoskeletal disorder characteristics included multiple joint involvement, spine disorders, neuromuscular diseases, and osteoporosis. With the knee as an organ, tissue characteristics were used to focus on synovium, meniscus, articular cartilage, patella fat pad, bone sclerosis, bone cysts, and location of pain. Many of these phenotype clusters require further validation studies. There is special emphasis on knee osteoarthritis phenotypes due to its predominance in osteoarthritic disorders and the variety of tissues in that joint. More research will be required to determine the most productive phenotypes for future studies. The selection and assignment of phenotypes will take on an increasing role in osteoarthritis research in the future.
2010-01-01
Background The inability of aspirin (ASA) to adequately suppress platelet aggregation is associated with future risk of coronary artery disease (CAD). Heritability studies of agonist-induced platelet function phenotypes suggest that genetic variation may be responsible for ASA responsiveness. In this study, we leverage independent information from genome-wide linkage and association data to determine loci controlling platelet phenotypes before and after treatment with ASA. Methods Clinical data on 37 agonist-induced platelet function phenotypes were evaluated before and after a 2-week trial of ASA (81 mg/day) in 1231 European American and 846 African American healthy subjects with a family history of premature CAD. Principal component analysis was performed to minimize the number of independent factors underlying the covariance of these various phenotypes. Multi-point sib-pair based linkage analysis was performed using a microsatellite marker set, and single-SNP association tests were performed using markers from the Illumina 1 M genotyping chip from deCODE Genetics, Inc. All analyses were performed separately within each ethnic group. Results Several genomic regions appear to be linked to ASA response factors: a 10 cM region in African Americans on chromosome 5q11.2 had several STRs with suggestive (p-value < 7 × 10-4) and significant (p-value < 2 × 10-5) linkage to post aspirin platelet response to ADP, and ten additional factors had suggestive evidence for linkage (p-value < 7 × 10-4) to thirteen genomic regions. All but one of these factors were aspirin response variables. While the strength of genome-wide SNP association signals for factors showing evidence for linkage is limited, especially at the strict thresholds of genome-wide criteria (N = 9 SNPs for 11 factors), more signals were considered significant when the association signal was weighted by evidence for linkage (N = 30 SNPs). Conclusions Our study supports the hypothesis that platelet phenotypes in response to ASA likely have genetic control and the combined approach of linkage and association offers an alternative approach to prioritizing regions of interest for subsequent follow-up. PMID:20529293
Howe, Douglas G.; Bradford, Yvonne M.; Eagle, Anne; Fashena, David; Frazer, Ken; Kalita, Patrick; Mani, Prita; Martin, Ryan; Moxon, Sierra Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri; Westerfield, Monte
2017-01-01
The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, ‘Fish’ records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search. PMID:27899582
Kawasaki, Haruhisa; Suzuki, Takahiro; Ito, Kumpei; Takahara, Tsubasa; Goto-Inoue, Naoko; Setou, Mitsutoshi; Sakata, Kazuki; Ishida, Norio
2017-05-30
Gaucher's disease in humans is considered a deficiency of glucocerebrosidase (GlcCerase) that result in the accumulation of its substrate, glucocerebroside (GlcCer). Although mouse models of Gaucher's disease have been reported from several laboratories, these models are limited due to the perinatal lethality of GlcCerase gene. Here, we examined phenotypes of Drosophila melanogaster homologues genes of the human Gaucher's disease gene by using Minos insertion. One of two Minos insertion mutants to unknown function gene (CG31414) accumulates the hydroxy-GlcCer in whole body of Drosophila melanogaster. This mutant showed abnormal phenotypes of climbing ability and sleep, and short lifespan. These abnormal phenotypes are very similar to that of Gaucher's disease in human. In contrast, another Minos insertion mutant (CG31148) and its RNAi line did not show such severe phenotype as observed in CG31414 gene mutation. The data suggests that Drosophila CG31414 gene mutation might be useful for unraveling the molecular mechanism of Gaucher's disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Preimplantation genetic diagnosis for cystic fibrosis: a case report.
Biazotti, Maria Cristina Santoro; Pinto Junior, Walter; Albuquerque, Maria Cecília Romano Maciel de; Fujihara, Litsuko Shimabukuro; Suganuma, Cláudia Haru; Reigota, Renata Bednar; Bertuzzo, Carmen Sílvia
2015-01-01
Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene. This disorder produces a variable phenotype including lung disease, pancreatic insufficiency, and meconium ileus plus bilateral agenesis of the vas deferens causing obstructive azoospermia and male infertility. Preimplantation genetic diagnosis is an alternative that allows identification of embryos affected by this or other genetic diseases. We report a case of couple with cystic fibrosis; the woman had the I148 T mutation and the man had the Delta F508 gene mutation. The couple underwent in vitro fertilization, associated with preimplantation genetic diagnosis, and with subsequent selection of healthy embryos for uterine transfer. The result was an uneventful pregnancy and delivery of a healthy male baby.
Preimplantation genetic diagnosis for cystic fibrosis: a case report
Biazotti, Maria Cristina Santoro; Pinto, Walter; de Albuquerque, Maria Cecília Romano Maciel; Fujihara, Litsuko Shimabukuro; Suganuma, Cláudia Haru; Reigota, Renata Bednar; Bertuzzo, Carmen Sílvia
2015-01-01
Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene. This disorder produces a variable phenotype including lung disease, pancreatic insufficiency, and meconium ileus plus bilateral agenesis of the vas deferens causing obstructive azoospermia and male infertility. Preimplantation genetic diagnosis is an alternative that allows identification of embryos affected by this or other genetic diseases. We report a case of couple with cystic fibrosis; the woman had the I148 T mutation and the man had the Delta F508 gene mutation. The couple underwent in vitro fertilization, associated with preimplantation genetic diagnosis, and with subsequent selection of healthy embryos for uterine transfer. The result was an uneventful pregnancy and delivery of a healthy male baby. PMID:25993078
Lack of association between Kidd blood group system and chronic kidney disease.
Capriolli, Tiago Verri; Visentainer, Jeane Eliete Laguila; Sell, Ana Maria
The Kidd blood group system has three antigens, Jk a , Jk b and Jk3, found on red blood cells and on endothelial cells of the inner lining of blood vessels in the renal medulla. These are known as urea transporter B (UT-B). Researchers have found that individuals carrying the Jk(a-b-) or Jk-null (UT-B null) phenotypes have a lower urine-concentrating capability and risk of severe renal impairment. This study evaluated the distribution of the Kidd phenotypes in patients with chronic kidney disease and a possible association of Kidd antigens with the development of renal disease. Jk a and Jk b antigens were phenotyped using the gel column agglutination test (ID-cards Bio-RAD) in 197 patients with chronic kidney disease and 444 blood donors, as the control group. The phenotype and antigen frequencies between patients and controls were evaluated using the Chi-square method with Yates correction and logistic regression after adjustments for gender and age. No differences were observed between the Kidd phenotypes frequency distribution between patients with chronic kidney disease and blood donors [Jk(a-b+)=22.3% and 27.2%; Jk(a+b-)=30.5% and 24.3%; Jk(a+b+)=47.25% and 48.4%, respectively]. The distribution of Kidd phenotypes found in the studied population is expected for Caucasians; Jk a and Jk b antigens and phenotypes were not found to be related to susceptibility for chronic kidney disease. Copyright © 2017 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.
Wang, Xulong; Philip, Vivek M.; Ananda, Guruprasad; White, Charles C.; Malhotra, Ankit; Michalski, Paul J.; Karuturi, Krishna R. Murthy; Chintalapudi, Sumana R.; Acklin, Casey; Sasner, Michael; Bennett, David A.; De Jager, Philip L.; Howell, Gareth R.; Carter, Gregory W.
2018-01-01
Recent technical and methodological advances have greatly enhanced genome-wide association studies (GWAS). The advent of low-cost, whole-genome sequencing facilitates high-resolution variant identification, and the development of linear mixed models (LMM) allows improved identification of putatively causal variants. While essential for correcting false positive associations due to sample relatedness and population stratification, LMMs have commonly been restricted to quantitative variables. However, phenotypic traits in association studies are often categorical, coded as binary case-control or ordered variables describing disease stages. To address these issues, we have devised a method for genomic association studies that implements a generalized LMM (GLMM) in a Bayesian framework, called Bayes-GLMM. Bayes-GLMM has four major features: (1) support of categorical, binary, and quantitative variables; (2) cohesive integration of previous GWAS results for related traits; (3) correction for sample relatedness by mixed modeling; and (4) model estimation by both Markov chain Monte Carlo sampling and maximal likelihood estimation. We applied Bayes-GLMM to the whole-genome sequencing cohort of the Alzheimer’s Disease Sequencing Project. This study contains 570 individuals from 111 families, each with Alzheimer’s disease diagnosed at one of four confidence levels. Using Bayes-GLMM we identified four variants in three loci significantly associated with Alzheimer’s disease. Two variants, rs140233081 and rs149372995, lie between PRKAR1B and PDGFA. The coded proteins are localized to the glial-vascular unit, and PDGFA transcript levels are associated with Alzheimer’s disease-related neuropathology. In summary, this work provides implementation of a flexible, generalized mixed-model approach in a Bayesian framework for association studies. PMID:29507048
Heritability of Measures of Kidney Disease Among Zuni Indians: The Zuni Kidney Project
MacCluer, Jean W.; Scavini, Marina; Shah, Vallabh O.; Cole, Shelley A.; Laston, Sandra L.; Voruganti, V. Saroja; Paine, Susan S.; Eaton, Alfred J.; Comuzzie, Anthony G.; Tentori, Francesca; Pathak, Dorothy R.; Bobelu, Arlene; Bobelu, Jeanette; Ghahate, Donica; Waikaniwa, Mildred; Zager, Philip G.
2010-01-01
Background The long-term goal of the GKDZI (Genetics of Kidney Disease in Zuni Indians) Study is to identify genes, environmental factors, and genetic-environmental interactions that modulate susceptibility to renal disease and intermediate phenotypes. Study Design A community-based participatory research approach was used to recruit family members of individuals with kidney disease. Setting & Participants The study was conducted in the Zuni Indians, a small endogamous tribe located in rural New Mexico. We recruited members of extended families, ascertained through a proband with kidney disease and at least 1 sibling with kidney disease. 821 participants were recruited, comprising 7,702 relative pairs. Predictor Outcomes & Measurements Urine albumin-creatinine ratio (UACR) and hematuria were determined in 3 urine samples and expressed as a true ratio. Glomerular filtration rate (GFR) was estimated using the Modification of Diet in Renal Disease (MDRD) Study equation modified for American Indians. Probands were considered to have kidney disease if UACR was ≥0.2 in 2 or more of 3 spot urine samples or estimated GFR was decreased according to the CRIC (Chronic Renal Insufficiency Cohort) Study criteria. Results Kidney disease was identified in 192 participants (23.4%). There were significant heritabilities for estimated GFR, UACR, serum creatinine, serum urea nitrogen, and uric acid and a variety of phenotypes related to obesity, diabetes, and cardiovascular disease. There were significant genetic correlations of some kidney-related phenotypes with these other phenotypes. Limitations Limitations include absence of renal biopsy, possible misclassification bias, lack of direct GFR measurements, and failure to include all possible environmental interactions. Conclusions Many phenotypes related to kidney disease showed significant heritabilities in Zuni Indians, and there were significant genetic correlations with phenotypes related to obesity, diabetes, and cardiovascular disease. The study design serves as a paradigm for the conduct of research in relatively isolated, endogamous, underserved populations. PMID:20646805
Risk assessment model for development of advanced age-related macular degeneration.
