Sample records for variable expansion ratio

  1. Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2007-01-01

    An axisymmetric version of the Dual Throat Nozzle concept with a variable expansion ratio has been studied to determine the impacts on thrust vectoring and nozzle performance. The nozzle design, applicable to a supersonic aircraft, was guided using the unsteady Reynolds-averaged Navier-Stokes computational fluid dynamics code, PAB3D. The axisymmetric Dual Throat Nozzle concept was tested statically in the Jet Exit Test Facility at the NASA Langley Research Center. The nozzle geometric design variables included circumferential span of injection, cavity length, cavity convergence angle, and nozzle expansion ratio for conditions corresponding to take-off and landing, mid climb and cruise. Internal nozzle performance and thrust vectoring performance was determined for nozzle pressure ratios up to 10 with secondary injection rates up to 10 percent of the primary flow rate. The 60 degree span of injection generally performed better than the 90 degree span of injection using an equivalent injection area and number of holes, in agreement with computational results. For injection rates less than 7 percent, thrust vector angle for the 60 degree span of injection was 1.5 to 2 degrees higher than the 90 degree span of injection. Decreasing cavity length improved thrust ratio and discharge coefficient, but decreased thrust vector angle and thrust vectoring efficiency. Increasing cavity convergence angle from 20 to 30 degrees increased thrust vector angle by 1 degree over the range of injection rates tested, but adversely affected system thrust ratio and discharge coefficient. The dual throat nozzle concept generated the best thrust vectoring performance with an expansion ratio of 1.0 (a cavity in between two equal minimum areas). The variable expansion ratio geometry did not provide the expected improvements in discharge coefficient and system thrust ratio throughout the flight envelope of typical a supersonic aircraft. At mid-climb and cruise conditions, the variable geometry design compromised thrust vector angle achieved, but some thrust vector control would be available, potentially for aircraft trim. The fixed area, expansion ratio of 1.0, Dual Throat Nozzle provided the best overall compromise for thrust vectoring and nozzle internal performance over the range of NPR tested compared to the variable geometry Dual Throat Nozzle.

  2. Parametric analysis of diffuser requirements for high expansion ratio space engine

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Anderson, P. G.

    1981-01-01

    A supersonic diffuser ejector design computer program was developed. Using empirically modified one dimensional flow methods the diffuser ejector geometry is specified by the code. The design code results for calculations up to the end of the diffuser second throat were verified. Diffuser requirements for sea level testing of high expansion ratio space engines were defined. The feasibility of an ejector system using two commonly available turbojet engines feeding two variable area ratio ejectors was demonstrated.

  3. Prescription, Dispensation, and Generic Medicine Replacement Ratios: Influence on Japanese Medicine Costs

    PubMed Central

    Yokoi, Masayuki; Tashiro, Takao

    2016-01-01

    This study used publicly available data to examine the effect of the separation of dispensing and prescribing medicines between pharmacists in pharmacies and doctors in medical institutions (the separation system) and the generic medicine replacement ratio on the cost of various medicines in Japanese prefectures. For Japanese medical institutions, participation in the separation system is optional. Consequently, the expansion rate of the separation system for each administrative district is highly variable. In our multiple regression analysis, the dependent variables were the costs of daily medicines, specifically, total, internal, external, and injection medicines, as well as medical devices, and the independent variables were the expansion rate of the separation system and generic medicine replacement ratio. The expansion rate of the separation system showed a significant negative partial correlation with the daily costs of total, internal, and injection medicines as well as medical devices. Moreover, the rate of replacing brand name medicines with generic medicines showed a significant negative partial correlation with the daily costs of total and internal medicines. However, external and injection medicines and medical devices did not because only a few or no generic products of these types were sold in the Japanese market. Otherwise, expansion of the separation system was effective in reducing medicine costs, except in the case of external medicines. This suggests that the cost efficiency effect of the separation system does not function all the time. PMID:26234979

  4. Static internal performance of single-expansion-ramp nozzles with various combinations of internal geometric parameters

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Leavitt, L. D.

    1984-01-01

    The effects of five geometric design parameters on the internal performance of single-expansion-ramp nozzles were investigated at nozzle pressure ratios up to 10 in the static-test facility of the Langley 16-Foot Transonic Tunnel. The geometric variables on the expansion-ramp surface of the upper flap consisted of ramp chordal angle, ramp length, and initial ramp angle. On the lower flap, the geometric variables consisted of flap angle and flap length. Both internal performance and static-pressure distributions on the centerlines of the upper and lower flaps were obtained for all 43 nozzle configurations tested.

  5. Experimental and Computational Investigation of a Translating-Throat Single-Expansion-Ramp Nozzle

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Asbury, Scott C.

    1999-01-01

    An experimental and computational study was conducted on a high-speed, single-expansion-ramp nozzle (SERN) concept designed for efficient off-design performance. The translating-throat SERN concept adjusts the axial location of the throat to provide a variable expansion ratio and allow a more optimum jet exhaust expansion at various flight conditions in an effort to maximize nozzle performance. Three design points (throat locations) were investigated to simulate the operation of this concept at subsonic-transonic, low supersonic, and high supersonic flight conditions. The experimental study was conducted in the jet exit test facility at the Langley Research Center. Internal nozzle performance was obtained at nozzle pressure ratios (NPR's) up to 13 for six nozzles with design nozzle pressure ratios near 9, 42, and 102. Two expansion-ramp surfaces, one concave and one convex, were tested for each design point. Paint-oil flow and focusing schlieren flow visualization techniques were utilized to acquire additional flow data at selected NPR'S. The Navier-Stokes code, PAB3D, was used with a two-equation k-e turbulence model for the computational study. Nozzle performance characteristics were predicted at nozzle pressure ratios of 5, 9, and 13 for the concave ramp, low Mach number nozzle and at 10, 13, and 102 for the concave ramp, high Mach number nozzle.

  6. Internal performance characteristics of vectored axisymmetric ejector nozzles

    NASA Technical Reports Server (NTRS)

    Lamb, Milton

    1993-01-01

    A series of vectoring axisymmetric ejector nozzles were designed and experimentally tested for internal performance and pumping characteristics at NASA-Langley Research Center. These ejector nozzles used convergent-divergent nozzles as the primary nozzles. The model geometric variables investigated were primary nozzle throat area, primary nozzle expansion ratio, effective ejector expansion ratio (ratio of shroud exit area to primary nozzle throat area), ratio of minimum ejector area to primary nozzle throat area, ratio of ejector upper slot height to lower slot height (measured on the vertical centerline), and thrust vector angle. The primary nozzle pressure ratio was varied from 2.0 to 10.0 depending upon primary nozzle throat area. The corrected ejector-to-primary nozzle weight-flow ratio was varied from 0 (no secondary flow) to approximately 0.21 (21 percent of primary weight-flow rate) depending on ejector nozzle configuration. In addition to the internal performance and pumping characteristics, static pressures were obtained on the shroud walls.

  7. Physicochemical properties of extrudates from white yam and bambara nut blends

    NASA Astrophysics Data System (ADS)

    Oluwole, O. B.; Olapade, A. A.; Awonorin, S. O.; Henshaw, F. O.

    2013-01-01

    This study was conducted to investigate effects of extrusion conditions on physicochemical properties of blend of yam and bambara nut flours. A blend of white yam grit (750 μm) and Bambara nut flour (500 μm) in a ratio of 4:1, respectively was extrusion cooked at varying screw speeds 50-70 r.p.m., feed moisture 12.5-17.5% (dry basis) and barrel temperatures 130-150°C. The extrusion variables employed included barrel temperature, screw speed, and feed moisture content, while the physicochemical properties of the extrudates investigated were the expansion ratio, bulk density, and trypsin inhibition activity. The results revealed that all the extrusion variables had significant effects (p<0.05) on the product properties considered in this study. The expansion ratio values ranged 1.55-2.06, bulk density values ranged 0.76-0.94 g cm-3, while trypsin inhibition activities were 1.01-8.08 mg 100 g-1 sample.

  8. Streamtube expansion effects on the Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Fraunie, P.; Beguier, C.

    1985-04-01

    The purpose of the work described in this paper was to determine the aerodynamic loads and performance of a Darrieus wind turbine by including the expansion effects of the streamtubes through the rotor. The double-multiple streamtube model with variable interference factors was used to estimate the induced velocities with a modified CARDAAV computer code. Comparison with measured data and predictions shows that the stream-tube expansion effects are relatively significant at high tip-speed ratios, allowing a more realistic modeling of the upwind/downwind flowfield asymmetries inherent in the Darrieus rotor.

  9. Effect of feed composition, moisture content and extrusion temperature on extrudate characteristics of yam-corn-rice based snack food.

    PubMed

    Seth, Dibyakanta; Badwaik, Laxmikant S; Ganapathy, Vijayalakshmi

    2015-03-01

    Blends of yam, rice and corn flour were processed in a twin-screw extruder. Effects of yam flour (10-40 %), feed moisture content (12-24 %) and extruder barrel temperature (100-140 °C) on the characteristics of the dried extrudates was investigated using a statistical technique response surface methodology (RSM). Radial expansion ratio differed significantly (p ≤ 0.05) with change in all the independent variables. Highest expansion (3.97) was found at lowest moisture content (12 %) and highest barrel temperature (140 °C). Increased yam flour level decreased the expansion ratio significantly. Water absorption index (WAI) increased significantly with increase of all variables. However, water solubility index (WSI) did not change with change in yam flour percent. Hardness of extrudates that varied from 3.86 to 6.94 N was positively correlated with yam flour level and feed moisture content, however it decreased significantly (p ≤ 0.001) with increase of barrel temperature. Yam percent of 15.75 with feed moisture and barrel temperature at 12.00 % and 140 °C respectively gave an optimized product of high desirability (> 0.90) with optimum responses of 3.29 expansion ratio, 5.64 g/g dry solid water absorption index, 30.39 % water solubility index and 3.86 N hardness. The predicted values registered non-significant (p < 0.10) differences from the experimental results. Further study would include the sensory properties enhancement of extruded snacks and little emphasis on the chemistry of interaction between different components.

  10. Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Flamm, Jeffrey D.; Berrier, Bobby L.; Johnson, Stuart K.

    2007-01-01

    A computational investigation of an axisymmetric Dual Throat Nozzle concept has been conducted. This fluidic thrust-vectoring nozzle was designed with a recessed cavity to enhance the throat shifting technique for improved thrust vectoring. The structured-grid, unsteady Reynolds- Averaged Navier-Stokes flow solver PAB3D was used to guide the nozzle design and analyze performance. Nozzle design variables included extent of circumferential injection, cavity divergence angle, cavity length, and cavity convergence angle. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 1.89 to 10, with the fluidic injection flow rate equal to zero and up to 4 percent of the primary flow rate. The effect of a variable expansion ratio on nozzle performance over a range of freestream Mach numbers up to 2 was investigated. Results indicated that a 60 circumferential injection was a good compromise between large thrust vector angles and efficient internal nozzle performance. A cavity divergence angle greater than 10 was detrimental to thrust vector angle. Shortening the cavity length improved internal nozzle performance with a small penalty to thrust vector angle. Contrary to expectations, a variable expansion ratio did not improve thrust efficiency at the flight conditions investigated.

  11. Development of functional extruded snacks by utilizing paste shrimp (Acetes spp.): process optimization and quality evaluation.

    PubMed

    Kumar, Raushan; Xavier, Ka Martin; Lekshmi, Manjusha; Dhanabalan, Vignaesh; Thachil, Madonna T; Balange, Amjad K; Gudipati, Venkateshwarlu

    2018-04-01

    Functional extruded snacks were prepared using paste shrimp powder (Acetes spp.), which is rich in protein. The process variables required for the preparation of extruded snacks was optimized using response surface methodology. Extrusion temperature (130-144 °C), level of Acetes powder (100-200 g kg -1 ) and feed moisture (140-200 g kg -1 ) were selected as design variables, and expansion ratio, porosity, hardness, crispness and thiobarbituric acid reactive substance value were taken as the response variables. Extrusion temperature significantly influenced all the response variables, while Acetes inclusion influenced all variables except porosity. Feed moisture content showed a significant quadratic effect on all responses and an interactive effect on expansion ratio and hardness. Shrimp powder incorporation increased the protein and mineral content of the final product. The extruded snack made with the combination of extrusion temperature 144.59 °C, feed moisture 178.5 g kg -1 and Acetes inclusion level 146.7 g kg -1 was found to be the best one based on sensory evaluation. The study suggests that use of Acetes species for the development of extruded snacks will serve as a means of utilization of Acetes as well as being a rich source of proteins for human consumption, which would otherwise remain unexploited as a by-catch. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Thrust performance of a variable-geometry, divergent exhaust nozzle on a turbojet engine at altitude

    NASA Technical Reports Server (NTRS)

    Straight, D. M.; Collom, R. R.

    1983-01-01

    A variable geometry, low aspect ratio, nonaxisymmetric, two dimensional, convergent-divergent exhaust nozzle was tested at simulated altitude on a turbojet engine to obtain baseline axial, dry thrust performance over wide ranges of operating nozzle pressure ratios, throat areas, and internal expansion area ratios. The thrust data showed good agreement with theory and scale model test results after the data were corrected for seal leakage and coolant losses. Wall static pressure profile data were also obtained and compared with one dimensional theory and scale model data. The pressure data indicate greater three dimensional flow effects in the full scale tests than with models. The leakage and coolant penalties were substantial, and the method to determine them is included.

  13. Rocket nozzle expansion ratio analysis for dual-fuel earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1989-01-01

    Results are reported from a recent study of the effects of Space Shuttle Main Engine expansion ratio modifications, in the cases of both single-stage and two-stage systems. Two-position nozzles were employed; after varying the lower expansion ratio while the higher was held constant at 120, the lower expansion ratio was held constant at 40 or 60 while the higher expansion ratio was varied. The expansion ratios for minimum vehicle dry mass are different for single-stage and two-stage systems. For two-stage systems, a single expansion ratio of 77.5 provides a lower dry mass than any two-position nozzle.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luscher, Darby J.

    We detail a modeling approach to simulate the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives that utilizes microstructural information including porosity, crystal aspect ratio, and processing-induced texture. This report, the first in a series, focuses on nonlinear thermal expansion of “neat-pressed” polycrystalline TATB specimens which do not contain any binder; additional complexities related to polymeric binder and irreversible ratcheting behavior are briefly discussed, however detailed investigation of these aspects are deferred to subsequent reports. In this work we have, for the first time, developed a mesoscale continuum model relating the thermal expansion of polycrystal TATB specimens to their microstructuralmore » characteristics. A self-consistent homogenization procedure is used to relate macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of grain aspect ratio, porosity, and crystallographic texture attributed to the consolidation process. A quantitative model is proposed to describe the evolution of preferred orientation of graphitic planes in TATB during consolidation and an algorithm constructed to develop a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatic and uniaxial “die-pressed” specimens. Predicted thermal strain versus temperature for textured specimens are shown to be in agreement with corresponding experimental measurements. Using the developed modeling approach, several simulations have been run to investigate the influence of microstructure on macroscopic thermal expansion behavior. Results from these simulations are used to identify qualitative trends. Implications of the identified trends are discussed in the context of thermal deformation of engineered components whose consolidation process is generally more complex than isostatic or die-pressed specimens. Finally, an envisioned application of the modeling approach to simulating thermal expansion of weapon systems and components is outlined along with necessary future work to introduce the effects of binder and ratcheting behavior. Key conclusions from this work include the following. Both porosity and grain aspect ratio have an influence on the thermal expansion of polycrystal TATB considering realistic material variability. Thepreferred orientation of the single crystal TATB [001] poles within a polycrystal gives rise to pronounced anisotropy of the macroscopic thermal expansion. The extent of this preferred orientation depends on the magnitude of deformation, and consequently, is expected to vary spatially throughout manufactured components much like porosity. The modeling approach presented here has utility toward bringing spatially variable microstructural features into macroscale system engineering modelsAbstract Not Provided« less

  15. Association of Key Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease With Hematoma Volume and Expansion in Patients With Lobar and Deep Intracerebral Hemorrhage

    PubMed Central

    Boulouis, Gregoire; van Etten, Ellis S.; Charidimou, Andreas; Auriel, Eitan; Morotti, Andrea; Pasi, Marco; Haley, Kellen E.; Brouwers, H. Bart; Ayres, Alison M.; Vashkevich, Anastasia; Jessel, Michael J.; Schwab, Kristin M.; Viswanathan, Anand; Greenberg, Steven M.; Rosand, Jonathan; Goldstein, Joshua N.; Gurol, M. Edip

    2017-01-01

    IMPORTANCE Hematoma expansion is an important determinant of outcome in spontaneous intracerebral hemorrhage (ICH) due to small vessel disease (SVD), but the association between the severity of the underlying SVD and the extent of bleeding at the acute phase is unknown to date. OBJECTIVE To investigate the association between key magnetic resonance imaging (MRI) markers of SVD (as per the Standards for Reporting Vascular Changes on Neuroimaging [STRIVE] guidelines) and hematoma volume and expansion in patients with lobar or deep ICH. DESIGN, SETTING, AND PARTICIPANTS Analysis of data collected from 418 consecutive patients admitted with primary lobar or deep ICH to a single tertiary care medical center between January 1, 2000, and October 1, 2012. Data were analyzed on March 4, 2016. Participants were consecutive patients with computed tomographic images allowing ICH volume calculation and MRI allowing imaging markers of SVD assessment. MAIN OUTCOMES AND MEASURES The ICH volumes at baseline and within 48 hours after symptom onset were measured in 418 patients with spontaneous ICH without anticoagulant therapy, and hematoma expansion was calculated. Cerebral microbleeds, cortical superficial siderosis, and white matter hyperintensity volume were assessed on MRI. The associations between these SVD markers and ICH volume, as well as hematoma expansion, were investigated using multivariable models. RESULTS This study analyzed 254 patients with lobar ICH (mean [SD] age, 75 [11] years and 140 [55.1%] female) and 164 patients with deep ICH (mean [SD] age 67 [14] years and 71 [43.3%] female). The presence of cortical superficial siderosis was an independent variable associated with larger ICH volume in the lobar ICH group (odds ratio per quintile increase in final ICH volume, 1.49; 95% CI, 1.14–1.94; P = .004). In multivariable models, the absence of cerebral microbleeds was associated with larger ICH volume for both the lobar and deep ICH groups (odds ratios per quintile increase in final ICH volume, 1.41; 95% CI, 1.11–1.81; P = .006 and 1.43; 95% CI, 1.04–1.99; P = .03; respectively) and with hematoma expansion in the lobar ICH group (odds ratio, 1.70; 95% CI, 1.07–2.92; P = .04). The white matter hyperintensity volumes were not associated with either hematoma volume or expansion. CONCLUSIONS AND RELEVANCE In patients admitted with primary lobar or deep ICH to a single tertiary care medical center, the presence of cortical superficial siderosis was an independent variable associated with larger lobar ICH volume, and the absence of cerebral microbleeds was associated with larger lobar and deep ICHs. The absence of cerebral microbleeds was independently associated with more frequent hematoma expansion in patients with lobar ICH. We provide an analytical framework for future studies aimed at limiting hematoma expansion. PMID:27723863

  16. Dimensionless number is central to stress relaxation and expansive growth of the cell wall.

    PubMed

    Ortega, Joseph K E

    2017-06-07

    Experiments demonstrate that both plastic and elastic deformation of the cell wall are necessary for wall stress relaxation and expansive growth of walled cells. A biophysical equation (Augmented Growth Equation) was previously shown to accurately model the experimentally observed wall stress relaxation and expansive growth rate. Here, dimensional analysis is used to obtain a dimensionless Augmented Growth Equation with dimensionless coefficients (groups of variables, or Π parameters). It is shown that a single Π parameter controls the wall stress relaxation rate. The Π parameter represents the ratio of plastic and elastic deformation rates, and provides an explicit relationship between expansive growth rate and the wall's mechanical properties. Values for Π are calculated for plant, algal, and fungal cells from previously reported experimental results. It is found that the Π values for each cell species are large and very different from each other. Expansive growth rates are calculated using the calculated Π values and are compared to those measured for plant and fungal cells during different growth conditions, after treatment with IAA, and in different developmental stages. The comparison shows good agreement and supports the claim that the Π parameter is central to expansive growth rate of walled cells.

  17. Association Between Hypodensities Detected by Computed Tomography and Hematoma Expansion in Patients With Intracerebral Hemorrhage

    PubMed Central

    Boulouis, Gregoire; Morotti, Andrea; Brouwers, H. Bart; Charidimou, Andreas; Jessel, Michael J.; Auriel, Eitan; Pontes-Neto, Octávio; Ayres, Alison; Vashkevich, Anastasia; Schwab, Kristin M.; Rosand, Jonathan; Viswanathan, Anand; Gurol, Mahmut E.; Greenberg, Steven M.; Goldstein, Joshua N.

    2017-01-01

    IMPORTANCE Hematoma expansion is a potentially modifiable predictor of poor outcome following an acute intracerebral hemorrhage (ICH). The ability to identify patients with ICH who are likeliest to experience hematoma expansion and therefore likeliest to benefit from expansion-targeted treatments remains an unmet need. Hypodensities within an ICH detected by noncontrast computed tomography (NCCT) have been suggested as a predictor of hematoma expansion. OBJECTIVE To determine whether hypodense regions, irrespective of their specific patterns, are associated with hematoma expansion in patients with ICH. DESIGN, SETTING, AND PARTICIPANTS We analyzed a large cohort of 784 patients with ICH (the development cohort; 55.6% female), examined NCCT findings for any hypodensity, and replicated our findings on a different cohort of patients (the replication cohort; 52.7% female). Baseline and follow-up NCCT data from consecutive patients with ICH presenting to a tertiary care hospital between 1994 and 2015 were retrospectively analyzed. Data analyses were performed between December 2015 and January 2016. MAIN OUTCOMES AND MEASURES Hypodensities were analyzed by 2 independent blinded raters. The association between hypodensities and hematoma expansion (>6 cm3 or 33% of baseline volume) was determined by multivariable logistic regression after controlling for other variables associated with hematoma expansion in univariate analyses with P ≤ .10. RESULTS A total of 1029 patients were included in the analysis. In the development and replication cohorts, 222 of 784 patients (28.3%) and 99 of 245 patients (40.4%; 321 of 1029 patients [31.2%]), respectively, had NCCT scans that demonstrated hypodensities at baseline (κ = 0.87 for interrater reliability). In univariate analyses, hypodensities were associated with hematoma expansion (86 of 163 patients with hematoma expansion had hypodensities [52.8%], whereas 136 of 621 patients without hematoma expansion had hypodensities [21.9%]; P < .001). The association between hypodensities and hematoma expansion remained significant (odds ratio, 3.42 [95%CI, 2.21–5.31]; P < .001) in a multivariable model; other independent predictors of hematoma expansion were a CT angiography spot sign, a shorter time to CT, warfarin use, and older age. The independent predictive value of hypodensities was again demonstrated in the replication cohort (odds ratio, 4.37 [95%CI, 2.05–9.62]; P < .001). CONCLUSION AND RELEVANCE Hypodensities within an acute ICH detected on an NCCT scan may predict hematoma expansion, independent of other clinical and imaging predictors. This novel marker may help clarify the mechanism of hematoma expansion and serve as a useful addition to clinical algorithms for determining the risk of and treatment stratification for hematoma expansion. PMID:27323314

  18. Prediction of hole expansion ratio for various steel sheets based on uniaxial tensile properties

    NASA Astrophysics Data System (ADS)

    Kim, Jae Hyung; Kwon, Young Jin; Lee, Taekyung; Lee, Kee-Ahn; Kim, Hyoung Seop; Lee, Chong Soo

    2018-01-01

    Stretch-flangeability is one of important formability parameters of thin steel sheets used in the automotive industry. There have been many attempts to predict hole expansion ratio (HER), a typical term to evaluate stretch-flangeability, using uniaxial tensile properties for convenience. This paper suggests a new approach that uses total elongation and average normal anisotropy to predict HER of thin steel sheets. The method provides a good linear relationship between HER of the machined hole and the predictive variables in a variety of materials with different microstructures obtained using different processing methods. The HER of the punched hole was also well predicted using the similar approach, which reflected only the portion of post uniform elongation. The physical meaning drawn by our approach successfully explained the poor HER of austenitic steels despite their considerable elongation. The proposed method to predict HER is simple and cost-effective, so it will be useful in industry. In addition, the model provides a physical explanation of HER, so it will be useful in academia.

  19. A Case Study on Maximizing Aqua Feed Pellet Properties Using Response Surface Methodology and Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya

    Aims: The present case study is on maximizing the aqua feed properties using response surface methodology and genetic algorithm. Study Design: Effect of extrusion process variables like screw speed, L/D ratio, barrel temperature, and feed moisture content were analyzed to maximize the aqua feed properties like water stability, true density, and expansion ratio. Place and Duration of Study: This study was carried out in the Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India. Methodology: A variable length single screw extruder was used in the study. The process variables selected were screw speed (rpm), length-to-diameter (L/D) ratio,more » barrel temperature (degrees C), and feed moisture content (%). The pelletized aqua feed was analyzed for physical properties like water stability (WS), true density (TD), and expansion ratio (ER). Extrusion experimental data was collected by based on central composite design. The experimental data was further analyzed using response surface methodology (RSM) and genetic algorithm (GA) for maximizing feed properties. Results: Regression equations developed for the experimental data has adequately described the effect of process variables on the physical properties with coefficient of determination values (R2) of > 0.95. RSM analysis indicated WS, ER, and TD were maximized at L/D ratio of 12-13, screw speed of 60-80 rpm, feed moisture content of 30-40%, and barrel temperature of = 80 degrees C for ER and TD and > 90 degrees C for WS. Based on GA analysis, a maxium WS of 98.10% was predicted at a screw speed of 96.71 rpm, L/D radio of 13.67, barrel temperature of 96.26 degrees C, and feed moisture content of 33.55%. Maximum ER and TD of 0.99 and 1346.9 kg/m3 was also predicted at screw speed of 60.37 and 90.24 rpm, L/D ratio of 12.18 and 13.52, barrel temperature of 68.50 and 64.88 degrees C, and medium feed moisture content of 33.61 and 38.36%. Conclusion: The present data analysis indicated that WS is mainly governed by barrel temperature and feed moisture content, which might have resulted in formation of starch-protein complexes due to denaturation of protein and gelatinization of starch. Screw speed coupled with temperature and feed moisture content controlled the ER and TD values. Higher screw speeds might have reduced the viscosity of the feed dough resulting in higher TD and lower ER values. Based on RSM and GA analysis screw speed, barrel temperature and feed moisture content were the interacting process variables influencing maximum WS followed by ER and TD.« less

  20. Computer code for single-point thermodynamic analysis of hydrogen/oxygen expander-cycle rocket engines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Jones, Scott M.

    1991-01-01

    This analysis and this computer code apply to full, split, and dual expander cycles. Heat regeneration from the turbine exhaust to the pump exhaust is allowed. The combustion process is modeled as one of chemical equilibrium in an infinite-area or a finite-area combustor. Gas composition in the nozzle may be either equilibrium or frozen during expansion. This report, which serves as a users guide for the computer code, describes the system, the analysis methodology, and the program input and output. Sample calculations are included to show effects of key variables such as nozzle area ratio and oxidizer-to-fuel mass ratio.

  1. Experimental investigation of edge hardening and edge cracking sensitivity of burr-free parts

    NASA Astrophysics Data System (ADS)

    Senn, Sergei; Liewald, Mathias

    2018-05-01

    This experimental study is focused on characterisation of edge hardening of sheet metal and remaining formability of differently prepared cutted edges. Edge cracking sensitivity of counter cutted, shear cutted, recutted and water-jet cutted components are compared and evaluated. Subsequently, edge hardening and hole expansion ratio were correlated for material HC420 LA with sheet thickness of t = 2 mm. As other studies show, the cutting edge surface quality influences the hole expansion ratio: a high clear cut surface increases formability of cutting edges, whereas micro cracks and rough surfaces result into a large fracture surface, which impact remaining formability noticeably. Thus, cutting edges with lower edge hardening behaviour in conjunction with a higher clear cut surface exhibit higher hole expansion ratios. Counter cutting and the recutting do show a similar effect on edge hardening. Using the hole expansion test, it was possible to prove that counter cutted components show a significantly lower edge cracking sensitivity in comparison to conventionally shear cutted components. The hole expansion ratio of counter cutted specimens looks balanced and is comparable to the hole expansion ratio measured from specimens with recutted or water jet cutted edges. The significant difference of the investigated cutting processes is characterized by size of clear cutting area. This area of recutted edges emerges larger than the area of counter cutted specimens, which evidently leads to an increased hole expansion ratio of recutted specimens compared to conventionally shear cutted ones. However, it is important to note that the hole expansion ratio of counter cutted and recutted specimens appear fairly balanced, but counter cutted samples indeed can be produced burr-free. Using counter cutting technology, it is possible to produce burr free surfaces with high edge formability.

  2. Multiple optimization of chemical components and texture of purple maize expanded by IVDV treatment using the response surface methodology.

