NASA Astrophysics Data System (ADS)
Pedatella, N. M.; Liu, H.-L.; Sassi, F.; Lei, J.; Chau, J. L.; Zhang, X.
2014-05-01
To investigate ionosphere variability during the 2009 sudden stratosphere warming (SSW), we present simulation results that combine the Whole Atmosphere Community Climate Model Extended version and the thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM). The simulations reveal notable enhancements in both the migrating semidiurnal solar (SW2) and lunar (M2) tides during the SSW. The SW2 and M2 amplitudes reach ˜50 m s-1 and ˜40 m s-1, respectively, in zonal wind at E region altitudes. The dramatic increase in the M2 at these altitudes influences the dynamo generation of electric fields, and the importance of the M2 on the ionosphere variability during the 2009 SSW is demonstrated by comparing simulations with and without the M2. TIME-GCM simulations that incorporate the M2 are found to be in good agreement with Jicamarca Incoherent Scatter Radar vertical plasma drifts and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations of the maximum F region electron density. The agreement with observations is worse if the M2 is not included in the simulation, demonstrating that the lunar tide is an important contributor to the ionosphere variability during the 2009 SSW. We additionally investigate sources of the F region electron density variability during the SSW. The primary driver of the electron density variability is changes in electric fields. Changes in meridional neutral winds and thermosphere composition are found to also contribute to the electron density variability during the 2009 SSW. The electron density variability for the 2009 SSW is therefore not solely due to variability in electric fields as previously thought.
MAVEN observations of dayside peak electron densities in the ionosphere of Mars
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.
2017-01-01
The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.
Saturn's ionosphere - Inferred electron densities
NASA Technical Reports Server (NTRS)
Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.
1984-01-01
During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densities measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings. Previously announced in STAR as N84-17102
Saturn's ionosphere: Inferred electron densities
NASA Technical Reports Server (NTRS)
Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.
1983-01-01
During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densitis measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finzel, Kati, E-mail: kati.finzel@liu.se
The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possiblemore » to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.« less
Dimmable electronic ballasts by variable power density modulation technique
NASA Astrophysics Data System (ADS)
Borekci, Selim; Kesler, Selami
2014-11-01
Dimming can be accomplished commonly by switching frequency and pulse density modulation techniques and a variable inductor. In this study, a variable power density modulation (VPDM) control technique is proposed for dimming applications. A fluorescent lamp is operated in several states to meet the desired lamp power in a modulation period. The proposed technique has the same advantages of magnetic dimming topologies have. In addition, a unique and flexible control technique can be achieved. A prototype dimmable electronic ballast is built and experiments related to it have been conducted. As a result, a 36WT8 fluorescent lamp can be driven for a desired lamp power from several alternatives without modulating the switching frequency.
Ionospheric responses during equinox and solstice periods over Turkey
NASA Astrophysics Data System (ADS)
Karatay, Secil; Cinar, Ali; Arikan, Feza
2017-11-01
Ionospheric electron density is the determining variable for investigation of the spatial and temporal variations in the ionosphere. Total Electron Content (TEC) is the integral of the electron density along a ray path that indicates the total variability through the ionosphere. Global Positioning System (GPS) recordings can be utilized to estimate the TEC, thus GPS proves itself as a useful tool in monitoring the total variability of electron distribution within the ionosphere. This study focuses on the analysis of the variations of ionosphere over Turkey that can be grouped into anomalies during equinox and solstice periods using TEC estimates obtained by a regional GPS network. It is observed that noon time depletions in TEC distributions predominantly occur in winter for minimum Sun Spots Numbers (SSN) in the central regions of Turkey which also exhibit high variability due to midlatitude winter anomaly. TEC values and ionospheric variations at solstice periods demonstrate significant enhancements compared to those at equinox periods.
Monitoring D-Region Variability from Lightning Measurements
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Berthelier, Jean-Jacques; Pfaff, Robert; Bilitza, Dieter; Klenzing, Jeffery
2011-01-01
In situ measurements of ionospheric D-region characteristics are somewhat scarce and rely mostly on sounding rockets. Remote sensing techniques employing Very Low Frequency (VLF) transmitters can provide electron density estimates from subionospheric wave propagation modeling. Here we discuss how lightning waveform measurements, namely sferics and tweeks, can be used for monitoring the D-region variability and day-night transition, and for local electron density estimates. A brief comparison among D-region aeronomy models is also presented.
Topside ionosphere of Mars: Variability, transient layers, and the role of crustal magnetic fields
NASA Astrophysics Data System (ADS)
Gopika, P. G.; Venkateswara Rao, N.
2018-04-01
The topside ionosphere of Mars is known to show variability and transient topside layers. In this study, we analyzed the electron density profiles measured by the radio occultation technique aboard the Mars Global Surveyor spacecraft to study the topside ionosphere of Mars. The electron density profiles that we used in the present study span between 1998 and 2005. All the measurements are done from the northern high latitudes, except 220 profiles which were measured in the southern hemisphere, where strong crustal magnetic fields are present. We binned the observations into six measurement periods: 1998, 1999-north, 1999-south, 2000-2001, 2002-2003, and 2004-2005. We found that the topside ionosphere in the southern high latitudes is more variable than that from the northern hemisphere. This feature is clearly seen with fluctuations of wavelengths less than 20 km. Some of the electron density profiles show a transient topside layer with a local maximum in electron density between 160 km and 210 km. The topside layer is more prone to occur in the southern hemispheric crustal magnetic field regions than in the other regions. In addition, the peak density of the topside layer is greater in regions of strong crustal magnetic fields than in other regions. The variability of the topside ionosphere and the peak density of the topside layer, however, do not show one-to-one correlation with the strength of the crustal magnetic fields and magnetic field inclination. The results of the present study are discussed in the light of current understanding on the topside ionosphere, transient topside layers, and the role of crustal magnetic fields on plasma motions.
MAVEN Observations of Dayside Peak Electron Densities in the Ionosphere of Mars
NASA Astrophysics Data System (ADS)
Vogt, M. F.; Withers, P.; Andersson, L.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.; Connerney, J. E. P.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.
2016-12-01
The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The MAVEN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis is lowered to 120 km, provided our first opportunity since Viking to sample in situ a complete dayside electron density profiles including the main peak, and the first observations with contemporaneous comprehensive measurements of the local plasma and magnetic field properties. We have analyzed the peak electron density measurements from the MAVEN deep dip orbits and will discuss their variability with various ionospheric properties, including the proximity to regions of large crustal magnetic fields, and external drivers. We will also present observations of the electron temperature and atmospheric neutral and ion composition at the altitude of the peak electron density.
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.
NASA Astrophysics Data System (ADS)
Mezey, Paul G.
2017-11-01
Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.
NASA Astrophysics Data System (ADS)
Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi
2018-06-01
A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.
Research on ionospheric tomography based on variable pixel height
NASA Astrophysics Data System (ADS)
Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui
2016-05-01
A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.
Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R.
1998-01-01
High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.
Rocket measurements of electron density irregularities during MAC/SINE
NASA Technical Reports Server (NTRS)
Ulwick, J. C.
1989-01-01
Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.
Effect of normal impurities on anisotropic superconductors with variable density of states
NASA Astrophysics Data System (ADS)
Whitmore, M. D.; Carbotte, J. P.
1982-06-01
We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.
Variable energy, high flux, ground-state atomic oxygen source
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)
1987-01-01
A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.
Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics
NASA Technical Reports Server (NTRS)
1994-01-01
The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.
Spheromak reactor-design study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Les, J.M.
1981-06-30
A general overview of spheromak reactor characteristics, such as MHD stability, start up, and plasma geometry is presented. In addition, comparisons are made between spheromaks, tokamaks and field reversed mirrors. The computer code Sphero is also discussed. Sphero is a zero dimensional time independent transport code that uses particle confinement times and profile parameters as input since they are not known with certainty at the present time. More specifically, Sphero numerically solves a given set of transport equations whose solutions include such variables as fuel ion (deuterium and tritium) density, electron density, alpha particle density and ion, electron temperatures.
Miller, William H.; Cotton, Stephen J.
2016-08-28
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory - e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer valuesmore » of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states - and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.« less
Miller, William H; Cotton, Stephen J
2016-08-28
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory-e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states-and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.
NASA Technical Reports Server (NTRS)
Snyder, A.; Patch, R. W.; Lauver, M. R.
1980-01-01
Hot-ion plasma experiments were conducted in the NASA Lewis SUMMA facility. A steady-state modified Penning discharge was formed by applying a radially inward dc electric field of several kilovolts near the magnetic mirror maxima. Results are reported for a hydrogen plasma covering a wide range in midplane magnetic flux densities from 0.5 to 3.37 T. Input power greater than 45 kW was obtained with water-cooled cathodes. Steady-state plasmas with ion kinetic temperatures from 18 to 830 eV were produced and measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent variables. Electron density measurements were made using an unusually sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm.
NASA Astrophysics Data System (ADS)
Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.
2016-09-01
In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.
Rocket observations of the ionosphere during the eclipse of 26 February 1979
NASA Technical Reports Server (NTRS)
Mcinerney, M. K.; Smith, L. G.
1984-01-01
Electron density profiles and energetic particle fluxes were determined from two rockets launched, respectively, at the beginning and end of totality during the solar eclipse of 26 February 1979. These, and one other rocket at the same time of day on 24 February 1979, were launched from near Red Lake, Ontario. The electron density profile from 24 February shows the electron density to be normal above 110 km, to rocket apogee. Below 110 km, the electron density is enhanced, by an order of magnitude in the D region, compared with data from Wallops Island at the same solar zenith angle (63 deg). The enhancement is qualitatively explained by the large flux of field aligned energetic particles observed on the same rocket. During totality (on 26 February) the electron density above 110 km to rocket apogee is reduced by a factor of about three. Below 110 km, the electron density is much greater than observed during previous eclipses. The particle flux measured on the 26 February was an order of magnitude less than that on the 24 February but showed greater variability, particularly at the higher energies (100 keV). A feature of the particle flux is that, for the two rockets that were separated horizontally by 38 km while above the absorbing region, the variations are uncorrelated.
The stationary non-equilibrium plasma of cosmic-ray electrons and positrons
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2016-06-01
The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.
MIRI: Comparison of Mars Express MARSIS ionospheric data with a global climate model
NASA Astrophysics Data System (ADS)
Gonzalez-Galindo, Francisco; Forget, Francois; Gurnett, Donald; Lopez-Valverde, Miguel; Morgan, David D.; Nemec, Frantisek; Chaufray, Jean-Yves; Diéval, Catherine
2016-07-01
Observations and computational models are the two fundamental stones of our current knowledge of the Martian atmosphere, and both are expected to contribute to the MIRI effort. Data-model comparisons are thus necessary to identify possible bias in the models and to complement the information provided by the observations. Here we present the comparison of the ionosphere determined from Mars Express MARSIS AIS observations with that simulated by a ground-to-exosphere Global Climate Model for Mars, the LMD-MGCM. We focus the comparison on the density and altitude of the main ionospheric peak. In general, the observed latitudinal and solar zenith angle variability of these parameters is well reproduced by the model, although the model tends to slightly underestimate both the electron density and altitude of the peak. The model predicts also a latitudinal variability of the peak electron density that is not observed. We will discuss the different factors affecting the predicted ionosphere, and emphasize the importance of a good knowledge of the electronic temperature in producing a correct representation of the ionosphere by the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobranskis, R. R.; Zharkova, V. V., E-mail: valentina.zharkova@northumbria.ac.uk
2014-06-10
The original continuity equation (CE) used for the interpretation of the power law energy spectra of beam electrons in flares was written and solved for an electron beam flux while ignoring an additional free term with an electron density. In order to remedy this omission, the original CE for electron flux, considering beam's energy losses in Coulomb collisions, was first differentiated by the two independent variables: depth and energy leading to partial differential equation for an electron beam density instead of flux with the additional free term. The analytical solution of this partial differential continuity equation (PDCE) is obtained bymore » using the method of characteristics. This solution is further used to derive analytical expressions for mean electron spectra for Coulomb collisions and to carry out numeric calculations of hard X-ray (HXR) photon spectra for beams with different parameters. The solutions revealed a significant departure of electron densities at lower energies from the original results derived from the CE for the flux obtained for Coulomb collisions. This departure is caused by the additional exponential term that appeared in the updated solutions for electron differential density leading to its faster decrease at lower energies (below 100 keV) with every precipitation depth similar to the results obtained with numerical Fokker-Planck solutions. The effects of these updated solutions for electron densities on mean electron spectra and HXR photon spectra are also discussed.« less
Modeling of electron cyclotron resonance discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyyappan, M.; Govindan, T.R.
The current trend in plasma processing is the development of high density plasma sources to achieve high deposition and etch rates, uniformity over large ares, and low wafer damage. Here, is a simple model to predict the spatially-averaged plasma characteristics of electron cyclotron resonance (ECR) reactors is presented. The model consists of global conservation equations for species concentration, electron density and energy. A gas energy balance is used to predict the neutral temperature self-consistently. The model is demonstrated for an ECR argon discharge. The predicted behavior of the discharge as a function of system variables agrees well with experimental observations.
Comparative ionospheres: Terrestrial and giant planets
NASA Astrophysics Data System (ADS)
Mendillo, Michael; Trovato, Jeffrey; Moore, Luke; Müller-Wodarg, Ingo
2018-03-01
The study of planetary ionospheres within our solar system offers a variety of settings to probe mechanisms of photo-ionization, chemical loss, and plasma transport. Ionospheres are a minor component of upper atmospheres, and thus their mix of ions observed depends on the neutral gas composition of their parent atmospheres. The same solar irradiance (x-rays and extreme-ultra-violet vs. wavelength) impinges upon each of these atmospheres, with solar flux magnitudes changed only by the inverse square of distance from the Sun. If all planets had the same neutral atmosphere-with ionospheres governed by photochemical equilibrium (production = loss)-their peak electron densities would decrease as the inverse of distance from the Sun, and any changes in solar output would exhibit coherent effects throughout the solar system. Here we examine the outer planet with the most observations of its ionosphere (Saturn) and compare its patterns of electron density with those at Earth under the same-day solar conditions. We show that, while the average magnitudes of the major layers of molecular ions at Earth and Saturn are approximately in accord with distance effects, only minor correlations exist between solar effects and day-to-day electron densities. This is in marked contrast to the strong correlations found between the ionospheres of Earth and Mars. Moreover, the variability observed for Saturn's ionosphere (maximum electron density and total electron content) is much larger than found at Earth and Mars. With solar irradiance changes far too small to cause such effects, we use model results to explore the roles of other agents. We find that water sources from Enceladus at low latitudes, and 'ring rain' at middle latitudes, contribute substantially to variability via water ion chemistry. Thermospheric winds and electrodynamics generated at auroral latitudes are suggested causes of high latitude ionospheric variability, but remain inconclusive due to the lack of relevant observations.
Partial-reflection studies of D-region winter variability. [electron density measurements
NASA Technical Reports Server (NTRS)
Denny, B. W.; Bowhill, S. A.
1973-01-01
D-region electron densities were measured from December, 1972, to July, 1973, at Urbana, Illinois (latitude 40.2N) using the partial-reflection technique. During the winter, electron densities at altitudes of 72, 76.5, and 81 km show cyclical changes with a period of about 5 days that are highly correlated between these altitudes, suggesting that the mechanism responsible for the winter anomaly in D-region ionization applies throughout this height region. From January 13 to February 3, a pronounced wave-like variation occurred in the partial-reflection measurements, apparently associated with a major stratospheric warming that developed in that period. During the same time period, a traveling periodic variation is observed in the 10-mb height; it is highly correlated with the partial-reflection measurements. Electron density enhancements occur approximately at the same time as increases in the 10-mb height. Comparison of AL and A3 absorption measurements with electron density measurements below 82 km indicates that the winter anomaly in D-region ionization is divided into two types. Type 1, above about 82 km, extends horizontally for about 200 km while type 2, below about 82 km, extends for a horizontal scale of at least 1000 km.
Fourier-Legendre expansion of the one-electron density matrix of ground-state two-electron atoms.
Ragot, Sébastien; Ruiz, María Belén
2008-09-28
The density matrix rho(r,r(')) of a spherically symmetric system can be expanded as a Fourier-Legendre series of Legendre polynomials P(l)(cos theta=rr(')rr(')). Application is here made to harmonically trapped electron pairs (i.e., Moshinsky's and Hooke's atoms), for which exact wavefunctions are known, and to the helium atom, using a near-exact wavefunction. In the present approach, generic closed form expressions are derived for the series coefficients of rho(r,r(')). The series expansions are shown to converge rapidly in each case, with respect to both the electron number and the kinetic energy. In practice, a two-term expansion accounts for most of the correlation effects, so that the correlated density matrices of the atoms at issue are essentially a linear functions of P(l)(cos theta)=cos theta. For example, in the case of Hooke's atom, a two-term expansion takes in 99.9% of the electrons and 99.6% of the kinetic energy. The correlated density matrices obtained are finally compared to their determinantal counterparts, using a simplified representation of the density matrix rho(r,r(')), suggested by the Legendre expansion. Interestingly, two-particle correlation is shown to impact the angular delocalization of each electron, in the one-particle space spanned by the r and r(') variables.
TIME-DEPENDENT DENSITY DIAGNOSTICS OF SOLAR FLARE PLASMAS USING SDO/EVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, Ryan O.; Kennedy, Michael B.; Mathioudakis, Mihalis
2012-08-10
Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 10{sup 4} and 10{sup 7} K, including transitions from highly ionized iron ({approx}>10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 10{sup 11.2}-10{sup 12.1} cm{sup -3} were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to bemore » determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.« less
D-region differential-phase measurements and ionization variability studies
NASA Technical Reports Server (NTRS)
Weiland, R. M.; Bowhill, S. A.
1978-01-01
Measurements of electron densities in the D region are made by the partial-reflection differential-absorption and differential-phase techniques. The differential-phase data are obtained by a hard-wired phase-measuring system. Electron-sensity profiles obtained by the two techniques on six occasions are plotted and compared. Electron-density profiles obtained at the same time on 30 occasions during the years 1975 through 1977 are averaged to form a single profile for each technique. The effect of varying the assumed collision-frequency profile on these averaged profiles is studied. Time series of D-region electron-sensity data obtained by 3.4 minute intervals on six days during the summer of 1977 are examined for wave-like disturbances and tidal oscillations.
A simulation study of radial expansion of an electron beam injected into an ionospheric plasma
NASA Technical Reports Server (NTRS)
Koga, J.; Lin, C. S.
1994-01-01
Injections of nonrelativistic electron beams from a finite equipotential conductor into an ionospheric plasma have been simulated using a two-dimensional electrostatic particle code. The purpose of the study is to survey the simulation parameters for understanding the dependence of beam radius on physical variables. The conductor is charged to a high potential when the background plasma density is less than the beam density. Beam electrons attracted by the charged conductor are decelerated to zero velocity near the stagnation point, which is at a few Debye lengths from the conductor. The simulations suggest that the beam electrons at the stagnation point receive a large transverse kick and the beam expands radially thereafter. The buildup of beam electrons at the stagnation point produces a large electrostatic force responsible for the transverse kick. However, for the weak charging cases where the background plasma density is larger than the beam density, the radial expansion mechanism is different; the beam plasma instability is found to be responsible for the radial expansion. The simulations show that the electron beam radius for high spacecraft charging cases is of the order of the beam gyroradius, defined as the beam velocity divided by the gyrofrequency. In the weak charging cases, the beam radius is only a fraction of the beam gyroradius. The parameter survey indicates that the beam radius increases with beam density and decreases with magnetic field and beam velocity. The beam radius normalized by the beam gyroradius is found to scale according to the ratio of the beam electron Debye length to the ambient electron Debye length. The parameter dependence deduced would be useful for interpreting the beam radius and beam density of electron beam injection experiments conducted from rockets and the space shuttle.
Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT
NASA Astrophysics Data System (ADS)
Tuna, Hakan; Arikan, Orhan; Arikan, Feza
2015-10-01
Three-dimensional imaging of the electron density distribution in the ionosphere is a crucial task for investigating the ionospheric effects. Dual-frequency Global Positioning System (GPS) satellite signals can be used to estimate the slant total electron content (STEC) along the propagation path between a GPS satellite and ground-based receiver station. However, the estimated GPS-STEC is very sparse and highly nonuniformly distributed for obtaining reliable 3-D electron density distributions derived from the measurements alone. Standard tomographic reconstruction techniques are not accurate or reliable enough to represent the full complexity of variable ionosphere. On the other hand, model-based electron density distributions are produced according to the general trends of ionosphere, and these distributions do not agree with measurements, especially for geomagnetically active hours. In this study, a regional 3-D electron density distribution reconstruction method, namely, IONOLAB-CIT, is proposed to assimilate GPS-STEC into physical ionospheric models. The proposed method is based on an iterative optimization framework that tracks the deviations from the ionospheric model in terms of F2 layer critical frequency and maximum ionization height resulting from the comparison of International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model-generated STEC and GPS-STEC. The suggested tomography algorithm is applied successfully for the reconstruction of electron density profiles over Turkey, during quiet and disturbed hours of ionosphere using Turkish National Permanent GPS Network.
Density-functional theory based on the electron distribution on the energy coordinate
NASA Astrophysics Data System (ADS)
Takahashi, Hideaki
2018-03-01
We developed an electronic density functional theory utilizing a novel electron distribution n(ɛ) as a basic variable to compute ground state energy of a system. n(ɛ) is obtained by projecting the electron density n({\\boldsymbol{r}}) defined on the space coordinate {\\boldsymbol{r}} onto the energy coordinate ɛ specified with the external potential {\\upsilon }ext}({\\boldsymbol{r}}) of interest. It was demonstrated that the Kohn-Sham equation can also be formulated with the exchange-correlation functional E xc[n(ɛ)] that employs the density n(ɛ) as an argument. It turned out an exchange functional proposed in our preliminary development suffices to describe properly the potential energies of several types of chemical bonds with comparable accuracies to the corresponding functional based on local density approximation. As a remarkable feature of the distribution n(ɛ) it inherently involves the spatially non-local information of the exchange hole at the bond dissociation limit in contrast to conventional approximate functionals. By taking advantage of this property we also developed a prototype of the static correlation functional E sc including no empirical parameters, which showed marked improvements in describing the dissociations of covalent bonds in {{{H}}}2,{{{C}}}2{{{H}}}4 and {CH}}4 molecules.
On the Origins of the Intercorrelations Between Solar Wind Variables
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.
2018-01-01
It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.
NASA Astrophysics Data System (ADS)
England, S.; Lillis, R. J.
2011-12-01
Knowledge of Mars' thermospheric mass density (~120--200 km altitude) is important for understanding the current state and evolution of the Martian atmosphere and for spacecraft such as the upcoming MAVEN mission that will fly through this region every orbit. Global-scale atmospheric models have been shown thus far to do an inconsistent job of matching mass density observations at these altitudes, especially on the nightside. Thus there is a clear need for a data-driven estimate of the mass density in this region. Given the wide range of conditions and locations over which these must be defined, the dataset of thermospheric mass densities derived from energy and angular distributions of super-thermal electrons measured by the MAG/ER experiment on Mars Global Surveyor, spanning 4 full Martian years, is an extremely valuable resource that can be used to enhance our prediction of these densities beyond what is given by such global-scale models. Here we present an empirical model of the thermospheric density structure based on the MAG/ER dataset. Using this new model, we assess the global-scale response of the thermosphere to dust storms in the lower atmosphere and show that this varies with latitude. Further, we examine the short- and longer-term variability of the thermospheric density and show that it exhibits a complex behavior with latitude and season that is indicative of both atmospheric conditions at lower altitudes and possible lower atmosphere wave sources.
NASA Technical Reports Server (NTRS)
Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2003-01-01
The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.
Temporal Behavior of the Ionospheric Electron Density at Low Latitudes: First Glimpse
NASA Astrophysics Data System (ADS)
Gjerloev, J. W.; Humberset, B. K.; Gonzalez, S. A.; Garnett Marques Brum, C.
2013-12-01
In this paper we address the spatiotemporal characteristics of the electron density at 150 km altitude in the low latitude ionosphere above the Arecibo Observatory. We utilize a new pointing mode that allows us to probe the same volume in the ionosphere for a continuous period of approximately 25 min. or more. The ISR profiles have 150 m range resolution and samples have a 10-second time resolution; we probed 60 individual regions uniformly spaced in local times and covering the full 24 hours. For each time series we determine the total derivative of the electron density using a narrow Hanning bandpass filter that allow us to determine the variability at different frequencies. This is done for each of the 60 local time regions. We further compare to widely used static statistical models and test their underlying assumption: Dynamics can be ignored.
NASA Astrophysics Data System (ADS)
Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Zhu, L.
2006-11-01
The Utah State University Gauss-Markov Kalman Filter (GMKF) was developed as part of the Global Assimilation of Ionospheric Measurements (GAIM) program. The GMKF uses a physics-based model of the ionosphere and a Gauss-Markov Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) observations. The physics-based model is the Ionospheric Forecast Model (IFM), which accounts for five ion species and covers the E region, F region, and the topside from 90 to 1400 km altitude. Within the GMKF, the IFM derived ionospheric densities constitute a background density field on which perturbations are superimposed based on the available data and their errors. In the current configuration, the GMKF assimilates slant total electron content (TEC) from a variable number of global positioning satellite (GPS) ground sites, bottomside electron density (Ne) profiles from a variable number of ionosondes, in situ Ne from four Defense Meteorological Satellite Program (DMSP) satellites, and nighttime line-of-sight ultraviolet (UV) radiances measured by satellites. To test the GMKF for real-time operations and to validate its ionospheric density specifications, we have tested the model performance for a variety of geophysical conditions. During these model runs various combination of data types and data quantities were assimilated. To simulate real-time operations, the model ran continuously and automatically and produced three-dimensional global electron density distributions in 15 min increments. In this paper we will describe the Gauss-Markov Kalman filter model and present results of our validation study, with an emphasis on comparisons with independent observations.
Simms, Laura E.; Engebretson, Mark J.; Pilipenko, Viacheslav; ...
2016-04-07
The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the predictionmore » of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). Furthermore, a path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current ( Dst), AE, and wave activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simms, Laura E.; Engebretson, Mark J.; Pilipenko, Viacheslav
The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the predictionmore » of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). Furthermore, a path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current ( Dst), AE, and wave activity.« less
Electron precipitation control of the Mars nightside ionosphere
NASA Astrophysics Data System (ADS)
Lillis, R. J.; Girazian, Z.; Mitchell, D. L.; Adams, D.; Xu, S.; Benna, M.; Elrod, M. K.; Larson, D. E.; McFadden, J. P.; Andersson, L.; Fowler, C. M.
2017-12-01
The nightside ionosphere of Mars is known to be highly variable, with densities varying substantially with ion species, solar zenith angle, solar wind conditions and geographic location. The factors that control its structure include neutral densities, day-night plasma transport, plasma temperatures, dynamo current systems driven by neutral winds, solar energetic particle events, superthermal electron precipitation, chemical reaction rates and the strength, geometry and topology of crustal magnetic fields. The MAVEN mission has been the first to systematically sample the nightside ionosphere by species, showing that shorter-lived species such as CO2+ and O+ are more correlated with electron precipitation flux than longer lived species such as O2+ and NO+, as would be expected, and is shown in the figure below from Girazian et al. [2017, under review at Geophysical Research Letters]. In this study we use electron pitch-angle and energy spectra from the Solar Wind Electron Analyzer (SWEA) and Solar Energetic Particle (SEP) instruments, ion and neutral densities from the Neutral Gas and Ion Mass Spectrometer (NGIMS), electron densities and temperatures from the Langmuir Probe and Waves (LPW) instrument, as well as electron-neutral ionization cross-sections. We present a comprehensive statistical study of electron precipitation on the Martian nightside and its effect on the vertical, local-time and geographic structure and composition of the ionosphere, over three years of MAVEN observations. We also calculate insitu electron impact ionization rates and compare with ion densities to judge the applicability of photochemical models of the formation and maintenance of the nightside ionosphere. Lastly, we show how this applicability varies with altitude and is affected by ion transport measured by the Suprathermal and thermal Ion Composition (STATIC) instrument.
Covariance and correlation estimation in electron-density maps.
Altomare, Angela; Cuocci, Corrado; Giacovazzo, Carmelo; Moliterni, Anna; Rizzi, Rosanna
2012-03-01
Quite recently two papers have been published [Giacovazzo & Mazzone (2011). Acta Cryst. A67, 210-218; Giacovazzo et al. (2011). Acta Cryst. A67, 368-382] which calculate the variance in any point of an electron-density map at any stage of the phasing process. The main aim of the papers was to associate a standard deviation to each pixel of the map, in order to obtain a better estimate of the map reliability. This paper deals with the covariance estimate between points of an electron-density map in any space group, centrosymmetric or non-centrosymmetric, no matter the correlation between the model and target structures. The aim is as follows: to verify if the electron density in one point of the map is amplified or depressed as an effect of the electron density in one or more other points of the map. High values of the covariances are usually connected with undesired features of the map. The phases are the primitive random variables of our probabilistic model; the covariance changes with the quality of the model and therefore with the quality of the phases. The conclusive formulas show that the covariance is also influenced by the Patterson map. Uncertainty on measurements may influence the covariance, particularly in the final stages of the structure refinement; a general formula is obtained taking into account both phase and measurement uncertainty, valid at any stage of the crystal structure solution.
NASA Technical Reports Server (NTRS)
Verigin, M. I.; Gringauz, K. I.; Shutte, N. M.; Haider, S. A.; Szego, K.; Kiraly, P.; Nagy, A. F.; Gombosi, T. I.
1991-01-01
The measurements of electron spectra in the Martian magnetosphere by the HARP instrument on board the Phobos 2 orbiter are presented. The energy of the electrons (a few tens of electron volts) is sufficient for the impact ionization of the planetary neutral gas, and the characteristic flux of electrons (about 10 exp 8/sq cm per sec) could produce the nightside ionospheric layer with a peak density of a few thousands of electrons per cubic centimeter, which corresponds to densities observed earlier during radio occultations of the Mars 4 and 5 and Viking 1 and 2 spacecraft. The possibility of magnetospheric electron precipitation into the nightside atmosphere of Mars is in agreement with the mainly induced nature of the magnetic field in the planetary magnetotail (as at Venus), while the variability of the Martian nightside ionosphere may be explained by the partial screening of the atmosphere by a weak intrinsic magnetic field of the planet.
Critical temperature of metallic hydrogen sulfide at 225-GPa pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A., E-mail: EAMazur@mephi.ru
2017-01-15
The Eliashberg theory generalized for electron—phonon systems with a nonconstant density of electron states and with allowance made for the frequency behavior of the electron mass and chemical potential renormalizations is used to study T{sub c} in the SH{sub 3} phase of hydrogen sulfide under pressure. The phonon contribution to the anomalous electron Green’s function is considered. The pairing within the total width of the electron band and not only in a narrow layer near the Fermi surface is taken into account. The frequency and temperature dependences of the complex mass renormalization ReZ(ω), the density of states N(ε) renormalized bymore » the electron—phonon interactions, and the electron—phonon spectral function obtained computationally are used to calculate the anomalous electron Green’s function. A generalized Eliashberg equation with a variable density of electron states has been solved. The frequency dependence of the real and imaginary parts of the order parameter in the SH{sub 3} phase has been obtained. The value of T{sub c} ≈ 177 K in the SH{sub 3} phase of hydrogen sulfide at pressure P = 225 GPa has been determined by solving the system of Eliashberg equations.« less
An amplitude modulated radio frequency plasma generator
NASA Astrophysics Data System (ADS)
Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo
2017-04-01
A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hales, C. A.; Max-Moerbeck, W.; Roshi, D. A.
2016-06-01
We empirically evaluate the scheme proposed by Lieu and Duan in which the light curve of a time-steady radio source is predicted to exhibit increased variability on a characteristic timescale set by the sightline’s electron column density. Application to extragalactic sources is of significant appeal, as it would enable a unique and reliable probe of cosmic baryons. We examine temporal power spectra for 3C 84, observed at 1.7 GHz with the Karl G. Jansky Very Large Array and the Robert C. Byrd Green Bank Telescope. These data constrain the ratio between standard deviation and mean intensity for 3C 84 tomore » less than 0.05% at temporal frequencies ranging between 0.1 and 200 Hz. This limit is 3 orders of magnitude below the variability predicted by Lieu and Duan and is in accord with theoretical arguments presented by Hirata and McQuinn rebutting electron density dependence. We identify other spectral features in the data consistent with the slow solar wind, a coronal mass ejection, and the ionosphere.« less
Thermodynamic responses of electronic systems.
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2017-09-07
We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.
Thermodynamic responses of electronic systems
NASA Astrophysics Data System (ADS)
Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto
2017-09-01
We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.
FUSION++: A New Data Assimilative Model for Electron Density Forecasting
NASA Astrophysics Data System (ADS)
Bust, G. S.; Comberiate, J.; Paxton, L. J.; Kelly, M.; Datta-Barua, S.
2014-12-01
There is a continuing need within the operational space weather community, both civilian and military, for accurate, robust data assimilative specifications and forecasts of the global electron density field, as well as derived RF application product specifications and forecasts obtained from the electron density field. The spatial scales of interest range from a hundred to a few thousand kilometers horizontally (synoptic large scale structuring) and meters to kilometers (small scale structuring that cause scintillations). RF space weather applications affected by electron density variability on these scales include navigation, communication and geo-location of RF frequencies ranging from 100's of Hz to GHz. For many of these applications, the necessary forecast time periods range from nowcasts to 1-3 hours. For more "mission planning" applications, necessary forecast times can range from hours to days. In this paper we present a new ionosphere-thermosphere (IT) specification and forecast model being developed at JHU/APL based upon the well-known data assimilation algorithms Ionospheric Data Assimilation Four Dimensional (IDA4D) and Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). This new forecast model, "Forward Update Simple IONosphere model Plus IDA4D Plus EMPIRE (FUSION++), ingests data from observations related to electron density, winds, electric fields and neutral composition and provides improved specification and forecast of electron density. In addition, the new model provides improved specification of winds, electric fields and composition. We will present a short overview and derivation of the methodology behind FUSION++, some preliminary results using real observational sources, example derived RF application products such as HF bi-static propagation, and initial comparisons with independent data sources for validation.
Langmuir probe analysis in electronegative plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bredin, Jerome, E-mail: jerome.bredin@lpp.polytechnique.fr; Chabert, Pascal; Aanesland, Ane
2014-12-15
This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity α{sub 0} = n{sub –}/n{sub e} (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (n{sub e}, n{sub +}, n{sub –}), temperatures (T{sub e}, T{sub +}, T{sub –}), and masses (m{sub e}, m{sub +}, m{sub –}). The analytical curves are fitted to the experimental data bymore » adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 5–10%, including the ion temperatures when α{sub 0} > 100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity α{sub 0} and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes.« less
Steady-State Density Functional Theory for Finite Bias Conductances.
Stefanucci, G; Kurth, S
2015-12-09
In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.
Physics based model of D-region variability related to VLF propagation effects
NASA Astrophysics Data System (ADS)
Chakravarty, S. C.
2012-07-01
D-region (~60-85 km) electron density profiles measured using large number of sounding rocket experiments carried out from two Indian low latitude stations show large variations with solar zenith angle, season and solar activity. Similarly the ground based multi frequency radio wave absorption technique has provided continuous data on the morphology of the hourly electron density variations. However suitable models of the D-region electron density profile variations both during quiet and disturbed solar conditions over the Indian region are lacking. The renewed interest in the study of the VLF/LF propagation anomalies taking place through perturbations in the D-region electron densities due to various geophysical phenomena requires the availability of a baseline D-region model over low latitudes. The purpose of this paper is to critically review the physical processes of D-region production and loss of free electrons, dynamical coupling due to variety of vertically propagating atmospheric waves, sudden changes brought about by the solar energetic events like CMEs and different categories of X-ray flares. Low latitude region is not likely to be affected by the PMSE or PCA type of events but the changes due to lightning induced mesospheric red sprites and LEPs need to be considered. Based on this analysis, a preliminary low latitude D-region electron density profile model development is proposed. Sample results would illustrate key requirements from such a model in terms of its effectiveness to simulate the low latitude observations of VLF/LF amplitude and phase variations using waveguide propagation models like LWPC.
Enhanced ionization of the Martian nightside ionosphere during solar energetic particle events
NASA Astrophysics Data System (ADS)
Nemec, F.; Morgan, D. D.; Dieval, C.; Gurnett, D. A.; Futaana, Y.
2013-12-01
The nightside ionosphere of Mars is highly variable and very irregular, controlled to a great extent by the configuration of the crustal magnetic fields. The ionospheric reflections observed by the MARSIS radar sounder on board the Mars Express spacecraft in this region are typically oblique (reflection by a distant feature), so that they cannot be used to determine the peak altitude precisely. Nevertheless, the peak electron density can be in principle readily determined. However, in more than 90% of measurements the peak electron densities are too low to be detected. We focus on the time intervals of solar energetic particle (SEP) events. One may expect high energy particle precipitation into the nightside ionosphere to increase the electron density there. Thus, comparison of characteristics between SEP/no-SEP time intervals is important to understand the formation mechanism of the nightside ionosphere. The time intervals of SEP events are determined using the increase in the background counts recorded by the ion sensor (IMA) of the ASPERA-3 particle instrument on board Mars Express. Then we use MARSIS measurements to determine how much the nightside ionosphere is enhanced during these time intervals. We show that the peak electron densities during these periods are large enough to be detected in more than 30% of measurements, while the reflections from the ground almost entirely disappear, indicating that the nightside electron densities are tremendously increased as compared to the normal nightside conditions. The influence of various parameters on the formation of the nightside ionosphere is thoroughly discussed.
Landscape of an exact energy functional
NASA Astrophysics Data System (ADS)
Cohen, Aron J.; Mori-Sánchez, Paula
2016-04-01
One of the great challenges of electronic structure theory is the quest for the exact functional of density functional theory. Its existence is proven, but it is a complicated multivariable functional that is almost impossible to conceptualize. In this paper the asymmetric two-site Hubbard model is studied, which has a two-dimensional universe of density matrices. The exact functional becomes a simple function of two variables whose three-dimensional energy landscape can be visualized and explored. A walk on this unique landscape, tilted to an angle defined by the one-electron Hamiltonian, gives a valley whose minimum is the exact total energy. This is contrasted with the landscape of some approximate functionals, explaining their failure for electron transfer in the strongly correlated limit. We show concrete examples of pure-state density matrices that are not v representable due to the underlying nonconvex nature of the energy landscape. The exact functional is calculated for all numbers of electrons, including fractional, allowing the derivative discontinuity to be visualized and understood. The fundamental gap for all possible systems is obtained solely from the derivatives of the exact functional.
The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): Bottomside Parameterization
NASA Astrophysics Data System (ADS)
Themens, D. R.; Jayachandran, P. T.
2017-12-01
It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes. These inaccuracies are believed to stem, at least in part, from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. Using a spherical cap harmonic expansion to represent horizontal and diurnal variability and a Fourier expansion in day of year to represent seasonal variations, we have developed a new model of the bottomside ionosphere's electron density for the high latitude ionosphere, above 50N geomagnetic latitude. For the peak heights of the E and F1 layers (hmE and hmF1, respectively), current standards use a constant value for hmE and either use a single-parameter model for hmF1 (IRI) or scale hmF1 with the F peak (NeQuick). For E-CHAIM, we have diverged from this convention to account for the greater variability seen in these characteristics at high latitudes, opting to use a full spherical harmonic model description for each of these characteristics. For the description of the bottomside vertical electron density profile, we present a single-layer model with altitude-varying scale height. The scale height function is taken as the sum three scale height layer functions anchored to the F2 peak, hmF1, and hmE. This parameterization successfully reproduces the structure of the various bottomside layers while ensuring that the resulting electron density profile is free of strong vertical gradient artifacts and is doubly differentiable.
Layer structure of the Venus daytime ionosphere from Venera-15,-16 radio occultation
NASA Astrophysics Data System (ADS)
Gavrik, Anatoly
Up to now more than five hundred radio occultation experiments had been carried out by different missions to research physical properties of the Venus ionosphere. The purpose of this report is to show new properties of the Venus daytime ionosphere reanalyzing Venera-15,-16 dual-frequency occultation data. The high coherence and stability of radio signals of Venera- 15,-16 at wave lengths 32 cm and 8 cm, along with the fact, that the refractive amplification at 32 cm in the ionosphere exceeds by factor 6 the refractive amplification at 13 cm used by others researches, have allowed to perform analysis of radiophysical parameters in the Venus ionosphere more accurate. Progress in the radiovision theory and up-to-date digital processing techniques have provided an opportunity to discover unknown layered structure of the Venus daytime ionosphere. We offer the new technique of the data analysis that allows us to separate influence of noise, ionosphere and atmosphere on the radio occultation results. We point out that significant gradient variations in the vertical distribution of the electron density are observed in the region of maximum electron density of the daytime ionosphere at altitudes of 150-175 km. That testifies layered structure of this part of the Venus ionosphere. The results of data analysis reveal the regular existence of the ionospheric layers in the bottom daytime ionosphere at altitudes from 80 up to 115 km. The bottom border of the ionosphere part can vary in the range of 80-100 km, and gradients of the electron density show strong variability. We detect the wave structure in the top atmosphere and in the bottom ionosphere at altitudes from 60 up to 115 km as well. It is difficult to obtain correct electron density in the region, where we have detected the new ionospheric layers. Relative errors of the electron density are greater than 100% at altitudes between 80 and 120 km. The bottom part of the ionosphere is more variable, than overlying area of the main maximum of the daytime ionosphere. It is difficult to explain such layered structures of the Venus daytime ionosphere by means of existing model of the photochemical equilibrium.
Kliore, A J; Patel, I R; Nagy, A F; Cravens, T E; Gombosi, T I
1979-07-06
Pioneer Venus orbiter dual-frequency radio occultation measurements have produced many electron density profiles of the nightside ionosphere of Venus. Thirty-six of these profiles, measured at solar zenith angles (chi) from 90.60 degrees to 163.5 degrees , are discussed here. In the "deep" nightside ionosphere (chi > 110 degrees ), the structure and magnitude of the ionization peak are highly variable; the mean peak electron density is 16,700 +/- 7,200 (standard deviation) per cubic centimeter. In contrast, the altitude of the peak remains fairly constant with a mean of 142.2 +/- 4.1 kilometers, virtually identical to the altitude of the main peak of the dayside terminator ionosphere. The variations in the peak ionization are not directly related to contemporal variations in the solar wind speed. It is shown that electron density distributions similar to those observed in both magnitude and structure can be produced by the precipitation on the nightside of Venus of electron fluxes of about 108 per square centimeter per second with energies less than 100 electron volts. This mechanism could very likely be responsible for the maintenance of the persistent nightside ionosphere of Venus, although transport processes may also be important.
NASA Astrophysics Data System (ADS)
Gok, Gokhan; Mosna, Zbysek; Arikan, Feza; Arikan, Orhan; Erdem, Esra
2016-07-01
Ionospheric observation is essentially accomplished by specialized radar systems called ionosondes. The time delay between the transmitted and received signals versus frequency is measured by the ionosondes and the received signals are processed to generate ionogram plots, which show the time delay or reflection height of signals with respect to transmitted frequency. The critical frequencies of ionospheric layers and virtual heights, that provide useful information about ionospheric structurecan be extracted from ionograms . Ionograms also indicate the amount of variability or disturbances in the ionosphere. With special inversion algorithms and tomographical methods, electron density profiles can also be estimated from the ionograms. Although structural pictures of ionosphere in the vertical direction can be observed from ionosonde measurements, some errors may arise due to inaccuracies that arise from signal propagation, modeling, data processing and tomographic reconstruction algorithms. Recently IONOLAB group (www.ionolab.org) developed a new algorithm for effective and accurate extraction of ionospheric parameters and reconstruction of electron density profile from ionograms. The electron density reconstruction algorithm applies advanced optimization techniques to calculate parameters of any existing analytical function which defines electron density with respect to height using ionogram measurement data. The process of reconstructing electron density with respect to height is known as the ionogram scaling or true height analysis. IONOLAB-RAY algorithm is a tool to investigate the propagation path and parameters of HF wave in the ionosphere. The algorithm models the wave propagation using ray representation under geometrical optics approximation. In the algorithm , the structural ionospheric characteristics arerepresented as realistically as possible including anisotropicity, inhomogenity and time dependence in 3-D voxel structure. The algorithm is also used for various purposes including calculation of actual height and generation of ionograms. In this study, the performance of electron density reconstruction algorithm of IONOLAB group and standard electron density profile algorithms of ionosondes are compared with IONOLAB-RAY wave propagation simulation in near vertical incidence. The electron density reconstruction and parameter extraction algorithms of ionosondes are validated with the IONOLAB-RAY results both for quiet anddisturbed ionospheric states in Central Europe using ionosonde stations such as Pruhonice and Juliusruh . It is observed that IONOLAB ionosonde parameter extraction and electron density reconstruction algorithm performs significantly better compared to standard algorithms especially for disturbed ionospheric conditions. IONOLAB-RAY provides an efficient and reliable tool to investigate and validate ionosonde electron density reconstruction algorithms, especially in determination of reflection height (true height) of signals and critical parameters of ionosphere. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.
Thermo electronic laser energy conversion
NASA Technical Reports Server (NTRS)
Hansen, L. K.; Rasor, N. S.
1976-01-01
The thermo electronic laser energy converter (TELEC) is described and compared to the Waymouth converter and the conventional thermionic converter. The electrical output characteristics and efficiency of TELEC operation are calculated for a variety of design variables. Calculations and results are briefly outlined. It is shown that the TELEC concept can potentially convert 25 to 50 percent of incident laser radiation into electric power at high power densities and high waste heat rejection temperatures.
Evolving Nonthermal Electron Distributions in Simulations of Sgr A*
NASA Astrophysics Data System (ADS)
Chael, Andrew; Narayan, Ramesh
2018-01-01
The accretion flow around Sagittarius A* (Sgr A*), the black hole at the Galactic Center, produces strong variability from the radio to X-rays on timescales of minutes to hours. This rapid, powerful variability is thought to be powered by energetic particle acceleration by plasma processes like magnetic reconnection and shocks. These processes can accelerate particles into non-thermal distributions which do not quickly isothermal in the low densities found around hot accretion flows. Current state-of-the-art simulations of accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. We present results from incorporating the self-consistent evolution of a non-thermal electron population in a GRRMHD simulation of Sgr A*. The electron distribution is evolved across space, time, and Lorentz factor in parallel with background thermal ion, electron, and radiation fluids. Energy injection into the non-thermal distribution is modeled with a sub-grid prescription based on results from particle-in-cell simulations of magnetic reconnection. The energy distribution of the non-thermal electrons shows strong variability, and the spectral shape traces the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity. Results from these simulations will be used in interpreting forthcoming data from the Event Horizon Telescope that resolves Sgr A*'s sub-mm variability in both time and space.
Measuring Mars' Atmospheric Neutral Density from 160 to 220km with the MGS Electron Reflectometer
NASA Astrophysics Data System (ADS)
Lillis, R.; Engel, J.; Mitchell, D.; Brain, D.; Lin, R.; Bougher, S.; Acuna, M.