Klein, Michael L; Francis, Peter J; Ferris, Frederick L; Hamon, Sara C; Clemons, Traci E
2011-12-01
To design a risk assessment model for development of advanced age-related macular degeneration (AMD) incorporating phenotypic, demographic, environmental, and genetic risk factors. We evaluated longitudinal data from 2846 participants in the Age-Related Eye Disease Study. At baseline, these individuals had all levels of AMD, ranging from none to unilateral advanced AMD (neovascular or geographic atrophy). Follow-up averaged 9.3 years. We performed a Cox proportional hazards analysis with demographic, environmental, phenotypic, and genetic covariates and constructed a risk assessment model for development of advanced AMD. Performance of the model was evaluated using the C statistic and the Brier score and externally validated in participants in the Complications of Age-Related Macular Degeneration Prevention Trial. The final model included the following independent variables: age, smoking history, family history of AMD (first-degree member), phenotype based on a modified Age-Related Eye Disease Study simple scale score, and genetic variants CFH Y402H and ARMS2 A69S. The model did well on performance measures, with very good discrimination (C statistic = 0.872) and excellent calibration and overall performance (Brier score at 5 years = 0.08). Successful external validation was performed, and a risk assessment tool was designed for use with or without the genetic component. We constructed a risk assessment model for development of advanced AMD. The model performed well on measures of discrimination, calibration, and overall performance and was successfully externally validated. This risk assessment tool is available for online use.
Age at onset and Parkinson disease phenotype
Pagano, Gennaro; Ferrara, Nicola; Brooks, David J.
2016-01-01
Objective: To explore clinical phenotype and characteristics of Parkinson disease (PD) at different ages at onset in recently diagnosed patients with untreated PD. Methods: We have analyzed baseline data from the Parkinson's Progression Markers Initiative database. Four hundred twenty-two patients with a diagnosis of PD confirmed by DaTSCAN imaging were divided into 4 groups according to age at onset (onset younger than 50 years, 50–59 years, 60–69 years, and 70 years or older) and investigated for differences in side, type and localization of symptoms, occurrence/severity of motor and nonmotor features, nigrostriatal function, and CSF biomarkers. Results: Older age at onset was associated with a more severe motor and nonmotor phenotype, a greater dopaminergic dysfunction on DaTSCAN, and reduction of CSF α-synuclein and total tau. The most common presentation was the combination of 2 or 3 motor symptoms (bradykinesia, resting tremor, and rigidity) with rigidity being more common in the young-onset group. In about 80% of the patients with localized onset, the arm was the most affected part of the body, with no difference across subgroups. Conclusions: Although the presentation of PD symptoms is similar across age subgroups, the severity of motor and nonmotor features, the impairment of striatal binding, and the levels of CSF biomarkers increase with age at onset. The variability of imaging and nonimaging biomarkers in patients with PD at different ages could hamper the results of future clinical trials. PMID:26865518
Krämer, Andreas; Shah, Sohela; Rebres, Robert Anthony; Tang, Susan; Richards, Daniel Rene
2017-08-11
Next-generation sequencing is widely used to identify disease-causing variants in patients with rare genetic disorders. Identifying those variants from whole-genome or exome data can be both scientifically challenging and time consuming. A significant amount of time is spent on variant annotation, and interpretation. Fully or partly automated solutions are therefore needed to streamline and scale this process. We describe Phenotype Driven Ranking (PDR), an algorithm integrated into Ingenuity Variant Analysis, that uses observed patient phenotypes to prioritize diseases and genes in order to expedite causal-variant discovery. Our method is based on a network of phenotype-disease-gene relationships derived from the QIAGEN Knowledge Base, which allows for efficient computational association of phenotypes to implicated diseases, and also enables scoring and ranking. We have demonstrated the utility and performance of PDR by applying it to a number of clinical rare-disease cases, where the true causal gene was known beforehand. It is also shown that PDR compares favorably to a representative alternative tool.
Shen, Lishuang; Diroma, Maria Angela; Gonzalez, Michael; Navarro-Gomez, Daniel; Leipzig, Jeremy; Lott, Marie T; van Oven, Mannis; Wallace, Douglas C; Muraresku, Colleen Clarke; Zolkipli-Cunningham, Zarazuela; Chinnery, Patrick F; Attimonelli, Marcella; Zuchner, Stephan; Falk, Marni J; Gai, Xiaowu
2016-06-01
MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse genome browser supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and mitochondrial disease. MSeqDR-LSDB is a locus-specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar compliant variant annotations. PhenoTips will be used for phenotypic data submission on deidentified patients using human phenotype ontology terminology. The development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources. © 2016 WILEY PERIODICALS, INC.
Shen, Lishuang; Diroma, Maria Angela; Gonzalez, Michael; Navarro-Gomez, Daniel; Leipzig, Jeremy; Lott, Marie T.; van Oven, Mannis; Wallace, Douglas C.; Muraresku, Colleen Clarke; Zolkipli-Cunningham, Zarazuela; Chinnery, Patrick F.; Attimonelli, Marcella; Zuchner, Stephan
2016-01-01
MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and disease. MSeqDR-LSDB is a locus specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar-compliant variant annotations. PhenoTips is used for phenotypic data submission on de-identified patients using human phenotype ontology terminology. Development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources. PMID:26919060
Escher, Pascal; Passarin, Olga; Munier, Francis L; Tran, Viet H; Vaclavik, Veronika
2018-01-01
To expand the genotype/phenotype correlations in patients with autosomal dominant retinitis pigmentosa (adRP) harboring PRPF8 variants. Two patients, a father and his daughter, harboring a novel p.PRPF8-Glu2331* variant, underwent ophthalmic examination at 3-year-interval, including fundus photography, fundus autofluorescence, optical coherence tomography, and ISCEV standard full field ERGs. All reported disease-causing PRPF8 variants were collected and localized in the PRPF8 and PRPF8/SNRNP200 protein structures. The p.PRPF8-Glu2331* variant results in a truncated PRPF8 protein lacking the last five C-terminal amino acids and caused in the two patients a severe clinical phenotype, with the macula being affected from the second decade on. All but two adRP-linked variants are located in the last exon 43 encoding the C-terminal tail of the C-terminal PRPF8 Jab1 domain. The p.PRPF8-Ser2118Phe and -Asn2280Lys variants encoded by exons 39 and 42, respectively, are located at the basis of the C-terminal tail. Frame-shift mutations and nonconservative amino acid changes in PRPF8 typically cause severe clinical phenotypes. The conservative missense variant p.PRPF8-Arg2310Lys that is not altering the global charge of the C-terminal tail, and variants located at the basis of the C-terminal tail show milder clinical phenotypes, in accordance with functional data on PRPF8/SNRNP200 interactions in yeast.
Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.
Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M
2016-08-18
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.
Novel gene function revealed by mouse mutagenesis screens for models of age-related disease
Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.
2016-01-01
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441
Atanur, Santosh S; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R; Kaisaki, Pamela J; Otto, Georg W; Ma, Man Chun John; Keane, Thomas M; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J
2013-08-01
Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Atanur, Santosh S.; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R.; Kaisaki, Pamela J.; Otto, Georg W.; Ma, Man Chun John; Keane, Thomas M.; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R.; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J.; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J.
2013-01-01
Summary Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. PaperClip PMID:23890820
Swindell, William R; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P; Voorhees, John J; Elder, James T; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P; DiGiovanni, John; Pittelkow, Mark R; Ward, Nicole L; Gudjonsson, Johann E
2011-04-04
Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.
Small, Aeron M; Kiss, Daniel H; Zlatsin, Yevgeny; Birtwell, David L; Williams, Heather; Guerraty, Marie A; Han, Yuchi; Anwaruddin, Saif; Holmes, John H; Chirinos, Julio A; Wilensky, Robert L; Giri, Jay; Rader, Daniel J
2017-08-01
Interrogation of the electronic health record (EHR) using billing codes as a surrogate for diagnoses of interest has been widely used for clinical research. However, the accuracy of this methodology is variable, as it reflects billing codes rather than severity of disease, and depends on the disease and the accuracy of the coding practitioner. Systematic application of text mining to the EHR has had variable success for the detection of cardiovascular phenotypes. We hypothesize that the application of text mining algorithms to cardiovascular procedure reports may be a superior method to identify patients with cardiovascular conditions of interest. We adapted the Oracle product Endeca, which utilizes text mining to identify terms of interest from a NoSQL-like database, for purposes of searching cardiovascular procedure reports and termed the tool "PennSeek". We imported 282,569 echocardiography reports representing 81,164 individuals and 27,205 cardiac catheterization reports representing 14,567 individuals from non-searchable databases into PennSeek. We then applied clinical criteria to these reports in PennSeek to identify patients with trileaflet aortic stenosis (TAS) and coronary artery disease (CAD). Accuracy of patient identification by text mining through PennSeek was compared with ICD-9 billing codes. Text mining identified 7115 patients with TAS and 9247 patients with CAD. ICD-9 codes identified 8272 patients with TAS and 6913 patients with CAD. 4346 patients with AS and 6024 patients with CAD were identified by both approaches. A randomly selected sample of 200-250 patients uniquely identified by text mining was compared with 200-250 patients uniquely identified by billing codes for both diseases. We demonstrate that text mining was superior, with a positive predictive value (PPV) of 0.95 compared to 0.53 by ICD-9 for TAS, and a PPV of 0.97 compared to 0.86 for CAD. These results highlight the superiority of text mining algorithms applied to electronic cardiovascular procedure reports in the identification of phenotypes of interest for cardiovascular research. Copyright © 2017. Published by Elsevier Inc.
Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; van de Sluis, Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan
2016-01-01
ABSTRACT The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in ATP7A and ATP7B contributes to the biological understanding of protein function, with relevance for future development of therapy. PMID:26747866
Genetics of the First Seven Proprotein Convertase Enzymes in Health and Disease
Turpeinen, Hannu; Ortutay, Zsuzsanna; Pesu, Marko
2013-01-01
Members of the substilisin/kexin like proprotein convertase (PCSK) protease family cleave and convert immature pro-proteins into their biologically active forms. By cleaving for example prohormones, cytokines and cell membrane proteins, PCSKs participate in maintaining the homeostasis in a healthy human body. Conversely, erratic enzymatic function is thought to contribute to the pathogenesis of a wide variety of diseases, including obesity and hypercholestrolemia. The first characterized seven PCSK enzymes (PCSK1-2, FURIN, PCSK4-7) process their substrates at a motif made up of paired basic amino acid residues. This feature results in a variable degree of biochemical redundancy in vitro, and consequently, shared substrate molecules between the different PCSK enzymes. This redundancy has confounded our understanding of the specific biological functions of PCSKs. The physiological roles of these enzymes have been best illustrated by the phenotypes of genetically engineered mice and patients that carry mutations in the PCSK genes. Recent developments in genome-wide methodology have generated a large amount of novel information on the genetics of the first seven proprotein convertases. In this review we summarize the reported genetic alterations and their associated phenotypes. PMID:24396277
Paz, S. Alexis; Vanden-Eijnden, Eric
2017-01-01
We study the thermodynamic stability of the native state of the human prion protein using a new free-energy method, replica-exchange on-the-fly parameterization. This method is designed to overcome hidden-variable sampling limitations to yield nearly error-free free-energy profiles along a conformational coordinate. We confirm that all four (M129V, D178N) polymorphs have a ground-state conformation with three intact β-sheet hydrogen bonds. Additionally, they are observed to have distinct metastabilities determined by the side-chain at position 129. We rationalize these findings with reference to the prion “strain” hypothesis, which links the variety of transmissible spongiform encephalopathy phenotypes to conformationally distinct infectious prion forms and classifies distinct phenotypes of sporadic Creutzfeldt-Jakob disease based solely on the 129 polymorphism. Because such metastable structures are not easily observed in structural experiments, our approach could potentially provide new insights into the conformational origins of prion diseases and other pathologies arising from protein misfolding and aggregation. PMID:28451263
Zhou, Wei; Liu, Ranran; Zhang, Jingjing; Zheng, Maiqing; Li, Peng; Chang, Guobin; Wen, Jie; Zhao, Guiping
2014-10-01
Copy number variation (CNV) has been recently examined in many species and is recognized as being a source of genetic variability, especially for disease-related phenotypes. In this study, the PennCNV software, a genome-wide CNV detection system based on the 60 K SNP BeadChip was used on a total sample size of 1,310 Beijing-You chickens (a Chinese local breed). After quality control, 137 high confidence CNVRs covering 27.31 Mb of the chicken genome and corresponding to 2.61 % of the whole chicken genome. Within these regions, 131 known genes or coding sequences were involved. Q-PCR was applied to verify some of the genes related to disease development. Results showed that copy number of genes such as, phosphatidylinositol-5-phosphate 4-kinase II alpha, PHD finger protein 14, RHACD8 (a CD8α- like messenger RNA), MHC B-G, zinc finger protein, sarcosine dehydrogenase and ficolin 2 varied between individual chickens, which also supports the reliability of chip-detection of the CNVs. As one source of genomic variation, CNVs may provide new insight into the relationship between the genome and phenotypic characteristics.