    PubMed

    Mrad, Rachelle; Debs, Espérance; Maroun, Richard G; Louka, Nicolas

    2014-12-15

    A new process, Intensification of Vaporization by Decompression to the Vacuum (IVDV), is proposed for texturizing purple maize. It consists in exposing humid kernels to high steam pressure followed by a decompression to the vacuum. Response surface methodology with three operating parameters (initial water content (W), steam pressure (P) and processing time (T)) was used to study the response parameters: Total Anthocyanins Content, Total Polyphenols Content, Free Radical Scavenging Activity, Expansion Ratio, Hardness and Work Done. P was the most important variable, followed by T. Pressure drop helped the release of bound phenolics arriving to their expulsion outside the cell. Combined with convenient T and W, it caused kernels expansion. Multiple optimization of expansion and chemical content showed that IVDV resulted in good texturization of maize while preserving the antioxidant compounds and activity. Optimal conditions were: W=29%, P=5 bar and T=37s. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Range expansion through fragmented landscapes under a variable climate

    PubMed Central

    Bennie, Jonathan; Hodgson, Jenny A; Lawson, Callum R; Holloway, Crispin TR; Roy, David B; Brereton, Tom; Thomas, Chris D; Wilson, Robert J

    2013-01-01

    Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high-resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an exemplar species, the butterfly Hesperia comma. Using fine-resolution (5 m) models of vegetation surface microclimate, we estimate the thermal suitability of 906 habitat patches at the species' range margin for 27 years. Population and metapopulation models that incorporate this dynamic microclimate surface improve predictions of observed annual changes to population density and patch occupancy dynamics during the species' range expansion from 1982 to 2009. Our findings reveal how fine-scale, short-term environmental variability drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at spatial and temporal scales relevant to conservation interventions. PMID:23701124

  4. Rapid Microfluidic Mixers Utilizing Dispersion Effect and Interactively Time-Pulsed Injection

    NASA Astrophysics Data System (ADS)

    Leong, Jik-Chang; Tsai, Chien-Hsiung; Chang, Chin-Lung; Lin, Chiu-Feng; Fu, Lung-Ming

    2007-08-01

    In this paper, we present a novel active microfluidic mixer utilizing a dispersion effect in an expansion chamber and applying interactively time-pulsed driving voltages to the respective inlet fluid flows to induce electroosmotic flow velocity variations for developing a rapid mixing effect in a microchannel. Without using any additional equipment to induce flow perturbations, only a single high-voltage power source is required for simultaneously driving and mixing sample fluids, which results in a simple and low-cost system for mixing. The effects of the applied main electrical field, interactive frequency, and expansion ratio on the mixing performance are thoroughly examined experimentally and numerically. The mixing ratio can be as high as 95% within a mixing length of 3000 μm downstream from the secondary T-form when a driving electric field strength of 250 V/cm, a periodic switching frequency of 5 Hz, and the expansion ratio M=1:10 are applied. In addition, the optimization of the driving electric field, switching frequency, expansion ratio, expansion entry length, and expansion chamber length for achieving a maximum mixing ratio is also discussed in this study. The novel method proposed in this study can be used for solving the mixing problem in the field of micro-total-analysis systems in a simple manner.

  5. Hydrogen and nitrogen turboexpanders with high gas expansion ratios

    NASA Astrophysics Data System (ADS)

    Davydenkov, I. A.; Davydov, A. B.; Perestoronin, G. A.

    The paper examines the design features of a four-stage hydrogen turboexpander with an expansion ratio of 80 and two-stage nitrogen turboexpander with an expansion ratio of 120. The test results obtained under imitations in air are presented. The adiabatic efficiency of the hydrogen and nitrogen turboexpanders under operating conditions has reached 0,65 and 0, 78, respectively. The use of high-performance high-pressure hydrogen and nitrogen turboexpanders has considerably increased the capacity of a large hydrogen liquefier.

  6. Effect of combustion-chamber pressure and nozzle expansion ratio on theoretical performance of several rocket propellant systems

    NASA Technical Reports Server (NTRS)

    Morrell, Virginia E

    1956-01-01

    Theoretical calculations of specific impulse to determine the separate effects of increasing the combustion-chamber pressure and the nozzle expansion ratio on the performance of the propellants, hydrogen-fluorine, hydrogen-oxygen, ammonia-fluorine and AN-F-58 fuel - white fuming nitric acid (95 percent). The results indicate that an increase in specific impulse obtainable with an increase in combustion-chamber pressure is almost entirely caused by the increased expansion ratio through the nozzle.

  7. Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil.

    PubMed

    Sanquetta, Carlos R; Corte, Ana Pd; da Silva, Fernando

    2011-09-24

    The Biomass Expansion Factor (BEF) and the Root-to-Shoot Ratio (R) are variables used to quantify carbon stock in forests. They are often considered as constant or species/area specific values in most studies. This study aimed at showing tree size and age dependence upon BEF and R and proposed equations to improve forest biomass and carbon stock. Data from 70 sample Pinus spp. grown in southern Brazil trees in different diameter classes and ages were used to demonstrate the correlation between BEF and R, and forest inventory data, such as DBH, tree height and age. Total dry biomass, carbon stock and CO2 equivalent were simulated using the IPCC default values of BEF and R, corresponding average calculated from data used in this study, as well as the values estimated by regression equations. The mean values of BEF and R calculated in this study were 1.47 and 0.17, respectively. The relationship between BEF and R and the tree measurement variables were inversely related with negative exponential behavior. Simulations indicated that use of fixed values of BEF and R, either IPCC default or current average data, may lead to unreliable estimates of carbon stock inventories and CDM projects. It was concluded that accounting for the variations in BEF and R and using regression equations to relate them to DBH, tree height and age, is fundamental in obtaining reliable estimates of forest tree biomass, carbon sink and CO2 equivalent.

  8. Expansion tunnel performance with and without an electromagnetically opened tertiary diaphragm

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1977-01-01

    A study was conducted to examine the effect of synchronization of an electromagnetically opened tertiary diaphragm with flow arrival at the diaphragm on the pitot pressure measured at the test section of an expansion tunnel. The effect of tertiary diaphragm pressure ratio (ratio of initial nozzle pressure to quiescent acceleration section pressure) on the pitot pressure time history is also determined. The inadequacy of a pressure transducer protection arrangement used in previous expansion tube and expansion tunnel tests was revealed.

  9. Optimum extrusion-cooking conditions for improving physical properties of fish-cereal based snacks by response surface methodology.

    PubMed

    Singh, R K Ratankumar; Majumdar, Ranendra K; Venkateshwarlu, G

    2014-09-01

    To establish the effect of barrel temperature, screw speed, total moisture and fish flour content on the expansion ratio and bulk density of the fish based extrudates, response surface methodology was adopted in this study. The experiments were optimized using five-levels, four factors central composite design. Analysis of Variance was carried to study the effects of main factors and interaction effects of various factors and regression analysis was carried out to explain the variability. The fitting was done to a second order model with the coded variables for each response. The response surface plots were developed as a function of two independent variables while keeping the other two independent variables at optimal values. Based on the ANOVA, the fitted model confirmed the model fitness for both the dependent variables. Organoleptically highest score was obtained with the combination of temperature-110(0) C, screw speed-480 rpm, moisture-18 % and fish flour-20 %.

  10. Finite element analysis of residual stress in cold expanded plate with different thickness and expansion ratio

    NASA Astrophysics Data System (ADS)

    Arifin Shariffudin, Kamarul; Karuppanan, Saravanan; Patil, Santosh S.

    2017-10-01

    Cold expansion of fastener/rivet holes is a common way to generate beneficial compressive residual stress around the fastener hole. In this study, cold expansion process was simulated by finite-element method in order to determine the residual stress field around two cold expanded holes by varying the plate thickness and expansion ratio of the hole. The model was developed in ANSYS and assigned to aluminium alloy 7475-T61 material model. The results showed that the residual stress become more compressive as the plate thickness is increased up to t/d = 2.6 and decreased for further level of thickness. In addition, the residual stress at the edge of the hole become more compressive as the expansion ratio is increased up to 4.5% and decreased for further level of expansion. This study also found that the residual stresses near the entrance and the exit face of the plate are less compressive than the residual stresses on the mid-thickness of the plate.

  11. How to design low-noise burners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, G.; Jordan, J.

    1996-12-01

    Frequently, natural draft burner designs used in indirect heaters fail to meet the low noise standard of 85 to 88 dBA three feet from the flame arrestor. Noise encountered with indirect burner designs has been shown to be related to nozzle and firetube gas velocities. Testing shows that when the nozzle velocity is sufficiently greater than the firetube velocity, the low-frequency rumble that accompanies current designs ceases. Data obtained from field testing was used to construct a relationship between burner noise level and gas volume expansion ratio, burner air-to-fuel ratio, mixture flowrate, orifice velocity, burner area, and the number ofmore » burners. The noise from a burner can be predicted if the above easily calculable variables are known.« less

  12. Isotopic tracers of paleohydrologic change in large lakes of the Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    Placzek, Christa J.; Quade, Jay; Patchett, P. Jonathan

    2011-01-01

    We have developed an 87Sr/ 86Sr, 234U/ 238U, and δ 18O data set from carbonates associated with late Quaternary paleolake cycles on the southern Bolivian Altiplano as a tool for tracking and understanding the causes of lake-level fluctuations. Distinctive groupings of 87Sr/ 86Sr ratios are observed. Ratios are highest for the Ouki lake cycle (120-95 ka) at 0.70932, lowest for Coipasa lake cycle (12.8-11.4 ka) at 0.70853, and intermediate at 0.70881 to 0.70884 for the Salinas (95-80 ka), Inca Huasi (~ 45 ka), Sajsi (24-20.5 ka), and Tauca (18.1-14.1 ka) lake cycles. These Sr ratios reflect variable contributions from the eastern and western Cordilleras. The Laca hydrologic divide exerts a primary influence on modern and paleolake 87Sr/ 86Sr ratios; waters show higher 87Sr/ 86Sr ratios north of this divide. Most lake cycles were sustained by slightly more rainfall north of this divide but with minimal input from Lake Titicaca. The Coipasa lake cycle appears to have been sustained mainly by rainfall south of this divide. In contrast, the Ouki lake cycle was an expansive lake, deepest in the northern (Poópo) basin, and spilling southward. These results indicate that regional variability in central Andean wet events can be reconstructed using geochemical patterns from this lake system.

  13. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products.

    PubMed

    Korkerd, Sopida; Wanlapa, Sorada; Puttanlek, Chureerat; Uttapap, Dudsadee; Rungsardthong, Vilai

    2016-01-01

    Rich sources of protein and dietary fiber from food processing by-products, defatted soybean meal, germinated brown rice meal, and mango peel fiber, were added to corn grit at 20 % (w/w) to produce fortified extruded snacks. Increase of total dietary fiber from 4.82 % (wb) to 5.92-17.80 % (wb) and protein from 5.03 % (wb) to 5.46-13.34 % were observed. The product indicated high expansion and good acceptance tested by sensory panels. There were 22.33-33.53 and 5.30-11.53 fold increase in the phenolics and antioxidant activity in the enriched snack products. The effects of feed moisture content, screw speed, and barrel temperature on expansion and nutritional properties of the extruded products were investigated by using response surface methodology. Regression equations describing the effect of each variable on the product responses were obtained. The snacks extruded with feed moisture 13-15 % (wb) and extrusion temperature at 160-180 °C indicated the products with high preference in terms of expansion ratio between insoluble dietary fiber and soluble dietary fiber balance. The results showed that the by-products could be successfully used for nutritional supplemented expanded snacks.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wei; Li Hui; Li Shengtai

    Nonlinear ideal magnetohydrodynamic (MHD) simulations of the propagation and expansion of a magnetic ''bubble'' plasma into a lower density, weakly magnetized background plasma, are presented. These simulations mimic the geometry and parameters of the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Am. Phys. Soc. 52, 53 (2007)], which is studying magnetic bubble expansion as a model for extragalactic radio lobes. The simulations predict several key features of the bubble evolution. First, the direction of bubble expansion depends on the ratio of the bubble toroidalmore » to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, a MHD shock and a trailing slow-mode compressible MHD wavefront are formed ahead of the bubble as it propagates into the background plasma. Third, the bubble expansion and propagation develop asymmetries about its propagation axis due to reconnection facilitated by numerical resistivity and to inhomogeneous angular momentum transport mainly due to the background magnetic field. These results will help guide the initial experiments and diagnostic measurements on PBEX.« less

  15. Multi-specie isothermal flow calculations of widely-spaced co-axial jets in a confined sudden expansion, with the central jet dominant

    NASA Astrophysics Data System (ADS)

    Sturgess, G. J.; Syed, S. A.

    1982-06-01

    A numerical simulation is made of the flow in the Wright Aeronautical Propulsion Laboratory diffusion flame research combustor operating with a strong central jet of carbon dioxide in a weak and removed co-axial jet of air. The simulation is based on a finite difference solution of the time-average, steady-state, elliptic form of the Reynolds equations. Closure for these equations is provided by a two-equation turbulence model. Comparisons between measurements and predictions are made for centerline axial velocities and radial profiles of CO2 concentration. Earlier findings for a single specie, constant density, single jet flow that a large expansion ratio confined jet behaves initially as if it were unconfined, are confirmed for the multiple-specie, variable density, multiple-jet system. The lack of universality in the turbulence model constants and the turbulent Schmidt/Prandtl number is discussed.

  16. Static internal performance of a single expansion ramp nozzle with multiaxis thrust vectoring capability

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Schirmer, Alberto W.

    1993-01-01

    An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel at nozzle pressure ratios up to 8.0.

  17. Co-precipitation of asiatic acid and poly( l-lactide) using rapid expansion of subcritical solutions into liquid solvents

    NASA Astrophysics Data System (ADS)

    Sane, Amporn; Limtrakul, Jumras

    2011-09-01

    Poly( l-lactide) (PLLA) nanoparticles loaded with asiatic acid (AA) were successfully produced by rapid expansion of a subcritical solution into an aqueous receiving solution containing a dispersing agent. A mixture of carbon dioxide (CO2) and ethanol (EtOH) with a weight ratio of 1:1 was used as the solvent for AA and PLLA. Two surfactants, Pluronic F127 and sodium dodecyl sulfate were employed. The former was found to be more effective for stabilizing AA-loaded PLLA nanoparticles, as a rapid expansion into a 0.1 wt% Pluronic F127 solution produced a stable nanosuspension consisting mainly of well-dispersed, individual nanoparticles. The effects of rapid expansion-processing conditions—AA to PLLA weight ratio and pre-expansion temperature (Tpre)—on the size and morphology of composite nanoparticles, and the loading capacity and entrapment efficiency of AA in PLLA nanoparticles, were systematically investigated. It was found that AA-loaded PLLA nanoparticles with a size range of 30-100 nm were consistently fabricated by rapid expansion at Tpre of 70-100 °C and AA to PLLA weight ratios of 1:2 and 1:4, and with a constant pre-expansion pressure of 330 bar. The Tpre and AA to PLLA weight ratio had no significant effects on the size of the nanoparticles. The AA to PLLA weight ratio is a controlling parameter for both the loading capacity and the entrapment efficiency of AA in PLLA nanoparticles. The loading capacity and entrapment efficiency increased from 8-11 to 16-21 wt%, and 38-57 to 50-62 wt%, respectively, when the AA to PLLA weight ratio changed from 1:4 to 1:2. However, increasing the Tpre from 70 to 100 °C decreased both the loading capacity and entrapment efficiency of AA in PLLA nanoparticles by 20-30%.

  18. Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangbo; Chen, Yanyu; Li, Tiantian

    Materials with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures and devices, are important for aerospace, civil, biomedical, optics, and semiconductor applications. In natural materials, thermal expansion usually cannot be adjusted easily and a negative thermal expansion coefficient is still uncommon. Here we propose a novel architected lattice bi-material system, inspired by the Hoberman sphere, showing a wide range of tunable thermal expansion coefficient from negative to positive, -1.04 x 10 -3 degrees C-1 to 1.0 x 10 -5 degrees C-1. Numerical simulations and analytical formulations are implemented to quantify the evolution of the thermalmore » expansion coefficients and reveal the underlying mechanisms responsible for this unusual behavior. We show that the thermal expansion coefficient of the proposed metamaterials depends on the thermal expansion coefficient ratio and the axial stiffness ratio of the constituent materials, as well as the bending stiffness and the topological arrangement of the constitutive elements. The finding reported here provides a new routine to design architected metamaterial systems with tunable negative thermal expansion for a wide range of potential applications.« less

  19. Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion

    DOE PAGES

    Li, Yangbo; Chen, Yanyu; Li, Tiantian; ...

    2018-02-02

    Materials with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures and devices, are important for aerospace, civil, biomedical, optics, and semiconductor applications. In natural materials, thermal expansion usually cannot be adjusted easily and a negative thermal expansion coefficient is still uncommon. Here we propose a novel architected lattice bi-material system, inspired by the Hoberman sphere, showing a wide range of tunable thermal expansion coefficient from negative to positive, -1.04 x 10 -3 degrees C-1 to 1.0 x 10 -5 degrees C-1. Numerical simulations and analytical formulations are implemented to quantify the evolution of the thermalmore » expansion coefficients and reveal the underlying mechanisms responsible for this unusual behavior. We show that the thermal expansion coefficient of the proposed metamaterials depends on the thermal expansion coefficient ratio and the axial stiffness ratio of the constituent materials, as well as the bending stiffness and the topological arrangement of the constitutive elements. The finding reported here provides a new routine to design architected metamaterial systems with tunable negative thermal expansion for a wide range of potential applications.« less

  20. The effect of microstructure on the sheared edge quality and hole expansion ratio of hot-rolled 700 MPa steel

    NASA Astrophysics Data System (ADS)

    Kaijalainen, A.; Kesti, V.; Vierelä, R.; Ylitolva, M.; Porter, D.; Kömi, J.

    2017-09-01

    The effects of microstructure on the cutting and hole expansion properties of three thermomechanically rolled steels have been investigated. The yield strength of the studied 3 mm thick strip steels was approximately 700 MPa. Detailed microstructural studies using laser scanning confocal microscopy (LCSM), FESEM and FESEM-EBSD revealed that the three investigated materials consist of 1) single-phase polygonal ferrite, 2) polygonal ferrite with precipitates and 3) granular bainite. The quality of mechanically sheared edges were evaluated using visual inspection and LSCM, while hole expansion properties were characterised according to the methods described in ISO 16630. Roughness values (Ra and Rz) of the sheet edge with different cutting clearances varied between 12 µm to 21 µm and 133 µm to 225 µm, respectively. Mean hole expansion ratios varied from 28.4% to 40.5%. It was shown that granular bainite produced the finest cutting edge, but the hole expansion ratio remained at the same level as in the steel comprising single-phase ferrite. This indicates that a single-phase ferritic matrix enhances hole expansion properties even with low quality edges. A brief discussion of the microstructural features controlling the cutting quality and hole expansion properties is given.

  1. A second-order shock-expansion method applicable to bodies of revolution near zero lift

    NASA Technical Reports Server (NTRS)

    1957-01-01

    A second-order shock-expansion method applicable to bodies of revolution is developed by the use of the predictions of the generalized shock-expansion method in combination with characteristics theory. Equations defining the zero-lift pressure distributions and the normal-force and pitching-moment derivatives are derived. Comparisons with experimental results show that the method is applicable at values of the similarity parameter, the ratio of free-stream Mach number to nose fineness ratio, from about 0.4 to 2.

  2. A phase cell cluster expansion for Euclidean field theories

    NASA Astrophysics Data System (ADS)

    Battle, Guy A., III; Federbush, Paul

    1982-08-01

    We adapt the cluster expansion first used to treat infrared problems for lattice models (a mass zero cluster expansion) to the usual field theory situation. The field is expanded in terms of special block spin functions and the cluster expansion given in terms of the expansion coefficients (phase cell variables); the cluster expansion expresses correlation functions in terms of contributions from finite coupled subsets of these variables. Most of the present work is carried through in d space time dimensions (for φ24 the details of the cluster expansion are pursued and convergence is proven). Thus most of the results in the present work will apply to a treatment of φ34 to which we hope to return in a succeeding paper. Of particular interest in this paper is a substitute for the stability of the vacuum bound appropriate to this cluster expansion (for d = 2 and d = 3), and a new method for performing estimates with tree graphs. The phase cell cluster expansions have the renormalization group incorporated intimately into their structure. We hope they will be useful ultimately in treating four dimensional field theories.

  3. On Complicated Expansions of Solutions to ODES

    NASA Astrophysics Data System (ADS)

    Bruno, A. D.

    2018-03-01

    Polynomial ordinary differential equations are studied by asymptotic methods. The truncated equation associated with a vertex or a nonhorizontal edge of their polygon of the initial equation is assumed to have a solution containing the logarithm of the independent variable. It is shown that, under very weak constraints, this nonpower asymptotic form of solutions to the original equation can be extended to an asymptotic expansion of these solutions. This is an expansion in powers of the independent variable with coefficients being Laurent series in decreasing powers of the logarithm. Such expansions are sometimes called psi-series. Algorithms for such computations are described. Six examples are given. Four of them are concern with Painlevé equations. An unexpected property of these expansions is revealed.

  4. Digital evaluation of orbital development after self-inflating hydrogel expansion in Chinese children with congenital microphthalmia.

    PubMed

    Hou, Zhijia; Xian, Junfang; Chang, Qinglin; Wei, Wenbin; Li, Dongmei

    2016-05-01

    Assessment of the growth of bony orbit in children with blind microphthalmia is essential to its management. In this study, variables were measured to evaluate the development of the bony microphthalmic orbits after treatment with self-inflating hydrogel expanders. This is a retrospective study with an interventional case series. Thirteen pediatric patients with congenital unilateral blind microphthalmia who had undergone tissue expansion with hydrogel expanders and computed tomography (CT) scanning before and after operation were included in the study. The orbital volume, depth, width, and height and retardation of the orbital rims before and after treatment were measured and analyzed using the iPlan Cranial Software. The mean age at the time of first implantation was 44 months (range, 3-113 months). Of the 13 patients, eleven received orbital expansion, while two received socket expansion. In the orbital expansion group, the mean microphthalmic/contralateral ratio (MCR) of orbital volume was 79.3% before surgery, which increased to 89.8% 3 years post operation (P < 0.001). The mean MCR of orbital width also increased from 88.8% to 91.8% (P = 0.003). The development of inferior and lateral rims showed the greatest retardation before treatment; the retardation of these two rims decreased significantly at the final measurement (P = 0.004). It is also noted that the development of the microphthalmic orbits was limited in the two patients who only underwent socket expansion. The affected orbit enlarged in children with congenital blind microphthalmia following treatment with hydrogel expanders; this suggested that microphthalmia-associated orbital asymmetry can be treated with self-inflating hydrogel expanders. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Foam property tests to evaluate the potential for longwall shield dust control.

    PubMed

    Reed, W R; Beck, T W; Zheng, Y; Klima, S; Driscoll, J

    2018-01-01

    Tests were conducted to determine properties of four foam agents for their potential use in longwall mining dust control. Foam has been tried in underground mining in the past for dust control and is currently being reconsidered for use in underground coal longwall operations in order to help those operations comply with the Mine Safety and Health Administration's lower coal mine respirable dust standard of 1.5 mg/m 3 . Foams were generated using two different methods. One method used compressed air and water pressure to generate foam, while the other method used low-pressure air generated by a blower and water pressure using a foam generator developed by the U.S. National Institute for Occupational Safety and Health. Foam property tests, consisting of a foam expansion ratio test and a water drainage test, were conducted to classify foams. Compressed-air-generated foams tended to have low expansion ratios, from 10 to 19, with high water drainage. Blower-air-generated foams had higher foam expansion ratios, from 30 to 60, with lower water drainage. Foams produced within these ranges of expansion ratios are stable and potentially suitable for dust control. The test results eliminated two foam agents for future testing because they had poor expansion ratios. The remaining two foam agents seem to have properties adequate for dust control. These material property tests can be used to classify foams for their potential use in longwall mining dust control.

  6. Foam property tests to evaluate the potential for longwall shield dust control

    PubMed Central

    Reed, W.R.; Beck, T.W.; Zheng, Y.; Klima, S.; Driscoll, J.

    2018-01-01

    Tests were conducted to determine properties of four foam agents for their potential use in longwall mining dust control. Foam has been tried in underground mining in the past for dust control and is currently being reconsidered for use in underground coal longwall operations in order to help those operations comply with the Mine Safety and Health Administration’s lower coal mine respirable dust standard of 1.5 mg/m3. Foams were generated using two different methods. One method used compressed air and water pressure to generate foam, while the other method used low-pressure air generated by a blower and water pressure using a foam generator developed by the U.S. National Institute for Occupational Safety and Health. Foam property tests, consisting of a foam expansion ratio test and a water drainage test, were conducted to classify foams. Compressed-air-generated foams tended to have low expansion ratios, from 10 to 19, with high water drainage. Blower-air-generated foams had higher foam expansion ratios, from 30 to 60, with lower water drainage. Foams produced within these ranges of expansion ratios are stable and potentially suitable for dust control. The test results eliminated two foam agents for future testing because they had poor expansion ratios. The remaining two foam agents seem to have properties adequate for dust control. These material property tests can be used to classify foams for their potential use in longwall mining dust control. PMID:29416179

  7. Partial-fraction expansion and inverse Laplace transform of a rational function with real coefficients

    NASA Technical Reports Server (NTRS)

    Chang, F.-C.; Mott, H.

    1974-01-01

    This paper presents a technique for the partial-fraction expansion of functions which are ratios of polynomials with real coefficients. The expansion coefficients are determined by writing the polynomials as Taylor's series and obtaining the Laurent series expansion of the function. The general formula for the inverse Laplace transform is also derived.

  8. Propellant production from the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Bowles, J. V.; Tauber, M. E.; Anagnost, A. J.; Whittaker, T.

    1992-01-01

    Results are presented from a calculation of the specific impulses that can be generated through the combustion of cryogenic CO and O2 over a range of fuel/oxidizer ratios, chamber pressures, nozzle expansion ratios, freestream pressures representative of Mars, and the limiting conditions of equilibrium and frozen nozzle flow. For an expansion ratio of 80 and 100-atm. chamber pressure, a specific impulse of 298 sec was obtained; this is comparable to the best solid rocket propellants.

  9. Insights in spatio-temporal characterization of human fetal neural stem cells.

    PubMed

    Martín-Ibáñez, Raquel; Guardia, Inés; Pardo, Mónica; Herranz, Cristina; Zietlow, Rike; Vinh, Ngoc-Nga; Rosser, Anne; Canals, Josep M

    2017-05-01

    Primary human fetal cells have been used in clinical trials of cell replacement therapy for the treatment of neurodegenerative disorders such as Huntington's disease (HD). However, human fetal primary cells are scarce and difficult to work with and so a renewable source of cells is sought. Human fetal neural stem cells (hfNSCs) can be generated from human fetal tissue, but little is known about the differences between hfNSCs obtained from different developmental stages and brain areas. In the present work we characterized hfNSCs, grown as neurospheres, obtained from three developmental stages: 4-5, 6-7 and 8-9weeks post conception (wpc) and four brain areas: forebrain, cortex, whole ganglionic eminence (WGE) and cerebellum. We observed that, as fetal brain development proceeds, the number of neural precursors is diminished and post-mitotic cells are increased. In turn, primary cells obtained from older embryos are more sensitive to the dissociation process, their viability is diminished and they present lower proliferation ratios compared to younger embryos. However, independently of the developmental stage of derivation proliferation ratios were very low in all cases. Improvements in the expansion rates were achieved by mechanical, instead of enzymatic, dissociation of neurospheres but not by changes in the seeding densities. Regardless of the developmental stage, neurosphere cultures presented large variability in the viability and proliferation rates during the initial 3-4 passages, but stabilized achieving significant expansion rates at passage 5 to 6. This was true also for all brain regions except cerebellar derived cultures that did not expand. Interestingly, the brain region of hfNSC derivation influences the expansion potential, being forebrain, cortex and WGE derived cells the most expandable compared to cerebellar. Short term expansion partially compromised the regional identity of cortical but not WGE cultures. Nevertheless, both expanded cultures were multipotent and kept the ability to differentiate to region specific mature neuronal phenotypes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke.

    PubMed

    Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2016-10-15

    Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ideal Magnetohydrodynamic Simulations of Magnetic Bubble Expansion as a Model for Extragalactic Radio Lobes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Hsu, Scott; Li, Hui; Li, Shengtai; Lynn, Alan

    2009-05-01

    Recent astronomical observations indicate that radio lobes are gigantic relaxed magnetized plasmas with kilo-to-megaparsec scale jets providing a source of magnetic energy from the galaxy to the lobes. Therefore we are conducting a laboratory plasma experiment, the Plasma Bubble Expansion Experiment (PBEX) in which a higher pressure magnetized plasma bubble (i.e., the lobe) is injected into a lower pressure background plasma (i.e., the intergalactic medium) to study key nonlinear plasma physics issues. Here we present detailed ideal magnetohydrodynamic (MHD) three-dimensional simulations of PBEX. First, the direction of bubble expansion depends on the ratio of the bubble toroidal to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, a leading MHD shock and a trailing slow-mode compressible MHD wave front are formed ahead of the bubble as it propagates into the background plasma. Third, the bubble expansion and propagation develop asymmetries about its propagation axis due to reconnection arising from numerical resistivity and to inhomogeneous angular momentum transport due to the background magnetic field. These results will help guide the initial experiments and diagnostic measurements on PBEX.

  12. Analysis of a rotating spool expander for Organic Rankine Cycle applications

    NASA Astrophysics Data System (ADS)

    Krishna, Abhinav

    Increasing interest in recovering or utilizing low-grade heat for power generation has prompted a search for ways in which the power conversion process may be enhanced. Amongst the conversion systems, the Organic Rankine Cycle (ORC) has generated an enormous amount of interest amongst researchers and system designers. Nevertheless, component level technologies need to be developed and match the range of potential applications. In particular, technical challenges associated with scaling expansion machines (turbines) from utility scale to commercial scale have prevented widespread adoption of the technology. In this regard, this work focuses on a novel rotating spool expansion machine at the heart of an Organic Rankine Cycle. A comprehensive, deterministic simulation model of the rotating spool expander is developed. The comprehensive model includes a detailed geometry model of the spool expander and the suction valve mechanism. Sub-models for mass flow, leakage, heat transfer and friction within the expander are also developed. Apart from providing the ability to characterize the expander in a particular system, the model provides a valuable tool to study the impact of various design variables on the performance of the machine. The investigative approach also involved an experimental program to assess the performance of a working prototype. In general, the experimental data showed that the expander performance was sub-par, largely due to the mismatch of prevailing operating conditions and the expander design criteria. Operating challenges during the shakedown tests and subsequent sub-optimal design changes also detracted from performance. Nevertheless, the results of the experimental program were sufficient for a proof-of-concept assessment of the expander and for model validation over a wide range of operating conditions. The results of the validated model reveal several interesting details concerning the expander design and performance. For example, the match between the design expansion ratio and the system imposed pressure ratio has a large influence on the performance of the expander. Further exploration shows that from an operating perspective, under-expansion is preferable to over-expansion. The model is also able to provide insight on the dominant leakage paths in the expander and points to the fact that this is the primary loss mechanism in the current expander. Similar insights are obtained from assessing the sensitivity of various other design variables on expander performance. Based on the understanding provided by the sensitivity analysis, exercising the validated model showed that expander efficiencies on the order of 75% are imminently possible in an improved design. Therefore, with sufficient future development, adoption of the spool expander in ORC systems that span a 50 kW -- 200 kW range is broadly feasible.

  13. Effect of Jet-nozzle-expansion Ratio on Drag of Parabolic Afterbodies

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W; Vargo, Donald J; Cubbison, Robert W

    1954-01-01

    The interaction of the flow from one convergent and two convergent-divergent nozzles on parabolic afterbodies was studied at free-stream Mach numbers of 2.0, 1.6, and 0.6 over a range of jet pressure ratio. The influence of the jet on boattail and base drag was very pronounced. Study of the total external afterbody drag values at supersonic speeds indicated that, over most of the high-pressure-ratio range, increasing the nozzle design expansion ratio increased the drag even though the boattail area was reduced. Increasing the pressure ratio tended to increase slightly the total-drag increment caused by angle-of-attack operation.