2005-08-01
The Magnetometer/Electron Reflectometer (MAG/ER) experiment aboard Mars Global Surveyor (MGS) samples the local electron population's distribution in energy and pitch angle (angle between electron velocity and local magnetic field direction) at the mapping orbit altitude of ˜400km. We develop a single-particle model of the electrons' interaction with the neutral atmosphere and motion along open field-lines connecting the solar wind to remnant crustal magnetization. Electron reflection from magnetic gradients and absorption due to inelastic collisons with atmospheric neutrals results in characteristic pitch angle (PA) distributions for open field lines. By assuming the validity of spherical harmonic expansions (Cain et al, 2003) in the strongest field regions of Mars (such as Terra Sirenum), we trace the electron paths and fit these PA distributions to our model to constrain the scale height and density of the neutral atmosphere in the region of greatest absorption, 160-220km. We analyse almost 3 martian years of MGS mapping Orbit Data and present the first measurements of Mars' neutral density above 180km. Although the uncertainties in single measurements are quite large, averaging over many measurements over a period of weeks allows us to see long-term trends. Major results are: 1) a mean density of 0.03 kg/km3 at 160km with a month-averaged variation of ˜40%, 2) a very strong annual seasonal variation, confirmed by periodogram and least-squares fit and 3) increasing seasonal density variability with distance from the equator. We see broad general agreement with predictions from Mars Thermosphere Global Circulation Model (MTGCM) simulations [Bougher et al, 2004] and with inferred densities from MGS Doppler tracking data [Tracadas et al, 2001]. Our results will help to constrain the upper boundaries of GCMs and assist orbital decay calculations for low-orbiting spacecraft, such as the 2005 Mars Reconnaissance Orbiter. We thank the NASA Jet Propulsion Laboratory for funding assistance for this research.
Vehicle charging and potential on the STS-3 mission
NASA Technical Reports Server (NTRS)
Williamson, R.
1983-01-01
An electron gun with fast pulse capability was used in the vehicle charging and potential experiment carried on the OSS-1 pallet to study dielectric charging, return current mechanisms, and the techniques required to manage the electrical charging of the orbiter. Return currents and charging of the dielectrics were measured during electron beam emission and plasma characteristics in the payload bay were determined in the absence of electron beam emission. The fast pulse electron generator, charge current probes, spherical retarding potential analyzer, and the digital control interface unit which comprise the experiment are described. Results show that the thrusters produce disturbances which are variable in character and magnitude. Strong ram/wake effects were seen in the ion densities in the bay. Vehicle potentials are variable with respect to the plasma and depend upon location on the vehicle relative to the main engine nozzles, the vehicle attitude, and the direction of the geomagnetic field.
Martínez-Araya, Jorge I
2016-09-30
By means of the conceptual density functional theory, the so-called dual descriptor (DD) has been adapted to be used in any closed-shell molecule that presents degeneracy in its frontier molecular orbitals. The latter is of paramount importance because a correct description of local reactivity will allow to predict the most favorable sites on a molecule to undergo nucleophilic or electrophilic attacks; on the contrary, an incomplete description of local reactivity might have serio us consequences, particularly for those experimental chemists that have the need of getting an insight about reactivity of chemical reagents before using them in synthesis to obtain a new compound. In the present work, the old approach based only on electronic densities of frontier molecular orbitals is replaced by the most accurate procedure that implies the use of total electronic densities thus keeping consistency with the essential principle of the DFT in which the electronic density is the fundamental variable and not the molecular orbitals. As a result of the present work, the DD will be able to properly describe local reactivities only in terms of total electronic densities. To test the proposed operational formula, 12 very common molecules were selected as the original definition of the DD was not able to describe their local reactivities properly. The ethylene molecule was additionally used to test the capability of the proposed operational formula to reveal a correct local reactivity even in absence of degeneracy in frontier molecular orbitals. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Nonequilibrium air radiation (Nequair) program: User's manual
NASA Technical Reports Server (NTRS)
Park, C.
1985-01-01
A supplement to the data relating to the calculation of nonequilibrium radiation in flight regimes of aeroassisted orbital transfer vehicles contains the listings of the computer code NEQAIR (Nonequilibrium Air Radiation), its primary input data, and explanation of the user-supplied input variables. The user-supplied input variables are the thermodynamic variables of air at a given point, i.e., number densities of various chemical species, translational temperatures of heavy particles and electrons, and vibrational temperature. These thermodynamic variables do not necessarily have to be in thermodynamic equilibrium. The code calculates emission and absorption characteristics of air under these given conditions.
NASA Technical Reports Server (NTRS)
Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2004-01-01
Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.
Geographic Information Systems to Assess External Validity in Randomized Trials.
Savoca, Margaret R; Ludwig, David A; Jones, Stedman T; Jason Clodfelter, K; Sloop, Joseph B; Bollhalter, Linda Y; Bertoni, Alain G
2017-08-01
To support claims that RCTs can reduce health disparities (i.e., are translational), it is imperative that methodologies exist to evaluate the tenability of external validity in RCTs when probabilistic sampling of participants is not employed. Typically, attempts at establishing post hoc external validity are limited to a few comparisons across convenience variables, which must be available in both sample and population. A Type 2 diabetes RCT was used as an example of a method that uses a geographic information system to assess external validity in the absence of a priori probabilistic community-wide diabetes risk sampling strategy. A geographic information system, 2009-2013 county death certificate records, and 2013-2014 electronic medical records were used to identify community-wide diabetes prevalence. Color-coded diabetes density maps provided visual representation of these densities. Chi-square goodness of fit statistic/analysis tested the degree to which distribution of RCT participants varied across density classes compared to what would be expected, given simple random sampling of the county population. Analyses were conducted in 2016. Diabetes prevalence areas as represented by death certificate and electronic medical records were distributed similarly. The simple random sample model was not a good fit for death certificate record (chi-square, 17.63; p=0.0001) and electronic medical record data (chi-square, 28.92; p<0.0001). Generally, RCT participants were oversampled in high-diabetes density areas. Location is a highly reliable "principal variable" associated with health disparities. It serves as a directly measurable proxy for high-risk underserved communities, thus offering an effective and practical approach for examining external validity of RCTs. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2014-12-01
Laser-induced ionization is a major process that initiates and drives the initial stages of laser-induced damage (LID) of high-quality transparent solids. The ionization and its contribution to LID are characterized in terms of the time-dependent ionization rate and conduction-band electron density. Considering femtosecond pulses of various durations (from 35 to 706 fs) and variable peak irradiances (from 0.01 to 60 TW/cm2), we use a single-rate equation to simulate time variations of conduction-band electron density and rates of the photoionization and impact ionization. The photoionization rate is evaluated with the Keldysh equation. At low irradiance, the electron density and total ionization rate demonstrate power scaling characteristic of multiphoton ionization. With the increase of irradiance, there is observed a saturation of the photoionization rate due to photoionization suppression by the Keldysh-type singularity during the increase in the number of simultaneously absorbed photons by 1. A striking result is that the saturation is followed by a stepwise transition from the ionization regime which is completely dominated by the photoionization to a regime totally dominated by the impact ionization. The transition results in the increase of the electron density by a few orders of magnitude induced by a variation of peak laser irradiance by about 15% to 20%. The physical effects that are involved are discussed.
NASA Astrophysics Data System (ADS)
Parker, James; Pryse, Eleri; Jackson-Booth, Natasha
2017-04-01
The main ionospheric trough is a large-scale spatial depletion in the ionospheric electron density that commonly separates the auroral and mid-latitude regions. The feature covers several degrees in latitude and is extended in longitude. It exhibits substantial day-to-day variability in both the location of its minimum ionisation density and in its latitudinal structure. Observations from the UK have shown the trough to be a night-time feature, appearing in early evening to the north of the mainland and progressing equatorward during the course of the night. At dawn, photoionisation fills in the feature. Under increasing levels of geomagnetic activity, the trough moves progressively to lower latitudes. Steep gradients on the trough walls and their variability can cause problems for radio applications. EDAM can be used to model the ionosphere at the trough latitudes by assimilating ionospheric observations from this region into the International Reference Ionosphere (IRI). In this study troughs modelled by EDAM, assimilating data for a period from September to December 2002, are presented and are verified by comparisons with independent observations. Measurements of slant total electron content (sTEC) between GPS satellites and forty ground receivers in Europe were assimilated into EDAM to model the ionospheric electron density. The Vertical Total Electron Content (VTEC) was then calculated through the model, with the values at the longitude of 0.0E considered to obtain statistical characteristics of identified troughs parameters. Comparisons of the parameters with those obtained previously, using transmissions from the satellites of NIMS (Navy Ionospheric Monitoring System) orbiting at altitudes lower than GPS, revealed consistent results. Further support for the EDAM trough was obtained by comparisons of the model with independent GPS measurements. For this a GPS ground station not used in the assimilation was used to observe the sTEC to this "truth" station. Comparisons of these independent truth data with sTEC calculated through the model were used to determine the accuracy of EDAM in the vicinity of the trough.
NASA Astrophysics Data System (ADS)
Kellerman, A. C.; Shprits, Y.; McPherron, R. L.; Kondrashov, D. A.; Weygand, J. M.; Zhu, H.; Drozdov, A.
2017-12-01
Presented is an analysis of the phase-space density (PSD) response to the stream-interaction region (SIR), which utilizes a reanalysis dataset principally comprised of the data-assimilative Versatile Electron Radiation Belt (VERB) code, Van Allen Probe and GOES observations. The dataset spans the period 2012-2017, and includes several SIR (and CIR) storms. The PSD is examined for evidence of injections, transport, acceleration, and loss by considering the instantaneous and time-averaged change at adiabatic invariant values that correspond to ring-current, relativistic, and ultra-relativistic energies. In the solar wind, the following variables in the slow and fast wind on either side of the stream interface (SI) are considered in each case: the coronal hole polarity, IMF, solar wind speed, density, pressure, and SI tilt angle. In the magnetosphere, the Dst, AE, and past PSD state are considered. Presented is an analysis of the dominant mechanisms, both external and internal to the magnetosphere, that cause radiation-belt electron non-adiabatic changes during the passage of these fascinating solar wind structures.
A dynamic model of the radiation-belt electron phase-space density based on POLAR/HIST measurements
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Green, J. C.
2007-12-01
The response of the energetic-electron phase-space density (PSD) in the radiation belts is subject to a delicate combination of acceleration and loss processes which are strongly determined by the magnetospheric configuration and field disturbance level. We quantify the response of the density to stormtime fields as observed by the HIST detector on board POLAR. Several distinct modes are identified, characterized by peak second- and third- adiabatic invariants and peak delay time. The modes represent quasiadiabatic transport due to ring current activity; high L* (~6), day-long acceleration linked to ULF wave-particle interaction; and low-L* (~3), minute- to hour-long acceleration interpreted to be due to transient inductive fields or VLF wave-particle interaction. The net transport due to these responses is not always or everywhere diffusive, therefore we quantify the degree of departure from diffusive transport for specific storm intervals and radial ranges. Taken together the response modes comprise a dynamic, nonlinear model which allows us to better understand the historic variability of the high-energy tail of the electron distribution in the inner magnetosphere.
NASA Astrophysics Data System (ADS)
Murphy, M. W.; Yiu, Y. M.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai; Sham, T. K.
2014-11-01
The electronic structure and optical properties of a series of iso-electronic and iso-structural CdSxSe1-x solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.
{bold {ital Ab initio}} studies of the structural and electronic properties of solid cubane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, S.L.; Martins, J.L.
1998-12-01
In this paper, we report {ital ab initio} calculation of the structural and electronic properties of solid cubane (s-C{sub 8}H{sub 8}) in the local-density approximation. By using an {ital ab initio} constant pressure extended molecular dynamics method with variable cell shape proposed by Wentzcovitch, Martins, and Price, we compute a lattice parameter {ital a} and a bond angle {alpha} for the rhombohedral Bravais lattice and compare it with experimental x-ray data. We obtain bond lengths for the mononuclear C{sub 8}H{sub 8} unit of basis atoms, as well as a density of states and heat of formation. {copyright} {ital 1998} {italmore » The American Physical Society}« less
The synchrotron-self-Compton process in spherical geometries. I - Theoretical framework
NASA Technical Reports Server (NTRS)
Band, D. L.; Grindlay, J. E.
1985-01-01
Both spatial and spectral accuracies are stressed in the present method for the calculation of the synchrotron-self-Compton model in spherical geometries, especially in the partially opaque regime of the synchrotron spectrum of inhomogeneous sources that can span a few frequency decades and contribute a significant portion of the scattered flux. A formalism is developed that permits accurate calculation of incident photon density throughout an optically thin sphere. An approximation to the Klein-Nishina cross section is used to model the effects of variable electron and incident photon cutoffs, as well as the decrease in the cross section at high energies. General results are derived for the case of inhomogeneous sources with power law profiles in both electron density and magnetic field.
Nanosecond Enhancements of the Atmospheric Electron Density by Extensive Air Showers
NASA Astrophysics Data System (ADS)
Rutjes, C.; Camporeale, E.; Ebert, U.; Buitink, S.; Scholten, O.; Trinh, G. T. N.; Witteveen, J.
2015-12-01
As is well known a sufficient density of free electrons and strong electric fields are the basic requirements to start any electrical discharge. In the context of thunderstorm discharges it has become clear that in addition droplets and or ice particles are required to enhance the electric field to values above breakdown. In our recent study [1] we have shown that these three ingredients have to interplay to allow for lightning inception, triggered by an extensive air shower event. The extensive air showers are a very stochastic natural phenomenon, creating highly coherent sub-nanosecond enhancements of the atmospheric electron density. Predicting these electron density enhancements accurately one has to take the uncertainty of the input variables into account. For this study we use the initial energy, inclination and altitude of first interaction, which will influence the evolution of the shower significantly. To this end, we use the stochastic collocation method, [2] to post-process our detailed Monte Carlo extensive air shower simulations, done with the CORSIKA [3] software package, which provides an efficient and elegant way to determine the distribution of the atmospheric electron density enhancements. [1] Dubinova, A., Rutjes, C., Ebert, E., Buitink, S., Scholten, O., and Trinh, G. T. N. "Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers." PRL 115 015002 (2015)[2] G.J.A. Loeven, J.A.S. Witteveen, H. Bijl, Probabilistic collocation: an efficient nonintrusive approach for arbitrarily distributed parametric uncertainties, 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2007, AIAA-2007-317[3] Heck, Dieter, et al. CORSIKA: A Monte Carlo code to simulate extensive air showers. No. FZKA-6019. 1998.
Variable pixel size ionospheric tomography
NASA Astrophysics Data System (ADS)
Zheng, Dunyong; Zheng, Hongwei; Wang, Yanjun; Nie, Wenfeng; Li, Chaokui; Ao, Minsi; Hu, Wusheng; Zhou, Wei
2017-06-01
A novel ionospheric tomography technique based on variable pixel size was developed for the tomographic reconstruction of the ionospheric electron density (IED) distribution. In variable pixel size computerized ionospheric tomography (VPSCIT) model, the IED distribution is parameterized by a decomposition of the lower and upper ionosphere with different pixel sizes. Thus, the lower and upper IED distribution may be very differently determined by the available data. The variable pixel size ionospheric tomography and constant pixel size tomography are similar in most other aspects. There are some differences between two kinds of models with constant and variable pixel size respectively, one is that the segments of GPS signal pay should be assigned to the different kinds of pixel in inversion; the other is smoothness constraint factor need to make the appropriate modified where the pixel change in size. For a real dataset, the variable pixel size method distinguishes different electron density distribution zones better than the constant pixel size method. Furthermore, it can be non-chided that when the effort is spent to identify the regions in a model with best data coverage. The variable pixel size method can not only greatly improve the efficiency of inversion, but also produce IED images with high fidelity which are the same as a used uniform pixel size method. In addition, variable pixel size tomography can reduce the underdetermined problem in an ill-posed inverse problem when the data coverage is irregular or less by adjusting quantitative proportion of pixels with different sizes. In comparison with constant pixel size tomography models, the variable pixel size ionospheric tomography technique achieved relatively good results in a numerical simulation. A careful validation of the reliability and superiority of variable pixel size ionospheric tomography was performed. Finally, according to the results of the statistical analysis and quantitative comparison, the proposed method offers an improvement of 8% compared with conventional constant pixel size tomography models in the forward modeling.
Ultrasonic determination of recrystallization
NASA Technical Reports Server (NTRS)
Generazio, E. R.
1986-01-01
Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and colume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.
A statistical survey of heat input parameters into the cusp thermosphere
NASA Astrophysics Data System (ADS)
Moen, J. I.; Skjaeveland, A.; Carlson, H. C.
2017-12-01
Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.
NASA Astrophysics Data System (ADS)
Adebesin, B. O.; Rabiu, A. B.; Obrou, O. K.; Adeniyi, J. O.
2018-03-01
The F2 layer peak electron density (NmF2) was investigated over Korhogo (Geomagnetic: 1.26°S, 67.38°E), a station near the magnetic equator in the African sector. Data for 1996 and 2000 were, respectively, categorized into low solar quiet and disturbed and high solar quiet and disturbed. NmF2 prenoon peak was higher than the postnoon peak during high solar activity irrespective of magnetic activity condition, while the postnoon peak was higher for low solar activity. Higher NmF2 peak amplitude characterizes disturbed magnetic activity than quiet magnetic condition for any solar activity. The maximum peaks appeared in equinox. June solstice noontime bite out lagged other seasons by 1-2 h. For any condition of solar and magnetic activities, the daytime NmF2 percentage variability (%VR) measured by the relative standard deviation maximizes/minimizes in June solstice/equinox. Daytime variability increases with increasing magnetic activity. The highest peak in the morning time NmF2 variability occurs in equinox, while the highest evening/nighttime variability appeared in June solstice for all solar/magnetic conditions. The nighttime annual variability amplitude is higher during disturbed than quiet condition regardless of solar activity period. At daytime, variability is similar for all conditions of solar activities. NmF2 at Korhogo is well represented on the International Reference Ionosphere-International Radio Consultative Committee (IRI-CCIR) option. The model/observation relationship performed best between local midnight and postmidnight period (00-08 LT). The noontime trough characteristics is not prominent in the IRI pattern during high solar activity but evident during low solar conditions when compared with Korhogo observations. The Nash-Sutcliffe coefficients revealed better model performance during disturbed activities.
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William H., E-mail: millerwh@berkeley.edu; Cotton, Stephen J., E-mail: StephenJCotton47@gmail.com
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of themore » action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William H.; Cotton, Stephen J.
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory - e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer valuesmore » of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states - and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.« less
Critic: a new program for the topological analysis of solid-state electron densities
NASA Astrophysics Data System (ADS)
Otero-de-la-Roza, A.; Blanco, M. A.; Pendás, A. Martín; Luaña, Víctor
2009-01-01
In this paper we introduce CRITIC, a new program for the topological analysis of the electron densities of crystalline solids. Two different versions of the code are provided, one adapted to the LAPW (Linear Augmented Plane Wave) density calculated by the WIEN2K package and the other to the ab initio Perturbed Ion ( aiPI) density calculated with the PI7 code. Using the converged ground state densities, CRITIC can locate their critical points, determine atomic basins and integrate properties within them, and generate several graphical representations which include topological atomic basins and primary bundles, contour maps of ρ and ∇ρ, vector maps of ∇ρ, chemical graphs, etc. Program summaryProgram title: CRITIC Catalogue identifier: AECB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL, version 3 No. of lines in distributed program, including test data, etc.: 1 206 843 No. of bytes in distributed program, including test data, etc.: 12 648 065 Distribution format: tar.gz Programming language: FORTRAN 77 and 90 Computer: Any computer capable of compiling Fortran Operating system: Unix, GNU/Linux Classification: 7.3 Nature of problem: Topological analysis of the electron density in periodic solids. Solution method: The automatic localization of the electron density critical points is based on a recursive partitioning of the Wigner-Seitz cell into tetrahedra followed by a Newton search from significant points on each tetrahedra. Plotting of and integration on the atomic basins is currently based on a new implementation of Keith's promega algorithm. Running time: Variable, depending on the task. From seconds to a few minutes for the localization of critical points. Hours to days for the determination of the atomic basins shape and properties. Times correspond to a typical 2007 PC.
ARM-based control system for terry rapier loom
NASA Astrophysics Data System (ADS)
Shi, Weimin; Gu, Yeqing; Wu, Zhenyu; Wang, Fan
2007-12-01
In this paper, a novel ARM-based mechatronics control technique applied in terry rapier loom was presented. Electronic weft selection, electronic fluff, electronic let-off and take-up motions system, which consists of position and speedcontrolled servomechanisms, were studied. The control system configuration, operation principle, and mathematical models of electronic drives system were analyzed. The synchronism among all mechanical motions and an improved intelligent control algorithm for the warp let-off tension control was discussed. The result indict that, by applying electronic and embedded control techniques and the individual servomechanisms, the electronic weft selection, electronic let-off device and electronic take-up device in HGA732T terry rapier loom have greatly simplified the initial complicated mechanism, kept the warp tension constant from full to empty beam, set the variable weft density, eliminated the start mark effectively, promoted its flexibility, reliability and properties, and improved the fabric quality.
Plasma etching of polymers like SU8 and BCB
NASA Astrophysics Data System (ADS)
Mischke, Helge; Gruetzner, Gabi; Shaw, Mark
2003-01-01
Polymers with high viscosity, like SU8 and BCB, play a dominant role in MEMS application. Their behavior in a well defined etching plasma environment in a RIE mode was investigated. The 40.68 MHz driven bottom electrode generates higher etch rates combined with much lower bias voltages by a factor of ten or a higher efficiency of the plasma with lower damaging of the probe material. The goal was to obtain a well-defined process for the removal and structuring of SU8 and BCB using fluorine/oxygen chemistry, defined using variables like electron density and collision rate. The plasma parameters are measured and varied using a production proven technology called SEERS (Self Excited Electron Resonance Spectroscopy). Depending on application and on Polymer several metals are possible (e.g., gold, aluminum). The characteristic of SU8 and BCB was examined in the case of patterning by dry etching in a CF4/O2 chemistry. Etch profile and etch rate correlate surprisingly well with plasma parameters like electron density and electron collision rate, thus allowing to define to adjust etch structure in situ with the help of plasma parameters.
Dose specification for radiation therapy: dose to water or dose to medium?
NASA Astrophysics Data System (ADS)
Ma, C.-M.; Li, Jinsheng
2011-05-01
The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.
An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, M.H.G.; Luhmann, J.G.; Kliore, A.J.
1990-10-01
An analysis of Mars and Venus nightside electron density profiles obtained with radio occultation methods shows how the nightside ionospheres of both planets vary with solar zenith angle. From previous studies it is known that the dayside peak electron densities at Mars and Venus show a basic similarity in that they both exhibit Chapman layer-like behavior. In contrast, the peak altitudes at mars behave like an ideal Chapman layer on the dayside, whereas the altitude of the peak at Venus is fairly constant up to the terminator. The effect of major dust storms can also be seen in the peakmore » altitudes at Mars. All Venus nightside electron density profiles show a distinct main peak for both solar minimum and maximum, whereas many profiles from the nightside of Mars do not show any peak at all. This suggests that the electron density in the Mars nightside ionosphere is frequently too low to be detected by radio occultation. On the Pioneer Venus orbiter, disappearing ionospheres were observed near solar maximum in the in-situ data when the solar wind dynamic pressure was exceptionally high. This condition occurs because the high solar wind dynamic pressure decreases the altitude of the ionopause near the terminator below {approximately}250 km, thus reducing the normal nightward transport of dayside ionospheric plasma. On the basis of the Venus observations, one might predict that if a positive correlation of nightside peak density with dynamic pressure was found, it could mean that transport from the dayside is the only significant source for the nightside ionosphere of Mars. The lack of a correlation would imply that the precipitation source at Mars is quite variable.« less
A statistical formulation of one-dimensional electron fluid turbulence
NASA Technical Reports Server (NTRS)
Fyfe, D.; Montgomery, D.
1977-01-01
A one-dimensional electron fluid model is investigated using the mathematical methods of modern fluid turbulence theory. Non-dissipative equilibrium canonical distributions are determined in a phase space whose co-ordinates are the real and imaginary parts of the Fourier coefficients for the field variables. Spectral densities are calculated, yielding a wavenumber electric field energy spectrum proportional to k to the negative second power for large wavenumbers. The equations of motion are numerically integrated and the resulting spectra are found to compare well with the theoretical predictions.
NASA Technical Reports Server (NTRS)
Kunc, Joseph A.
1988-01-01
A novel approach for calculating the populations of the excited Li-like ions C IV, N V, O VI, and Ne VIII is presented. The populations of the 2(2P), 3(2S), 3(2P), and 3(2D) electronic levels in these ions in optically thin plasmas with a broad range of electron density, N(e), and temperature, T(e), are determined from the collisional-radiative model by solving the system of rate equations for the production of excited ions; the equations are linear with respect to the excited ion populations, and the N(e) and T(e) are taken as independent variables. These populations are used to determine the ratios of line intensities for dipole allowed transitions between various energy levels. This approach can be applied to impurities other than the lithiumlike ions and is especially useful for diagnostics of systems where nonintrusive spectroscopic techniques must be used.
A well-scaling natural orbital theory
Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto
2016-11-01
Here, we introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals ofmore » the oneparticle density matrix.« less
A well-scaling natural orbital theory
Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto
2016-01-01
We introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals of the one-particle density matrix. PMID:27803328
Small-scale plasma, magnetic, and neutral density fluctuations in the nightside Venus ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoegy, W.R.; Brace, L.H.; Kasprazak, W.T.
1990-04-01
Pioneer Venus orbiter measurements have shown that coherent small-scale waves exist in the electron density, the electron temperature, and the magnetic field in the lower ionosphere of Venus just downstream of the solar terminator (Brace et al., 1983). The waves become less regular and less coherent at larger solar zenith angles, and Brace et al. suggested that these structures may have evolved from the terminator waves as they are convected into the nightside ionosphere, driven by the day-to-night plasma pressure gradient. In this paper the authors describe the changes in wave characteristics with solar zenith angle and show that themore » neutral gas also has related wave characteristics, probably because of atmospheric gravity waves. The plasma pressure exceeds the magnetic pressure in the nightside ionosphere at these altitudes, and thus the magnetic field is carried along and controlled by the turbulent motion of the plasma, but the wavelike nature of the thermosphere may also be coupled to the plasma and magnetic structure. They show that there is a significant coherence between the ionosphere, thermosphere, and magnetic parameters at altitudes below about 185 km, a coherence which weakens in the antisolar region. The electron temperature and density are approximately 180{degree} out of phase and consistently exhibit the highest correlation of any pair of variables. Waves in the electron and neutral densities are moderately correlated on most orbits, but with a phase difference that varies within each orbit. The average electron temperature is higher when the average magnetic field is more horizontal; however, the correlation between temperature and dip angle does not extend to individual wave structures observed within a satellite pass, particularly in the antisolar region.« less
Modeling of O+ ions in the plasmasphere
NASA Astrophysics Data System (ADS)
Guiter, S. M.; Moore, T. E.; Khazanov, G. V.
1995-11-01
Heavy ion (O+, O++, and N+) density enhancements in the outer plasmasphere have been observed using the retarding ion mass spectrometer instrument on the DE 1 satellite. These are seen at L shells from 2 to 5, with most occurrences in the L=3 to 4 region; the maximum L shell at which these enhancements occur varies inversely with Dst. It is also known that enhancements of O+ and O++ overlie ionospheric electron temperature peaks. It is thought that these enhancements are related to heating of plasmaspheric particles through interactions with ring current ions. This was investigated using a time-dependent one-stream hydrodynamic model for plasmaspheric flows, in which the model flux tube is connected to the ionosphere. The model simultaneously solves the coupled continuity, momentum, and energy equations of a two-ion (H+ and O+) quasi-neutral, currentless plasma. This model is fully interhemispheric and diffusive equilibrium is not assumed; it includes a corotating tilted dipole magnetic field and neutral winds. First, diurnally reproducible results were found assuming only photoelectron heating of thermal electrons. For this case the modeled equatorial O+ density was below 1 cm-3 throughout the day. The O+ results also show significant diurnal variability, with standing shocks developing when production stops and O+ flows downward under the influence of gravity. Numerical tests were done with different levels of electron heating in the plasmasphere; these show that the equatorial O+ density is highly dependent on the assumed electron heating rates. Over the range of integrated plasmaspheric electron heating (along the flux tube) from 8.7 to 280×109 eV/s, the equatorial O+ density goes like the heating raised to the power 2.3.
Ultrasonic attenuation measurements determine onset, degree, and completion of recrystallization
NASA Technical Reports Server (NTRS)
Generazio, E. R.
1988-01-01
Ultrasonic attenuation was measured for cold worked Nickel 200 samples annealed at increasing temperatures. Localized dislocation density variations, crystalline order and volume percent of recrystallized phase were determined over the anneal temperature range using transmission electron microscopy, X-ray diffraction, and metallurgy. The exponent of the frequency dependence of the attenuation was found to be a key variable relating ultrasonic attenuation to the thermal kinetics of the recrystallization process. Identification of this key variable allows for the ultrasonic determination of onset, degree, and completion of recrystallization.
Relativistic Electron Precipitation in the Auroral Zone. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Simons, D. J.
1975-01-01
The energy spectra and pitch angle distributions of electrons in the energy range from 50 keV to 2 MeV were determined by a solid state electron energy spectrometer during the Relativistic Electron Precipitation (REP) event of 31 May 1972. The pitch angle distributions were determined from a knowledge of the rocket aspect and the direction in space of the earth's magnetic field. The rocket aspect determination was therefore treated in depth and a method was developed to compensate for the malfunctioning of the aspect magnetometer. The electron fluxes during the REP event were highly variable demonstrating correlated energy, flux, and pitch angle pulsations with time periods of less than one second. A theoretical model for the production of relativistic electrons was proposed. It follows from this model that, at comparatively low background electron densities, the anomalous Doppler resonance leads to the acceleration of near relativistic particles.
Fourier analysis of blazar variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finke, Justin D.; Becker, Peter A., E-mail: justin.finke@nrl.navy.mil
Blazars display strong variability on multiple timescales and in multiple radiation bands. Their variability is often characterized by power spectral densities (PSDs) and time lags plotted as functions of the Fourier frequency. We develop a new theoretical model based on the analysis of the electron transport (continuity) equation, carried out in the Fourier domain. The continuity equation includes electron cooling and escape, and a derivation of the emission properties includes light travel time effects associated with a radiating blob in a relativistic jet. The model successfully reproduces the general shapes of the observed PSDs and predicts specific PSD and timemore » lag behaviors associated with variability in the synchrotron, synchrotron self-Compton, and external Compton emission components, from submillimeter to γ-rays. We discuss applications to BL Lacertae objects and to flat-spectrum radio quasars (FSRQs), where there are hints that some of the predicted features have already been observed. We also find that FSRQs should have steeper γ-ray PSD power-law indices than BL Lac objects at Fourier frequencies ≲ 10{sup –4} Hz, in qualitative agreement with previously reported observations by the Fermi Large Area Telescope.« less
NASA Technical Reports Server (NTRS)
Singh, M.; Dacek, R. F.
1996-01-01
Microporous carbon materials with different pore and strut sizes have been fabricated by the pyrolysis of furfuryl alcohol resin, triethylene glycol, and p-toluene sulfonic acid mixtures. The resulting materials were characterized by scanning electron microscopy and density measurements. The room temperature flexural strength and modulus of these materials decreases with increasing amount of acid curing agent.
NASA Astrophysics Data System (ADS)
Themens, David R.; Jayachandran, P. T.; Bilitza, Dieter; Erickson, Philip J.; Häggström, Ingemar; Lyashenko, Mykhaylo V.; Reid, Benjamin; Varney, Roger H.; Pustovalova, Ljubov
2018-02-01
In this study, we present a topside model representation to be used by the Empirical Canadian High Arctic Ionospheric Model (E-CHAIM). In the process of this, we also present a comprehensive evaluation of the NeQuick's, and by extension the International Reference Ionosphere's, topside electron density model for middle and high latitudes in the Northern Hemisphere. Using data gathered from all available incoherent scatter radars, topside sounders, and Global Navigation Satellite System Radio Occultation satellites, we show that the current NeQuick parameterization suboptimally represents the shape of the topside electron density profile at these latitudes and performs poorly in the representation of seasonal and solar cycle variations of the topside scale thickness. Despite this, the simple, one variable, NeQuick model is a powerful tool for modeling the topside ionosphere. By refitting the parameters that define the maximum topside scale thickness and the rate of increase of the scale height within the NeQuick topside model function, r and g, respectively, and refitting the model's parameterization of the scale height at the F region peak, H0, we find considerable improvement in the NeQuick's ability to represent the topside shape and behavior. Building on these results, we present a new topside model extension of the E-CHAIM based on the revised NeQuick function. Overall, root-mean-square errors in topside electron density are improved over the traditional International Reference Ionosphere/NeQuick topside by 31% for a new NeQuick parameterization and by 36% for a newly proposed topside for E-CHAIM.
The LWS Geospace Storm Investigations Exploring the Extremes of Space Weather
NASA Technical Reports Server (NTRS)
2002-01-01
The Geospace mission of the Living With a Star program is a family of investigations focusing on the compelling science questions that advance our ability to specify, understand, and predict the societal impact of solar variance. Two key areas have been identified as combining both importance to society and potential for scientific progress: 1) characterization and understanding of the acceleration, global distribution, and variability of energetic electrons and ions in the inner magnetosphere, and 2) characterization and understanding of the ionosphere and irregularities that affect communications, navigation and radar systems. Under these broad categories specific science questions have emerged as the priority science objectives for the first Geospace Investigations: How and why do relativistic electrons in the outer zone and slot region vary during geomagnetic storms? How does the long- and short-term variability of the Sun affect the global-scale behavior of the ionospheric electron density and irregularities, especially during magnetic storms and at mid-latitudes? The first Geospace mission will attempt to answer these questions.
TEC variability near northern EIA crest and comparison with IRI model
NASA Astrophysics Data System (ADS)
Aggarwal, Malini
2011-10-01
Monthly median values of hourly total electron content (TEC) is obtained with GPS at a station near northern anomaly crest, Rajkot (geog. 22.29°N, 70.74°E; geomag. 14.21°N, 144.9°E) to study the variability of low latitude ionospheric behavior during low solar activity period (April 2005 to March 2006). The TEC exhibit characteristic features like day-to-day variability, semiannual anomaly and noon bite out. The observed TEC is compared with latest International Reference Ionosphere (IRI) - 2007 model using options of topside electron density, NeQuick, IRI01-corr and IRI-2001 by using both URSI and CCIR coefficients. A good agreement of observed and predicted TEC is found during the daytime with underestimation at other times. The predicted TEC by NeQuick and IRI01-corr is closer to the observed TEC during the daytime whereas during nighttime and morning hours, IRI-2001 shows lesser discrepancy in all seasons by both URSI and CCIR coefficients.
NASA Astrophysics Data System (ADS)
Staller, Corey M.; Robinson, Zachary L.; Agrawal, Ankit; Gibbs, Stephen L.; Greenberg, Benjamin L.; Lounis, Sebastien D.; Kortshagen, Uwe R.; Milliron, Delia J.
2018-05-01
Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data shows electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and, in agreement with variable temperature conductivity fits, find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films.
Staller, Corey M; Robinson, Zachary L; Agrawal, Ankit; Gibbs, Stephen L; Greenberg, Benjamin L; Lounis, Sebastien D; Kortshagen, Uwe R; Milliron, Delia J
2018-05-09
Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data show electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and in agreement with variable temperature conductivity fits find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films.
Egidi, Franco; Sun, Shichao; Goings, Joshua J; Scalmani, Giovanni; Frisch, Michael J; Li, Xiaosong
2017-06-13
We present a linear response formalism for the description of the electronic excitations of a noncollinear reference defined via Kohn-Sham spin density functional methods. A set of auxiliary variables, defined using the density and noncollinear magnetization density vector, allows the generalization of spin density functional kernels commonly used in collinear DFT to noncollinear cases, including local density, GGA, meta-GGA and hybrid functionals. Working equations and derivations of functional second derivatives with respect to the noncollinear density, required in the linear response noncollinear TDDFT formalism, are presented in this work. This formalism takes all components of the spin magnetization into account independent of the type of reference state (open or closed shell). As a result, the method introduced here is able to afford a nonzero local xc torque on the spin magnetization while still satisfying the zero-torque theorem globally. The formalism is applied to a few test cases using the variational exact-two-component reference including spin-orbit coupling to illustrate the capabilities of the method.
Stabilizing laser energy density on a target during pulsed laser deposition of thin films
Dowden, Paul C.; Jia, Quanxi
2016-05-31
A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.
An experimental investigation of mesospheric ionization
NASA Technical Reports Server (NTRS)
Mitchell, J. D.
1973-01-01
Mesospheric ionization and its variability are examined. Data were obtained primarily by the parachute-borne blunt probe technique conducted in coordinated rocket experiments at White Sands Missile Range, New Mexico and Wallops Island, Virginia. Electrical conductivity measurements and deduced charge density values from ten rocket launches are presented and discussed. Positive ion conductivity and electron density were found to be relatively invariant with height between 45 and 60 km. Variations in positive conductivity of a factor of two and enhancements in negative conductivity by as much as a factor of four were measured by the blunt probe. A simple lumped parameter ion chemistry model is shown to satisfactorily explain the charge density values for the undisturbed lower D-region. Implications of the data in terms of this model are considered. The principal loss mechanism for positive ions in the 45 to 60 km. region is concluded to be dissociative recombination. Electron densities deduced from the conductivity data are explained by detachment involving a minor neutral constituent which is mixed between 65 and 45 km. and then cuts off sharply below 45 km. A correlation study involving blunt probe measurements shows relatively good agreement between variations in positive conductivity and temperature.
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2013-10-01
Multi-pulsing coaxial helicity injection (M-CHI) method which aims to achieve both quasi-steady sustainment and good confinement has been proposed as a refluxing scenario of the CHI. To explore the usefulness of the M-CHI for spherical torus (ST) configurations, the double-pulsing operations have been carried out in the HIST, verifying the flux amplification and the formation of the closed flux surfaces after the second CHI pulse. The purpose of this study is to investigate the properties of the magnetic field and plasma flow structures during the sustainment by comparing the results of plasma flow, density, and magnetic fields measurements with those of two-fluid equilibrium calculations. The two-fluid flowing equilibrium model which is described by a pair of generalized Grad-Shafranov equations for ion and electron surface variables and Bernoulli equations for density is applied to reconstruct the ST configuration with poloidal flow shear observed in the HIST. Due to the negative steep density gradient in high field side, the toroidal field has a diamagnetic profile (volume average beta, < β > = 68 %) in the central open flux column region. The ion flow velocity with strong flow shear from the separatrix in the inboard side to the core region is the opposite direction to the electron flow velocity due to the diamagentic drift through the density gradient. The electric field is relatively small in the whole region, and thus the Lorentz force nearly balances with the two-fluid effect which is particularly significant in a region with the steep density gradient due to the ion and electron diamagnetic drifts.
Density-functional theory for internal magnetic fields
NASA Astrophysics Data System (ADS)
Tellgren, Erik I.
2018-01-01
A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.
Structure of gel phase DMPC determined by X-ray diffraction.
Tristram-Nagle, Stephanie; Liu, Yufeng; Legleiter, Justin; Nagle, John F
2002-01-01
The structure of fully hydrated gel phase dimyristoylphosphatidylcholine lipid bilayers was obtained at 10 degrees C. Oriented lipid multilayers were used to obtain high signal-to-noise intensity data. The chain tilt angle and an estimate of the methylene electron density were obtained from wide angle reflections. The chain tilt angle is measured to be 32.3 +/- 0.6 degrees near full hydration, and it does not change as the sample is mildly dehydrated from a repeat spacing of D = 59.9 A to D = 56.5 A. Low angle diffraction peaks were obtained up to the tenth order for 17 samples with variable D and prepared by three different methods with different geometries. In addition to the usual Fourier reconstructions of the electron density profiles, model electron density profiles were fit to all the low angle data simultaneously while constraining the model to include the wide-angle data and the measured lipid volume. Results are obtained for area/lipid (A = 47.2 +/- 0.5 A(2)), the compressibility modulus (K(A) = 500 +/- 100 dyn/cm), various thicknesses, such as the hydrocarbon thickness (2D(C) = 30.3 +/- 0.2 A), and the head-to-head spacing (D(HH) = 40.1 +/- 0.1 A). PMID:12496100
Modeling electronegative plasma discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtenberg, A.J.; Lieberman, M.A.
Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}=more » 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.« less
Variability among electronic cigarettes in the pressure drop, airflow rate, and aerosol production.
Williams, Monique; Talbot, Prue
2011-12-01
This study investigated the performance of electronic cigarettes (e-cigarettes), compared different models within a brand, compared identical copies of the same model within a brand, and examined performance using different protocols. Airflow rate required to generate aerosol, pressure drop across e-cigarettes, and aerosol density were examined using three different protocols. First 10 puff protocol: The airflow rate required to produce aerosol and aerosol density varied among brands, while pressure drop varied among brands and between the same model within a brand. Total air hole area correlated with pressure drop for some brands. Smoke-out protocol: E-cigarettes within a brand generally performed similarly when puffed to exhaustion; however, there was considerable variation between brands in pressure drop, airflow rate required to produce aerosol, and the total number of puffs produced. With this protocol, aerosol density varied significantly between puffs and gradually declined. CONSECUTIVE TRIAL PROTOCOL: Two copies of one model were subjected to 11 puffs in three consecutive trials with breaks between trials. One copy performed similarly in each trial, while the second copy of the same model produced little aerosol during the third trial. The different performance properties of the two units were attributed to the atomizers. There was significant variability between and within brands in the airflow rate required to produce aerosol, pressure drop, length of time cartridges lasted, and production of aerosol. Variation in performance properties within brands suggests a need for better quality control during e-cigarette manufacture.
Multicomponent density functional theory embedding formulation.
Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon
2016-07-28
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Multicomponent density functional theory embedding formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less
Normal and abnormal evolution of argon metastable density in high-density plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr; You, S. J., E-mail: sjyou@cnu.ac.kr
2015-05-15
A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution hasmore » seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.« less
NASA Astrophysics Data System (ADS)
Malhotra, G.; Ridley, A. J.; Marsh, D. R.; Wu, C.; Paxton, L. J.
2017-12-01
The exchange of energy between lower atmospheric regions with the ionosphere-thermosphere (IT) system is not well understood. A number of studies have observed day-to-day and seasonal variabilities in the difference between data and model output of various IT parameters. It is widely speculated that the forcing from the lower atmosphere, variability in weather systems and gravity waves that propagate upward from troposphere into the upper mesosphere and lower thermosphere (MLT) may be responsible for these spatial and temporal variations in the IT region, but their exact nature is unknown. These variabilities can be interpreted in two ways: variations in state (density, temperature, wind) of the upper mesosphere or spatial and temporal changes in the small-scale mixing, or Eddy diffusion that is parameterized within the model.In this study, firstly, we analyze the sensitivity of the thermospheric and ionospheric states - neutral densities, O/N2, total electron content (TEC), peak electron density, and peak electron height - to various lower boundary conditions in the Global Ionosphere Thermosphere Model (GITM). We use WACCM-X and GSWM to drive the lower atmospheric boundary in GITM at 100 km, and compare the results with the current MSIS-driven version of GITM, analyzing which of these simulations match the measurements from GOCE, GUVI, CHAMP, and GPS-derived TEC best. Secondly, we analyze the effect of eddy diffusion in the IT system. The turbulence due to eddy mixing cannot be directly measured and it is a challenge to completely characterize its linear and non-linear effects from other influences, since the eddy diffusion both influences the composition through direct mixing and the temperature structure due to turbulent conduction changes. In this study we input latitudinal and seasonal profiles of eddy diffusion into GITM and then analyze the changes in the thermospheric and ionospheric parameters. These profiles will be derived from both WACC-X simulations and direct observations of errors between the model and data such as GUVI O/N2 ratios and TEC data. In each case, the model results will be compared to data to determine the improvement.
A brightening of the symbiotic variable SY Muscae
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Feibelman, W. A.; Kafatos, M.; Wallerstein, G.
1982-01-01
The symbiotic variable SY Muscae has been observed with IUE in September 1980 and June 1981 and in the photographic region in May 1981. The entire ultraviolet spectrum brightened between September and June by about a factor of 5. The spectrum shows high excitation including emission from N v and high electron density, about 10-billion per cu cm as determined from various line ratios in the ultraviolet. The optical spectrum is dominated by permitted lines; even forbidden O III is very weak again indicating high density in the ionized region. The increase in ultraviolet continuum and line emission may be due to enhanced mass transfer from the cool star whose period is 623d and whose maximum was predicted to occur very close to the time of the June 1981 observations. Alternatively the hot star and much of the emitting gas could have been in eclipse in September 1980.
Density of Electronic States in Impurity-Doped Quantum Well Wires
NASA Astrophysics Data System (ADS)
Sierra-Ortega, J.; Mikhailov, I. D.
2003-03-01
We analyze the electronic states in a cylindrical quantum well-wire (QWW) with randomly distributed neutral, D^0 and negatively charged D^- donors. In order to calculate the ground state energies of the off-center donors D^0 and D^- as a function of the distance from the axis of the QWW, we use the recently developed fractal dimension method [1]. There the problems are reduced to those similar for a hydrogen-like atom and a negative-hydrogen-like ion respectively, in an isotropic effective space with variable fractional dimension. The numerical trigonometric sweep method [2] and the three-parameter Hylleraas-type trial function are used to solve these problems. Novel curves for the density of impurity states in cylindrical QWWs with square-well, parabolic and soft-edge barrier potentials are present. Additionally we analyze the effect of the repulsive core on the density of the impurity states. [1] I.D. Mikhailov, F. J. Betancur, R. Escorcia and J. Sierra-Ortega, Phys. Stat. Sol., 234(b), 590 (2002) [2] F. J. Betancur, I. D. Mikhailov and L. E. Oliveira, J. Appl. Phys. D, 31, 3391(1998)
The Inversion of Ionospheric/plasmaspheric Electron Density From GPS Beacon Observations
NASA Astrophysics Data System (ADS)
Zou, Y. H.; Xu, J. S.; Ma, S. Y.
It is a space-time 4-D tomography to reconstruct ionospheric/ plasmaspheric elec- tron density, Ne, from ground-based GPS beacon measurements. The mathematical foundation of such inversion is studied in this paper and some simulation results of reconstruction for GPS network observation are presented. Assuming reasonably a power law dependence of NE on time with an index number of 1-3 during one ob- servational time of GPS (60-90min.), 4-D inversion in consideration is reduced to a 3-D cone-beam tomography with incomplete projections. To see clearly the effects of the incompleteness on the quality of reconstruction for 3-D condition, we deduced theoretically the formulae of 3-D parallel-beam tomography. After establishing the mathematical basis, we adopt linear temporal dependence of NE and voxel elemental functions to perform simulation of NE reconstruction with the help of IRI90 model. Reasonable time-dependent 3-D images of ionosphere/ plasmasphere electron density distributions are obtained when taking proper layout of the GPS network and allowing variable resolutions in vertical.
NASA Technical Reports Server (NTRS)
Balsiger, F.; Kopp, E.; Friedrich, M.; Torkar, K. M.; Walchli, U.