Sandoval, Renata Lazari; Zaconeta, Carlos Moreno; Margotto, Paulo Roberto; Cardoso, Maria Teresinha de Oliveira; França, Evely Mirella Santos; Medina, Cristina Touguinha Neves; Canó, Talyta Matos; Faria, Aline Saliba de
2016-09-01
To report the case of a newborn with recurrent episodes of apnea, diagnosed with Congenital Central hypoventilation syndrome (CCHS) associated with Hirschsprung's disease (HD), configuring Haddad syndrome. Third child born at full-term to a non-consanguineous couple through normal delivery without complications, with appropriate weight and length for gestational age. Soon after birth he started to show bradypnea, bradycardia and cyanosis, being submitted to tracheal intubation and started empiric antibiotic therapy for suspected early neonatal sepsis. During hospitalization in the NICU, he showed difficulty to undergo extubation due to episodes of desaturation during sleep and wakefulness. He had recurrent episodes of hypoglycemia, hyperglycemia, metabolic acidosis, abdominal distension, leukocytosis, increase in C-reactive protein levels, with negative blood cultures and suspected inborn error of metabolism. At 2 months of age he was diagnosed with long-segment Hirschsprung's disease and was submitted to segment resection and colostomy through Hartmann's procedure. A genetic research was performed by polymerase chain reaction for CCHS screening, which showed the mutated allele of PHOX2B gene, confirming the diagnosis. This is a rare genetic, autosomal dominant disease, caused by mutation in PHOX2B gene, located in chromosome band 4p12, which results in autonomic nervous system dysfunction. CCHS can also occur with Hirschsprung's disease and tumors derived from the neural crest. There is a correlation between phenotype and genotype, as well as high intrafamilial phenotypic variability. In the neonatal period it can simulate cases of sepsis and inborn errors of metabolism. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Health and disease phenotyping in old age using a cluster network analysis.
Valenzuela, Jesus Felix; Monterola, Christopher; Tong, Victor Joo Chuan; Ng, Tze Pin; Larbi, Anis
2017-11-15
Human ageing is a complex trait that involves the synergistic action of numerous biological processes that interact to form a complex network. Here we performed a network analysis to examine the interrelationships between physiological and psychological functions, disease, disability, quality of life, lifestyle and behavioural risk factors for ageing in a cohort of 3,270 subjects aged ≥55 years. We considered associations between numerical and categorical descriptors using effect-size measures for each variable pair and identified clusters of variables from the resulting pairwise effect-size network and minimum spanning tree. We show, by way of a correspondence analysis between the two sets of clusters, that they correspond to coarse-grained and fine-grained structure of the network relationships. The clusters obtained from the minimum spanning tree mapped to various conceptual domains and corresponded to physiological and syndromic states. Hierarchical ordering of these clusters identified six common themes based on interactions with physiological systems and common underlying substrates of age-associated morbidity and disease chronicity, functional disability, and quality of life. These findings provide a starting point for indepth analyses of ageing that incorporate immunologic, metabolomic and proteomic biomarkers, and ultimately offer low-level-based typologies of healthy and unhealthy ageing.
Scheikl, Daniela; Tellier, Aurélien
2017-01-01
Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved. PMID:28133579
Stam, Remco; Scheikl, Daniela; Tellier, Aurélien
2017-01-01
Wild tomatoes are a valuable source of disease resistance germplasm for tomato ( Solanum lycopersicum ) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense , both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense . We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens ( Alternaria solani , Phytophthora infestans and a Fusarium sp .) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense , resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.
Familial Exudative Vitreoretinopathy.
Sızmaz, Selçuk; Yonekawa, Yoshihiro; T Trese, Michael
2015-08-01
Familial exudative vitreoretinopathy (FEVR) is a hereditary disease associated with visual loss, particularly in the pediatric group. Mutations in the NDP, FZD4, LRP5, and TSPAN12 genes have been shown to contribute to FEVR. FEVR has been reported to have X-linked recessive, autosomal dominant, and autosomal recessive inheritances. However, both the genotypic and phenotypic features are variable. Novel mutations contributing to the disease have been reported. The earliest and the most prominent finding of the disease is avascularity in the peripheral retina. As the disease progresses, retinal neovascularization, subretinal exudation, partial and total retinal detachment may occur, which may be associated with certain mutations. With early diagnosis and prompt management visual loss can be prevented with laser photocoagulation and anti-VEGF injections. In case of retinal detachment, pars plana vitrectomy alone or combined with scleral buckling should be considered. Identifying asymptomatic family members with various degrees of insidious findings is of certain importance. Wide-field imaging with fluorescein angiography is crucial in the management of this disease. The differential diagnosis includes other pediatric vitreoretinopathies such as Norrie disease, retinopathy of prematurity, and Coats' disease.
Familial Exudative Vitreoretinopathy
Sızmaz, Selçuk; Yonekawa, Yoshihiro; T. Trese, Michael
2015-01-01
Familial exudative vitreoretinopathy (FEVR) is a hereditary disease associated with visual loss, particularly in the pediatric group. Mutations in the NDP, FZD4, LRP5, and TSPAN12 genes have been shown to contribute to FEVR. FEVR has been reported to have X-linked recessive, autosomal dominant, and autosomal recessive inheritances. However, both the genotypic and phenotypic features are variable. Novel mutations contributing to the disease have been reported. The earliest and the most prominent finding of the disease is avascularity in the peripheral retina. As the disease progresses, retinal neovascularization, subretinal exudation, partial and total retinal detachment may occur, which may be associated with certain mutations. With early diagnosis and prompt management visual loss can be prevented with laser photocoagulation and anti-VEGF injections. In case of retinal detachment, pars plana vitrectomy alone or combined with scleral buckling should be considered. Identifying asymptomatic family members with various degrees of insidious findings is of certain importance. Wide-field imaging with fluorescein angiography is crucial in the management of this disease. The differential diagnosis includes other pediatric vitreoretinopathies such as Norrie disease, retinopathy of prematurity, and Coats’ disease. PMID:27800225
Rips, Jonathan; Meyer-Schuman, Rebecca; Breuer, Oded; Tsabari, Reuven; Shaag, Avraham; Revel-Vilk, Shoshana; Reif, Shimon; Elpeleg, Orly; Antonellis, Anthony; Harel, Tamar
2018-04-12
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes responsible for charging tRNA with cognate amino acids during protein translation. Non-canonical functions are increasingly recognized, and include transcription and translation control and extracellular signaling. Monoallelic mutations in genes encoding several ARSs have been identified in axonal Charcot-Marie-Tooth (CMT2) disease, whereas biallelic mutations in ARS loci have been associated with multi-tissue syndromes, variably involving the central nervous system, lung, and liver. We report a male infant of non-consanguineous origin, presenting with successive onset of transfusion-dependent anemia, hypothyroidism, cholestasis, interstitial lung disease, and developmental delay. Whole-exome sequencing (WES) revealed compound heterozygosity for two variants (p.Tyr307Cys and p.Arg618Cys) in MARS, encoding methionyl-tRNA synthetase. Biallelic MARS mutations are associated with interstitial lung and liver disease (ILLD). Interestingly, the p.Arg618Cys variant, inherited from an unaffected father, was previously reported in a family with autosomal dominant late-onset CMT2. Yeast complementation assays confirmed pathogenicity of p.Arg618Cys, yet suggested retained function of p.Tyr307Cys. Our findings underscore the phenotypic variability associated with ARS mutations, and suggest genetic or environmental modifying factors in the onset of monoallelic MARS-associated CMT2. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Lyall, Donald M; Ward, Joey; Ritchie, Stuart J; Davies, Gail; Cullen, Breda; Celis, Carlos; Bailey, Mark E S; Anderson, Jana; Evans, Jon; Mckay, Daniel F; Mcintosh, Andrew M; Sattar, Naveed; Smith, Daniel J; Deary, Ian J; Pell, Jill P
2016-07-01
the apolipoprotein (APOE) e4 locus is a genetic risk factor for dementia. Carriers of the e4 allele may be more vulnerable to conditions that are independent risk factors for cognitive decline, such as cardiometabolic diseases. we tested whether any association with APOE e4 status on cognitive ability was larger in older ages or in those with cardiometabolic diseases. UK Biobank includes over 500,000 middle- and older aged adults who have undergone detailed medical and cognitive phenotypic assessment. Around 150,000 currently have genetic data. We examined 111,739 participants with complete genetic and cognitive data. baseline cognitive data relating to information processing speed, memory and reasoning were used. We tested for interactions with age and with the presence versus absence of type 2 diabetes (T2D), coronary artery disease (CAD) and hypertension. in several instances, APOE e4 dosage interacted with older age and disease presence to affect cognitive scores. When adjusted for potentially confounding variables, there was no APOE e4 effect on the outcome variables. future research in large independent cohorts should continue to investigate this important question, which has potential implications for aetiology related to dementia and cognitive impairment. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Differential 5-year brain atrophy rates in cognitively declining and stable APOE-ε4 elders.