  14. Investigation of flowfields found in typical combustor geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.

    1985-01-01

    Activities undertaken during the entire course of research are summarized. Studies were concerned with experimental and theoretical research on 2-D axisymmetric geometries under low speed nonreacting, turbulent, swirling flow conditions typical of gas turbine and ramjet combustion chambers. They included recirculation zone characterization, time-mean and turbulence simulation in swirling recirculating flow, sudden and gradual expansion flowfields, and furher complexities and parameter influences. The study included the investigation of: a complete range of swirl strengths; swirler performance; downstream contraction nozzle sizes and locations; expansion ratios; and inlet side-wall angles. Their individual and combined effects on the test section flowfield were observed, measured and characterized. Experimental methods included flow visualization (with smoke and neutrally-buoyant helium-filled soap bubbles), five-hole pitot probe time-mean velocity field measurements, and single-, double-, and triple-wire hot-wire anemometry measurements of time-mean velocities, normal and shear Reynolds sresses. Computational methods included development of the STARPIC code from the primitive-variable TEACH computer code, and its use in flowfield prediction and turbulence model development.

  15. Assessment of WENO-extended two-fluid modelling in compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Kitamura, Keiichi; Nonomura, Taku

    2017-03-01

    The two-fluid modelling based on an advection-upwind-splitting-method (AUSM)-family numerical flux function, AUSM+-up, following the work by Chang and Liou [Journal of Computational Physics 2007;225: 840-873], has been successfully extended to the fifth order by weighted-essentially-non-oscillatory (WENO) schemes. Then its performance is surveyed in several numerical tests. The results showed a desired performance in one-dimensional benchmark test problems: Without relying upon an anti-diffusion device, the higher-order two-fluid method captures the phase interface within a fewer grid points than the conventional second-order method, as well as a rarefaction wave and a very weak shock. At a high pressure ratio (e.g. 1,000), the interpolated variables appeared to affect the performance: the conservative-variable-based characteristic-wise WENO interpolation showed less sharper but more robust representations of the shocks and expansions than the primitive-variable-based counterpart did. In two-dimensional shock/droplet test case, however, only the primitive-variable-based WENO with a huge void fraction realised a stable computation.

  16. Kowalevski's analysis of the swinging Atwood's machine

    NASA Astrophysics Data System (ADS)

    Babelon, O.; Talon, M.; Capdequi Peyranère, M.

    2010-02-01

    We study the Kowalevski expansions near singularities of the swinging Atwood's machine. We show that there is an infinite number of mass ratios M/m where such expansions exist with the maximal number of arbitrary constants. These expansions are of the so-called weak Painlevé type. However, in view of these expansions, it is not possible to distinguish between integrable and nonintegrable cases.

  17. Impacts of Cellulose Fiber Particle Size and Starch Type on Expansion During Extrusion Processing.

    PubMed

    Kallu, Sravya; Kowalski, Ryan J; Ganjyal, Girish M

    2017-07-01

    Objective of this study was to understand the impacts of cellulose fiber with different particle size distributions, and starches with different molecular weights, on the expansion of direct expanded products. Fiber with 3 different particle size distributions (<125, 150 to 250, 300 to 425 μm) and 4 types of starches representing different amylose contents (0%, 23%, 50%, and 70%) were investigated. Feed moisture content (18 ± 0.5 % w.b) and extruder temperature (140 °C) were kept constant and only the extruder screw speed was varied (100, 175, and 250 rpm) to achieve different specific mechanical energy inputs. Fiber particle size and starch type significantly influenced the various product parameters. In general, the smaller fiber particle size resulted in extrudate with higher expansion ratio. Starch with an amylose: amylopectin ratio of 23:77 resulted in highest expansion compared to the other starches, when no fiber was added. Interestingly, starch with 50:50, amylose: amylopectin ratio in combination with smaller fiber particles resulted in product with significantly greater expansion than the control starch extrudates. Aggregation of fiber and shrinkage of surface was observed in the Scanning Electron Microscope images at 10% fiber level. The results suggest the presence of active interactions between the cellulose fiber particles and corn starch molecules during the expansion process. A better understanding of these interactions can help in the development of high fiber extruded products with better expansion. © 2017 Institute of Food Technologists®.

  18. Performance of blend sign in predicting hematoma expansion in intracerebral hemorrhage: A meta-analysis.

    PubMed

    Yu, Zhiyuan; Zheng, Jun; Guo, Rui; Ma, Lu; Li, Mou; Wang, Xiaoze; Lin, Sen; Li, Hao; You, Chao

    2017-12-01

    Hematoma expansion is independently associated with poor outcome in intracerebral hemorrhage (ICH). Blend sign is a simple predictor for hematoma expansion on non-contrast computed tomography. However, its accuracy for predicting hematoma expansion is inconsistent in previous studies. This meta-analysis is aimed to systematically assess the performance of blend sign in predicting hematoma expansion in ICH. A systematic literature search was conducted. Original studies about predictive accuracy of blend sign for hematoma expansion in ICH were included. Pooled sensitivity, specificity, positive and negative likelihood ratios were calculated. Summary receiver operating characteristics curve was constructed. Publication bias was assessed by Deeks' funnel plot asymmetry test. A total of 5 studies with 2248 patients were included in this meta-analysis. The pooled sensitivity, specificity, positive and negative likelihood ratios of blend sign for predicting hematoma expansion were 0.28, 0.92, 3.4 and 0.78, respectively. The area under the curve (AUC) was 0.85. No significant publication bias was found. This meta-analysis demonstrates that blend sign is a useful predictor with high specificity for hematoma expansion in ICH. Further studies with larger sample size are still necessary to verify the accuracy of blend sign for predicting hematoma expansion. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Annular Internal-External-Expansion Rocket Nozzles for Large Booster Applications

    NASA Technical Reports Server (NTRS)

    Connors, James F.; Cubbison, Robert W.; Mitchell, Glenn A.

    1961-01-01

    For large-thrust booster applications, annular rocket nozzles employing both internal and external expansion are investigated. In these nozzles, free-stream air flows through the center as well as around the outside of the exiting jet. Flaps for deflecting the rocket exhaust are incorporated on the external-expansion surface for thrust-vector control. In order to define nozzle off-design performance, thrust vectoring effectiveness, and external stream effects, an experimental investigation was conducted on two annular nozzles with area ratios of 15 and 25 at Mach 0, 2, and 3 in the Lewis 10- by 10-foot wind tunnel. Air, pressurized to 600 pounds per square inch absolute, was used to simulate the exhaust flow. For a nozzle-pressure-ratio range of 40 to 1000, the ratio of actual to ideal thrust was essentially constant at 0.98 for both nozzles. Compared with conventional convergent-divergent configurations on hypothetical boost missions, the performance gains of the annular nozzle could yield significant orbital payload increases (possibly 8 to 17 percent). A single flap on the external-expansion surface of the area-ratio-25 annular nozzle produced a side force equal to 4 percent of the axial force with no measurable loss in axial thrust.

  20. Measurement of the setting expansion of phosphate-bonded investment materials: Part I - Development of the Casting-Ring Test.

    PubMed

    Lloyd, C H; Yearn, J A; Cowper, G A; Blavier, J; Vanderdonckt, M

    2004-07-01

    The setting expansion is an important property for a phosphate-bonded investment material. This research was undertaken to investigate a test that might be suitable for its measurement when used in a Standard. In the 'Casting-Ring Test', the investment sample is contained in a steel ring and expands to displace a precisely positioned pin. Variables with the potential to alter routine reproduction of the value were investigated. The vacuum-mixer model is a production laboratory variable that must not be ignored and for this reason, experiments were repeated using a different vacuum-mixer located at a second test site. Restraint by the rigid ring material increased expansion, while force on the pin reduced it. Expansion was specific to the lining selected. Increased environmental temperature decreased the final value. Expansion was still taking place at a time at which its value might be measured. However, when these factors are set, the reproducibility of values for setting expansion was good at both test sites (coefficient of variation 14%, at most). The results revealed that with the control that is available reliable routine measurement is possible in a Standard test. The inter-laboratory variable, vacuum-mixer model, produced significant differences and it should be the subject of further investigation.

  1. Nonlinear Finite Element Analysis of Metals and Metal Matrix Composites: A Local-Global Investigation

    DTIC Science & Technology

    1992-10-01

    and SiC/Al [47] possess good chemical bonding and experience mechanical clamping due to the differences in thermal expansion coefficients between...Coefficient of Thermal 2.70 x 10.6 *F-1 4.09 x 10-6 *C-1 Expansion (ca) Poisson’s Ratio (v) 0.25 0.25 Fiber Diameter (d) 0.0056 in 0.014224 cm...Properties of the matrix (as fabricated) Coefficient of Thermal 5.4 x 10-6 "F1 9.72 x 10-6 "C-1 Expansion (a) Poisson’s Ratio (v) 0.351 0.351 Longitudinal

  2. Imaging growth and isocitrate dehydrogenase 1 mutation are independent predictors for diffuse low-grade gliomas

    PubMed Central

    Gozé, Catherine; Blonski, Marie; Le Maistre, Guillaume; Bauchet, Luc; Dezamis, Edouard; Page, Philippe; Varlet, Pascale; Capelle, Laurent; Devaux, Bertrand; Taillandier, Luc; Duffau, Hugues; Pallud, Johan

    2014-01-01

    Background We explored whether spontaneous imaging tumor growth (estimated by the velocity of diametric expansion) and isocitrate dehydrogenase 1 (IDH1) mutation (estimated by IDH1 immunoexpression) were independent predictors of long-term outcomes of diffuse low-grade gliomas in adults. Methods One hundred thirty-one adult patients with newly diagnosed supratentorial diffuse low-grade gliomas were retrospectively studied. Results Isocitrate dehydrogenase 1 mutations were present in 107 patients. The mean spontaneous velocity of diametric expansion was 5.40 ± 5.46 mm/y. During follow-up (mean, 70 ± 54.7 mo), 56 patients presented a malignant transformation and 23 died. The median malignant progression-free survival and the overall survival were significantly longer in cases of slow velocity of diametric expansion (149 and 198 mo, respectively) than in cases of fast velocity of diametric expansion (46 and 82 mo; P < .001 and P < .001, respectively) and in cases with IDH1 mutation (100 and 198 mo, respectively) than in cases without IDH1 mutation (72 mo and not reached; P = .028 and P = .001, respectively). In multivariate analyses, spontaneous velocity of diametric expansion and IDH1 mutation were independent prognostic factors for malignant progression-free survival (P < .001; hazard ratio, 4.23; 95% CI, 1.81–9.40 and P = .019; hazard ratio, 2.39; 95% CI, 1.19–4.66, respectively) and for overall survival (P < .001; hazard ratio, 26.3; 95% CI, 5.42–185.2 and P = .007; hazard ratio, 17.89; 95% CI, 2.15–200.1, respectively). Conclusions The spontaneous velocity of diametric expansion and IDH1 mutation status are 2 independent prognostic values that should be obtained at the beginning of the management of diffuse low-grade gliomas in adults. PMID:24847087

  3. Mechanical properties and negative thermal expansion of a dense rare earth formate framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhanrui; Jiang, Xingxing; Feng, Guoqiang

    The fundamental mechanical properties of a dense metal–organic framework material, [NH{sub 2}CHNH{sub 2}][Er(HCOO){sub 4}] (1), have been studied using nanoindentation technique. The results demonstrate that the elastic moduli, hardnesses, and yield stresses on the (021)/(02−1) facets are 29.8/30.2, 1.80/1.83 and 0.93/1.01 GPa, respectively. Moreover, variable-temperature powder and single-crystal X-ray diffraction experiments reveal that framework 1 shows significant negative thermal expansion along its b axis, which can be explained by using a hinge–strut structural motif. - Graphical abstract: The structure of framework, [NH{sub 2}CHNH{sub 2}][Er(HCOO){sub 4}], and its indicatrix of thermal expansion. - Highlights: • The elastic modulus, hardness, and yieldmore » stress properties of a rare earth metal–organic framework material were studied via nanoindentation technique. • Variable-temperature powder X-ray diffraction experiments reveal that this framework shows significant negative thermal expansion along its b axis. • Based on variable-temperature single-crystal X-ray diffraction experiments, the mechanism of negative thermal expansion can be explained by a hinge–strut structural motif.« less

  4. The Adiabatic Expansion of Gases and the Determination of Heat Capacity Ratios: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Moore, William M.

    1984-01-01

    Describes the procedures and equipment for an experiment on the adiabatic expansion of gases suitable for demonstration and discussion in the physical chemical laboratory. The expansion produced shows how the process can change temperature and still return to a different location on an isotherm. (JN)

  5. Five-hole pitot probe measurements of swirl, confinement and nozzle effects on confined turbulent flow

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.; Scharrer, G. L.

    1984-01-01

    The results of a time-mean flow characterization of nonswirling and swirling inert flows in a combustor are reported. The five-hole pitot probe technique was used in axisymmetric test sections with expansion ratios of 1 and 1.5. A prominent corner recirculation zone identified in nonswirling expanding flows decreased in size with swirling flows. The presence of a downstream nozzle led to an adverse pressure gradient at the wall and a favorable gradient near the centerline. Reducing the expansion ratio reduced the central recirculation length. No significant effect was introduced in the flowfield by a gradual expansion.

  6. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    NASA Astrophysics Data System (ADS)

    Mishra, Shubham; Sarkar, Jahar

    2016-12-01

    Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene) is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP) for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%), which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle). Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  7. Acoustic waves in shock tunnels and expansion tubes

    NASA Technical Reports Server (NTRS)

    Paull, A.; Stalker, R. J.

    1992-01-01

    It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.

  8. Experimental thrust performance of a high-area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, Albert J.; Kacynski, Kenneth J.; Smith, Tamara A.

    1987-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  9. Experimental thrust performance of a high area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.; Kacynski, K. J.; Smith, T. A.

    1986-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  10. Static internal performance including thrust vectoring and reversing of two-dimensional convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Leavitt, L. D.

    1984-01-01

    The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios.

  11. Perceptual scale expansion: an efficient angular coding strategy for locomotor space.

    PubMed

    Durgin, Frank H; Li, Zhi

    2011-08-01

    Whereas most sensory information is coded on a logarithmic scale, linear expansion of a limited range may provide a more efficient coding for the angular variables important to precise motor control. In four experiments, we show that the perceived declination of gaze, like the perceived orientation of surfaces, is coded on a distorted scale. The distortion seems to arise from a nearly linear expansion of the angular range close to horizontal/straight ahead and is evident in explicit verbal and nonverbal measures (Experiments 1 and 2), as well as in implicit measures of perceived gaze direction (Experiment 4). The theory is advanced that this scale expansion (by a factor of about 1.5) may serve a functional goal of coding efficiency for angular perceptual variables. The scale expansion of perceived gaze declination is accompanied by a corresponding expansion of perceived optical slants in the same range (Experiments 3 and 4). These dual distortions can account for the explicit misperception of distance typically obtained by direct report and exocentric matching, while allowing for accurate spatial action to be understood as the result of calibration.

  12. Perceptual Scale Expansion: An Efficient Angular Coding Strategy for Locomotor Space

    PubMed Central

    Durgin, Frank H.; Li, Zhi

    2011-01-01

    Whereas most sensory information is coded in a logarithmic scale, linear expansion of a limited range may provide a more efficient coding for angular variables important to precise motor control. In four experiments it is shown that the perceived declination of gaze, like the perceived orientation of surfaces is coded on a distorted scale. The distortion seems to arise from a nearly linear expansion of the angular range close to horizontal/straight ahead and is evident in explicit verbal and non-verbal measures (Experiments 1 and 2) and in implicit measures of perceived gaze direction (Experiment 4). The theory is advanced that this scale expansion (by a factor of about 1.5) may serve a functional goal of coding efficiency for angular perceptual variables. The scale expansion of perceived gaze declination is accompanied by a corresponding expansion of perceived optical slants in the same range (Experiments 3 and 4). These dual distortions can account for the explicit misperception of distance typically obtained by direct report and exocentric matching while allowing accurate spatial action to be understood as the result of calibration. PMID:21594732

  13. Quintessential inflation from a variable cosmological constant in a 5D vacuum

    NASA Astrophysics Data System (ADS)

    Membiela, Agustin; Bellini, Mauricio

    2006-10-01

    We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe.

  14. Structural reanalysis via a mixed method. [using Taylor series for accuracy improvement

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1975-01-01

    A study is made of the approximate structural reanalysis technique based on the use of Taylor series expansion of response variables in terms of design variables in conjunction with the mixed method. In addition, comparisons are made with two reanalysis techniques based on the displacement method. These techniques are the Taylor series expansion and the modified reduced basis. It is shown that the use of the reciprocals of the sizing variables as design variables (which is the natural choice in the mixed method) can result in a substantial improvement in the accuracy of the reanalysis technique. Numerical results are presented for a space truss structure.

  15. Preburner of Staged Combustion Rocket Engine

    NASA Technical Reports Server (NTRS)

    Yost, M. C.

    1978-01-01

    A regeneratively cooled LOX/hydrogen staged combustion assembly system with a 400:1 expansion area ratio nozzle utilizing an 89,000 Newton (20,000 pound) thrust regeneratively cooled thrust chamber and 175:1 tubular nozzle was analyzed, assembled, and tested. The components for this assembly include two spark/torch oxygen-hydrogen igniters, two servo-controlled LOX valves, a preburner injector, a preburner combustor, a main propellant injector, a regeneratively cooled combustion chamber, a regeneratively cooled tubular nozzle with an expansion area ratio of 175:1, an uncooled heavy-wall steel nozzle with an expansion area ratio of 400:1, and interconnecting ducting. The analytical effort was performed to optimize the thermal and structural characteristics of each of the new components and the ducting, and to reverify the capabilities of the previously fabricated components. The testing effort provided a demonstration of the preburner/combustor chamber operation, chamber combustion efficiency and stability, and chamber and nozzle heat transfer.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combinedmore » with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.« less

  17. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis.

    PubMed Central

    Qin, Y; Duquette, P; Zhang, Y; Talbot, P; Poole, R; Antel, J

    1998-01-01

    The cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients is characterized by increased concentrations of immunoglobulin (Ig), which on electrophoretic analysis shows restricted heterogeneity (oligoclonal bands). CSF Ig is composed of both serum and intrathecally produced components. To examine the properties of intrathecal antibody-producing B cells, we analyzed Ig heavy-chain variable (V(H)) region genes of B cells recovered from the CSF of 12 MS patients and 15 patients with other neurological diseases (OND). Using a PCR technique, we could detect rearrangements of Ig V(H) genes in all samples. Sequence analysis of complementarity-determining region 3 (CDR3) of rearranged VDJ genes revealed expansion of a dominant clone or clones in 10 of the 12 MS patients. B cell clonal expansion was identified in 3 of 15 OND. The nucleotide sequences of V(H) genes from clonally expanded CSF B cells in MS patients demonstrated the preferential usage of the V(H) IV family. There were numerous somatic mutations, mainly in the CDRs, with a high replacement-to-silent ratio; the mutations were distributed in a way suggesting that these B cells had been positively selected through their antigen receptor. Our results demonstrate that in MS CSF, there is a high frequency of clonally expanded B cells that have properties of postgerminal center memory or antibody-forming lymphocytes. PMID:9727074

  18. Characterisation of aerosol combustible mixtures generated using condensation process

    NASA Astrophysics Data System (ADS)

    Saat, Aminuddin; Dutta, Nilabza; Wahid, Mazlan A.

    2012-06-01

    An accidental release of a liquid flammable substance might be formed as an aerosol (droplet and vapour mixture). This phenomenon might be due to high pressure sprays, pressurised liquid leaks and through condensation when hot vapour is rapidly cooled. Such phenomena require a fundamental investigation of mixture characterisation prior to any subsequent process such as evaporation and combustion. This paper describes characterisation study of droplet and vapour mixtures generated in a fan stirred vessel using condensation technique. Aerosol of isooctane mixtures were generated by expansion from initially a premixed gaseous fuel-air mixture. The distribution of droplets within the mixture was characterised using laser diagnostics. Nearly monosized droplet clouds were generated and the droplet diameter was defined as a function of expansion time. The effect of changes in pressure, temperature, fuel-air fraction and expansion ratio on droplet diameter was evaluated. It is shown that aerosol generation by expansion was influenced by the initial pressure and temperature, equivalence ratio and expansion rates. All these parameters affected the onset of condensation which in turn affected the variation in droplet diameter.

  19. An Overdetermined System for Improved Autocorrelation Based Spectral Moment Estimator Performance

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.

    1996-01-01

    Autocorrelation based spectral moment estimators are typically derived using the Fourier transform relationship between the power spectrum and the autocorrelation function along with using either an assumed form of the autocorrelation function, e.g., Gaussian, or a generic complex form and applying properties of the characteristic function. Passarelli has used a series expansion of the general complex autocorrelation function and has expressed the coefficients in terms of central moments of the power spectrum. A truncation of this series will produce a closed system of equations which can be solved for the central moments of interest. The autocorrelation function at various lags is estimated from samples of the random process under observation. These estimates themselves are random variables and exhibit a bias and variance that is a function of the number of samples used in the estimates and the operational signal-to-noise ratio. This contributes to a degradation in performance of the moment estimators. This dissertation investigates the use autocorrelation function estimates at higher order lags to reduce the bias and standard deviation in spectral moment estimates. In particular, Passarelli's series expansion is cast in terms of an overdetermined system to form a framework under which the application of additional autocorrelation function estimates at higher order lags can be defined and assessed. The solution of the overdetermined system is the least squares solution. Furthermore, an overdetermined system can be solved for any moment or moments of interest and is not tied to a particular form of the power spectrum or corresponding autocorrelation function. As an application of this approach, autocorrelation based variance estimators are defined by a truncation of Passarelli's series expansion and applied to simulated Doppler weather radar returns which are characterized by a Gaussian shaped power spectrum. The performance of the variance estimators determined from a closed system is shown to improve through the application of additional autocorrelation lags in an overdetermined system. This improvement is greater in the narrowband spectrum region where the information is spread over more lags of the autocorrelation function. The number of lags needed in the overdetermined system is a function of the spectral width, the number of terms in the series expansion, the number of samples used in estimating the autocorrelation function, and the signal-to-noise ratio. The overdetermined system provides a robustness to the chosen variance estimator by expanding the region of spectral widths and signal-to-noise ratios over which the estimator can perform as compared to the closed system.

  20. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes

    PubMed Central

    2011-01-01

    Background Development of a standardized platform for the rapid expansion of tumor-infiltrating lymphocytes (TILs) with anti-tumor function from patients with limited TIL numbers or tumor tissues challenges their clinical application. Methods To facilitate adoptive immunotherapy, we applied genetically-engineered K562 cell-based artificial antigen presenting cells (aAPCs) for the direct and rapid expansion of TILs isolated from primary cancer specimens. Results TILs outgrown in IL-2 undergo rapid, CD28-independent expansion in response to aAPC stimulation that requires provision of exogenous IL-2 cytokine support. aAPCs induce numerical expansion of TILs that is statistically similar to an established rapid expansion method at a 100-fold lower feeder cell to TIL ratio, and greater than those achievable using anti-CD3/CD28 activation beads or extended IL-2 culture. aAPC-expanded TILs undergo numerical expansion of tumor antigen-specific cells, remain amenable to secondary aAPC-based expansion, and have low CD4/CD8 ratios and FOXP3+ CD4+ cell frequencies. TILs can also be expanded directly from fresh enzyme-digested tumor specimens when pulsed with aAPCs. These "young" TILs are tumor-reactive, positively skewed in CD8+ lymphocyte composition, CD28 and CD27 expression, and contain fewer FOXP3+ T cells compared to parallel IL-2 cultures. Conclusion Genetically-enhanced aAPCs represent a standardized, "off-the-shelf" platform for the direct ex vivo expansion of TILs of suitable number, phenotype and function for use in adoptive immunotherapy. PMID:21827675

  1. Partners in crime: bidirectional transcription in unstable microsatellite disease.

    PubMed

    Batra, Ranjan; Charizanis, Konstantinos; Swanson, Maurice S

    2010-04-15

    Nearly two decades have passed since the discovery that the expansion of microsatellite trinucleotide repeats is responsible for a prominent class of neurological disorders, including Huntington disease and fragile X syndrome. These hereditary diseases are characterized by genetic anticipation or the intergenerational increase in disease severity accompanied by a decrease in age-of-onset. The revelation that the variable expansion of simple sequence repeats accounted for anticipation spawned a number of pathogenesis models and a flurry of studies designed to reveal the molecular events affected by these expansions. This work led to our current understanding that expansions in protein-coding regions result in extended homopolymeric amino acid tracts, often polyglutamine or polyQ, and deleterious protein gain-of-function effects. In contrast, expansions in noncoding regions cause RNA-mediated toxicity. However, the realization that the transcriptome is considerably more complex than previously imagined, as well as the emerging regulatory importance of antisense RNAs, has blurred this distinction. In this review, we summarize evidence for bidirectional transcription of microsatellite disease genes and discuss recent suggestions that some repeat expansions produce variable levels of both toxic RNAs and proteins that influence cell viability, disease penetrance and pathological severity.

  2. Two-dimensional modulated ion-acoustic excitations in electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Panguetna, Chérif S.; Tabi, Conrad B.; Kofané, Timoléon C.

    2017-09-01

    Two-dimensional modulated ion-acoustic waves are investigated in an electronegative plasma. Through the reductive perturbation expansion, the governing hydrodynamic equations are reduced to a Davey-Stewartson system with two-space variables. The latter is used to study the modulational instability of ion-acoustic waves along with the effect of plasma parameters, namely, the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). A parametric analysis of modulational instability is carried out, where regions of plasma parameters responsible for the emergence of modulated ion-acoustic waves are discussed, with emphasis on the behavior of the instability growth rate. Numerically, using perturbed plane waves as initial conditions, parameters from the instability regions give rise to series of dromion solitons under the activation of modulational instability. The sensitivity of the numerical solutions to plasma parameters is discussed. Some exact solutions in the form one- and two-dromion solutions are derived and their response to the effect of varying α and σn is discussed as well.

  3. Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle.

    PubMed

    Taft, Spencer; Najar, Ahmed; Godbout, Julie; Bousquet, Jean; Erbilgin, Nadir

    2015-01-01

    The secondary compounds of pines (Pinus) can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae) that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana) has a wide natural distribution range in North America (Canada and USA) and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae), which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine's distribution, (-):(+)-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine's range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest.

  4. Influence of the Ca/Si ratio of the C–S–H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunther, Wolfgang; Lothenbach, Barbara; Skibsted, Jørgen, E-mail: jskib@chem.au.dk

    2015-03-15

    The effect of the Ca/Si ratio of the calcium–silicate–hydrate (C–S–H) phase on the interaction with sulfate ions is investigated for C–S–H phases (Ca/Si = 0.83, 1.25, 1.50) and mortar samples of blended Portland cements. It is shown that leaching of calcium from C–S–H and portlandite affects the composition of the pore solution and contributes to the developing crystallization pressure of ettringite. Sulfate profiles show that sulfate binding before cracking is similar for different Ca/Si ratios whereas the highest expansion rates are observed for the mortars with the highest Ca/Si ratios. After leaching in sulfate solutions, the C–S–H samples have beenmore » characterized by {sup 29}Si MAS NMR, thermogravimetric analysis, and elemental solution analysis. Generally, the exposure to sulfate solutions results in decalcification of the C–S–H, which increases with decreasing Ca/Si ratio. The data are in good agreement with thermodynamic modeling, indicating that equilibrium is almost achieved in the leached systems. Finally, the expansion of mortar samples exposed to sulfate solutions was much less at lower Ca/Si ratios of the cement blends. This reduced expansion can be related to the decrease of the supersaturation of the pore solution with respect to ettringite at lower Ca/Si ratios of the C–S–H and in the absence of portlandite.« less

  5. Comparison of Slab and Cylinder Expansion Test Geometries for PBX 9501

    NASA Astrophysics Data System (ADS)

    Jackson, Scott; Anderson, Eric; Aslam, Tariq; Whitley, Von

    2017-06-01

    The slab expansion test or ``sandwich test'' is the two-dimensional analog of the axisymmetric cylinder expansion test. The test consists of a high-aspect-ratio rectangular cuboid of high explosive with the two large sides confined by a thin metal confiner. Analysis of the confiner motion after the passage of the detonation yields the detonation product isentrope, which is a specialized form of the product equation of state. The slab expansion geometry inherently exhibits a lower product expansion rate and lower plastic work on the confiner than the cylinder expansion geometry. The slab geometry does, however, have a shorter test time. We review recent slab and cylinder expansion data with PBX 9501, the associated equation of state analysis, and the advantages of each geometry for different applications.

  6. Confined turbulent swirling recirculating flow predictions. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Abujelala, M. T.; Lilley, D. G.

    1985-01-01

    The capability and the accuracy of the STARPIC computer code in predicting confined turbulent swirling recirculating flows is presented. Inlet flow boundary conditions were demonstrated to be extremely important in simulating a flowfield via numerical calculations. The degree of swirl strength and expansion ratio have strong effects on the characteristics of swirling flow. In a nonswirling flow, a large corner recirculation zone exists in the flowfield with an expansion ratio greater than one. However, as the degree of inlet swirl increases, the size of this zone decreases and a central recirculation zone appears near the inlet. Generally, the size of the central zone increased with swirl strength and expansion ratio. Neither the standard k-epsilon turbulence mode nor its previous extensions show effective capability for predicting confined turbulent swirling recirculating flows. However, either reduced optimum values of three parameters in the mode or the empirical C sub mu formulation obtained via careful analysis of available turbulence measurements, can provide more acceptable accuracy in the prediction of these swirling flows.

  7. Swirl, Expansion Ratio and Blockage Effects on Confined Turbulent Flow. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Scharrer, G. L.

    1982-01-01

    A confined jet test facility, a swirles, flow visualization equipment, five-hole pitot probe instrumentation; flow visualization; and effects of swirl on open-ended flows, of gradual expansion on open-ended flows, and blockages of flows are addressed.