1993-01-01
A novel mass spectrometer designed to measure simultaneously positive ion composition in the mesosphere, was successfully launched during the NLC-91 project. Instruments supporting the mass spectrometer were a probed to measure both electrons and positive ions as well as a wave propagation experiment. The location of the Noctilucent Clouds (NLC) was determined by a particle impact sensor to detect secondary electrons and ions from the impact of NLC particle. The density of proton hydrates and of the related total ions is depleted in the NLC region at 83 km. An improved detection limit of 5 x 10(exp 4)/cu m for positive ions and improved height resolution revealed for the first time large gradients in the O2(+), H(+)(H2O)2 and H(+)(H2O)6 densities within a small height range of the order of 50 m. Such gradients at the altitude of NLC and Polar Mesospheric Summer Echoes (PMSE) are associated with strong variability of mesospheric water vapor, temperature and neutral air density.
NASA Astrophysics Data System (ADS)
Mouchtouris, S.; Kokkoris, G.
2018-01-01
A generalized equation for the electron energy probability function (EEPF) of inductively coupled Ar plasmas is proposed under conditions of nonlocal electron kinetics and diffusive cooling. The proposed equation describes the local EEPF in a discharge and the independent variable is the kinetic energy of electrons. The EEPF consists of a bulk and a depleted tail part and incorporates the effect of the plasma potential, Vp, and pressure. Due to diffusive cooling, the break point of the EEPF is eVp. The pressure alters the shape of the bulk and the slope of the tail part. The parameters of the proposed EEPF are extracted by fitting to measure EEPFs (at one point in the reactor) at different pressures. By coupling the proposed EEPF with a hybrid plasma model, measurements in the gaseous electronics conference reference reactor concerning (a) the electron density and temperature and the plasma potential, either spatially resolved or at different pressure (10-50 mTorr) and power, and (b) the ion current density of the electrode, are well reproduced. The effect of the choice of the EEPF on the results is investigated by a comparison to an EEPF coming from the Boltzmann equation (local electron kinetics approach) and to a Maxwellian EEPF. The accuracy of the results and the fact that the proposed EEPF is predefined renders its use a reliable alternative with a low computational cost compared to stochastic electron kinetic models at low pressure conditions, which can be extended to other gases and/or different electron heating mechanisms.
NASA Astrophysics Data System (ADS)
Hussein, M. T.; Kasim, T.; Abdulsattar, M. A.
2013-11-01
In present work, we investigate electronic properties of alloying percentage of In x Ga1- x P compound with different sizes of superlattice large unit cell (LUC) method with 8, 16, 54, and 64 nanocrystals core atoms. The size and type of alloying compound are varied so that it can be tuned to a required application. To determine properties of indium gallium phosphide nanocrystals density functional theory at the generalized-gradient approximation level coupled with LUC method is used to simulate electronic structure of zinc blende indium gallium phosphide nanocrystals that have dimensions around 2-2.8 nm. The calculated properties include lattice constant, energy gap, valence band width, cohesive energy, density of states (DOS) etc. Results show that laws that are applied at microscale alloying percentage are no more applicable at the present nanoscale. Results also show that size, shape and quantum effects are strong. Many properties fluctuate at nanoscale while others converge to definite values. DOS summarizes many of the above quantities.
Experimental validation of tunable features in laser-induced plasma resonators
NASA Astrophysics Data System (ADS)
Colón Quiñones, Roberto A.; Cappelli, Mark A.
2017-08-01
Measurements are presented which examine the use of gaseous plasma elements as highly-tunable resonators. The resonator considered here is a laser-induced plasma kernel generated by focusing the fundamental output from a Q-switched Nd:YAG laser through a lens and into a gas at constant pressure. The near-ellipsoidal plasma element interacts with incoming microwave radiation through excitation of low-order, electric-dipole resonances similar to those seen in metallic spheres. The tunability of these elements stems from the dispersive nature of plasmas arising from their variable electron density, electron momentum transfer collision frequency, and the concomitant e↵ect of these properties on the excited surface plasmon resonance. Experiments were carried out in the Ku band of the microwave spectrum to characterize the scattering properties of these resonators for di↵erent values of electron density. The experimental results are compared with results from theoretical approximations and finite element method electromagnetic simulations. The described tunable resonators have the potential to be used as the building blocks in a new class of all-plasma metamaterials with fully three-dimensional structural flexibility.
Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares
NASA Astrophysics Data System (ADS)
Thiemann, E. M. B.; Chamberlin, P. C.; Eparvier, F. G.; Epp, L.
2018-02-01
It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by 1.76 × 10^{19} cm^{-2} for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.
NASA Astrophysics Data System (ADS)
Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Stricker, J.
1985-01-01
Electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry are compared as methods for the accurate measurement of refractive index and density change distributions of phase objects. Experimental results are presented to show that the two methods have comparable accuracy for measuring the first derivative of the interferometric fringe shift. The phase object for the measurements is a large crystal of KD*P, whose refractive index distribution can be changed accurately and repeatably for the comparison. Although the refractive index change causes only about one interferometric fringe shift over the entire crystal, the derivative shows considerable detail for the comparison. As electronic phase measurement methods, both methods are very accurate and are intrinsically compatible with computer controlled readout and data processing. Heterodyne moire is relatively inexpensive and has high variable sensitivity. Heterodyne holographic interferometry is better developed, and can be used with poor quality optical access to the experiment.
Electron heating at interplanetary shocks
NASA Technical Reports Server (NTRS)
Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Zwickl, R. D.
1982-01-01
Data for 41 forward interplanetary shocks show that the ratio of downstream to upstream electron temperatures, T/sub e/(d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T/sub e/(d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T/sub p/(d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the Earth's bow shock. Individual samples of T/sub e/(d/u) and T/sub p/(d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons relatively more efficiently than they heat the electrons.
Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S
2014-06-10
We discuss a multiconfigurational treatment of the "on-the-fly" electronic structure within the quantum wavepacket ab initio molecular dynamics (QWAIMD) method for coupled treatment of quantum nuclear effects with electronic structural effects. Here, multiple single-particle electronic density matrices are simultaneously propagated with a quantum nuclear wavepacket and other classical nuclear degrees of freedom. The multiple density matrices are coupled through a nonorthogonal configuration interaction (NOCI) procedure to construct the instantaneous potential surface. An adaptive-mesh-guided set of basis functions composed of Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems: FHF(-), ClHCl(-), BrHBr(-), and BrHCl(-). We find that the donor-acceptor structural features are in good agreement with experiments. Spectroscopic features are computed using a unified velocity/flux autocorrelation function and include vibrational fundamentals and combination bands. These agree well with experiments and other theories.
NASA Astrophysics Data System (ADS)
Belova, O. M.; Bychkov, K. V.
2018-03-01
The effect of the number K of atomic hydrogen levels taken into account on the cooling of the gas behind a shock front is studied. The calculations are done for the conditions in the atmospheres of long-period Mira Ceti type variables. K ranges from 2 to 25. The electron temperature Te(t; K) and ionization state x(r,K) asymptotically approach limiting functions Te(t) and x(t) that are independent of K. After the maximum electron temperature is reached, a partial equilibrium phase sets in, during which the populations of the highly excited discrete levels with principal quantum numbers ≥ 8 obey the Saha equation for the instantaneous electron temperature and density.
Large-scale semidefinite programming for many-electron quantum mechanics.
Mazziotti, David A
2011-02-25
The energy of a many-electron quantum system can be approximated by a constrained optimization of the two-electron reduced density matrix (2-RDM) that is solvable in polynomial time by semidefinite programming (SDP). Here we develop a SDP method for computing strongly correlated 2-RDMs that is 10-20 times faster than previous methods [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)]. We illustrate with (i) the dissociation of N(2) and (ii) the metal-to-insulator transition of H(50). For H(50) the SDP problem has 9.4×10(6) variables. This advance also expands the feasibility of large-scale applications in quantum information, control, statistics, and economics. © 2011 American Physical Society
Large-Scale Semidefinite Programming for Many-Electron Quantum Mechanics
NASA Astrophysics Data System (ADS)
Mazziotti, David A.
2011-02-01
The energy of a many-electron quantum system can be approximated by a constrained optimization of the two-electron reduced density matrix (2-RDM) that is solvable in polynomial time by semidefinite programming (SDP). Here we develop a SDP method for computing strongly correlated 2-RDMs that is 10-20 times faster than previous methods [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.213001]. We illustrate with (i) the dissociation of N2 and (ii) the metal-to-insulator transition of H50. For H50 the SDP problem has 9.4×106 variables. This advance also expands the feasibility of large-scale applications in quantum information, control, statistics, and economics.
NASA Astrophysics Data System (ADS)
Asmare Tariku, Yekoye
2016-08-01
This paper deals with the pattern of the variability of the Global Positioning System vertical total electron content (GPS VTEC) and the modeled vertical total electron content (IRI 2012 TEC) over American mid-latitude regions during the rising phase of solar cycle 24 (2009-2011). This has been conducted employing ground-based dual frequency GPS receiver installed at Mississippi County Airport (geographic lat. 36.85°N and long. 270.64°E). In this work, the monthly and seasonal variations in the measured VTEC have been analyzed and compared with the VTEC inferred from IRI-2012 model. It has been shown that the monthly and seasonal mean VTEC values get decreased mostly between 05:00 and 10:00 UT and reach their minimal nearly at around 10:00 UT for both the experimental and the model. The VTEC values then get increased and reach the peak values at around 20:00 UT and decrease again. Moreover, it is depicted that the model better estimates both the monthly and seasonal mean hourly VTEC values mostly between 15:00 and 20:00 UT. The modeled monthly and seasonal VTEC values are smaller than the corresponding measured values as the solar activity decreases when all options for the topside electron density are used. However, as the Sun goes from a very low to a high solar activity, the overestimation performance of the VTEC values derived from the model increases. The overall results show that it is generally better to use the model with IRI-2000 option for the topside electron density in estimating the monthly and seasonal VTEC variations, especially when the activity of the Sun decreases.
Electron temperatures within magnetic clouds between 2 and 4 AU: Voyager 2 observations
NASA Astrophysics Data System (ADS)
Sittler, E. C.; Burlaga, L. F.
1998-08-01
We have performed an analysis of Voyager 2 plasma electron observations within magnetic clouds between 2 and 4 AU identified by Burlaga and Behannon [1982]. The analysis has been confined to three of the magnetic clouds identified by Burlaga and Behannon that had high-quality data. The general properties of the plasma electrons within a magnetic cloud are that (1) the moment electron temperature anticorrelates with the electron density within the cloud, (2) the ratio Te/Tp tends to be >1, and (3) on average, Te/Tp~7.0. All three results are consistent with previous electron observations within magnetic clouds. Detailed analyses of the core and halo populations within the magnetic clouds show no evidence of either an anticorrelation between the core temperature TC and the electron density Ne or an anticorrelation between the halo temperature TH and the electron density. Within the magnetic clouds the halo component can contribute more than 50% of the electron pressure. The anticorrelation of Te relative to Ne can be traced to the density of the halo component relative to the density of the core component. The core electrons dominate the electron density. When the density goes up, the halo electrons contribute less to the electron pressure, so we get a lower Te. When the electron density goes down, the halo electrons contribute more to the electron pressure, and Te goes up. We find a relation between the electron pressure and density of the form Pe=αNeγ with γ~0.5.
Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder
NASA Technical Reports Server (NTRS)
Baer, James
2012-01-01
A document discusses a liquid crystal variable retarder, an electro-optic element that changes the polarization of an optical beam in response to a low-voltage electronic signal. This device can be fabricated so that the element creates, among other states, a half-wave of retardance that can be reduced to a very small retardance. When aligned to a polarized source, this can act to rotate the polarization by 90 in one state, but generate no rotation in the other state. If the beam is then incident on a polarization beam splitter, it will efficiently switch from one path to the other when the voltage is applied. The laser beam switching system has no moving parts, improving reliability over mechanical switching. It is low cost, tolerant of high laser power density, and needs only simple drive electronics, minimizing the required system resources.
Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming
NASA Astrophysics Data System (ADS)
Pedatella, N. M.; Fang, T.-W.; Jin, H.; Sassi, F.; Schmidt, H.; Chau, J. L.; Siddiqui, T. A.; Goncharenko, L.
2016-07-01
A comparison of different model simulations of the ionosphere variability during the 2009 sudden stratosphere warming (SSW) is presented. The focus is on the equatorial and low-latitude ionosphere simulated by the Ground-to-topside model of the Atmosphere and Ionosphere for Aeronomy (GAIA), Whole Atmosphere Model plus Global Ionosphere Plasmasphere (WAM+GIP), and Whole Atmosphere Community Climate Model eXtended version plus Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (WACCMX+TIMEGCM). The simulations are compared with observations of the equatorial vertical plasma drift in the American and Indian longitude sectors, zonal mean F region peak density (NmF2) from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, and ground-based Global Positioning System (GPS) total electron content (TEC) at 75°W. The model simulations all reproduce the observed morning enhancement and afternoon decrease in the vertical plasma drift, as well as the progression of the anomalies toward later local times over the course of several days. However, notable discrepancies among the simulations are seen in terms of the magnitude of the drift perturbations, and rate of the local time shift. Comparison of the electron densities further reveals that although many of the broad features of the ionosphere variability are captured by the simulations, there are significant differences among the different model simulations, as well as between the simulations and observations. Additional simulations are performed where the neutral atmospheres from four different whole atmosphere models (GAIA, HAMMONIA (Hamburg Model of the Neutral and Ionized Atmosphere), WAM, and WACCMX) provide the lower atmospheric forcing in the TIME-GCM. These simulations demonstrate that different neutral atmospheres, in particular, differences in the solar migrating semidiurnal tide, are partly responsible for the differences in the simulated ionosphere variability in GAIA, WAM+GIP, and WACCMX+TIMEGCM.
Longitudinal Variations in the Variability of Spread F Occurrence
NASA Astrophysics Data System (ADS)
Groves, K. M.; Bridgwood, C.; Carrano, C. S.
2017-12-01
The complex dynamics of the equatorial ionosphere have attracted the interest and attention of researchers for many decades. The relatively local processes that give rise to large meridional gradients have been well documented and the associated terminology has entered the common lexicon of ionospheric research (e.g., fountain effect, equatorial anomaly, bubbles, Spread F). Zonal variations have also been noted, principally at the level of determining longitudinal differences in seasonal activity patterns. Due to a historical lack of high resolution ground-based observations at low latitudes, the primary source of data for such analyses has been space-based observations from satellites such as ROCSAT, DMSP, C/NOFS that measure in situ electron density variations. An important longitudinal variation in electron density structure associated with non-migrating diurnal tides was discovered by Immel et al. in 2006 using data from the FUV sensor aboard the NASA IMAGE satellite. These satellite observations have been very helpful in identifying the structural characteristics of the equatorial ionosphere and the occurrence of Spread F, but they provide little insight into variations in scintillation features and potential differences in bubble development characteristics. Moreover space-based studies tend towards the statistics of occurrence frequency over periods of weeks to months. A recent analysis of daily spread F occurrence as determined by low latitude VHF scintillation activity shows that statistical results that are consistent with previous space-based observations, but the level of variability in the occurrence data show marked variations with longitude. For example, the American sector shows very low in-season variability while the African and Asian sectors exhibit true day-to-day variability regardless of seasonal variations. The results have significant implications for space weather as they suggest that long-term forecasts of equatorial scintillation may be meaningful within specific longitude boundaries.
Communication: A difference density picture for the self-consistent field ansatz.
Parrish, Robert M; Liu, Fang; Martínez, Todd J
2016-04-07
We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.
Communication: A difference density picture for the self-consistent field ansatz
NASA Astrophysics Data System (ADS)
Parrish, Robert M.; Liu, Fang; Martínez, Todd J.
2016-04-01
We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.
Fingerprint-Based Structure Retrieval Using Electron Density
Yin, Shuangye; Dokholyan, Nikolay V.
2010-01-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. PMID:21287628
Fingerprint-based structure retrieval using electron density.
Yin, Shuangye; Dokholyan, Nikolay V
2011-03-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz Ruiz, J.; White, A. E.; Ren, Y.
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less
Using the Flipchem Photochemistry Model When Fitting Incoherent Scatter Radar Data
NASA Astrophysics Data System (ADS)
Reimer, A. S.; Varney, R. H.
2017-12-01
The North face Resolute Bay Incoherent Scatter Radar (RISR-N) routinely images the dynamics of the polar ionosphere, providing measurements of the plasma density, electron temperature, ion temperature, and line of sight velocity with seconds to minutes time resolution. RISR-N does not directly measure ionospheric parameters, but backscattered signals, recording them as voltage samples. Using signal processing techniques, radar autocorrelation functions (ACF) are estimated from the voltage samples. A model of the signal ACF is then fitted to the ACF using non-linear least-squares techniques to obtain the best-fit ionospheric parameters. The signal model, and therefore the fitted parameters, depend on the ionospheric ion composition that is used [e.g. Zettergren et. al. (2010), Zou et. al. (2017)].The software used to process RISR-N ACF data includes the "flipchem" model, which is an ion photochemistry model developed by Richards [2011] that was adapted from the Field LineInterhemispheric Plasma (FLIP) model. Flipchem requires neutral densities, neutral temperatures, electron density, ion temperature, electron temperature, solar zenith angle, and F10.7 as inputs to compute ion densities, which are input to the signal model. A description of how the flipchem model is used in RISR-N fitting software will be presented. Additionally, a statistical comparison of the fitted electron density, ion temperature, electron temperature, and velocity obtained using a flipchem ionosphere, a pure O+ ionosphere, and a Chapman O+ ionosphere will be presented. The comparison covers nearly two years of RISR-N data (April 2015 - December 2016). Richards, P. G. (2011), Reexamination of ionospheric photochemistry, J. Geophys. Res., 116, A08307, doi:10.1029/2011JA016613.Zettergren, M., Semeter, J., Burnett, B., Oliver, W., Heinselman, C., Blelly, P.-L., and Diaz, M.: Dynamic variability in F-region ionospheric composition at auroral arc boundaries, Ann. Geophys., 28, 651-664, https://doi.org/10.5194/angeo-28-651-2010, 2010.Zou, S., D. Ozturk, R. Varney, and A. Reimer (2017), Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation, Geophys. Res. Lett., 44, 3047-3058, doi:10.1002/2017GL072678.
The Asymmetrical Wind of the Candidate Luminous Blue Variable MWC 314
NASA Technical Reports Server (NTRS)
Wisniewski, John P.; Babler, Brian L.; Bjorkman, Karen S.; Kurchakov, Anatoly V.; Meade,Marilyn R.; Miroshnichenko, Anatoly S.
2006-01-01
We present the results of long-term spectropolarimetric and spectroscopic monitoring of MWC 314, a candidate Luminous Blue Variable star. We detect the first evidence of H alpha variability in MWC 314, and find no apparent periodicity in this emission. The total R-band polarization is observed to vary between 2.21% and 3.00% at a position angle consistently around approximately 0 degrees, indicating the presence of a time-variable intrinsic polarization component, hence an asymmetrical circumstellar envelope. We find suggestive evidence that MWC 314's intrinsic polarization exhibits a wavelength-independent magnitude varying between 0.09% and 0.58% at a wavelength-independent position angle covering all four quadrants of the Stokes Q-U plane. Electron scattering off of density clumps in MWC 314's wind is considered as the probable mechanism responsible for these variations.
Observations and simulations of the ionospheric lunar tide: Seasonal variability
NASA Astrophysics Data System (ADS)
Pedatella, N. M.
2014-07-01
The seasonal variability of the ionospheric lunar tide is investigated using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. The present study focuses on the seasonal variability of the lunar tide in the ionosphere and its potential connection to the occurrence of stratosphere sudden warmings (SSWs). COSMIC maximum F region electron density (NmF2) and total electron content observations reveal a primarily annual variation of the ionospheric lunar tide, with maximum amplitudes occurring at low latitudes during December-February. Simulations of the lunar tide climatology in TIME-GCM display a similar annual variability as the COSMIC observations. This leads to the conclusion that the annual variability of the lunar tide in the ionosphere is not solely due to the occurrence of SSWs. Rather, the annual variability of the lunar tide in the ionosphere is generated by the seasonal variability of the lunar tide at E region altitudes. However, compared to the observations, the ionospheric lunar tide annual variability is weaker in the climatological simulations which is attributed to the occurrence of SSWs during the majority of the years included in the observations. Introducing a SSW into the TIME-GCM simulation leads to an additional enhancement of the lunar tide during Northern Hemisphere winter, increasing the lunar tide annual variability and resulting in an annual variability that is more consistent with the observations. The occurrence of SSWs can therefore potentially bias lunar tide climatologies, and it is important to consider these effects in studies of the lunar tide in the atmosphere and ionosphere.
Electronic energy density in chemical reaction systems
NASA Astrophysics Data System (ADS)
Tachibana, Akitomo
2001-08-01
The energy of chemical reaction is visualized in real space using the electronic energy density nE(r⃗) associated with the electron density n(r⃗). The electronic energy density nE(r⃗) is decomposed into the kinetic energy density nT(r⃗), the external potential energy density nV(r⃗), and the interelectron potential energy density nW(r⃗). Using the electronic energy density nE(r⃗) we can pick up any point in a chemical reaction system and find how the electronic energy E is assigned to the selected point. We can then integrate the electronic energy density nE(r⃗) in any region R surrounding the point and find out the regional electronic energy ER to the global E. The kinetic energy density nT(r⃗) is used to identify the intrinsic shape of the reactants, the electronic transition state, and the reaction products along the course of the chemical reaction coordinate. The intrinsic shape is identified with the electronic interface S that discriminates the region RD of the electronic drop from the region RA of the electronic atmosphere in the density distribution of the electron gas. If the R spans the whole space, then the integral gives the total E. The regional electronic energy ER in thermodynamic ensemble is realized in electrochemistry as the intrinsic Volta electric potential φR and the intrinsic Herring-Nichols work function ΦR. We have picked up first a hydrogen-like atom for which we have analytical exact expressions of the relativistic kinetic energy density nTM(r⃗) and its nonrelativistic version nT(r⃗). These expressions are valid for any excited bound states as well as the ground state. Second, we have selected the following five reaction systems and show the figures of the nT(r⃗) as well as the other energy densities along the intrinsic reaction coordinates: a protonation reaction to He, addition reactions of HF to C2H4 and C2H2, hydrogen abstraction reactions of NH3+ from HF and NH3. Valence electrons possess their unique delocalized drop region remote from those heavily localized drop regions adhered to core electrons. The kinetic energy density nT(r⃗) and the tension density τ⃗S(r⃗) can vividly demonstrate the formation of the chemical bond. Various basic chemical concepts in these chemical reaction systems have been clearly visualized in real three-dimensional space.
Synthetic thermosphere winds based on CHAMP neutral and plasma density measurements
NASA Astrophysics Data System (ADS)
Gasperini, F.; Forbes, J. M.; Doornbos, E. N.; Bruinsma, S. L.
2016-04-01
Meridional winds in the thermosphere are key to understanding latitudinal coupling and thermosphere-ionosphere coupling, and yet global measurements of this wind component are scarce. In this work, neutral and electron densities measured by the Challenging Minisatellite Payload (CHAMP) satellite at solar low and geomagnetically quiet conditions are converted to pressure gradient and ion drag forces, which are then used to solve the horizontal momentum equation to estimate low latitude to midlatitude zonal and meridional "synthetic" winds. We validate the method by showing that neutral and electron densities output from National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model (TIME-GCM) can be used to derive solutions to the momentum equations that replicate reasonably well (over 85% of the variance) the winds self-consistently calculated within the TIME-GCM. CHAMP cross-track winds are found to share over 65% of the variance with the synthetic zonal winds, providing further reassurance that this wind product should provide credible results. Comparisons with the Horizontal Wind Model 14 (HWM14) show that the empirical model largely underestimates wind speeds and does not reproduce much of the observed variability. Additionally, in this work we reveal the longitude, latitude, local time, and seasonal variability in the winds; show evidence of ionosphere-thermosphere (IT) coupling, with enhanced postsunset eastward winds due to depleted ion drag; demonstrate superrotation speeds of ˜27 m/s at the equator; discuss vertical wave coupling due the diurnal eastward propagating tide with zonal wave number 3 and the semidiurnal eastward propagating tide with zonal wave number 2.
Samad, Manar D; Ulloa, Alvaro; Wehner, Gregory J; Jing, Linyuan; Hartzel, Dustin; Good, Christopher W; Williams, Brent A; Haggerty, Christopher M; Fornwalt, Brandon K
2018-06-09
The goal of this study was to use machine learning to more accurately predict survival after echocardiography. Predicting patient outcomes (e.g., survival) following echocardiography is primarily based on ejection fraction (EF) and comorbidities. However, there may be significant predictive information within additional echocardiography-derived measurements combined with clinical electronic health record data. Mortality was studied in 171,510 unselected patients who underwent 331,317 echocardiograms in a large regional health system. We investigated the predictive performance of nonlinear machine learning models compared with that of linear logistic regression models using 3 different inputs: 1) clinical variables, including 90 cardiovascular-relevant International Classification of Diseases, Tenth Revision, codes, and age, sex, height, weight, heart rate, blood pressures, low-density lipoprotein, high-density lipoprotein, and smoking; 2) clinical variables plus physician-reported EF; and 3) clinical variables and EF, plus 57 additional echocardiographic measurements. Missing data were imputed with a multivariate imputation by using a chained equations algorithm (MICE). We compared models versus each other and baseline clinical scoring systems by using a mean area under the curve (AUC) over 10 cross-validation folds and across 10 survival durations (6 to 60 months). Machine learning models achieved significantly higher prediction accuracy (all AUC >0.82) over common clinical risk scores (AUC = 0.61 to 0.79), with the nonlinear random forest models outperforming logistic regression (p < 0.01). The random forest model including all echocardiographic measurements yielded the highest prediction accuracy (p < 0.01 across all models and survival durations). Only 10 variables were needed to achieve 96% of the maximum prediction accuracy, with 6 of these variables being derived from echocardiography. Tricuspid regurgitation velocity was more predictive of survival than LVEF. In a subset of studies with complete data for the top 10 variables, multivariate imputation by chained equations yielded slightly reduced predictive accuracies (difference in AUC of 0.003) compared with the original data. Machine learning can fully utilize large combinations of disparate input variables to predict survival after echocardiography with superior accuracy. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Bite-outs and other depletions of mesospheric electrons
Friedrich, Martin; Rapp, Markus; Plane, John M.C.; Torkar, Klaus M.
2011-01-01
The ionised mesosphere is less understood than other parts of the ionosphere because of the challenges of making appropriate measurements in this complex region. We use rocket borne in situ measurements of absolute electron density by the Faraday rotation technique and accompanying DC-probe measurements to study the effect of particles on the D-region charge balance. Several examples of electron bite-outs, their actual depth as well as simultaneous observations of positive ions are presented. For a better understanding of the various dependencies we use the ratio β/αi (attachment rate over ion–ion recombination coefficient), derived from the electron and ion density profiles by applying a simplified ion-chemical scheme, and correlate this term with solar zenith angle and moon brightness. The probable causes are different for day and night; recent in situ measurements support existing hypotheses for daytime cases, but also reveal behaviour at night hitherto not reported in the literature. Within the large range of β/αi values obtained from the analysis of 28 high latitude night flights one finds that the intensity of scattered sunlight after sunset, and even moonlight, apparently can photodetach electrons from meteoric smoke particles (MSP) and molecular anions. The large range of values itself can best be explained by the variability of the MSPs and by occasionally occurring atomic oxygen impacting on the negative ion chemistry in the night-time mesosphere under disturbed conditions. PMID:27570472
2016-11-01
a few nanoseconds. The challenge remains to diagnose plasmas via the free electron density in this short window of time and often in a small volume ...Free Electron Density in Laser-Produced Plasmas by Anthony R Valenzuela Approved for public release; distribution is...US Army Research Laboratory Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser
Reentrant Metal-Insulator Transitions in Silicon -
NASA Astrophysics Data System (ADS)
Campbell, John William M.
This thesis describes a study of reentrant metal -insulator transitions observed in the inversion layer of extremely high mobility Si-MOSFETs. Magneto-transport measurements were carried out in the temperature range 20mK-4.2 K in a ^3He/^4 He dilution refrigerator which was surrounded by a 15 Tesla superconducting magnet. Below a melting temperature (T_{M}~500 mK) and a critical electron density (n_{s }~9times10^{10} cm^{-2}), the Shubnikov -de Haas oscillations in the diagonal resistivity enormous maximum values at the half filled Landau levels while maintaining deep minima corresponding to the quantum Hall effect at filled Landau levels. At even lower electron densities the insulating regions began to spread and eventually a metal-insulator transition could be induced at zero magnetic field. The measurement of extremely large resistances in the milliKelvin temperature range required the use of very low currents (typically in the 10^ {-12} A range) and in certain measurements minimizing the noise was also a consideration. The improvements achieved in these areas through the use of shielding, optical decouplers and battery operated instruments are described. The transport signatures of the insulating state are considered in terms of two basic mechanisms: single particle localization with transport by variable range hopping and the formation of a collective state such as a pinned Wigner crystal or electron solid with transport through the motion of bound dislocation pairs. The experimental data is best described by the latter model. Thus the two dimensional electron system in these high mobility Si-MOSFETs provides the first and only experimental demonstration to date of the formation of an electron solid at zero and low magnetic fields in the quantum limit where the Coulomb interaction energy dominates over the zero point oscillation energy. The role of disorder in favouring either single particle localization or the formation of a Wigner crystal is explored by considering a variety of samples with a wide range of mobilities and by varying the ratio of the carrier density (controlled by the applied gate voltage) to the impurity density (fixed during sample growth). A phase diagram showing the boundaries between the two dimensional electron gas, the Wigner solid, and the single particle localization induced insulator is established in terms of carrier density and sample mobility.
MAVEN Pickup Ion Constraints on Mars Neutral Escape
NASA Astrophysics Data System (ADS)
Rahmati, A.; Larson, D. E.; Cravens, T.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; McFadden, J. P.; Mitchell, D. L.; Thiemann, E.; Connerney, J. E. P.; DiBraccio, G. A.; Espley, J. R.; Eparvier, F. G.
2017-12-01
Mars is currently losing its atmosphere mainly due to the escape of neutral hydrogen and oxygen. Directly measuring the rate of escaping neutrals is difficult, because the neutral density in the Mars exosphere is dominated, up to several Martian radii, by atoms that are gravitationally bound to the planet. Neutral atoms in the Martian exosphere, however, can get ionized, picked up, and accelerated by the solar wind motional electric field and energized to energies high enough for particle detectors to measure them. The MAVEN SEP instrument detects O+ pickup ions that are created at altitudes where the escaping part of the exosphere is dominant. Fluxes of these ions reflect neutral densities in the distant exosphere of Mars, allowing us to constrain neutral oxygen escape rates. The MAVEN SWIA and STATIC instruments measure pickup H+ and O+ created closer to Mars; comparisons of these data with models can be used to constrain exospheric hot O and thermal H densities and escape rates. In this work, pickup ion measurements from SEP, SWIA, and STATIC, taken during the first 3 Earth years of the MAVEN mission, are compared to the outputs of a pickup ion model to constrain the variability of neutral escape at Mars. The model is based on data from six MAVEN instruments, namely, MAG providing magnetic field used in calculating pickup ion trajectories, SWIA providing solar wind velocity as well as 3D pickup H+ and O+ spectra, SWEA providing solar wind electron spectrum used in electron impact ionization rate calculations, SEP providing pickup O+ spectra, STATIC providing mass resolved 3D pickup H+ and O+ spectra, and EUVM providing solar EUV spectra used in photoionization rate calculations. A variability of less than a factor of two is observed in hot oxygen escape rates, whereas thermal escape of hydrogen varies by an order of magnitude with Mars season. This hydrogen escape variability challenges our understanding of the H cycle at Mars, but is consistent with other recent measurements.
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.
2018-05-01
When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.
An Investigation of Variable Time Interval K-like Geomagnetic Indices
1999-12-16
ionosphere system. The index is widely used to drive empirical models of auroral particle precipitation, high-latitude convection patterns...81 35 Kp use in TDIM simulations 86 36 Fredericksburg magnetic disturbance for 28 July 1990 88 Xlll 37 The Heppner-Maynard convection patterns used...in our TDIM simulations 90 38 High-latitude electron density difference histograms for 0500 UT on 28 July 1990 95 39 High-latitude NmF2 percent
NASA Astrophysics Data System (ADS)
Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun
2018-02-01
Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron density is greater than or equal to 1037 m-3, the influence of the GUP becomes the dominant factor affecting the thermodynamic properties of the system.
Remote Sensing of Ionosphere by IONOLAB Group
NASA Astrophysics Data System (ADS)
Arikan, Feza
2016-07-01
Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. Electron density is a complex function of spatial and temporal variations of solar, geomagnetic, and seismic activities. Ionosphere is the main source of error for navigation and positioning systems and satellite communication. Therefore, characterization and constant monitoring of variability of the ionosphere is of utmost importance for the performance improvement of these systems. Since ionospheric electron density is not a directly measurable quantity, an important derivable parameter is the Total Electron Content (TEC), which is used widely to characterize the ionosphere. TEC is proportional to the total number of electrons on a line crossing the atmosphere. IONOLAB is a research group is formed by Hacettepe University, Bilkent University and Kastamonu University, Turkey gathered to handle the challenges of the ionosphere using state-of-the-art remote sensing and signal processing techniques. IONOLAB group provides unique space weather services of IONOLAB-TEC, International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model based IRI-Plas-MAP, IRI-Plas-STEC and Online IRI-Plas-2015 model at www.ionolab.org. IONOLAB group has been working for imaging and monitoring of ionospheric structure for the last 15 years. TEC is estimated from dual frequency GPS receivers as IONOLAB-TEC using IONOLAB-BIAS. For high spatio-temporal resolution 2-D imaging or mapping, IONOLAB-MAP algorithm is developed that uses automated Universal Kriging or Ordinary Kriging in which the experimental semivariogram is fitted to Matern Function with Particle Swarm Optimization (PSO). For 3-D imaging of ionosphere and 1-D vertical profiles of electron density, state-of-the-art IRI-Plas model based IONOLAB-CIT algorithm is developed for regional reconstruction that employs Kalman Filters for state/temporal transition. IONOLAB group contributes to remote sensing of upper atmosphere, ionosphere and plasmasphere with continuing TUBITAK projects. IONOLAB group is open to joint research and collaboration with researchers from all disciplines that investigate the challenges of ionosphere and space weather. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.
Turbulent, Extreme Multi-zone Model for Simulating Flux and Polarization Variability in Blazars
NASA Astrophysics Data System (ADS)
Marscher, Alan P.
2014-01-01
The author presents a model for variability of the flux and polarization of blazars in which turbulent plasma flowing at a relativistic speed down a jet crosses a standing conical shock. The shock compresses the plasma and accelerates electrons to energies up to γmax >~ 104 times their rest-mass energy, with the value of γmax determined by the direction of the magnetic field relative to the shock front. The turbulence is approximated in a computer code as many cells, each with a uniform magnetic field whose direction is selected randomly. The density of high-energy electrons in the plasma changes randomly with time in a manner consistent with the power spectral density of flux variations derived from observations of blazars. The variations in flux and polarization are therefore caused by continuous noise processes rather than by singular events such as explosive injection of energy at the base of the jet. Sample simulations illustrate the behavior of flux and linear polarization versus time that such a model produces. The variations in γ-ray flux generated by the code are often, but not always, correlated with those at lower frequencies, and many of the flares are sharply peaked. The mean degree of polarization of synchrotron radiation is higher and its timescale of variability shorter toward higher frequencies, while the polarization electric vector sometimes randomly executes apparent rotations. The slope of the spectral energy distribution exhibits sharper breaks than can arise solely from energy losses. All of these results correspond to properties observed in blazars.
Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan
2017-12-15
The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Li, Shiqi; Sarachik, Myriam
We compare the resistivity of the dilute, strongly-interacting 2D electron system in the insulating phase of a silicon MOSFET for unpolarized electrons in the absence of magnetic field and in the presence of an in-plane magnetic field sufficient to fully polarize the electrons. In both cases the resistivity obeys Efros-Shklovskii variable range hopping ρ (T) =ρ0exp [(TES / T) 1 / 2 ] , with TES and 1 /ρ0 mapping onto each other provided one applies a shift reported earlier of the critical density nc with magnetic field: the transport properties of the insulator are the same for unpolarized and fully polarized electron spins. Interestingly, the parameters TES and 1 /ρ0 =σ0 are consistent with critical behavior approaching a metal-insulator transition. This work was supported by the National Science Foundation Grant DMR-1309008 and the Binational Science Foundation Grant 2012210.
NASA Technical Reports Server (NTRS)
Lee, J. S.; Doering, J. P.; Potemra, T. A.; Brace, L. H.
1980-01-01
A study is presented of the ambient photoelectron spectrum below 300 km which includes 500 AE-E orbits observed from Dec. 13, 1975 to Feb. 24, 1976. The daytime photoelectron spectrum from 1 to 100 eV was illustrated by several spectra; high resolution 10-32 eV spectra show the widths of the photoelectron lines and the variation of the linewidth and intensity with altitude. The photoelectron flux below 300 km is constant over a period of several months; the photoelectron lines between 20 and 30 eV are very sharp when the total plasma density is low, but broaden at high altitudes as the plasma density builds up during the day. The photo-electron flux above 300 km had an intensity and energy spectrum characteristic of the 250-300 km region only in the presence of low plasma density at the satellite altitude. The flux at high altitudes was extremely variable 3 h after sunrise as a result of attenuation and energy loss to thermal plasma along the path of escaping electrons.
The appearance and effects of metallic implants in CT images.
Kairn, T; Crowe, S B; Fogg, P; Trapp, J V
2013-06-01
The computed tomography (CT) imaging artefacts that metallic medical implants produce in surrounding tissues are usually contoured and over-ridden during radiotherapy treatment planning. In cases where radiotherapy treatment beams unavoidably pass though implants, it is especially important to understand the imaging artefacts that may occur within the implants themselves. This study examines CT images of a set of simple metallic objects, immersed in water, in order to evaluate reliability and variability of CT numbers (Hounsfield units, HUs) within medical implants. Model implants with a range of sizes (heights from 2.2 to 49.6 mm), electron densities (from 2.3 to 7.7 times the electron density of water) and effective atomic numbers (from 3.9 to 9.0 times the effective atomic number of water in a CT X-ray beam) were created by stacking metal coins from several currencies. These 'implants' were CT scanned within a large (31.0 cm across) and a small (12.8 cm across) water phantom. Resulting HU values are as much as 50 % lower than the result of extrapolating standard electron density calibration data (obtained for tissue and bone densities) up to the metal densities and there is a 6 % difference between the results obtained by scanning with 120 and 140 kVp tube potentials. Profiles through the implants show localised cupping artefacts, within the implants, as well as a gradual decline in HU outside the implants that can cause the implants' sizes to be over estimated by 1.3-9.0 mm. These effects are exacerbated when the implants are scanned in the small phantom or at the side of the large phantom, due to reduced pre-hardening of the X-ray beam in these configurations. These results demonstrate the necessity of over-riding the densities of metallic implants, as well as their artefacts in tissue, in order to obtain accurate radiotherapy dose calculations.
Method for removing atomic-model bias in macromolecular crystallography
Terwilliger, Thomas C [Santa Fe, NM
2006-08-01
Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.
NASA Astrophysics Data System (ADS)
Chu, F.; Haines, P.; Hudson, M.; Kress, B.; Freidel, R.; Kanekal, S.
2007-12-01
Work is underway by several groups to quantify diffusive radial transport of radiation belt electrons, including a model for pitch angle scattering losses to the atmosphere. The radial diffusion model conserves the first and second adiabatic invariants and breaks the third invariant. We have developed a radial diffusion code which uses the Crank Nicholson method with a variable outer boundary condition. For the radial diffusion coefficient, DLL, we have several choices, including the Brautigam and Albert (JGR, 2000) diffusion coefficient parameterized by Kp, which provides an ad hoc measure of the power level at ULF wave frequencies in the range of electron drift (mHz), breaking the third invariant. Other diffusion coefficient models are Kp-independent, fixed in time but explicitly dependent on the first invariant, or energy at a fixed L, such as calculated by Elkington et al. (JGR, 2003) and Perry et al. (JGR, 2006) based on ULF wave model fields. We analyzed three periods of electron flux and phase space density (PSD) enhancements inside of geosynchronous orbit: March 31 - May 31, 1991, and July 2004 and Nov 2004 storm intervals. The radial diffusion calculation is initialized with a computed phase space density profile for the 1991 interval using differential flux values from the CRRES High Energy Electron Fluxmeter instrument, covering 0.65 - 7.5 MeV. To calculate the initial phase space density, we convert Roederer L* to McIlwain's L- parameter using the ONERA-DESP program. A time averaged model developed by Vampola1 from the entire 14 month CRRES data set is applied to the July 2004 and Nov 2004 storms. The online CRESS data for specific orbits and the Vampola-model flux are both expressed in McIlwain L-shell, while conversion to L* conserves phase space density in a distorted non-dipolar magnetic field model. A Tsyganenko (T04) magnetic field model is used for conversion between L* and L. The outer boundary PSD is updated using LANL GEO satellite fluxes. After calculating the phase space density time evolution for the two storms and post-injection interval (March 31 - May 31, 1991), we compare results with SAMPEX measurements. A better match with SAMPEX measurements is obtained with a variable outer boundary, also with a Kp-dependent diffusion coefficient, and finally with an energy and L-dependent loss term (Summers et al., JGR, 2004), than with a time-independent diffusion coefficient and a simple Kp-parametrized loss rate and location of the plasmapause. Addition of a varying outer boundary which incorporates measured fluxes at geosynchronous orbit using L* has the biggest effect of the three parametrized variations studied. 1Vampola, A.L., 1996, The ESA Outer Zone Electron Model Update, Environment Modelling for Spaced-based Applications, ESA SP-392, ESTEC, Nordwijk, NL, pp. 151-158, W. Burke and T.-D. Guyenne, eds.
Device and method for electron beam heating of a high density plasma
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.
Study of sulfur bonding on gallium arsenide (100) surfaces using supercritical fluid extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabauy, P.; Darici, Y.; Furton, K.G.
1995-12-01
In the last decades Gallium Arsenide (GaAs) has been considered the semiconductor that will replace silicon because of its direct band gap and high electron mobility. Problems with GaAs Fermi level pinning has halted its widespread use in the electronics industry. The formation of oxides on GaAs results in a high density of surface states that effectively pin the surface Fermi level at the midgap. Studies on sulfur passivation have eliminated oxidation and virtually unpinned the Fermi level on the GaAs surface. This has given rise to interest in sulfur-GaAs bonds. In this presentation, we will discuss the types ofmore » sulfur bonds extracted from a sulfur passivated GaAs (100) using Supercritical Fluid (CO2) Extraction (SFE). SFE can be a valuable tool in the study of chemical speciations on semiconductor surfaces. The variables evaluated to effectively study the sulfur species from the GaAs surface include passivation techniques, supercritical fluid temperatures, densities, and extraction times.« less
Pulsations in the Earth's Lower Ionosphere Synchronized With Solar Flare Emission
NASA Astrophysics Data System (ADS)
Hayes, Laura A.; Gallagher, Peter T.; McCauley, Joseph; Dennis, Brian R.; Ireland, Jack; Inglis, Andrew
2017-10-01
Solar flare emission at X-ray and extreme ultraviolet (EUV) energies can cause substantial enhancements in the electron density in the Earth's lower ionosphere. It has now become clear that flares exhibit quasi-periodic pulsations with timescales of minutes at X-ray energies, but to date, it has not been known if the ionosphere is sensitive to this variability. Here using a combination of very low frequency (24 kHz) measurement together with space-based X-ray and EUV observations, we report pulsations of the ionospheric D region, which are synchronized with a set of pulsating flare loops. Modeling of the ionosphere show that the D region electron density varies by up to an order of magnitude over the timescale of the pulsations (˜ 20 min). Our results reveal that the Earth's ionosphere is more sensitive to small-scale changes in solar soft X-ray flux than previously thought and implies that planetary ionospheres are closely coupled to small-scale changes in solar/stellar activity.
Handling Density Conversion in TPS.
Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji
2016-01-01
Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
Anomalous evolution of Ar metastable density with electron density in high density Ar discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min; Chang, Hong-Young; You, Shin-Jae
2011-10-15
Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. Onmore » the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.« less
NASA Astrophysics Data System (ADS)
Hong, Junseok; Kim, Yong Ha; Chung, Jong-Kyun; Ssessanga, Nicholas; Kwak, Young-Sil
2017-03-01
In South Korea, there are about 80 Global Positioning System (GPS) monitoring stations providing total electron content (TEC) every 10 min, which can be accessed through Korea Astronomy and Space Science Institute (KASI) for scientific use. We applied the computerized ionospheric tomography (CIT) algorithm to the TEC dataset from this GPS network for monitoring the regional ionosphere over South Korea. The algorithm utilizes multiplicative algebraic reconstruction technique (MART) with an initial condition of the latest International Reference Ionosphere-2016 model (IRI-2016). In order to reduce the number of unknown variables, the vertical profiles of electron density are expressed with a linear combination of empirical orthonormal functions (EOFs) that were derived from the IRI empirical profiles. Although the number of receiver sites is much smaller than that of Japan, the CIT algorithm yielded reasonable structure of the ionosphere over South Korea. We verified the CIT results with NmF2 from ionosondes in Icheon and Jeju and also with GPS TEC at the center of South Korea. In addition, the total time required for CIT calculation was only about 5 min, enabling the exploration of the vertical ionospheric structure in near real time.
Self-Consistent Superthermal Electron Effects on Plasmaspheric Refilling
NASA Technical Reports Server (NTRS)
Liemohn, M. W.; Khazanov, G. V.; Moore, T. E.; Guiter, S. M.
1997-01-01
The effects of self-consistently including superthermal electrons in the definition of the ambipolar electric field are investigated for the case of plasmaspheric refilling after a geomagnetic storm. By using the total electron population in the hydrodynamic equations, a method for incorporating superthermal electron parameters in the electric field and electron temperature calculation is developed. Also, the ambipolar electric field is included in the kinetic equation for the superthermal electrons through a change of variables using the total energy and the first adiabatic invariant. Calculations based on these changes are performed by coupling time-dependent models of the thermal plasma and superthermal electrons. Results from this treatment of the electric field and the self-consistent development of the solution are discussed in detail. Specifically, there is a decreased thermal electron density in the plasmasphere during the first few minutes of refilling, a slightly accelerated proton shock front, and a decreased superthermal electron flux due to the deceleration by the electric field. The timescales of plasmaspheric refilling are discussed and determined to be somewhat shorter than previously calculated for the thermal plasma and superthermal electron population due to the effects of the field-aligned potential.
Correlation between Na/K ratio and electron densities in blood samples of breast cancer patients.
Topdağı, Ömer; Toker, Ozan; Bakırdere, Sezgin; Bursalıoğlu, Ertuğrul Osman; Öz, Ersoy; Eyecioğlu, Önder; Demir, Mustafa; İçelli, Orhan
2018-05-31
The main purpose of this study was to investigate the relationship between the electron densities and Na/K ratio which has important role in breast cancer disease. Determinations of sodium and potassium concentrations in blood samples performed with inductive coupled plasma-atomic emission spectrometry. Electron density values of blood samples were determined via ZXCOM. Statistical analyses were performed for electron densities and Na/K ratio including Kolmogorov-Smirnov normality tests, Spearman's rank correlation test and Mann-Whitney U test. It was found that the electron densities significantly differ between control and breast cancer groups. In addition, statistically significant positive correlation was found between the electron density and Na/K ratios in breast cancer group.