Kelly, Dana A; Seidenberg, Michael; Reiter, Katherine; Nielson, Kristy A; Woodard, John L; Smith, J Carson; Durgerian, Sally; Rao, Stephen M
2018-06-18
The apolipoprotein E (APOE) ε4 allele is the most important genetic risk factor for late-onset Alzheimer's disease. Many ε4 carriers, however, never develop Alzheimer's disease. The purpose of this study is to characterize the variability in phenotypic expression of the ε4 allele, as measured by the longitudinal trajectory of cognitive test scores and MRI brain volumes, in cognitively intact elders. Healthy older adults, ages 65-85, participated in a 5-year longitudinal study that included structural MRI and cognitive testing administered at baseline and at 1.5 and 5 years postenrollment. Participants included 22 ε4 noncarriers, 15 ε4 carriers who experienced a decline in cognition over the 5-year interval, and 11 ε4 carriers who remained cognitively stable. No baseline cognitive or volumetric group differences were observed. Compared to noncarriers, declining ε4 carriers had significantly greater rates of atrophy in left (p = .001, Cohen's d = .691) and right (p = .003, d = .622) cortical gray matter, left (p = .003, d = .625) and right (p = .020, d = .492) hippocampi, and greater expansion of the right inferior lateral ventricle (p < .001, d = .751) over 5 years. This study illustrates the variability in phenotypic expression of the ε4 allele related to neurodegeneration. Specifically, only those individuals who exhibited longitudinal declines in cognitive function experienced concomitant changes in brain volume. Future research is needed to better understand the biological and lifestyle factors that may influence the expression of the ε4 allele. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Carey, John C
2017-09-01
The designation, phenotype, was proposed as a term by Wilhelm Johannsen in 1909. The word is derived from the Greek, phano (showing) and typo (type), phanotypos. Phenotype has become a widely recognized term, even outside of the genetics community, in recent years with the ongoing identification of human disease genes. The term has been defined as the observable constitution of an organism, but sometimes refers to a condition when a person has a particular clinical presentation. Analysis of phenotype is a timely theme because advances in the understanding of the genetic basis of human disease and the emergence of next generation sequencing have spurred a renewed interest in phenotype and the proposal to establish a "Human Phenome Project." This article summarizes the principles of phenotype analysis that are important in medical genetics and describes approaches to comprehensive phenotype analysis in the investigation of patients with human disorders. I discuss the various elements related to disease phenotypes and highlight neurofibromatosis type 1 and the Elements of Morphology Project as illustrations of the principles. In recent years, the notion of "deep phenotyping" has emerged. Currently there are now a number of proposed strategies and resources to approach this concept. Not since the 1960s and 1970s has there been such an exciting time in the history of medicine surrounding the analysis of phenotype in genetic disorders. © 2017 Wiley Periodicals, Inc.
Bushel, Pierre R; Wolfinger, Russell D; Gibson, Greg
2007-01-01
Background Commonly employed clustering methods for analysis of gene expression data do not directly incorporate phenotypic data about the samples. Furthermore, clustering of samples with known phenotypes is typically performed in an informal fashion. The inability of clustering algorithms to incorporate biological data in the grouping process can limit proper interpretation of the data and its underlying biology. Results We present a more formal approach, the modk-prototypes algorithm, for clustering biological samples based on simultaneously considering microarray gene expression data and classes of known phenotypic variables such as clinical chemistry evaluations and histopathologic observations. The strategy involves constructing an objective function with the sum of the squared Euclidean distances for numeric microarray and clinical chemistry data and simple matching for histopathology categorical values in order to measure dissimilarity of the samples. Separate weighting terms are used for microarray, clinical chemistry and histopathology measurements to control the influence of each data domain on the clustering of the samples. The dynamic validity index for numeric data was modified with a category utility measure for determining the number of clusters in the data sets. A cluster's prototype, formed from the mean of the values for numeric features and the mode of the categorical values of all the samples in the group, is representative of the phenotype of the cluster members. The approach is shown to work well with a simulated mixed data set and two real data examples containing numeric and categorical data types. One from a heart disease study and another from acetaminophen (an analgesic) exposure in rat liver that causes centrilobular necrosis. Conclusion The modk-prototypes algorithm partitioned the simulated data into clusters with samples in their respective class group and the heart disease samples into two groups (sick and buff denoting samples having pain type representative of angina and non-angina respectively) with an accuracy of 79%. This is on par with, or better than, the assignment accuracy of the heart disease samples by several well-known and successful clustering algorithms. Following modk-prototypes clustering of the acetaminophen-exposed samples, informative genes from the cluster prototypes were identified that are descriptive of, and phenotypically anchored to, levels of necrosis of the centrilobular region of the rat liver. The biological processes cell growth and/or maintenance, amine metabolism, and stress response were shown to discern between no and moderate levels of acetaminophen-induced centrilobular necrosis. The use of well-known and traditional measurements directly in the clustering provides some guarantee that the resulting clusters will be meaningfully interpretable. PMID:17408499
Gottlieb, Michael M; Arenillas, David J; Maithripala, Savanie; Maurer, Zachary D; Tarailo Graovac, Maja; Armstrong, Linlea; Patel, Millan; van Karnebeek, Clara; Wasserman, Wyeth W
2015-04-01
Advances in next-generation sequencing (NGS) technologies have helped reveal causal variants for genetic diseases. In order to establish causality, it is often necessary to compare genomes of unrelated individuals with similar disease phenotypes to identify common disrupted genes. When working with cases of rare genetic disorders, finding similar individuals can be extremely difficult. We introduce a web tool, GeneYenta, which facilitates the matchmaking process, allowing clinicians to coordinate detailed comparisons for phenotypically similar cases. Importantly, the system is focused on phenotype annotation, with explicit limitations on highly confidential data that create barriers to participation. The procedure for matching of patient phenotypes, inspired by online dating services, uses an ontology-based semantic case matching algorithm with attribute weighting. We evaluate the capacity of the system using a curated reference data set and 19 clinician entered cases comparing four matching algorithms. We find that the inclusion of clinician weights can augment phenotype matching. © 2015 WILEY PERIODICALS, INC.
Almannai, Mohammed; Marom, Ronit; Divin, Kristian; Scaglia, Fernando; Sutton, V Reid; Craigen, William J; Lee, Brendan; Burrage, Lindsay C; Graham, Brett H
2017-09-01
Cobalamin C disease is a multisystemic disease with variable manifestations and age of onset. Genotype-phenotype correlations are well-recognized in this disorder. Here, we present a large cohort of individuals with cobalamin C disease, several of whom are heterozygous for the c.482G>A pathogenic variant (p.Arg161Gln). We compared clinical characteristics of individuals with this pathogenic variant to those who do not have this variant. To our knowledge, this study represents the largest single cohort of individuals with the c.482G>A (p.Arg161Gln) pathogenic variant. A retrospective chart review of 27 individuals from 21 families with cobalamin C disease who are followed at our facility was conducted. 13 individuals (48%) are compound heterozygous with the c.482G>A (p.Arg161Gln) on one allele and a second pathogenic variant on the other allele. Individuals with the c.482G>A (p.Arg161Gln) pathogenic variant had later onset of symptoms and easier metabolic control. Moreover, they had milder biochemical abnormalities at presentation which likely contributed to the observation that 4 individuals (31%) in this group were missed by newborn screening. The c.482G>A (p.Arg161Gln) pathogenic variant is associated with milder disease. These individuals may not receive a timely diagnosis as they may not be identified on newborn screening or because of unrecognized, late onset symptoms. Despite the milder presentation, significant complications can occur, especially if treatment is delayed. Copyright © 2017 Elsevier Inc. All rights reserved.
Cellucci, Tania; Tyrrell, Pascal N; Twilt, Marinka; Sheikh, Shehla; Benseler, Susanne M
2014-03-01
To identify distinct clusters of children with inflammatory brain diseases based on clinical, laboratory, and imaging features at presentation, to assess which features contribute strongly to the development of clusters, and to compare additional features between the identified clusters. A single-center cohort study was performed with children who had been diagnosed as having an inflammatory brain disease between June 1, 1989 and December 31, 2010. Demographic, clinical, laboratory, neuroimaging, and histologic data at diagnosis were collected. K-means cluster analysis was performed to identify clusters of patients based on their presenting features. Associations between the clusters and patient variables, such as diagnoses, were determined. A total of 147 children (50% female; median age 8.8 years) were identified: 105 with primary central nervous system (CNS) vasculitis, 11 with secondary CNS vasculitis, 8 with neuronal antibody syndromes, 6 with postinfectious syndromes, and 17 with other inflammatory brain diseases. Three distinct clusters were identified. Paresis and speech deficits were the most common presenting features in cluster 1. Children in cluster 2 were likely to present with behavior changes, cognitive dysfunction, and seizures, while those in cluster 3 experienced ataxia, vision abnormalities, and seizures. Lesions seen on T2/fluid-attenuated inversion recovery sequences of magnetic resonance imaging were common in all clusters, but unilateral ischemic lesions were more prominent in cluster 1. The clusters were associated with specific diagnoses and diagnostic test results. Children with inflammatory brain diseases presented with distinct phenotypical patterns that are associated with specific diagnoses. This information may inform the development of a diagnostic classification of childhood inflammatory brain diseases and suggest that specific pathways of diagnostic evaluation are warranted. Copyright © 2014 by the American College of Rheumatology.
Polygenic risk score in postmortem diagnosed sporadic early-onset Alzheimer's disease.
Chaudhury, Sultan; Patel, Tulsi; Barber, Imelda S; Guetta-Baranes, Tamar; Brookes, Keeley J; Chappell, Sally; Turton, James; Guerreiro, Rita; Bras, Jose; Hernandez, Dena; Singleton, Andrew; Hardy, John; Mann, David; Morgan, Kevin
2018-02-01
Sporadic early-onset Alzheimer's disease (sEOAD) exhibits the symptoms of late-onset Alzheimer's disease but lacks the familial aspect of the early-onset familial form. The genetics of Alzheimer's disease (AD) identifies APOEε4 to be the greatest risk factor; however, it is a complex disease involving both environmental risk factors and multiple genetic loci. Polygenic risk scores (PRSs) accumulate the total risk of a phenotype in an individual based on variants present in their genome. We determined whether sEOAD cases had a higher PRS compared to controls. A cohort of sEOAD cases was genotyped on the NeuroX array, and PRSs were generated using PRSice. The target data set consisted of 408 sEOAD cases and 436 controls. The base data set was collated by the International Genomics of Alzheimer's Project consortium, with association data from 17,008 late-onset Alzheimer's disease cases and 37,154 controls, which can be used for identifying sEOAD cases due to having shared phenotype. PRSs were generated using all common single nucleotide polymorphisms between the base and target data set, PRS were also generated using only single nucleotide polymorphisms within a 500 kb region surrounding the APOE gene. Sex and number of APOE ε2 or ε4 alleles were used as variables for logistic regression and combined with PRS. The results show that PRS is higher on average in sEOAD cases than controls, although there is still overlap among the whole cohort. Predictive ability of identifying cases and controls using PRSice was calculated with 72.9% accuracy, greater than the APOE locus alone (65.2%). Predictive ability was further improved with logistic regression, identifying cases and controls with 75.5% accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Wesolowska, Maria; Gorman, Grainne S; Alston, Charlotte L; Pajak, Aleksandra; Pyle, Angela; He, Langping; Griffin, Helen; Chinnery, Patrick F; Miller, James A L; Schaefer, Andrew M; Taylor, Robert W; Lightowlers, Robert N; Chrzanowska-Lightowlers, Zofia M
2015-10-07
Mitochondrial disease can present at any age, with dysfunction in almost any tissue making diagnosis a challenge. It can result from inherited or sporadic mutations in either the mitochondrial or the nuclear genome, many of which affect intraorganellar gene expression. The estimated prevalence of 1/4300 indicates these to be amongst the commonest inherited neuromuscular disorders, emphasising the importance of recognition of the diagnostic clinical features. Despite major advances in our understanding of the molecular basis of mitochondrial diseases, accurate and early diagnoses are critically dependent on the fastidious clinical and biochemical characterisation of patients. Here we describe a patient harbouring a previously reported homozygous mutation in C12orf65, a mitochondrial protein of unknown function, which does not adhere to the proposed distinct genotype-phenotype relationship. We performed clinical, biochemical and molecular analysis including whole exome sequencing on patient samples and cell lines. We report an extremely rare case of an adult presenting with Leigh-like disease, in intensive care, in the 5th decade of life, harbouring a recessively inherited mutation previously reported in children. A global reduction in intra-mitochondrial protein synthesis was observed despite normal or elevated levels of mt-RNA, leading to an isolated complex IV deficiency. All the reported C12orf65 mutations have shown an autosomal recessive pattern of inheritance. Mitochondrial disease causing mutations inherited in this manner are usually of early onset and associated with a severe, often fatal clinical phenotype. Presentations in adulthood are usually less severe. This patient's late adulthood presentation is in sharp contrast emphasising the clinical variability that is characteristic of mitochondrial disease and illustrates why making a definitive diagnosis remains a formidable challenge.