  8. COMPUTATIONAL METHODS FOR SENSITIVITY AND UNCERTAINTY ANALYSIS FOR ENVIRONMENTAL AND BIOLOGICAL MODELS

    EPA Science Inventory

    This work introduces a computationally efficient alternative method for uncertainty propagation, the Stochastic Response Surface Method (SRSM). The SRSM approximates uncertainties in model outputs through a series expansion in normal random variables (polynomial chaos expansion)...

  9. Critical parameters of hard-core Yukawa fluids within the structural theory

    NASA Astrophysics Data System (ADS)

    Bahaa Khedr, M.; Osman, S. M.

    2012-10-01

    A purely statistical mechanical approach is proposed to account for the liquid-vapor critical point based on the mean density approximation (MDA) of the direct correlation function. The application to hard-core Yukawa (HCY) fluids facilitates the use of the series mean spherical approximation (SMSA). The location of the critical parameters for HCY fluid with variable intermolecular range is accurately calculated. Good agreement is observed with computer simulation results and with the inverse temperature expansion (ITE) predictions. The influence of the potential range on the critical parameters is demonstrated and the universality of the critical compressibility ratio is discussed. The behavior of the isochoric and isobaric heat capacities along the equilibrium line and the near vicinity of the critical point is discussed in details.

  10. Influence of internal biogas production on hydrodynamic behavior of anaerobic fluidized-bed reactors.

    PubMed

    Wu, Chun-Sheng; Huang, Ju-Sheng; Chou, Hsin-Hsien

    2006-01-01

    Predictive models for describing the hydrodynamic behavior (bed-expansion and bed-pressure gradient) of a three-phase anaerobic fluidized bed reactor (AFBR) was developed according to wake theory together with more realistic dynamic bed-expansion experiments (with and without internal biogas production). A reliable correlation equation for the parameter k (mean volume ratio of wakes to bubbles) was also established, which is of help in estimating liquid hold up of fluidized beds. The experimental expansion ratio of three-phase fluidized beds (E(GLS)) was approximately 18% higher than that of two-phase fluidized beds (E(LS)); whereas the experimental bed-pressure gradient of the former [(-DeltaP/H)(GLS)] was approximately 9.3% lower than that of the latter [(-DeltaP/H)(LS)]. Both the experimental and modeling results indicated that a higher superficial gas velocity (u(g)) gave a higher E(GLS) and a higher E(GLS) to E(LS) ratio as well as a lower (-DeltaP/H)(GLS) and a lower (-DeltaP/H)(GLS) to (-DeltaP/H)(LS) ratio. As for the operation stability of the AFBR, the sensitivity of u(g) to expansion height (H(GLS)) and (-DeltaP/H)(GLS) is between the sensitivity of superficial liquid velocity and biofilm thickness. The model predictions of E(GLS), (-DeltaP)(GLS), and (-DeltaP/H)(GLS) agreed well the experimental measurements. Accordingly, the predictive models accounting for internal biogas production described fairly well the hydrodynamic behavior of the AFBR.

  11. Polynomial expansions of single-mode motions around equilibrium points in the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo; Circi, Christian

    2018-05-01

    In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth-Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.

  12. A hyperspectral view of Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Alarie, Alexandre; Bilodeau, Antoine; Drissen, Laurent

    2014-07-01

    We used the imaging Fourier transform spectrometer Spectromètre Imageur de l'Observatoire du Mont-Mégantic (SpIOMM) to obtain hyperspectral cubes of the young supernova remnant Cassiopeia A (Cas A). The cubes contain over 5000 spatially resolved spectra covering the spectral range 6480-7050 Å. We first investigate the slow-moving N-rich quasi-stationary flocculi by measuring their radial velocity as well as the [N II] λ6583/Hα ratio. No correlation between their radial velocity and [N II] λ6583/Hα ratio with their location has been found. We used multi-epoch observations from the Hubble Space Telescope to create a proper motion map, showing the displacement of several filaments over the most part of Cas A. Combining data from SpIOMM and Hubble, we re-evaluate the distance to Cas A and obtained 3.33 ± 0.10 kpc, which is in good agreement with previous estimates. Finally, we obtain a three-dimensional spatial view of the [S II] λλ6716, 6731 emissions showing their location, expansion velocity and the [S II] doublet line ratio for multiple locations in the remnant. The velocity asymmetry reported by previous analyses is clearly visible. Also, the [S II] doublet ratio (with a mean value of 0.5 ± 0.2) indicates a very high and variable electronic density throughout the remnant.

  13. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    NASA Astrophysics Data System (ADS)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-04-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  14. Temperature and Thermal Expansion Analysis of the Cooling Roller Based on the Variable Heat Flux Boundary Condition

    NASA Astrophysics Data System (ADS)

    Li, Yongkang; Yang, Yang; He, Changyan

    2018-06-01

    Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.

  15. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Nina N.; Harvard Medical School, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Niemierko, Andrzej

    Purpose: Vestibular schwannomas (VS) are often followed without initial therapeutic intervention because many tumors do not grow and radiation therapy is associated with potential adverse effects. In an effort to determine whether maximizing initial surveillance predicts for later treatment response, the predictive value of preirradiation growth rate of VS on response to radiation therapy was assessed. Methods and Materials: Sixty-four patients with 65 VS were treated with single-fraction stereotactic radiation surgery or fractionated stereotactic radiation therapy. Pre- and postirradiation linear expansion rates were estimated using volumetric measurements on sequential magnetic resonance images (MRIs). In addition, postirradiation tumor volume change wasmore » classified as demonstrating shrinkage (ratio of volume on last follow-up MRI to MRI immediately preceding irradiation <80%), stability (ratio 80%-120%), or expansion (ratio >120%). The median pre- and postirradiation follow-up was 20.0 and 27.5 months, respectively. Seven tumors from neurofibromatosis type 2 (NF2) patients were excluded from statistical analyses. Results: In the 58 non-NF2 patients, there was a trend of correlation between pre- and postirradiation volume change rates (slope on linear regression, 0.29; P=.06). Tumors demonstrating postirradiation expansion had a median preirradiation growth rate of 89%/year, and those without postirradiation expansion had a median preirradiation growth rate of 41%/year (P=.02). As the preirradiation growth rate increased, the probability of postirradiation expansion also increased. Overall, 24.1% of tumors were stable, 53.4% experienced shrinkage, and 22.5% experienced expansion. Predictors of no postirradiation tumor expansion included no prior surgery (P=.01) and slower tumor growth rate (P=.02). The control of tumors in NF2 patients was only 43%. Conclusions: Radiation therapy is an effective treatment for VS, but tumors that grow quickly preirradiation may be more likely to increase in size. Clinicians should take into account tumor growth rate when counseling patients about treatment options.« less

  16. Static internal performance of single expansion-ramp nozzles with thrust vectoring and reversing

    NASA Technical Reports Server (NTRS)

    Re, R. J.; Berrier, B. L.

    1982-01-01

    The effects of geometric design parameters on the internal performance of nonaxisymmetric single expansion-ramp nozzles were investigated at nozzle pressure ratios up to approximately 10. Forward-flight (cruise), vectored-thrust, and reversed-thrust nozzle operating modes were investigated.

  17. Link between deviations from Murray's Law and occurrence of low wall shear stress regions in the left coronary artery.

    PubMed

    Doutel, E; Pinto, S I S; Campos, J B L M; Miranda, J M

    2016-08-07

    Murray developed two laws for the geometry of bifurcations in the circulatory system. Based on the principle of energy minimization, Murray found restrictions for the relation between the diameters and also between the angles of the branches. It is known that bifurcations are prone to the development of atherosclerosis, in regions associated to low wall shear stresses (WSS) and high oscillatory shear index (OSI). These indicators (size of low WSS regions, size of high OSI regions and size of high helicity regions) were evaluated in this work. All of them were normalized by the size of the outflow branches. The relation between Murray's laws and the size of low WSS regions was analysed in detail. It was found that the main factor leading to large regions of low WSS is the so called expansion ratio, a relation between the cross section areas of the outflow branches and the cross section area of the main branch. Large regions of low WSS appear for high expansion ratios. Furthermore, the size of low WSS regions is independent of the ratio between the diameters of the outflow branches. Since the expansion ratio in bifurcations following Murray's law is kept in a small range (1 and 1.25), all of them have regions of low WSS with similar size. However, the expansion ratio is not small enough to completely prevent regions with low WSS values and, therefore, Murray's law does not lead to atherosclerosis minimization. A study on the effect of the angulation of the bifurcation suggests that the Murray's law for the angles does not minimize the size of low WSS regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Hydrogen jet combustion in a scramjet combustor with the rearwall-expansion cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Xiang; Wang, Zhen-Guo; Sun, Ming-Bo; Yang, Yi-Xin; Wang, Hong-Bo

    2018-03-01

    This study is carried out to experimentally investigate the combustion characteristics of the hydrogen jet flame stabilized by the rearwall-expansion cavity in a model scramjet combustor. The flame distributions are characterized by the OH* spontaneous emission images, and the dynamic features of the flames are studied through the high speed framing of the flame luminosity. The combustion modes are further analyzed based on the visual flame structure and wall pressure distributions. Under the present conditions, the combustion based on the rearwall-expansion cavity appears in two distinguished modes - the typical cavity shear-layer stabilized combustion mode and the lifted-shear-layer stabilized combustion mode. In contrast with the shear-layer stabilized mode, the latter holds stronger flame. The transition from shear-layer stabilized combustion mode to lifted-shear-layer stabilized mode usually occurs when the equivalence ratio is high enough. While the increases of the offset ratio and upstream injection distance both lead to weaker jet-cavity interactions, cause longer ignition delay, and thus delay the mode transition. The results reveal that the rearwall-expansion cavity with an appropriate offset ratio should be helpful in delaying mode transition and preventing thermal choke, and meanwhile just brings minor negative impact on the combustion stability and efficiency.

  19. Capacity expansion model of wind power generation based on ELCC

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  20. Uncertainty Quantification in CO 2 Sequestration Using Surrogate Models from Polynomial Chaos Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yan; Sahinidis, Nikolaos V.

    2013-03-06

    In this paper, surrogate models are iteratively built using polynomial chaos expansion (PCE) and detailed numerical simulations of a carbon sequestration system. Output variables from a numerical simulator are approximated as polynomial functions of uncertain parameters. Once generated, PCE representations can be used in place of the numerical simulator and often decrease simulation times by several orders of magnitude. However, PCE models are expensive to derive unless the number of terms in the expansion is moderate, which requires a relatively small number of uncertain variables and a low degree of expansion. To cope with this limitation, instead of using amore » classical full expansion at each step of an iterative PCE construction method, we introduce a mixed-integer programming (MIP) formulation to identify the best subset of basis terms in the expansion. This approach makes it possible to keep the number of terms small in the expansion. Monte Carlo (MC) simulation is then performed by substituting the values of the uncertain parameters into the closed-form polynomial functions. Based on the results of MC simulation, the uncertainties of injecting CO{sub 2} underground are quantified for a saline aquifer. Moreover, based on the PCE model, we formulate an optimization problem to determine the optimal CO{sub 2} injection rate so as to maximize the gas saturation (residual trapping) during injection, and thereby minimize the chance of leakage.« less

  1. Optical design of multi-multiple expander structure of laser gas analysis and measurement device

    NASA Astrophysics Data System (ADS)

    Fu, Xiang; Wei, Biao

    2018-03-01

    The installation and debugging of optical circuit structure in the application of carbon monoxide distributed laser gas analysis and measurement, there are difficult key technical problems. Based on the three-component expansion theory, multi-multiple expander structure with expansion ratio of 4, 5, 6 and 7 is adopted in the absorption chamber to enhance the adaptability of the installation environment of the gas analysis and measurement device. According to the basic theory of aberration, the optimal design of multi-multiple beam expander structure is carried out. By using image quality evaluation method, the difference of image quality under different magnifications is analyzed. The results show that the optical quality of the optical system with the expanded beam structure is the best when the expansion ratio is 5-7.

  2. Association between expansion of primary healthcare and racial inequalities in mortality amenable to primary care in Brazil: A national longitudinal analysis.

    PubMed

    Hone, Thomas; Rasella, Davide; Barreto, Mauricio L; Majeed, Azeem; Millett, Christopher

    2017-05-01

    Universal health coverage (UHC) can play an important role in achieving Sustainable Development Goal (SDG) 10, which addresses reducing inequalities, but little supporting evidence is available from low- and middle-income countries. Brazil's Estratégia de Saúde da Família (ESF) (family health strategy) is a community-based primary healthcare (PHC) programme that has been expanding since the 1990s and is the main platform for delivering UHC in the country. We evaluated whether expansion of the ESF was associated with differential reductions in mortality amenable to PHC between racial groups. Municipality-level longitudinal fixed-effects panel regressions were used to examine associations between ESF coverage and mortality from ambulatory-care-sensitive conditions (ACSCs) in black/pardo (mixed race) and white individuals over the period 2000-2013. Models were adjusted for socio-economic development and wider health system variables. Over the period 2000-2013, there were 281,877 and 318,030 ACSC deaths (after age standardisation) in the black/pardo and white groups, respectively, in the 1,622 municipalities studied. Age-standardised ACSC mortality fell from 93.3 to 57.9 per 100,000 population in the black/pardo group and from 75.7 to 49.2 per 100,000 population in the white group. ESF expansion (from 0% to 100%) was associated with a 15.4% (rate ratio [RR]: 0.846; 95% CI: 0.796-0.899) reduction in ACSC mortality in the black/pardo group compared with a 6.8% (RR: 0.932; 95% CI: 0.892-0.974) reduction in the white group (coefficients significantly different, p = 0.012). These differential benefits were driven by greater reductions in mortality from infectious diseases, nutritional deficiencies and anaemia, diabetes, and cardiovascular disease in the black/pardo group. Although the analysis is ecological, sensitivity analyses suggest that over 30% of black/pardo deaths would have to be incorrectly coded for the results to be invalid. This study is limited by the use of municipal-aggregate data, which precludes individual-level inference. Omitted variable bias, where factors associated with ESF expansion are also associated with changes in mortality rates, may have influenced our findings, although sensitivity analyses show the robustness of the findings to pre-ESF trends and the inclusion of other municipal-level factors that could be associated with coverage. PHC expansion is associated with reductions in racial group inequalities in mortality in Brazil. These findings highlight the importance of investment in PHC to achieve the SDGs aimed at improving health and reducing inequalities.

  3. East Antarctic Ice Sheet fluctuations during the Middle Miocene Climatic Transition inferred from faunal and biogeochemical data on planktonic foraminifera (ODP Hole 747A, Kerguelen Plateau)

    USGS Publications Warehouse

    Verducci, M.; Foresi, L.M.; Scott, G.H.; ,; Sprovieri, M.; Lirer, F.

    2007-01-01

    This research focuses on a detailed study of faunal and biogeochemical changes that occurred at ODP Hole 747A in the Kerguelen Plateau region of the Southern Ocean during the middle Miocene (14.8-11.8 Ma). Abundance fluctuations of several planktonic foraminiferal taxa, stable oxygen isotope and Mg/Ca ratios have been integrated as a multi-proxy approach to reach a better understanding of the growth modality and fluctuations of the East Antarctic Ice Sheet (EAIS) during this period. A 7°C decrease in Sea Surface Temperature (SST), an abrupt turnover in the planktonic foraminiferal assemblage, a 1.5‰ shift towards heavier δ18O values (Mi3 event) and a related shift towards heavier seawater δ118O values between 13.9 and 13.7 Ma, are interpreted to reflect rapid surface water cooling and EAIS expansion. Hole 747A data suggest a major change in the variability of the climate system fostered by EAIS expansion between 13.9 and 13.7 Ma. Ice sheet fluctuations were greater during the interval 14.8-13.9 Ma compared with those from 13.7 to 11.8 Ma, whereas the latter interval was characterized by a more stable EAIS. In our opinion, the middle Miocene ice sheet expansion in Antarctica represents a first step towards the development of the modern permanent ice sheet

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starchenko, S. V., E-mail: sstarchenko@mail.ru

    The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convection generation (s) and the ratio thermal convection/compositional convection (r). The third new and most important coefficient δ is the ratio of the characteristic size normal to the axis of rotation to the layer thickness. The faster the rotation, the lower δ. In the case of the liquid Earth core, δ ~ 10{sup –3} substitutes for the generally accepted Ekman number (Emore » ~ 10{sup –15}) and s ~ 10{sup –6} substitutes for the inverse Rayleigh number 1/Ra ~ 10{sup –30}. It is found that, at turbulent transport coefficients, number s and the Prandtl number are on the order of unity for any objects and δ is independent of transport coefficients. As a result of expansion in powers of δ, an initially 3D system of six variables is simplified to an almost 2D system of four variables without δ. The problem of convection excitation in the main volume is algebraically solved and this problem for critical values is analytically solved. Dispersion relations and general expressions for critical wavenumbers, numbers s (which determine Rayleigh numbers), other critical parameters, and asymptotic solutions are derived. Numerical estimates are made for the liquid cores in the planets that resemble the Earth. Further possible applications of the results obtained are proposed for the interior of planets, moons, their oceans, stars, and experimental objects.« less

  5. Polynomial chaos expansion with random and fuzzy variables

    NASA Astrophysics Data System (ADS)

    Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.

    2016-06-01

    A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.

  6. Dynamics of one-dimensional self-gravitating systems using Hermite-Legendre polynomials

    NASA Astrophysics Data System (ADS)

    Barnes, Eric I.; Ragan, Robert J.

    2014-01-01

    The current paradigm for understanding galaxy formation in the Universe depends on the existence of self-gravitating collisionless dark matter. Modelling such dark matter systems has been a major focus of astrophysicists, with much of that effort directed at computational techniques. Not surprisingly, a comprehensive understanding of the evolution of these self-gravitating systems still eludes us, since it involves the collective non-linear dynamics of many particle systems interacting via long-range forces described by the Vlasov equation. As a step towards developing a clearer picture of collisionless self-gravitating relaxation, we analyse the linearized dynamics of isolated one-dimensional systems near thermal equilibrium by expanding their phase-space distribution functions f(x, v) in terms of Hermite functions in the velocity variable, and Legendre functions involving the position variable. This approach produces a picture of phase-space evolution in terms of expansion coefficients, rather than spatial and velocity variables. We obtain equations of motion for the expansion coefficients for both test-particle distributions and self-gravitating linear perturbations of thermal equilibrium. N-body simulations of perturbed equilibria are performed and found to be in excellent agreement with the expansion coefficient approach over a time duration that depends on the size of the expansion series used.

  7. Composite asymptotic expansions and scaling wall turbulence.

    PubMed

    Panton, Ronald L

    2007-03-15

    In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.

  8. A study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth Herbert, Jr.

    1988-01-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.

  9. An iwatsubo-based solution for labyrinth seals - comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Scharrer, J. K.

    1984-01-01

    The basic equations are derived for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent in the circumferential direction where the friction factor is determined by the Blasius relation. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equation. The first-order equations are solved by a separation of variables solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to published test results.

  10. Scaled-down particle-in-cell simulation of cathode plasma expansion in magnetically insulated coaxial diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Danni; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang

    2016-03-15

    The expansion of cathode plasma in magnetically insulated coaxial diode (MICD) is investigated in theory and particle-in-cell (PIC) simulation. The temperature and density of the cathode plasma are about several eV and 10{sup 13}–10{sup 16 }cm{sup −3}, respectively, and its expansion velocity is of the level of few cm/μs. Through hydrodynamic theory analysis, expressions of expansion velocities in axial and radial directions are obtained. The characteristics of cathode plasma expansion have been simulated through scaled-down PIC models. Simulation results indicate that the expansion velocity is dominated by the ratio of plasma density other than the static electric field. The electric fieldmore » counteracts the plasma expansion reverse of it. The axial guiding magnetic field only reduces the radial transport coefficients by a correction factor, but not the axial ones. Both the outward and inward radial expansions of a MICD are suppressed by the much stronger guiding magnetic field and even cease.« less

  11. Hausdorff dimension of certain sets arising in Engel expansions

    NASA Astrophysics Data System (ADS)

    Fang, Lulu; Wu, Min

    2018-05-01

    The present paper is concerned with the Hausdorff dimension of certain sets arising in Engel expansions. In particular, the Hausdorff dimension of the set is completely determined, where A n (x) can stand for the digit, gap and ratio between two consecutive digits in the Engel expansion of x and ϕ is a positive function defined on natural numbers. These results significantly extend the existing results of Galambos’ open problems on the Hausdorff dimension of sets related to the growth rate of digits.

  12. Static internal performance of convergent single-expansion-ramp nozzles with various combinations of internal geometric parameters

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Capone, Francis J.

    1989-01-01

    An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.

  13. High aspect ratio patterning of photosensitive polyimide with low thermal expansion coefficient and low dielectric constant

    NASA Astrophysics Data System (ADS)

    Dick, Andrew R.; Bell, William K.; Luke, Brendan; Maines, Erin; Mueller, Brennen; Rawlings, Brandon; Kohl, Paul A.; Grant Willson, C.

    2016-07-01

    A photosensitive polyimide system based on amine catalyzed imidization of a precursor poly(amic ester) is described. The material is based on the meta ethyl ester of pyromellitic dianhydride and 2,2' bis(trifluoromethyl)benzidine. It acts as a negative tone resist when formulated with a photobase generator. The material exhibits a dielectric constant of 3.0 in the gigahertz range, a coefficient of thermal expansion of 6±2 ppm/K, and can be patterned to aspect ratios of >2 when formulated with a highly quantum efficient cinnamide type photobase generator.

  14. Golden Ratio Genetic Algorithm Based Approach for Modelling and Analysis of the Capacity Expansion of Urban Road Traffic Network

    PubMed Central

    Zhang, Lun; Zhang, Meng; Yang, Wenchen; Dong, Decun

    2015-01-01

    This paper presents the modelling and analysis of the capacity expansion of urban road traffic network (ICURTN). Thebilevel programming model is first employed to model the ICURTN, in which the utility of the entire network is maximized with the optimal utility of travelers' route choice. Then, an improved hybrid genetic algorithm integrated with golden ratio (HGAGR) is developed to enhance the local search of simple genetic algorithms, and the proposed capacity expansion model is solved by the combination of the HGAGR and the Frank-Wolfe algorithm. Taking the traditional one-way network and bidirectional network as the study case, three numerical calculations are conducted to validate the presented model and algorithm, and the primary influencing factors on extended capacity model are analyzed. The calculation results indicate that capacity expansion of road network is an effective measure to enlarge the capacity of urban road network, especially on the condition of limited construction budget; the average computation time of the HGAGR is 122 seconds, which meets the real-time demand in the evaluation of the road network capacity. PMID:25802512

  15. On the distribution of a product of N Gaussian random variables

    NASA Astrophysics Data System (ADS)

    Stojanac, Željka; Suess, Daniel; Kliesch, Martin

    2017-08-01

    The product of Gaussian random variables appears naturally in many applications in probability theory and statistics. It has been known that the distribution of a product of N such variables can be expressed in terms of a Meijer G-function. Here, we compute a similar representation for the corresponding cumulative distribution function (CDF) and provide a power-log series expansion of the CDF based on the theory of the more general Fox H-functions. Numerical computations show that for small values of the argument the CDF of products of Gaussians is well approximated by the lowest orders of this expansion. Analogous results are also shown for the absolute value as well as the square of such products of N Gaussian random variables. For the latter two settings, we also compute the moment generating functions in terms of Meijer G-functions.

  16. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr 2 In 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calta, Nicholas P.; Han, Fei; Kanatzidis, Mercouri G.

    2015-09-08

    This Article reports the synthesis of large single crystals of BaIr 2In 9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe 2Al 9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) angstrom and c = 4.2696(4) A. BaIr 2In 9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-likemore » mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW 2O 8 and ScF 3.« less

  17. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.

    PubMed

    Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G

    2015-09-08

    This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.

  18. Rate of Contrast Extravasation on Computed Tomographic Angiography Predicts Hematoma Expansion and Mortality in Primary Intracerebral Hemorrhage.

    PubMed

    Brouwers, H Bart; Battey, Thomas W K; Musial, Hayley H; Ciura, Viesha A; Falcone, Guido J; Ayres, Alison M; Vashkevich, Anastasia; Schwab, Kristin; Viswanathan, Anand; Anderson, Christopher D; Greenberg, Steven M; Pomerantz, Stuart R; Ortiz, Claudia J; Goldstein, Joshua N; Gonzalez, R Gilberto; Rosand, Jonathan; Romero, Javier M

    2015-09-01

    In primary intracerebral hemorrhage, the presence of contrast extravasation after computed tomographic angiography (CTA), termed the spot sign, predicts hematoma expansion and mortality. Because the biological underpinnings of the spot sign are not fully understood, we investigated whether the rate of contrast extravasation, which may reflect the rate of bleeding, predicts expansion and mortality beyond the simple presence of the spot sign. Consecutive intracerebral hemorrhage patients with first-pass CTA followed by a 90-second delayed postcontrast CT (delayed CTA) were included. CTAs were reviewed for spot sign presence by 2 blinded readers. Spot sign volumes on first-pass and delayed CTA and intracerebral hemorrhage volumes were measured using semiautomated software. Extravasation rates were calculated and tested for association with hematoma expansion and mortality using uni- and multivariable logistic regressions. One hundred and sixty-two patients were included, 48 (30%) of whom had ≥1 spot sign. Median spot sign volume was 0.04 mL on first-pass CTA and 0.4 mL on delayed CTA. Median extravasation rate was 0.23 mL/min overall and 0.30 mL/min among expanders versus 0.07 mL/min in nonexpanders. Extravasation rates were also significantly higher in patients who died in hospital: 0.27 mL/min versus 0.04 mL/min. In multivariable analysis, the extravasation rate was independently associated with in-hospital mortality (odds ratio, 1.09 [95% confidence interval, 1.04-1.18], P=0.004), 90-day mortality (odds ratio, 1.15 [95% confidence interval, 1.08-1.27]; P=0.0004), and hematoma expansion (odds ratio, 1.03 [95% confidence interval, 1.01-1.08]; P=0.047). Contrast extravasation rate, or spot sign growth, further refines the ability to predict hematoma expansion and mortality. Our results support the hypothesis that the spot sign directly measures active bleeding in acute intracerebral hemorrhage. © 2015 American Heart Association, Inc.

  19. Workplace expansion, long-term sickness absence, and hospital admission.

    PubMed

    Westerlund, Hugo; Ferrie, Jane; Hagberg, Jan; Jeding, Kerstin; Oxenstierna, Gabriel; Theorell, Töres

    2004-04-10

    Downsizing has in previous studies, as well as in public debate, been associated with increased sickness absence. No studies have, however, looked at the long-term relation between workplace expansion and morbidity. We investigated exposure to personnel change during 1991-96 in relation to long-term (90 days or longer) medically certified sickness absence and hospital admission for specified diagnoses during 1997-99 in 24?036 participants with a complete employment record in the biennial national Swedish Work Environment Surveys from 1989 to the end of 1999. Accumulated exposure to large expansion (> or =18% per year) was related to an increased risk of long-term sickness absence (odds ratio 1.07 [95% CI 1.01-1.13], p=0.013) and hospital admission (1.09 [1.02-1.16], p=0.017). In this context, odds ratio signifies the change in odds for each additional year of exposure, varying from 0 to 6. Moderate expansion (> or =8% and <18% per year), was associated with a decreased risk of admission (0.91 [0.84-0.98], p=0.012). Moderate downsizing (> or =8% and <18% per year) was associated with an increased risk of sickness absence (1.07 [1.02-1.12], p=0.003). The strongest association between large expansion and sickness absence was in women in the public sector (1.18 [1.08-1.30], p=0.0002), corresponding to an odds ratio of 2.77 [1.62-4.74] between full exposure (all 6 years) and no exposure. This study confirms earlier findings that downsizing is associated with health risks. It also shows that repeated exposure to rapid personnel expansion, possibly connected with centralisation of functions, statistically predicts long-term sickness absence and hospital admission. Although no conclusions about causal pathways can be drawn from our results, this exposure should be considered in future studies, policy making, and occupational health care practice.

  20. Simulation of radial expansion of an electron beam injected into a background plasma

    NASA Technical Reports Server (NTRS)

    Koga, J.; Lin, C. S.

    1989-01-01

    A 2-D electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.

  1. Solution of Linearized Drift Kinetic Equations in Neoclassical Transport Theory by the Method of Matched Asymptotic Expansions

    NASA Astrophysics Data System (ADS)

    Wong, S. K.; Chan, V. S.; Hinton, F. L.

    2001-10-01

    The classic solution of the linearized drift kinetic equations in neoclassical transport theory for large-aspect-ratio tokamak flux-surfaces relies on the variational principle and the choice of ``localized" distribution functions as trialfunctions.(M.N. Rosenbluth, et al., Phys. Fluids 15) (1972) 116. Somewhat unclear in this approach are the nature and the origin of the ``localization" and whether the results obtained represent the exact leading terms in an asymptotic expansion int he inverse aspect ratio. Using the method of matched asymptotic expansions, we were able to derive the leading approximations to the distribution functions and demonstrated the asymptotic exactness of the existing results. The method is also applied to the calculation of angular momentum transport(M.N. Rosenbluth, et al., Plasma Phys. and Contr. Nucl. Fusion Research, 1970, Vol. 1 (IAEA, Vienna, 1971) p. 495.) and the current driven by electron cyclotron waves.

  2. Use of an expansion tube to examine scramjet combustion at hypersonic velocities

    NASA Technical Reports Server (NTRS)

    Rizkalla, O.; Bakos, R. J.; Pulsonetti, M.; Chinitz, Wallace; Erdos, John I.

    1989-01-01

    Combustion testing at total enthalpy conditions corresponding to flight Mach numbers in excess of 12 requires the use of impulse facilities. The expansion tube is the only operational facility of its size which can provide these conditions without excessive oxygen dissociation or driver gas contamination. Expansion tube operation is described herein and the operational parameters having the largest impact on its performance are determined. These are: driver-to-intermediate chamber pressure ratio, driver gas molecular weight and specific heat ratio, and driver gas temperature. Increases in the last-named parameter will markedly affect the test section static pressure. Preliminary calibration tests are discussed and test gas conditions which have been achieved are presented. Calculated and experimental test times are compared and the parameters affecting test time are discussed. The direction of future work using this important experimental tool is indicated.

  3. Development of Mullite Substrates and Containers

    NASA Technical Reports Server (NTRS)

    Sibold, J. D.