Local re-acceleration and a modified thick target model of solar flare electrons
NASA Astrophysics Data System (ADS)
Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.
2009-12-01
Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as spatial distribution of atmospheric heating by fast electrons.
Andreev, Pavel A
2015-03-01
The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered.
NASA Astrophysics Data System (ADS)
Ma, J. Z. G.; Hirose, A.
2010-05-01
Lower-hybrid (LH) oscillitons reveal one aspect of geocomplexities. They have been observed by rockets and satellites in various regions in geospace. They are extraordinary solitary waves the envelop of which has a relatively longer period, while the amplitude is modulated violently by embedded oscillations of much shorter periods. We employ a two-fluid (electron-ion) slab model in a Cartesian geometry to expose the excitation of LH oscillitons. Relying on a set of self-similar equations, we first produce, as a reference, the well-known three shapes (sinusoidal, sawtooth, and spiky or bipolar) of parallel-propagating ion-acoustic (IA) solitary structures in the absence of electron inertia, along with their Fast Fourier Transform (FFT) power spectra. The study is then expanded to illustrate distorted structures of the IA modes by taking into account all the three components of variables. In this case, the ion-cyclotron (IC) mode comes into play. Furthermore, the electron inertia is incorporated in the equations. It is found that the inertia modulates the coupled IA/IC envelops to produce LH oscillitons. The newly excited structures are characterized by a normal low-frequency IC solitary envelop embedded by high-frequency, small-amplitude LH oscillations which are superimposed upon by higher-frequency but smaller-amplitude IA ingredients. The oscillitons are shown to be sensitive to several input parameters (e.g., the Mach number, the electron-ion mass/temperature ratios, and the electron thermal speed). Interestingly, whenever a LH oscilliton is triggered, there occurs a density cavity the depth of which can reach up to 20% of the background density, along with density humps on both sides of the cavity. Unexpectedly, a mode at much lower frequencies is also found beyond the IC band. Future studies are finally highlighted. The appendices give a general dispersion relation and specific ones of linear modes relevant to all the nonlinear modes encountered in the text.
Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; ...
2014-12-02
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belianinov, Alex, E-mail: belianinova@ornl.gov; Ganesh, Panchapakesan; Lin, Wenzhi
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified bymore » their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less
Device and method for electron beam heating of a high density plasma
Thode, L.E.
A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.
Longitudinal Ionospheric Variability Observed by LITES on the ISS
NASA Astrophysics Data System (ADS)
Stephan, A. W.; Finn, S. C.; Cook, T.; Geddes, G.; Chakrabarti, S.; Budzien, S. A.
2017-12-01
The Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES) is an imaging spectrograph designed to measure altitude profiles (150-350 km) of extreme- and far-ultraviolet airglow emissions that originate from photochemical processes in the ionosphere and thermosphere. During the daytime, LITES observes the bright O+ 83.4 nm emission from which the ionospheric profile can be inferred. At night, recombination emissions at 91.1 and 135.6 nm provide a direct measure of the electron content along the line of sight. LITES was launched and installed on the International Space Station (ISS) in late February 2017 where it has been operating along with the highly complementary GPS Radio Occultation and Ultraviolet Photometry - Colocated (GROUP-C) experiment. We will present some of the first observations from LITES in April 2017 that show longitudinal patterns in ionospheric density and the daily variability in those patterns. LITES vertical imaging from a vantage point near 410 km enables a particularly unique perspective on the altitude of the ionospheric peak density at night that can complement and inform other ground- and space-based measurements, and track the longitude-altitude variability that is reflective of changes in equatorial electrodynamics.
Ionospheric TEC Weather Map Over South America
NASA Astrophysics Data System (ADS)
Takahashi, H.; Wrasse, C. M.; Denardini, C. M.; Pádua, M. B.; de Paula, E. R.; Costa, S. M. A.; Otsuka, Y.; Shiokawa, K.; Monico, J. F. Galera; Ivo, A.; Sant'Anna, N.
2016-11-01
Ionospheric weather maps using the total electron content (TEC) monitored by ground-based Global Navigation Satellite Systems (GNSS) receivers over South American continent, TECMAP, have been operationally produced by Instituto Nacional de Pesquisas Espaciais's Space Weather Study and Monitoring Program (Estudo e Monitoramento Brasileiro de Clima Especial) since 2013. In order to cover the whole continent, four GNSS receiver networks, (Rede Brasileiro de Monitoramento Contínuo) RBMC/Brazilian Institute for Geography and Statistics, Low-latitude Ionospheric Sensor Network, International GNSS Service, and Red Argentina de Monitoreo Satelital Continuo, in total 140 sites, have been used. TECMAPs with a time resolution of 10 min are produced in 12 h time delay. Spatial resolution of the map is rather low, varying between 50 and 500 km depending on the density of the observation points. Large day-to-day variabilities of the equatorial ionization anomaly have been observed. Spatial gradient of TEC from the anomaly trough (total electron content unit, 1 TECU = 1016 el m-2 (TECU) <10) to the crest region (TECU > 80) causes a large ionospheric range delay in the GNSS positioning system. Ionospheric plasma bubbles, their seeding and development, could be monitored. This plasma density (spatial and temporal) variability causes not only the GNSS-based positioning error but also radio wave scintillations. Monitoring of these phenomena by TEC mapping becomes an important issue for space weather concern for high-technology positioning system and telecommunication.
Subgrid-scale effects in compressible variable-density decaying turbulence
GS, Sidharth; Candler, Graham V.
2018-05-08
We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less
Subgrid-scale effects in compressible variable-density decaying turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
GS, Sidharth; Candler, Graham V.
We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less
NASA Astrophysics Data System (ADS)
Rothman, Adam E.; Mazziotti, David A.
2010-03-01
We study molecular conductivity for a one-electron, bath-molecule-bath model Hamiltonian. The primary quantum-mechanical variable is the one-electron reduced density matrix (1-RDM). By identifying similarities between the steady-state Liouville equation and the anti-Hermitian contracted Schrödinger equation (ACSE) [D. A. Mazziotti, Phys. Rev. A 75, 022505 (2007)], we develop a way of enforcing nonequilibrium, steady-state behavior in a time-independent theory. Our results illustrate the relationship between current and voltage in molecular junctions assuming that the total number of electrons under consideration can be fixed across all driving potentials. The impetus for this work is a recent study by Subotnik et al. that also uses the 1-RDM to study molecular conductivity under different assumptions regarding the total number of electrons [J. E. Subotnik et al., J. Chem. Phys. 130, 144105 (2009)]. Unlike calculations in the previous study, our calculations result in 1-RDMs that are fully N-representable. The present work maintains N-representability through a bath-bath mixing that is related to a time-independent relaxation of the baths in the absence of the molecule, as governed by the ACSE. A lack of N-representability can be important since it corresponds to occupying energy states in the molecule or baths with more than one electron or hole (the absence of an electron) in violation of the Pauli principle. For this reason the present work may serve as an important, albeit preliminary, step in designing a 2-RDM/ACSE method for studying steady-state molecular conductivity with an explicit treatment of electron correlation.
NASA Technical Reports Server (NTRS)
Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.
1976-01-01
Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Hietzke, W. H.
1982-01-01
The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.
A Variable Frequency, Mis-Match Tolerant, Inductive Plasma Source
NASA Astrophysics Data System (ADS)
Rogers, Anthony; Kirchner, Don; Skiff, Fred
2014-10-01
Presented here is a survey and analysis of an inductively coupled, magnetically confined, singly ionized Argon plasma generated by a square-wave, variable frequency plasma source. The helicon-style antenna is driven directly by the class ``D'' amplifier without matching network for increased efficiency while maintaining independent control of frequency and applied power at the feed point. The survey is compared to similar data taken using a traditional exciter--power amplifier--matching network source. Specifically, the flexibility of this plasma source in terms of the independent control of electron plasma temperature and density is discussed in comparison to traditional source arrangements. Supported by US DOE Grant DE-FG02-99ER54543.
Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review
NASA Astrophysics Data System (ADS)
Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.
2018-06-01
Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.
Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review
NASA Astrophysics Data System (ADS)
Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.
2018-02-01
Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.
Electron (charge) density studies of cellulose models
USDA-ARS?s Scientific Manuscript database
Introductory material first describes electron density approaches and demonstrates visualization of electron lone pairs and bonding as concentrations of electron density. Then it focuses on the application of Bader’s Quantum Theory of Atoms-in-Molecules (AIM) to cellulose models. The purpose of the ...
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Flynn, Casey L.; Andrews, David J.; Duru, Firdevs; Morgan, David D.
2016-10-01
Radio occultation electron densities measurements from the Mariner 9 and Viking spacecraft, which orbited Mars in the 1970s, have recently become available in a digital format. These data are highly complementary to the radio occultation electron density profiles from Mars Global Surveyor, which were restricted in solar zenith angle and altitude. We have compiled data from the Mariner 9, Viking, and Mars Global Surveyor radio occultation experiments for comparison to electron density measurements made by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), the topside radar sounder on Mars Express, and MARSIS-based empirical density models. We find that the electron densities measured by radio occultation are in generally good agreement with the MARSIS data and model, especially near the altitude of the peak electron density but that the MARSIS data and model display a larger plasma scale height than the radio occultation profiles at altitudes between the peak density and 200 km. Consequently, the MARSIS-measured and model electron densities are consistently larger than radio occultation densities at altitudes 200-300 km. Finally, we have analyzed transitions in the topside ionosphere, at the boundary between the photochemically controlled and transport-controlled regions, and identified the average transition altitude, or altitude at which a change in scale height occurs. The average transition altitude is 200 km in the Mariner 9 and Viking radio occultation profiles and in profiles of the median MARSIS radar sounding electron densities.
The electrons and ion characteristics of Saturn's plasma disk inside the Enceladus orbit
NASA Astrophysics Data System (ADS)
Morooka, Michiko; Wahlund, Jan-Erik; Ye, Sheng-Yi; Kurth, William; Persoon, Ann; Holmberg, Mika
2017-04-01
Cassini observations revealed that Saturn's icy moon Enceladus and surrounding E ring are the significant plasma source of the magnetosphere. However, the observations sometimes show the electron density enhancement even inside the Enceladus orbiting distance, 4RS. Further plasma contribution from the inner rings, the G and the F rings and main A ring are the natural candidate as an additional plasma source. The Cassini/RPWS Langmuir Probe (LP) measurement provides the characteristics of the electrons and ions independently in a cold dense plasma. The observations near the center of the E ring showed that the ion density being larger than the electron density, indicating that there is additional particle as a negative charge carrier. Those are the small nm and μm sized dust grains that are negatively charged by the electron attachments. The faint F and G rings, located at R=2RS and 3RS, consist of small grains and similar electron/ion density discrepancies can be expected. We will show different types of the LP observations when Cassini traveled the equator region of the plasma disk down to 3RS. One with the electron density increasing inside 4RS, and another with the electron density decreasing inside 4RS. During the orbit 016 (2005 doy-284/285), the electron density continued to increase toward the planet. On the other hand, the ion currents, the LP measured currents from the negative bias voltage, turn to decreasing inside 4RS, implying the density decrease of the ions. By comparing the observed LP ion current characteristics and the modeled values using the obtained electron density, we found that the characteristic ion mass can be several times larger than the water ions (AMU=18) that we expected in this region. During the orbit 015 (2005 doy-266/267), on the other hand, the LP observed sharp electron density drop near 3RS. The dust signals from the RPWS antenna showed the density enhancement of the μm sized grains coincide the electron density drop and we have estimated that the characteristic ion mass can exceed AMU=100. Throughout the whole Cassini observation near the equator inside 4RS, we didn't find the case with the ion densities larger than the electron densities as were found near the E ring and the Enceladus plume. We suggest that Saturn's plasmadisk inside the Enceladus orbit is dynamic in ion characteristics where the water molecules coagulate and grow into a small icy dust grains. In the presentation we discuss the relationship between the electron/ion density and the density of the nm and μm sized grains.
Fujiwara, Y; Hirano, Y; Kiyama, S; Nakamiya, A; Koguchi, H; Sakakita, H
2014-02-01
The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10(8) cm(-3) at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.
X-Ray Spectroscopies of Warm Dense Matter
NASA Astrophysics Data System (ADS)
Hoidn, Oliver
This dissertation provides a perspective on the role of x-ray spectroscopy and diffraction diagnostics in experimental studies of warm dense matter (WDM). The primary focus of the work I discuss is the development of techniques to measure the structure and state variables of laboratory-generated WDM with a view towards both phenomenlogy and placing contraints on theoretical models. I present techniques adapted to two experimental venues for WDM studies: large-scale laser plasma facilities and x-ray free electron lasers. My focus is on the latter, in the context of which I have studied a dose enhancement technique that exploits nonlocal heat transport in nanostructured targets and considered several aspects of optimizing x-ray diffraction measurements. This work came into play in beam runs at the Linac Coherent Light Source (LCLS) in which my group performed x-ray diffraction studies of several materials heated to eV-scale temperatures. The results from these experiments include confirmation of the persistence of long-range crystalline order upon heating of metal oxides to tens of eV temperarures on the 40 fs timescale. One material, MgO, additionally manifested a surprising anomalous early onset in delocalization of valence charge density, contradicting predictions of all models based on either ground state electronic structure or (high-energy density) plasma physics. This particular result outlines a future path for studies of ordered insulators heated to temperatures on the order of the band gap. Such experiments will offer strong tests of electronic strucure theory, implementing a scientific approach that sees measurement of real-space charge density via x-ray diffraction (XRD) as a particularly effectve means to constrain density functional theory (DFT)-based modeling of the solid state/plasma transitional regime.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.
NASA Astrophysics Data System (ADS)
Yakovlenko, Sergei I.
2000-06-01
One of the mechanisms of the inversion breaking in copper vapour lasers caused by a high prepulse electron density is considered. Inversion breaking occurs at a critical electron density Ne cr. If the prepulse electron density exceeds Ne cr, the electron temperature Te cr cannot reach, during a plasma heating pulse, the temperature of ~2eV required for lasing. A simple estimate of Ne cr is made.
Vertical and Lateral Electron Content in the Martian Ionosphere
NASA Astrophysics Data System (ADS)
Paetzold, M. P.; Peter, K.; Bird, M. K.; Häusler, B.; Tellmann, S.
2016-12-01
The radio-science experiment MaRS (Mars Express Radio Science) on the Mars Express spacecraft sounds the neutral atmosphere and ionosphere of Mars since 2004. Approximately 800 vertical profiles of the ionospheric electron density have been acquired until today. The vertical electron content (TEC) is easily computed from the vertical electron density profile by integrating along the altitude. The TEC is typically a fraction of a TEC unit (1E16 m^-2) and depends on the solar zenith angle. The magnitude of the TEC is however fully dominated by the electron density contained in the main layer M2. The contributions by the M1 layer below M2 or the topside is marginal. MaRS is using two radio frequencies for the sounding of the ionosphere. The directly observed differential Doppler from the two received frequencies is a measure of the lateral electron content that means along the ray path and perpendicular to the vertical electron density profile. Combining both the vertical electron density profile, the vertical TEC and the directly observed lateral TEC describes the lateral electron density distribution in the ionosphere.
NASA Astrophysics Data System (ADS)
Rajesh, P. K.; Nanan, Balan; Liu, Jann-Yenq; Lin, Charles C. H.; Chang, S. Y.; Chen, Chia-Hung
This study investigates the mid-latitude electron density enhancement (MEDE) using global ionospheric map (GIM) total electron content (TEC) measurements and FORMOSAT-3/COSMIC (F3/C) electron density profiles. Diurnal, seasonal, latitudinal, and solar activity variations in the occurrence and strength of MEDE are examined using global GIM TEC data in the years 2002 and 2009. The results show that MEDE occurrence is pronounced during 2200-0400 LT, the feature also appears during day. The strength of MEDE maximizes around 0400 LT, and is very weak during daytime. The occurrence and strength show significant longitude dependence, and vary with season and solar activity. Concurrent F3/C electron density profiles also reveal enhancement of the peak electron density and total electron content. Further studies are carried out by examining the role of neutral wind in re-organizing the plasma using SAMI2 and HWM93 models. The results indicate that meridional neutral wind could cause the plasma to converge over mid-latitudes, and thus support in maintaining the enhancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, Robert M.; Liu, Fang; Martínez, Todd J., E-mail: toddjmartinez@gmail.com
We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this “difference self-consistent field (dSCF)” picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space.more » These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TERACHEM SCF implementation.« less
Analysis of Total Electron Content and Electron Density Profile during Different Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Chapagain, N. P.; Rana, B.; Adhikari, B.
2017-12-01
Total Electron content (TEC) and electron density are the key parameters in the mitigation of ionospheric effects on radio communication system. Detail study of the TEC and electron density variations has been carried out during geomagnetic storms, with longitude and latitude, for four different locations: (13˚N -17˚N, 88˚E -98˚E), (30˚N-50˚N, 120˚W -95˚W), (29˚S-26˚S, 167˚W-163˚W,) and (60˚S-45˚S, 120˚W-105˚W) using the Gravity Recovery and Climate Experiment (GRACE) satellite observations. In order to find the geomagnetic activity, the solar wind parameters such as north-south component of inter planetary magnetic field (Bz), plasma drift velocity (Vsw), flow pressure (nPa), AE, Dst and Kp indices were obtained from Operating Mission as Nodes on the Internet (OMNI) web system. The data for geomagnetic indices have been correlated with the TEC and electron density for four different events of geomagnetic storms on 6 April 2008, 27 March 2008, 4 September 2008, and 11 October 2008. The result illustrates that the observed TEC and electron density profile significantly vary with longitudes and latitudes. This study illustrates that the values of TEC and the vertical electron density profile are influenced by the solar wind parameters associated with solar activities. The peak values of electron density and TEC increase as the geomagnetic storms become stronger. Similarly, the electron density profile varies with altitudes, which peaks around the altitude range of about 250- 350 km, depending on the strength of geomagnetic storms. The results clearly show that the peak electron density shifted to higher altitude (from about 250 km to 350 km) as the geomagnetic disturbances becomes stronger.
Profiles of Ionospheric Storm-enhanced Density during the 17 March 2015 Great Storm
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.
2015-12-01
Ionospheric F2 region peak densities (NmF2) are expected to show a positive phase correlation with total electron content (TEC), and electron density is expected to have an anti-correlation with electron temperature near the ionospheric F2 peak. However, we show that, during the 17 March 2015 great storm, TEC and F2 region electron density peak height (hmF2) over Millstone Hill increased, but the F2 region electron density peak (NmF2) decreased significantly during the storm-enhanced density (SED) phase of the storm compared with the quiet-time ionosphere. This SED occurred where there was a negative ionospheric storm near the F2 peak and below it. The weak ionosphere below the F2 peak resulted in much reduced downward heat conduction for the electrons, trapping the heat in the topside. This, in turn, increased the topside scale height, so that, even though electron densities at the F2 peak were depleted, TEC increased in the SED. The depletion in NmF2 was probably caused by an increase in the density of the molecular neutrals, resulting in enhanced recombination. In addition, the storm-time topside ionospheric electron density profile was much closer to diffusive equilibrium than non-storm time profile because of less daytime plasma flow from the ionosphere to the plasmasphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, S; Tianjin University, Tianjin; Hara, W
Purpose: MRI has a number of advantages over CT as a primary modality for radiation treatment planning (RTP). However, one key bottleneck problem still remains, which is the lack of electron density information in MRI. In the work, a reliable method to map electron density is developed by leveraging the differential contrast of multi-parametric MRI. Methods: We propose a probabilistic Bayesian approach for electron density mapping based on T1 and T2-weighted MRI, using multiple patients as atlases. For each voxel, we compute two conditional probabilities: (1) electron density given its image intensity on T1 and T2-weighted MR images, and (2)more » electron density given its geometric location in a reference anatomy. The two sources of information (image intensity and spatial location) are combined into a unifying posterior probability density function using the Bayesian formalism. The mean value of the posterior probability density function provides the estimated electron density. Results: We evaluated the method on 10 head and neck patients and performed leave-one-out cross validation (9 patients as atlases and remaining 1 as test). The proposed method significantly reduced the errors in electron density estimation, with a mean absolute HU error of 138, compared with 193 for the T1-weighted intensity approach and 261 without density correction. For bone detection (HU>200), the proposed method had an accuracy of 84% and a sensitivity of 73% at specificity of 90% (AUC = 87%). In comparison, the AUC for bone detection is 73% and 50% using the intensity approach and without density correction, respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection based on multi-parametric MRI of the head with highly heterogeneous anatomy. This could allow for accurate dose calculation and reference image generation for patient setup in MRI-based radiation treatment planning.« less
NASA Astrophysics Data System (ADS)
Ishisaka, K.; Okada, T.; Tsuruda, K.; Hayakawa, H.; Mukai, T.; Matsumoto, H.
2001-04-01
The spacecraft potential has been used to derive the electron number density surrounding the spacecraft in the magnetosphere and solar wind. We have investigated the correlation between the spacecraft potential of the Geotail spacecraft and the electron number density derived from the plasma waves in the solar wind and almost all the regions of the magnetosphere, except for the high-density plasmasphere, and obtained an empirical formula to show their relation. The new formula is effective in the range of spacecraft potential from a few volts up to 90 V, corresponding to the electron number density from 0.001 to 50 cm-3. We compared the electron number density obtained by the empirical formula with the density obtained by the plasma wave and plasma particle measurements. On occasions the density determined by plasma wave measurements in the lobe region is different from that calculated by the empirical formula. Using the difference in the densities measured by two methods, we discuss whether or not the lower cutoff frequency of the plasma waves, such as continuum radiation, indicates the local electron density near the spacecraft. Then we applied the new relation to the spacecraft potential measured by the Geotail spacecraft during the period from October 1993 to December 1995, and obtained the electron spatial distribution in the solar wind and magnetosphere, including the distant tail region. Higher electron number density is clearly observed on the dawnside than on the duskside of the magnetosphere in the distant tail beyond 100RE.
[Study on the distribution of plasma parameters in electrodeless lamp using emission spectrometry].
Wang, Chang-Quan; Zhang, Gui-Xin; Wang, Xin-Xin; Shao, Ming-Song; Dong, Jin-Yang; Wang, Zan-Ji
2011-09-01
Electrodeless lamp in pear shape was ignited using inductively coupled discharge setup and Ar-Hg mixtures as working gas. The changes in electronic temperature and density with axial and radial positions at 5 s of igniting were studied by means of emission spectrometry. The changes in electronic temperature were obtained according to the Ar line intensity ratio of 425.9 nm/ 750.4 nm. And the variations in electronic density were analyzed using 750.4 nm line intensity. It was found that plasma electronic temperature and density is various at different axial or radial positions. The electronic temperatures first increase, then decrease, and then increase quickly, and finally decline. While the electronic density firstly increase quickly, the decrease, and then rise slowly and finally decline again with axial distance increasing. With radial distance increasing, electronic temperature increases to a stable area, then continues to rise, while electronic density decreases.
NASA Astrophysics Data System (ADS)
Yasumoto, M.; Ohta, M.; Kawamura, Y.; Hatayama, A.
2014-02-01
Numerical simulations become useful for the developing RF-ICP (Radio Frequency Inductively Coupled Plasma) negative ion sources. We are developing and parallelizing a two-dimensional three velocity electromagnetic Particle-In-Cell code. The result shows rapid increase in the electron density during the density ramp-up phase. A radial electric field due to the space charge is produced with increase in the electron density and the electron transport in the radial direction is suppressed. As a result, electrons stay for a long period in the region where the inductive electric field is strong, and this leads efficient electron acceleration and a rapid increasing of the electron density.
Gedanken densities and exact constraints in density functional theory.
Perdew, John P; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron
2014-05-14
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA's. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarapata, A.; Chabior, M.; Zanette, I.
2014-10-15
Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between amore » monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.« less
Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization
NASA Astrophysics Data System (ADS)
Girazian, Z.; Mahaffy, P.; Lillis, R. J.; Benna, M.; Elrod, M.; Fowler, C. M.; Mitchell, D. L.
2017-11-01
We use observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission to show how superthermal electron fluxes and crustal magnetic fields affect ion densities in the nightside ionosphere of Mars. We find that due to electron impact ionization, high electron fluxes significantly increase the CO2+, O+, and O2+ densities below 200 km but only modestly increase the NO+ density. High electron fluxes also produce distinct peaks in the CO2+, O+, and O2+ altitude profiles. We also find that superthermal electron fluxes are smaller near strong crustal magnetic fields. Consequently, nightside ion densities are also smaller near strong crustal fields because they decay without being replenished by electron impact ionization. Furthermore, the NO+/O2+ ratio is enhanced near strong crustal fields because, in the absence of electron impact ionization, O2+ is converted into NO+ and not replenished. Our results show that electron impact ionization is a significant source of CO2+, O+, and O2+ in the nightside ionosphere of Mars.
NASA Technical Reports Server (NTRS)
Richards, Philip G.
2001-01-01
The purpose of this proposed research is to improve our basic understanding of the causes of ionospheric storm behavior in the midlatitude F region ionosphere. This objective will be achieved by detailed comparisons between ground based measurements of the peak electron density (N(sub m)F(sub 2)), Atmosphere Explorer satellite measurements of ion and neutral composition, and output from the Field Line Interhemispheric Plasma (FLIP) model. The primary result will be a better understanding of changes in the neutral densities and ion chemistry during magnetic storms that will improve our capability to model the weather of the ionosphere which will be needed as a basis for ionospheric prediction. Specifically, this study seeks to answer the following questions: (1) To what extent are negative ionospheric storm phases caused by changes in the atomic to molecular ratio? (2) Are the changes in neutral density ratio due to increased N2, or decreased O, or both? (3) Are there other chemical processes (e.g., excited N2) that increase O+ loss rates during negative storms? (4) Do neutral density altitude distributions differed from hydrostatic equilibrium? (5) Why do near normal nighttime densities often follow daytime depletions of electron density; and (6) Can changes in h(sub m)F2 fully account for positive storm phases? To answer these questions, we plan to combine ground-based and space-based measurements with the aid of our ionospheric model which is ideally suited to this purpose. These proposed studies will lead to a better capability to predict long term ionospheric variability, leading to better predictions of ionospheric weather.
NASA Astrophysics Data System (ADS)
Pan, Changji; Jiang, Lan; Wang, Qingsong; Sun, Jingya; Wang, Guoyan; Lu, Yongfeng
2018-05-01
The femtosecond (fs) laser is a powerful tool to study ultrafast plasma dynamics, especially electron relaxation in strong ionization of dielectrics. Herein, temporal-spatial evolution of femtosecond laser induced plasma in fused silica was investigated using a two-color pump-probe technique (i.e., 400 nm and 800 nm, respectively). We demonstrated that when ionized electron density is lower than the critical density, free electron relaxation time is inversely proportional to electron density, which can be explained by the electron-ion scattering regime. In addition, electron density evolution within plasma was analyzed in an early stage (first 800 fs) of the laser-material interaction.
Ionospheric E-region electron density and neutral atmosphere variations
NASA Technical Reports Server (NTRS)
Stick, T. L.
1976-01-01
Electron density deviations from a basic variation with the solar zenith angle were investigated. A model study was conducted in which the effects of changes in neutral and relative densities of atomic and molecular oxygen on calculated electron densities were compared with incoherent scatter measurements in the height range 100-117 km at Arecibo, Puerto Rico. The feasibility of determining tides in the neutral atmosphere from electron density profiles was studied. It was determined that variations in phase between the density and temperature variation and the comparable magnitudes of their components make it appear improbable that the useful information on tidal modes can be obtained in this way.
NASA Astrophysics Data System (ADS)
Hashemzadeh, M.
2018-01-01
Self-focusing and defocusing of Gaussian laser beams in collisional inhomogeneous plasmas are investigated in the presence of various laser intensities and linear density and temperature ramps. Considering the ponderomotive force and using the momentum transfer and energy equations, the nonlinear electron density is derived. Taking into account the paraxial approximation and nonlinear electron density, a nonlinear differential equation, governing the focusing and defocusing of the laser beam, is obtained. Results show that in the absence of ramps the laser beam is focused between a minimum and a maximum value of laser intensity. For a certain value of laser intensity and initial electron density, the self-focusing process occurs in a temperature range which reaches its maximum at turning point temperature. However, the laser beam is converged in a narrow range for various amounts of initial electron density. It is indicated that the σ2 parameter and its sign can affect the self-focusing process for different values of laser intensity, initial temperature, and initial density. Finally, it is found that although the electron density ramp-down diverges the laser beam, electron density ramp-up improves the self-focusing process.
NASA Astrophysics Data System (ADS)
Koroglu, Meltem; Arikan, Feza; Koroglu, Ozan
2015-04-01
Ionosphere is an ionized layer of earth's atmosphere which affect the propagation of radio signals due to highly varying electron density structure. Total Electron Content (TEC) and Slant Total Electron Content (STEC) are convenient measures of total electron density along a ray path. STEC model is given by the line integral of the electron density between the receiver and GPS satellite. TEC and STEC can be estimated by observing the difference between the two GPS signal time delays that have different frequencies L1 (1575 MHz) and L2 (1227 MHz). During extreme ionospheric storms ionospheric gradients becomes larger than those of quiet days since time delays of the radio signals becomes anomalous. Ionosphere gradients can be modeled as a linear semi-infinite wave front with constant propagation speed. One way of computing the ionospheric gradients is to compare the STEC values estimated between two neighbouring GPS stations. In this so-called station-pair method, ionospheric gradients are defined by dividing the difference of the time delays of two receivers, that see the same satellite at the same time period. In this study, ionospheric gradients over Turkey are computed using the Turkish National Permanent GPS Network (TNPGN-Active) between May 2009 and September 2012. The GPS receivers are paired in east-west and north-south directions with distances less than 150 km. GPS-STEC for each station are calculated using IONOLAB-TEC and IONOLAB-BIAS softwares (www.ionolab.org). Ionospheric delays are calculated for each paired station for both L1 and L2 frequencies and for each satellite in view with 30 s time resolution. During the investigation period, different types of geomagnetic storms, Travelling Ionospheric Disturbances (TID), Sudden Ionospheric Disturbances (SID) and various earthquakes with magnitudes between 3 to 7.4 have occured. Significant variations in the structure of station-pair gradients have been observed depending on location of station-pairs, the path of the satellites, strength of the geomagnetic storms and type, depth and magnitude of the earthquakes. For a typical geomagnetic storm the gradients can get as high as 30 mm/km. For the earthquakes, both the magnitude and the structure of the ionospheric delay gradients exhibit strong variability. This study forms a basis for a comprehensive understanding of ionospheric variability for midlatitude GBAS and SBAS systems. This study is supported by a joint grant of TUBITAK 112E568 and RFBR 13-02-91370-CT_a.
The influence of synaptic size on AMPA receptor activation: a Monte Carlo model.
Montes, Jesus; Peña, Jose M; DeFelipe, Javier; Herreras, Oscar; Merchan-Perez, Angel
2015-01-01
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors.
The Influence of Synaptic Size on AMPA Receptor Activation: A Monte Carlo Model
Montes, Jesus; Peña, Jose M.; DeFelipe, Javier; Herreras, Oscar; Merchan-Perez, Angel
2015-01-01
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors. PMID:26107874
Studies of the chemistry of the nightside ionosphere of Venus
NASA Technical Reports Server (NTRS)
Fox, J. L.
1991-01-01
A combination of numerical modeling and analysis of the Pioneer Venus UADS data base is studied, specifically data from the orbiter ion mass spectrometer (OIMS), orbiter neutral mass spectrometer (ONMS), and orbiter electron temperature probe (OETP). A one dimensional model of the Venus nightside ionosphere was set up in which downward fluxes of atomic ions are introduced at the upper boundary to simulate transport of ions from the dayside. The model shows that the densities of mass-28 ions, CO(+) + N(2+), resulting from an influx of atomic ions from the dayside are quite small, due to the high ionization potentials of CO and N2 that make chemical production difficult. A look at the data reveals that the actual densities of mass-28 ions are quite variable, from values near 10 to more than 10(exp 4) cm(exp -3). The excess mass-28 ions are assumed to be produced by electron precipitation and that the presence of high densities of mass-28 ions is a signature of auroral precipitation. A discussion of the atomic oxygen green line in the nightglow of Venus, which is produced mainly by dissociative recombination of O(2+), is presented. Original calculations of production rates of excited states for models based on Pioneer Venus data are also presented.
Three-dimensional imaging of the ultracold plasma formed in a supersonic molecular beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz-Weiling, Markus; Grant, Edward
Double-resonant excitation of nitric oxide in a seeded supersonic molecular beam forms a state-selected Rydberg gas that evolves to form an ultracold plasma. This plasma travels with the propagation of the molecular beam in z over a variable distance as great as 600 mm to strike an imaging detector, which records the charge distribution in the dimensions, x and y. The ω{sub 1} + ω{sub 2} laser crossed molecular beam excitation geometry convolutes the axial Gaussian distribution of NO in the molecular beam with the Gaussian intensity distribution of the perpendicularly aligned laser beam to create an ellipsoidal volume of Rydbergmore » gas. Detected images describe the evolution of this initial density as a function of selected Rydberg gas initial principal quantum number, n{sub 0}, ω{sub 1} laser pulse energy (linearly related to Rydberg gas density, ρ{sub 0}) and flight time. Low-density Rydberg gases of lower principal quantum number produce uniformly expanding, ellipsoidal charge-density distributions. Increase either of n{sub 0} or ρ{sub 0} breaks the ellipsoidal symmetry of plasma expansion. The volume bifurcates to form repelling plasma volumes. The velocity of separation depends on n{sub 0} and ρ{sub 0} in a way that scales uniformly with ρ{sub e}, the density of electrons formed in the core of the Rydberg gas by prompt Penning ionization. Conditions under which this electron gas drives expansion in the long axis dimension of the ellipsoid favours the formation of counter-propagating shock waves.« less
Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.
Domingo, Luis R
2016-09-30
A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.
Rueda-Ayala, Victor; Weis, Martin; Keller, Martina; Andújar, Dionisio; Gerhards, Roland
2013-01-01
Harrowing is often used to reduce weed competition, generally using a constant intensity across a whole field. The efficacy of weed harrowing in wheat and barley can be optimized, if site-specific conditions of soil, weed infestation and crop growth stage are taken into account. This study aimed to develop and test an algorithm to automatically adjust the harrowing intensity by varying the tine angle and number of passes. The field variability of crop leaf cover, weed density and soil density was acquired with geo-referenced sensors to investigate the harrowing selectivity and crop recovery. Crop leaf cover and weed density were assessed using bispectral cameras through differential images analysis. The draught force of the soil opposite to the direction of travel was measured with electronic load cell sensor connected to a rigid tine mounted in front of the harrow. Optimal harrowing intensity levels were derived in previously implemented experiments, based on the weed control efficacy and yield gain. The assessments of crop leaf cover, weed density and soil density were combined via rules with the aforementioned optimal intensities, in a linguistic fuzzy inference system (LFIS). The system was evaluated in two field experiments that compared constant intensities with variable intensities inferred by the system. A higher weed density reduction could be achieved when the harrowing intensity was not kept constant along the cultivated plot. Varying the intensity tended to reduce the crop leaf cover, though slightly improving crop yield. A real-time intensity adjustment with this system is achievable, if the cameras are attached in the front and at the rear or sides of the harrow. PMID:23669712
NASA Astrophysics Data System (ADS)
Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei
2016-05-01
The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.
NASA Astrophysics Data System (ADS)
Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko
2018-01-01
Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.
NASA Astrophysics Data System (ADS)
Chael, Andrew; Rowan, Michael; Narayan, Ramesh; Johnson, Michael; Sironi, Lorenzo
2018-05-01
The accretion flow around the Galactic Centre black hole Sagittarius A* (Sgr A*) is expected to have an electron temperature that is distinct from the ion temperature, due to weak Coulomb coupling in the low-density plasma. We present four two-temperature general relativistic radiative magnetohydrodynamic (GRRMHD) simulations of Sgr A* performed with the code KORAL. These simulations use different electron heating prescriptions, motivated by different models of the underlying plasma microphysics. We compare the Landau-damped turbulent cascade model used in previous work with a new prescription we introduce based on the results of particle-in-cell simulations of magnetic reconnection. With the turbulent heating model, electrons are preferentially heated in the polar outflow, whereas with the reconnection model electrons are heated by nearly the same fraction everywhere in the accretion flow. The spectra of the two models are similar around the submillimetre synchrotron peak, but the models heated by magnetic reconnection produce variability more consistent with the level observed from Sgr A*. All models produce 230 GHz images with distinct black hole shadows which are consistent with the image size measured by the Event Horizon Telescope, but only the turbulent heating produces an anisotropic `disc-jet' structure where the image is dominated by a polar outflow or jet at frequencies below the synchrotron peak. None of our models can reproduce the observed radio spectral slope, the large near-infrared and X-ray flares, or the near-infrared spectral index, all of which suggest non-thermal electrons are needed to fully explain the emission from Sgr A*.
NASA Astrophysics Data System (ADS)
Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-06-01
The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.
De Serres, Sacha A.; Safa, Kassem; Bijol, Vanesa; Ueno, Takuya; Onozato, Maristela L.; Iafrate, A. John; Herter, Jan M.; Lichtman, Andrew H.; Mayadas, Tanya N.; Guleria, Indira; Rennke, Helmut G.; Najafian, Nader; Chandraker, Anil
2015-01-01
Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival. PMID:25855773
2012-01-01
This article presents the fabrication of size-controllable and shape-flexible microcellular high-density polyethylene-stabilized palladium nanoparticles (Pd/m-HDPE) using supercritical foaming, followed by supercritical impregnation. These nanomaterials are investigated for use as heterogeneous hydrogenation catalysts of biphenyls in supercritical carbon dioxide with no significant surface and inner mass transfer resistance. The morphology of the Pd/m-HDPE is examined using scanning electron microscopy images of the pores inside Pd/m-HDPE catalysts and transmission electron microscopy images of the Pd particles confined in an HDPE structure. This nanocomposite simplifies industrial design and operation. These Pd/m-HDPE catalysts can be recycled easily and reused without complex recovery and cleaning procedures. PMID:22651135
NASA Astrophysics Data System (ADS)
Podzorov, Vitaly
2009-03-01
Certain types of self-assembled monolayers (SAM) grown directly at the surface of organic semiconductors can induce a high surface conductivity in these materials [1]. For example, the conductivity induced by perfluorinated alkyl silanes in organic molecular crystals approaches 10 to -5 Siemens per square. The observed large electronic effect opens new opportunities for nanoscale surface functionalization of organic semiconductors and provides experimental access to the regime of high carrier density. Here, we will discuss temperature variable measurements of SAM-induced conductivity in several types of organic semiconductors. [1]. M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson and V. Podzorov, ``Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers'', Nature Mat. 7, 84 (2008).
Use of Total Electron Content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coisson, P.
In presence of electron density gradients the thin shell approximation for the ionosphere used together with a simple mapping function to convert slant Total Electron Content TEC to vertical TEC could lead to TEC conversion errors Therefore these mapping function errors can be used to identify the effects of the electron density gradients in the ionosphere In the present work high precision GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions In particular the data corresponding to the geographic area of the American sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the coinciding pierce point technique The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere
FOURIER ANALYSIS OF BLAZAR VARIABILITY: KLEIN–NISHINA EFFECTS AND THE JET SCATTERING ENVIRONMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finke, Justin D.; Becker, Peter A., E-mail: justin.finke@nrl.navy.mil, E-mail: pbecker@gmu.edu
The strong variability of blazars can be characterized by power spectral densities (PSDs) and Fourier frequency-dependent time lags. In previous work, we created a new theoretical formalism for describing the PSDs and time lags produced via a combination of stochastic particle injection and emission via the synchrotron, synchrotron self-Compton, and external Compton (EC) processes. This formalism used the Thomson cross section and simple δ-function approximations to model the synchrotron and Compton emissivities. Here we expand upon this work, using the full Compton cross section and detailed and accurate emissivities. Our results indicate good agreement between the PSDs computed using themore » δ-function approximations and those computed using the accurate expressions, provided the observed photons are produced primarily by electrons with energies exceeding the lower limit of the injected particle population. Breaks are found in the PSDs at frequencies corresponding to the cooling timescales of the electrons primarily responsible for the observed emission, and the associated time lags are related to the difference in electron cooling timescales between the two energy channels, as expected. If the electron cooling timescales can be determined from the observed time lags and/or the observed EC PSDs, then one could in principle use the method developed here to determine the energy of the external seed photon source for EC, which is an important unsolved problem in blazar physics.« less
Hindered Csbnd N bond rotation in triazinyl dithiocarbamates
NASA Astrophysics Data System (ADS)
Jung, Taesub; Do, Hee-Jin; Son, Jongwoo; Song, Jae Hee; Cha, Wansik; Kim, Yeong-Joon; Lee, Kyung-Koo; Kwak, Kyungwon
2018-01-01
The substituent and solvent effects on the rotation around a Csbnd N amide bond were studied for a series of triazine dibenzylcarbamodithioates. The Gibbs free energies (ΔG‡) were measured to be 16-18 kcal/mol in DMSO-d6 and toluene-d8 using variable-temperature nuclear magnetic resonance (VT-1H NMR) spectroscopy. Density functional theory (DFT) calculations reproduced the experimental observations with various substituents, as well as solvents. From the detailed analysis of the DFT results, we found that the electron donating dibenzyl amine group increased the electron population on the triazinyl ring, which decreased the rotational barrier of the Csbnd N bond in the dithiocarbamate group attached to the triazinyl ring. The higher electron population on the triazine moiety stabilizes the partial double bond character of the Ssbnd C bond, which competitively excludes the double bond character of the Csbnd N bond. Therefore, the rotational dynamics of the Csbnd N bond in dithiocarbamates can be a sensitive probe to small differences in the electron population of substituents on sulfur.
Online, automatic, ionospheric maps: IRI-PLAS-MAP
NASA Astrophysics Data System (ADS)
Arikan, F.; Sezen, U.; Gulyaeva, T. L.; Cilibas, O.
2015-04-01
Global and regional behavior of the ionosphere is an important component of space weather. The peak height and critical frequency of ionospheric layer for the maximum ionization, namely, hmF2 and foF2, and the total number of electrons on a ray path, Total Electron Content (TEC), are the most investigated and monitored values of ionosphere in capturing and observing ionospheric variability. Typically ionospheric models such as International Reference Ionosphere (IRI) can provide electron density profile, critical parameters of ionospheric layers and Ionospheric electron content for a given location, date and time. Yet, IRI model is limited by only foF2 STORM option in reflecting the dynamics of ionospheric/plasmaspheric/geomagnetic storms. Global Ionospheric Maps (GIM) are provided by IGS analysis centers for global TEC distribution estimated from ground-based GPS stations that can capture the actual dynamics of ionosphere and plasmasphere, but this service is not available for other ionospheric observables. In this study, a unique and original space weather service is introduced as IRI-PLAS-MAP from http://www.ionolab.org
Radio emission from AM Herculis - The quiescent component and an outburst
NASA Technical Reports Server (NTRS)
Dulk, G. A.; Bastian, T. S.; Chanmugam, G.
1983-01-01
The VLA has been used to search for radio emission from the AM Her-type binaries VV Pup, EF Eri, PG 1550 + 191, CW 1103 + 354, and AN UMa, at 4.9 GHz. A remarkable 10-min outburst was detected from AM Her at 4.9 GHz, which was about 20 times more intense than the quiescent emission and was essentially 100 percent circularly polarized. It is suggested that the quiescent emission of AM Her can be accounted for by 500-keV electrons trapped in the magnetosphere of the white dwarf, provided that the electron energy spectrum is quite hard and that the spectral hardness or number density of energetic electrons increases with radius, while the outburst is probably due to an electron-cyclotron maser operating near the surface of the red dwarf companion. The implied existence of a 1000-gauss localized magnetic field and a corona on the red dwarf has consequences for mass transfer, field line interactions, and variable activity.
Evolution of ionosphere-thermosphere (IT) parameters in the cusp region related to ion upflow events
NASA Astrophysics Data System (ADS)
Kervalishvili, Guram; Lühr, Hermann
2017-04-01
In this study we investigate the relationships of various IT parameters with the intensity of vertical ion flow. Our study area is the ionospheric cusp region in the northern hemisphere. The approach uses superposed epoch analysis (SEA) method, centered alternately on peaks of the three different variables: neutral density enhancement, vertical plasma flow, and electron temperature. Further parameters included are large-scale field-aligned currents (LSFACs) and thermospheric zonal wind velocity profiles over magnetic latitude (MLat), which are centered at the event time and location. The dependence on the interplanetary magnetic field (IMF) By component orientation and the local (Lloyd) season is of particular interest. Our investigations are based on CHAMP and DMSP (F13 and F15) satellite observations and the OMNI online database collected during the years 2002-2007. The three Lloyd seasons of 130 days each are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32 days), and local summer (1 July ± 65 days). A period of 130 days corresponds to the time needed by CHAMP to sample all local times. The SEA MLat profiles with respect to neutral density enhancement and vertical plasma flow peaks show no significant but only slight (decreasing towards local summer) seasonal variations for both IMF By orientations. The latitude profiles of median LSFACs show a clear dependence on the IMF By orientation. As expected, the maximum and minimum values of LSFAC amplitudes are increasing towards local summer for both IMF By signs. With respect to zero epoch latitude, FAC peaks appear equatorward (negative MLat) related to Region 1 (R1) and poleward (positive MLat) to Region 0 (R0) FACs. However, there is an imbalance between the amplitudes of LSFACs, depending on the current latitude. R1 currents are systematically stronger than R0 FACs. A somewhat different distribution of density enhancements and large-scale FACs emerges when the SEA is centered on electron temperature peaks. As expected, the background electron temperature increases towards summer and shows no dependence on the IMF By orientation. In contrast to the previous sorting the mass density enhancement shows a dependence on the IMF By sign and increases towards local summer in case of IMF By<0. As before LSFAC peak values are increasing towards local summer, but there is no clear latitudinal profile of upward and downward FACs. We think that intense precipitation of soft electrons (<100 eV) cause the electron temperature enhancement in the cusp region. But there is no direct dependence on the FAC intensity. But for neutral density enhancement and vertical plasma flow the combination of Joule heating and soft electron precipitation, causing electron temperature and conductivity enhancements, are required.
Dissociative recombination of HCl+, H2Cl+, DCl+, and D2Cl+ in a flowing afterglow
NASA Astrophysics Data System (ADS)
Wiens, Justin P.; Miller, Thomas M.; Shuman, Nicholas S.; Viggiano, Albert A.
2016-12-01
Dissociative recombination of electrons with HCl+, H2Cl+, DCl+, and D2Cl+ has been measured under thermal conditions at 300, 400, and 500 K using a flowing afterglow-Langmuir probe apparatus. Measurements for HCl+ and DCl+ employed the variable electron and neutral density attachment mass spectrometry (VENDAMS) method, while those for H2Cl+ and D2Cl+ employed both VENDAMS and the more traditional technique of monitoring electron density as a function of reaction time. At 300 K, HCl+ and H2Cl+ recombine with kDR = 7.7±2.14.5 × 10-8 cm3 s-1 and 2.6 ± 0.8 × 10-7 cm3 s-1, respectively, whereas D2Cl+ is roughly half as fast as H2Cl+ with kDR = 1.1 ± 0.3 × 10-7 cm3 s-1 (2 σ confidence intervals). DCl+ recombines with a rate coefficient below the approximate detection limit of the method (≲5 × 10-8 cm3 s-1) at all temperatures. Relatively slow dissociative recombination rates have been speculated to be responsible for the large HCl+ and H2Cl+ abundances in interstellar clouds compared to current astrochemical models, but our results imply that the discrepancy must originate elsewhere.