Vanoli, Alessandro; Di Sabatino, Antonio; Martino, Michele; Klersy, Catherine; Grillo, Federica; Mescoli, Claudia; Nesi, Gabriella; Volta, Umberto; Fornino, Daniele; Luinetti, Ombretta; Fociani, Paolo; Villanacci, Vincenzo; D'Armiento, Francesco P; Cannizzaro, Renato; Latella, Giovanni; Ciacci, Carolina; Biancone, Livia; Paulli, Marco; Sessa, Fausto; Rugge, Massimo; Fiocca, Roberto; Corazza, Gino R; Solcia, Enrico
2017-10-01
Non-familial small bowel carcinomas are relatively rare and have a poor prognosis. Two small bowel carcinoma subsets may arise in distinct immune-inflammatory diseases (celiac disease and Crohn's disease) and have been recently suggested to differ in prognosis, celiac disease-associated carcinoma cases showing a better outcome, possibly due to their higher DNA microsatellite instability and tumor-infiltrating T lymphocytes. In this study, we investigated the histological structure (glandular vs diffuse/poorly cohesive, mixed or solid), cell phenotype (intestinal vs gastric/pancreatobiliary duct type) and Wnt signaling activation (β-catenin and/or SOX-9 nuclear expression) in a series of 26 celiac disease-associated small bowel carcinoma, 25 Crohn's disease-associated small bowel carcinoma and 25 sporadic small bowel carcinoma cases, searching for new prognostic parameters. In addition, non-tumor mucosa of celiac and Crohn's disease patients was investigated for epithelial precursor changes (hyperplastic, metaplastic or dysplastic) to help clarify carcinoma histogenesis. When compared with non-glandular structure and non-intestinal phenotype, both glandular structure and intestinal phenotype were associated with a more favorable outcome at univariable or stage- and microsatellite instability/tumor-infiltrating lymphocyte-inclusive multivariable analysis. The prognostic power of histological structure was independent of the clinical groups while the non-intestinal phenotype, associated with poor outcome, was dominant among Crohn's disease-associated carcinoma. Both nuclear β-catenin and SOX-9 were preferably expressed among celiac disease-associated carcinomas; however, they were devoid, per se, of prognostic value. We obtained findings supporting an origin of celiac disease-associated carcinoma in SOX-9-positive immature hyperplastic crypts, partly through flat β-catenin-positive dysplasia, and of Crohn's disease-associated carcinoma in a metaplastic (gastric and/or pancreatobiliary-type) mucosa, often through dysplastic polypoid growths of metaplastic phenotype. In conclusion, despite their common origin in a chronically inflamed mucosa, celiac disease-associated and Crohn's disease-associated small bowel carcinomas differ substantially in histological structure, phenotype, microsatellite instability/tumor-infiltrating lymphocyte status, Wnt pathway activation, mucosal precursor lesions and prognosis.
Fay, Andre P; de Velasco, Guillermo; Ho, Thai H; Van Allen, Eliezer M; Murray, Bradley; Albiges, Laurence; Signoretti, Sabina; Hakimi, A Ari; Stanton, Melissa L; Bellmunt, Joaquim; McDermott, David F; Atkins, Michael B; Garraway, Levi A; Kwiatkowski, David J; Choueiri, Toni K
2016-07-01
Advances in next-generation sequencing have provided a unique opportunity to understand the biology of disease and mechanisms of sensitivity or resistance to specific agents. Renal cell carcinoma (RCC) is a heterogeneous disease and highly variable clinical responses have been observed with vascular endothelial growth factor (VEGF)-targeted therapy (VEGF-TT). We hypothesized that whole-exome sequencing analysis might identify genotypes associated with extreme response or resistance to VEGF-TT in metastatic (mRCC). Patients with mRCC who had received first-line sunitinib or pazopanib and were in 2 extreme phenotypes of response were identified. Extreme responders (ERs) were defined as those with partial response or complete response for 3 or more years (n=13) and primary refractory patients (PRPs) were defined as those with progressive disease within the first 3 months of therapy (n=14). International Metastatic RCC Database Consortium prognostic scores were not significantly different between the groups (P=.67). Considering the genes known to be mutated in RCC at significant frequency, PBRM1 mutations were identified in 7 ERs (54%) versus 1 PRP (7%) (P=.01). In addition, mutations in TP53 (n=4) were found only in PRPs (P=.09). Our data suggest that mutations in some genes in RCC may impact response to VEGF-TT. Copyright © 2016 by the National Comprehensive Cancer Network.
Polycystic ovary syndrome: cardiovascular risk factors according to specific phenotypes.
Aziz, Mubeena; Sidelmann, Johannes J; Faber, Jens; Wissing, Marie-Louise M; Naver, Klara V; Mikkelsen, Anne-Lis; Nilas, Lisbeth; Skouby, Sven O
2015-10-01
Polycystic ovary syndrome (PCOS) is associated with obesity and insulin resistance. The objective of this cross-sectional study was to investigate the impact of insulin resistance and body mass index (BMI) on inflammatory and hemostatic variables associated with long-term risk of cardiovascular disease in women with PCOS. 149 premenopausal women with PCOS were recruited consecutively from April 2010 to February 2012 at three Danish University Hospitals. The study was conducted at the Department of Gynecology and Obstetrics, Herlev University Hospital, Denmark. PCOS was diagnosed in accordance with the Rotterdam criteria and the women were classified into four phenotypes according to BMI and insulin resistance measured by the homeostasis model assessment of insulin resistance index. Body composition was determined by dual-energy X-ray absorptiometry. Main outcome measures were the biomarkers C-reactive protein (CRP), plasminogen activator inhibitor-1 (PAI-1), and von Willebrand factor antigen. Normal weight insulin-resistant PCOS women were characterized by abdominal obesity and elevated levels of plasma PAI-1. Overweight/obese insulin-resistant PCOS women had increased levels of both PAI-1 and CRP. Of the three Rotterdam criteria, only hyperandrogenemia was significantly associated with the hemostatic risk marker of long-term cardiovascular disease risk. Surrogate risk markers for cardiovascular disease are elevated in women with PCOS, especially insulin-resistant and overweight/obese women. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
Panny, A; Glurich, I; Haws, R M; Acharya, A
2017-11-01
Standardized guidelines for the oral health management of patients with rare diseases exhibiting morphologic anomalies are currently lacking. This review considers Bardet-Biedl syndrome (BBS), a monogenic autosomal recessive nonmotile ciliopathy, as an archetypal condition. Dental anomalies are present in a majority of individuals affected by BBS due to abnormal embryonic orofacial and tooth development. Genetically encoded intrinsic oral structural anomalies and heterogeneous BBS clinical phenotypes and consequent oral comorbidities confound oral health management. Since the comorbid spectrum of BBS phenotypes spans diabetes, renal disease, obesity, sleep apnea, cardiovascular disease, and cognitive disorders, a broad spectrum of collateral oral disease may be encountered. The genetic impact of BBS on the anatomic development of oral components and oral pathology encountered in the context of various BBS phenotypes and their associated comorbidities are reviewed herein. Challenges encountered in managing patients with BBS are highlighted, emphasizing the spectrum of oral pathology associated with heterogeneous clinical phenotypic expression. Guidelines for provision of care across the spectrum of BBS clinical phenotypes are considered. Establishment of integrated medical-dental delivery models of oral care in the context of rare diseases is emphasized, including involvement of caregivers in the context of managing these patients with special needs.
Some Like It Hot, Some Like It Warm: Phenotyping to Explore Thermotolerance Diversity
Yeh, Ching-Hui; Kaplinsky, Nicholas J.; Hu, Catherine; Charng, Yee-yung
2012-01-01
Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This thermotolerance diversity’ means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: 1) the heat stress regime used, 2) the developmental stage of the plants being studied, and 3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance. PMID:22920995
Maintenance of Genetic Variability under Strong Stabilizing Selection: A Two-Locus Model
Gavrilets, S.; Hastings, A.
1993-01-01
We study a two locus model with additive contributions to the phenotype to explore the relationship between stabilizing selection and recombination. We show that if the double heterozygote has the optimum phenotype and the contributions of the loci to the trait are different, then any symmetric stabilizing selection fitness function can maintain genetic variability provided selection is sufficiently strong relative to linkage. We present results of a detailed analysis of the quadratic fitness function which show that selection need not be extremely strong relative to recombination for the polymorphic equilibria to be stable. At these polymorphic equilibria the mean value of the trait, in general, is not equal to the optimum phenotype, there exists a large level of negative linkage disequilibrium which ``hides'' additive genetic variance, and different equilibria can be stable simultaneously. We analyze dependence of different characteristics of these equilibria on the location of optimum phenotype, on the difference in allelic effect, and on the strength of selection relative to recombination. Our overall result that stabilizing selection does not necessarily eliminate genetic variability is compatible with some experimental results where the lines subject to strong stabilizing selection did not have significant reductions in genetic variability. PMID:8514145
Identification of quantitative trait loci for fibrin clot phenotypes: The EuroCLOT study
Williams, Frances MK; Carter, Angela M; Kato, Bernet; Falchi, Mario; Bathum, Lise; Surdulescu, Gabriela; Kyvik, Kirsten Ohm; Palotie, Aarno; Spector, Tim D; Grant, Peter J
2012-01-01
Objectives Fibrin makes up the structural basis of an occlusive arterial thrombus and variability in fibrin phenotype relates to cardiovascular risk. The aims of the current study from the EU consortium EuroCLOT were to 1) determine the heritability of fibrin phenotypes and 2) identify QTLs associated with fibrin phenotypes. Methods 447 dizygotic (DZ) and 460 monozygotic (MZ) pairs of healthy UK Caucasian female twins and 199 DZ twin pairs from Denmark were studied. D-dimer, an indicator of fibrin turnover, was measured by ELISA and measures of clot formation, morphology and lysis were determined by turbidimetric assays. Heritability estimates and genome-wide linkage analysis were performed. Results Estimates of heritability for d-dimer and turbidometric variables were in the range 17 - 46%, with highest levels for maximal absorbance which provides an estimate of clot density. Genome-wide linkage analysis revealed 6 significant regions with LOD>3 on 5 chromosomes (5, 6, 9, 16 and 17). Conclusions The results indicate a significant genetic contribution to variability in fibrin phenotypes and highlight regions in the human genome which warrant further investigation in relation to ischaemic cardiovascular disorders and their therapy. PMID:19150881
Drought tolerance in cacao is mediated by root phenotypic plasticity
USDA-ARS?s Scientific Manuscript database
This study aimed to evaluate phenotypic relationships and their direct and indirect effects through path analysis, and evaluate the use of the phenotypic plasticity index as criteria for the estimation of the basic and explanatory variables used to analysis several cacao progenies subjected to soil ...