    1979-01-01

    The mullite-molten silicon interaction was evaluated through fabrication of a series of bodies made with variations in density, alumina-silica ratio, and glass-crystalline ratio. The materials were tested in a sessile drop technique. None of the variations stood up to extended exposure to molten silicon sufficiently to be recommended as a container material. However, directional solidification experiments suggest that, under proper conditions, contamination of the silicon by mullite containers can be minimized. To improve an already good thermal expansion match between mullite and silicon, compositional variations were studied. Altering of the alumina-silica ratio was determined to give a continuously varying thermal expansion. A standard mullite composition was selected and substrates 40 x 4 x .040 inches were fabricated. Slotted substrates of various configurations and various compositions were also fabricated.

  4. Influence of the Separation of Prescription and Dispensation of Medicine on Its Cost in Japanese Prefectures

    PubMed Central

    Yokoi, Masayuki; Tashiro, Takao

    2014-01-01

    We studied how the separation of dispensing and prescribing of medicines between pharmacies and clinics (the “separation system”) can reduce internal medicine costs. To do so, we obtained publicly available data by searching electronic databases and official web pages of the Japanese government and non-profit public service corporations on the Internet. For Japanese medical institutions, participation in the separation system is optional. Consequently, the expansion rate of the separation system for each of the administrative districts is highly variable. The data were subjected to multiple regression analysis; daily internal medicines were the objective variable and expansion rate of the separation system was the explanatory variable. A multiple regression analysis revealed that the expansion rate of the separation system and the rate of replacing brand name medicine with generic medicine showed a significant negative partial correlation with daily internal medicine costs. Thus, the separation system was as effective in reducing medicine costs as the use of generic medicines. Because of its medical economic efficiency, the separation system should be expanded, especially in Asian countries in which the system is underdeveloped. PMID:24999122

  5. Influence of the separation of prescription and dispensation of medicine on its cost in Japanese prefectures.

    PubMed

    Yokoi, Masayuki; Tashiro, Takao

    2014-04-07

    We studied how the separation of dispensing and prescribing of medicines between pharmacies and clinics (the "separation system") can reduce internal medicine costs. To do so, we obtained publicly available data by searching electronic databases and official web pages of the Japanese government and non-profit public service corporations on the Internet. For Japanese medical institutions, participation in the separation system is optional. Consequently, the expansion rate of the separation system for each of the administrative districts is highly variable. The data were subjected to multiple regression analysis; daily internal medicines were the objective variable and expansion rate of the separation system was the explanatory variable. A multiple regression analysis revealed that the expansion rate of the separation system and the rate of replacing brand name medicine with generic medicine showed a significant negative partial correlation with daily internal medicine costs. Thus, the separation system was as effective in reducing medicine costs as the use of generic medicines. Because of its medical economic efficiency, the separation system should be expanded, especially in Asian countries in which the system is underdeveloped.

  6. Conservative bin-to-bin fractional collisions

    NASA Astrophysics Data System (ADS)

    Martin, Robert

    2016-11-01

    Particle methods such as direct simulation Monte Carlo (DSMC) and particle-in-cell (PIC) are commonly used to model rarefied kinetic flows for engineering applications because of their ability to efficiently capture non-equilibrium behavior. The primary drawback to these methods relates to the poor convergence properties due to the stochastic nature of the methods which typically rely heavily on high degrees of non-equilibrium and time averaging to compensate for poor signal to noise ratios. For standard implementations, each computational particle represents many physical particles which further exacerbate statistical noise problems for flow with large species density variation such as encountered in flow expansions and chemical reactions. The stochastic weighted particle method (SWPM) introduced by Rjasanow and Wagner overcome this difficulty by allowing the ratio of real to computational particles to vary on a per particle basis throughout the flow. The DSMC procedure must also be slightly modified to properly sample the Boltzmann collision integral accounting for the variable particle weights and to avoid the creation of additional particles with negative weight. In this work, the SWPM with necessary modification to incorporate the variable hard sphere (VHS) collision cross section model commonly used in engineering applications is first incorporated into an existing engineering code, the Thermophysics Universal Research Framework. The results and computational efficiency are compared to a few simple test cases using a standard validated implementation of the DSMC method along with the adapted SWPM/VHS collision using an octree based conservative phase space reconstruction. The SWPM method is then further extended to combine the collision and phase space reconstruction into a single step which avoids the need to create additional computational particles only to destroy them again during the particle merge. This is particularly helpful when oversampling the collision integral when compared to the standard DSMC method. However, it is found that the more frequent phase space reconstructions can cause added numerical thermalization with low particle per cell counts due to the coarseness of the octree used. However, the methods are expected to be of much greater utility in transient expansion flows and chemical reactions in the future.

  7. Moving with the flow: what transport laws reveal about cell division and expansion.

    PubMed

    Silk, Wendy Kuhn

    2006-01-01

    This material was presented as a keynote talk for the symposium, "Crosstalk between cell division and expansion," organized by G.T.S. Beemster and H. Tsukaya at the International Botanical Congress, Vienna in July, 2005. The review focuses on the utility of continuity equations to understand relationships among cell size, division and expansion; insights from Lagrangian or cell-specific descriptions of developmental variables; and a growth-diffusion equation to show effects of root growth zones on the surrounding soil.

  8. Enhancing sparsity of Hermite polynomial expansions by iterative rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiu; Lei, Huan; Baker, Nathan A.

    2016-02-01

    Compressive sensing has become a powerful addition to uncertainty quantification in recent years. This paper identifies new bases for random variables through linear mappings such that the representation of the quantity of interest is more sparse with new basis functions associated with the new random variables. This sparsity increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method. Specifically, we consider rotation- based linear mappings which are determined iteratively for Hermite polynomial expansions. We demonstrate the effectiveness of the new method with applications in solving stochastic partial differential equations and high-dimensional (O(100)) problems.

  9. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs.

    PubMed

    Funakoshi, T; Ishibe, Y; Okazaki, N; Miura, K; Liu, R; Nagai, S; Minami, Y

    2004-04-01

    Re-expansion pulmonary oedema is a rare complication caused by rapid re-expansion of a chronically collapsed lung. Several cases of pulmonary oedema associated with one-lung ventilation (OLV) have been reported recently. Elevated levels of pro-inflammatory cytokines in pulmonary oedema fluid are suggested to play important roles in its development. Activation of cytokines after re-expansion of collapsed lung during OLV has not been thoroughly investigated. Here we investigated the effects of re-expansion of the collapsed lung on pulmonary oedema formation and pro-inflammatory cytokine expression. Lungs isolated from female white Japanese rabbits were perfused and divided into a basal (BAS) group (n=7, baseline measurement alone), a control (CONT) group (n=9, ventilated without lung collapse for 120 min) and an atelectasis (ATEL) group (n=9, lung collapsed for 55 min followed by re-expansion and ventilation for 65 min). Pulmonary vascular resistance (PVR) and the coefficient of filtration (Kfc) were measured at baseline and 60 and 120 min. At the end of perfusion, bronchoalveolar lavage fluid/plasma protein ratio (B/P), wet/dry lung weight ratio (W/D) and mRNA expressions of tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta and myeloperoxidase (MPO) were determined. TNF-alpha and IL-1beta mRNA were significantly up-regulated in lungs of the ATEL group compared with BAS and CONT, though no significant differences were noted in PVR, Kfc, B/P and W/D within and between groups. MPO increased at 120 min in CONT and ATEL groups. Pro-inflammatory cytokines were up-regulated upon re-expansion and ventilation after short-period lung collapse, though no changes were noted in pulmonary capillary permeability.

  10. Evaluation of factors affecting the edge formability of two hot rolled multiphase steels

    NASA Astrophysics Data System (ADS)

    Mukherjee, Monideepa; Tiwari, Sumit; Bhattacharya, Basudev

    2018-02-01

    In this study, the effect of various factors on the hole expansion ratio and hence on the edge formability of two hot rolled multiphase steels, one with a ferrite-martensite microstructure and the other with a ferrite-bainite microstructure, was investigated through systematic microstructural and mechanical characterization. The study revealed that the microstructure of the steels, which determines their strain hardening capacity and fracture resistance, is the principal factor controlling edge formability. The influence of other factors such as tensile strength, ductility, anisotropy, and thickness, though present, are secondary. A critical evaluation of the available empirical models for hole expansion ratio prediction is also presented.

  11. Physicochemical Properties of Flaxseed Fortified Extruded Bean Snack.

    PubMed

    Vadukapuram, Naveen; Hall, Clifford; Tulbek, Mehmet; Niehaus, Mary

    2014-01-01

    Milled flaxseed was incorporated (0-20%) into a combination of bean-corn flours and extruded in a twin screw extruder using corn curl method. Physicochemical parameters such as water activity, color, expansion ratio, bulk density, lipid content, and peroxide values of extruded snack were analyzed. Scanning electron micrographs were taken. Peroxide values and propanal contents were measured over four months of storage. Rancidity scores of extruded snack were measured using a trained panel. As expected, omega-3 fatty acids and bulk density increased with increasing flaxseed fortification levels. Extrudates with more flaxseed had decreased lightness values and expansion ratios. However, only the 15 and 20% flaxseed containing extrudates had expansion ratios that were significantly (P ≤ 0.05) different from the control. In general, no significant difference (P > 0.05) in water activity values was observed in the flaxseed fortified extrudates, except in the navy-corn based extrudates. Peroxide values increased with increased flaxseed levels and over a storage period. However, propanal values did not change significantly in the 5-10% flaxseed fortified extrudates but increased in extrudates with higher levels of flaxseed. Rancidity scores were correlated with peroxide values and did not increase significantly during storage under nitrogen flushed conditions.

  12. Physicochemical Properties of Flaxseed Fortified Extruded Bean Snack

    PubMed Central

    Vadukapuram, Naveen; Hall, Clifford

    2014-01-01

    Milled flaxseed was incorporated (0–20%) into a combination of bean-corn flours and extruded in a twin screw extruder using corn curl method. Physicochemical parameters such as water activity, color, expansion ratio, bulk density, lipid content, and peroxide values of extruded snack were analyzed. Scanning electron micrographs were taken. Peroxide values and propanal contents were measured over four months of storage. Rancidity scores of extruded snack were measured using a trained panel. As expected, omega-3 fatty acids and bulk density increased with increasing flaxseed fortification levels. Extrudates with more flaxseed had decreased lightness values and expansion ratios. However, only the 15 and 20% flaxseed containing extrudates had expansion ratios that were significantly (P ≤ 0.05) different from the control. In general, no significant difference (P > 0.05) in water activity values was observed in the flaxseed fortified extrudates, except in the navy-corn based extrudates. Peroxide values increased with increased flaxseed levels and over a storage period. However, propanal values did not change significantly in the 5–10% flaxseed fortified extrudates but increased in extrudates with higher levels of flaxseed. Rancidity scores were correlated with peroxide values and did not increase significantly during storage under nitrogen flushed conditions. PMID:26904633

  13. Parametric study of a simultaneous pitch/yaw thrust vectoring single expansion ramp nozzle

    NASA Technical Reports Server (NTRS)

    Schirmer, Alberto W.; Capone, Francis J.

    1989-01-01

    In the course of the last eleven years, the concept of thrust vectoring has emerged as a promising method of enhancing aircraft control capabilities in post-stall flight incursions during combat. In order to study the application of simultaneous pitch and yaw vectoring to single expansion ramp nozzles, a static test was conducted in the NASA-Langley 16 foot transonic tunnel. This investigation was based on internal performance data provided by force, mass flow and internal pressure measurements at nozzle pressure ratios up to 8. The internal performance characteristics of the nozzle were studied for several combinations of six different parameters: yaw vectoring angle, pitch vectoring angle, upper ramp cutout, sidewall hinge location, hinge inclination angle and sidewall containment. Results indicated a 2-to- 3-percent decrease in resultant thrust ratio with vectoring in either pitch or yaw. Losses were mostly associated with the turning of supersonic flow. Resultant thrust ratios were also decreased by sideways expansion of the jet. The effects of cutback corners in the upper ramp and lower flap on performance were small. Maximum resultant yaw vector angles, about half of the flap angle, were achieved for the configuration with the most forward hinge location.

  14. The Association of Generation Status and Health Insurance Among US Children

    PubMed Central

    Miranda, Patricia Y.; Elewonibi, Bilikisu Reni; Hillemeier, Marianne M.

    2014-01-01

    BACKGROUND: The Patient Protection and Affordable Care Act (ACA) has the potential to reduce the number of uninsured children in the United States by as much as 40%. The extent to which immigrant families are aware of and interested in obtaining insurance for their children is unclear. METHODS: Data from the 2011–2012 National Survey of Children’s Health were analyzed to examine differences by immigrant generational status in awareness of children’s health insurance options. Adjusted odds ratios (AORs) were calculated for each outcome variable that showed statistical significance by generation status. RESULTS: Barriers to obtaining insurance for children in immigrant (first- and second-generation) families include awareness of and experience with various health insurance options, perceived costs and benefits of insurance, structural/policy restrictions on eligibility, and lower likelihood of working in large organizations that offer employee insurance coverage. Although noncitizen immigrants are not covered by ACA insurance expansions, only 38% of first-generation families report being uninsured because of the inability to meet citizenship requirements. Most families in this sample also worked for employers with <50 employees, making them less likely to benefit from expansions in employer-based insurance. In multivariate analyses, third-generation families have increased odds of knowing how to enroll in health insurance (AOR 7.1 [3.6–13.0]) and knowing where to find insurance information (AOR 7.7 [3.8–15.4]) compared with first-generation families. CONCLUSIONS: ACA navigators and health services professionals should be aware of potential unique challenges to helping immigrant families negotiate Medicaid expansions and state and federal exchanges. PMID:25002670

  15. The association of generation status and health insurance among U.S. children.

    PubMed

    BeLue, Rhonda; Miranda, Patricia Y; Elewonibi, Bilikisu Reni; Hillemeier, Marianne M

    2014-08-01

    The Patient Protection and Affordable Care Act (ACA) has the potential to reduce the number of uninsured children in the United States by as much as 40%. The extent to which immigrant families are aware of and interested in obtaining insurance for their children is unclear. Data from the 2011-2012 National Survey of Children's Health were analyzed to examine differences by immigrant generational status in awareness of children's health insurance options. Adjusted odds ratios (AORs) were calculated for each outcome variable that showed statistical significance by generation status. Barriers to obtaining insurance for children in immigrant (first- and second-generation) families include awareness of and experience with various health insurance options, perceived costs and benefits of insurance, structural/policy restrictions on eligibility, and lower likelihood of working in large organizations that offer employee insurance coverage. Although noncitizen immigrants are not covered by ACA insurance expansions, only 38% of first-generation families report being uninsured because of the inability to meet citizenship requirements. Most families in this sample also worked for employers with <50 employees, making them less likely to benefit from expansions in employer-based insurance. In multivariate analyses, third-generation families have increased odds of knowing how to enroll in health insurance (AOR 7.1 [3.6-13.0]) and knowing where to find insurance information (AOR 7.7 [3.8-15.4]) compared with first-generation families. ACA navigators and health services professionals should be aware of potential unique challenges to helping immigrant families negotiate Medicaid expansions and state and federal exchanges. Copyright © 2014 by the American Academy of Pediatrics.

  16. The Expansion and Radial Speeds of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Dal Lago, A.; Yashiro, S.; Akiyama, S.

    We show the relation between radial (V_{rad}) and expansion (V_{exp}) speeds of coronal mass ejections (CMEs) depends on the CME width. As CME width increases, {V_{rad}/V_{exp}} decreases from a value >1 to <1. For widths approaching 180°, the ratio approaches 0 if the cone has a flat base, while it approaches 0.5 if the base has a bulge (ice cream cone). The speed difference between the limb and disk halos and the spherical expansion of super fast CMEs can be explained by the width dependence.

  17. Spatial Linkage and Urban Expansion: AN Urban Agglomeration View

    NASA Astrophysics Data System (ADS)

    Jiao, L. M.; Tang, X.; Liu, X. P.

    2017-09-01

    Urban expansion displays different characteristics in each period. From the perspective of the urban agglomeration, studying the spatial and temporal characteristics of urban expansion plays an important role in understanding the complex relationship between urban expansion and network structure of urban agglomeration. We analyze urban expansion in the Yangtze River Delta Urban Agglomeration (YRD) through accessibility to and spatial interaction intensity from core cities as well as accessibility of road network. Results show that: (1) Correlation between urban expansion intensity and spatial indicators such as location and space syntax variables is remarkable and positive, while it decreases after rapid expansion. (2) Urban expansion velocity displays a positive correlation with spatial indicators mentioned above in the first (1980-1990) and second (1990-2000) period. However, it exhibits a negative relationship in the third period (2000-2010), i.e., cities located in the periphery of urban agglomeration developing more quickly. Consequently, the hypothesis of convergence of urban expansion in rapid expansion stage is put forward. (3) Results of Zipf's law and Gibrat's law show urban expansion in YRD displays a convergent trend in rapid expansion stage, small and medium-sized cities growing faster. This study shows that spatial linkage plays an important but evolving role in urban expansion within the urban agglomeration. In addition, it serves as a reference to the planning of Yangtze River Delta Urban Agglomeration and regulation of urban expansion of other urban agglomerations.

  18. Solution of the exact equations for three-dimensional atmospheric entry using directly matched asymptotic expansions

    NASA Technical Reports Server (NTRS)

    Busemann, A.; Vinh, N. X.; Culp, R. D.

    1976-01-01

    The problem of determining the trajectories, partially or wholly contained in the atmosphere of a spherical, nonrotating planet, is considered. The exact equations of motion for three-dimensional, aerodynamically affected flight are derived. Modified Chapman variables are introduced and the equations are transformed into a set suitable for analytic integration using asymptotic expansions. The trajectory is solved in two regions: the outer region, where the force may be considered a gravitational field with aerodynamic perturbations, and the inner region, where the force is predominantly aerodynamic, with gravity as a perturbation. The two solutions are matched directly. A composite solution, valid everywhere, is constructed by additive composition. This approach of directly matched asymptotic expansions applied to the exact equations of motion couched in terms of modified Chapman variables yields an analytical solution which should prove to be a powerful tool for aerodynamic orbit calculations.

  19. Hole expansion test of third generation steels

    NASA Astrophysics Data System (ADS)

    Agirre, Julen; Mendiguren, Joseba; Galdos, Lander; de Argandoña, Eneko Sáenz

    2017-10-01

    The trend towards the implementation of new materials in the chassis of the automobiles is considerably making more complex the manufacturing of the components that built it up. In this scenario materials with higher strengths and lower formabilities are daily faced by tool makers and component producers what reduces the process windows and makes the forming processes to be in the limits of the materials. One of the concerns that tool makers must face during the definition of the tools is the expansion ratios that the holes in the sheet may reach before producing a breakage due to the stretching of the material (also known as edge cracks). For the characterization of such limits, a standard test, the hole expansion test, can be applied so that the limits of the material are known. At the present study, hole expansion tests of a third generation steel, Fortiform1050 with a thickness of 1.2 millimeters have been carried out and compared them to a mild steel, DX54D with a thickness of 0.6 millimeters. A comparison for each material in terms of technology used to punch the hole, mechanical punching vs laser cutting has also been conducted. In addition, the measurement technique (online measurement vs offline measurement) followed in the Hole Expansion Ratio (HER) identification has also been analyzed. Finally, differences between both materials and techniques are presented.

  20. Association between expansion of primary healthcare and racial inequalities in mortality amenable to primary care in Brazil: A national longitudinal analysis

    PubMed Central

    Rasella, Davide; Millett, Christopher

    2017-01-01

    Background Universal health coverage (UHC) can play an important role in achieving Sustainable Development Goal (SDG) 10, which addresses reducing inequalities, but little supporting evidence is available from low- and middle-income countries. Brazil’s Estratégia de Saúde da Família (ESF) (family health strategy) is a community-based primary healthcare (PHC) programme that has been expanding since the 1990s and is the main platform for delivering UHC in the country. We evaluated whether expansion of the ESF was associated with differential reductions in mortality amenable to PHC between racial groups. Methods and findings Municipality-level longitudinal fixed-effects panel regressions were used to examine associations between ESF coverage and mortality from ambulatory-care-sensitive conditions (ACSCs) in black/pardo (mixed race) and white individuals over the period 2000–2013. Models were adjusted for socio-economic development and wider health system variables. Over the period 2000–2013, there were 281,877 and 318,030 ACSC deaths (after age standardisation) in the black/pardo and white groups, respectively, in the 1,622 municipalities studied. Age-standardised ACSC mortality fell from 93.3 to 57.9 per 100,000 population in the black/pardo group and from 75.7 to 49.2 per 100,000 population in the white group. ESF expansion (from 0% to 100%) was associated with a 15.4% (rate ratio [RR]: 0.846; 95% CI: 0.796–0.899) reduction in ACSC mortality in the black/pardo group compared with a 6.8% (RR: 0.932; 95% CI: 0.892–0.974) reduction in the white group (coefficients significantly different, p = 0.012). These differential benefits were driven by greater reductions in mortality from infectious diseases, nutritional deficiencies and anaemia, diabetes, and cardiovascular disease in the black/pardo group. Although the analysis is ecological, sensitivity analyses suggest that over 30% of black/pardo deaths would have to be incorrectly coded for the results to be invalid. This study is limited by the use of municipal-aggregate data, which precludes individual-level inference. Omitted variable bias, where factors associated with ESF expansion are also associated with changes in mortality rates, may have influenced our findings, although sensitivity analyses show the robustness of the findings to pre-ESF trends and the inclusion of other municipal-level factors that could be associated with coverage. Conclusions PHC expansion is associated with reductions in racial group inequalities in mortality in Brazil. These findings highlight the importance of investment in PHC to achieve the SDGs aimed at improving health and reducing inequalities. PMID:28557989

  1. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    PubMed

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  2. Impacts of Scarification and Degermination on the Expansion Characteristics of Select Quinoa Varieties during Extrusion Processing.

    PubMed

    Aluwi, Nicole A; Gu, Bon-Jae; Dhumal, Gaurav S; Medina-Meza, Ilce G; Murphy, Kevin M; Ganjyal, Girish M

    2016-12-01

    Extrusion of 2 quinoa varieties, Cherry Vanilla and Black (scarified and unscarified) and a mixed quinoa variety, Bolivian Royal (scarified and degermed) were studied for their extrusion characteristics. A corotating twin-screw extruder with a 3 mm round die was used. Feed moisture contents of 15%, 20%, and 25% (wet basis) were studied. The extruder barrel temperature was kept constant at 140 °C and screw speeds were varied from 100, 150, and 200 revolutions per minutes. Process responses (specific mechanical energy, back pressure, and torque) and product responses (expansion ratio, unit density, and water absorption index/water solubility index) were evaluated. The degermed Bolivian Royal showed the highest expansion in comparison to all other varieties, attributed to its significantly low levels of fat, fiber, and protein. The scarified Cherry Vanilla resulted in the lowest expansion ratio. This was attributed to the increase in the protein content from the removal of the outer layer. The results indicate that all the varieties performed differently in the extrusion process due to their modification processes as well as the individual variety characteristics. © 2016 Institute of Food Technologists®.

  3. Analysis of the Effect of Construction and Operation of Thermal Expansion System Compounds on Steam Turbines Reliability

    NASA Astrophysics Data System (ADS)

    Murmansky, B. E.; Sosnovsky, A. Yu.; Brodov, Yu. M.

    2017-11-01

    The inspection results are presented of turbines of different types and capacity, showing the influence of various factors (such as increased frictional forces on the mating surfaces, clearance changes in the joints elements, TES elements design, state of the thermal expansions compensation system of pipelines) on the operation both of thermal expansion system and of the turbine as a whole. The data are presented on the effectiveness of various measures aimed to eliminate the causes of the turbine thermal expansion system deviations from its normal operation. The results are shown of the influence simulation of various factors (such as flanges and piping warming, ratio of clearance changes in the elements) on the probability of turbine TES hindrance. It is shown that clearance ratios employed in most turbines do not provide the stability of turbine TES against the external action of connected pipes. The simulation results permit to explain the bearing housings turns observed during inspections, resulting in a jam on the longitudinal keys, in temperature distribution changes on the thrust bearing pads, and in some cases in false readings of instruments rotor axial displacement.

  4. Risk factors associated with early implant failure: A 5-year retrospective clinical study.

    PubMed

    Olmedo-Gaya, Maris Victoria; Manzano-Moreno, Francisco J; Cañaveral-Cavero, Esther; de Dios Luna-del Castillo, Juan; Vallecillo-Capilla, Manuel

    2016-02-01

    The replacement of lost teeth with dental implants is a widespread treatment whose associated problems are also frequently encountered. Nevertheless, the factors associated with early implant failure have not been well documented. Further analyses of the factors influencing osseointegration establishment are required to maximize the predictability of the procedure and minimize implant failures. The purpose of this retrospective clinical study was to explore the association between possible risk factors and early implant failure. This retrospective clinical study evaluated 142 participants who received 276 external connection BTI implants between 2007 and 2011. Participant variables (age, sex, systemic disease, tobacco use, alcohol consumption, bruxism, and degree of periodontal disease), implant variables (type of edentulism, localization, area, diameter, length, and bone quality), intervention variables (expansion mechanisms, sinus augmentation techniques, bone regeneration, and implant insertion), and postoperative variables (presence of pain/inflammation at 1 week postsurgery) were studied. A multilevel logistic regression model (mixed effects-type model) was used to determine the influence of variables on early implant failure. Early implant failure was significantly associated with the male sex (P=.001), severe periodontal disease (P=.005), short implants (P=.001), expansion technique (P=.002), and postoperative pain/inflammation at 1 week postsurgery (P<.001). Early dental implant failure is more frequent in men and in individuals with severe periodontal disease, short implants, pain/inflammation at 1 week postsurgery, or bone expansion treatment. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Anthropogenic host plant expansion leads a nettle-feeding butterfly out of the forest: consequences for larval survival and developmental plasticity in adult morphology.

    PubMed

    Merckx, Thomas; Serruys, Mélanie; Van Dyck, Hans

    2015-04-01

    Recent anthropogenic eutrophication has meant that host plants of nettle-feeding insects became quasi-omnipresent in fertile regions of Western Europe. However, host plant resource quality - in terms of microclimate and nutritional value - may vary considerably between the 'original' forest habitat and 'recent' agricultural habitat. Here, we compared development in both environmental settings using a split-brood design, so as to explore to what extent larval survival and adult morphology in the nettle-feeding butterfly Aglais urticae are influenced by the anthropogenic environment. Nettles along field margins had higher C/N ratios and provided warmer microclimates to larvae. Larvae developed 20% faster and tended to improve their survival rates, on the agricultural land compared to woodland. Our split-brood approach indicated plastic responses within families, but also family effects in the phenotypic responses. Adult males and females had darker wing pigmentation in the drier and warmer agricultural environment, which contrasts with the thermal melanism hypothesis. Developmental plasticity in response to this microclimatically different and more variable habitat was associated with a broader phenotypic parameter space for the species. Both habitat expansion and developmental plasticity are likely contributors to the ecological and evolutionary success of these nettle-feeding insects in anthropogenic environments under high nitrogen load.

  6. Further Development of a New, Flux-Conserving Newton Scheme for the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    1996-01-01

    This paper is one of a series of papers describing the development of a new numerical approach for solving the steady Navier-Stokes equations. The key features in the current development are (1) the discrete representation of the dependent variables by way of high order polynomial expansions, (2) the retention of all derivatives in the expansions as unknowns to be explicitly solved for, (3) the automatic balancing of fluxes at cell interfaces, and (4) the discrete simulation of both the integral and differential forms of the governing equations. The main purpose of this paper is, first, to provide a systematic and rigorous derivation of the conditions that are used to simulate the differential form of the Navier-Stokes equations, and second, to extend our previously-presented internal flow scheme to external flows and nonuniform grids. Numerical results are presented for high Reynolds number flow (Re = 100,000) around a finite flat plate, and detailed comparisons are made with the Blasius flat plate solution and Goldstein wake solution. It is shown that the error in the streamwise velocity decreases like r(sup alpha)(Delta)y(exp 2), where alpha approx. 0.25 and r = delta(y)/delta(x) is the grid aspect ratio.

  7. Exact linearized Coulomb collision operator in the moment expansion

    DOE PAGES

    Ji, Jeong -Young; Held, Eric D.

    2006-10-05

    In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collisionmore » operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.« less

  8. Interresponse Time Structures in Variable-Ratio and Variable-Interval Schedules

    ERIC Educational Resources Information Center

    Bowers, Matthew T.; Hill, Jade; Palya, William L.

    2008-01-01

    The interresponse-time structures of pigeon key pecking were examined under variable-ratio, variable-interval, and variable-interval plus linear feedback schedules. Whereas the variable-ratio and variable-interval plus linear feedback schedules generally resulted in a distinct group of short interresponse times and a broad distribution of longer…

  9. Stable Carbon Isotopes in Treerings; Revisiting the Paleocloud Proxy.

    NASA Astrophysics Data System (ADS)

    Gagen, M.; Zorita, E.; Dorado Liñán, I.; Loader, N.; McCarroll, D.; Robertson, I.; Young, G.

    2017-12-01

    The long term relationship between cloud cover and temperature is one of the most important climate feedbacks contributing to determining the value of climate sensitivity. Climate models still reveal a large spread in the simulation of changes in cloud cover under future warming scenarios and clarity might be aided by a picture of the past variability of cloudiness. Stable carbon isotope ratios from tree ring records have been successfully piloted as a palaeocloud proxy in geographical areas traditionally producing strong dendroclimatological reconstructions (high northern latitudes in the Northern Hemisphere) and with some notable successes elsewhere too. An expansion of tree-ring based palaeocloud reconstructions might help to estimate past variations of cloud cover in periods colder or warmer than the 20th century, providing a way to test model test this specific aspect. Calibration with measured instrumental sunshine and cloud data reveals stable carbon isotope ratios from tree rings as an indicator of incoming short wave solar radiation (SWR) in non-moisture stressed sites, but the statistical identification of the SWR signal is hampered by its interannual co-variability with air temperature during the growing season. Here we present a spatio-temporal statistical analysis of a multivariate stable carbon isotope tree ring data set over Europe to assess its usefulness to reconstruct past solar radiation changes. The interannual co-variability of the tree ring records stronger covariation with SWR than with air temperature. The resulting spatial patterns of interannual co-variability are strongly linked to atmospheric circulation in a physically consistent manner. However, the multidecadal variations in the proxy records show a less physically coherent picture. We explore whether atmospheric corrections applied to the proxy series are contributing to differences in the multi decadal signal and investigate whether multidecadal variations in soil moisture perturb the SWR. Preliminary results of strategies to bypass these problems are explored.

  10. Expansion of the gravitational potential with computerized Poisson series

    NASA Technical Reports Server (NTRS)

    Broucke, R.