Liao, Wei; Hua, Xue-Ming; Zhang, Wang; Li, Fang
2014-05-01
In the present paper, the authors calculated the plasma's peak electron temperatures under different heat source separation distance in laser- pulse GMAW hybrid welding based on Boltzmann spectrometry. Plasma's peak electron densities under the corresponding conditions were also calculated by using the Stark width of the plasma spectrum. Combined with high-speed photography, the effect of heat source separation distance on electron temperature and electron density was studied. The results show that with the increase in heat source separation distance, the electron temperatures and electron densities of laser plasma did not changed significantly. However, the electron temperatures of are plasma decreased, and the electron densities of are plasma first increased and then decreased.
NASA Astrophysics Data System (ADS)
Kirneva, N. A.; Razumova, K. A.; Pochelon, A.; Behn, R.; Coda, S.; Curchod, L.; Duval, B. P.; Goodman, T. P.; Labit, B.; Karpushov, A. N.; Rancic, M.; Sauter, O.; Silva, M.; TCV Team
2012-01-01
Scenarios with different electron cyclotron heating power profile distributions and widths were compared for the first time in experiments on the Tokamak à Configuration Variable (TCV). The heating profile was changed from shot to shot over a wide range from localized on-axis, with normalized minor radius half-width at half maximum σ1/2 ~ 0.1, up to a widely distributed heating power profile with σ1/2 ~ 0.4 and finally to a profile peaked far off-axis. The global confinement, MHD activity, density, temperature and electron pressure profile evolution were compared. In particular, the energy confinement properties of discharges with localized on-axis heating and distributed on-axis heating were very similar, with degradation close to that predicted by the ITER L-mode scaling; in the case of off-axis heating, on the other hand, the confinement degradation was even stronger.
Atropisomerization of di-para-substituted propyl-bridged biphenyl cyclophanes.
Rotzler, Jürgen; Gsellinger, Heiko; Bihlmeier, Angela; Gantenbein, Markus; Vonlanthen, David; Häussinger, Daniel; Klopper, Wim; Mayor, Marcel
2013-01-07
The influence of electron donors and electron acceptors of variable strength in the 4 and 4' position of 2 and 2' propyl-bridged axial chiral biphenyl cyclophanes on their atropisomerization process was studied. Estimated free energies ΔG(‡)(T) of the rotation around the central biphenyl bond which were obtained from (1)H-NMR coalescence measurements were correlated to the Hammett parameters σ(p) as a measure for electron donor and acceptor strength. It is demonstrated that the resulting nice linear correlation is mainly based on the influence of the different substituents on the π-system of the biphenyl cyclophanes. By lineshape analysis the rate constants were calculated and by the use of the Eyring equation the enthalpic and entropic contributions were evaluated. Density functional theory calculations show a planar transition state of the isomerization process and the calculated energy barriers based on this reaction mechanism are in good agreement with the experimentally obtained free energies.
Enemark, John H
2017-10-10
Sulfite-oxidizing enzymes from eukaryotes and prokaryotes have five-coordinate distorted square-pyramidal coordination about the molybdenum atom. The paramagnetic Mo(v) state is easily generated, and over the years four distinct CW EPR spectra have been identified, depending upon enzyme source and the reaction conditions, namely high and low pH (hpH and lpH), phosphate inhibited (P i ) and sulfite (or blocked). Extensive studies of these paramagnetic forms of sulfite-oxidizing enzymes using variable frequency pulsed electron spin echo (ESE) spectroscopy, isotopic labeling and density functional theory (DFT) calculations have led to the consensus structures that are described here. Errors in some of the previously proposed structures are corrected.
Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts
NASA Astrophysics Data System (ADS)
Hanson, Cynthia; Phongikaroon, Supathorn; Scott, Jill R.
2014-07-01
Laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential analytical tool to improve operations and safeguards for electrorefiners, such as those used in processing spent nuclear fuel. This study set out to better understand the effect of sample temperature and physical state on LIBS spectra of molten and solid salts by building calibration curves of cerium and assessing self-absorption, plasma temperature, electron density, and local thermal equilibrium (LTE). Samples were composed of a LiCl-KCl eutectic salt, an internal standard of MnCl2, and varying concentrations of CeCl3 (0.1, 0.3, 0.5, 0.8, and 1.0 wt.% Ce) under different temperatures (773, 723, 673, 623, and 573 K). Analysis of salts in their molten form is preferred as plasma plumes from molten samples experienced less self-absorption, less variability in plasma temperature, and higher clearance of the minimum electron density required for local thermal equilibrium. These differences are attributed to plasma dynamics as a result of phase changes. Spectral reproducibility was also better in the molten state due to sample homogeneity.
Effects of magnetic field on the interaction between terahertz wave and non-uniform plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yuan; Han, YiPing; Guo, LiXin
2015-10-15
In this paper, the interaction between terahertz electromagnetic wave and a non-uniform magnetized plasma slab is investigated. Different from most of the published literatures, the plasma employed in this work is inhomogeneous in both collision frequency and electron density. Profiles are introduced to describe the non-uniformity of the plasma slab. At the same time, magnetic field is applied to the background of the plasma slab. It came out with an interesting phenomenon that there would be a valley in the absorption band as the plasma's electromagnetic characteristic is affected by the magnetic field. In addition, the valley located just nearmore » the middle of the absorption peak. The cause of the valley's appearance is inferred in this paper. And the influences of the variables, such as magnetic field strength, electron density, and collision frequency, are discussed in detail. The objective of this work is also pointed out, such as the applications in flight communication, stealth, emissivity, plasma diagnose, and other areas of plasma.« less
NASA Technical Reports Server (NTRS)
Taylor, H. A., Jr.; Grebowsky, J. M.; Mayr, H. G.; Niemann, H. B.; Brace, L. H.; Cloutier, P. A.; Daniell, R. E., Jr.; Coulson, J. T.
1982-01-01
The Bennett rf ion mass spectrometer of the Pioneer Venus Orbiter was expressly designed to provide variable temporal resolution for measurements of thermal ion composition and density. The Explore-Adapt mode is used to obtain priority for measuring the most prominent ion species; in the 2/16 configuration, the two dominant ions within the available range of 16 species are selectively sampled at the highest rate of 0.2 sec/sample. The high-resolution measurements are combined with independent observations from the magnetic field, neutral mass spectrometer, and electron temperature experiments in investigating sharply structured troughs in the low-altitude nightside ion concentrations. The results suggest a close correlation between the structure in the ion distributions and the structured configuration of the magnetic field that is draped about the planet. In the regions of the ion depletions, sharp fluctuations in electron temperature and anomalous increases in the density of neutral gases suggest that the ion depletion may be associated with dynamic perturbation in the ion and neutral flows and/or local joule heating.
A semi-analytical study of positive corona discharge in wire-plane electrode configuration
NASA Astrophysics Data System (ADS)
Yanallah, K.; Pontiga, F.; Chen, J. H.
2013-08-01
Wire-to-plane positive corona discharge in air has been studied using an analytical model of two species (electrons and positive ions). The spatial distributions of electric field and charged species are obtained by integrating Gauss's law and the continuity equations of species along the Laplacian field lines. The experimental values of corona current intensity and applied voltage, together with Warburg's law, have been used to formulate the boundary condition for the electron density on the corona wire. To test the accuracy of the model, the approximate electric field distribution has been compared with the exact numerical solution obtained from a finite element analysis. A parametrical study of wire-to-plane corona discharge has then been undertaken using the approximate semi-analytical solutions. Thus, the spatial distributions of electric field and charged particles have been computed for different values of the gas pressure, wire radius and electrode separation. Also, the two dimensional distribution of ozone density has been obtained using a simplified plasma chemistry model. The approximate semi-analytical solutions can be evaluated in a negligible computational time, yet provide precise estimates of corona discharge variables.
NASA Astrophysics Data System (ADS)
Abe, Takumi; Moen, J. I.
The ICI-2 (Investigation of Cusp Irregularities-2) sounding rocket campaign was conducted in Svalbard, Norway on December 2008. The scientific objective of ICI-2 is to investigate genera-tion mechanism(s) of coherent HF radar backscatter targets. Strong coherent HF backscatter echoes are well-known phenomena in the polar ionospheric cusp, and are thought to result from field-aligned plasma irregularities with decameter scale length. However, the generation mech-anism of backscatter targets has not yet been understood, and even the altitude profile of HF cusp backscatter is unknown. The ICI-2 rocket was launched at 10:35:10 UT at Ny-˚lesund, A and reached an apogee of 330 km at about 5 minutes after the launch. All onboard systems functioned flawlessly. A comprehensive measurement of the electron density, low energy elec-tron flux, medium energy particle flux, AC and DC electric fields was conducted to exploit the potential role of the gradient drift instability versus the other suggested mechanisms. We present a result obtained from a Fixed-Biased Probe (FBP) which was aimed at measuring fine-scale (< 1 m) electron density perturbation. Our analysis of the FBP data during the rocket's flight indicates that the rocket traversed HF backscatter regions where the electron density perturbation is relatively large. The power spectrum analysis of the electron density shows that the amplitude increases not only in the decameter wavelength but also in the broad range of frequency. Characteristic features of the electron density perturbation are summarized as follows: 1) A strong perturbation of the electron density was observed by the FBP when the ICI-2 rocket passed through a front side of the poleward moving 630 nm emission region which was identified by the all-sky imager. This means that the electron density perturbation and the 630 nm emission are observed to coexist in the same region. 2) The absolute value of the electron density becomes larger in the disturbed region than in the surrounding region. The electron density gradient in the boundary with the outer region is larger in the equatorward side than in the poleward side. 3) The amplitude of the electron density perturbation is remarkably large in the equatorward edge rather than the poleward boundaries. 4) The FBP identified the electron density perturbation at three different altitudes during the rocket flight. This indicates that the perturbation likely exists not only within the narrow limits but in a larger extent in the vertical direction.
NASA Astrophysics Data System (ADS)
KIM, Y.; Lim, Y. J.; Kim, Y. H.; Kim, B. J.
2015-12-01
The impacts of climate change on wind speed, wind energy density (WED), and potential electronic production (PEP) over the Korean peninsula have been investigated by using five regional climate models (HadGEM3-RA, RegCM, WRF, GRIMs and MM5) ensemble projection data. HadGEM2-AO based two RCP scenarios (RCP4.5/8.5) data have been used for initial and boundary condition to all RCMs. Wind energy density and its annual and seasonal variability have been estimated based on monthly near-surface wind speeds, and the potential electronic production and its change have been also analyzed. As a result of comparison ensemble models based annual mean wind speed for 25-yr historical period (1981-2005) to the ERA-interim, it is shown that all RCMs overestimate near-surface wind speed compared to the reanalysis data but the results of HadGEM3-RA are most comparable. The changes annual and seasonal mean of WED and PEP for the historical period and comparison results to future projection (2021-2050) will be presented in this poster session. We also scrutinize the changes in mean sea level pressure and mean sea level pressure gradient in driving GCM/RCM as a factor inducing the variations. Our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
2017-11-20
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua
2017-12-01
The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
NASA Astrophysics Data System (ADS)
Edberg, N. J. T.; Kurth, W. S.; Gurnett, D. A.; Andrews, D. J.; Vigren, E.; Shebanits, O.; Agren, K.; Wahlund, J. E.; Opgenoorth, H. J.; Holmberg, M.; Jackman, C. M.; Cravens, T.; Bertucci, C.; Dougherty, M. K.
2014-12-01
We present measurements from the Cassini Radio and Plasma Wave Science/Langmuir probe (RPWS/LP) instrument of the electron density in the ionosphere of Titan from the first ~100 flybys (2004-2014). After more than 10 years of measurements a good number of measurements exists from Titan's ionosphere. This allows for statistical studies of the structure of Titan's ionosphere. The electron density has been shown to vary significantly from one flyby to the next, as well as on longer time scales and here we discern some of the reasons for the observed ionospheric variability. Firstly, following the rise to the recent solar maximum we show how the ionospheric peak density, normalized to a common solar zenith angle, Nnorm clearly varies with the ~11-year solar cycle. Nnorm correlates well with the solar energy flux Fe and we find that Nnorm ∝ Fek, with k = 0.54 ± 0.18, which is close to the theoretical value of 0.5. Secondly, we present results that indicate that the ionospheric density in the topside ionosphere (altitude range 1200-2400 km) are generally significantly increased, roughly by a factor of 2, when Titan is located in the post-midnight sector of Saturn, i.e. at Saturn local times 00 - 03 h, compared to other local time sectors. We suggest that this increase could be caused by additional particle impact ionization from reconnection events in the Saturn tail.
A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts.
Franco, B E; Ma, J; Loveall, B; Tapia, G A; Karayagiz, K; Liu, J; Elwany, A; Arroyave, R; Karaman, I
2017-06-15
Despite the recent growth in interest for metal additive manufacturing (AM) in the biomedical and aerospace industries, variability in the performance, composition, and microstructure of AM parts remains a major impediment to its widespread adoption. The underlying physical mechanisms, which cause variability, as well as the scale and nature of variability are not well understood, and current methods are ineffective at capturing these details. Here, a Nickel-Titanium alloy is used as a sensory material in order to quantitatively, and rather rapidly, observe compositional and/or microstructural variability in selective laser melting manufactured parts; thereby providing a means to evaluate the role of process parameters on the variability. We perform detailed microstructural investigations using transmission electron microscopy at various locations to reveal the origins of microstructural variability in this sensory material. This approach helped reveal how reducing the distance between adjacent laser scans below a critical value greatly reduces both the in-sample and sample-to-sample variability. Microstructural investigations revealed that when the laser scan distance is wide, there is an inhomogeneity in subgrain size, precipitate distribution, and dislocation density in the microstructure, responsible for the observed variability. These results provide an important first step towards understanding the nature of variability in additively manufactured parts.
NASA Astrophysics Data System (ADS)
Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team
2018-02-01
This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.
Device and method for imploding a microsphere with a fast liner
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner to drive the fast liner to implode a microsphere.
NASA Astrophysics Data System (ADS)
Zhang, Zhiyuan; Jiang, Wanrun; Wang, Bo; Wang, Zhigang
2017-06-01
We introduce the orbital-resolved electron density projected integral (EDPI) along the H-bond in the real space to quantitatively investigate the specific contribution from the molecular orbitals (MOs) aspect in (H2O)2. Calculation results show that, the electronic occupied orbital (HOMO-4) of (H2O)2 accounts for about surprisingly 40% of the electron density at the bond critical point. Moreover, the electronic density difference analysis visualizes the electron accumulating effect of the orbital interaction within the H-bond between water molecules, supporting its covalent-like character. Our work expands the understanding of H-bond with specific contributions from certain MOs.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle
2017-09-25
One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.
Electron density studies of methyl cellobioside
USDA-ARS?s Scientific Manuscript database
Experimental X-ray diffraction crystallography determines the variations in electron density that result from the periodic array of atoms in a crystal. Normally, the positions and type of atom are determined from the electron density based on an approximation that the atoms are spherical. However, t...
Thermal imaging diagnostics of high-current electron beams.
Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D
2012-10-01
The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymund, T.D.
Recently, several tomographic techniques for ionospheric electron density imaging have been proposed. These techniques reconstruct a vertical slice image of electron density using total electron content data. The data are measured between a low orbit beacon satellite and fixed receivers located along the projected orbital path of the satellite. By using such tomographic techniques, it may be possible to inexpensively (relative to incoherent scatter techniques) image the ionospheric electron density in a vertical plane several times per day. The satellite and receiver geometry used to measure the total electron content data causes the data to be incomplete; that is, themore » measured data do not contain enough information to completely specify the ionospheric electron density distribution in the region between the satellite and the receivers. A new algorithm is proposed which allows the incorporation of other complementary measurements, such as those from ionosondes, and also includes ways to include a priori information about the unknown electron density distribution in the reconstruction process. The algorithm makes use of two-dimensional basis functions. Illustrative application of this algorithm is made to simulated cases with good results. The technique is also applied to real total electron content (TEC) records collected in Scandinavia in conjunction with the EISCAT incoherent scatter radar. The tomographic reconstructions are compared with the incoherent scatter electron density images of the same region of the ionosphere.« less
Variable Density Effects in Stochastic Lagrangian Models for Turbulent Combustion
2016-07-20
PDF methods in dealing with chemical reaction and convection are preserved irrespective of density variation. Since the density variation in a typical...combustion process may be as large as factor of seven, including variable- density effects in PDF methods is of significance. Conventionally, the...strategy of modelling variable density flows in PDF methods is similar to that used for second-moment closure models (SMCM): models are developed based on
Homogenization limit for a multiband effective mass model in heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morandi, O., E-mail: morandi@ipcms.unistra.fr
We study the homogenization limit of a multiband model that describes the quantum mechanical motion of an electron in a quasi-periodic crystal. In this approach, the distance among the atoms that constitute the material (lattice parameter) is considered a small quantity. Our model include the description of materials with variable chemical composition, intergrowth compounds, and heterostructures. We derive the effective multiband evolution system in the framework of the kp approach. We study the well posedness of the mathematical problem. We compare the effective mass model with the standard kp models for uniform and non-uniforms crystals. We show that in themore » limit of vanishing lattice parameter, the particle density obtained by the effective mass model, converges to the exact probability density of the particle.« less
Magnetoreresistance of carbon nanotube-polypyrrole composite yarns
NASA Astrophysics Data System (ADS)
Ghanbari, R.; Ghorbani, S. R.; Arabi, H.; Foroughi, J.
2018-05-01
Three types of samples, carbon nanotube yarn and carbon nanotube-polypyrrole composite yarns had been investigated by measurement of the electrical conductivity as a function of temperature and magnetic field. The conductivity was well explained by 3D Mott variable range hopping (VRH) law at T < 100 K. Both positive and negative magnetoresistance (MR) were observed by increasing magnetic field. The MR data were analyzed based a theoretical model. A quadratic positive and negative MR was observed for three samples. It was found that the localization length decreases with applied magnetic field while the density of states increases. The increasing of the density of states induces increasing the number of available energy states for hopping. Thus the electron hopping probability increases in between sites with the shorter distance that results to small the average hopping length.
Plasma dynamics on current-carrying magnetic flux tubes
NASA Technical Reports Server (NTRS)
Swift, Daniel W.
1992-01-01
A 1D numerical simulation is used to investigate the evolution of a plasma in a current-carrying magnetic flux tube of variable cross section. A large potential difference, parallel to the magnetic field, is applied across the domain. The result is that density minimum tends to deepen, primarily in the cathode end, and the entire potential drop becomes concentrated across the region of density minimum. The evolution of the simulation shows some sensitivity to particle boundary conditions, but the simulations inevitably evolve into a final state with a nearly stationary double layer near the cathode end. The simulation results are at sufficient variance with observations that it appears unlikely that auroral electrons can be explained by a simple process of acceleration through a field-aligned potential drop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verheest, Frank, E-mail: frank.verheest@ugent.be; School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000; Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za
The propagation of arbitrary amplitude electron-acoustic solitons and double layers is investigated in a plasma containing cold positive ions, cool adiabatic and hot isothermal electrons, with the retention of full inertial effects for all species. For analytical tractability, the resulting Sagdeev pseudopotential is expressed in terms of the hot electron density, rather than the electrostatic potential. The existence domains for Mach numbers and hot electron densities clearly show that both rarefactive and compressive solitons can exist. Soliton limitations come from the cool electron sonic point, followed by the hot electron sonic point, until a range of rarefactive double layers occurs.more » Increasing the relative cool electron density further yields a switch to compressive double layers, which ends when the model assumptions break down. These qualitative results are but little influenced by variations in compositional parameters. A comparison with a Boltzmann distribution for the hot electrons shows that only the cool electron sonic point limit remains, giving higher maximum Mach numbers but similar densities, and a restricted range in relative hot electron density before the model assumptions are exceeded. The Boltzmann distribution can reproduce neither the double layer solutions nor the switch in rarefactive/compressive character or negative/positive polarity.« less
Valdivia, M P; Stutman, D; Stoeckl, C; Mileham, C; Begishev, I A; Theobald, W; Bromage, J; Regan, S P; Klein, S R; Muñoz-Cordovez, G; Vescovi, M; Valenzuela-Villaseca, V; Veloso, F
2016-11-01
Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.
Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...
2016-04-21
Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.
Keyvani, Zahra Alimohammadi; Shahbazian, Shant; Zahedi, Mansour
2016-10-18
The equivalence of the molecular graphs emerging from the comparative analysis of the optimized and the promolecule electron densities in two hundred and twenty five unsubstituted hydrocarbons was recently demonstrated [Keyvani et al. Chem. Eur. J. 2016, 22, 5003]. Thus, the molecular graph of an optimized molecular electron density is not shaped by the formation of the C-H and C-C bonds. In the present study, to trace the fingerprint of the C-H and C-C bonds in the electron densities of the same set of hydrocarbons, the amount of electron density and its Laplacian at the (3, -1) critical points associated with these bonds are derived from both optimized and promolecule densities, and compared in a newly proposed comparative analysis. The analysis not only conforms to the qualitative picture of the electron density build up between two atoms upon formation of a bond in between, but also quantifies the resulting accumulation of the electron density at the (3, -1) critical points. The comparative analysis also reveals a unified mode of density accumulation in the case of 2318 studied C-H bonds, but various modes of density accumulation are observed in the case of 1509 studied C-C bonds and they are classified into four groups. The four emerging groups do not always conform to the traditional classification based on the bond orders. Furthermore, four C-C bonds described as exotic bonds in previous studies, for example the inverted C-C bond in 1,1,1-propellane, are naturally distinguished from the analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stash, A.I.; Tsirelson, V.G.
2005-03-01
Methods for calculating some properties of molecules and crystals from the electron density reconstructed from a precise X-ray diffraction experiment using the multipole model are considered. These properties include, on the one hand, the characteristics of the electron density and the inner-crystal electrostatic field and, on the other hand, the local electronic energies (kinetic, potential, total), the exchange energy density, the electron-pair localization function, the localized-orbital locator, the effective crystal potential, and others. It is shown that the integration of these characteristics over pseudoatomic volumes bounded by the surfaces of the zero flux of the electron density gradient makes itmore » possible to characterize directly from an experiment the properties of molecules and crystals in terms of the atomic contributions. The computer program WinXPRO2004, realizing these possibilities, is briefly described.« less
Topology of the electron density of d0 transition metal compounds at subatomic resolution.
Batke, Kilian; Eickerling, Georg
2013-11-14
Accurate X-ray diffraction experiments allow for a reconstruction of the electron density distribution of solids and molecules in a crystal. The basis for the reconstruction of the electron density is in many cases a multipolar expansion of the X-ray scattering factors in terms of spherical harmonics, a so-called multipolar model. This commonly used ansatz splits the total electron density of each pseudoatom in the crystal into (i) a spherical core, (ii) a spherical valence, and (iii) a nonspherical valence contribution. Previous studies, for example, on diamond and α-silicon have already shown that this approximation is no longer valid when ultrahigh-resolution diffraction data is taken into account. We report here the results of an analysis of the calculated electron density distribution in the d(0) transition metal compounds [TMCH3](2+) (TM = Sc, Y, and La) at subatomic resolution. By a detailed molecular orbital analysis, it is demonstrated that due to the radial nodal structure of the 3d, 4d, and 5d orbitals involved in the TM-C bond formation a significant polarization of the electron density in the inner electronic shells of the TM atoms is observed. We further show that these polarizations have to be taken into account by an extended multipolar model in order to recover accurate electron density distributions from high-resolution structure factors calculated for the title compounds.
Solar Wind Turbulence and the Role of Ion Instabilities
NASA Astrophysics Data System (ADS)
Alexandrova, O.; Chen, C. H. K.; Sorriso-Valvo, L.; Horbury, T. S.; Bale, S. D.
Solar wind is probably the best laboratory to study turbulence in astrophysical plasmas. In addition to the presence of magnetic field, the differences with neutral fluid isotropic turbulence are: (i) weakness of collisional dissipation and (ii) presence of several characteristic space and time scales. In this paper we discuss observational properties of solar wind turbulence in a large range from the MHD to the electron scales. At MHD scales, within the inertial range, turbulence cascade of magnetic fluctuations develops mostly in the plane perpendicular to the mean field, with the Kolmogorov scaling k_{perp}^{-5/3} for the perpendicular cascade and k_⊥^{-2} for the parallel one. Solar wind turbulence is compressible in nature: density fluctuations at MHD scales have the Kolmogorov spectrum. Velocity fluctuations do not follow magnetic field ones: their spectrum is a power-law with a -3/2 spectral index. Probability distribution functions of different plasma parameters are not Gaussian, indicating presence of intermittency. At the moment there is no global model taking into account all these observed properties of the inertial range. At ion scales, turbulent spectra have a break, compressibility increases and the density fluctuation spectrum has a local flattening. Around ion scales, magnetic spectra are variable and ion instabilities occur as a function of the local plasma parameters. Between ion and electron scales, a small scale turbulent cascade seems to be established. It is characterized by a well defined power-law spectrum in magnetic and density fluctuations with a spectral index close to -2.8. Approaching electron scales, the fluctuations are no more self-similar: an exponential cut-off is usually observed (for time intervals without quasi-parallel whistlers) indicating an onset of dissipation. The small scale inertial range between ion and electron scales and the electron dissipation range can be together described by ˜ k_{perp}^{-α}exp(-k_{perp}elld), with α≃8/3 and the dissipation scale ℓ d close to the electron Larmor radius ℓ d ≃ρ e . The nature of this small scale cascade and a possible dissipation mechanism are still under debate.
Use of total electron content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coïsson, P.
In the presence of electron density gradients the thin shell approximation for the ionosphere, used together with a simple mapping function to convert slant total electron content (TEC) to vertical TEC, could lead to TEC conversion errors. These "mapping function errors" can therefore be used to detect the electron density gradients in the ionosphere. In the present work GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions. In particular the data corresponding to the geographic area of the American Sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the "coinciding pierce point technique". The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere. In addition, the possibility to assess an ionospheric shell height able to minimize the mapping function errors has been verified.
NASA Astrophysics Data System (ADS)
Liu, Gang-Hu; Liu, Yong-Xin; Bai, Li-Shui; Zhao, Kai; Wang, You-Nian
2018-02-01
The dependence of the electron density and the emission intensity on external parameters during the transitions of the electron power absorption mode is experimentally studied in asymmetric electropositive (neon) and electronegative (CF4) capacitively coupled radio-frequency plasmas. The spatio-temporal distribution of the emission intensity is measured with phase resolved optical emission spectroscopy and the electron density at the discharge center is measured by utilizing a floating hairpin probe. In neon discharge, the emission intensity increases almost linearly with the rf voltage at all driving frequencies covered here, while the variation of the electron density with the rf voltage behaves differently at different driving frequencies. In particular, the electron density increases linearly with the rf voltage at high driving frequencies, while at low driving frequencies the electron density increases slowly at the low-voltage side and, however, grows rapidly, when the rf voltage is higher than a certain value, indicating a transition from α to γ mode. The rf voltage, at which the mode transition occurs, increases with the decrease of the driving frequency/the working pressure. By contrast, in CF4 discharge, three different electron power absorption modes can be observed and the electron density and emission intensity do not exhibit a simple dependence on the rf voltage. In particular, the electron density exhibits a minimum at a certain rf voltage when the electron power absorption mode is switching from drift-ambipolar to the α/γ mode. A minimum can also be found in the emission intensity at a higher rf voltage when a discharge is switching into the γ mode.
NASA Astrophysics Data System (ADS)
White, A. E.
2009-11-01
Multi-field fluctuation measurements provide opportunities for rigorous comparison between experiment and nonlinear gyrokinetic turbulence simulations. A unique set of diagnostics on DIII-D allows for simultaneous study of local, long-wavelength (0 < kθρs< 0.5) electron temperature and density fluctuations in the core plasma (0.4 < ρ< 0.8). Previous experiments in L-mode indicate that normalized electron temperature fluctuation levels (40 < f < 400,kHz) increase with radius from ˜0.4% at ρ= 0.5 to ˜2% at ρ=0.8, similar to simultaneously measured density fluctuations. Electron cyclotron heating (ECH) is used to increase Te, which increases electron temperature fluctuation levels and electron heat transport in the experiments. In contrast, long wavelength density fluctuation levels change very little. The different responses are consistent with increased TEM drive relative to ITG-mode drive. A new capability at DIII-D is the measurement of phase angle between electron temperature and density fluctuations using coupled correlation electron cyclotron emission radiometer and reflectometer diagnostics. Linear and nonlinear GYRO runs have been used to design validation experiments that focus on measurements of the phase angle. GYRO shows that if Te and ∇Te increase 50% in a beam-heated L-mode plasma (ρ=0.5), then the phase angle between electron temperature and density fluctuations decreases 30%-50% and electron temperature fluctuation levels increase a factor of two more than density fluctuations. Comparisons between these predictions and experimental results will be presented.
Phosphorus and carrier density of heavily n-type doped germanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takinai, K.; Wada, K.
2016-05-14
The threshold current density of n-type, tensile-strained Ge lasers strongly depends on the electron density. Although optical net gain analyses indicate that the optimum electron density should be on the order of 1 × 10{sup 20} cm{sup −3} to get the lowest threshold, it is not a simple task to increase the electron density beyond the mid range of 10{sup 19} cm{sup −3}. The present paper analyzes the phenomenon where electron density is not proportional to phosphorus donor density, i.e., “saturation” phenomenon, by applying the so-called amphoteric defect model. The analyses indicate that the saturation phenomenon can be well explained by the charge compensationmore » between the phosphorus donors (P{sup +}) and doubly negative charged Ge vacancies (V{sup 2−}).« less
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Rockwell, S. T.; Kwan, M.
1977-01-01
The common form for radial dependence of electron density in the extended corona is given. By assuming proportionality between Doppler noise and integrated signal path electron density, Viking Doppler noise can be used to solve for a numerical value of X.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch
2015-06-14
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
Self-injection of electrons in a laser-wakefield accelerator by using longitudinal density ripple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahiya, Deepak; Sharma, A. K.; Sajal, Vivek
By introducing a longitudinal density ripple (periodic modulation in background plasma density), we demonstrate self-injection of electrons in a laser-wakefield accelerator. The wakefield driven plasma wave, in presence of density ripple excites two side band waves of same frequency but different wave numbers. One of these side bands, having smaller phase velocity compared to wakefield driven plasma wave, preaccelerates the background plasma electrons. Significant number of these preaccelerated electrons get trapped in the laser-wakefield and further accelerated to higher energies.
Density functional theory and an experimentally-designed energy functional of electron density.
Miranda, David A; Bueno, Paulo R
2016-09-21
We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.
Spin-polarized density-matrix functional theory of the single-impurity Anderson model
NASA Astrophysics Data System (ADS)
Töws, W.; Pastor, G. M.
2012-12-01
Lattice density functional theory (LDFT) is used to investigate spin excitations in the single-impurity Anderson model. In this method, the single-particle density matrix γijσ with respect to the lattice sites replaces the wave function as the basic variable of the many-body problem. A recently developed two-level approximation (TLA) to the interaction-energy functional W[γ] is extended to systems having spin-polarized density distributions and bond orders. This allows us to investigate the effect of external magnetic fields and, in particular, the important singlet-triplet gap ΔE, which determines the Kondo temperature. Applications to finite Anderson rings and square lattices show that the gap ΔE as well as other ground-state and excited-state properties are very accurately reproduced. One concludes that the spin-polarized TLA is reliable in all interaction regimes, from weak to strong correlations, for different hybridization strengths and for all considered impurity valence states. In this way the efficiency of LDFT to account for challenging electron-correlation effects is demonstrated.
NASA Astrophysics Data System (ADS)
Reddy, A.; Sonwalkar, V. S.; Huba, J. D.
2018-02-01
Knowledge of field-aligned electron and ion distributions is necessary for understanding the physical processes causing variations in field-aligned electron and ion densities. Using whistler mode sounding by Radio Plasma Imager/Imager for Magnetopause-to-Aurora Global Exploration (RPI/IMAGE), we determined the evolution of dayside electron and ion densities along L ˜ 2 and L ˜ 3 (90-4,000 km) during a 7 day (21-27 November 2005) geomagnetically quiet to moderately active period. Over this period the O+/H+ transition height was ˜880 ± 60 km and ˜1000 ± 100 km, respectively, at L ˜ 2 and L ˜ 3. The electron density varied in a complex manner; it was different at L ˜ 2 and L ˜ 3 and below and above the O+/H+ transition height. The measured electron and ion densities are consistent with those from Challenging Minisatellite Payload (CHAMP) and Defense Meteorological Satellite Program (DMSP) and other past measurements, but they deviated from bottomside sounding and International Reference Ionosphere (IRI) 2012 empirical model results. Using SAMI2 (Naval Research Laboratory (NRL) ionosphere model) with reasonably adjusted values of inputs (neutral densities, winds, electric fields, and photoelectron heating), we simulated the evolution of O+/H+ transition height and field-aligned electron and ion densities so that a fair agreement was obtained between the simulation results and observations. Simulation studies indicated that reduced neutral densities (H and/or O) with time limited O+-H charge exchange process. This reduction in neutral densities combined with changes in neutral winds and plasma temperature led to the observed variations in the electron and ion densities. The observation/simulation method presented here can be extended to investigate the role of neutral densities and composition, disturbed winds, and prompt penetration electric fields in the storm time ionosphere/plasmasphere dynamics.
Measured acoustic properties of variable and low density bulk absorbers
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Rice, E. J.
1985-01-01
Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.
Characterization of an F-center in an alkali halide cluster
NASA Astrophysics Data System (ADS)
Bader, R. F. W.; Platts, J. A.
1997-11-01
The removal of a fluorine atom from its central position in a cubiclike Li14F13+ cluster creates an F-center vacancy that may or may not be occupied by the remaining odd electron. The topology exhibited by the electron density in Li14F12+, the F-center cluster, enables one to make a clear distinction between the two possible forms that the odd electron can assume. If it possesses a separate identity, then a local maximum in the electron density will be found within the vacancy and the F-center will behave quantum mechanically as an open system, bounded by a surface of local zero flux in the gradient vector field of the electron density. If, however, the density of the odd electron is primarily delocalized onto the neighboring ions, then a cage critical point, a local minimum in the density, will be found at the center of the vacancy. Without an associated local maximum, the vacancy has no boundary and is undefined. Self-consistent field (SCF) calculations with geometry optimization of the Li14F13+ cluster and of the doublet state of Li14F12+ show that the creation of the central vacancy has only a minor effect upon the geometry of the cluster, the result of a local maximum in the electron density being formed within the vacancy. Thus the F-center is the physical manifestation of a non-nuclear attractor in the electron density. It is consequently a proper open system with a definable set of properties, the most characteristic being its low kinetic energy per electron. In addition to determining the properties of the F-center, the effect of its formation on the energies, volumes, populations, both electron and spin, and electron localizations of the ions in the cluster are determined.
NASA Astrophysics Data System (ADS)
Abbod, M. F.; Sellars, C. M.; Cizek, P.; Linkens, D. A.; Mahfouf, M.
2007-10-01
The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s-1. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s-1, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garofano, V.; Stafford, L., E-mail: luc.stafford@umontreal.ca, E-mail: kremena.makasheva@laplace.univ-tlse.fr; Despax, B.
2015-11-02
Optical emission spectroscopy was used to analyze the very-low-frequency cyclic evolution of the electron energy and density caused by repetitive formation and loss of dust nanoparticles in argon plasmas with pulsed injection of hexamethyldisiloxane (HMDSO, [CH{sub 3}]{sub 6}Si{sub 2}O). After elaborating a Boltzmann diagram for Ar high-lying levels and a collisional-radiative model for Ar 2p (Paschen notation) states, temperatures characterizing the low- and high-energy parts of the electron population were calculated. Relative electron densities were also estimated from relative line emission intensities. Both temperatures increase when the dust occupation increases, and then decrease when dust is lost. The opposite trendmore » was observed for the electron density. Such cyclic behaviors of the electron energy and electron density in the HMDSO-containing plasmas are in good agreement with the evolution processes in dusty plasmas, in which the formation of negative ions followed by an electron attachment on the surfaces of the nanoparticles is a critical phenomenon driving dust growth.« less
NASA Astrophysics Data System (ADS)
Li, J.; Tan, L. Z.; Zou, K.; Stabile, A. A.; Seiwell, D. J.; Watanabe, K.; Taniguchi, T.; Louie, Steven G.; Zhu, J.
2016-10-01
In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me* and mh* in bilayer graphene in the low carrier density regime on the order of 1 ×1011c m-2 . Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me* follows a tight-binding description in the whole density range, mh* starts to drop rapidly below the tight-binding description at a carrier density of n =6 ×1011c m-2 and exhibits a strong suppression of 30% when n reaches 2 ×1011c m-2 . Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.
Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices
Hubertus J. J. van Dam
2016-04-27
Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmore » occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shangjie; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California; Hara, Wendy
Purpose: To develop a reliable method to estimate electron density based on anatomic magnetic resonance imaging (MRI) of the brain. Methods and Materials: We proposed a unifying multi-atlas approach for electron density estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted MR images; and (2) electron density given its spatial location in a referencemore » anatomy, obtained by deformable image registration. These were combined into a unifying posterior probability density function using the Bayesian formalism, which provided the optimal estimates for electron density. We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver operating characteristic analyses for detecting different tissue types were performed. Results: The proposed method significantly reduced the errors in electron density estimation, with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches (area under the curve: 79% and 80%, respectively). Conclusion: The proposed multi-atlas approach provides robust electron density estimation and bone detection based on anatomic MRI. If validated on a larger population, our work could enable the use of MRI as a primary modality for radiation treatment planning.« less
Experimental charge density analysis of a gallium(I) N-heterocyclic carbene analogue.
Overgaard, Jacob; Jones, Cameron; Dange, Deepak; Platts, James A
2011-09-05
The experimental electron density of the only known example of a four-membered Ga(I) N-heterocyclic carbene analogue has been determined by multipole modeling of 90 K X-ray diffraction data and compared to theoretical data. In order to obtain a satisfactory model, it is necessary to modify the radial dependency of the core electrons of Ga using two separate scaling parameters for s,p- and d-electrons. Evidence for significant lone-pair density on Ga is found in the electron density and derived properties despite the partial positive charge of this atom. Static deformation density and molecular electrostatic potential clearly show a directional lone pair on Ga, whereas the Laplacian of the total electron density does not; this feature is, however, present in the Laplacian of the valence-only density. The Ga center also acts as an acceptor in four intramolecular C-H···Ga contacts, whose nature is probed by density properties. Substantial covalent character is apparent in the Ga-N bonds, but no sign of donation from filled N p-orbitals to empty Ga p-orbitals is found, whereas π-delocalization over the organic ligand is evident. This study highlights the utility of experimental charge density analysis as a technique to investigate the unusual bonding and electronic characteristics of low oxidation state/low coordinate p-block complexes.
Zinc oxide nanowire networks for macroelectronic devices
NASA Astrophysics Data System (ADS)
Unalan, Husnu Emrah; Zhang, Yan; Hiralal, Pritesh; Dalal, Sharvari; Chu, Daping; Eda, Goki; Teo, K. B. K.; Chhowalla, Manish; Milne, William I.; Amaratunga, Gehan A. J.
2009-04-01
Highly transparent zinc oxide (ZnO) nanowire networks have been used as the active material in thin film transistors (TFTs) and complementary inverter devices. A systematic study on a range of networks of variable density and TFT channel length was performed. ZnO nanowire networks provide a less lithographically intense alternative to individual nanowire devices, are always semiconducting, and yield significantly higher mobilites than those achieved from currently used amorphous Si and organic TFTs. These results suggest that ZnO nanowire networks could be ideal for inexpensive large area electronics.
1981-03-01
gradient of iii/a ion. SniAtt polari/ji oil fields As mentioned earlier, our object is to use the same valuse if L"~ as (Es Bi, H2 termnal I ire sut...spectral cut- arranged in order of decreasing wet longitude of ionospheric inter- %ection points of the various ray path% as shown in Figure I. oil in the...1977). Review of equatorial have suggested that density enhancements may scintillation phenomena in the light of recent developments spread oil over a
Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Väänänen, Veli-Matti
2016-01-01
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.
Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D; Väänänen, Veli-Matti
2016-10-01
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively "fast species" and governed by environmental variability) and diving (relatively "slow species" and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.
Teaching Chemistry with Electron Density Models.
ERIC Educational Resources Information Center
Shusterman, Gwendolyn P.; Shusterman, Alan J.
1997-01-01
Describes a method for teaching electronic structure and its relevance to chemical phenomena that relies on computer-generated three-dimensional models of electron density distributions. Discusses the quantum mechanical background needed and presents ways of using models of electronic ground states to teach electronic structure, bonding concepts,…
NASA Astrophysics Data System (ADS)
Orlov, V. G.; Sergeev, G. S.
2018-05-01
With the aim to reveal the origin of instabilities in the electron subsystem of unconventional superconductors, such as stripes or nematic symmetry breaking, electron band structure calculations were performed for a number of bismuth chalcogenides, bismuth oxide, iron pnictides, as well as for Bi2Sr2CaCu2O8, YBa2Cu3O7 and La2CuO4. It was found that bond critical points in the electron density distribution ρ(r) of all the studied compounds were characterized by positive sign of electron density Laplacian evidencing on depletion of electron charge from the area of bond critical points. A correlation was found between the Tc and the value of electron density Laplacian in the strongest bond critical points of superconductors and related substances.
Exact statistical results for binary mixing and reaction in variable density turbulence
NASA Astrophysics Data System (ADS)
Ristorcelli, J. R.
2017-02-01
We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, ⟨ρ2⟩ . We show that the normalized density variance, ⟨ρ2⟩ , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance ⟨c2⟩ used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, c″ 2˜ , as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance ⟨ρ v ⟩ is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance ⟨c2⟩ its Favre analog c″ 2˜ , and various second moments including ⟨ρ v ⟩ . For moment closure models that evolve ⟨ρ v ⟩ and not ⟨ρ2⟩ , we provide a novel expression for ⟨ρ2⟩ in terms of a rational function of ⟨ρ v ⟩ that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived analytic results relating several other second and third order moments and see coupling between odd and even order moments demonstrating a natural and inherent skewness in the mixing in variable density turbulence. The analytic results have applications in the areas of isothermal material mixing, isobaric thermal mixing, and simple chemical reaction (in progress variable formulation).
NASA Astrophysics Data System (ADS)
Graves, Catherine E.; Dávila, Noraica; Merced-Grafals, Emmanuelle J.; Lam, Si-Ty; Strachan, John Paul; Williams, R. Stanley
2017-03-01
Applications of memristor devices are quickly moving beyond computer memory to areas of analog and neuromorphic computation. These applications require the design of devices with different characteristics from binary memory, such as a large tunable range of conductance. A complete understanding of the conduction mechanisms and their corresponding state variable(s) is crucial for optimizing performance and designs in these applications. Here we present measurements of low bias I-V characteristics of 6 states in a Ta/ tantalum-oxide (TaOx)/Pt memristor spanning over 2 orders of magnitude in conductance and temperatures from 100 K to 500 K. Our measurements show that the 300 K device conduction is dominated by a temperature-insensitive current that varies with non-volatile memristor state, with an additional leakage contribution from a thermally-activated current channel that is nearly independent of the memristor state. We interpret these results with a parallel conduction model of Mott hopping and Schottky emission channels, fitting the voltage and temperature dependent experimental data for all memristor states with only two free parameters. The memristor conductance is linearly correlated with N, the density of electrons near EF participating in the Mott hopping conduction, revealing N to be the dominant state variable for low bias conduction in this system. Finally, we show that the Mott hopping sites can be ascribed to oxygen vacancies, where the local oxygen vacancy density responsible for critical hopping pathways controls the memristor conductance.
Uncovering the nonadiabatic response of geosynchronous electrons to geomagnetic disturbance
Gannon, Jennifer; Elkington, Scot R.; Onsager, Terrance G.
2012-01-01
We describe an energy spectrum method for scaling electron integral flux, which is measured at a constant energy, to phase space density at a constant value of the first adiabatic invariant which removes much of the variation due to reversible adiabatic effects. Applying this method to nearly a solar cycle (1995 - 2006) of geosynchronous electron integral flux (E>2.0MeV) from the GOES satellites, we see that much of the diurnal variation in electron phase space density at constant energy can be removed by the transformation to phase space density at constant μ (4000 MeV/G). This allows us a clearer picture of underlying non-adiabatic electron population changes due to geomagnetic activity. Using scaled phase space density, we calculate the percentage of geomagnetic storms resulting in an increase, decrease or no change in geosynchronous electrons as 38%, 7%, and 55%, respectively. We also show examples of changes in the electron population that may be different than the unscaled fluxes alone suggest. These examples include sudden electron enhancements during storms which appear during the peak of negative Dst for μ-scaled phase space density, contrary to the slow increase seen during the recovery phase for unscaled phase space density for the same event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu
2015-04-14
The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequencymore » further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.« less
NASA Astrophysics Data System (ADS)
Shaikh, M. M.; Notarpietro, R.; Nava, B.
2014-02-01
'Onion-peeling' is a very common technique used to invert Radio Occultation (RO) data in the ionosphere. Because of the implicit assumption of spherical symmetry for the electron density (N(e)) distribution in the ionosphere, the standard Onion-peeling algorithm could give erroneous concentration values in the retrieved electron density profile. In particular, this happens when strong horizontal ionospheric electron density gradients are present, like for example in the Equatorial Ionization Anomaly (EIA) region during high solar activity periods. In this work, using simulated RO Total Electron Content (TEC) data computed by means of the NeQuick2 ionospheric electron density model and ideal RO geometries, we tried to formulate and evaluate an asymmetry level index for quasi-horizontal TEC observations. The asymmetry index is based on the electron density variation that a signal may experience along its path (satellite to satellite link) in a RO event and is strictly dependent on the occultation geometry (e.g. azimuth of the occultation plane). A very good correlation has been found between the asymmetry index and errors related to the inversion products, in particular those concerning the peak electron density NmF2 estimate and the Vertical TEC (VTEC) evaluation.
Orbital order and effective mass enhancement in t2 g two-dimensional electron gases
NASA Astrophysics Data System (ADS)
Tolsma, John; Principi, Alessandro; Polini, Marco; MacDonald, Allan
2015-03-01
It is now possible to prepare d-electron two-dimensional electron gas systems that are confined near oxide heterojunctions and contain t2 g electrons with a density much smaller than one electron per metal atom. I will discuss a generic model that captures all qualitative features of electron-electron interaction physics in t2 g two-dimensional electron gas systems, and the use of a GW approximation to explore t2 g quasiparticle properties in this new context. t2 g electron gases contain a high density isotropic light mass xy component and low-density xz and yz anisotropic components with light and heavy masses in orthogonal directions. The high density light mass band screens interactions within the heavy bands. As a result the wave vector dependence of the self-energy is reduced and the effective mass is increased. When the density in the heavy bands is low, the difference in anisotropy between the two heavy bands favors orbital order. When orbital order does not occur, interactions still reshape the heavy-band Fermi surfaces. I will discuss these results in the context of recently reported magnetotransport experiments.