Myths in the Diagnosis and Management of Orbital Tumors
Gündüz, Kaan; Yanık, Özge
2015-01-01
Orbital tumors constitute a group of diverse lesions with a low incidence in the population. Tumors affecting the eye and ocular adnexa may also secondarily invade the orbit. Lack of accumulation of a sufficient number of cases with a specific diagnosis at various orbital centers, the paucity of prospective randomized studies, animal model studies, tissue bank, and genetic studies led to the development of various myths regarding the diagnosis and treatment of orbital lesions in the past. These myths continue to influence the diagnosis and treatment of orbital lesions by orbital specialists. This manuscript discusses some of the more common myths through case summaries and a review of the literature. Detailed genotypic analysis and genetic classification will provide further insight into the pathogenesis of many orbital diseases in the future. This will enable targeted treatments even for diseases with the same histopathologic diagnosis. Phenotypic variability within the same disease will be addressed using targeted treatments. PMID:26692710
Hall, Jennifer L; Ryan, John J; Bray, Bruce E; Brown, Candice; Lanfear, David; Newby, L Kristin; Relling, Mary V; Risch, Neil J; Roden, Dan M; Shaw, Stanley Y; Tcheng, James E; Tenenbaum, Jessica; Wang, Thomas N; Weintraub, William S
2016-04-01
The process of scientific discovery is rapidly evolving. The funding climate has influenced a favorable shift in scientific discovery toward the use of existing resources such as the electronic health record. The electronic health record enables long-term outlooks on human health and disease, in conjunction with multidimensional phenotypes that include laboratory data, images, vital signs, and other clinical information. Initial work has confirmed the utility of the electronic health record for understanding mechanisms and patterns of variability in disease susceptibility, disease evolution, and drug responses. The addition of biobanks and genomic data to the information contained in the electronic health record has been demonstrated. The purpose of this statement is to discuss the current challenges in and the potential for merging electronic health record data and genomics for cardiovascular research. © 2016 American Heart Association, Inc.
Epigenetics meets endocrinology
Zhang, Xiang; Ho, Shuk-Mei
2014-01-01
Although genetics determines endocrine phenotypes, it cannot fully explain the great variability and reversibility of the system in response to environmental changes. Evidence now suggests that epigenetics, i.e. heritable but reversible changes in gene function without changes in nucleotide sequence, links genetics and environment in shaping endocrine function. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNA, partition the genome into active and inactive domains based on endogenous and exogenous environmental changes and developmental stages, creating phenotype plasticity that can explain interindividual and population endocrine variability. We will review the current understanding of epigenetics in endocrinology, specifically, the regulation by epigenetics of the three levels of hormone action (synthesis and release, circulating and target tissue levels, and target-organ responsiveness) and the epigenetic action of endocrine disruptors. We will also discuss the impacts of hormones on epigenetics. We propose a three-dimensional model (genetics, environment, and developmental stage) to explain the phenomena related to progressive changes in endocrine functions with age, the early origin of endocrine disorders, phenotype discordance between monozygotic twins, rapid shifts in disease patterns among populations experiencing major lifestyle changes such as immigration, and the many endocrine disruptions in contemporary life. We emphasize that the key for understanding epigenetics in endocrinology is the identification, through advanced high-throughput screening technologies, of plasticity genes or loci that respond directly to a specific environmental stimulus. Investigations to determine whether epigenetic changes induced by today's lifestyles or environmental `exposures' can be inherited and are reversible should open doors for applying epigenetics to the prevention and treatment of endocrine disorders. PMID:21322125
Patterson, Emily J; Wilk, Melissa; Langlo, Christopher S; Kasilian, Melissa; Ring, Michael; Hufnagel, Robert B; Dubis, Adam M; Tee, James J; Kalitzeos, Angelos; Gardner, Jessica C; Ahmed, Zubair M; Sisk, Robert A; Larsen, Michael; Sjoberg, Stacy; Connor, Thomas B; Dubra, Alfredo; Neitz, Jay; Hardcastle, Alison J; Neitz, Maureen; Michaelides, Michel; Carroll, Joseph
2016-07-01
Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus.
Wang, Jian; Shete, Sanjay
2011-11-01
We recently proposed a bias correction approach to evaluate accurate estimation of the odds ratio (OR) of genetic variants associated with a secondary phenotype, in which the secondary phenotype is associated with the primary disease, based on the original case-control data collected for the purpose of studying the primary disease. As reported in this communication, we further investigated the type I error probabilities and powers of the proposed approach, and compared the results to those obtained from logistic regression analysis (with or without adjustment for the primary disease status). We performed a simulation study based on a frequency-matching case-control study with respect to the secondary phenotype of interest. We examined the empirical distribution of the natural logarithm of the corrected OR obtained from the bias correction approach and found it to be normally distributed under the null hypothesis. On the basis of the simulation study results, we found that the logistic regression approaches that adjust or do not adjust for the primary disease status had low power for detecting secondary phenotype associated variants and highly inflated type I error probabilities, whereas our approach was more powerful for identifying the SNP-secondary phenotype associations and had better-controlled type I error probabilities. © 2011 Wiley Periodicals, Inc.
Phenotypic variability in patients with Fanconi anemia and biallelic FANCF mutations.
Tryon, Rebecca; Zierhut, Heather; MacMillan, Margaret L; Wagner, John E
2017-01-01
Fanconi anemia is a heterogeneous genetic disorder that is characterized by progressive bone marrow failure, congenital anomalies, and markedly increased risk for malignancies. Mutations in the FANCF (FA-F) gene represent approximately 2% of affected patients. Currently, information on the phenotypic findings of patients with Fanconi anemia from biallelic mutations in FANCF is limited. Here, we report three patients who illustrate the clinical variability within the FA-F group. This analysis suggests a more severe phenotype for those with the common c.484_485delCT mutation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
eRAM: encyclopedia of rare disease annotations for precision medicine.
Jia, Jinmeng; An, Zhongxin; Ming, Yue; Guo, Yongli; Li, Wei; Liang, Yunxiang; Guo, Dongming; Li, Xin; Tai, Jun; Chen, Geng; Jin, Yaqiong; Liu, Zhimei; Ni, Xin; Shi, Tieliu
2018-01-04
Rare diseases affect over a hundred million people worldwide, most of these patients are not accurately diagnosed and effectively treated. The limited knowledge of rare diseases forms the biggest obstacle for improving their treatment. Detailed clinical phenotyping is considered as a keystone of deciphering genes and realizing the precision medicine for rare diseases. Here, we preset a standardized system for various types of rare diseases, called encyclopedia of Rare disease Annotations for Precision Medicine (eRAM). eRAM was built by text-mining nearly 10 million scientific publications and electronic medical records, and integrating various data in existing recognized databases (such as Unified Medical Language System (UMLS), Human Phenotype Ontology, Orphanet, OMIM, GWAS). eRAM systematically incorporates currently available data on clinical manifestations and molecular mechanisms of rare diseases and uncovers many novel associations among diseases. eRAM provides enriched annotations for 15 942 rare diseases, yielding 6147 human disease related phenotype terms, 31 661 mammalians phenotype terms, 10,202 symptoms from UMLS, 18 815 genes and 92 580 genotypes. eRAM can not only provide information about rare disease mechanism but also facilitate clinicians to make accurate diagnostic and therapeutic decisions towards rare diseases. eRAM can be freely accessed at http://www.unimd.org/eram/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
A recurrent 16p12.1 microdeletion suggests a two-hit model for severe developmental delay
Girirajan, Santhosh; Rosenfeld, Jill A.; Cooper, Gregory M.; Antonacci, Francesca; Siswara, Priscillia; Itsara, Andy; Vives, Laura; Walsh, Tom; McCarthy, Shane E.; Baker, Carl; Mefford, Heather C.; Kidd, Jeffrey M.; Browning, Sharon R.; Browning, Brian L.; Dickel, Diane E.; Levy, Deborah L.; Ballif, Blake C.; Platky, Kathryn; Farber, Darren M.; Gowans, Gordon C.; Wetherbee, Jessica J.; Asamoah, Alexander; Weaver, David D.; Mark, Paul R.; Dickerson, Jennifer; Garg, Bhuwan P.; Ellingwood, Sara A.; Smith, Rosemarie; Banks, Valerie C.; Smith, Wendy; McDonald, Marie T.; Hoo, Joe J.; French, Beatrice N.; Hudson, Cindy; Johnson, John P.; Ozmore, Jillian R.; Moeschler, John B.; Surti, Urvashi; Escobar, Luis F.; El-Kechen, Dima; Gorski, Jerome L.; Kussman, Jennifer; Salbert, Bonnie; Lacassie, Yves; Biser, Alisha; McDonald-McGinn, Donna M.; Zackai, Elaine H.; Deardorff, Matthew A.; Shaikh, Tamim H.; Haan, Eric; Friend, Kathryn L.; Fichera, Marco; Romano, Corrado; Gécz, Jozef; deLisi, Lynn E.; Sebat, Jonathan; King, Mary-Claire; Shaffer, Lisa G.; Eichler, Evan E.
2010-01-01
We report the identification of a recurrent 520-kbp 16p12.1 microdeletion significantly associated with childhood developmental delay. The microdeletion was detected in 20/11,873 cases vs. 2/8,540 controls (p=0.0009, OR=7.2) and replicated in a second series of 22/9,254 cases vs. 6/6,299 controls (p=0.028, OR=2.5). Most deletions were inherited with carrier parents likely to manifest neuropsychiatric phenotypes (p=0.037, OR=6). Probands were more likely to carry an additional large CNV when compared to matched controls (10/42 cases, p=5.7×10-5, OR=6.65). Clinical features of cases with two mutations were distinct from and/or more severe than clinical features of patients carrying only the co-occurring mutation. Our data suggest a two-hit model in which the 16p12.1 microdeletion both predisposes to neuropsychiatric phenotypes as a single event and exacerbates neurodevelopmental phenotypes in association with other large deletions or duplications. Analysis of other microdeletions with variable expressivity suggests that this two-hit model may be more generally applicable to neuropsychiatric disease. PMID:20154674
McKay, Fiona C; Gatt, Prudence N; Fewings, Nicole; Parnell, Grant P; Schibeci, Stephen D; Basuki, Monica A I; Powell, Joseph E; Goldinger, Anita; Fabis-Pedrini, Marzena J; Kermode, Allan G; Burke, Therese; Vucic, Steve; Stewart, Graeme J; Booth, David R
2016-02-01
Multiple Sclerosis (MS) is an autoimmune disease treated by therapies targeting peripheral blood cells. We previously identified that expression of two MS-risk genes, the transcription factors EOMES and TBX21 (ET), was low in blood from MS and stable over time. Here we replicated the low ET expression in a new MS cohort (p<0.0007 for EOMES, p<0.028 for TBX21) and demonstrate longitudinal stability (p<10(-4)) and high heritability (h(2)=0.48 for EOMES) for this molecular phenotype. Genes whose expression correlated with ET, especially those controlling cell migration, further defined the phenotype. CD56+ cells and other subsets expressed lower levels of Eomes or T-bet protein and/or were under-represented in MS. EOMES and TBX21 risk SNP genotypes, and serum EBNA-1 titres were not correlated with ET expression, but HLA-DRB1*1501 genotype was. ET expression was normalised to healthy control levels with natalizumab, and was highly variable for glatiramer acetate, fingolimod, interferon-beta, dimethyl fumarate. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Moldenhauer Minillo, Renata; Sobreira, Nara; de Fatima de Faria Soares, Maria; Jurgens, Julie; Ling, Hua; Hetrick, Kurt N.; Doheny, Kimberly F.; Valle, David; Brunoni, Decio; Alvarez Perez, Ana B.