    1976-01-01

    The paper describes a recursive formulation for the expansion of the gravitational potential valid for both the tesseral and zonal harmonics. The expansion is primarily in rectangular coordinates, but the classical orbit elements or equinoctial orbit elements can be easily substituted. The equations of motion for the zonal harmonics in both classical and equinoctial orbital elements are described in a form which will result in closed-form expressions for the first-order perturbations. In order to achieve this result, the true longitude or true anomaly have to be used as independent variables.

  11. Fuzzy parametric uncertainty analysis of linear dynamical systems: A surrogate modeling approach

    NASA Astrophysics Data System (ADS)

    Chowdhury, R.; Adhikari, S.

    2012-10-01

    Uncertainty propagation engineering systems possess significant computational challenges. This paper explores the possibility of using correlated function expansion based metamodelling approach when uncertain system parameters are modeled using Fuzzy variables. In particular, the application of High-Dimensional Model Representation (HDMR) is proposed for fuzzy finite element analysis of dynamical systems. The HDMR expansion is a set of quantitative model assessment and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of functions of increasing dimensions. The input variables may be either finite-dimensional (i.e., a vector of parameters chosen from the Euclidean space RM) or may be infinite-dimensional as in the function space CM[0,1]. The computational effort to determine the expansion functions using the alpha cut method scales polynomially with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is integrated with a commercial Finite Element software. Modal analysis of a simplified aircraft wing with Fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations.

  12. Factors governing hole expansion ratio of steel sheets with smooth sheared edge

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Gyo-Sung; Kim, Hyoung Seop

    2016-11-01

    Stretch-flangeability measured using hole expansion test (HET) represents the ability of a material to form into a complex shaped component. Despite its importance in automotive applications of advanced high strength steels, stretch-flangeability is a less known sheet metal forming property. In this paper, we investigate the factors governing hole expansion ratio (HER) by means of tensile test and HET. We correlate a wide range of tensile properties with HERs of steel sheet specimens because the stress state in the hole edge region during the HET is almost the same as that of the uniaxial tensile test. In order to evaluate an intrinsic HER of steel sheet specimens, the initial hole of the HET specimen is produced using a milling process after punching, which can remove accumulated shearing damage and micro-void in the hole edge region that is present when using the standard HER evaluation method. It was found that the intrinsic HER of steel sheet specimens was proportional to the strain rate sensitivity exponent and post uniform elongation.

  13. Shock shapes on blunt bodies in hypersonic-hypervelocity helium, air, and CO2 flows, and calibration results in Langley 6-inch expansion tube

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1975-01-01

    Shock shape results for flat-faced cylinders, spheres, and spherically blunted cones in various test gases, along with preliminary results from a calibration study performed in the Langley 6-inch expansion tube are presented. Free-stream velocities from 5 to 7 km/sec are generated at hypersonic conditions with helium, air, and CO2, resulting in normal shock density ratios from 4 to 19. Ideal-gas shock shape predictions, in which an effective ratio of specific heats is used as input, are compared with the measured results. The effect of model diameter is examined to provide insight to the thermochemical state of the flow in the shock layer. The regime for which equilibrium exists in the shock layer for the present air and CO2 test conditions is defined. Test core flow quality, test repeatability, and comparison of measured and predicted expansion-tube flow quantities are discussed.

  14. Determination of the Specific Heat Ratio of a Gas in a Plastic Syringe

    ERIC Educational Resources Information Center

    Chamberlain, Jeff

    2010-01-01

    The rapid compression or expansion of a gas in a plastic syringe is a poor approximation of an adiabatic process. Heat exchange with the walls of the syringe brings the gas to equilibrium in an amount of time that is not significantly greater than the length of the compression or expansion itself. Despite this limitation, it is still possible to…

  15. Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  16. Asymptotic solution of the turbulent mixing layer for velocity ratio close to unity

    NASA Technical Reports Server (NTRS)

    Higuera, F. J.; Jimenez, J.; Linan, A.

    1996-01-01

    The equations describing the first two terms of an asymptotic expansion of the solution of the planar turbulent mixing layer for values of the velocity ratio close to one are obtained. The first term of this expansion is the solution of the well-known time-evolving problem and the second, which includes the effects of the increase of the turbulence scales in the stream-wise direction, obeys a linear system of equations. Numerical solutions of these equations for a two-dimensional reacting mixing layer show that the correction to the time-evolving solution may explain the asymmetry of the entrainment and the differences in product generation observed in flip experiments.

  17. Broad-scale lake expansion and flooding inundates essential wood bison habitat in northwestern Canada.

    NASA Astrophysics Data System (ADS)

    Blais, J. M.; Korosi, J.; Thienpont, J. R.; Pisaric, M. F.; Kokelj, S.; Smol, J. P.; Simpson, M. J.

    2017-12-01

    Climate change-induced landscape alterations have consequences for vulnerable wildlife. In high-latitude regions, dramatic changes in water levels have been linked to climate warming. While most attention has focused on shrinking Arctic lakes, here, we document the opposite scenario: extensive lake expansion in Canada's Northwest Territories that has implications for the conservation of ecologically-important wood bison. We quantified lake area changes since 1986 using remote sensing techniques, and recorded a net gain of > 500 km2, from 5.7% to 11% total water coverage. Inter-annual variability in water level was significantly correlated to the Pacific/North American pattern teleconnection and the summer sea surface temperature anomaly. Historical reconstructions using proxy data archived in dated sediment cores showed that recent lake expansion is outside the range of natural variability of these ecosystems over at least the last 300 years. Lake expansion resulted in increased allochthonous carbon transport, as shown unequivocally by increases in lignin-derived phenols, but with a greater proportional increase in the contribution of organic matter from phytoplankton, as a result of increased open-water habitat. We conclude that complex hydrological changes occurring as a result of recent climatic change have resulted in rapid and widespread lake expansion that may significantly affect at-risk wildlife populations. This study is based on results we reported in Nature Communications in 2017 (DOI: 10.1038/ncomms14510).

  18. Internal performance of a hybrid axisymmetric/nonaxisymmetric convergent-divergent nozzle

    NASA Technical Reports Server (NTRS)

    Taylor, John G.

    1991-01-01

    An investigation was conducted in the static test facility of the Langley 16-foot transonic tunnel to determine the internal performance of a hybrid axisymmetric/nonaxisymmetric nozzle in forward-thrust mode. Nozzle cross-sections in the spherical convergent section were axisymmetric whereas cross-sections in the divergent flap area nonaxisymmetric (two-dimensional). Nozzle concepts simulating dry and afterburning power settings were investigated. Both subsonic cruise and supersonic cruise expansion ratios were tested for the dry power nozzle concepts. Afterburning power configurations were tested at an expansion ratio typical for subsonic acceleration. The spherical convergent flaps were designed in such a way that the transition from axisymmetric to nonaxisymmetric cross-section occurred in the region of the nozzle throat. Three different nozzle throat geometries were tested for each nozzle power setting. High-pressure air was used to simulate jet exhaust at nozzle pressure ratios up to 12.0.

  19. A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Eldred, C. H.; Gordon, S. V.

    1976-01-01

    A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.

  20. Modeling a Material's Instantaneous Velocity during Acceleration Driven by a Detonation's Gas-Push Process

    NASA Astrophysics Data System (ADS)

    Backofen, Joseph E.

    2005-07-01

    This paper will describe both the scientific findings and the model developed in order to quantfy a material's instantaneous velocity versus position, time, or the expansion ratio of an explosive's gaseous products while its gas pressure is accelerating the material. The formula derived to represent this gas-push process for the 2nd stage of the BRIGS Two-Step Detonation Propulsion Model was found to fit very well the published experimental data available for twenty explosives. When the formula's two key parameters (the ratio Vinitial / Vfinal and ExpansionRatioFinal) were adjusted slightly from the average values describing closely many explosives to values representing measured data for a particular explosive, the formula's representation of that explosive's gas-push process was improved. The time derivative of the velocity formula representing acceleration and/or pressure compares favorably to Jones-Wilkins-Lee equation-of-state model calculations performed using published JWL parameters.

  1. Computer modeling of multiple-channel input signals and intermodulation losses caused by nonlinear traveling wave tube amplifiers

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1982-01-01

    The multiple channel input signal to a soft limiter amplifier as a traveling wave tube is represented as a finite, linear sum of Gaussian functions in the frequency domain. Linear regression is used to fit the channel shapes to a least squares residual error. Distortions in output signal, namely intermodulation products, are produced by the nonlinear gain characteristic of the amplifier and constitute the principal noise analyzed in this study. The signal to noise ratios are calculated for various input powers from saturation to 10 dB below saturation for two specific distributions of channels. A criterion for the truncation of the series expansion of the nonlinear transfer characteristic is given. It is found that he signal to noise ratios are very sensitive to the coefficients used in this expansion. Improper or incorrect truncation of the series leads to ambiguous results in the signal to noise ratios.

  2. Black string corrections in variable tension braneworld scenarios

    NASA Astrophysics Data System (ADS)

    Da Rocha, Roldão; Hoff da Silva, J. M.

    2012-02-01

    Braneworld models with variable tension are investigated, and the corrections on the black string horizon along the extra dimension are provided. Such corrections are encrypted in additional terms involving the covariant derivatives of the variable tension on the brane, providing profound consequences concerning the black string horizon variation along the extra dimension, near the brane. The black string horizon behavior is shown to be drastically modified by the terms corrected by the brane variable tension. In particular, a model motivated by the phenomenological interesting case regarding Eötvös branes is investigated. It forthwith provides further physical features regarding variable tension braneworld scenarios, heretofore concealed in all previous analysis in the literature. All precedent analysis considered uniquely the expansion of the metric up to the second order along the extra dimension, which is able to evince solely the brane variable tension absolute value. Notwithstanding, the expansion terms aftermath, further accomplished in this paper from the third order on, elicits the successive covariant derivatives of the brane variable tension, and their respective coupling with the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as well as the scalar curvature. Such additional terms are shown to provide sudden modifications in the black string horizon in a variable tension braneworld scenario.

  3. Energy Absorption of Expansion Tube Considering Local Buckling Characteristics

    NASA Astrophysics Data System (ADS)

    Ahn, Kwang-Hyun; Kim, Jin-Sung; Huh, Hoon

    This paper deals with the crash energy absorption and the local buckling characteristics of the expansion tube during the tube expanding processes. In order to improve energy absorption capacity of expansion tubes, local buckling characteristics of an expansion tube must be considered. The local buckling load and the absorbed energy during the expanding process were calculated for various types of tubes and punch shapes with finite element analysis. The energy absorption capacity of the expansion tube is influenced by the tube and the punch shape. The material properties of tubes are also important parameter for energy absorption. During the expanding process, local buckling occurs in some cases, which causes significant decreasing the absorbed energy of the expansion tube. Therefore, it is important to predict the local buckling load accurately to improve the energy absorption capacity of the expansion tube. Local buckling takes place relatively easily at the large punch angle and expansion ratio. Local buckling load is also influenced by both the tube radius and the thickness. In prediction of the local buckling load, modified Plantema equation was used for strain hardening and strain rate hardening. The modified Plantema equation shows a good agreement with the numerical result.

  4. Multi-objective optimization and design for free piston Stirling engines based on the dimensionless power

    NASA Astrophysics Data System (ADS)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.

  5. Following Surgically Assisted Rapid Palatal Expansion, Do Tooth-Borne or Bone-Borne Appliances Provide More Skeletal Expansion and Dental Expansion?

    PubMed

    Hamedi-Sangsari, Adrien; Chinipardaz, Zahra; Carrasco, Lee

    2017-10-01

    The aim of this study was to compare outcome measurements of skeletal and dental expansion with bone-borne (BB) versus tooth-borne (TB) appliances after surgically assisted rapid palatal expansion (SARPE). This study was performed to provide quantitative measurements that will help the oral surgeon and orthodontist in selecting the appliance with, on average, the greatest amount of skeletal expansion and the least amount of dental expansion. A computerized database search was performed using PubMed, EBSCO, Cochrane, Scopus, Web of Science, and Google Scholar on publications in reputable oral surgery and orthodontic journals. A systematic review and meta-analysis was completed with the predictor variable of expansion appliance (TB vs BB) and outcome measurement of expansion (in millimeters). Of 487 articles retrieved from the 6 databases, 5 articles were included, 4 with cone-beam computed tomographic (CBCT) data and 1 with non-CBCT 3-dimensional cast data. There was a significant difference in skeletal expansion (standardized mean difference [SMD], 0.92; 95% confidence interval [CI], 0.54-1.30; P < .001) in favor of BB rather than TB appliances. However, there was no significant difference in dental expansion (SMD, 0.05; 95% CI, -0.24 to 0.34; P = .03). According to the literature, to achieve more effective skeletal expansion and minimize dental expansion after SARPE, a BB appliance should be favored. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Effect of drying and frying conditions on physical and chemical characteristics of fish maw from swim bladder of seabass (Lates calcarifer).

    PubMed

    Sinthusamran, Sittichoke; Benjakul, Soottawat

    2015-12-01

    Swim bladder is generated as a by-product during evisceration. It has been used for the production of fish maw, in which several processing parameters determine the characteristics or quality of the resulting fish maw. The present study aimed to investigate the characteristics of fish maws from seabass swim bladder as influenced by drying and frying conditions. The expansion ratio and oil uptake content of fish maw increased as the moisture content of swim bladder increased (P < 0.05). Nevertheless, the expansion ratio of fish maw decreased when the moisture content was higher than 150 g kg(-1) . The L*-value decreased, whilst the a*- and b*-values of fish maw increased with increasing moisture content. When pre-frying and frying temperatures increased, the expansion ratio of fish maw increased (P < 0.05). However, the expansion ratio decreased when the frying was performed at a temperature higher than 200 °C. The oil uptake contents of fish maw with frying temperatures of 180 and 200 °C were in the range of 451.06-578.06 g kg(-1) , whereas the lower contents (378.60-417.17 g kg(-1) ) were found in those having frying temperatures of 220-240 °C. Hardness of fish maw decreased but no changes in fracturability were observed with increasing pre-frying temperature when subsequent frying was carried out 200 °C. Drying temperatures, moisture content, pre-frying and frying temperatures were the factors influencing the characteristics and properties of fish maws from seabass swim bladder. Fish maw could be prepared by pre-frying swim bladder, dried at 60 °C to obtain 150 g kg(-1) moisture content, at 110 °C for 5 min, followed by frying at 200 °C for 20 s. © 2014 Society of Chemical Industry.

  7. Analytical model of cracking due to rebar corrosion expansion in concrete considering the structure internal force

    NASA Astrophysics Data System (ADS)

    Lin, Xiangyue; Peng, Minli; Lei, Fengming; Tan, Jiangxian; Shi, Huacheng

    2017-12-01

    Based on the assumptions of uniform corrosion and linear elastic expansion, an analytical model of cracking due to rebar corrosion expansion in concrete was established, which is able to consider the structure internal force. And then, by means of the complex variable function theory and series expansion technology established by Muskhelishvili, the corresponding stress component functions of concrete around the reinforcement were obtained. Also, a comparative analysis was conducted between the numerical simulation model and present model in this paper. The results show that the calculation results of both methods were consistent with each other, and the numerical deviation was less than 10%, proving that the analytical model established in this paper is reliable.

  8. Contrast extravasation on CT angiography predicts hematoma expansion and mortality in acute traumatic subdural hemorrhage.

    PubMed

    Romero, J M; Kelly, H R; Delgado Almandoz, J E; Hernandez-Siman, J; Passanese, J C; Lev, M H; González, R G

    2013-08-01

    The presence of active contrast extravasation at CTA predicts hematoma expansion and in-hospital mortality in patients with nontraumatic intracerebral hemorrhage. This study aims to determine the frequency and predictive value of the contrast extravasation in patients with aSDH. We retrospectively reviewed 157 consecutive patients who presented to our emergency department over a 9-year period with aSDH and underwent CTA at admission and a follow-up NCCT within 48 hours. Two experienced readers, blinded to clinical data, reviewed the CTAs to assess for the presence of contrast extravasation. Medical records were reviewed for baseline clinical characteristics and in-hospital mortality. aSDH maximum width in the axial plane was measured on both baseline and follow-up NCCTs, with hematoma expansion defined as >20% increase from baseline. Active contrast extravasation was identified in 30 of 199 discrete aSDHs (15.1%), with excellent interobserver agreement (κ = 0.80; 95% CI, 0.7-0.9). The presence of contrast extravasation indicated a significantly increased risk of hematoma expansion (odds ratio, 4.5; 95% CI, 2.0-10.1; P = .0001) and in-hospital mortality (odds ratio, 7.6; 95% CI, 2.6-22.3; P = 0.0004). In a multivariate analysis controlled for standard risk factors, the presence of contrast extravasation was an independent predictor of aSDH expansion (P = .001) and in-hospital mortality (P = .0003). Contrast extravasation stratifies patients with aSDH into those at high risk and those at low risk of hematoma expansion and in-hospital mortality. This distinction could affect patient treatment, clinical trial selection, and possible surgical intervention.

  9. Improved geometric variables for predicting disturbed flow at the normal carotid bifurcation

    NASA Astrophysics Data System (ADS)

    Bijari, Payam B.; Antiga, Luca; Steinman, David A.

    2011-03-01

    Recent work from our group has shown the primacy of the bifurcation area ratio and tortuosity in determining the amount of disturbed flow at the carotid bifurcation, believed to be a local risk factor for the carotid atherosclerosis. We have also presented fast and reliable methods of extraction of geometry from routine 3D contrast-enhanced magnetic resonance angiography, as the necessary step along the way for large-scale trials of such local risk factors. In the present study, we refine our original geometric variables to better reflect the underlying fluid mechanical principles. Flaring of the bifurcation, leading to flow separation, is defined by the maximum relative expansion of the common carotid artery (CCA), proximal to the bifurcation apex. The beneficial effect of curvature on flow inertia, via its suppression of flow separation, is now characterized by the tortuosity of CCA as it enters the flare region. Based on data from 50 normal carotid bifurcations, multiple linear regressions of these new independent geometric predictors against the dependent disturbed flow burden reveals adjusted R2 values approaching 0.5, better than the values closer to 0.3 achieved using the original variables. The excellent scan-rescan reproducibility demonstrated for our earlier geometric variables is shown to be preserved for the new definitions. Improved prediction of disturbed flow by robust and reproducible vascular geometry offers a practical pathway to large-scale studies of local risk factors in atherosclerosis.

  10. Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.

    Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP 2O 7 family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV 2O 7 and HfV 2O 7 were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV 2O 7 and HfV 2O 7 exhibited a very strong dependence on pressure (~700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV 2O 7 was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively).« less

  11. Expansive Cements

    DTIC Science & Technology

    1970-10-01

    plastic or semi- plastic concrete and place no stress on the restraint provided. If, on the other hand, the ettringite continues to form rapidly for too...yield, I and wp.ter-cement ratio. Such a change in cement content may cause a greater change in expansion caracteristics than the change in...the tendency toward plastic shrinkage is increased. During the w’nter znths most structural concrete installations hare had adequate heating and no

  12. On the specta of X-ray bursters: Expansion and contraction stages

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev

    1994-01-01

    The theory of spectral formation during the explosion and contraction stages of X-ray bursters, which include the effects of Computonization and free-free absorption and emission, is described. Analytical expressions are provided for color ratios, and the spectral shape is given as a function of input parameters, elemental abundance, neutron star mass and radius, and Eddington ratio. An Eulerian calculation is used to determine the photospheric evolution accurately during the Eddington luminosity phase. The developed analytical theory for hydrodynamics of the expansion takes into account the dependence of Compton scattering opacity on electron temperature. An analytical expression is derived from the sonic point position and the value of the sonic velcoity. Using this value as a boundary condition at the sonic point, the velocity, density, and temperature profile are calculated throughout the whole photosphere. It is shown that the atmopsphere radiates spectra having a low-energy power-law shape and blackbody-like hard tail. In the expansion stage the spectra depend strongly on the temperature of the helium-burning zone at the neutron star surface. The X-ray photosheric radius increases to approximately 100 km or more, depending on the condition of the nuclear burning on the surface of the neutron star in the course of the expansion.

  13. A simulation study of radial expansion of an electron beam injected into an ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Koga, J.; Lin, C. S.

    1994-01-01

    Injections of nonrelativistic electron beams from a finite equipotential conductor into an ionospheric plasma have been simulated using a two-dimensional electrostatic particle code. The purpose of the study is to survey the simulation parameters for understanding the dependence of beam radius on physical variables. The conductor is charged to a high potential when the background plasma density is less than the beam density. Beam electrons attracted by the charged conductor are decelerated to zero velocity near the stagnation point, which is at a few Debye lengths from the conductor. The simulations suggest that the beam electrons at the stagnation point receive a large transverse kick and the beam expands radially thereafter. The buildup of beam electrons at the stagnation point produces a large electrostatic force responsible for the transverse kick. However, for the weak charging cases where the background plasma density is larger than the beam density, the radial expansion mechanism is different; the beam plasma instability is found to be responsible for the radial expansion. The simulations show that the electron beam radius for high spacecraft charging cases is of the order of the beam gyroradius, defined as the beam velocity divided by the gyrofrequency. In the weak charging cases, the beam radius is only a fraction of the beam gyroradius. The parameter survey indicates that the beam radius increases with beam density and decreases with magnetic field and beam velocity. The beam radius normalized by the beam gyroradius is found to scale according to the ratio of the beam electron Debye length to the ambient electron Debye length. The parameter dependence deduced would be useful for interpreting the beam radius and beam density of electron beam injection experiments conducted from rockets and the space shuttle.

  14. Medicaid expansion and access to care among cancer survivors: a baseline overview.

    PubMed

    Tarazi, Wafa W; Bradley, Cathy J; Harless, David W; Bear, Harry D; Sabik, Lindsay M

    2016-06-01

    Medicaid expansion under the Affordable Care Act facilitates access to care among vulnerable populations, but 21 states have not yet expanded the program. Medicaid expansions may provide increased access to care for cancer survivors, a growing population with chronic conditions. We compare access to health care services among cancer survivors living in non-expansion states to those living in expansion states, prior to Medicaid expansion under the Affordable Care Act. We use the 2012 and 2013 Behavioral Risk Factor Surveillance System to estimate multiple logistic regression models to compare inability to see a doctor because of cost, having a personal doctor, and receiving an annual checkup in the past year between cancer survivors who lived in non-expansion states and survivors who lived in expansion states. Cancer survivors in non-expansion states had statistically significantly lower odds of having a personal doctor (adjusted odds ratio [AOR] 0.76, 95 % confidence interval [CI] 0.63-0.92, p < 0.05) and higher odds of being unable to see a doctor because of cost (AOR 1.14, 95 % CI 0.98-1.31, p < 0.10). Statistically significant differences were not found for annual checkups. Prior to the passage of the Affordable Care Act, cancer survivors living in expansion states had better access to care than survivors living in non-expansion states. Failure to expand Medicaid could potentially leave many cancer survivors with limited access to routine care. Existing disparities in access to care are likely to widen between cancer survivors in Medicaid non-expansion and expansion states.

  15. Refugee Resettlement Patterns and State-Level Health Care Insurance Access in the United States.

    PubMed

    Agrawal, Pooja; Venkatesh, Arjun Krishna

    2016-04-01

    We sought to evaluate the relationship between state-level implementation of the Patient Protection and Affordable Care Act (ACA) and resettlement patterns among refugees. We linked federal refugee resettlement data to ACA expansion data and found that refugee resettlement rates are not significantly different according to state-level insurance expansion or cost. Forty percent of refugees have resettled to states without Medicaid expansion. The wide state-level variability in implementation of the ACA should be considered by federal agencies seeking to optimize access to health insurance coverage among refugees who have resettled to the United States.

  16. Attention Induced Gain Stabilization in Broad and Narrow-Spiking Cells in the Frontal Eye-Field of Macaque Monkeys

    PubMed Central

    Brandt, Christian; Dasilva, Miguel; Gotthardt, Sascha; Chicharro, Daniel; Panzeri, Stefano; Distler, Claudia

    2016-01-01

    Top-down attention increases coding abilities by altering firing rates and rate variability. In the frontal eye field (FEF), a key area enabling top-down attention, attention induced firing rate changes are profound, but its effect on different cell types is unknown. Moreover, FEF is the only cortical area investigated in which attention does not affect rate variability, as assessed by the Fano factor, suggesting that task engagement affects cortical state nonuniformly. We show that putative interneurons in FEF of Macaca mulatta show stronger attentional rate modulation than putative pyramidal cells. Partitioning rate variability reveals that both cell types reduce rate variability with attention, but more strongly so in narrow-spiking cells. The effects are captured by a model in which attention stabilizes neuronal excitability, thereby reducing the expansive nonlinearity that links firing rate and variance. These results show that the effect of attention on different cell classes and different coding properties are consistent across the cortical hierarchy, acting through increased and stabilized neuronal excitability. SIGNIFICANCE STATEMENT Cortical processing is critically modulated by attention. A key feature of this influence is a modulation of “cortical state,” resulting in increased neuronal excitability and resilience of the network against perturbations, lower rate variability, and an increased signal-to-noise ratio. In the frontal eye field (FEF), an area assumed to control spatial attention in human and nonhuman primates, firing rate changes with attention occur, but rate variability, quantified by the Fano factor, appears to be unaffected by attention. Using recently developed analysis tools and models to quantify attention effects on narrow- and broad-spiking cell activity, we show that attention alters cortical state strongly in the FEF, demonstrating that its effect on the neuronal network is consistent across the cortical hierarchy. PMID:27445139

  17. From mild ataxia to huntington disease phenocopy: the multiple faces of spinocerebellar ataxia 17.

    PubMed

    Koutsis, Georgios; Panas, Marios; Paraskevas, George P; Bougea, Anastasia M; Kladi, Athina; Karadima, Georgia; Kapaki, Elisabeth

    2014-01-01

    Introduction. Spinocerebellar ataxia 17 (SCA 17) is a rare autosomal dominant cerebellar ataxia (ADCA) caused by a CAG/CAA expansion in the TBP gene, reported from a limited number of countries. It is a very heterogeneous ADCA characterized by ataxia, cognitive decline, psychiatric symptoms, and involuntary movements, with some patients presenting with Huntington disease (HD) phenocopies. The SCA 17 expansion is stable during parent-child transmission and intrafamilial phenotypic homogeneity has been reported. However, significant phenotypic variability within families has also been observed. Report of the Family. We presently report a Greek family with a pathological expansion of 54 repeats at the SCA 17 locus that displayed remarkable phenotypic variability. Among 3 affected members, one presented with HD phenocopy; one with progressive ataxia, dementia, chorea, dystonia, and seizures, and one with mild slowly progressive ataxia with minor cognitive and affective symptoms. Conclusions. This is the first family with SCA 17 identified in Greece and highlights the multiple faces of this rare disorder, even within the same family.

  18. From Mild Ataxia to Huntington Disease Phenocopy: The Multiple Faces of Spinocerebellar Ataxia 17

    PubMed Central

    Panas, Marios; Paraskevas, George P.; Bougea, Anastasia M.; Karadima, Georgia; Kapaki, Elisabeth

    2014-01-01

    Introduction. Spinocerebellar ataxia 17 (SCA 17) is a rare autosomal dominant cerebellar ataxia (ADCA) caused by a CAG/CAA expansion in the TBP gene, reported from a limited number of countries. It is a very heterogeneous ADCA characterized by ataxia, cognitive decline, psychiatric symptoms, and involuntary movements, with some patients presenting with Huntington disease (HD) phenocopies. The SCA 17 expansion is stable during parent-child transmission and intrafamilial phenotypic homogeneity has been reported. However, significant phenotypic variability within families has also been observed. Report of the Family. We presently report a Greek family with a pathological expansion of 54 repeats at the SCA 17 locus that displayed remarkable phenotypic variability. Among 3 affected members, one presented with HD phenocopy; one with progressive ataxia, dementia, chorea, dystonia, and seizures, and one with mild slowly progressive ataxia with minor cognitive and affective symptoms. Conclusions. This is the first family with SCA 17 identified in Greece and highlights the multiple faces of this rare disorder, even within the same family. PMID:25349749

  19. Uncertainty analysis for the steady-state flows in a dual throat nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Q.-Y.; Gottlieb, David; Hesthaven, Jan S.

    2005-03-20

    It is well known that the steady state of an isentropic flow in a dual-throat nozzle with equal throat areas is not unique. In particular there is a possibility that the flow contains a shock wave, whose location is determined solely by the initial condition. In this paper, we consider cases with uncertainty in this initial condition and use generalized polynomial chaos methods to study the steady-state solutions for stochastic initial conditions. Special interest is given to the statistics of the shock location. The polynomial chaos (PC) expansion modes are shown to be smooth functions of the spatial variable x,more » although each solution realization is discontinuous in the spatial variable x. When the variance of the initial condition is small, the probability density function of the shock location is computed with high accuracy. Otherwise, many terms are needed in the PC expansion to produce reasonable results due to the slow convergence of the PC expansion, caused by non-smoothness in random space.« less

  20. A Comparison of Experimental and Theoretical Results for Labyrinth Gas Seals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph Kirk

    1987-01-01

    The basic equations are derived for a two control volume model for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent and isoenergetic. The wall friction factors are determined using the Blasius formula. Jet flow theory is used for the calculation of the recirculation velocity in the cavity. Linearized zeroth and first order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth order pressure distribution is found by satisfying the leakage equation. The circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variable solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to experimental test results.

  1. Residual stress in thick low-pressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates

    NASA Astrophysics Data System (ADS)

    Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.

    2005-04-01

    Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.

  2. Experimental datasets on engineering properties of expansive soil treated with common salt.

    PubMed

    Durotoye, Taiwo O; Akinmusuru, Joseph O; Ogundipe, Kunle E

    2018-06-01

    Construction of highway pavements or high rise structures over the expansive soils are always problematic due to failures of volume change or swelling characteristic experienced in the water permeability of the soil. The data in this article represented summary of (Durotoye et al., 2016; Durotoye, 2016) [1], [2]. The data explored different percentages of sodium chloride as additive in stabilizing the engineering properties of expansive soil compared with other available stabilizer previously worked on. Experimental procedures carried out on expansive soil include: (Liquid limit, Plastic limit, Plasticity index, Shrinkage limit, Specific gravity Free swell index and Optimum water content) to determine the swelling parameters and (maximum dry density, California bearing ratio and unconfined compressive strength) to determine the strength parameters. The results of the experiment were presented in pie charts.

  3. Local expansion flows of galaxies: quantifying acceleration effect of dark energy

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.