Effects of meteoric smoke particles on the D region ion chemistry
NASA Astrophysics Data System (ADS)
Baumann, Carsten; Rapp, Markus; Anttila, Milla; Kero, Antti; Verronen, Pekka T.
2015-12-01
This study focuses on meteor smoke particle (MSP) induced effects on the D region ion chemistry. Hereby, MSPs, represented with an 11 bin size distribution, have been included as an active component into the Sodankyä Ion and Neutral Chemistry model. By doing that, we model the diurnal variation of the negatively and positively charged MSPs as well as ions and the electron density under quiet ionospheric conditions. Two distinct points in time are studied in more detail, i.e., one for sunlit conditions (Solar zenith angle is 72°) and one for dark conditions (Solar zenith angle is 103°). We find nightly decrease of free electrons and negative ions, the positive ion density is enhanced at altitudes above 80 km and reduced below. During sunlit conditions the electron density is enhanced between 60 and 70 km altitude, while there is a reduction in negative and positive ions densities. In general, the MSP influence on the ion chemistry is caused by changes in the electron density. On the one hand, these changes occur due to nightly electron scavenging by MSPs resulting in a reduced electron-ion recombination. As a consequence positive ion density increase, especially water cluster ions are highly affected. On the other hand, the electron density is slightly increased during daytime by a MSP-related production due to solar radiation. Thus, more electrons attach to neutrals and short-lived negative ions increase in number density. The direct attachment of ions to MSPs is a minor process, but important for long living ions.
NASA Astrophysics Data System (ADS)
Sonwalkar, V. S.; Reddy, A.
2017-12-01
Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 < Kpmax,24 <4). The measurements were obtained in the L=1.7 to 3.3 range (90- 4000 km, 13 or 15 MLT). Our results show that, under similar geomagnetic activity, at similar L-shells but with different geographic longitudes and MLTs, the O+/H+ transition height varied within ±12% of 1100 km at L 2 and within ±8% of 1350 km at L 3. The electron densities along flux tubes varied within 30% and 20%, respectively, below (including F2 peak) and above HT. With increasing L shell: (a) O+/H+ transition height increased; (b) electron density variations below HT including F2 peak showed no trend; (c) electron density above HT decreased. For flux tubes at similar longitudes, L-shells, and MLT's, relative to quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdivia, M. P., E-mail: mpvaldivia@pha.jhu.edu; Stutman, D.; Stoeckl, C.
2016-11-15
Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25–29 J, 8–30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.
Electron density measurements in STPX plasmas
NASA Astrophysics Data System (ADS)
Clark, Jerry; Williams, R.; Titus, J. B.; Mezonlin, E. D.; Akpovo, C.; Thomas, E.
2017-10-01
Diagnostics have been installed to measure the electron density of Spheromak Turbulent Physics Experiment (STPX) plasmas at Florida A. & M. University. An insertable probe, provided by Auburn University, consisting of a combination of a triple-tipped Langmuir probe and a radial array consisting of three ion saturation current / floating potential rings has been installed to measure instantaneous plasma density, temperature and plasma potential. As the ramp-up of the experimental program commences, initial electron density measurements from the triple-probe show that the electron density is on the order of 1019 particles/m3. For a passive measurement, a CO2 interferometer system has been designed and installed for measuring line-averaged densities and to corroborate the Langmuir measurements. We describe the design, calibration, and performance of these diagnostic systems on large volume STPX plasmas.
NASA Astrophysics Data System (ADS)
Daprà, M.; Henkel, C.; Levshakov, S. A.; Menten, K. M.; Muller, S.; Bethlem, H. L.; Leurini, S.; Lapinov, A. V.; Ubachs, W.
2017-12-01
The dependence of the proton-to-electron mass ratio, μ, on the local matter density was investigated using methanol emission in the dense dark cloud core L1498. Towards two different positions in L1498, five methanol transitions were detected and an extra line was tentatively detected at a lower confidence level in one of the positions. The observed centroid frequencies were then compared with their rest-frame frequencies derived from least-squares fitting to a large data set. Systematic effects, as the underlying methanol hyperfine structure and the Doppler tracking of the telescope, were investigated and their effects were included in the total error budget. The comparison between the observations and the rest-frame frequencies constrains potential μ variation at the level of Δμ/μ < 6 × 10-8, at a 3σ confidence level. For the dark cloud, we determine a total CH3OH (A+E) beam averaged column density of ∼3-4 × 1012 cm-2 (within roughly a factor of two), an E- to A-type methanol column density ratio of N(A-CH3OH)/N(E-CH3OH) ∼1.00 ± 0.15, a density of n(H2) = 3 × 105 cm-3 (again within a factor of two) and a kinetic temperature of Tkin = 6 ± 1 K. In a kinetic model including the line intensities observed for the methanol lines, the n(H2) density is higher and the temperature is lower than that derived in previous studies based on different molecular species; the intensity of the 10 → 1-1 E line strength is not well reproduced.
NASA Astrophysics Data System (ADS)
Detweiler, L. G.; Glocer, A.; Benson, R. F.; Fung, S. F.
2016-12-01
In order to investigate and understand the role that different drivers play on the electron density altitude profile in the topside ionosphere of the polar regions, we used satellite radio-sounding data collected during the 1960s, 1970s, and 1980s to construct a series of graphs of electron density as a function of altitude and solar zenith angle. These data were gathered by the swept-frequency topside sounders from four of the satellites from the International Satellites for Ionospheric Studies (ISIS) program: Alouette 1 and 2, and ISIS 1 and 2, and were obtained from the NASA Space Physics Data Facility. In order to control for phenomenon known to effect electron density, we restricted our data set to data collected during a specific DST range (between -10 and 40 nT), and roughly constant solar radio flux values (between 40 and 90 W*m-2*Hz-1). To look at the effect of electron precipitation, we examine two separate cases, one above an invariant latitude of 60°, which includes precipitation, and one above 75°, which excludes precipitation. Under these restrictions we gathered a total of 407,500 altitude, solar zenith angle, and electron density data pairs. We then sorted these data pairs into bins of altitude and solar zenith angle, and present graphs of the medians of these binned data. We then fit our binned data to an exponential function representing hydrostatic equilibrium in the ionosphere presented in Kitamura et. al [2011]. We present graphs which show how well this best fit equation fits our data. Our results clearly show the strong dependence of electron density with respect to solar zenith angle, and demonstrates that electron precipitation can also influence the electron density profile, particularly on the nightside. We also examine how seasonal effects, via differences in the neutral thermosphere, can affect the electron density profiles. This study provides a climatological picture of what drives the topside electron density profile in the polar regions, and could be useful in future studies for model validation.
Deutsch, Maxime; Gillon, Béatrice; Claiser, Nicolas; Gillet, Jean-Michel; Lecomte, Claude; Souhassou, Mohamed
2014-05-01
Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.
Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro
2017-06-14
The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.
NASA Astrophysics Data System (ADS)
Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S.
2017-10-01
The aim of this work is to study the properties of Ar-O2 microwave driven surfatron plasmas as a function of the Ar/O2 ratio in the gas mixture. The key parameters are the plasma electron density and electron temperature, which are estimated with Thomson scattering (TS) for O2 contents up to 50% of the total gas flow. A sharp drop in the electron density from {10}20 {{{m}}}-3 to approximately {10}18 {{{m}}}-3 is estimated as the O2 content in the gas mixture is increased up to 15%. For percentages of O2 lower than 10%, the electron temperature is estimated to be about 2-3 times higher than in the case of a pure argon discharge in the same conditions ({T}{{e}}≈ 1 eV) and gradually decreases as the O2 percentage is raised to 50%. However, for O2 percentages above 30%, the scattering spectra become Raman dominated, resulting in large uncertainties in the estimated electron densities and temperatures. The influence of photo-detached electrons from negative ions caused by the typical TS laser fluences is also likely to contribute to the uncertainty in the measured electron densities for high O2 percentages. Moreover, the detection limit of the system is reached for percentages of O2 higher than 25%. Additionally, both the electron density and temperature of microwave discharges with large Ar/O2 ratios are more sensitive to gas pressure variations.
NASA Astrophysics Data System (ADS)
Leherte, L.; Allen, F. H.; Vercauteren, D. P.
1995-04-01
A computational method is described for mapping the volume within the DNA double helix accessible to a groove-binding antibiotic, netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids with axes related to local curvature of the electron density function. Combining the ellipsoids produces a single electron density function which can be probed to estimate effective volumes of the interacting species. Close complementarity between host and ligand in this example shows the method to be a good representation of the electron density function at various resolutions; while at the atomic level the ellipsoid method gives results which are in close agreement with those from the conventional, spherical, van der Waals approach.
NASA Astrophysics Data System (ADS)
Leherte, Laurence; Allen, Frank H.
1994-06-01
A computational method is described for mapping the volume within the DNA double helix accessible to the groove-binding antibiotic netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids with axes related to local curvature of the electron density function. Combining the ellipsoids produces a single electron density function which can be probed to estimate effective volumes of the interacting species. Close complementarity between host and ligand in this example shows the method to give a good representation of the electron density function at various resolutions. At the atomic level, the ellipsoid method gives results which are in close agreement with those from the conventional spherical van der Waals approach.
Sounding rocket flight report, MUMP 9 and MUMP 10
NASA Technical Reports Server (NTRS)
Grassl, H. J.
1971-01-01
The results of the launching of two-Marshall-University of Michigan Probes (MUMP 9 and MUMP 10), Nike-Tomahawk sounding rocket payloads, are summarized. The MUMP is similar to the thermosphere probe, an ejectable instrument package for studying the variability of the earth's atmospheric parameters. The MUMP 9 payload included an omegatron mass analyzer, a molecular fluorescence densitometer, a mini-tilty filter, and a lunar position sensor. This complement of instruments permitted the determination of the molecular nitrogen density and temperature in the altitude range from approximately 143 to 297 km over Wallops Island, Virginia, during January 1971. The MUMP 10 payload included an omegatron mass analyzer, an electron temperature probe, a cryogenic densitometer, and a solar position sensor. These instruments permitted the determination of the molecular nitrogen density and temperature and the charged particle density and temperature in the altitude range from approximately 145 to 290 km over Wallops Island during the afternoon preceding the MUMP 9 launch.
From grand-canonical density functional theory towards rational compound design
NASA Astrophysics Data System (ADS)
von Lilienfeld, Anatole
2008-03-01
The fundamental challenge of rational compound design, ie the reverse engineering of chemical compounds with predefined specific properties, originates in the high-dimensional combinatorial nature of chemical space. Chemical space is the hyper-space of a given set of molecular observables that is spanned by the grand-canonical variables (particle densities of electrons and nuclei) which define chemical composition. A brief but rigorous description of chemical space within the molecular grand-canonical ensemble multi-component density functional theory framework will be given [1]. Numerical results will be presented for intermolecular energies as a continuous function of alchemical variations within a neutral and isoelectronic 10 proton system, including CH4, NH3, H2O, and HF, interacting with formic acid [2]. Furthermore, engineering the Fermi level through alchemical generation of boron-nitrogen doped mutants of benzene shall be discussed [3].[1] von Lilienfeld and Tuckerman JCP 125 154104 (2006)[2] von Lilienfeld and Tuckerman JCTC 3 1083 (2007)[3] Marcon et al. JCP 127 064305 (2007)
EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars
NASA Astrophysics Data System (ADS)
Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.
2016-03-01
The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as compared to models that do not include electron-impact ionisation. We estimate infrared emissions from H3+, and while, in an H/H2/He atmosphere, these are larger from planets orbiting close to more active stars, they still appear too low to be detected with current observatories.
Electronic structure and electron momentum densities of Ag2CrO4
NASA Astrophysics Data System (ADS)
Meena, Seema Kumari; Ahuja, B. L.
2018-05-01
We present the first-ever experimental electron momentum density of Ag2CrO4 using 661.65 keV γ-rays from 20 Ci 137Cs source. To validate our experimental data, we have also deduced theoretical Compton profiles, energy bands and density of states using linear combination of atomic orbitals (LCAO) method in the framework of density functional theory. It is seen that the DFT-LDA gives a better agreement with experimental data than free atom model. The energy bands and density of states are also discussed.
Thomas B. Lynch; Jean Nkouka; Michael M. Huebschmann; James M. Guldin
2003-01-01
A logistic equation is the basis for a model that predicts the probability of obtaining regeneration at specified densities. The density of regeneration (trees/ha) for which an estimate of probability is desired can be specified by means of independent variables in the model. When estimating parameters, the dependent variable is set to 1 if the regeneration density (...
NASA Astrophysics Data System (ADS)
Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.
2013-04-01
It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.
On the physical environment in the nucleus of Centaurus A /NGC 5128/
NASA Technical Reports Server (NTRS)
Beall, J. H.; Rose, W. K.
1980-01-01
A model is proposed for the radio and X-ray variability of the nucleus of Centaurus A in which an adiabatically expanding plasma containing a power-law distribution of relativistic electrons produces the radio flux by synchrotron emission, and the X-ray flux by inverse Compton scattering of an ambient distribution of thermal photons. The variability of Centaurus A is shown to be consistent with the expansion of an initially opaque, hot (1000-10,000 K) plasma which eventually becomes optically thin. Radio flares without corresponding X-ray flares are possible in this model because the plasma density decreases during the expansion, allowing radio radiation previously absorbed or suppressed to be observed. Some consequences of the model for the physical environment in galactic nuclei are discussed.
High-latitude electron density observations from the IMAGE radio plasma imager
NASA Astrophysics Data System (ADS)
Henize, Vance Karl
2003-11-01
Before the IMAGE mission, electron densities in the high latitude, high altitude region of the magnetosphere were measured exclusively by in situ means. The Radio Plasma Imager instrument onboard IMAGE is capable of remotely observing electron densities between 0.01 and 100,000 e-/cm-3 from distances of several Earth radii or more. This allows a global view of the high latitude region that has a far greater accuracy than was previously possible. Soundings of the terrestrial magnetic cusp provide the first remote observations of the dynamics and poleward density profile of this feature continuously over a 60- minute interval. During steady quiet-time solar wind and interplanetary magnetic field conditions, the cusp is shown to be stable in both position and density structure with only slight variations in both. Peak electron densities within the cusp during this time are found to be somewhat higher than predicted. New procedures for deriving electron densities from radio sounding measurements are developed. The addition of curve fitting algorithms significantly increases the amount of useable data. Incorporating forward modeling techniques greatly reduces the computational time over traditional inversion methods. These methods are described in detail. A large number high latitude observations of ducted right-hand extraordinary mode waves made over the course of one year of the IMAGE mission are used to create a three dimensional model of the electron density profile of the terrestrial polar cap region. The dependence of electron density in the polar cap on average geocentric distance (d) is found to vary as d-6.6. This is a significantly steeper gradient than cited in earlier works such as Persoon et al., although the introduction of an asymptotic term provides for basic agreement in the limited region of their joint validity. Latitudinal and longitudinal variations are found to be insignificant. Both the mean profile power law index of the electron density profile and, to a stronger degree, its variance show dependence with the DST index.
LPWA using supersonic gas jet with tailored density profile
NASA Astrophysics Data System (ADS)
Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras
2016-10-01
Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.
Ionization balance in Titan's nightside ionosphere
NASA Astrophysics Data System (ADS)
Vigren, E.; Galand, M.; Yelle, R. V.; Wellbrock, A.; Coates, A. J.; Snowden, D.; Cui, J.; Lavvas, P.; Edberg, N. J. T.; Shebanits, O.; Wahlund, J.-E.; Vuitton, V.; Mandt, K.
2015-03-01
Based on a multi-instrumental Cassini dataset we make model versus observation comparisons of plasma number densities, nP = (nenI)1/2 (ne and nI being the electron number density and total positive ion number density, respectively) and short-lived ion number densities (N+, CH2+, CH3+, CH4+) in the southern hemisphere of Titan's nightside ionosphere over altitudes ranging from 1100 and 1200 km and from 1100 to 1350 km, respectively. The nP model assumes photochemical equilibrium, ion-electron pair production driven by magnetospheric electron precipitation and dissociative recombination as the principal plasma neutralization process. The model to derive short-lived-ion number densities assumes photochemical equilibrium for the short-lived ions, primary ion production by electron-impact ionization of N2 and CH4 and removal of the short-lived ions through reactions with CH4. It is shown that the models reasonably reproduce the observations, both with regards to nP and the number densities of the short-lived ions. This is contrasted by the difficulties in accurately reproducing ion and electron number densities in Titan's sunlit ionosphere.
A theoretical-electron-density databank using a model of real and virtual spherical atoms.
Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian
2017-08-01
A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.
Measurement of electron density using reactance cutoff probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, K. H.; Seo, B. H.; Kim, J. H.
2016-05-15
This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure themore » electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).« less
NASA Astrophysics Data System (ADS)
Leblanc, J. P. F.; Carbotte, J. P.; Nicol, E. J.
2012-02-01
Motivated by recent tunneling and angle-resolved photoemission (ARPES) work [1,2], we explore the combined effect of electron-electron and electron-phonon couplings on the renormalized energy dispersion, the spectral function, and the density of states of doped graphene. We find that the plasmarons seen in ARPES are also observable in the density of states and appear as structures with quadratic dependence on energy about the minima. Further, we illustrate how knowledge of the slopes of both the density of states and the renormalized dispersion near the Fermi level can allow for the separation of momentum and frequency dependent renormalizations to the Fermi velocity. This analysis should allow for the isolation of the renormalization due to the electron-phonon interaction from that of the electron-electron interaction. [4pt] [1] Brar et al. Phys. Rev. Lett. 104, 036805 (2010) [2] Bostwick et al. Science 328, p.999 (2010)
NASA Astrophysics Data System (ADS)
Mukundan, Vrinda; Bhardwaj, Anil
2018-01-01
A one dimensional photochemical model for the dayside ionosphere of Titan has been developed for calculating the density profiles of ions and electrons under steady state photochemical equilibrium condition. We concentrated on the T40 flyby of Cassini orbiter and used the in-situ measurements from instruments onboard Cassini as input to the model. An energy deposition model is employed for calculating the attenuated photon flux and photoelectron flux at different altitudes in Titan's ionosphere. We used the Analytical Yield Spectrum approach for calculating the photoelectron fluxes. Volume production rates of major primary ions, like, N2+, N+ , CH4+, CH3+, etc due to photon and photoelectron impact are calculated and used as input to the model. The modeled profiles are compared with the Cassini Ion Neutral Mass Spectrometer (INMS) and Langmuir Probe (LP) measurements. The calculated electron density is higher than the observation by a factor of 2 to 3 around the peak. We studied the impact of different model parameters, viz. photoelectron flux, ion production rates, electron temperature, dissociative recombination rate coefficients, neutral densities of minor species, and solar flux on the calculated electron density to understand the possible reasons for this discrepancy. Recent studies have shown that there is an overestimation in the modeled photoelectron flux and N2+ ion production rates which may contribute towards this disagreement. But decreasing the photoelectron flux (by a factor of 3) and N2+ ion production rate (by a factor of 2) decreases the electron density only by 10 to 20%. Reduction in the measured electron temperature by a factor of 5 provides a good agreement between the modeled and observed electron density. The change in HCN and NH3 densities affects the calculated densities of the major ions (HCNH+ , C2H5+, and CH5+); however the overall impact on electron density is not appreciable ( < 20%). Even though increasing the dissociative recombination rate coefficients of the ions C2H5+ and CH5+ by a factor of 10 reduces the difference between modeled and observed densities of the major ions, the modeled electron density is still higher than the observation by ∼ 60% at the peak. We suggest that there might be some unidentified chemical reactions that may account for the additional loss of plasma in Titan's ionosphere.
NASA Astrophysics Data System (ADS)
Kamburov, D.; Baldwin, K. W.; West, K. W.; Lyon, S.; Pfeiffer, L. N.; Pinczuk, A.
2017-06-01
We compare micro-photoluminescence (μPL) as a measure of the electron density in a clean, two-dimensional (2D) system confined in a GaAs quantum well (QW) to the standard magneto-transport technique. Our study explores the PL shape evolution across a number of molecular beam epitaxy-grown samples with different QW widths and 2D electron densities and notes its correspondence with the density obtained in magneto-transport measurements on these samples. We also measure the 2D density in a top-gated quantum well sample using both PL and transport and find that the two techniques agree to within a few percent over a wide range of gate voltages. We find that the PL measurements are sensitive to gate-induced 2D density changes on the order of 109 electrons/cm2. The spatial resolution of the PL density measurement in our experiments is 40 μm, which is already substantially better than the millimeter-scale resolution now possible in spatial density mapping using magneto-transport. Our results establish that μPL can be used as a reliable high spatial resolution technique for future contactless measurements of density variations in a 2D electron system.
NASA Astrophysics Data System (ADS)
Uslu, Salih; Yarar, Zeki
2017-02-01
The epitaxial growth of quantum wells composed of high quality allows the production and application to their device of new structures in low dimensions. The potential profile at the junction is determined by free carriers and by the level of doping. Therefore, the shape of potential is obtained by the electron density. Energy level determines the number of electrons that can be occupied at every level. Energy levels and electron density values of each level must be calculated self consistently. Starting with V(z) test potential, wave functions and electron densities for each energy levels can be calculated to solve Schrödinger equation. If Poisson's equation is solved with the calculated electron density, the electrostatic potential can be obtained. The new V(z) potential can be calculated with using electrostatic potential found beforehand. Thus, the obtained values are calculated self consistently to a certain error criterion. In this study, the energy levels formed in the interfacial potential, electron density in each level and the wave function dependence of material parameters were investigated self consistently.
NASA Astrophysics Data System (ADS)
Arthur, N. A.; Foster, J. E.; Barnat, E. V.
2018-05-01
Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki
2018-07-01
An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.
Detection of an electron beam in a high density plasma via an electrostatic probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
Density Functionals of Chemical Bonding
Putz, Mihai V.
2008-01-01
The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.
The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us tomore » predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.« less
Detection of an electron beam in a high density plasma via an electrostatic probe
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...
2018-05-08
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
A Non-Neutral Plasma Device: Electron Beam Penning Trap
NASA Astrophysics Data System (ADS)
Zhuang, Ge; Liu, Wan-dong; Zheng, Jian; Fu, Cheng-jiang; Bai, Bo; Chi, Ji; Zhao, Kai; Xie, Jin-lin; Liang, Xiao-ping; Yu, Chang-xuan
1999-12-01
An electron beam Penning trap (EBPT) non- neutral plasma system, built to investigate the formation of a dense electron core with the density beyond Brillouin limit and possible application to fusion research, has been described. The density in the center of the EBPT has been verified to be up to 10 times of Brillouin density limit.
The 1973 solar occultation of the Crab Nebula pulsar
NASA Technical Reports Server (NTRS)
Weisberg, J. M.
1975-01-01
The mean electron density of the solar corona was determined by measuring the dispersion of radiofrequency pulses from pulsar NP 0532 during the June 1973 solar occultation. Trends continued which were noticed in 1971 as solar activity declined. Model fitting results suggest that the corona continued to become even more concentrated toward the equator in 1973 than in 1971. The number density of electrons in most regions decreased. The best model of the distribution of corona electrons is suggested to be one with zero density at the poles. K-corona isophotes and contours of equal path-integrated density are presented for several models. Electron density versus date and position in the corona are tabulated. It is seen that there is no simple relationship between the onset of major solar activity and density or scattering enhancements.
Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begishev, Ildar A; Bromage, Jake; Regan, Sean P
2018-01-10
Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.
Precision Electron Density Measurements in the SSX MHD Wind Tunnel
NASA Astrophysics Data System (ADS)
Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.
2017-10-01
We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.
NASA Astrophysics Data System (ADS)
Yong, WANG; Cong, LI; Jielin, SHI; Xingwei, WU; Hongbin, DING
2017-11-01
As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering (LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5 × 1019 m-3 to 7.1 × 1020 m-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison, an optical emission spectroscopy (OES) system was established as well. The results showed that the electron excitation temperature (configuration temperature) measured by OES is significantly higher than the electron temperature (kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium (LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.
First Retrieval of Thermospheric Carbon Monoxide From Mars Dayglow Observations
NASA Astrophysics Data System (ADS)
Evans, J. Scott; Stevens, Michael H.; Jain, Sonal; Deighan, Justin; Lumpe, Jerry; Schneider, Nicholas M.; Stewart, A. Ian; Crismani, Matteo; Stiepen, Arnaud; Chaffin, Michael S.; Mayyasi-Matta, Majd A.; McClintock, William E.; Holsclaw, Greg; Lefevre, Franck; Lo, Daniel; Clarke, John T.; Montmessin, Franck; Bougher, Stephen W.; Bell, Jared M.; Eparvier, Frank; Thiemann, Ed; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Jakosky, Bruce
2017-10-01
As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By linking CO density distributions to dynamical wind patterns, the structure and variability of the atmosphere will be better understood. Direct measurements of CO can therefore provide insight into the magnitude and pattern of winds and provide a metric for studying the response of the atmosphere to solar forcing. In addition, CO measurements can help solve outstanding photochemical modeling problems in explaining the abundance of CO at Mars. CO is directly observable by electron impact excitation and solar resonance fluorescence emissions in the far-ultraviolet (FUV). The retrieval of CO from solar fluorescence was first proposed over 40 years ago, but has been elusive at Mars due to significant spectral blending. However, by simulating the spectral shape of each contributing emission feature, electron impact excitation and solar fluorescence brightnesses can be extracted from the composite spectrum using a multiple linear regression approach. We use CO Fourth Positive Group (4PG) molecular band emission observed on the limb (130 - 200 km) by the Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft over both northern and southern hemispheres from October 2014 to December 2016. We present the first direct retrieval of CO densities by FUV remote sensing in the upper atmosphere of Mars. Atmospheric composition is inferred using the terrestrial Atmospheric Ultraviolet Radiance Integrated Code adapted to the Martian atmosphere. We investigate the sensitivity of CO density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our results to predictions from the Mars Global Ionosphere-Thermosphere Model as well as in situ measurements by the Neutral Gas and Ion Mass Spectrometer on MAVEN and quantify any differences.
NASA Astrophysics Data System (ADS)
Xiong, Chao; Zhou, Yun-Liang; Lühr, Hermann; Ma, Shu-Ying
2016-09-01
In this study we have provided new insights into the local time gradient of F region electron density (ΔNe) derived from the lower pair of Swarm satellites flying side by side. Our result shows that the electron density (Ne) increase starts just at sunrise, around 06:00 LT, simultaneously at low and middle latitudes due to the increased photoionization. At equatorial latitudes the increase in electron density gets even steeper after 07:00 LT, and the steepest increase of electron density (about 3 · 1010 m-3 within 6 min) occurs around 09:00 LT. We suggest that the upward vertical plasma drift in connection with the buildup of the equatorial fountain effect plays a major role. We also found that the local time variations of the equatorial ionization anomaly (EIA) crest electron density during daytime are similar to the respective evolutions at the equator, but about 1-2 h delayed. We relate this delay to the response time between the equatorial electric field and the buildup of the plasma fountain. At equinox months a fast decrease of the F region electron density is seen at the EIA trough region during the prereversal enhancement, while an increase is found meanwhile at crest regions. Afterward, a fast decrease of the EIA crest electron density occurs between 19:00 and 23:00 LT, with seasonal dependence. The local time gradient between Swarm A and C shows also prominent longitudinal wave-4 pattern around August months, and the phase of DE3 in ΔNe is found to be delayed by 6 h compared to that in Ne.
NASA Astrophysics Data System (ADS)
Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno
2013-09-01
Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).
NASA Astrophysics Data System (ADS)
Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua
2015-12-01
Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.
Electron Densities Near Io from Galileo Plasma Wave Observations
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Persoon, A. M.; Kurth, W. S.; Roux, A.; Bolton, S. J.
2001-01-01
This paper presents an overview of electron densities obtained near Io from the Galileo plasma wave instrument during the first four flybys of Io. These flybys were Io, which was a downstream wake pass that occurred on December 7, 1995; I24, which was an upstream pass that occurred on October 11, 1999; I25, which was a south polar pass that occurred on November 26, 1999; and I27, which was an upstream pass that occurred on February 22, 2000. Two methods were used to measure the electron density. The first was based on the frequency of upper hybrid resonance emissions, and the second was based on the low-frequency cutoff of electromagnetic radiation at the electron plasma frequency. For three of the flybys, Io, I25, and I27, large density enhancements were observed near the closest approach to Io. The peak electron densities ranged from 2.1 to 6.8 x 10(exp 4) per cubic centimeters. These densities are consistent with previous radio occultation measurements of Io's ionosphere. No density enhancement was observed during the I24 flyby, most likely because the spacecraft trajectory passed too far upstream to penetrate Io's ionosphere. During two of the flybys, I25 and I27, abrupt step-like changes were observed at the outer boundaries of the region of enhanced electron density. Comparisons with magnetic field models and energetic particle measurements show that the abrupt density steps occur as the spacecraft penetrated the boundary of the Io flux tube, with the region of high plasma density on the inside of the flux tube. Most likely the enhanced electron density within the Io flux tube is associated with magnetic field lines that are frozen to Io by the high conductivity of Io's atmosphere, thereby enhancing the escape of plasma along the magnetic field lines that pass through Io's ionosphere.
Anisotropic high-harmonic generation in bulk crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yong Sing; Reis, David A.; Ghimire, Shambhu
2016-11-21
The microscopic valence electron density determines the optical, electronic, structural and thermal properties of materials. However, current techniques for measuring this electron charge density are limited: for example, scanning tunnelling microscopy is confined to investigations at the surface, and electron diffraction requires very thin samples to avoid multiple scattering. Therefore, an optical method is desirable for measuring the valence charge density of bulk materials. Since the discovery of high-harmonic generation (HHG) in solids, there has been growing interest in using HHG to probe the electronic structure of solids. Here, using single-crystal MgO, we demonstrate that high-harmonic generation in solids ismore » sensitive to interatomic bonding. We find that harmonic efficiency is enhanced (diminished) for semi-classical electron trajectories that connect (avoid) neighbouring atomic sites in the crystal. Finally, these results indicate the possibility of using materials’ own electrons for retrieving the interatomic potential and thus the valence electron density, and perhaps even wavefunctions, in an all-optical setting.« less
Decay of the electron number density in the nitrogen afterglow using a hairpin resonator probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siefert, Nicholas S.; Ganguly, Biswa N.; Sands, Brian L.
A hairpin resonator was used to measure the electron number density in the afterglow of a nitrogen glow discharge (p=0.25-0.75 Torr). Electron number densities were measured using a time-dependent approach similar to the approach used by Spencer et al. [J. Phys. D 20, 923 (1987)]. The decay time of the electron number density was used to determine the electron temperature in the afterglow, assuming a loss of electrons via ambipolar diffusion to the walls. The electron temperature in the near afterglow remained between 0.4 and 0.6 eV, depending on pressure. This confirms the work by Guerra et al. [IEEE Trans.more » Plasma. Sci. 31, 542 (2003)], who demonstrated experimentally and numerically that the electron temperature stays significantly above room temperature via superelastic collisions with highly vibrationally excited ground state molecules and metastables, such as A {sup 3}{sigma}{sub u}{sup +}.« less
Quantum electronic stress: density-functional-theory formulation and physical manifestation.
Hu, Hao; Liu, Miao; Wang, Z F; Zhu, Junyi; Wu, Dangxin; Ding, Hepeng; Liu, Zheng; Liu, Feng
2012-08-03
The concept of quantum electronic stress (QES) is introduced and formulated within density functional theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. A formal expression of QES (σ(QE)) is derived in relation to deformation potential of electronic states (Ξ) and variation of electron density (Δn), σ(QE) = ΞΔn as a quantum analog of classical Hooke's law. Two distinct QES manifestations are demonstrated quantitatively by density functional theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed to underlie its importance.
Positional glow curve simulation for thermoluminescent detector (TLD) system design
NASA Astrophysics Data System (ADS)
Branch, C. J.; Kearfott, K. J.
1999-02-01
Multi- and thin element dosimeters, variable heating rate schemes, and glow-curve analysis have been employed to improve environmental and personnel dosimetry using thermoluminescent detectors (TLDs). Detailed analysis of the effects of errors and optimization of techniques would be highly desirable. However, an understanding of the relationship between TL light production, light attenuation, and precise heating schemes is made difficult because of experimental challenges involved in measuring positional TL light production and temperature variations as a function of time. This work reports the development of a general-purpose computer code, thermoluminescent detector simulator, TLD-SIM, to simulate the heating of any TLD type using a variety of conventional and experimental heating methods including pulsed focused or unfocused lasers with Gaussian or uniform cross sections, planchet, hot gas, hot finger, optical, infrared, or electrical heating. TLD-SIM has been used to study the impact on the TL light production of varying the input parameters which include: detector composition, heat capacity, heat conductivity, physical size, and density; trapped electron density, the frequency factor of oscillation of electrons in the traps, and trap-conduction band potential energy difference; heating scheme source terms and heat transfer boundary conditions; and TL light scatter and attenuation coefficients. Temperature profiles and glow curves as a function of position time, as well as the corresponding temporally and/or spatially integrated glow values, may be plotted while varying any of the input parameters. Examples illustrating TLD system functions, including glow curve variability, will be presented. The flexible capabilities of TLD-SIM promises to enable improved TLD system design.
NASA Astrophysics Data System (ADS)
Ye, Yuancai; Marcus, R. Kenneth
1997-12-01
A computer-controlled, impedance-tuned Langmuir probe data acquisition system and processing software package have been designed for the diagnostic study of low pressure plasmas. The combination of impedance-tuning and a wide range of applied potentials (± 100 V) provides a versatile system, applicable to a variety of analytical plasmas without significant modification. The automated probe system can be used to produce complete and undistorted current-voltage (i-V) curves with extremely low noise over the wide potential range. Based on these hardware and software systems, it is possible to determine all of the important charged particle parameters in a plasma; electron number density ( ne), ion number density ( ni), electron temperature ( Te), electron energy distribution function (EEDF), and average electron energy (<ɛ>). The complete data acquisition system and evaluation software are described in detail. A LabView (National Instruments Corporation, Austin, TX) application program has been developed for the Apple Macintosh line of microcomputers to control all of the operational aspects of the Langmuir probe experiments. The description here is mainly focused on the design aspects of the acquisition system with the targets of extremely low noise and reduction of the influence of measurement noise in the calculation procedures. This is particularly important in the case of electron energy distribution functions where multiple derivatives are calculated from the obtained i-V curves. A separate C-language data processing program has been developed and is included here to allow the reader to evaluate data obtained with the described hardware, or any i-V data imported in tab separated variable format. Both of the software systems are included on a Macintosh formatted disk for their use in other laboratories desiring these capabilities.
NASA Technical Reports Server (NTRS)
Bougher, Stephen W.; Engel, S.; Hinson, D. P.; Murphy, J. R.
2003-01-01
Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate that the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower atmosphere. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2-Martian years are investigated near aphelion conditions at high Northern latitudes (64.7-77.6N). A mean ionospheric peak height of 133.5-135 km was obtained for all aphelion profiles near SZA = 78-82; a corresponding mean peak density of 7.3-8.5 x 10(exp 4)/cu cm was also measured, reflecting solar moderate conditions. Strong wave 2-3 oscillations in peak heights were observed as a function of longitude over both Martian seasons. The Mars Thermospheric General Circulation Model (MTGCM) is exercised for Mars aphelion conditions. The measured interannual variations in the mean and longitude structure of the peak heights are small (consistent with MTGCM simulations), signifying the repeatability of the Mars atmosphere during aphelion conditions. A non-migrating (semi-diurnal period, wave#l eastward propagating) tidal mode is likely responsible for the wave#3 longitude features identified. The height of this photochemically driven peak can be observed to provide an ongoing monitor of the changing state of the Mars lower atmosphere. The magnitudes of these same peaks may reflect more than changing solar EUV fluxes when they are located in the vicinity of Mars crustal magnetic field centers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akatsuka, Hiroshi
2009-04-15
Population densities of excited states of argon atoms are theoretically examined for ionizing argon plasma in a state of nonequilibrium under atmospheric pressure from the viewpoint of elementary processes with collisional radiative model. The dependence of excited state populations on the electron and gas temperatures is discussed. Two electron density regimes are found, which are distinguished by the population and depopulation mechanisms for the excited states in problem. When the electron impact excitation frequency for the population or depopulation is lower than the atomic impact one, the electron density of the plasma is considered as low to estimate the populationmore » and depopulation processes. Some remarkable characteristics of population and depopulation mechanisms are found for the low electron density atmospheric plasma, where thermal relaxation by atomic collisions becomes the predominant process within the group of close-energy states in the ionizing plasma of atmospheric pressure, and the excitation temperature is almost the same as the gas temperature. In addition to the collisional relaxation by argon atoms, electron impact excitation from the ground state is also an essential population mechanism. The ratios of population density of the levels pairs, between which exists a large energy gap, include information on the electron collisional kinetics. For high electron density, the effect of atomic collisional relaxation becomes weak. For this case, the excitation mechanism is explained as electron impact ladderlike excitation similar to low-pressure ionizing plasma, since the electron collision becomes the dominant process for the population and depopulation kinetics.« less
Density dependence in demography and dispersal generates fluctuating invasion speeds
Li, Bingtuan; Miller, Tom E. X.
2017-01-01
Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities—i.e., an Allee effect—combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting. PMID:28442569
NASA Astrophysics Data System (ADS)
Kondo, Takahiro; Ohta, Masayuki; Ito, Tsuyohito; Okada, Shigefumi
2013-09-01
Effects of a rotating magnetic field (RMF) on the electron energy distribution function (EEDF) and on the electron density are investigated with the aim of controlling the radical composition of inductively coupled plasmas. By adjusting the RMF frequency and generation power, the desired electron density and electron energy shift are obtained. Consequently, the amount and fraction of high-energy electrons, which are mostly responsible for direct dissociation processes of raw molecules, will be controlled externally. This controllability, with no electrode exposed to plasma, will enable us to control radical components and their flux during plasma processing.
Wavefront-sensor-based electron density measurements for laser-plasma accelerators.
Plateau, G R; Matlis, N H; Geddes, C G R; Gonsalves, A J; Shiraishi, S; Lin, C; van Mourik, R A; Leemans, W P
2010-03-01
Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength and hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, offer greater phase sensitivity and straightforward analysis, improving shot-to-shot plasma density diagnostics.
Wavefront-sensor-based electron density measurements for laser-plasma accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron
2010-02-20
Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.
NASA Astrophysics Data System (ADS)
Mosquera, Martín A.
2017-10-01
Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.
Determining Core Plasmaspheric Electron Densities with the Van Allen Probes
NASA Astrophysics Data System (ADS)
De Pascuale, S.; Hartley, D.; Kurth, W. S.; Kletzing, C.; Thaller, S. A.; Wygant, J. R.
2016-12-01
We survey three methods for obtaining electron densities inside of the core plasmasphere region (L < 4) to the perigee of the Van Allen Probes (L 1.1) from September 2012 to December 2014. Using the EMFISIS instrument on board the Van Allen Probes, electron densities are extracted from the upper hybrid resonance to an uncertainty of 10%. Some measurements are subject to larger errors given interpretational issues, especially at low densities (L > 4) resulting from geomagnetic activity. At high densities EMFISIS is restricted by an upper observable limit near 3000 cm-3. As this limit is encountered above perigee, we employ two additional methods validated against EMFISIS measurements to determine electron densities deep within the plasmasphere (L < 2). EMFISIS can extrapolate density estimates to lower L by calculating high densities, in good agreement with the upper hybrid technique when applicable, from plasma wave properties. Calibrated measurements, from the Van Allen Probes EFW potential instrument, also extend into this range. In comparison with the published EMFISIS database we provide a metric for the validity of core plasmaspheric density measurements obtained from these methods and an empirical density model for use in wave and particle simulations.
Measurement of electron density profiles on HT-6M tokamak by 7-channel FIR HCN laser interferometer
NASA Astrophysics Data System (ADS)
Xiang, Gao; Qiliang, Guo
1990-12-01
Electron density measurements are periormed on HT-6M tokamak using a 7 channel Far-Infrared HCN laser interferometer. From the measured line integrals--7 channel phase shifts the electron density profile is reconstructed by a fit procedure. Results were tested by comparison to Abel inverted. Some recent interesting experimental results were reported.
Synopsis of D- and E-region electron densities during the energy budget campaign
NASA Technical Reports Server (NTRS)
Friedrich, M.; Baker, K. D.; Brekke, A.; Dickinson, P. H. G.; Dumbs, A.; Grandal, B.; Thrane, E. V.; Smith, L. G.; Torkar, K. M.
1982-01-01
Electron density profiles from ground-based and rocket-borne measurements conducted at three sites in northern Scandinavia under various degrees of geophysical disturbances are presented. These data are checked against an instantaneous picture of the ionospheric absorption obtained via the dense riometer network. A map of the riometer absorption and measured electron densities over Scandinavia is given.
Nature of non-nuclear (3, -3) π-attractor and π-bonding: Theoretical analysis on π-electron density
NASA Astrophysics Data System (ADS)
Lv, Jiao; Yang, Lihua; Sun, Zheng; Meng, Lingpeng; Li, Xiaoyan
2018-01-01
Understanding the nature of π-electron density is important to characterize the conjugate π molecular systems. In this work, the π-electron densities of some typical conjugated π molecular systems were separated from their total electron densities; the positions and natures of non-nuclear (3, -3) π-attractors and the π-bond critical points (π-BCPs) are investigated. The calculated results show that for the same element, the position of the π-attractor is constant, regardless of the chemical surroundings. The position of the π-BCP is closer to the atom with the larger electronegativity.
December anomaly in ionosphere using FORMOSAT-3/COSMIC electron density profiles
NASA Astrophysics Data System (ADS)
Dashnyam, G.; Lin, C. C. H.; Rajesh, P. K.; Lin, J. T.
2017-12-01
December anomaly in ionosphere refers to the observation of greater value of global average ionospheric peak electron density (NmF2) in December-January months than in June-July months. So far there has been no satisfactory explanation to account for this difference, which is also known as annual asymmetry, leading to the speculation that forcing from lower atmosphere may be important. In this work, FORMOSAT-3/COSMIC electron density profiles are used to investigate the characteristics of December anomaly at different local times and longitudes in varying levels of solar activity. The observations in the years 2008, 2009 and 2012 are used for the study. The results suggest that the anomaly exists in all the three years, and is pronounced during day. Detailed analysis is carried out using latitude-altitude electron density profiles at selected longitude sectors, revealing that neutral wind may play dominant role. SAMI2 model is used to further examine the role of neutral wind influencing the electron density in different solstices. Tidal decomposition of the wind is carried out to understand the dominant tidal components that give rise to the larger electron density in the December-January months.
[Research on electron density in DC needle-plate corona discharge at atmospheric pressure].
Liu, Zhi-Qiang; Guo, Wei; Liu, Tao-Tao; Wu, Wen-Shuo; Liu, Shu-Min
2013-11-01
Using needle-plate discharge device, corona discharge experiment was done in the atmosphere. Through photo of spot size of light-emitting area, the relationship between the voltage and thickness of corona layer was discussed. When the distance between tip and plate is fixed, the thickness of corona layer increases with the increase in voltage; when the voltage is fixed, the thickness of corona layer decreases with the increase in the distance between tip and plate. As spectral intensity of N2 (C3pi(u)) (337.1 nm)reflects high energy electron density, it was measured with emission spectrometry. The results show that high energy electron density is the biggest near the needle tip and the relationship between high energy electron density and voltage is basically linear increasing. Fixing voltage, high energy electron density decreases with the increase in the distance between tip and plate. When the voltage and the distance between tip and plate are fixed, the high energy electron density increases with the decrease in the curvature radius of needle tip. These results are of great importance for the study of plasma parameters of corona discharge.
Statistical analysis of suprathermal electron drivers at 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Broiles, Thomas W.; Burch, J. L.; Chae, K.; Clark, G.; Cravens, T. E.; Eriksson, A.; Fuselier, S. A.; Frahm, R. A.; Gasc, S.; Goldstein, R.; Henri, P.; Koenders, C.; Livadiotis, G.; Mandt, K. E.; Mokashi, P.; Nemeth, Z.; Odelstad, E.; Rubin, M.; Samara, M.
2016-11-01
We use observations from the Ion and Electron Sensor (IES) on board the Rosetta spacecraft to study the relationship between the cometary suprathermal electrons and the drivers that affect their density and temperature. We fit the IES electron observations with the summation of two kappa distributions, which we characterize as a dense and warm population (˜10 cm-3 and ˜16 eV) and a rarefied and hot population (˜0.01 cm-3 and ˜43 eV). The parameters of our fitting technique determine the populations' density, temperature, and invariant kappa index. We focus our analysis on the warm population to determine its origin by comparing the density and temperature with the neutral density and magnetic field strength. We find that the warm electron population is actually two separate sub-populations: electron distributions with temperatures above 8.6 eV and electron distributions with temperatures below 8.6 eV. The two sub-populations have different relationships between their density and temperature. Moreover, the two sub-populations are affected by different drivers. The hotter sub-population temperature is strongly correlated with neutral density, while the cooler sub-population is unaffected by neutral density and is only weakly correlated with magnetic field strength. We suggest that the population with temperatures above 8.6 eV is being heated by lower hybrid waves driven by counterstreaming solar wind protons and newly formed, cometary ions created in localized, dense neutral streams. To the best of our knowledge, this represents the first observations of cometary electrons heated through wave-particle interactions.
[The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].
Du, Xiao; Yang, Li-jun; Liu, Tong; Jiao, Jiao; Wang, Hui-chao
2016-01-01
The shielding gas plays an important role in the laser welding process and the variation of the protecting conditions has an obvious effect on the welding quality. This paper studied the influence of the change of protecting conditions on the parameters of laser-induced plasma such as electron temperature and electron density during the laser welding process by designing some experiments of reducing the shielding gas flow rate step by step and simulating the adverse conditions possibly occurring in the actual Nd : YAG laser welding process. The laser-induced plasma was detected by a fiber spectrometer to get the spectral data. So the electron temperature of laser-induced plasma was calculated by using the method of relative spectral intensity and the electron density by the Stark Broadening. The results indicated that the variation of protecting conditions had an important effect on the electron temperature and the electron density in the laser welding. When the protecting conditions were changed, the average electron temperature and the average electron density of the laser-induced plasma would change, so did their fluctuation range. When the weld was in a good protecting condition, the electron temperature, the electron density and their fluctuation were all low. Otherwise, the values would be high. These characteristics would have contribution to monitoring the process of laser welding.
The Diagnostics of the External Plasma for the Plasma Rocket
NASA Technical Reports Server (NTRS)
Karr, Gerald R.