2014-01-01
Autosomal recessive osteogenesis imperfecta (OI) accounts for 10% of all OI cases, and, currently, mutations in 10 genes (CRTAP, LEPRE1, PPIB, SERPINH1, FKBP10, SERPINF1, SP7, BMP1, TMEM38B, and WNT1) are known to be responsible for this form of the disease. PEDF is a secreted glycoprotein of the serpin superfamily that maintains bone homeostasis and regulates osteoid mineralization, and it is encoded by SERPINF1, currently associated with OI type VI (MIM 172860). Here, we report a consanguineous Brazilian family in which multiple individuals from at least 4 generations are affected with a severe form of OI, and we also report an unrelated individual from the same small city in Brazil with a similar but more severe phenotype. In both families the same homozygous SERPINF1 19-bp deletion was identified which is not known in the literature yet. We described intra- and interfamilial clinical and radiological phenotypic variability of OI type VI caused by the same homozygous SERPINF1 19-bp deletion and suggest a founder effect. Furthermore, the SERPINF1 genotypes/phenotypes reported so far in the literature are reviewed. PMID:25565926
Genetic and environmental pathways to complex diseases.
Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J
2009-05-05
Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.
Martinovich, Kelly M; Iosifidis, Thomas; Buckley, Alysia G; Looi, Kevin; Ling, Kak-Ming; Sutanto, Erika N; Kicic-Starcevich, Elizabeth; Garratt, Luke W; Shaw, Nicole C; Montgomery, Samuel; Lannigan, Francis J; Knight, Darryl A; Kicic, Anthony; Stick, Stephen M
2017-12-21
Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range.
ABCC6 and Pseudoxanthoma Elasticum: The Face of a Rare Disease from Genetics to Advocacy
Moitra, Karobi; Garcia, Sonia; Etoundi, Clementine; Cooper, Donna; Roland, Anna; Dixon, Patrice; Reyes, Sandra; Turan, Sevilay; Dean, Michael
2017-01-01
Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder characterized by the mineralization of connective tissues in the body. Primary manifestation of PXE occurs in the tissues of the skin, eyes, and cardiovascular system. PXE is primarily caused by mutations in the ABCC6 gene. The ABCC6 gene encodes the trans-membrane protein ABCC6, which is highly expressed in the kidneys and liver. PXE has high phenotypic variability, which may possibly be affected by several modifier genes. Disease advocacy organizations have had a pivotal role in bringing rare disease research to the forefront and in helping to sustain research funding for rare genetic diseases in order to help find a treatment for these diseases, pseudoxanthoma elasticum included. Because of these initiatives, individuals affected by these conditions benefit by being scientifically informed about their condition, having an effective support mechanism, and also by contributing to scientific research efforts and banking of biological samples. This rapid progress would not have been possible without the aid of disease advocacy organizations such as PXE International. PMID:28696355
A functional U-statistic method for association analysis of sequencing data.
Jadhav, Sneha; Tong, Xiaoran; Lu, Qing
2017-11-01
Although sequencing studies hold great promise for uncovering novel variants predisposing to human diseases, the high dimensionality of the sequencing data brings tremendous challenges to data analysis. Moreover, for many complex diseases (e.g., psychiatric disorders) multiple related phenotypes are collected. These phenotypes can be different measurements of an underlying disease, or measurements characterizing multiple related diseases for studying common genetic mechanism. Although jointly analyzing these phenotypes could potentially increase the power of identifying disease-associated genes, the different types of phenotypes pose challenges for association analysis. To address these challenges, we propose a nonparametric method, functional U-statistic method (FU), for multivariate analysis of sequencing data. It first constructs smooth functions from individuals' sequencing data, and then tests the association of these functions with multiple phenotypes by using a U-statistic. The method provides a general framework for analyzing various types of phenotypes (e.g., binary and continuous phenotypes) with unknown distributions. Fitting the genetic variants within a gene using a smoothing function also allows us to capture complexities of gene structure (e.g., linkage disequilibrium, LD), which could potentially increase the power of association analysis. Through simulations, we compared our method to the multivariate outcome score test (MOST), and found that our test attained better performance than MOST. In a real data application, we apply our method to the sequencing data from Minnesota Twin Study (MTS) and found potential associations of several nicotine receptor subunit (CHRN) genes, including CHRNB3, associated with nicotine dependence and/or alcohol dependence. © 2017 WILEY PERIODICALS, INC.
Psoriasis and polycystic ovary syndrome: a new link in different phenotypes.
Moro, Francesca; Tropea, Anna; Scarinci, Elisa; Federico, Alex; De Simone, Clara; Caldarola, Giacomo; Leoncini, Emanuele; Boccia, Stefania; Lanzone, Antonio; Apa, Rosanna
2015-08-01
Women affected by PCOS and psoriasis are more likely to have insulin-resistance, hyperinsulinemia, reduced HDL cholesterol levels and a more severe degree of skin disease than those with psoriasis alone. The mechanism underlying this association between PCOS and psoriasis is currently unknown. The aim of the present study was to evaluate the features of psoriasis and the psoriasis severity scores in the different PCOS phenotypes and in age and body mass index (BMI)-matched psoriatic control patients. A cross-sectional study was performed on 150 psoriatic patients: 94 PCOS and 56 age- and BMI-matched controls. PCOS patients were diagnosed and divided into four phenotypes according to Rotterdam criteria: A - patients with complete phenotype with hyperandrogenism (H) plus oligoamenorrhea (O) plus polycystic ovary (PCO) on ultrasound examination; B - patients with H plus O (without PCO); C - patients with H plus PCO (ovulatory phenotype); D - patients with O plus PCO (without H). The patient's Psoriasis Area and Severity Index (PASI) as well as the Physician's Global Assessment (PGA) were calculated. A PASI score ≥10 was correlated with common indicator of severe disease. A PGA ≥4 was considered as a condition of moderate to severe disease. Among the four phenotypes investigated, the group with complete phenotype (H plus O plus PCO) had a higher prevalence of patients with patient's PASI ≥10 compared to controls (Odds Ratio (OR) 4.71, 95% confidence intervals (CI) 1.59-13.95). The group with O plus PCO had a higher prevalence of patients with PGA ≥4 compared to controls (OR 26.79, 95% CI 3.40-211.02) while the ovulatory group had a lower prevalence of patients with PGA ≥4 (OR 0.06, 95% CI 0.01-0.51). The ovulatory phenotype displays a milder psoriasis form than other phenotypes while the phenotypes with oligoamenorrhea presented higher severity scores of disease than other phenotypes and control group. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions such as through...
GUSTAFSON, D.R.; SHI, Q.; THURN, M.; HOLMAN, S.A.; MINKOFF, H.; COHEN, M.; PLANKEY, M.W.; HAVLIK, R.; SHARMA, A.; GANGE, S.; GANDHI, M.; MILAM, J.; HOOVER, D.
2016-01-01
Background Biological similarities are noted between aging and HIV infection. Middle-aged adults with HIV infection may present as elderly due to accelerated aging or having more severe aging phenotypes occurring at younger ages. Objectives We explored age-adjusted prevalence of frailty, a geriatric condition, among HIV+ and at risk HIV− women. Design Cross-sectional. Setting The Women's Interagency HIV Study (WIHS). Participants 2028 middle-aged (average age 39 years) female participants (1449 HIV+; 579 HIV−). Measurements The Fried Frailty Index (FFI), HIV status variables, and constellations of variables representing Demographic/health behaviors and Aging-related chronic diseases. Associations between the FFI and other variables were estimated, followed by stepwise regression models. Results Overall frailty prevalence was 15.2% (HIV+, 17%; HIV−, 10%). A multivariable model suggested that HIV infection with CD4 count<200; age>40 years; current or former smoking; income ≤$12,000; moderate vs low fibrinogen-4 (FIB-4) levels; and moderate vs high estimated glomerular filtration rate (eGFR) were positively associated with frailty. Low or moderate drinking was protective. Conclusions Frailty is a multidimensional aging phenotype observed in mid-life among women with HIV infection. Prevalence of frailty in this sample of HIV-infected women exceeds that for usual elderly populations. This highlights the need for geriatricians and gerontologists to interact with younger `at risk' populations, and assists in the formulation of best recommendations for frailty interventions to prevent early aging, excess morbidities and early death. PMID:26980368
Lorenz-Depiereux, Bettina; Guido, Victoria E.; Johnson, Kenneth R.; Zheng, Qing Yin; Gagnon, Leona H.; Bauschatz, Joiel D.; Davisson, Muriel T.; Washburn, Linda L.; Donahue, Leah Rae; Strom, Tim M.; Eicher, Eva M.
2010-01-01
X-linked hypophosphatemic rickets (XLH) in humans is caused by mutations in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: PhexHyp, Gy, and PhexSka1. Here we report analysis of two new spontaneous mutations in the mouse Phex gene, PhexHyp-2J and PhexHyp-Duk. PhexHyp-2J and PhexHyp-Duk involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the PhexHyp-Duk mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from PhexHyp-2J/Y and PhexHyp-Duk/Y males reveal a thickening of the temporal bone surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired PhexHyp-Duk/Y mice, but not in the normal-hearing PhexHyp-2J/Y mice. Analysis of the phenotypes noted in PhexHyp-Duk/Y an PhexHyp-2J/Y males, together with those noted in PhexSka1/Y and PhexHyp/Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in PhexHyp-Duk/Y mice could provide insight into the phenotypic variation of XLH in humans. PMID:15029877
Lorenz-Depiereux, Bettina; Guido, Victoria E; Johnson, Kenneth R; Zheng, Qing Yin; Gagnon, Leona H; Bauschatz, Joiel D; Davisson, Muriel T; Washburn, Linda L; Donahue, Leah Rae; Strom, Tim M; Eicher, Eva M
2004-03-01
X-linked hypophosphatemic rickets (XLH) in humans is caused by mutation in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: Phex(Hyp), Gy, and Phex(Ska1). Here we report analysis of two new spontaneous mutation in the mouse Phex gene, Phex(Hyp-2J) and Phex(Hyp-Duk). Phex(Hyp-2J) and Phex(Hyp-Duk) involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the Phex(Hyp-Duk) mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from Phex(Hyp-2J)/Y and Phex(Hyp-Duk)/Y males reveal a thickening of the temporal bones surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired Phex(Hyp-Duk)/Y mice, but not in the normal-hearing Phex(Hyp-2J)/Y mice. Analysis of the phenotypes noted in Phex(Hyp-Duk)/Y and Phex(Hyp-2J)/Y males, together with those noted in Phex(Ska1)/Y and Phex(Hyp)/Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in Phex(Hyp-Duk)/Y mice could provide insight into the phenotypic variation of XLH in humans.
Sandhu, Kam; Flintoff, Kaledas; Chatfield, Mark D; Dixon, Jeannette L; Ramm, Louise E; Ramm, Grant A; Powell, Lawrie W; Subramaniam, V Nathan; Wallace, Daniel F
2018-05-09
The clinical progression of HFE-related hereditary hemochromatosis (HH) and its phenotypic variability has been well studied. Less is known about the natural history of non-HFE HH caused by mutations in the HJV , HAMP or TFR2 genes. The purpose of this study was to compare the phenotypic and clinical presentations of hepcidin-deficient forms of HH. A literature review of all published cases of genetically confirmed HJV, HAMP and TFR2 HH was performed. Phenotypic and clinical data from a total of 156 subjects with non-HFE HH was extracted from 53 publications and compared with data from 984 subjects with HFE -p.C282Y homozygous HH from the QIMR Berghofer Hemochromatosis Database. Analyses confirmed that non-HFE forms of HH have an earlier age of onset and a more severe clinical course than HFE HH. HJV and HAMP HH are phenotypically and clinically very similar and have the most severe presentation, with cardiomyopathy and hypogonadism being particularly prevalent findings. TFR2 HH is more intermediate in its age of onset and severity. All clinical outcomes analyzed were more prevalent in the juvenile forms of HH, with the exception of arthritis and arthropathy which were more commonly seen in HFE HH. This is the first comprehensive analysis comparing the different phenotypic and clinical aspects of the genetic forms of HH and the results will be valuable for the differential diagnosis and management of these conditions. Importantly, our analyses indicate that factors other than iron overload may be contributing to joint pathology in subjects with HFE HH. Copyright © 2018 American Society of Hematology.