    2013-08-01

    The nearest expansion flow of galaxies observed around the Local group is studied as an archetypical example of the newly discovered local expansion flows around groups and clusters of galaxies in the nearby Universe. The flow is accelerating due to the antigravity produced by the universal dark energy background. We introduce a new acceleration measure of the flow which is the dimensionless ``acceleration parameter" Q (x) = x - x-2 depending on the normalized distance x only. The parameter is zero at the zero-gravity distance x = 1, and Q(x) ∝ x, when x ≫ 1. At the distance x = 3, the parameter Q = 2.9. Since the expansion flows have a self-similar structure in normalized variables, we expect that the result is valid as well for all the other expansion flows around groups and clusters of galaxies on the spatial scales from ˜ 1 to ˜ 10 Mpc everywhere in the Universe.

  4. On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2002-02-01

    An analytical formula expressing the ultraspherical coefficients of an expansion for an infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is stated in a more compact form and proved in a simpler way than the formula suggested by Phillips and Karageorghis (27 (1990) 823). A new formula expressing explicitly the integrals of ultraspherical polynomials of any degree that has been integrated an arbitrary number of times of ultraspherical polynomials is given. The tensor product of ultraspherical polynomials is used to approximate a function of more than one variable. Formulae expressing the coefficients of differentiated expansions of double and triple ultraspherical polynomials in terms of the original expansion are stated and proved. Some applications of how to use ultraspherical polynomials for solving ordinary and partial differential equations are described.

  5. Second-order schedules of token reinforcement with pigeons: effects of fixed- and variable-ratio exchange schedules.

    PubMed

    Foster, T A; Hackenberg, T D; Vaidya, M

    2001-09-01

    Pigeons' key pecks produced food under second-order schedules of token reinforcement, with light-emitting diodes serving as token reinforcers. In Experiment 1, tokens were earned according to a fixed-ratio 50 schedule and were exchanged for food according to either fixed-ratio or variable-ratio exchange schedules, with schedule type varied across conditions. In Experiment 2, schedule type was varied within sessions using a multiple schedule. In one component, tokens were earned according to a fixed-ratio 50 schedule and exchanged according to a variable-ratio schedule. In the other component, tokens were earned according to a variable-ratio 50 schedule and exchanged according to a fixed-ratio schedule. In both experiments, the number of responses per exchange was varied parametrically across conditions, ranging from 50 to 400 responses. Response rates decreased systematically with increases in the fixed-ratio exchange schedules, but were much less affected by changes in the variable-ratio exchange schedules. Response rates were consistently higher under variable-ratio exchange schedules than tinder comparable fixed-ratio exchange schedules, especially at higher exchange ratios. These response-rate differences were due both to greater pre-ratio pausing and to lower local rates tinder the fixed-ratio exchange schedules. Local response rates increased with proximity to food under the higher fixed-ratio exchange schedules, indicative of discriminative control by the tokens.

  6. Chordwise load distribution of a simple rectangular wing

    NASA Technical Reports Server (NTRS)

    Wieghardt, Karl

    1940-01-01

    The chordwise distribution theory was taken over from the theory of the infinite wing. Since in this work a series expansion in b/t was used, the computation converges only for large aspect ratios. In this paper a useful approximate solution will be found also for wings with large chord - i.e., small aspect ratio.

  7. Acoustic near-field characteristics of a conical, premixed flame

    NASA Astrophysics Data System (ADS)

    Lee, Doh-Hyoung; Lieuwen, Tim C.

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  8. Acoustic near-field characteristics of a conical, premixed flame.

    PubMed

    Lee, Doh-Hyoung; Lieuwen, Tim C

    2003-01-01

    The occurrence of self-excited pressure oscillations routinely plagues the development of combustion systems. These oscillations are often driven by interactions between the flame and acoustic perturbations. This study was performed to characterize the structure of the acoustic field in the near field of the flame and the manner in which it is influenced by oscillation frequency, combustor geometry, flame length and temperature ratio. The results of these calculations indicate that the acoustic velocity has primarily one- and two-dimensional features near the flame tip and base, respectively. The magnitude of the radial velocity components increases with temperature ratio across the flame, while their axial extent increases with frequency. However, the acoustic pressure has primarily one-dimensional characteristics. They also show that the acoustic field structure exhibits only moderate dependencies upon area expansion and flame temperature ratio for values typical of practical systems. Finally, they show that the local characteristics of the acoustic field, as well as the overall plane-wave reflection coefficient, exhibit a decreasing dependence upon the flame length as the area expansion ratio increases.

  9. The effect of code expanding optimizations on instruction cache design

    NASA Technical Reports Server (NTRS)

    Chen, William Y.; Chang, Pohua P.; Conte, Thomas M.; Hwu, Wen-Mei W.

    1991-01-01

    It is shown that code expanding optimizations have strong and non-intuitive implications on instruction cache design. Three types of code expanding optimizations are studied: instruction placement, function inline expansion, and superscalar optimizations. Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion improves the performance for small cache sizes, but degrades the performance of medium caches. Superscalar optimizations increases the cache size required for a given miss ratio. On the other hand, they also increase the sequentiality of instruction access so that a simple load-forward scheme effectively cancels the negative effects. Overall, it is shown that with load forwarding, the three types of code expanding optimizations jointly improve the performance of small caches and have little effect on large caches.

  10. Variable mixture ratio performance through nitrogen augmentation

    NASA Technical Reports Server (NTRS)

    Beichel, R.; Obrien, C. J.; Bair, E. K.

    1988-01-01

    High/variable mixture ratio O2/H2 candidate engine cycles are examined for earth-to-orbit vehicle application. Engine performance and power balance information are presented for the candidate cycles relative to chamber pressure, bulk density, and mixture ratio. Included in the cycle screening are concepts where a third fluid (liquid nitrogen) is used to achieve a variable mixture ratio over the trajectory from liftoff to earth orbit. The third fluid cycles offer a very low risk, fully reusable, low operation cost alternative to high/variable mixture ratio bipropellant cycles. Variable mixture ratio engines with extendible nozzle are slightly lower performing than a single mixture ratio engine (MR = 7:1) with extendible nozzle. Dual expander engines (MR = 7:1) have slightly better performance than the single mixture ratio engine. Dual fuel dual expander engines offer a 16 percent improvement over the single mixture ratio engine.

  11. Climate Variability and Ponderosa Pine Colonizations in Central Wyoming: Integrating Dendroecology and Dendroclimatology

    NASA Astrophysics Data System (ADS)

    Lesser, M.; Wentzel, C.; Gray, S.; Jackson, S.

    2007-12-01

    Many tree species are predicted to expand into new territory over the coming decades in response to changing climate. By studying tree expansions over the last several centuries we can begin to understand the mechanisms underlying these changes and anticipate their consequences for forest management. Woody-plant demographics and decadal to multidecadal climate variability are often closely linked in semi-arid regions. Integrated tree-ring analysis, combining dendroecology and dendroclimatology to document, respectively, the demographic history of the population and the climatic history of the region, can reveal ecological dynamics in response to climate variability. We studied four small, disjunct populations of Pinus ponderosa in the Bighorn Basin of north-central Wyoming. These populations are located 30 to 100 kilometers from the nearest core populations of ponderosa pine in the western Bighorn Mountains. Packrat midden studies have shown that ponderosa pine colonized the western slopes of the Bighorn Range 1500 years ago, so the disjunct populations in the basin must be younger. All trees (living and dead) at each of the four disjunct populations were mapped, cored, and then aged using tree-ring based techniques. We obtained records of hydroclimatic variability from the Bighorn Basin using four tree-ring series from Pinus flexilis (3 sites) and Pseudotsuga menziesii (1 site). The four disjunct populations were all established within the past 500 years. Initially, the populations grew slowly with low recruitment rates until the early 19th century, when they experienced one or more large recruitment pulses. These pulses coincided with extended wet periods in the climate reconstruction. However, similar wet periods before the 19th Century were not accompanied by recruitment pulses, indicating that other factors (e.g., population density, genetic variability) are also important in colonization and expansion. We are currently obtaining genetic data and carrying out population modeling to differentiate the effects of population dynamics, genetic variability, and climate variability on recruitment and expansion of these populations.

  12. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    NASA Astrophysics Data System (ADS)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  13. Statistical validity of using ratio variables in human kinetics research.

    PubMed

    Liu, Yuanlong; Schutz, Robert W

    2003-09-01

    The purposes of this study were to investigate the validity of the simple ratio and three alternative deflation models and examine how the variation of the numerator and denominator variables affects the reliability of a ratio variable. A simple ratio and three alternative deflation models were fitted to four empirical data sets, and common criteria were applied to determine the best model for deflation. Intraclass correlation was used to examine the component effect on the reliability of a ratio variable. The results indicate that the validity, of a deflation model depends on the statistical characteristics of the particular component variables used, and an optimal deflation model for all ratio variables may not exist. Therefore, it is recommended that different models be fitted to each empirical data set to determine the best deflation model. It was found that the reliability of a simple ratio is affected by the coefficients of variation and the within- and between-trial correlations between the numerator and denominator variables. It was recommended that researchers should compute the reliability of the derived ratio scores and not assume that strong reliabilities in the numerator and denominator measures automatically lead to high reliability in the ratio measures.

  14. Economic performance of water storage capacity expansion for food security

    NASA Astrophysics Data System (ADS)

    Gohar, Abdelaziz A.; Ward, Frank A.; Amer, Saud A.

    2013-03-01

    SummaryContinued climate variability, population growth, and rising food prices present ongoing challenges for achieving food and water security in poor countries that lack adequate water infrastructure. Undeveloped storage infrastructure presents a special challenge in northern Afghanistan, where food security is undermined by highly variable water supplies, inefficient water allocation rules, and a damaged irrigation system due three decades of war and conflict. Little peer-reviewed research to date has analyzed the economic benefits of water storage capacity expansions as a mechanism to sustain food security over long periods of variable climate and growing food demands needed to feed growing populations. This paper develops and applies an integrated water resources management framework that analyzes impacts of storage capacity expansions for sustaining farm income and food security in the face of highly fluctuating water supplies. Findings illustrate that in Afghanistan's Balkh Basin, total farm income and food security from crop irrigation increase, but at a declining rate as water storage capacity increases from zero to an amount equal to six times the basin's long term water supply. Total farm income increases by 21%, 41%, and 42% for small, medium, and large reservoir capacity, respectively, compared to the existing irrigation system unassisted by reservoir storage capacity. Results provide a framework to target water infrastructure investments that improve food security for river basins in the world's dry regions with low existing storage capacity that face ongoing climate variability and increased demands for food security for growing populations.

  15. Synergies between optical and physical variables in intercepting parabolic targets

    PubMed Central

    Gómez, José; López-Moliner, Joan

    2013-01-01

    Interception requires precise estimation of time-to-contact (TTC) information. A long-standing view posits that all relevant information for extracting TTC is available in the angular variables, which result from the projection of distal objects onto the retina. The different timing models rooted in this tradition have consequently relied on combining visual angle and its rate of expansion in different ways with tau being the most well-known solution for TTC. The generalization of these models to timing parabolic trajectories is not straightforward. For example, these different combinations rely on isotropic expansion and usually assume first-order information only, neglecting acceleration. As a consequence no optical formulations have been put forward so far to specify TTC of parabolic targets with enough accuracy. It is only recently that context-dependent physical variables have been shown to play an important role in TTC estimation. Known physical size and gravity can adequately explain observed data of linear and free-falling trajectories, respectively. Yet, a full timing model for specifying parabolic TTC has remained elusive. We here derive two formulations that specify TTC for parabolic ball trajectories. The first specification extends previous models in which known size is combined with thresholding visual angle or its rate of expansion to the case of fly balls. To efficiently use this model, observers need to recover the 3D radial velocity component of the trajectory which conveys the isotropic expansion. The second one uses knowledge of size and gravity combined with ball visual angle and elevation angle. Taking into account the noise due to sensory measurements, we simulate the expected performance of these models in terms of accuracy and precision. While the model that combines expansion information and size knowledge is more efficient during the late trajectory, the second one is shown to be efficient along all the flight. PMID:23720614

  16. Investigation of advanced UQ for CRUD prediction with VIPRE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Michael Scott

    2011-09-01

    This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. It demonstrates the application of 'advanced UQ,' in particular dimension-adaptive p-refinement for polynomial chaos and stochastic collocation. The study calculates statistics for several quantities of interest that are indicators for the formation of CRUD (Chalk River unidentified deposit), which can lead to CIPS (CRUD induced power shift). Stochastic expansion methods are attractive methods for uncertainty quantification due to their fast convergence properties. For smooth functions (i.e., analytic, infinitely-differentiable) in L{sup 2} (i.e., possessing finite variance), exponential convergence rates can be obtained under order refinementmore » for integrated statistical quantities of interest such as mean, variance, and probability. Two stochastic expansion methods are of interest: nonintrusive polynomial chaos expansion (PCE), which computes coefficients for a known basis of multivariate orthogonal polynomials, and stochastic collocation (SC), which forms multivariate interpolation polynomials for known coefficients. Within the DAKOTA project, recent research in stochastic expansion methods has focused on automated polynomial order refinement ('p-refinement') of expansions to support scalability to higher dimensional random input spaces [4, 3]. By preferentially refining only in the most important dimensions of the input space, the applicability of these methods can be extended from O(10{sup 0})-O(10{sup 1}) random variables to O(10{sup 2}) and beyond, depending on the degree of anisotropy (i.e., the extent to which randominput variables have differing degrees of influence on the statistical quantities of interest (QOIs)). Thus, the purpose of this study is to investigate the application of these adaptive stochastic expansion methods to the analysis of CRUD using the VIPRE simulation tools for two different plant models of differing random dimension, anisotropy, and smoothness.« less

  17. Investigations of flowfields found in typical combustor geometries

    NASA Technical Reports Server (NTRS)

    Lilley, D. G.

    1982-01-01

    Experimental and theoretical research undertaken on 2-D axisymmetric geometries under low speed, nonreacting, turbulent, swirling flow conditions is reported. The flow enters the test section and proceeds into a larger chamber (the expansion ratio D/d = 2) via a sudden or gradual expansion (sidewall angle alpha = 90 and 45 degrees). Inlet swirl vanes are adjustable to a variety of vane angles with values of phi = 0, 38, 45, 60 and 70 degrees being emphasized.

  18. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.

    PubMed

    Wagner, Robert; Benz, Stefan; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Leisner, Thomas

    2007-12-20

    We have used the T-matrix method and the discrete dipole approximation to compute the midinfrared extinction cross-sections (4500-800 cm(-1)) of randomly oriented circular ice cylinders for aspect ratios extending up to 10 for oblate and down to 1/6 for prolate particle shapes. Equal-volume sphere diameters ranged from 0.1 to 10 microm for both particle classes. A high degree of particle asphericity provokes a strong distortion of the spectral habitus compared to the extinction spectrum of compactly shaped ice crystals with an aspect ratio around 1. The magnitude and the sign (increase or diminution) of the shape-related changes in both the absorption and the scattering cross-sections crucially depend on the particle size and the values for the real and imaginary part of the complex refractive index. When increasing the particle asphericity for a given equal-volume sphere diameter, the values for the overall extinction cross-sections may change in opposite directions for different parts of the spectrum. We have applied our calculations to the analysis of recent expansion cooling experiments on the formation of cirrus clouds, performed in the large coolable aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe at a temperature of 210 K. Depending on the nature of the seed particles and the temperature and relative humidity characteristics during the expansion, ice crystals of various shapes and aspect ratios could be produced. For a particular expansion experiment, using Illite mineral dust particles coated with a layer of secondary organic matter as seed aerosol, we have clearly detected the spectral signatures characteristic of strongly aspherical ice crystal habits in the recorded infrared extinction spectra. We demonstrate that the number size distributions and total number concentrations of the ice particles that were generated in this expansion run can only be accurately derived from the recorded infrared spectra when employing aspect ratios as high as 10 in the retrieval approach. Remarkably, the measured spectra could also be accurately fitted when employing an aspect ratio of 1 in the retrieval. The so-deduced ice particle number concentrations, however, exceeded the true values, determined with an optical particle counter, by more than 1 order of magnitude. Thus, the shape-induced spectral changes between the extinction spectra of platelike ice crystals of aspect ratio 10 and compactly shaped particles of aspect ratio 1 can be efficiently balanced by deforming the true number size distribution of the ice cloud. As a result of this severe size/shape ambiguity in the spectral analysis, we consider it indispensable to cross-check the infrared retrieval results of wavelength-sized ice particles with independent reference measurements of either the number size distribution or the particle morphology.

  19. Anthropogenic host plant expansion leads a nettle-feeding butterfly out of the forest: consequences for larval survival and developmental plasticity in adult morphology

    PubMed Central

    Merckx, Thomas; Serruys, Mélanie; Van Dyck, Hans

    2015-01-01

    Recent anthropogenic eutrophication has meant that host plants of nettle-feeding insects became quasi-omnipresent in fertile regions of Western Europe. However, host plant resource quality – in terms of microclimate and nutritional value – may vary considerably between the ‘original’ forest habitat and ‘recent’ agricultural habitat. Here, we compared development in both environmental settings using a split-brood design, so as to explore to what extent larval survival and adult morphology in the nettle-feeding butterfly Aglais urticae are influenced by the anthropogenic environment. Nettles along field margins had higher C/N ratios and provided warmer microclimates to larvae. Larvae developed 20% faster and tended to improve their survival rates, on the agricultural land compared to woodland. Our split-brood approach indicated plastic responses within families, but also family effects in the phenotypic responses. Adult males and females had darker wing pigmentation in the drier and warmer agricultural environment, which contrasts with the thermal melanism hypothesis. Developmental plasticity in response to this microclimatically different and more variable habitat was associated with a broader phenotypic parameter space for the species. Both habitat expansion and developmental plasticity are likely contributors to the ecological and evolutionary success of these nettle-feeding insects in anthropogenic environments under high nitrogen load. PMID:25926881

  20. Five-hole pitot probe time-mean velocity measurements in confined swirling flows

    NASA Technical Reports Server (NTRS)

    Yoon, H. K.; Lilley, D. G.

    1983-01-01

    Nonswirling and swirling nonreacting flows in an axisymmetric test section with an expansion ratio D/d = 2, which may be equipped with contraction nozzles of area ratios 2 and 4, are investigated. The effects of a number of geometric parameters on the flow-field are investigated, among them side-wall expansion angles of 90 and 45 deg, swirl vane angles of 0, 38, 45, 60, and 70 deg, and contraction nozzle locations L/D = 1 and 2 (if present). Data are acquired by means of a five-hole pitot probe enabling three time-mean velocity components in the axial, radial, and azimuthal directions to be measured. The velocities are extensively plotted and artistic impressions of recirculation zones are set forth. The presence of a swirler is found to shorten the corner recirculation zone and to generate a central recirculation zone followed by a precessing vortex core. A gradual inlet expansion has the effect of encouraging the flow to remain close to the sidewall and shortening the extent of the corner recirculation zone in all cases investigated.

  1. Uninsured but Eligible Children

    PubMed Central

    DeVoe, Jennifer E.; Krois, Lisa; Edlund, Christine; Smith, Jeanene; Carlson, Nichole E.

    2016-01-01

    Background Despite expansions in public health insurance programs, millions of US children lack coverage. Nearly two-thirds of Oregon’s uninsured children seem to be eligible for public insurance. Objectives We sought to identify uninsured but eligible children and to examine how parental coverage affects children’s insurance status. Methods We collected primary data from families enrolled in Oregon’s food stamp program, which has similar eligibility requirements to public health insurance in Oregon. In this cross-sectional, multivariable analysis, results from 2861 surveys were weighted back to a population of 84,087 with nonresponse adjustment. Key predictor variables were parental insurance status and type of insurance; the outcome variable was children’s insurance status. Results Nearly 11% of children, presumed eligible for public insurance, were uninsured. Uninsurance among children was associated with being Hispanic, having an employed parent, and higher household earnings (133–185% of the federal poverty level). Children with an uninsured parent were more likely to be uninsured, compared with those who had insured parents (adjusted odds ratio 14.21, 95% confidence interval 9.23–20.34). More surprisingly, there was a higher rate of uninsured children among privately-insured parents, compared with parents covered by public insurance (adjusted odds ratio 4.39, 95% confidence interval 2.00–9.66). Conclusions Low-income Oregon parents at the higher end of the public insurance income threshold and those with private insurance were having the most difficulty keeping their children insured. These findings suggest that when parents succeed in pulling themselves out of poverty and gaining employment with private health insurance coverage, children may be getting left behind. PMID:18162849

  2. Space shuttle SRM plume expansion sensitivity analysis. [flow characteristics of exhaust gases from solid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Smith, S. D.; Tevepaugh, J. A.; Penny, M. M.

    1975-01-01

    The exhaust plumes of the space shuttle solid rocket motors can have a significant effect on the base pressure and base drag of the shuttle vehicle. A parametric analysis was conducted to assess the sensitivity of the initial plume expansion angle of analytical solid rocket motor flow fields to various analytical input parameters and operating conditions. The results of the analysis are presented and conclusions reached regarding the sensitivity of the initial plume expansion angle to each parameter investigated. Operating conditions parametrically varied were chamber pressure, nozzle inlet angle, nozzle throat radius of curvature ratio and propellant particle loading. Empirical particle parameters investigated were mean size, local drag coefficient and local heat transfer coefficient. Sensitivity of the initial plume expansion angle to gas thermochemistry model and local drag coefficient model assumptions were determined.

  3. Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma

    NASA Astrophysics Data System (ADS)

    Yang, LIU; Yue, TONG; Ying, WANG; Dan, ZHANG; Suyu, LI; Yuanfei, JIANG; Anmin, CHEN; Mingxing, JIN

    2017-12-01

    In this paper, we investigated the influence of sample temperature on the expansion dynamics and the optical emission spectroscopy of laser-induced plasma, and Ge was selected as the test sample. The target was heated from room temperature (22 °C) to 300 °C, and excited in atmospheric environment by using a Q-Switched Nd:YAG pulse laser with the wavelength of 1064 nm. To study the plasma expansion dynamics, we observed the plasma plume at different laser energies (5.0, 7.4 and 9.4 mJ) and different sample temperatures by using time-resolved image. We found that the heated target temperature could accelerate the expansion of plasma plume. Moreover, we also measured the effect of target temperature on the optical emission spectroscopy and signal-to-noise ratio.

  4. Perceptual changes and drivers of liking in high protein extruded snacks.

    PubMed

    Kreger, Joseph W; Lee, Youngsoo; Lee, Soo-Yeun

    2012-04-01

    Increasing the amount of protein in snack foods can add to their satiating ability, which aligns with many health-based trends currently seen in the food industry. Understanding the effect of adding high levels of protein in a food matrix is essential for product development. The objective for this research was to determine the effects of varying protein type and level on the sensory-related aspects of a model extruded snack food. Independent variables in the design of the snacks were the level of total protein and the protein type in the formulation. The level of protein ranged from 28% to 43% (w/w) in 5% increments. The protein type varied in the ratio of whey to soy protein ranging from 0: 100 to 100: 0, in 25% increments. Descriptive analysis was conducted on the samples to profile their sensory characteristics. Protein type was found to be the predominant variable in differentiating the sensory characteristics of the samples. Soy protein imparted nutty, grainy aromas-by-mouth, and increased expansion during processing, resulting in a lighter, crispier texture. Whey protein imparted dairy related aromas-by-mouth and inhibited expansion during processing, resulting in a more dense, crunchy texture. Separately, 100 consumers rated their acceptance of the samples using the 9-point hedonic scale. It was found that protein type was also the predominant variable in affecting acceptance, with some clusters of consumers preferring samples comprised of soy protein, and others preferring samples with whey. Food product developers can use these findings to predict changes in a similar food product by varying protein level or protein type. This work shows how the perceivable appearance, aroma, and texture characteristics of puffed snack foods change when adding protein or changing the protein type. The type of protein incorporated was shown to have major effects on the characteristics of the snacks, partially because of their impact on how much the snacks puffed during processing. The findings from this research can help develop acceptable products that incorporate high levels of protein to be aligned with current health trends in the market. © 2012 Institute of Food Technologists®

  5. Refugee Resettlement Patterns and State-Level Health Care Insurance Access in the United States

    PubMed Central

    Venkatesh, Arjun Krishna

    2016-01-01

    We sought to evaluate the relationship between state-level implementation of the Patient Protection and Affordable Care Act (ACA) and resettlement patterns among refugees. We linked federal refugee resettlement data to ACA expansion data and found that refugee resettlement rates are not significantly different according to state-level insurance expansion or cost. Forty percent of refugees have resettled to states without Medicaid expansion. The wide state-level variability in implementation of the ACA should be considered by federal agencies seeking to optimize access to health insurance coverage among refugees who have resettled to the United States. PMID:26890186

  6. Thermal expansion method for lining tantalum alloy tubing with tungsten

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.

    1973-01-01

    A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.

  7. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  8. Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng Guanghong; Li Qin; Zhai Jianping

    2007-06-15

    Self-cementitious properties of fly ash from circulating fluidized bed combustion boiler co-firing coal and high-sulphur petroleum coke (CPFA) were investigated. CPFA was self-cementitious which was affected by its fineness and chemical compositions, especially the contents of SO{sub 3} and free lime (f-CaO). Higher contents of SO{sub 3} and f-CaO were beneficial to self-cementitious strength; the self-cementitious strength increases with a decrease of its 45 {mu}m sieve residue. The expansive ratio of CPFA hardened paste was high because of generation of ettringite (AFt), which was influenced by its water to binder ratio (W/A), curing style and grinding of the ash. Themore » paste cured in water had the highest expansive ratio, and grinding of CPFA was beneficial to its volume stability. The hydration products of CPFA detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM) were portlandite, gypsum, AFt and hydrated calcium silicate (C-S-H)« less

  9. Modal resonant dynamics of cables with a flexible support: A modulated diffraction problem

    NASA Astrophysics Data System (ADS)

    Guo, Tieding; Kang, Houjun; Wang, Lianhua; Liu, Qijian; Zhao, Yueyu

    2018-06-01

    Modal resonant dynamics of cables with a flexible support is defined as a modulated (wave) diffraction problem, and investigated by asymptotic expansions of the cable-support coupled system. The support-cable mass ratio, which is usually very large, turns out to be the key parameter for characterizing cable-support dynamic interactions. By treating the mass ratio's inverse as a small perturbation parameter and scaling the cable tension properly, both cable's modal resonant dynamics and the flexible support dynamics are asymptotically reduced by using multiple scale expansions, leading finally to a reduced cable-support coupled model (i.e., on a slow time scale). After numerical validations of the reduced coupled model, cable-support coupled responses and the flexible support induced coupling effects on the cable, are both fully investigated, based upon the reduced model. More explicitly, the dynamic effects on the cable's nonlinear frequency and force responses, caused by the support-cable mass ratio, the resonant detuning parameter and the support damping, are carefully evaluated.

  10. Health costs of economic expansion: the case of manufacturing accident injuries.

    PubMed Central

    Catalano, R

    1979-01-01

    The hypothesized relationship between economic expansion and accident injuries is tested using archival economic and accident data from the Los Angeles-Long Beach, California metropolitan area. The association is measured using cross-correlation techniques after variation shared with a comparison metropolitan area (Anaheim-Santa Ana-Garden Grove) is removed. Two tests of association are conducted. The first uses the raw accident rate of the comparison metropolitan area as a control variable while the second adjusts the control variable to reflect shared industrial sectors. Findings suggest that the incidence of disabling accidents increases in the month before and during the month that the manufacturing work force expands. The impact appears strongest during the month that new workers are added. PMID:453412

  11. Some elements of a theory of multidimensional complex variables. I - General theory. II - Expansions of analytic functions and application to fluid flows

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1989-01-01

    The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.

  12. Dynamic flashing yellow arrow (FYA): a study on variable left-turn mode operational and safety impacts phase II - model expansion and testing.

    DOT National Transportation Integrated Search

    2016-06-01

    The flashing yellow arrow (FYA) signal display creates an opportunity to enhance the left-turn phase with a : variable mode that can be changed on demand. The previously developed decision support system (DSS) in : phase I facilitated the selection o...

  13. Anisotropic Bianchi-V dark energy model under the new perspective of accelerated expansion of the universe in Brans-Dicke theory of gravitation

    NASA Astrophysics Data System (ADS)

    Jaiswal, Rekha; Zia, Rashid

    2018-04-01

    In this paper, we have proposed a cosmological model, which is consistent with the new findings of `The Supernova Cosmology project' headed by Saul Perlmutter, and the `High-Z Supernova Search team', headed by Brian Schimdt. According to these new findings, the universe is undergoing an expansion with an increasing rate, in contrast to the earlier belief that the rate of expansion is constant or the expansion is slowing down. We have considered spatially homogeneous and anisotropic Bianchi-V dark energy model in Brans-Dicke theory of gravitation. We have taken the scale factor a(t)=k t^α e^{β t} , which results into variable deceleration parameter (DP). The graph of DP shows a transition from positive to negative, which shows that universe has passed through the past decelerated expansion to the current accelerated expansion phase. In this context, we have also calculated and plotted various parameters and observed that these are in good agreement with physical and kinematic properties of the universe and are also consistent with recent observations.

  14. Comparisons of two-dimensional shock-expansion theory with experimental aerodynamic data for delta-planform wings at high supersonic speeds

    NASA Technical Reports Server (NTRS)

    Jernell, L. S.

    1974-01-01

    An investigation has been conducted to explore the potential for optimizing airfoil shape at high supersonic speeds by utilizing the two-dimensional shock-expansion method. Theoretical and experimental force and moment coefficients are compared for four delta-planform semispan wings having a leading-edge sweep angle of 65 deg and incorporating modified diamond airfoils with a thickness-chord ratio of 0.06. The wings differ only in airfoil maximum-thickness position and camber. The experimental data are obtained at Mach numbers of 3.95 and 4.63 and at a Reynolds number of 9.84 million per meter. A relatively simple method is developed for predicting, in terms of lift-drag ratio, the optimum modified diamond airfoil at high supersonic and hypersonic speeds.

  15. Turbulence intensity and spatial integral scale during compression and expansion strokes in a four-cycle reciprocating engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikegami, M.; Shioji, M.; Nishimoto, K.