1997-01-01
The plasma rocket is located at NASA Johnson Space Center. To produce a thrust in space. an inert gas is ionized into a plasma and heated in the linear section of a tokamak fusion device to 1 x 10(exp 4) - 1.16 x 10(exp 6)K(p= 10(exp 10) - 10(exp 14)/cu cm ). The magnetic field used to contain the plasma has a magnitude of 2 - 10k Gauss. The plasma plume has a variable thrust and specific impulse. A high temperature retarding potential analyzer (RPA) is being developed to characterize the plasma in the plume and at the edge of the magnetically contained plasma. The RPA measures the energy and density of ions or electrons entering into its solid angle of collection. An oscilloscope displays the ion flux versus the collected current. All measurements are made relative to the facility ground. A RPA is being developed in a process which involves the investigation of several prototypes. The first prototype has been tested on a thermal plasma. The knowledge gained from its development and testing were applied to the development of a RPA for collimated plasma. The prototypes consist of four equally spaced grids and an ion collector. The outermost grid is a ground. The second grid acts as a bias to repel electrons. The third is a variable v voltage ion suppressor. Grid four (inner grid) acts to repel secondary electrons, being biased equal to the first. Knowledge gained during these two stages are being applied to the development of a high temperature RPA Testing of this device involves the determination of its output parameters. sensitivity, and responses to a wide range of energies and densities. Each grid will be tested individually by changing only its voltage and observing the output from the RPA. To verify that the RPA is providing proper output. it is compared to the output from a Langmuir or Faraday probe.
NASA Astrophysics Data System (ADS)
Oberberg, Moritz; Bibinov, Nikita; Ries, Stefan; Awakowicz, Peter; Institute of Electrical Engineering; Plasma Technology Team
2016-09-01
In recently publication, the young diagnostic tool Multipole Resonance Probe (MRP) for electron density measurements was introduced. It is based on active plasma resonance spectroscopy (APRS). The probe was simulated und evaluated for different devices. The geometrical and electrical symmetry simplifies the APRS model, so that the electron density can be easily calculated from the measured resonance. In this work, low pressure nitrogen mixture plasmas with different electron energy distribution functions (EEDF) are investigated. The results of the MRP measurement are compared with measurements of a Langmuir Probe (LP) and Optical Emission Spectroscopy (OES). Probes and OES measure in different regimes of kinetic electron energy. Both probes measure electrons with low kinetic energy (<10 eV), whereas the OES is influenced by electrons with high kinetic energy which are needed for transitions of molecule bands. By the determination of the absolute intensity of N2(C-B) and N2+(B-X)electron temperature and density can be calculated. In a non-maxwellian plasma, all plasma diagnostics need to be combined.
Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.
Yamanaka, Takamitsu
2005-09-01
The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.
Litzow, Michael A.; Piatt, John F.; Abookire, Alisa A.; Robards, Martin D.
2004-01-01
1. The quality-variability trade-off hypothesis predicts that (i) energy density (kJ g-1) and spatial-temporal variability in abundance are positively correlated in nearshore marine fishes; and (ii) prey selection by a nearshore piscivore, the pigeon guillemot (Cepphus columba Pallas), is negatively affected by variability in abundance. 2. We tested these predictions with data from a 4-year study that measured fish abundance with beach seines and pigeon guillemot prey utilization with visual identification of chick meals. 3. The first prediction was supported. Pearson's correlation showed that fishes with higher energy density were more variable on seasonal (r = 0.71) and annual (r = 0.66) time scales. Higher energy density fishes were also more abundant overall (r = 0.85) and more patchy at a scale of 10s of km (r = 0.77). 4. Prey utilization by pigeon guillemots was strongly non-random. Relative preference, defined as the difference between log-ratio transformed proportions of individual prey taxa in chick diets and beach seine catches, was significantly different from zero for seven of the eight main prey categories. 5. The second prediction was also supported. We used principal component analysis (PCA) to summarize variability in correlated prey characteristics (energy density, availability and variability in abundance). Two PCA scores explained 32% of observed variability in pigeon guillemot prey utilization. Seasonal variability in abundance was negatively weighted by these PCA scores, providing evidence of risk-averse selection. Prey availability, energy density and km-scale variability in abundance were positively weighted. 6. Trophic interactions are known to create variability in resource distribution in other systems. We propose that links between resource quality and the strength of trophic interactions may produce resource quality-variability trade-offs.
Probing the solar corona with very long baseline interferometry.
Soja, B; Heinkelmann, R; Schuh, H
2014-06-20
Understanding and monitoring the solar corona and solar wind is important for many applications like telecommunications or geomagnetic studies. Coronal electron density models have been derived by various techniques over the last 45 years, principally by analysing the effect of the corona on spacecraft tracking. Here we show that recent observational data from very long baseline interferometry (VLBI), a radio technique crucial for astrophysics and geodesy, could be used to develop electron density models of the Sun's corona. The VLBI results agree well with previous models from spacecraft measurements. They also show that the simple spherical electron density model is violated by regional density variations and that on average the electron density in active regions is about three times that of low-density regions. Unlike spacecraft tracking, a VLBI campaign would be possible on a regular basis and would provide highly resolved spatial-temporal samplings over a complete solar cycle.
Electron-density-sensitive Line Ratios of Fe XIII– XVI from Laboratory Sources Compared to CHIANTI
NASA Astrophysics Data System (ADS)
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; Scotti, F.; LeBlanc, B. P.
2018-02-01
We present electron-density-sensitive line ratios for Fe XIII– XVI measured in the spectral wavelength range of 200–440 Å and an electron density range of (1–4) × 1013 cm‑3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrument was relatively calibrated using spectroscopic techniques in order to improve accuracy. The line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.
Large-Area Atomic Layers of the Charge-Density-Wave Conductor TiSe2.
Wang, Hong; Chen, Yu; Duchamp, Martial; Zeng, Qingsheng; Wang, Xuewen; Tsang, Siu Hon; Li, Hongling; Jing, Lin; Yu, Ting; Teo, Edwin Hang Tong; Liu, Zheng
2018-02-01
Layered transition metal (Ti, Ta, Nb, etc.) dichalcogenides are important prototypes for the study of the collective charge density wave (CDW). Reducing the system dimensionality is expected to lead to novel properties, as exemplified by the discovery of enhanced CDW order in ultrathin TiSe 2 . However, the syntheses of monolayer and large-area 2D CDW conductors can currently only be achieved by molecular beam epitaxy under ultrahigh vacuum. This study reports the growth of monolayer crystals and up to 5 × 10 5 µm 2 large films of the typical 2D CDW conductor-TiSe 2 -by ambient-pressure chemical vapor deposition. Atomic resolution scanning transmission electron microscopy indicates the as-grown samples are highly crystalline 1T-phase TiSe 2 . Variable-temperature Raman spectroscopy shows a CDW phase transition temperature of 212.5 K in few layer TiSe 2 , indicative of high crystal quality. This work not only allows the exploration of many-body state of TiSe 2 in 2D limit but also offers the possibility of utilizing large-area TiSe 2 in ultrathin electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Saturni, F. G.; Trevese, D.; Vagnetti, F.; Perna, M.; Dadina, M.
2016-03-01
Context. The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of quasar processes and their relation with the host galaxy. Aims: In this study, we aim to measure the black hole mass of the bright lensed BAL QSO APM 08279+5255 at z = 3.911 through reverberation mapping, and to update and extend the monitoring of its C IV absorption line variability. Methods: We perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift with the use of 138 R-band photometric data and 30 spectra available over 16 years of observations. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. Results: We find a reverberation-mapping time lag of ~900 rest-frame days for both Si IV and C IV emission lines. This is consistent with an extension of the BLR size-to-luminosity relation for active galactic nuclei up to a luminosity of ~1048 erg s-1, and implies a black hole mass of 1010 M⊙. Additionally, we measure a recombination time lag of ~160 days in the rest frame for the C IV narrow absorption system, which implies an electron density of the absorbing gas of ~2.5 × 104 cm-3. Conclusions: The measured black hole mass of APM 08279+5255 indicates that the quasar resides in an under-massive host-galaxy bulge with Mbulge ~ 7.5MBH, and that the lens magnification is lower than ~8. Finally, the inferred electron density of the narrow-line absorber implies a distance of the order of 10 kpc of the absorbing gas from the quasar, placing it within the host galaxy.
Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped
NASA Astrophysics Data System (ADS)
Subhoni, Mekhrdod; Kholmurodov, Kholmirzo; Doroshkevich, Aleksandr; Asgerov, Elmar; Yamamoto, Tomoyuki; Lyubchyk, Andrei; Almasan, Valer; Madadzada, Afag
2018-03-01
Development of a new electricity generation techniques is one of the most relevant tasks, especially nowadays under conditions of extreme growth in energy consumption. The exothermic heterogeneous electrochemical energy conversion to the electric energy through interaction of the ZrO2 based nanopowder system with atmospheric moisture is one of the ways of electric energy obtaining. The questions of conversion into the electric form of the energy of water molecules adsorption in 3 mol% Y2O3 doped ZrO2 nanopowder systems were investigated using the density functional theory calculations. The density functional theory calculations has been realized as in the Kohn-Sham formulation, where the exchange-correlation potential is approximated by a functional of the electronic density. The electronic density, total energy and band structure calculations are carried out using the all-electron, full potential, linear augmented plane wave method of the electronic density and related approximations, i.e. the local density, the generalized gradient and their hybrid approximations.
Exact differential equation for the density and ionization energy of a many-particle system
NASA Technical Reports Server (NTRS)
Levy, M.; Perdew, J. P.; Sahni, V.
1984-01-01
The present investigation is concerned with relations studied by Hohenberg and Kohn (1964) and Kohn and Sham (1965). The properties of a ground-state many-electron system are determined by the electron density. The correct differential equation for the density, as dictated by density-functional theory, is presented. It is found that the ground-state density n of a many-electron system obeys a Schroedinger-like differential equation which may be solved by standard Kohn-Sham programs. Results are connected to the traditional exact Kohn-Sham theory. It is pointed out that the results of the current investigations are readily extended to spin-density functional theory.
Basis convergence of range-separated density-functional theory.
Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, H.; Yano, Y.; Yoshida, Z.
2015-02-15
The electron density profile of a plasma in a magnetospheric dipole field configuration was measured with a multi-chord interferometry including a relativistic correction. In order to improve the accuracy of density reconstruction, a 75 GHz interferometer was installed at a vertical chord of the Ring Trap 1 (RT-1) device in addition to previously installed ones at tangential and another vertical chords. The density profile was calculated by using the data of three-chord interferometry including relativistic effects for a plasma consisting of hot and cold electrons generated by electron cyclotron resonance heating (ECH). The results clearly showed the effects of density peakingmore » and magnetic mirror trapping in a strongly inhomogeneous dipole magnetic field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Vipin K.; Sharma, Anamika
2013-05-15
We estimate the ponderomotive force on an expanded inhomogeneous electron density profile, created in the later phase of laser irradiated diamond like ultrathin foil. When ions are uniformly distributed along the plasma slab and electron density obeys the Poisson's equation with space charge potential equal to negative of ponderomotive potential, φ=−φ{sub p}=−(mc{sup 2}/e)(γ−1), where γ=(1+|a|{sup 2}){sup 1/2}, and |a| is the normalized local laser amplitude inside the slab; the net ponderomotive force on the slab per unit area is demonstrated analytically to be equal to radiation pressure force for both overdense and underdense plasmas. In case electron density is takenmore » to be frozen as a Gaussian profile with peak density close to relativistic critical density, the ponderomotive force has non-monotonic spatial variation and sums up on all electrons per unit area to equal radiation pressure force at all laser intensities. The same result is obtained for the case of Gaussian ion density profile and self consistent electron density profile, obeying Poisson's equation with φ=−φ{sub p}.« less
Maheshwari, Manish; Ketkar, Anant R; Chauhan, Bhaskar; Patil, Vinay B; Paradkar, Anant R
2003-08-11
Ibuprofen (IBU) exhibits short half-life, poor compressibility, flowability and caking tendency. IBU melt has sufficiently low viscosity and exhibits interfacial tension sufficient to form droplet even at low temperature. A single step novel melt solidification technique (MST) was developed to produce IBU beads with lower amounts of excipient. Effect of variables was studied using a 3(2) factorial approach with speed of agitation and amount of cetyl alcohol (CA) as variables. The beads were evaluated using DSC, FT-IR and scanning electron microscope (SEM). Yield, micromeritic properties, crushing strength and release kinetics were also studied. Spherical beads with a method yield of above 90% were obtained. The data was analyzed by response surface methodology. The variables showed curvilinear relationship with yield in desired particle size range, crushing strength and, bulk and tap density. The drug release followed non-Fickian case II transport and the release rate decreased linearly with respect to amount of CA in the initial stages followed by curvilinearity at later stages of elution. The effect of changing porosity and tortuosity was well correlated.
In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold.
Leicht, Philipp; Zielke, Lukas; Bouvron, Samuel; Moroni, Riko; Voloshina, Elena; Hammerschmidt, Lukas; Dedkov, Yuriy S; Fonin, Mikhail
2014-04-22
Addressing the multitude of electronic phenomena theoretically predicted for confined graphene structures requires appropriate in situ fabrication procedures yielding graphene nanoflakes (GNFs) with well-defined geometries and accessible electronic properties. Here, we present a simple strategy to fabricate quasi-free-standing GNFs of variable sizes, performing temperature programmed growth of graphene flakes on the Ir(111) surface and subsequent intercalation of gold. Using scanning tunneling microscopy (STM), we show that epitaxial GNFs on a perfectly ordered Au(111) surface are formed while maintaining an unreconstructed, singly hydrogen-terminated edge structure, as confirmed by the accompanying density functional theory (DFT) calculations. Using tip-induced lateral displacement of GNFs, we demonstrate that GNFs on Au(111) are to a large extent decoupled from the Au(111) substrate. The direct accessibility of the electronic states of a single GNF is demonstrated upon analysis of the quasiparticle interference patterns obtained by low-temperature STM. These findings open up an interesting playground for diverse investigations of graphene nanostructures with possible implications for device fabrication.
Park, Steve; Giri, Gaurav; Shaw, Leo; Pitner, Gregory; Ha, Jewook; Koo, Ja Hoon; Gu, Xiaodan; Park, Joonsuk; Lee, Tae Hoon; Nam, Ji Hyun; Hong, Yongtaek; Bao, Zhenan
2015-01-01
The electronic properties of solution-processable small-molecule organic semiconductors (OSCs) have rapidly improved in recent years, rendering them highly promising for various low-cost large-area electronic applications. However, practical applications of organic electronics require patterned and precisely registered OSC films within the transistor channel region with uniform electrical properties over a large area, a task that remains a significant challenge. Here, we present a technique termed “controlled OSC nucleation and extension for circuits” (CONNECT), which uses differential surface energy and solution shearing to simultaneously generate patterned and precisely registered OSC thin films within the channel region and with aligned crystalline domains, resulting in low device-to-device variability. We have fabricated transistor density as high as 840 dpi, with a yield of 99%. We have successfully built various logic gates and a 2-bit half-adder circuit, demonstrating the practical applicability of our technique for large-scale circuit fabrication. PMID:25902502
Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...
2016-05-10
In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigren, E.; Galand, M.; Shebanits, O.
2014-05-01
We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anionmore » neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.« less
High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Kegong; Wu, Yuchi; Zhu, Bin
The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less
Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source
NASA Astrophysics Data System (ADS)
Yue, HUA; Jian, SONG; Zeyu, HAO; Chunsheng, REN
2018-06-01
Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC + RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.
NASA Astrophysics Data System (ADS)
Huo, Jin-Rong; Li, Lu; Cheng, Hai-Xia; Wang, Xiao-Xu; Zhang, Guo-Hua; Qian, Ping
2018-03-01
The interface structure, electronic and optical properties of Au-ZnO are studied using the first-principles calculation based on density functional theory (DFT). Given the interfacial distance, bonding configurations and terminated surface, we built the optimal interface structure and calculated the electronic and optical properties of the interface. The total density of states, partial electronic density of states, electric charge density and atomic populations (Mulliken) are also displayed. The results show that the electrons converge at O atoms at the interface, leading to a stronger binding of interfaces and thereby affecting the optical properties of interface structures. In addition, we present the binding energies of different interface structures. When the interface structure of Au-ZnO gets changed, furthermore, varying optical properties are exhibited.
Probing the Milky Way electron density using multi-messenger astronomy
NASA Astrophysics Data System (ADS)
Breivik, Katelyn; Larson, Shane
2015-04-01
Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.
Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2
NASA Astrophysics Data System (ADS)
Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark
2003-12-01
Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.
Features of Electron Density Distribution in Delafossite Cualo2
NASA Astrophysics Data System (ADS)
Pogoreltsev, A. I.; Schmidt, S. V.; Gavrilenko, A. N.; Shulgin, D. A.; Korzun, B. V.; Matukhin, V. L.
2015-07-01
We have used pulsed 63,65Cu nuclear quadrupole resonance at room temperature to study the semiconductor compound CuAlO2 with a delafossite crystal structure, and we have determined the quadrupole frequency νQ = 28.12 MHz and the asymmetry parameter η ~ 0, which we used to study the features of the electron density distribution in the vicinity of the quadrupolar nucleus. In order to take into account the influence of correlation effects on the electric field gradient, we carried out ab initio calculations within the density functional theory (DFT) approximation using a set of correlation functionals VWN1RPA, VWN5, PW91LDA, CPW91, and B3LYP1. We mapped the electron density distribution in the vicinity of the quadrupolar copper nucleus for the Cu7Al6o{14/- 1} cluster and we calculated the size of the LUMO-HOMO gap, Δ ~ 3.33 eV. We established the anisotropy of the spatial electron density distribution. Based on analysis of the electron density distribution obtained, we suggest that the bond in CuAlO2 is not purely covalent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenbach, Markus; Li, Ying Wai; Liu, Xianglin
2017-12-01
LSMS is a first principles, Density Functional theory based, electronic structure code targeted mainly at materials applications. LSMS calculates the local spin density approximation to the diagonal part of the electron Green's function. The electron/spin density and energy are easily determined once the Green's function is known. Linear scaling with system size is achieved in the LSMS by using several unique properties of the real space multiple scattering approach to the Green's function.
Density Structures, Dynamics, and Seasonal and Solar Cycle Modulations of Saturn's Inner Plasma Disk
NASA Astrophysics Data System (ADS)
Holmberg, M. K. G.; Shebanits, O.; Wahlund, J.-E.; Morooka, M. W.; Vigren, E.; André, N.; Garnier, P.; Persoon, A. M.; Génot, V.; Gilbert, L. K.
2017-12-01
We present statistical results from the Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe measurements recorded during the time interval from orbit 3 (1 February 2005) to 237 (29 June 2016). A new and improved data analysis method to obtain ion density from the Cassini LP measurements is used to study the asymmetries and modulations found in the inner plasma disk of Saturn, between 2.5 and 12 Saturn radii (1 RS=60,268 km). The structure of Saturn's plasma disk is mapped, and the plasma density peak, nmax, is shown to be located at ˜4.6 RS and not at the main neutral source region at 3.95 RS. The shift in the location of nmax is due to that the hot electron impact ionization rate peaks at ˜4.6 RS. Cassini RPWS plasma disk measurements show a solar cycle modulation. However, estimates of the change in ion density due to varying EUV flux is not large enough to describe the detected dependency, which implies that an additional mechanism, still unknown, is also affecting the plasma density in the studied region. We also present a dayside/nightside ion density asymmetry, with nightside densities up to a factor of 2 larger than on the dayside. The largest density difference is found in the radial region 4 to 5 RS. The dynamic variation in ion density increases toward Saturn, indicating an internal origin of the large density variability in the plasma disk rather than being caused by an external source origin in the outer magnetosphere.
Compression of a mixed antiproton and electron non-neutral plasma to high densities
NASA Astrophysics Data System (ADS)
Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comparat, Daniel; Consolati, Giovanni; Demetrio, Andrea; Di Noto, Lea; Doser, Michael; Evans, Craig; Fanì, Mattia; Ferragut, Rafael; Fesel, Julian; Fontana, Andrea; Gerber, Sebastian; Giammarchi, Marco; Gligorova, Angela; Guatieri, Francesco; Haider, Stefan; Hinterberger, Alexander; Holmestad, Helga; Kellerbauer, Alban; Khalidova, Olga; Krasnický, Daniel; Lagomarsino, Vittorio; Lansonneur, Pierre; Lebrun, Patrice; Malbrunot, Chloé; Mariazzi, Sebastiano; Marton, Johann; Matveev, Victor; Mazzotta, Zeudi; Müller, Simon R.; Nebbia, Giancarlo; Nedelec, Patrick; Oberthaler, Markus; Pacifico, Nicola; Pagano, Davide; Penasa, Luca; Petracek, Vojtech; Prelz, Francesco; Prevedelli, Marco; Rienaecker, Benjamin; Robert, Jacques; Røhne, Ole M.; Rotondi, Alberto; Sandaker, Heidi; Santoro, Romualdo; Smestad, Lillian; Sorrentino, Fiodor; Testera, Gemma; Tietje, Ingmari C.; Widmann, Eberhard; Yzombard, Pauline; Zimmer, Christian; Zmeskal, Johann; Zurlo, Nicola; Antonello, Massimiliano
2018-04-01
We describe a multi-step "rotating wall" compression of a mixed cold antiproton-electron non-neutral plasma in a 4.46 T Penning-Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m-3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.
Changes in divertor conditions in response to changing core density with RMPs
Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.; ...
2017-06-07
The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less
Changes in divertor conditions in response to changing core density with RMPs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.
The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less
One-electron reduced density matrices of strongly correlated harmonium atoms.
Cioslowski, Jerzy
2015-03-21
Explicit asymptotic expressions are derived for the reduced one-electron density matrices (the 1-matrices) of strongly correlated two- and three-electron harmonium atoms in the ground and first excited states. These expressions, which are valid at the limit of small confinement strength ω, yield electron densities and kinetic energies in agreement with the published values. In addition, they reveal the ω(5/6) asymptotic scaling of the exchange components of the electron-electron repulsion energies that differs from the ω(2/3) scaling of their Coulomb and correlation counterparts. The natural orbitals of the totally symmetric ground state of the two-electron harmonium atom are found to possess collective occupancies that follow a mixed power/Gaussian dependence on the angular momentum in variance with the simple power-law prediction of Hill's asymptotics. Providing rigorous constraints on energies as functionals of 1-matrices, these results are expected to facilitate development of approximate implementations of the density matrix functional theory and ensure their proper description of strongly correlated systems.
Role of Excited Nitrogen In The Ionosphere
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Bolorizadeh, M. A.
2006-12-01
Sunlight photoionises atoms and molecules in the Earth's upper atmosphere, producing ions and photoelectrons. The photoelectrons then produce further ionisation by electron impact. These processes produce the ionosphere, which contains various positive ions, such as NO+, N+, and O+, and an equal density of free electrons. O+(4S) ions are long-lived and so the electron density is determined mainly by the density of O+(4S). This density is dependent on ambipolar diffusion and on loss processes, which are principally reactions with O2 and N2. The reaction with N2 is known to be strongly dependent on the vibrational state of N2 but the rate constants are not well determined for the ionosphere. Vibrational excitation of N2 is produced by direct excitation by thermal electrons and photoelectrons and by cascade from the excited states of N2 that are produced by photoelectron impact. It can also be produced by a chemical reaction and by vibrational-translational transitions. The vibrational excitation is lost by deexcitation by electron impact, by step-wise quenching in collisions with O atoms, and in the reaction with O+(4S). The distribution of vibrational levels is rearranged by vibrational-vibrational transitions, and by molecular diffusion vertically in the atmosphere. A computational model that includes these processes and predicts the electron density as a function of height in the ionosphere is described. This model is a combination of a "statistical equilibrium" calculation, which is used to predict the populations of the excited states of N2, and a time-step calculation of the atmospheric reactions and processes. The latter includes a calculation of photoionisation down through the atmosphere as a function of time of day and solar activity, and calculations at 0.1 s intervals of the changing densities of positive ions, electrons and N2 in the different vibrational levels. The validity of the model is tested by comparison of the predicted electron densities with the International Reference Ionosphere (IRI) of electron density measurements. The contribution of various input parameters can be investigated by their effect on the accuracy of the calculated electron densities. Here the effects of two different sets of rate constants for the reaction of vibrationally excited N2 with O+(4S) are investigated. For reference, predictions using the different sets are compared with laboratory measurements. Then the effect of using the different sets in the computational model of the ionosphere is investigated. It is shown that one set gives predictions of electron densities that are in reasonable agreement with the IRI, while the other set does not. Both sets result in underestimation of the electron density at the height of the peak electron density in the atmosphere, suggesting that either the amount of vibrational excitation or the rate constants may be overestimated. Our comparison is made for two cases with different conditions, to give an indication of the limitations of the atmospheric modeling and also insight into ways in which the sets of rate constants may be deficient.
The CIV processes in the CRIT experiments
NASA Astrophysics Data System (ADS)
Papadopoulos, K.
1992-03-01
A qualitative analysis is conducted to reconcile the experimental data from critical ionization velocity (CIV) studies with CIV theories. The experimental data are reviewed demonstrating that: (1) the wave frequency is variable and low; (2) the wave polarization is almost isotropic; (3) electron energization is not easily reconciled with the observed wave spectrum; and (4) ambient electron density plays a role in determining CIV triggering conditions. Analytical treatment is given to the dispersion relation of the lower hybrid wave (LWH) instability driven by the streaming of an ion beam generated by the interaction of the neutral cloud with the ambient atmosphere. By incorporating the LWH instabilities of strong turbulence and finite-size effects into theoretical CIV relationships, the observations can be interpreted. The issues raised by the experimental data are understood within the context of a hypothesis of backward propagating nonlinearly collapsing wavepackets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Won-Hwi; Dang, Jeong-Jeung; Kim, June Young
2016-02-15
Transverse magnetic filter field as well as operating pressure is considered to be an important control knob to enhance negative hydrogen ion production via plasma parameter optimization in volume-produced negative hydrogen ion sources. Stronger filter field to reduce electron temperature sufficiently in the extraction region is favorable, but generally known to be limited by electron density drop near the extraction region. In this study, unexpected electron density increase instead of density drop is observed in front of the extraction region when the applied transverse filter field increases monotonically toward the extraction aperture. Measurements of plasma parameters with a movable Langmuirmore » probe indicate that the increased electron density may be caused by low energy electron accumulation in the filter region decreasing perpendicular diffusion coefficients across the increasing filter field. Negative hydrogen ion populations are estimated from the measured profiles of electron temperatures and densities and confirmed to be consistent with laser photo-detachment measurements of the H{sup −} populations for various filter field strengths and pressures. Enhanced H{sup −} population near the extraction region due to the increased low energy electrons in the filter region may be utilized to increase negative hydrogen beam currents by moving the extraction position accordingly. This new finding can be used to design efficient H{sup −} sources with an optimal filtering system by maximizing high energy electron filtering while keeping low energy electrons available in the extraction region.« less
Electronically cloaked nanoparticles
NASA Astrophysics Data System (ADS)
Shen, Wenqing
The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.
Augmented Ehrenfest dynamics yields a rate for surface hopping
NASA Astrophysics Data System (ADS)
Subotnik, Joseph E.
2010-04-01
We present a new algorithm for mixed quantum-classical dynamics that helps bridge the gap between mean-field (Ehrenfest) and surface-hopping dynamics by defining a natural rate of decoherence. In order to derive this decoherence result, we have expanded the number of independent variables in the usual Ehrenfest routine so that mixed quantum-classical derivatives are now propagated in time alongside the usual Ehrenfest variables. Having done so, we compute a unique rate of decoherence using two independent approaches: (i) by comparing the equations of motion for the joint nuclear-electronic probability density in phase space according to Ehrenfest dynamics versus partial Wigner transform dynamics and (ii) by introducing a frozen Gaussian interpretation of Ehrenfest dynamics which allows nuclear wave packets to separate. The first consequence of this work is a means to rigorously check the accuracy of standard Ehrenfest dynamics. Second, this paper suggests a nonadiabatic dynamics algorithm, whereby the nuclei are propagated on the mean-field (Ehrenfest) potential energy surface and undergo stochastic decoherence events. Our work resembles the surface-hopping algorithm of Schwartz and co-workers [J. Chem. Phys. 123, 234106 (2005)]—only now without any adjustable parameters. For the case of two electronic states, we present numerical results on the so-called "Tully problems" and emphasize that future numerical benchmarking is still needed. Future work will also treat the problem of three or more electronic states.
Real-Space Multiple-Scattering Theory and Its Applications at Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenbach, Markus; Wang, Yang
In recent decades, the ab initio methods based on density functional theory (DFT) (Hohenberg and Kohn 1964, Kohn and Sham 1965) have become a widely used tool in computational materials science, which allows theoretical prediction of physical properties of materials from the first principles and theoretical interpretation of new physical phenomena found in experiments. In the framework of DFT, the original problem that requires solving a quantum mechanical equation for a many-electron system is reduced to a one-electron problem that involves an electron moving in an effective field, while the effective field potential is made up of an electrostatic potential,more » also known as Hartree potential, arising from the electronic and ion charge distribution in space and an exchange–correlation potential, which is a function of the electron density and encapsulates the exchange and correlation effects of the many-electron system. Even though the exact functional form of the exchange-correlation potential is formally unknown, a local density approximation (LDA) or a generalized gradient approximation (GGA) is usually applied so that the calculation of the exchange–correlation potential, as well as the exchange–correlation energy, becomes tractable while a required accuracy is retained. Based on DFT, ab initio electronic structure calculations for a material generally involve a self-consistent process that iterates between two computational tasks: (1) solving an one-electron Schrödinger equation, also known as Kohn–Sham equation, to obtain the electron density and, if needed, the magnetic moment density, and (2) solving the Poisson equation to obtain the electrostatic potential corresponding to the electron density and constructing the effective potential by adding the exchange–correlation potential to the electrostatic potential. This self-consistent process proceeds until a convergence criteria is reached.« less
Symmetry properties of the electron density and following from it limits on the KS-DFT applications
NASA Astrophysics Data System (ADS)
Kaplan, Ilya G.
2018-03-01
At present, the Density Functional Theory (DFT) approach elaborated by Kohn with co-authors more than 50 years ago became the most widely used method for study molecules and solids. Using modern computation facilities, it can be applied to systems with million atoms. In the atmosphere of such great popularity, it is particularly important to know the limits of the applicability of DFT methods. In this report, I will discuss two cases when the conventional DFT approaches, using only electron density ρ and its gradients, cannot be applied (I will not consider the Ψ-versions of DFT). The first case is quite evident. In the degenerated states, the electron density may not be defined, since electronic and nuclear motions cannot be separated, the vibronic interaction mixed them. The second case is related to the spin of the state. As it was rigorously proved by group theoretical methods at the theorem level, the electron density does not depend on the total spin S of the arbitrary N-electron state. It means that the Kohn-Sham equations have the same form for states with different S. The critical survey of elaborated DFT procedures, taking into account spin, shows that they modified only exchange functionals, the correlation functionals do not correspond to the spin of the state. The point is that the conception of spin cannot be defined in the framework of the electron density formalism, which corresponds to the one-particle reduced density matrix. This is the main reason of the problems arising in the study by DFT of magnetic properties of the transition metals. The possible way of resolving these problems can be found in the two-particle reduced density matrix formulation of DFT.
The Relationship between Ionospheric Slab Thickness and the Peak Density Height, hmF2
NASA Astrophysics Data System (ADS)
Meehan, J.; Sojka, J. J.
2017-12-01
The electron density profile is one of the most critical elements in the ionospheric modeling-related applications today. Ionosphere parameters, hmF2, the height of the peak density layer, and slab thickness, the ratio of the total electron content, TEC, to the peak density value, NmF2, are generally obtained from any global sounding observation network and are easily incorporated into models, theoretical or empirical, as numerical representations. Slab thickness is a convenient one-parameter summary of the electron density profile and can relate a variety of elements of interest that effect the overall electron profile shape, such as the neutral and ionospheric temperatures and gradients, the ionospheric composition, and dynamics. Using ISR data from the 2002 Millstone Hill ISR data campaign, we found, for the first time, slab thickness to be correlated to hmF2. For this, we introduce a new ionospheric index, k, which ultimately relates electron density parameters and can be a very useful tool for describing the topside ionosphere shape. Our study is an initial one location, one season, 30-day study, and future work is needed to verify the robustness of our claim. Generally, the ionospheric profile shape, requires knowledge of several ionospheric parameters: electron, ion and neutral temperatures, ion composition, electric fields, and neutral winds, and is dependent upon seasons, local time, location, and the level of solar and geomagnetic activity; however, with this new index, only readily-available, ionospheric density information is needed. Such information, as used in this study, is obtained from a bottomside electron density profile provided by an ionosonde, and TEC data provided by a local, collocated GPS receiver.
Plasma response to the injection of an electron beam
NASA Technical Reports Server (NTRS)
Singh, N.; Schunk, R. W.
1984-01-01
The results of Vlasov-Poisson-solver numerical simulations of the detailed temporal response of a Maxwellian plasma to the sudden injection of an electron beam are presented in graphs and maps and discussed. Phenomena characterized include ion bursts, electron shocks and holes, plasma heating and expulsion, density gradients; cavitons, deep-density-front and solitary-pulse propagation down the density gradient, and Bunemann-mode excitation leading to formation of a virtual cathode and double layers which are at first monotonic or have low-potential-side dips or high-potential-side bumps and become strong as the electron-current density decreases. The strength of the double layer is found to be roughly proportional to the beam energy.
Measuring the density of a molecular cluster injector via visible emission from an electron beam.
Lundberg, D P; Kaita, R; Majeski, R; Stotler, D P
2010-10-01
A method to measure the density distribution of a dense hydrogen gas jet is presented. A Mach 5.5 nozzle is cooled to 80 K to form a flow capable of molecular cluster formation. A 250 V, 10 mA electron beam collides with the jet and produces H(α) emission that is viewed by a fast camera. The high density of the jet, several 10(16) cm(-3), results in substantial electron depletion, which attenuates the H(α) emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.
NASA Astrophysics Data System (ADS)
Huang, Z.; Roussel-Dupre, R.
2003-12-01
The total electron content (TEC) of ionosphere and its electron density irregularities (scintillation) have effects of degradation and disruption on radio signals passed between ground stations and orbiting man-made satellites. With the rapid increase in operational reliance on UHF/VHF satellite communication, it is desirable to obtain understandings of ionosphere TEC variability and scintillation characteristics to improve our ability of predicting satellite communication outages. In this work, data collected from FORTE satellite received LAPP (Los Alamos Portable Pulser) signals during 1998-2002 are used to derive TEC and ionospheric scintillation index at Los Alamos, New Mexico. To characterize in-situ TEC variability at Los Alamos, the FORTE-LAPP derived TECs are analyzed against diurnal, seasonal, solar activity, magnetic storm, and stratospheric warming. The results are also compared with the TEC estimates from the Los Alamos ionospheric transfer function (ITF) implemented with the global ionospheric models (IRI, PIM), and GPS -derived TEC maps. The FORTE-LAPP signals are also analyzed against two important measures of the effect of scintillation on broadband signals, the mean time delay and the time delay jitter. The results are used to examine coherence frequency bandwidth and compared with the predictions from a global scintillation model (WBMOD). The FORTE-LAPP analyzed and WBMOD predicted scintillation characteristics are used to investigate temporal and seasonal behavior of scintillation at Los Alamos.
Atomistic mechanisms of ReRAM cell operation and reliability
NASA Astrophysics Data System (ADS)
Pandey, Sumeet C.
2018-01-01
We present results from first-principles-based modeling that captures functionally important physical phenomena critical to cell materials selection, operation, and reliability for resistance-switching memory technologies. An atomic-scale description of retention, the low- and high-resistance states (RS), and the sources of intrinsic cell-level variability in ReRAM is discussed. Through the results obtained from density functional theory, non-equilibrium Green’s function, molecular dynamics, and kinetic Monte Carlo simulations; the role of variable-charge vacancy defects and metal impurities in determining the RS, the LRS-stability, and electron-conduction in such RS is reported. Although, the statistical electrical characteristics of the oxygen-vacancy (Ox-ReRAM) and conductive-bridging RAM (M-ReRAM) are notably different, the underlying similar electrochemical phenomena describing retention and formation/dissolution of RS are being discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jianwei; Yang, Zenghui; Peng, Haowei
The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin densitymore » approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.« less
NASA Astrophysics Data System (ADS)
John, Sajeev; Golubentsev, Andrey
1995-01-01
It is suggested that an interacting many-electron system in a two-dimensional lattice may condense into a topological magnetic state distinct from any discussed previously. This condensate exhibits local spin-1/2 magnetic moments on the lattice sites but is composed of a Slater determinant of single-electron wave functions which exist in an orthogonal sector of the electronic Hilbert space from the sector describing traditional spin-density-wave or spiral magnetic states. These one-electron spinor wave functions have the distinguishing property that they are antiperiodic along a closed path encircling any elementary plaquette of the lattice. This corresponds to a 2π rotation of the internal coordinate frame of the electron as it encircles the plaquette. The possibility of spinor wave functions with spatial antiperiodicity is a direct consequence of the two-valuedness of the internal electronic wave function defined on the space of Euler angles describing its spin. This internal space is the topologically, doubly-connected, group manifold of SO(3). Formally, these antiperiodic wave functions may be described by passing a flux which couples to spin (rather than charge) through each of the elementary plaquettes of the lattice. When applied to the two-dimensional Hubbard model with one electron per site, this new topological magnetic state exhibits a relativistic spectrum for charged, quasiparticle excitations with a suppressed one-electron density of states at the Fermi level. For a topological antiferromagnet on a square lattice, with the standard Hartree-Fock, spin-density-wave decoupling of the on-site Hubbard interaction, there is an exact mapping of the low-energy one-electron excitation spectrum to a relativistic Dirac continuum field theory. In this field theory, the Dirac mass gap is precisely the Mott-Hubbard charge gap and the continuum field variable is an eight-component Dirac spinor describing the components of physical electron-spin amplitude on each of the four sites of the elementary plaquette in the original Hubbard model. Within this continuum model we derive explicitly the existence of hedgehog Skyrmion textures as local minima of the classical magnetic energy. These magnetic solitons carry a topological winding number μ associated with the vortex rotation of the background magnetic moment field by a phase angle 2πμ along a path encircling the soliton. Such solitons also carry a spin flux of μπ through the plaquette on which they are centered. The μ=1 hedgehog Skyrmion describes a local transition from the topological (antiperiodic) sector of the one-electron Hilbert space to the nontopological sector. We derive from first principles the existence of deep level localized electronic states within the Mott-Hubbard charge gap for the μ=1 and 2 solitons. The spectrum of localized states is symmetric about E=0 and each subgap electronic level can be occupied by a pair of electrons in which one electron resides primarily on one sublattice and the second electron on the other sublattice. It is suggested that flux-carrying solitons and the subgap electronic structure which they induce are important in understanding the physical behavior of doped Mott insulators.
Optical Diagnostics in the Gaseous Electronics Conference Reference Cell
Hebner, G. A.; Greenberg, K. E.
1995-01-01
A number of laser-induced fluorescence and absorption spectroscopy studies have been conducted using Gaseous Electronics Conference Reference Cells. Laser-induced fluorescence has been used to measure hydrogen atom densities, to measure argon metastable spatial profiles, to determine the sheath electric field, and to infer the electron density and temperature. Absorption spectroscopy, using lamp sources and diode lasers, has been used to measure metastable atom densities in helium and argon discharges and fluorocarbon densities in silicon etching discharges. The experimental techniques and sample results of these investigations are reviewed. PMID:29151748
Electron momentum density and band structure calculations of α- and β-GeTe
NASA Astrophysics Data System (ADS)
Vadkhiya, Laxman; Arora, Gunjan; Rathor, Ashish; Ahuja, B. L.
2011-12-01
We have measured isotropic experimental Compton profile of α-GeTe by employing high energy (662 keV) γ-radiation from a 137Cs isotope. To compare our experiment, we have also computed energy bands, density of states, electron momentum densities and Compton profiles of α- and β-phases of GeTe using the linear combination of atomic orbitals method. The electron momentum density is found to play a major role in understanding the topology of bands in the vicinity of the Fermi level. It is seen that the density functional theory (DFT) with generalised gradient approximation is relatively in better agreement with the experiment than the local density approximation and hybrid Hartree-Fock/DFT.
NASA Technical Reports Server (NTRS)
Berman, A. L.
1977-01-01
Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, A. A., E-mail: frolov@ihed.ras.ru
2016-12-15
A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable withmore » the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.« less
Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals
NASA Astrophysics Data System (ADS)
Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.
2016-12-01
The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.
Solar corona electron density distribution
NASA Astrophysics Data System (ADS)
Esposito, P. B.; Edenhofer, P.; Lueneburg, E.
1980-07-01
The paper discusses the three and one-half months of single-frequency time delay data which were acquired from the Helios 2 spacecraft around the time of its solar occultation. The excess time delay due to integrated effect of free electrons along the signal's ray path could be separated and modeled following the determination of the spacecraft trajectory. An average solar corona and equatorial electron density profile during solar minimum were deduced from the time delay measurements acquired within 5-60 solar radii of the sun. As a point of reference at 10 solar radii from the sun, an average electron density was 4500 el/cu cm. However, an asymmetry was found in the electron density as the ray path moved from the west to east solar limb. This may be related to the fact that during entry into occultation the heliographic latitude of the ray path was about 6 deg, while during exit it was 7 deg. The Helios density model is compared with similar models deduced from different experimental techniques.
Fast electron microscopy via compressive sensing
Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W
2014-12-09
Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R.
The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy wasmore » modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.« less
Laser induced photo-detachment of O2 in DC discharge
NASA Astrophysics Data System (ADS)
J, R. LEGORRETA; J, L. PATIÑO; F, B. YOUSIF
2018-07-01
Determination of the negative ion number density of {{{O}}}{{2}}- and {{{O}}}- in a DC discharge of oxygen plasma was made employing Langmuir probe in conjunction with eclipse laser photo-detachment technique. The temporal evolution of the extra electrons resulting from the photo-detachment of {{{O}}}{{2}}- and {{{O}}}- were used to evaluate the negative ion number density. The ratio of {{{O}}}{{2}}- number density to {{{O}}}- varied from 0.03 to 0.22. Number density of both {{{O}}}{{2}}- and {{{O}}}- increased with increasing power and decreased as the pressure was increased. Electron number density was evaluated from the electron energy distribution function (EEDF) using the I–V recorded characteristic curves. Electron temperature between 2 and 2.7 eV were obtained. Influence of the {{{O}}}{{2}}({a}{{1}}{{{Δ }}}{{g}}) metastable state is discussed.
Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.
Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G
2018-06-19
The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.
Kevin L. O' Hara; Lathrop P. Leonard; Christopher R. Keyes
2012-01-01
Variable-density thinning (VDT) is an emerging thinning method that attempts to enhance stand structural heterogeneity by deliberately thinning at different intensities throughout a stand. VDT may create stands with dense areas, open areas, and other areas that may be intermediate in density. Subsequent stand development forms a more varied structure than is...
Probing Electron Dynamics with the Laplacian of the Momentum Density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, N.; MacDougall, Preston J.; Levit, M. Creon
2012-09-24
This chapter in the above-titled monograph presents topological analysis of the Laplacian of the electron momentum density in organic molecules. It relates topological features in this distribution to chemical and physical properties, particularly aromaticity and electron transport.
NASA Astrophysics Data System (ADS)
Li, Chen; Requist, Ryan; Gross, E. K. U.
2018-02-01
We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇Rχ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation—an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boerner, M.; Frank, A.; Pelka, A.
2012-04-15
This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10{sup 18} cm{sup -3}, the maximal one is 2 x 10{sup 20} cm{sup -3}. Furthermore, it provides a resolution of the electron density in space of 50 {mu}m and in time of 0.5 ns for one image with amore » customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.« less
NASA Astrophysics Data System (ADS)
Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki
2016-09-01
The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.
Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel
2007-01-08
Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.
NASA Technical Reports Server (NTRS)
Smith, J. R.
1969-01-01
Electron work functions, surface potentials, and electron number density distributions and electric fields in the surface region of 26 metals were calculated from first principles within the free electron model. Calculation proceeded from an expression of the total energy as a functional of the electron number density, including exchange and correlation energies, as well as a first inhomogeneity term. The self-consistent solution was obtained via a variational procedure. Surface barriers were due principally to many-body effects; dipole barriers were small only for some alkali metals, becoming quite large for the transition metals. Surface energies were inadequately described by this model, which neglects atomistic effects. Reasonable results were obtained for electron work functions and surface potential characteristics, maximum electron densities varying by a factor of over 60.
Beta electron fluxes inside a magnetic plasma cavern: Calculation and comparison with experiment
NASA Astrophysics Data System (ADS)
Stupitskii, E. L.; Smirnov, E. V.; Kulikova, N. A.
2010-12-01
We study the possibility of electrostatic blanking of beta electrons in the expanding spherical blob of a radioactive plasma in a rarefied ionosphere. From numerical studies on the dynamics of beta electrons departing a cavern, we obtain the form of a function that determines the portion of departing electrons and calculate the flux density of beta electrons inside the cavern in relation to the Starfish Prime nuclear blast. We show that the flux density of electrons in geomagnetic flux tubes and inside the cavern depend on a correct allowance for the quantity of beta electrons returning to the cavern. On the basis of a physical analysis, we determine the approximate criterion for the return of electrons from a geomagnetic flux tube to the cavern. We compare calculation results in terms of the flux density of beta electrons inside the cavern with the recently published experimental results from operation Starfish Prime.
NASA Astrophysics Data System (ADS)
Callewaert, Vincent; Saniz, Rolando; Barbiellini, Bernardo; Bansil, Arun; Partoens, Bart
2017-08-01
We discuss positron-annihilation lifetimes for a set of illustrative bulk materials within the framework of the weighted-density approximation (WDA). The WDA can correctly describe electron-positron correlations in strongly inhomogeneous systems, such as surfaces, where the applicability of (semi-)local approximations is limited. We analyze the WDA in detail and show that the electrons which cannot screen external charges efficiently, such as the core electrons, cannot be treated accurately via the pair correlation of the homogeneous electron gas. We discuss how this problem can be addressed by reducing the screening in the homogeneous electron gas by adding terms depending on the gradient of the electron density. Further improvements are obtained when core electrons are treated within the LDA and the valence electron using the WDA. Finally, we discuss a semiempirical WDA-based approach in which a sum rule is imposed to reproduce the experimental lifetimes.
The preplasma effect on the properties of the shock wave driven by a fast electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llor Aisa, E.; Ribeyre, X.; Tikhonchuk, V. T.
2016-08-15
Strong shock wave generation by a mono-energetic fast electron beam in a plasma with an increasing density profile is studied theoretically. The proposed analytical model describes the shock wave characteristics for a homogeneous plasma preceded by a low density precursor. The shock pressure and the time of shock formation depend on the ratio of the electron stopping length to the preplasma areal density and on the initial energy of injected electrons. The conclusions of theoretical model are confirmed in numerical simulations.
2016-04-01
noise, and energy relaxation for doped zinc-oxide and structured ZnO transistor materials with a 2-D electron gas (2DEG) channel subjected to a strong...function on the time delay. Closed symbols represent the Monte Carlo data with hot-phonon effect at different electron gas density: 1•1017 cm-3...Monte Carlo simulation is performed for electron gas density of 1•1018 cm-3. Figure 18. Monte Carlo simulation of density-dependent hot-electron energy
Spectral density method to Anderson-Holstein model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chebrolu, Narasimha Raju, E-mail: narasimharaju.phy@gmail.com; Chatterjee, Ashok
Two-parameter spectral density function of a magnetic impurity electron in a non-magnetic metal is calculated within the framework of the Anderson-Holstein model using the spectral density approximation method. The effect of electron-phonon interaction on the spectral function is investigated.