Volatile organic compounds as non-invasive markers for plant phenotyping.
Niederbacher, B; Winkler, J B; Schnitzler, J P
2015-09-01
Plants emit a great variety of volatile organic compounds (VOCs) that can actively participate in plant growth and protection against biotic and abiotic stresses. VOC emissions are strongly dependent on environmental conditions; the greatest ambiguity is whether or not the predicted change in climate will influence and modify plant-pest interactions that are mediated by VOCs. The constitutive and induced emission patterns between plant genotypes, species, and taxa are highly variable and can be used as pheno(chemo)typic markers to distinguish between different origins and provenances. In recent years significant progress has been made in molecular and genetic plant breeding. However, there is actually a lack of knowledge in functionally linking genotypes and phenotypes, particularly in analyses of plant-environment interactions. Plant phenotyping, the assessment of complex plant traits such as growth, development, tolerance, resistance, etc., has become a major bottleneck, and quantitative information on genotype-environment relationships is the key to addressing major future challenges. With increasing demand to support and accelerate progress in breeding for novel traits, the plant research community faces the need to measure accurately increasingly large numbers of plants and plant traits. In this review article, we focus on the promising outlook of VOC phenotyping as a fast and non-invasive measure of phenotypic dynamics. The basic principle is to define plant phenotypes according to their disease resistance and stress tolerance, which in turn will help in improving the performance and yield of economically relevant plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Biondi, Emanuele G.; Tatti, Enrico; Comparini, Diego; Giuntini, Elisa; Mocali, Stefano; Giovannetti, Luciana; Bazzicalupo, Marco; Mengoni, Alessio; Viti, Carlo
2009-01-01
Sinorhizobium meliloti is a soil bacterium that fixes atmospheric nitrogen in plant roots. The high genetic diversity of its natural populations has been the subject of extensive analysis. Recent genomic studies of several isolates revealed a high content of variable genes, suggesting a correspondingly large phenotypic differentiation among strains of S. meliloti. Here, using the Phenotype MicroArray (PM) system, hundreds of different growth conditions were tested in order to compare the metabolic capabilities of the laboratory reference strain Rm1021 with those of four natural S. meliloti isolates previously analyzed by comparative genomic hybridization (CGH). The results of PM analysis showed that most phenotypic differences involved carbon source utilization and tolerance to osmolytes and pH, while fewer differences were scored for nitrogen, phosphorus, and sulfur source utilization. Only the variability of the tested strain in tolerance to sodium nitrite and ammonium sulfate of pH 8 was hypothesized to be associated with the genetic polymorphisms detected by CGH analysis. Colony and cell morphologies and the ability to nodulate Medicago truncatula plants were also compared, revealing further phenotypic diversity. Overall, our results suggest that the study of functional (phenotypic) variability of S. meliloti populations is an important and complementary step in the investigation of genetic polymorphism of rhizobia and may help to elucidate rhizobial evolutionary dynamics, including adaptation to diverse environments. PMID:19561177
Highly variable cutis laxa resulting from a dominant splicing mutation of the elastin gene.
Graul-Neumann, Luitgard M; Hausser, Ingrid; Essayie, Maximilian; Rauch, Anita; Kraus, Cornelia
2008-04-15
Autosomal dominant congenital cutis laxa (ADCL) is genetically heterogeneous and shows clinical variability. Only seven ADCL families with mutations in the elastin gene (ELN) have been described previously. We present morphological and molecular genetic studies in a cutis laxa kindred with a previously undescribed highly variable phenotype caused by a novel ELN mutation c.1621 C > T. The proband presented with severe cutis laxa, severe congenital lung disease previously undescribed in ADCL and pulmonary artery disease, which is often seen in ARCL but rare in ADCL. He also developed infantile spasms (OMIM 308350; West syndrome), which we consider a coincidental association although recessive cutis laxa or even digenic inheritance cannot be excluded. Electron microscopy of the proband's dermis revealed only mild rarefication of elastic fibers (in contrast to most recessive cutis laxa types). Apart from mild elastic fiber fragmentation, dermal morphology of the proband's father was within normal range. Molecular analysis of the ELN gene using genomic DNA from blood and RNA from cultured skin fibroblasts indicated a novel splice site mutation in the proband and his clinically healthy father. Analysis of ELN expression in fibroblasts provided evidence for a dominant-negative effect in the child, while due to an unknown mechanism, the father showed haploinsufficiency which might explain the significant clinical variability. Copyright 2008 Wiley-Liss, Inc.
Zhang, Xiaoshuai; Xue, Fuzhong; Liu, Hong; Zhu, Dianwen; Peng, Bin; Wiemels, Joseph L; Yang, Xiaowei
2014-12-10
Genome-wide Association Studies (GWAS) are typically designed to identify phenotype-associated single nucleotide polymorphisms (SNPs) individually using univariate analysis methods. Though providing valuable insights into genetic risks of common diseases, the genetic variants identified by GWAS generally account for only a small proportion of the total heritability for complex diseases. To solve this "missing heritability" problem, we implemented a strategy called integrative Bayesian Variable Selection (iBVS), which is based on a hierarchical model that incorporates an informative prior by considering the gene interrelationship as a network. It was applied here to both simulated and real data sets. Simulation studies indicated that the iBVS method was advantageous in its performance with highest AUC in both variable selection and outcome prediction, when compared to Stepwise and LASSO based strategies. In an analysis of a leprosy case-control study, iBVS selected 94 SNPs as predictors, while LASSO selected 100 SNPs. The Stepwise regression yielded a more parsimonious model with only 3 SNPs. The prediction results demonstrated that the iBVS method had comparable performance with that of LASSO, but better than Stepwise strategies. The proposed iBVS strategy is a novel and valid method for Genome-wide Association Studies, with the additional advantage in that it produces more interpretable posterior probabilities for each variable unlike LASSO and other penalized regression methods.
Saykin, Andrew J.; Shen, Li; Foroud, Tatiana M.; Potkin, Steven G.; Swaminathan, Shanker; Kim, Sungeun; Risacher, Shannon L.; Nho, Kwangsik; Huentelman, Matthew J.; Craig, David W.; Thompson, Paul M.; Stein, Jason L.; Moore, Jason H.; Farrer, Lindsay A.; Green, Robert C.; Bertram, Lars; Jack, Clifford R.; Weiner, Michael W.
2010-01-01
The role of the Alzheimer’s Disease Neuroimaging Initiative Genetics Core is to facilitate the investigation of genetic influences on disease onset and trajectory as reflected in structural, functional, and molecular imaging changes; fluid biomarkers; and cognitive status. Major goals include (1) blood sample processing, genotyping, and dissemination, (2) genome-wide association studies (GWAS) of longitudinal phenotypic data, and (3) providing a central resource, point of contact and planning group for genetics within Alzheimer’s Disease Neuroimaging Initiative. Genome-wide array data have been publicly released and updated, and several neuroimaging GWAS have recently been reported examining baseline magnetic resonance imaging measures as quantitative phenotypes. Other preliminary investigations include copy number variation in mild cognitive impairment and Alzheimer’s disease and GWAS of baseline cerebrospinal fluid biomarkers and longitudinal changes on magnetic resonance imaging. Blood collection for RNA studies is a new direction. Genetic studies of longitudinal phenotypes hold promise for elucidating disease mechanisms and risk, development of therapeutic strategies, and refining selection criteria for clinical trials. PMID:20451875
Cabré, Eduard; Mañosa, Míriam; García-Sánchez, Valle; Gutiérrez, Ana; Ricart, Elena; Esteve, Maria; Guardiola, Jordi; Aguas, Mariam; Merino, Olga; Ponferrada, Angel; Gisbert, Javier P; Garcia-Planella, Esther; Ceña, Gloria; Cabriada, José L; Montoro, Miguel; Domènech, Eugeni
2014-07-01
Disease outcome has been found to be poorer in familial inflammatory bowel disease (IBD) than in sporadic forms, but assessment of phenotypic concordance in familial IBD provided controversial results. We assessed the concordance for disease type and phenotypic features in IBD families. Patients with familial IBD were identified from the IBD Spanish database ENEIDA. Families in whom at least two members were in the database were selected for concordance analysis (κ index). Concordance for type of IBD [Crohn's disease (CD) vs. ulcerative colitis (UC)], as well as for disease extent, localization and behaviour, perianal disease, extraintestinal manifestations, and indicators of severe disease (i.e., need for immunosuppressors, biological agents, and surgery) for those pairs concordant for IBD type, were analyzed. 798 out of 11,905 IBD patients (7%) in ENEIDA had familial history of IBD. Complete data of 107 families (231 patients and 144 consanguineous pairs) were available for concordance analyses. The youngest members of the pairs were diagnosed with IBD at a significantly younger age (p<0.001) than the oldest ones. Seventy-six percent of pairs matched up for the IBD type (κ=0.58; 95%CI: 0.42-0.73, moderate concordance). There was no relevant concordance for any of the phenotypic items assessed in both diseases. Familial IBD is associated with diagnostic anticipation in younger individuals. Familial history does not allow predicting any phenotypic feature other than IBD type. Copyright © 2013 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.
Huntington's Disease: Relationship Between Phenotype and Genotype.
Sun, Yi-Min; Zhang, Yan-Bin; Wu, Zhi-Ying
2017-01-01
Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease with the typical manifestations of involuntary movements, psychiatric and behavior disorders, and cognitive impairment. It is caused by the dynamic mutation in CAG triplet repeat number in exon 1 of huntingtin (HTT) gene. The symptoms of HD especially the age at onset are related to the genetic characteristics, both the CAG triplet repeat and the modified factors. Here, we reviewed the recent advancement on the genotype-phenotype relationship of HD, mainly focus on the characteristics of different expanded CAG repeat number, genetic modifiers, and CCG repeat number in the 3' end of CAG triplet repeat and their effects on the phenotype. We also reviewed the special forms of HD (juvenile HD, atypical onset HD, and homozygous HD) and their phenotype-genotype correlations. The review will aid clinicians to predict the onset age and disease course of HD, give the genetic counseling, and accelerate research into the HD mechanism.
Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy.
Dale, Matthew A; Ruhlman, Melissa K; Baxter, B Timothy
2015-08-01
Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused ≈15 000 deaths annually in the United States. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4(+) T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Proinflammatory CD4(+) T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to proinflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the proinflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. © 2015 American Heart Association, Inc.
Inflammatory cell phenotypes in AAAs; their role and potential as targets for therapy
Dale, Matthew A; Ruhlman, Melissa K.; Baxter, B. Timothy
2015-01-01
Abdominal aortic aneurysms are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused approximately 15,000 deaths annually in the U.S. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4+ T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Pro-inflammatory CD4+ T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to pro-inflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the pro-inflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. PMID:26044582