A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons
NASA Astrophysics Data System (ADS)
Green, J. C.; Kivelson, M. G.
2001-11-01
Using data from the Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD)-High Sensitivity Telescope (HIST) instrument on the Polar spacecraft and ground magnetometer data from the 210 meridian magnetometer chain, we test the ULF wave drift resonance theory proposed to explain relativistic electron phase space density enhancements. We begin by investigating changes in electron flux due to the ``Dst effect.'' The Dst effect refers to the adiabatic response of relativistic electrons to changes in the magnetic field characterized by the Dst index. The Dst effect, assuming no loss or addition of new electrons, produces reversible order of magnitude changes in relativistic electrons flux measured at fixed energy, but it cannot account for the flux enhancement that occurs in the recovery phase of most storms. Liouville's theorem states that phase space density expressed in terms of constant adiabatic invariants is unaffected by adiabatic field changes and thus is insensitive to the Dst effect. It is therefore useful to express flux measurements in terms of phase space densities at constant first, second and third adiabatic invariants. The phase space density is determined from the CEPPAD-HIST electron detector that measures differential directional flux of electrons from 0.7 to 9 MeV and the Tsyganenko 96 field model. The analysis is done for January to June 1997. The ULF wave drift resonance theory that we test proposes that relativistic electrons are accelerated by an m=2 toroidal or poloidal mode wave whose frequency equals the drift frequency of the electron. The theory is tested by comparing the relativistic electron phase space densities to wave power determined at three ground stations with L* values of 4.0, 5.7 and 6.2. Comparison of the wave data to the phase space densities shows that five out of nine storm events are consistent with the ULF wave drift resonance mechanism, three out of nine give ambiguous support to the model, and one event has high ULF wave power at the drift frequency of the electrons but no corresponding phase space density enhancement suggesting that ULF wave power alone is not sufficient to cause an electron response. Two explanations of the anomalous event are investigated including excessive loss of electrons to the magnetopause and wave duration.
NASA Astrophysics Data System (ADS)
Kervalishvili, Guram; Lühr, Hermann
2014-05-01
We present climatology of the relationship of cusp-related density enhancement with the neutral zonal wind velocity, large-scale field-aligned current (FAC), small-scale FAC, and electron temperature using the superposed epoch analysis (SEA) method. The dependence of these variables on the interplanetary magnetic field (IMF) By component orientation and solar cycle are of particular interest. In addition, the obtained results of relative density enhancement (ρrel), zonal wind, electron temperature and FAC are subdivided into three local seasons of 130 days each: local winter (1 January ±65 days), combined equinoxes (1 April ±32 days and 1 October ±32 days), and local summer (1 July ±65 days). Our investigation is based on CHAMP satellite observations and NASA/GSFC's OMNI online data set for solar maximum (Mar/2002-2007) and minimum (Mar/2004-2009) conditions in the Northern Hemisphere. The SEA technique uses the time and location of the thermospheric mass density anomaly peaks as reference parameters. The relative amplitude of cusp-related density enhancement does on average not depend on the IMF By orientation, solar cycle phase, and local season. Also, it is apparent that the IMF By amplitude does not have a big influence on the relative amplitude of the density anomaly. Conversely, there exists a good correlation between ρrel and the negative amplitude of IMF Bz prevailing about half an hour earlier. In the cusp region, both large-scale FAC distribution and thermospheric zonal wind velocity exhibit a clear dependence on the IMF By orientation. In the case of positive (negative) IMF By there is a systematic imbalance between downward (upward) and upward (downward) FACs peaks equatorward and poleward of the reference point, respectively. The zonal wind velocity is directed towards west i.e. towards dawn in a geomagnetic latitude-magnetic local time (MLat-MLT) frame. This is true for all local seasons and solar conditions. The thermospheric density enhancements appear half way between Region 1 (R1) and Region 0 (R0) field-aligned currents, in closer proximity to the upward FAC region. In our case R0 currents are systematically weaker than R1 ones. Also, around the cusp region we find no sign of Region 2 field-aligned currents. We can conclude that there is a close spatial relationship between FACs and cusp-related density enhancements, but we cannot offer any simple functional relation between field-aligned current strength and density anomaly amplitude. There seem to be other quantities (e.g. precipitating electrons) controlling this relation. All the conclusions drawn above are true for the Northern Hemisphere. There may be differences in the Southern Hemisphere.
Basis convergence of range-separated density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less
NASA Astrophysics Data System (ADS)
Alizadeh, M.; Schuh, H.; Schmidt, M. G.
2012-12-01
In the last decades Global Navigation Satellite System (GNSS) has turned into a promising tool for probing the ionosphere. The classical input data for developing Global Ionosphere Maps (GIM) is obtained from the dual-frequency GNSS observations. Simultaneous observations of GNSS code or carrier phase at each frequency is used to form a geometric-free linear combination which contains only the ionospheric refraction term and the differential inter-frequency hardware delays. To relate the ionospheric observable to the electron density, a model is used that represents an altitude-dependent distribution of the electron density. This study aims at developing a global multi-dimensional model of the electron density using simulated GNSS observations from about 150 International GNSS Service (IGS) ground stations. Due to the fact that IGS stations are in-homogenously distributed around the world and the accuracy and reliability of the developed models are considerably lower in the area not well covered with IGS ground stations, the International Reference Ionosphere (IRI) model has been used as a background model. The correction term is estimated by applying spherical harmonics expansion to the GNSS ionospheric observable. Within this study this observable is related to the electron density using different functions for the bottom-side and top-side ionosphere. The bottom-side ionosphere is represented by an alpha-Chapman function and the top-side ionosphere is represented using the newly proposed Vary-Chap function.aximum electron density, IRI background model (elec/m3), day 202 - 2010, 0 UT eight of maximum electron density, IRI background model (km), day 202 - 2010, 0 UT
NASA Technical Reports Server (NTRS)
Guth, P.; Norris, C.; Fermin, C. D.; Pantoja, M.
1993-01-01
Synaptic bodies (SBs) associated with rings of synaptic vesicles and well-defined, pre- and post-synaptic membrane structures are indicators of maturity in most hair cell-afferent nerve junctions. The role of the SBs remains elusive despite several experiments showing that they may be involved in storage of neurotransmitter. Our results demonstrate that SBs of the adult posterior semicircular canal (SCC) cristae hair cells become less electron dense following incubation of the SCC with the transmitter-depleting drug tetrabenazine (TBZ). Objective quantification and comparison of the densities of the SBs in untreated and TBZ-treated frog SCC demonstrated that TBZ significantly decreased the electron density of SBs. This reduction in electron density was accompanied by a reduction in firing rates of afferent fibers innervating the posterior SCC. A second transmitter-depleting drug, guanethidine, previously shown to reduce the electron density of hair cell SBs, also reduced the firing rates of afferent fibers innervating the posterior SCC. In contrast, the electron density of dense granules (DG), similar in size and shape to synaptic bodies (SB) in hair cells, did not change after incubation in TBZ, thus indicating that granules and SBs are not similar in regard to their electron density. The role of SBs in synaptic transmission and the transmitter, if any, stored in the SBs remain unknown. Nonetheless, the association of the lessening of electron density with a reduction in afferent firing rate provides impetus for the further investigation of the SB's role in neurotransmission.
Lindskoug, B; Hultborn, A
1976-04-01
The density (g cm-3) and electron density (cm-3) of material from the anterior chest wall was determined. On the average, the difference in density between rib bone and intercostal soft tissue amounted to 17 per cent, while the difference in electron density was 7 per cent. The attenuation of high-energy electrons in specimens of rib bone, costal cartilage and sternum was determined by an experimental technique, using dosimeters of TLD material. The results of determinations of attenuation of 10 and 13 MeV electrons in fresh specimens are presented. It is concluded that electron radiation in the energy range of 10 to 13 MeV can be utilized for irradiation of lymph glands along the internal thoracic vessels without risk of underdosage.
Putz, Mihai V.
2009-01-01
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467
Putz, Mihai V
2009-11-10
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.
Electron density and gas density measurements in a millimeter-wave discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.
2016-08-15
Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal tomore » the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.« less
Electron-density-sensitive Line Ratios of Fe xiii– xvi from Laboratory Sources Compared to CHIANTI
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; ...
2018-02-15
We present electron-density-sensitive line ratios for Fe xiii– xvi measured in the spectral wavelength range of 200–440 Å and an electron density range of (1-4) × 10 13 cm -3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrumentmore » was relatively calibrated using spectroscopic techniques in order to improve accuracy. Lastly, the line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.« less
Ab-initio study on electronic properties of rocksalt SnAs
NASA Astrophysics Data System (ADS)
Babariya, Bindiya; Vaghela, M. V.; Gajjar, P. N.
2018-05-01
Within the frame work of Local Density Approximation of Exchange and Correlation, ab-initio method of density functional theory with Abinit code is used to compute electronic energy band structure, density of States and charge density of SnAs in rocksalt phase. Our result after optimization for lattice constant agrees with experimental value within 0.59% deviation. The computed electronic energy bands in high symmetry directions Γ→K→X→Γ→L→X→W→L→U shown metallic nature. The lowest band in the electronic band structure is showing band-gap approximately 1.70 eV from next higher band and no crossing between lowest two bands are seen. The density of states revels p-p orbit hybridization between Sn and As atoms. The spherical contour around Sn and As in the charge density plot represent partly ionic and partly covalent bonding. Fermi surface topology is the resultant effect of the single band crossing along L direction at Ef.
An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.
Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P
2016-02-01
X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.
Electron-density-sensitive Line Ratios of Fe xiii– xvi from Laboratory Sources Compared to CHIANTI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.
We present electron-density-sensitive line ratios for Fe xiii– xvi measured in the spectral wavelength range of 200–440 Å and an electron density range of (1-4) × 10 13 cm -3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrumentmore » was relatively calibrated using spectroscopic techniques in order to improve accuracy. Lastly, the line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.« less
NASA Astrophysics Data System (ADS)
Seo, Byonghoon; Kim, Dae-Woong; Kim, Jung-Hyung; You, Shinjae
2017-12-01
A "cutoff probe" uses microwaves to measure the electron density in a plasma. It is particularly attractive because it is easy to fabricate and use, its measurement is immune to surface contamination by dielectric materials, and it has a straightforward analysis to measure electron density in real time. In this work, we experimentally investigate the accuracy of the cutoff probe through a detailed comparison with Thomson scattering in a low temperature, high density processing plasma. The result shows that the electron density measured by the cutoff probe is lower than that by Thomson scattering and that the discrepancy of the two results becomes smaller as the gap between the two tips increases and/or the neutral gas pressure decreases. The underestimated electron density found by the cutoff probe can be explained by the influence of the probe holder, which becomes important as the pressure increases and the gap gets closer.
Global plasma oscillations in electron internal transport barriers in TCV
NASA Astrophysics Data System (ADS)
Udintsev, V. S.; Sauter, O.; Asp, E.; Fable, E.; Goodman, T. P.; Turri, G.; Graves, J. P.; Scarabosio, A.; Zhuang, G.; Zucca, C.; TCV Team
2008-12-01
In the Tokamak à Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q >= 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.
Preliminary Study of a Hybrid Helicon-ECR Plasma Source
NASA Astrophysics Data System (ADS)
M. Hala, A.; Oksuz, L.; Ximing, Zhu
2016-08-01
A new type of hybrid discharge is experimentally investigated in this work. A helicon source and an electron cyclotron resonance (ECR) source were combined to produce plasma. As a preliminary study of this type of plasma, the optical emission spectroscopy (OES) method was used to obtain values of electron temperature and density under a series of typical conditions. Generally, it was observed that the electron temperature decreases and the electron density increases as the pressure increased. When increasing the applied power at a certain pressure, the average electron density at certain positions in the discharge does not increase significantly possibly due to the high degree of neutral depletion. Electron temperature increased with power in the hybrid mode. Possible mechanisms of these preliminary observations are discussed.
Improved first-pass spiral myocardial perfusion imaging with variable density trajectories.
Salerno, Michael; Sica, Christopher; Kramer, Christopher M; Meyer, Craig H
2013-11-01
To develop and evaluate variable-density spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve signal-to-noise ratio (SNR) and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in eight patients with cardiac pathology on a 1.5T scanner. By using a DCF, which intentionally apodizes the k-space data, the sidelobe amplitude of the theoretical point spread function (PSF) is reduced by 68%, with only a 13% increase in the full-width at half-maximum of the main-lobe when compared with the same data corrected with a conventional variable-density DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR when compared with the same variable-density spiral data corrected with a conventional DCF (P < 0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Variable-density spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and contrast-to-noise ratio, and good delineation of resting perfusion abnormalities. Copyright © 2012 Wiley Periodicals, Inc.
Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density
NASA Astrophysics Data System (ADS)
Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing
2017-12-01
Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.
Use of noncrystallographic symmetry for automated model building at medium to low resolution.
Wiegels, Tim; Lamzin, Victor S
2012-04-01
A novel method is presented for the automatic detection of noncrystallographic symmetry (NCS) in macromolecular crystal structure determination which does not require the derivation of molecular masks or the segmentation of density. It was found that throughout structure determination the NCS-related parts may be differently pronounced in the electron density. This often results in the modelling of molecular fragments of variable length and accuracy, especially during automated model-building procedures. These fragments were used to identify NCS relations in order to aid automated model building and refinement. In a number of test cases higher completeness and greater accuracy of the obtained structures were achieved, specifically at a crystallographic resolution of 2.3 Å or poorer. In the best case, the method allowed the building of up to 15% more residues automatically and a tripling of the average length of the built fragments.
Influence of defects on the absorption edge of InN thin films: The band gap value
NASA Astrophysics Data System (ADS)
Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.
2007-07-01
We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.
On the modelling of scalar and mass transport in combustor flows
NASA Technical Reports Server (NTRS)
Nikjooy, M.; So, R. M. C.
1989-01-01
Results are presented of a numerical study of swirling and nonswirling combustor flows with and without density variations. Constant-density arguments are used to justify closure assumptions invoked for the transport equations for turbulent momentum and scalar fluxes, which are written in terms of density-weighted variables. Comparisons are carried out with measurements obtained from three different axisymmetric model combustor experiments covering recirculating flow, swirling flow, and variable-density swirling flow inside the model combustors. Results show that the Reynolds stress/flux models do a credible job of predicting constant-density swirling and nonswirling combustor flows with passive scalar transport. However, their improvements over algebraic stress/flux models are marginal. The extension of the constant-density models to variable-density flow calculations shows that the models are equally valid for such flows.
NASA Astrophysics Data System (ADS)
Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.
2017-06-01
Spectral investigations of low-temperature photoionized plasmas created in a Kr/Ne/H2 gas mixture were performed. The low-temperature plasmas were generated by gas mixture irradiation using extreme ultraviolet pulses from a laser-plasma source. Emission spectra in the ultraviolet/visible range from the photoionized plasmas contained lines that mainly corresponded to neutral atoms and singly charged ions. Temporal variations in the plasma electron temperature and electron density were studied using different characteristic emission lines at various delay times. Results, based on Kr II lines, showed that the electron temperature decreased from 1.7 to 0.9 eV. The electron densities were estimated using different spectral lines at each delay time. In general, except for the Hβ line, in which the electron density decreased from 3.78 × 1016 cm-3 at 200 ns to 5.77 × 1015 cm-3 at 2000 ns, most of the electron density values measured from the different lines were of the order of 1015 cm-3 and decreased slightly while maintaining the same order when the delay time increased. The time dependences of the measured and simulated intensities of a spectral line of interest were also investigated. The validity of the partial or full local thermodynamic equilibrium (LTE) conditions in plasma was explained based on time-resolved electron density measurements. The partial LTE condition was satisfied for delay times in the 200 ns to 1500 ns range. The results are summarized, and the dominant basic atomic processes in the gas mixture photoionized plasma are discussed.
Kurtis E. Steele
2013-01-01
Variable-density thinning has received a lot of public attention in recent years and has subsequently become standard language in most of the Willamette National Forestâs timber management projects. Many techniques have been tried, with varying on-the-ground successes. To accomplish variable-density thinning, the McKenzie River Ranger District currently uses...
Christopher R. Keyes; Thomas E. Perry; Jesse F. Plummer
2010-01-01
Variable-density thinning is emerging as a valuable tool for the silvicultural promotion of old-growth conditions in second-growth forests of the Pacific Coast. This paper reports on an experimental variable-density thinning prescription applied between 2006 and 2007 at north coastal Californiaâs Humboldt Redwoods State Park. The prescription strategy relied on known...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, E. M.; Rost, J. C.; Porkolab, M.
2016-11-15
Heterodyne interferometry and phase contrast imaging (PCI) are robust, mature techniques for measuring low-k and high-k electron density fluctuations, respectively. This work describes the first-ever implementation of a combined PCI–interferometer. The combined system uses a single 10.6 μm probe beam, two interference schemes, and two detectors to measure electron density fluctuations at large spatiotemporal bandwidth (10 kHz
Investigation of traveling ionospheric disturbances
NASA Technical Reports Server (NTRS)
Grossi, M.; Estes, R. D.
1981-01-01
Maximum entropy power spectra of the ionospheric electron density were constructed to enable PINY to compare them with the power independently obtained by PINY with in situ measurements of ionospheric electron density and neutral species performed with instrumentation carried by the Atmospheric Explorer (AE) satellite. This comparison corroborated evidence on the geophysical reality of the alleged electron density irregularities detected by the ASTP dual frequency Doppler link. Roughly half of the localized wave structures which are confined to dimensions of 1800 km or less (as seen by an orbiting Doppler baseline) were found to be associated with the larger crest of the geomagnetic anomaly in the Southern (winter) Hemisphere in the morning. The observed nighttime structures are also associated with local peaks in the electron density.
Likelihood-based modification of experimental crystal structure electron density maps
Terwilliger, Thomas C [Sante Fe, NM
2005-04-16
A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.
Temperature-dependent band structure of SrTiO3 interfaces
NASA Astrophysics Data System (ADS)
Raslan, Amany; Lafleur, Patrick; Atkinson, W. A.
2017-02-01
We build a theoretical model for the electronic properties of the two-dimensional (2D) electron gas that forms at the interface between insulating SrTiO3 and a number of polar cap layers, including LaTiO3, LaAlO3, and GdTiO3. The model treats conduction electrons within a tight-binding approximation and the dielectric polarization via a Landau-Devonshire free energy that incorporates strontium titanate's strongly nonlinear, nonlocal, and temperature-dependent dielectric response. The self-consistent band structure comprises a mix of quantum 2D states that are tightly bound to the interface and quasi-three-dimensional (3D) states that extend hundreds of unit cells into the SrTiO3 substrate. We find that there is a substantial shift of electrons away from the interface into the 3D tails as temperature is lowered from 300 K to 10 K. This shift is least important at high electron densities (˜1014cm-2 ) but becomes substantial at low densities; for example, the total electron density within 4 nm of the interface changes by a factor of two for 2D electron densities ˜1013cm-2 . We speculate that the quasi-3D tails form the low-density high-mobility component of the interfacial electron gas that is widely inferred from magnetoresistance measurements.
Martin, Joannie; Beauparlant, Martin; Sauvé, Sébastien; L'Espérance, Gilles
2016-12-01
Asbestos amosite fibers were investigated to evaluate the damage caused by a transmission electron microscope (TEM) electron beam. Since elemental x-ray intensity ratios obtained by energy dispersive x-ray spectroscopy (EDS) are commonly used for asbestos identification, the impact of beam damage on these ratios was evaluated. It was determined that the magnesium/silicon ratio best represented the damage caused to the fiber. Various tests showed that most fibers have a current density threshold above which the chemical composition of the fiber is modified. The value of this threshold current density varied depending on the fiber, regardless of fiber diameter, and in some cases could not be determined. The existence of a threshold electron dose was also demonstrated. This value was dependent on the current density used and can be increased by providing a recovery period between exposures to the electron beam. This study also established that the electron beam current is directly related to the damage rate above a current density of 165 A/cm 2 . The large number of different results obtained suggest, that in order to ensure that the amosite fibers are not damaged, analysis should be conducted below a current density of 100 A/cm 2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, Joseph E; Cayton, Thomas E; Denton, Michael H
Electron flux measurements from 7 satellites in geosynchronous orbit from 1990-2007 are fit with relativistic bi-Maxwellians, yielding a number density n and temperature T description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value ofn is 3.7x10-4 cm-3 and the median value ofT is 142 keY. General statistical properties of n, T, and the 1.1-1.5 MeV flux J are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis triggered on storm onset, the evolution of the outer electron radiation belt through high-speed-steam-driven storms is investigated. The number density decay during the calm before themore » storm is seen, relativistic-electron dropouts and recoveries from dropout are investigated, and the heating of the outer electron radiation belt during storms is examined. Using four different triggers (SSCs, southward-IMF CME sheaths, southward-IMF magnetic clouds, and minimum Dst), CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms an absence of a density decay prior to storm onset is found, the compression of the outer electron radiation belt at time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase is seen, and the increase in density and temperature during storm recovery phase is observed. Differences are found between the density-temperature and the flux descriptions, with more information for analysis being available in the density-temperature description.« less
Direct numerical simulation of incompressible acceleration-driven variable-density turbulence
NASA Astrophysics Data System (ADS)
Gat, Ilana; Matheou, Georgios; Chung, Daniel; Dimotakis, Paul
2015-11-01
Fully developed turbulence in variable-density flow driven by an externally imposed acceleration field, e.g., gravity, is fundamental in many applications, such as inertial confinement fusion, geophysics, and astrophysics. Aspects of this turbulence regime are poorly understood and are of interest to fluid modeling. We investigate incompressible acceleration-driven variable-density turbulence by a series of direct numerical simulations of high-density fluid in-between slabs of low-density fluid, in a triply-periodic domain. A pseudo-spectral numerical method with a Helmholtz-Hodge decomposition of the pressure field, which ensures mass conservation, is employed, as documented in Chung & Pullin (2010). A uniform dynamic viscosity and local Schmidt number of unity are assumed. This configuration encapsulates a combination of flow phenomena in a temporally evolving variable-density shear flow. Density ratios up to 10 and Reynolds numbers in the fully developed turbulent regime are investigated. The temporal evolution of the vertical velocity difference across the shear layer, shear-layer growth, mean density, and Reynolds number are discussed. Statistics of Lagrangian accelerations of fluid elements and of vorticity as a function of the density ratio are also presented. This material is based upon work supported by the AFOSR, the DOE, the NSF GRFP, and Caltech.
Matta, Chérif F; Arabi, Alya A
2011-06-01
The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.
Optimization of laser-plasma injector via beam loading effects using ionization-induced injection
NASA Astrophysics Data System (ADS)
Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.
2018-05-01
Simulations of ionization-induced injection in a laser driven plasma wakefield show that high-quality electron injectors in the 50-200 MeV range can be achieved in a gas cell with a tailored density profile. Using the PIC code Warp with parameters close to existing experimental conditions, we show that the concentration of N2 in a hydrogen plasma with a tailored density profile is an efficient parameter to tune electron beam properties through the control of the interplay between beam loading effects and varying accelerating field in the density profile. For a given laser plasma configuration, with moderate normalized laser amplitude, a0=1.6 and maximum electron plasma density, ne 0=4 ×1018 cm-3 , the optimum concentration results in a robust configuration to generate electrons at 150 MeV with a rms energy spread of 4% and a spectral charge density of 1.8 pC /MeV .
Alternative route to charge density wave formation in multiband systems.
Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A; Kemper, Alexander F; Devereaux, Thomas P; Chu, Jiun-Haw; Analytis, James G; Fisher, Ian R; Degiorgi, Leonardo
2013-01-02
Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe(3). Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors.
Single-Shot Visualization of Evolving Laser Wakefields Using an All-Optical Streak Camera
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Tsai, Hai-En; Zhang, Xi; Pai, Chih-Hao; Chang, Yen-Yu; Zgadzaj, Rafal; Wang, Xiaoming; Khudik, V.; Shvets, G.; Downer, M. C.
2014-08-01
We visualize ps-time-scale evolution of an electron density bubble—a wake structure created in atmospheric density plasma by an intense ultrashort laser pulse—from the phase "streak" that the bubble imprints onto a probe pulse that crosses its path obliquely. Phase streaks, recovered in one shot using frequency-domain interferometric techniques, reveal the formation, propagation, and coalescence of the bubble within a 3 mm long ionized helium gas target. 3D particle-in-cell simulations validate the observed density-dependent bubble evolution, and correlate it with the generation of a quasimonoenergetic ˜100 MeV electron beam. The results provide a basis for understanding optimized electron acceleration at a plasma density ne≈2×1019 cm-3, inefficient acceleration at lower density, and dephasing limits at higher density.
Proposed imaging of the ultrafast electronic motion in samples using x-ray phase contrast.
Dixit, Gopal; Slowik, Jan Malte; Santra, Robin
2013-03-29
Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.
Proposed Imaging of the Ultrafast Electronic Motion in Samples using X-Ray Phase Contrast
NASA Astrophysics Data System (ADS)
Dixit, Gopal; Slowik, Jan Malte; Santra, Robin
2013-03-01
Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11 636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the Laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.
Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe
2017-10-30
In this contribution, we extend our framework for analyzing and visualizing correlated many-electron dynamics to non-variational, highly scalable electronic structure method. Specifically, an explicitly time-dependent electronic wave packet is written as a linear combination of N-electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time-dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open-source Python program detCI@ORBKIT, which extends the capabilities of our recently published post-processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). From the output of standard quantum chemistry packages using atom-centered Gaussian-type basis functions, the framework exploits the multideterminental structure of the hybrid TDDFT/CIS wave packet to compute fundamental one-electron quantities such as difference electronic densities, transient electronic flux densities, and transition dipole moments. The hybrid scheme is benchmarked against wave function data for the laser-driven state selective excitation in LiH. It is shown that all features of the electron dynamics are in good quantitative agreement with the higher-level method provided a judicious choice of functional is made. Broadband excitation of a medium-sized organic chromophore further demonstrates the scalability of the method. In addition, the time-dependent flux densities unravel the mechanistic details of the simulated charge migration process at a glance. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Shoron, Omor F.; Park, Pil Sung
We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity showsmore » that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.« less
Using Phase Space Density Profiles to Investigate the Radiation Belt Seed Population
NASA Astrophysics Data System (ADS)
Boyd, A. J.; Spence, H.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.
2013-12-01
It is believed that particles with energies of 100s of keV play a critical role in the acceleration of electrons within the radiation belt. Through wave particle interactions, these so called 'seed electrons' can be accelerated up to energies greater than 1 MeV. Using data from the MagEIS (Magnetic Electron Ion Spectrometer) Instrument onboard the Van Allen Probes we calculate phase space density within the radiation belts over a wide range of mu and K values. These phase space density profiles are combined with those from THEMIS, in order to see how the phase space density evolves over a large range of L*. In this presentation we examine how the seed electron population evolves in both time and L* during acceleration events. Comparing this to the evolution of the higher mu electron population allows us to determine what role the seed electrons played in the acceleration process. Finally, we compare several of these storms to examine the importance of the seed population to the acceleration process.
Observations of electron heating during 28 GHz microwave power application in proto-MPEX
Biewer, Theodore M.; Bigelow, Tim S.; Caneses Marin, Juan F.; ...
2018-02-01
The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ~100 kW, 13.56 MHz RF helicon source, to which ~20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than themore » cut-off density (~0.9 × 1019 m -3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ~5 eV to ~20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (~1 mTorr.).« less
NASA Technical Reports Server (NTRS)
Edenhofer, P.; Lueneburg, E.; Esposito, P. B.; Martin, W. L.; Zygielbaum, A. I.; Hansen, R. T.; Hansen, S. F.
1978-01-01
S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements.
Observations of electron heating during 28 GHz microwave power application in proto-MPEX
NASA Astrophysics Data System (ADS)
Biewer, T. M.; Bigelow, T. S.; Caneses, J. F.; Diem, S. J.; Green, D. L.; Kafle, N.; Rapp, J.; Proto-MPEX Team
2018-02-01
The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ˜100 kW, 13.56 MHz RF helicon source, to which ˜20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than the cut-off density (˜0.9 × 1019 m-3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ˜5 eV to ˜20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (˜1 mTorr.).
On extending Kohn-Sham density functionals to systems with fractional number of electrons.
Li, Chen; Lu, Jianfeng; Yang, Weitao
2017-06-07
We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.
The influence of landscape features on road development in a loess region, China.
Bi, Xiaoli; Wang, Hui; Zhou, Rui
2011-10-01
Many ecologists focus on the effects of roads on landscapes, yet few consider how landscapes affect road systems. In this study, therefore, we quantitatively evaluated how land cover, topography, and building density affected the length density, node density, spatial pattern, and location of roads in Dongzhi Yuan, a typical loess region in China. Landscape factors and roads were mapped using images from SPOT satellite (Système Probatoire d'Observation de la Terre), initiated by the French space agency and a digital elevation model (DEM). Detrended canonical correspondence analysis (DCCA), a useful ordination technique to explain species-environment relations in community ecology, was applied to evaluate the ways in which landscapes may influence roads. The results showed that both farmland area and building density were positively correlated with road variables, whereas gully density and the coefficient of variation (CV of DEM) showed negative correlations. The CV of DEM, farmland area, grassland area, and building density explained variation in node density, length density, and the spatial pattern of roads, whereas gully density and building density explained variation in variables representing road location. In addition, node density, rather than length density, was the primary road variable affected by landscape variables. The results showed that the DCCA was effective in explaining road-landscape relations. Understanding these relations can provide information for landscape managers and transportation planners.
Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density
NASA Technical Reports Server (NTRS)
Scott, James R.
2011-01-01
Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.
Dynamics of the spatial electron density distribution of EUV-induced plasmas
NASA Astrophysics Data System (ADS)
van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.
2015-11-01
We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki; Ji, Hantao
2017-10-01
The perturbation in floating potential by an electron beam is detected by a 1D floating potential probe array to evaluate the use of an electron beam for magnetic field line mapping in the Magnetic Reconnection Experiment (MRX) plasma. The MRX plasma is relatively high density (1013 cm-3) and low temperature (5 eV). Beam electrons are emitted from a tungsten filament and are accelerated by a 200 V potential across the sheath. They stream along the magnetic field lines towards the probe array. The spatial electron beam density profile is assumed to be a Gaussian along the radial axis of MRX and the effective beam width is determined from the radial profile of the floating potential. The magnitude of the perturbation is in agreement with theoretical predictions and the location of the perturbation is also in agreement with field line mapping. In addition, no significant broadening of the electron beam is observed after propagation for tens of centimeters through the high density plasma. These results demonstrate that this method of field line mapping is, in principle, feasible in high density plasmas. This work is supported by the DOE Contract No. DE-AC0209CH11466.
Dynamics of electron injection in a laser-wakefield accelerator
NASA Astrophysics Data System (ADS)
Xu, J.; Buck, A.; Chou, S.-W.; Schmid, K.; Shen, B.; Tajima, T.; Kaluza, M. C.; Veisz, L.
2017-08-01
The detailed temporal evolution of the laser-wakefield acceleration process with controlled injection, producing reproducible high-quality electron bunches, has been investigated. The localized injection of electrons into the wakefield has been realized in a simple way—called shock-front injection—utilizing a sharp drop in plasma density. Both experimental and numerical results reveal the electron injection and acceleration process as well as the electron bunch's temporal properties. The possibility to visualize the plasma wave gives invaluable spatially resolved information about the local background electron density, which in turn allows for an efficient suppression of electron self-injection before the controlled process of injection at the sharp density jump. Upper limits for the electron bunch duration of 6.6 fs FWHM, or 2.8 fs (r.m.s.) were found. These results indicate that shock-front injection not only provides stable and tunable, but also few-femtosecond short electron pulses for applications such as ultrashort radiation sources, time-resolved electron diffraction or for the seeding of further acceleration stages.
Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography
NASA Astrophysics Data System (ADS)
Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.
2016-02-01
In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biewer, Theodore M.; Bigelow, Tim S.; Caneses Marin, Juan F.
The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ~100 kW, 13.56 MHz RF helicon source, to which ~20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than themore » cut-off density (~0.9 × 1019 m -3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ~5 eV to ~20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (~1 mTorr.).« less
Electron momentum density and Compton profile by a semi-empirical approach
NASA Astrophysics Data System (ADS)
Aguiar, Julio C.; Mitnik, Darío; Di Rocco, Héctor O.
2015-08-01
Here we propose a semi-empirical approach to describe with good accuracy the electron momentum densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we use an experimental Compton profile to fit an analytical expression for the momentum densities of the valence electrons. This expression is similar to a Fermi-Dirac distribution function with two parameters, one of which coincides with the ground state kinetic energy of the free-electron gas and the other resembles the electron-electron interaction energy. In the proposed scheme conduction electrons are neither completely free nor completely bound to the atomic nucleus. This procedure allows us to include correlation effects. We tested the approach for all metals with Z=3-50 and showed the results for three representative elements: Li, Be and Al from high-resolution experiments.
Wigner molecules: the strong-correlation limit of the three-electron harmonium.
Cioslowski, Jerzy; Pernal, Katarzyna
2006-08-14
At the strong-correlation limit, electronic states of the three-electron harmonium atom are described by asymptotically exact wave functions given by products of distinct Slater determinants and a common Gaussian factor that involves interelectron distances and the center-of-mass position. The Slater determinants specify the angular dependence and the permutational symmetry of the wave functions. As the confinement strength becomes infinitesimally small, the states of different spin multiplicities become degenerate, their limiting energy reflecting harmonic vibrations of the electrons about their equilibrium positions. The corresponding electron densities are given by products of angular factors and a Gaussian function centered at the radius proportional to the interelectron distance at equilibrium. Thanks to the availability of both the energy and the electron density, the strong-correlation limit of the three-electron harmonium is well suited for testing of density functionals.
Variability of Thermosphere and Ionosphere Responses to Solar Flares
NASA Technical Reports Server (NTRS)
Qian, Liying; Burns, Alan G.; Chamberlin, Philip C.; Solomon, Stanley C.
2011-01-01
We investigated how the rise rate and decay rate of solar flares affect the thermosphere and ionosphere responses to them. Model simulations and data analysis were conducted for two flares of similar magnitude (X6.2 and X5.4) that had the same location on the solar limb, but the X6.2 flare had longer rise and decay times. Simulated total electron content (TEC) enhancements from the X6.2 and X5.4 flares were 6 total electron content units (TECU) and approximately 2 TECU, and the simulated neutral density enhancements were approximately 15% -20% and approximately 5%, respectively, in reasonable agreement with observations. Additional model simulations showed that for idealized flares with the same magnitude and location, the thermosphere and ionosphere responses changed significantly as a function of rise and decay rates. The Neupert Effect, which predicts that a faster flare rise rate leads to a larger EUV enhancement during the impulsive phase, caused a larger maximum ion production enhancement. In addition, model simulations showed that increased E x B plasma transport due to conductivity increases during the flares caused a significant equatorial anomaly feature in the electron density enhancement in the F region but a relatively weaker equatorial anomaly feature in TEC enhancement, owing to dominant contributions by photochemical production and loss processes. The latitude dependence of the thermosphere response correlated well with the solar zenith angle effect, whereas the latitude dependence of the ionosphere response was more complex, owing to plasma transport and the winter anomaly.
Investigating the Response of Loop Plasma to Nanoflare Heating Using RADYN Simulations
NASA Astrophysics Data System (ADS)
Polito, V.; Testa, P.; Allred, J.; De Pontieu, B.; Carlsson, M.; Pereira, T. M. D.; Gošić, Milan; Reale, Fabio
2018-04-01
We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff ({E}{{C}}) deposit energy in the lower TR and chromosphere, causing blueshifts (up to ∼20 km s‑1) in the IRIS Si IV lines, which thermal conduction cannot reproduce. The {E}{{C}} threshold value for the blueshifts depends on the total energy of the events (≈5 keV for 1024 erg, up to 15 keV for 1025 erg). The observed footpoint emission intensity and flows, combined with the simulations, can provide constraints on both the energy of the heating event and {E}{{C}}. The response of the loop plasma to nanoflares depends crucially on the electron density: significant Si IV intensity enhancements and flows are observed only for initially low-density loops (<109 cm‑3). This provides a possible explanation of the relative scarcity of observations of significant moss variability. While the TR response to single heating episodes can be clearly observed, the predicted coronal emission (AIA 94 Å) for single strands is below current detectability and can only be observed when several strands are heated closely in time. Finally, we show that the analysis of the IRIS Mg II chromospheric lines can help further constrain the properties of the heating mechanisms.
Study on the Electronic Transport Properties of Zigzag GaN Nanotubes
NASA Astrophysics Data System (ADS)
Li, Enling; Wang, Xiqiang; Hou, Liping; Zhao, Danna; Dai, Yuanbin; Wang, Xuewen
2011-02-01
The electronic transport properties of zigzag GaN nanotubes (n, 0) (4 <= n <= 9) have been calculated using the density functional theory and non-equilibrium Green's functions method. Firstly, the density functional theory (DFT) is used to optimize and calculate the electronic structure of GaNNTs (n, 0) (4<=n<=9). Secondly, DFT and non-equilibrium Green function (NEGF) method are also used to predict the electronic transport properties of GaNNTs two-probe system. The results showed: there is a corresponding relation between the electronic transport properties and the valley of state density of each GaNNT. In addition, the volt-ampere curve of GaNNT is approximately linear.
Relativistic electron plasma oscillations in an inhomogeneous ion background
NASA Astrophysics Data System (ADS)
Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil
2018-06-01
The combined effect of relativistic electron mass variation and background ion inhomogeneity on the phase mixing process of large amplitude electron oscillations in cold plasmas have been analyzed by using Lagrangian coordinates. An inhomogeneity in the ion density is assumed to be time-independent but spatially periodic, and a periodic perturbation in the electron density is considered as well. An approximate space-time dependent solution is obtained in the weakly-relativistic limit by employing the Bogolyubov and Krylov method of averaging. It is shown that the phase mixing process of relativistically corrected electron oscillations is strongly influenced by the presence of a pre-existing ion density ripple in the plasma background.
Accuracy of electron densities obtained via Koopmans-compliant hybrid functionals
NASA Astrophysics Data System (ADS)
Elmaslmane, A. R.; Wetherell, J.; Hodgson, M. J. P.; McKenna, K. P.; Godby, R. W.
2018-04-01
We evaluate the accuracy of electron densities and quasiparticle energy gaps given by hybrid functionals by directly comparing these to the exact quantities obtained from solving the many-electron Schrödinger equation. We determine the admixture of Hartree-Fock exchange to approximate exchange-correlation in our hybrid functional via one of several physically justified constraints, including the generalized Koopmans' theorem. We find that hybrid functionals yield strikingly accurate electron densities and gaps in both exchange-dominated and correlated systems. We also discuss the role of the screened Fock operator in the success of hybrid functionals.
NASA Astrophysics Data System (ADS)
Snowden, D.; Winglee, R.
2013-08-01
We describe a new multi-fluid model of Titan's interaction with Saturn's magnetosphere that includes finer resolution in Titan's ionosphere, photoionization, electron-impact ionization, dissociative recombination, and ion-neutral coupling in the momentum and energy equations. We compare simulation results to data from Cassini's T55 flyby to show that including magnetospheric electron-impact ionization in Titan's nightside ionosphere is necessary to calculate electron densities, electron temperatures, and ion velocities that are consistent with Cassini observations. However, similar to other studies, we find that the electron-impact ionization rate calculated by the model needs to be significantly reduced to produce an electron density that is in agreement with the observations. We also find that an upstream plasma flow with significant components northward and radially outward from Saturn is needed to reproduce the gradual increase in electron density observed during the ingress portion of T55. This suggests that Titan was in a nonideal environment with a plasma flow oriented away from the direction of corotation during T55 and likely during the subsequent flybys T56, T57, T58, and T59 when similar electron density enhancements were seen on the inbound portion of Cassini's trajectory.
Characterization of local thermodynamic equilibrium in a laser-induced aluminum alloy plasma.
Zhang, Yong; Zhao, Zhenyang; Xu, Tao; Niu, GuangHui; Liu, Ying; Duan, Yixiang
2016-04-01
The electron temperature was evaluated using the line-to-continuum ratio method, and whether the plasma was close to the local thermodynamic equilibrium (LTE) state was investigated in detail. The results showed that approximately 5 μs after the plasma formed, the changes in the electron and excitation temperatures, which were determined using a Boltzmann plot, overlapped in the 15% error range, which indicated that the LTE state was reached. The recombination of electrons and ions and the free electron expansion process led to the deviation from the LTE state. The plasma's expansion rate slowed over time, and when the expansion time was close to the ionization equilibrium time, the LTE state was almost reached. The McWhirter criterion was adopted to calculate the threshold electron density for different species, and the results showed that experimental electron density was greater than the threshold electron density, which meant that the LTE state may have existed. However, for the nonmetal element N, the threshold electron density was greater than the value experimental value approximately 0.8 μs after the plasma formed, which meant that LTE state did not exist for N.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashemzadeh, M., E-mail: hashemzade@gmail.com
2015-11-15
The effect of q-nonextensive parameter and saturation time on the electron density steepening in electron-positron-ion plasmas is studied by particle in cell method. Phase space diagrams show that the size of the holes, and consequently, the number of trapped particles strongly depends on the q-parameter and saturation time. Furthermore, the mechanism of the instability and exchange of energy between electron-positron and electric field is explained by the profiles of the energy density. Moreover, it is found that the q-parameter, saturation time, and electron and positron velocities affect the nonlinear evolution of the electron density which leads to the steepening ofmore » its structure. The q-nonextensive parameter or degree of nonextensivity is the relation between temperature gradient and potential energy of the system. Therefore, the deviation of q-parameter from unity indicates the degree of inhomogeneity of temperature or deviation from equilibrium. Finally, using the kinetic theory, a generalized q-dispersion relation is presented for electron-positron-ion plasma systems. It is found that the simulation results in the linear regime are in good agreement with the growth rate results obtained by the kinetic theory.« less
Electronic structure and properties of unsubstituted rhodamine in different electron states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artyukhov, V.Ya.
1988-04-01
An analysis is given of the electron density distribution, dipole moment variation, and proton acceptor properties of unsubstituted rhodamine molecules in different electron states. It is shown that the electron density redistribution between the pyronine and benzoin parts of rhodamine may be large and strongly affect the molecular properties. In one of the electron transitions (S/sub 4/) producing the third absorption band the proton acceptor power markedly increases, giving rise to a protonated form under suitable conditions.
Electronic structure and properties of unsubstituted rhodamine in different electron states
NASA Astrophysics Data System (ADS)
Artyukhov, V. Ya.
1987-10-01
An analysis is given of the electron density distribution, dipole moment variation, and proton acceptor properties of unsubstituted rhodamine molecules in different electron states. It is shown that the electron density redistribution between the pyronine and benzoin parts of rhodamine may be large and strongly affect the molecular properties. In one of the electron transitions (S4) producing the third absorption band the proton acceptor power markedly increases, giving rise to a protonated form under suitable conditions.
NASA Technical Reports Server (NTRS)
Tomei, B. A.; Smith, L. G.
1986-01-01
Sounding rockets equipped to monitor electron density and its fine structure were launched into the auroral and equatorial ionosphere in 1980 and 1983, respectively. The measurement electronics are based on the Langmuir probe and are described in detail. An approach to the spectral analysis of the density irregularities is addressed and a software algorithm implementing the approach is given. Preliminary results of the analysis are presented.
Maximum current density and beam brightness achievable by laser-driven electron sources
NASA Astrophysics Data System (ADS)
Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.
2014-02-01
This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.
Analysis of density effects in plasmas and their influence on electron-impact cross sections
NASA Astrophysics Data System (ADS)
Belkhiri, M.; Poirier, M.
2014-12-01
Density effects in plasmas are analyzed using a Thomas-Fermi approach for free electrons. First, scaling properties are determined for the free-electron potential and density. For hydrogen-like ions, the first two terms of an analytical expansion of this potential as a function of the plasma coupling parameter are obtained. In such ions, from these properties and numerical calculations, a simple analytical fit is proposed for the plasma potential, which holds for any electron density, temperature, and atomic number, at least assuming that Maxwell-Boltzmann statistics is applicable. This allows one to analyze perturbatively the influence of the plasma potential on energies, wave functions, transition rates, and electron-impact collision rates for single-electron ions. Second, plasmas with an arbitrary charge state are considered, using a modified version of the Flexible Atomic Code (FAC) package with a plasma potential based on a Thomas-Fermi approach. Various methods for the collision cross-section calculations are reviewed. The influence of plasma density on these cross sections is analyzed in detail. Moreover, it is demonstrated that, in a given transition, the radiative and collisional-excitation rates are differently affected by the plasma density. Some analytical expressions are proposed for hydrogen-like ions in the limit where the Born or Lotz approximation applies and are compared to the numerical results from the FAC.
Role of turbulence regime on determining the local density gradient
Wang, X.; Mordijck, Saskia; Doyle, E. J.; ...
2017-11-16
In this study we show that the local density gradient in the plasma core depends on the calculated mode-frequency of the most unstable linear mode and reaches a maximum when this frequency is close to zero. Previous theoretical and experimental work on AUG has shown that the ratio of electron to ion temperature, and as such the frequency of the dominant linear gyrokinetic mode, affects the local density gradient close to ρ = 0.3 [1, 2]. On DIII-D we find that by adding Electron Cyclotron Heating (ECH), we modify the dominant unstable linear gyro kinetic mode from an Ion Temperaturemore » Gradient (ITG) mode to a Trapped Electron Mode (TEM), which means that the frequency of the dominant mode changes sign (from the ion to the electron direction). Local density peaking around mid-radius increases by 50% right around the cross-over between the ITG and TEM regimes. By comparing how the particle flux changes, through the derivative of the electron density, n e, with respect to time, ∂n e/∂t, we find that the particle flux also exhibits the same trend versus mode frequency. As a result, we find that the changes in local particle transport are inversely proportional to the changes in electron density, indicating that the changes are driven by a change in thermo-diffusive pinch.« less
Li, Chen; Requist, Ryan; Gross, E K U
2018-02-28
We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = R c , where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical R c by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M -1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇ R χ(R) and ∇ R n(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation-an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).
Visualizing ligand molecules in twilight electron density
Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard
2013-01-01
Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein–ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein–ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein–ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/. PMID:23385767
Visualizing ligand molecules in Twilight electron density.
Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard
2013-02-01
Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein-ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein-ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein-ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/.
NASA Astrophysics Data System (ADS)
Ohta, Akio; Truyen, Nguyen Xuan; Fujimura, Nobuyuki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-06-01
The energy distribution of the electronic state density of wet-cleaned epitaxial GaN surfaces and SiO2/GaN structures has been studied by total photoelectron yield spectroscopy (PYS). By X-ray photoelectron spectroscopy (XPS) analysis, the energy band diagram for a wet-cleaned epitaxial GaN surface such as the energy level of the valence band top and electron affinity has been determined to obtain a better understanding of the measured PYS signals. The electronic state density of GaN surface with different carrier concentrations in the energy region corresponding to the GaN bandgap has been evaluated. Also, the interface defect state density of SiO2/GaN structures was also estimated by not only PYS analysis but also capacitance–voltage (C–V) characteristics. We have demonstrated that PYS analysis enables the evaluation of defect state density filled with electrons at the SiO2/GaN interface in the energy region corresponding to the GaN midgap, which is difficult to estimate by C–V measurement of MOS capacitors.