    1987-01-01

    A laser homodyne technique is applied to measure turbulence intensities and spatial scales during compression and expansion strokes in a non-fired engine. By using this technique, relative fluid motion in a turbulent flow is detected directly without cyclic variation biases caused by fluctuation in the main flow. Experiments are performed at different engine speeds, compression ratios, and induction swirl ratios. In no-swirl cases the turbulence field near the compression end is almost uniform, whereas in swirled cases both the turbulence intensity and the scale near the cylinder axis are higher than those in the periphery. In addition, based on themore » measured results, the k-epsilon two-equation turbulence model under the influence of compression is discussed.« less

  16. Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J.; Frew, Bethany A.; Mai, Trieu T.

    Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision makers. With the recent surge in variable renewable energy (VRE) generators - primarily wind and solar photovoltaics - the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. To assess current best practices, share methods and data, and identify future research needs for VRE representation in capacity expansion models, four capacity expansion modeling teams from the Electric Powermore » Research Institute, the U.S. Energy Information Administration, the U.S. Environmental Protection Agency, and the National Renewable Energy Laboratory conducted two workshops of VRE modeling for national-scale capacity expansion models. The workshops covered a wide range of VRE topics, including transmission and VRE resource data, VRE capacity value, dispatch and operational modeling, distributed generation, and temporal and spatial resolution. The objectives of the workshops were both to better understand these topics and to improve the representation of VRE across the suite of models. Given these goals, each team incorporated model updates and performed additional analyses between the first and second workshops. This report summarizes the analyses and model 'experiments' that were conducted as part of these workshops as well as the various methods for treating VRE among the four modeling teams. The report also reviews the findings and learnings from the two workshops. We emphasize the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making.« less

  17. A canonical state-space representation for SISO systems using multipoint Jordan CFE. [Continued-Fraction Expansion

    NASA Technical Reports Server (NTRS)

    Hwang, Chyi; Guo, Tong-Yi; Shieh, Leang-San

    1991-01-01

    A canonical state-space realization based on the multipoint Jordan continued-fraction expansion (CFE) is presented for single-input-single-output (SISO) systems. The similarity transformation matrix which relates the new canonical form to the phase-variable canonical form is also derived. The presented canonical state-space representation is particularly attractive for the application of SISO system theory in which a reduced-dimensional time-domain model is necessary.

  18. Medicaid Participation among Liver Transplant Candidates after the Affordable Care Act Medicaid Expansion.

    PubMed

    Tumin, Dmitry; Beal, Eliza W; Mumtaz, Khalid; Hayes, Don; Tobias, Joseph D; Pawlik, Timothy M; Washburn, W Kenneth; Black, Sylvester M

    2017-08-01

    The 2014 Medicaid expansion in participating states increased insurance coverage among people with chronic health conditions, but its implications for access to surgical care remain unclear. We investigated how Medicaid expansion influenced the insurance status of candidates for liver transplantation (LT) and transplant center payor mix. Data on LT candidates aged 18 to 64 years, in 2012 to 2013 (pre-expansion) and 2014 to 2015 (post-expansion), were obtained from the United Network for Organ Sharing registry. Change between the 2 periods in the percent of LT candidates using Medicaid was compared between expansion and nonexpansion states. Multivariable logistic regression was used to determine how Medicaid expansion influenced individual LT candidates' likelihood of using Medicaid insurance. The study included 33,017 LT candidates, of whom 29,666 had complete data for multivariable analysis. Medicaid enrollment increased by 4% after Medicaid expansion in participating states. One-quarter of the transplant centers in these states experienced ≥10% increase in the proportion of LT candidates using Medicaid insurance. Multivariable analysis confirmed that Medicaid expansion was associated with increased odds of LT candidates using Medicaid insurance (odds ratio 1.49; 95% CI 1.34, 1.66; p < 0.001). However, the absolute number and demographic characteristics of patients listed for LT did not change in Medicaid expansion states during the post-expansion period. Candidates for LT became more likely to use Medicaid after the 2014 Medicaid expansion policy came into effect. Enactment of this policy did not appear to increase access to LT or address socioeconomic and demographic disparities in access to the LT wait list. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Orbit Transfer Rocket Engine Technology Program, Advanced Engine Study Task D.6

    DTIC Science & Technology

    1992-02-28

    l!J~iliiJl 1. Report No. 2. Government Accession No. 3 . Recipient’s Catalog No. NASA 187215 4. Title and Subtitle 5. Report Date ORBIT TRANSFER ROCKET...Engine Study, three primary subtasks were accomplished: 1) Design and Parametric Data, 2) Engine Requirement Variation Studies, and 3 ) Vehicle Study...Mixture Ratio Parametrics 18 3 . Thrust Parametrics Off-Design Mixture Ratio Scans 22 4. Expansion Area Ratio Parametrics 24 5. OTV 20 klbf Engine Off

  20. Lalinet status - station expansion and lidar ratio systematic measurements

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Lopes, Fabio; Moreira, Gregori Arruda; da Silva, Jonatan; Ristori, Pablo; Quel, Eduardo; Otero, Lidia; Pallota, Juan Vicente; Herrera, Milagros; Salvador, Jacobo; Bali, Juan Lucas; Wolfram, Eliam; Etala, Paula; Barbero, Albane; Forno, Ricardo; Sanchez, Maria Fernanda; Barbosa, Henrique; Gouveia, Diego; Santos, Amanda Vieira; Hoelzemann, Judith; Fernandez, Jose Henrique; Guedes, Anderson; Silva, Antonieta; Barja, Boris; Zamorano, Felix; Legue, Raul Perez; Bastidas, Alvaro; Zabala, Maribel Vellejo; Velez, Juan; Nisperuza, Daniel; Montilla, Elena; Arredondo, Rene Estevam; Marrero, Juan Carlos Antuña; Vega, Alberth Rodriguez; Alados-Arboledas, Lucas; Guerrero-Rascado, Juan Luis; Sugimoto, Nobuo; Yoshitaka, Jin

    2018-04-01

    LALINET is expanding regionally to guarantee spatial coverage over South and Central Americas. One of the network goals is to obtain a set of regional representative aerosol optical properties such as particle backscatter, extinction and lidar ratio. Given the North-South extension and influence of distinct airmass circulation patterns it is paramount to distinguish these optical parameters in order to gain better perfomance in radiation transfer models. A set of lidar ratio data is presented.

  1. The role of Coulomb collisions in limiting differential flow and temperature differences in the solar wind

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1976-01-01

    Data obtained by OGO 5 are used to confirm IMP 6 observations of an inverse dependence of the helium-to-hydrogen temperature ratio in the solar wind on the ratio of solar-wind expansion time to the Coulomb-collision equipartition time. The analysis is then extended to determine the relation of the difference between the hydrogen and helium bulk velocities (the differential flow vector) with the ratio between the solar-wind expansion time and the time required for Coulomb collisions to slow down a beam of ions passing through a plasma. It is found that the magnitude of the differential flow vector varies inversely with the time ratio when the latter is small and approaches zero when it is large. These results are shown to suggest a model of continuous preferential heating and acceleration of helium (or cooling and deceleration of hydrogen), which is cancelled or limited by Coulomb collisions by the time the plasma has reached 1 AU. Since the average dependence of the differential flow vector on the time ratio cannot explain all the systematic variations of the vector observed in corotating high-velocity streams, it is concluded that additional helium acceleration probably occurs on the leading edge of such streams.

  2. Fuels for high-compression engines

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1926-01-01

    From theoretical considerations one would expect an increase in power and thermal efficiency to result from increasing the compression ratio of an internal combustion engine. In reality it is upon the expansion ratio that the power and thermal efficiency depend, but since in conventional engines this is equal to the compression ratio, it is generally understood that a change in one ratio is accompanied by an equal change in the other. Tests over a wide range of compression ratios (extending to ratios as high as 14.1) have shown that ordinarily an increase in power and thermal efficiency is obtained as expected provided serious detonation or preignition does not result from the increase in ratio.

  3. Elliptic nozzle aspect ratio effect on controlled jet propagation

    NASA Astrophysics Data System (ADS)

    Aravindh Kumar, S. M.; Rathakrishnan, Ethirajan

    2017-04-01

    The present study deals with the control of a Mach 2 elliptic jet from a convergent-divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121-33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle.

  4. A burst compression and expansion technique for variable-rate users in satellite-switched TDMA networks

    NASA Technical Reports Server (NTRS)

    Budinger, James M.

    1990-01-01

    A burst compression and expansion technique is described for asynchronously interconnecting variable-data-rate users with cost-efficient ground terminals in a satellite-switched, time-division-multiple-access (SS/TDMA) network. Compression and expansion buffers in each ground terminal convert between lower rate, asynchronous, continuous-user data streams and higher-rate TDMA bursts synchronized with the satellite-switched timing. The technique described uses a first-in, first-out (FIFO) memory approach which enables the use of inexpensive clock sources by both the users and the ground terminals and obviates the need for elaborate user clock synchronization processes. A continous range of data rates from kilobits per second to that approaching the modulator burst rate (hundreds of megabits per second) can be accommodated. The technique was developed for use in the NASA Lewis Research Center System Integration, Test, and Evaluation (SITE) facility. Some key features of the technique have also been implemented in the gound terminals developed at NASA Lewis for use in on-orbit evaluation of the Advanced Communications Technology Satellite (ACTS) high burst rate (HBR) system.

  5. Phenomenological model of maize starches expansion by extrusion

    NASA Astrophysics Data System (ADS)

    Kristiawan, M.; Della Valle, G.; Kansou, K.; Ndiaye, A.; Vergnes, B.

    2016-10-01

    During extrusion of starchy products, the molten material is forced through a die so that the sudden abrupt pressure drop causes part of the water to vaporize giving an expanded, cellular structure. The objective of this work was to elaborate a phenomenological model of expansion and couple it with Ludovic® mechanistic model of twin screw extrusion process. From experimental results that cover a wide range of thermomechanical conditions, a concept map of influence relationships between input and output variables was built. It took into account the phenomena of bubbles nucleation, growth, coalescence, shrinkage and setting, in a viscoelastic medium. The input variables were the moisture content MC, melt temperature T, specific mechanical energy SME, shear viscosity η at the die exit, computed by Ludovic®, and the melt storage moduli E'(at T > Tg). The outputs of the model were the macrostructure (volumetric expansion index VEI, anisotropy) and cellular structure (fineness F) of solid foams. Then a general model was established: VEI = α (η/η0)n in which α and n depend on T, MC, SME and E' and the link between anisotropy and fineness was established.

  6. Generating variable and random schedules of reinforcement using Microsoft Excel macros.

    PubMed

    Bancroft, Stacie L; Bourret, Jason C

    2008-01-01

    Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time. Generating schedule values for variable and random reinforcement schedules can be difficult. The present article describes the steps necessary to write macros in Microsoft Excel that will generate variable-ratio, variable-interval, variable-time, random-ratio, random-interval, and random-time reinforcement schedule values.

  7. Long time scale hard X-ray variability in Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and continuum, severely challenging models in which the line tracks continuum variations modified only by a light-travel time delay. This experiment yields further support for spectral softening as continuum flux increases.

  8. [Effect of investment composition ratio for pure titanium crown and bridge on some mechanical properties of mould].

    PubMed

    Yang, Se-fei; Wang, You-xu; Guo, Tian-wen; Liu, Hong-chen

    2011-11-01

    To determine the optimal composition of a self-developing investment material by measuring physical and mechanical properties of mould. L(9) (3(4)) orthogonal design was adopted. One hundred and fifty specimens with the size of 80 mm × 20 mm × 20 mm were prepared to measure the atmospheric temperature bending strength, high temperature bending strength and residual bending strength. Nine specimens with the size of 5 mm diameter 25 mm heigh were prepared to survey the thermal expansion curve from ambient temperature to 1150°C. Strengths were greatly affected by fine powder proportion in refractory and water/powder ratio. When the content of fine powder was 35% and water/powder ratio was 1:7.5, adequate atmospheric temperature strength and high temperature strength could be achieved. Moreover, the residual strength was moderate. The thermal extension curves of specimens in experiment group were almost similar. And the average linear expansion coefficient was (4 ∼ 5) × 10(-6)/°C. The three kinds of bending strength of self-developing investment material are compared with commercialized investment material for titanium casting when water/powder ratio and the content of fine powder are carefully controlled.

  9. Optimum structure of Whipple shield against hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Lee, M.

    2014-05-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  10. A comparison of physiological indicators of sublethal cadmium stress in wetland plants

    USGS Publications Warehouse

    Mendelssohn, I.A.; McKee, K.L.; Kong, T.

    2001-01-01

    Physiological indices, including photosynthesis, chlorophyll fluorescence, adenylate energy charge (AEC) ratio, and leaf reflectance, were determined for Typha domingensis and Spartina alterniflora in response to increasing concentrations of Cd and compared with the growth responses of these species. Leaf expansion, the live/total ratio of plant aboveground biomass, and the aboveground regrowth rate after the initial harvests were significantly reduced with increasing Cd concentration in the growth medium. Of the four physiological responses measured, only photosynthesis and AEC responded to the Cd treatment before damage was visually apparent. Also, these indices were significantly correlated with leaf expansion rate and live/total ratio in most instances. Except at the end of the experiment, when the most stressed plants began to die, the Fv/Fm ratio was not significantly affected by the Cd treatment. The leaf spectral reflectance parameters showed no significant change during the entire treatment period. The significant correlation between the stress indicators and plant growth supported the findings that photosynthesis and AEC were the most responsive of the indicators tested, however, further research investigating other chlorophyll fluorescence and leaf reflectance parameters may demonstrate as well the value of these indicators in quantifying sublethal stress. ?? 2001 Elsevier Science B.V. All rights reserved.

  11. Expansive soil stabilization with coir waste and lime for flexible pavement subgrade

    NASA Astrophysics Data System (ADS)

    Narendra Goud, G.; Hyma, A.; Shiva Chandra, V.; Sandhya Rani, R.

    2018-03-01

    Expansive soil properties can be improved by various methods to make it suitable for construction of flexible pavement. The coir pith is the by-product (bio-waste) generated from coir industry during extraction of coir fiber from coconut husk. Openly disposed coir pith can make the surrounding areas unhygienic. This bio-waste can be one of the potential materials to stabilize the expansive soils. In the present study coir pith and lime are used as stabilizers. Different combinations of coir pith contents (1%, 2% and 3%) and lime contents (2%, 3% and 4%)are used to study the behavior of expansive soil. Unconfined compressive strength (UCS) of unstabilized and stabilized soils was determined. Optimum content of coir pith and lime are determined based on UCS of the soil. California bearing ratio of soil determined at optimum contents of coir pith and lime. Flexible pavement layer compositions for two levels of traffic using stabilized soil subgrade.

  12. Transverse Expansion and Stability after Segmental Le Fort I Osteotomy versus Surgically Assisted Rapid Maxillary Expansion: a Systematic Review

    PubMed Central

    Blæhr, Tue Lindberg

    2016-01-01

    ABSTRACT Objectives The objective of the present systematic review was to test the hypothesis of no difference in transverse skeletal and dental arch expansion and relapse after segmental Le Fort I osteotomy versus surgically assisted rapid maxillary expansion. Material and Methods A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted by including human studies published in English from January 1, 2000 to June 1, 2016. Results The search provided 130 titles and four studies fulfilled the inclusion criteria. All the included studies were characterized by high risk of bias and meta-analysis was not possible due to considerable variation. Both treatment modalities significantly increase the transverse maxillary skeletal and dental arch width. The transverse dental arch expansion and relapse seems to be substantial higher with tooth-borne surgically assisted rapid maxillary expansion compared to segmental Le Fort I osteotomy. The ratio of dental to skeletal relapse was significantly higher in the posterior maxilla with tooth-borne surgically assisted rapid maxillary expansion. Moreover, a parallel opening without segment tilting was observed after segmental Le Fort I osteotomy. Conclusions Maxillary transverse deficiency in adults can be treated successfully with both treatment modalities, although surgically assisted rapid maxillary expansion seems more effective when large transverse maxillary skeletal and dental arch expansion is required. However, considering the methodological limitations of the included studies, long-term randomized studies assessing transverse skeletal and dental expansion and relapse with the two treatment modalities are needed before definite conclusions can be provided. PMID:28154745

  13. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.

    PubMed

    Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S

    2014-12-01

    Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. A Combined Experimental and Numerical Technique to Estimate Interfacial Bond Strength in MMC-Encapsulated Ceramic Systems

    DTIC Science & Technology

    2013-03-01

    with density, Young’s modulus, coefficient of thermal expansion , and Poisson’s ratio, of 3.2 cm 3 , 449 GPa, 4.0 × 10 –6 o C –1 , and 0.16...considers the effect of hydrostatic pressure (confinement) on the strength of ceramics and was implemented using a user subroutine in ABAQUS . The...Due to the high temperature of the encapsulation casting process and the large differential in coefficients of thermal expansion (CTE) between the MMC

  15. Shoot growth and heterophylly in ginko biloba

    Treesearch

    William B. Critchfield

    1970-01-01

    Ginkgo biloba resembles other woody plants with long and short shoots in having variable leaves, and this variability in shape and other characteristics is closely related to the specialization of the shoots. The unlobed or bilobed early leaves of short shoots are preformed in the winter bud, and their nearly synchronous expansion in the spring is not accompanied by...

  16. Using Variable Temperature Powder X-Ray Diffraction to Determine the Thermal Expansion Coefficient of Solid MgO

    ERIC Educational Resources Information Center

    Corsepius, Nicholas C.; DeVore, Thomas C.; Reisner, Barbara A.; Warnaar, Deborah L.

    2007-01-01

    A laboratory exercise was developed by using variable temperature powder X-ray diffraction (XRD) to determine [alpha] for MgO (periclase)and was tested in the Applied Physical Chemistry and Materials Characterization Laboratories at James Madison University. The experiment which was originally designed to provide undergraduate students with a…

  17. CLONAL EVOLUTION IN CANCER

    PubMed Central

    Greaves, Mel; Maley, Carlo C.

    2012-01-01

    Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex with highly variable patterns of genetic diversity and resultant clonal architecture. Therapeutic intervention may decimate cancer clones, and erode their habitats, but inadvertently provides potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer lies at the heart of therapeutic failure but perhaps also holds the key to more effective control. PMID:22258609

  18. Boolean Reasoning and Informed Search in the Minimization of Logic Circuits

    DTIC Science & Technology

    1992-03-01

    motivation of this project as well as a definition of the problem. The scope of the effort was presented, as well as the assumptions found to be...in the resulting formula than the expansion-based product operation. The primary motive for using the expansion-based product versus a cross-product...eliminant is formed is the least-binate-variable heuristic described in Chapter 2. The motivation for this heuristic was illustrated in Example 3.3. The

  19. Native Americans, regional drought and tree Island evolution in the Florida Everglades

    USGS Publications Warehouse

    Bernhardt, C.

    2011-01-01

    This study uses palynologic data to determine the effects of regional climate variability and human activity on the formation and development of tree islands during the last ~4000 years. Although prolonged periods of aridity have been invoked as one mechanism for their formation, Native American land use has also been hypothesized as a driver of tree island development. Using pollen assemblages from head and near tail sediments collected on two tree islands and documented archeological data, the relative roles of Native Americans, climate variability, and recent water-management practices in forming and structuring Everglades tree islands are examined. The timing of changes recorded in the pollen record indicates that tree islands developed from sawgrass marshes ~3800 cal. yr BP, prior to human occupation. Major tree island expansion, recorded near tail sediments, occurred ~1000 years after initial tree island formation. Comparison of the timing of pollen assemblages with other proxy records indicates that tree island expansion is related to regional and global aridity correlated with southward migration of the Intertropical Convergence Zone. Local fire associated with droughts may also have influenced tree island expansion. This work suggests that Native American occupation did not significantly influence tree island formation and that the most important factors governing tree island expansion are extreme hydrologic events due to droughts and intense twentieth century water management.

  20. Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties

    NASA Astrophysics Data System (ADS)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing; Walker, Paul D.

    2017-02-01

    This paper proposes an uncertain modelling and computational method to analyze dynamic responses of rigid-flexible multibody systems (or mechanisms) with random geometry and material properties. Firstly, the deterministic model for the rigid-flexible multibody system is built with the absolute node coordinate formula (ANCF), in which the flexible parts are modeled by using ANCF elements, while the rigid parts are described by ANCF reference nodes (ANCF-RNs). Secondly, uncertainty for the geometry of rigid parts is expressed as uniform random variables, while the uncertainty for the material properties of flexible parts is modeled as a continuous random field, which is further discretized to Gaussian random variables using a series expansion method. Finally, a non-intrusive numerical method is developed to solve the dynamic equations of systems involving both types of random variables, which systematically integrates the deterministic generalized-α solver with Latin Hypercube sampling (LHS) and Polynomial Chaos (PC) expansion. The benchmark slider-crank mechanism is used as a numerical example to demonstrate the characteristics of the proposed method.

  1. Generalization of multifractal theory within quantum calculus

    NASA Astrophysics Data System (ADS)

    Olemskoi, A.; Shuda, I.; Borisyuk, V.

    2010-03-01

    On the basis of the deformed series in quantum calculus, we generalize the partition function and the mass exponent of a multifractal, as well as the average of a random variable distributed over a self-similar set. For the partition function, such expansion is shown to be determined by binomial-type combinations of the Tsallis entropies related to manifold deformations, while the mass exponent expansion generalizes the known relation τq=Dq(q-1). We find the equation for the set of averages related to ordinary, escort, and generalized probabilities in terms of the deformed expansion as well. Multifractals related to the Cantor binomial set, exchange currency series, and porous-surface condensates are considered as examples.

  2. Heat transfer of phase-change materials in two-dimensional cylindrical coordinates

    NASA Technical Reports Server (NTRS)

    Labdon, M. B.; Guceri, S. I.

    1981-01-01

    Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.

  3. Instability analysis of expansion-free sphere in f(𝒢) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Ikram, Ayesha

    The aim of this paper is to study the dynamical instability of expansion-free spherically symmetric anisotropic fluid in the framework of f(𝒢) gravity. We apply perturbation scheme of the first-order to the metric functions as well as matter variables and construct modified field equations for both static and perturbed configurations using power-law f(𝒢) model. To discuss the instability dynamics, we use the contracted Bianchi identities to formulate the dynamical equations in both Newtonian and post-Newtonian regimes. It is found that the range of instability is independent of adiabatic index for expansion-free fluid but depends on anisotropic pressures, energy density and Gauss-Bonnet (GB) terms.

  4. Fock expansion of multimode pure Gaussian states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cariolaro, Gianfranco; Pierobon, Gianfranco, E-mail: gianfranco.pierobon@unipd.it

    2015-12-15

    The Fock expansion of multimode pure Gaussian states is derived starting from their representation as displaced and squeezed multimode vacuum states. The approach is new and appears to be simpler and more general than previous ones starting from the phase-space representation given by the characteristic or Wigner function. Fock expansion is performed in terms of easily evaluable two-variable Hermite–Kampé de Fériet polynomials. A relatively simple and compact expression for the joint statistical distribution of the photon numbers in the different modes is obtained. In particular, this result enables one to give a simple characterization of separable and entangled states, asmore » shown for two-mode and three-mode Gaussian states.« less

  5. Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shownmore » to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.« less

  6. Population pressure and agricultural productivity in Bangladesh.

    PubMed

    Chaudhury, R H

    1983-01-01

    The relationship between population pressure or density and agricultural productivity is examined by analyzing the changes in the land-man ratio and the changes in the level of land yield in the 17 districts of Bangladesh from 1961-64 and 1974-77. The earlier years were pre-Green Revolution, whereas in the later years new technology had been introduced in some parts of the country. Net sown area, value of total agricultural output, and number of male agricultural workers were the main variables. For the country as a whole, agricultural output grew by 1.2%/year during 1961-64 to 1974-77, while the number of male agricultural workers grew at 1.5%/year. The major source of agricultural growth during the 1960s was found to be increased land-yield associated with a higher ratio of labor to land. The findings imply that a more intensified pattern of land use, resulting in both higher yield and higher labor input/unit of land, is the main source of growth of output and employment in agriculture. There is very little scope for extending the arable area in Bangladesh; increased production must come from multiple cropping, especially through expansion of irrigation and drainage, and from increases in per acre yields, principly through adoption of high yield variants, which explained 87% of the variation in output per acre during the 1970s. Regional variation in output was also associated with variation in cropping intensity and proportion of land given to high yield variants. There is considerable room for modernizing agricultural technology in Bangladesh: in 1975-76 less than 9% of total crop land was irrigated and only 12% of total acreage was under high yield variants. The adoption of new food-grain technology and increased use of high yield variants in Bangladesh's predominantly subsistence-based agriculture would require far-reaching institutional and organizational changes and more capital. Without effective population control, expansion of area under high yield variants would not improve the employment situation in the foreseeable future.

  7. On the physical environment in the nucleus of Centaurus A /NGC 5128/

    NASA Technical Reports Server (NTRS)

    Beall, J. H.; Rose, W. K.

    1980-01-01

    A model is proposed for the radio and X-ray variability of the nucleus of Centaurus A in which an adiabatically expanding plasma containing a power-law distribution of relativistic electrons produces the radio flux by synchrotron emission, and the X-ray flux by inverse Compton scattering of an ambient distribution of thermal photons. The variability of Centaurus A is shown to be consistent with the expansion of an initially opaque, hot (1000-10,000 K) plasma which eventually becomes optically thin. Radio flares without corresponding X-ray flares are possible in this model because the plasma density decreases during the expansion, allowing radio radiation previously absorbed or suppressed to be observed. Some consequences of the model for the physical environment in galactic nuclei are discussed.

  8. Mechanical properties of steels with a microstructure of bainite/martensite and austenite islands

    NASA Astrophysics Data System (ADS)

    Syammach, Sami M.

    Advanced high strength steels (AHSS) are continually being developed in order to reduce weight and improve safety for automotive applications. There is need for economic steels with improved strength and ductility combinations. These demands have led to research and development of third generation AHSS. Third generation AHSS include steel grades with a bainitic and tempered martensitic matrix with retained austenite islands. These steels may provide improved mechanical properties compared to first generation AHSS and should be more economical than second generation AHSS. There is a need to investigate these newer types of steels to determine their strength and formability properties. Understanding these bainitic and tempered martensitic steels is important because they likely can be produced using currently available production systems. If viable, these steels could be a positive step in the evolution of AHSS. The present work investigates the effect of the microstructure on the mechanical properties of steels with a microstructure of bainite, martensite, and retained austenite, so called TRIP aided bainitic ferrite (TBF) steels. The first step in this project was creating the desired microstructure. To create a microstructure of bainite, martensite, and austenite an interrupted austempering heat treatment was used. Varying the heat treatment times and temperatures produced microstructures of varying amounts of bainite, martensite, and austenite. Mechanical properties such as strength, ductility, strain hardening, and hole-expansion ratios were then evaluated for each heat treatment. Correlations between mechanical properties and microstructure were then evaluated. It was found that samples after each of the heat treatments exhibited strengths between 1050 MPa and 1350 MPa with total elongations varying from 8 pct to 16 pct. By increasing the bainite and austenite volume fraction the strength of the steel was found to decrease, but the ductility increased. Larger martensite volume fraction increased the strength of the steel. Strain hardening results showed that increasing the martensite volume fraction increased the strain hardening exponent while bainite decreased the strain hardening behavior. Austenite was found to slightly increase the strain hardening behavior. Hole-expansion tests showed hole expansion ratios ranging from 20 pct to 45 pct. Increasing the bainite volume fraction was found to increase the hole-expansion ratio. Increasing the martensite volume fraction was found to decrease the hole-expansion ratio. Overall, each of the heat treatments resulted in a steel with attractive properties, and the results showed how the microstructure of bainite, martensite, and austenite influences the mechanical properties of this type of steels.

  9. Generating Variable and Random Schedules of Reinforcement Using Microsoft Excel Macros

    PubMed Central

    Bancroft, Stacie L; Bourret, Jason C

    2008-01-01

    Variable reinforcement schedules are used to arrange the availability of reinforcement following varying response ratios or intervals of time. Random reinforcement schedules are subtypes of variable reinforcement schedules that can be used to arrange the availability of reinforcement at a constant probability across number of responses or time. Generating schedule values for variable and random reinforcement schedules can be difficult. The present article describes the steps necessary to write macros in Microsoft Excel that will generate variable-ratio, variable-interval, variable-time, random-ratio, random-interval, and random-time reinforcement schedule values. PMID:18595286

  10. Fine-scale genetic structure arises during range expansion of an invasive gecko.

    PubMed

    Short, Kristen Harfmann; Petren, Kenneth

    2011-01-01

    Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∼1990s) to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts.

  11. Increasing methylation of the calcitonin gene during disease progression in sequential samples from CML patients.

    PubMed

    Mills, K I; Guinn, B A; Walsh, V A; Burnett, A K

    1996-09-01

    In chronic myeloid leukaemia (CML), disease progression from the initial chronic phase to the acute phase or blast crisis has previously been shown to be correlated with progressive increases in hyper-methylation of the calcitonin gene, located at chromosome 11p15. However, sequential studies of individual patients were not performed in these investigations. We have analysed 44 samples from nine patients with typical Philadelphia chromosome positive CML throughout their disease progression to determine the methylation state of the calcitonin gene at these time points. Densitometry was used to quantitate the ratio of the normal 2.0 kb Hpa II fragments, indicating normal methylation status of the gene, compared to the intensity of the abnormal, hyper-methylated, 2.6-3.1 kb Hpa II fragments. We found a gradual increase in the ratio of methylated:unmethylated calcitonin gene during chronic phase with a dramatic rise at blast crisis. Further, the ratio of the abnormal hypermethylated 3.1 kb fragments to the methylated 2.6 kb fragment resulted in the identification of a clonal expansion of abnormally methylated cells. This expansion of cells with hypermethylation of the calcitonin gene during chronic phase was shown to coincide with the presence of a mutation in the p53 gene. The data presented in this study would suggest that an increased methylation status of the calcitonin gene during disease progression may indicate the expansion of abnormal blast cell populations and subsequent progression to blast crisis.

  12. Foams for barriers and nonlethal weapons

    NASA Astrophysics Data System (ADS)

    Rand, Peter B.

    1997-01-01

    Our times demand better solutions to conflict resolution than simply shooting someone. Because of this, police and military interest in non-lethal concepts is high. Already in use are pepper sprays, bean-bag guns, flash-bang grenades, and rubber bullets. At Sandia we got a head start on non- lethal weapon concepts. Protection of nuclear materials required systems that went way beyond the traditional back vault. Dispensable deterrents were used to allow a graduated response to a threat. Sticky foams and stabilized aqueous foams were developed to provide access delay. Foams won out for security systems simply because you could get a large volume from a small container. For polymeric foams the expansion ratio is thirty to fifty to one. In aqueous foams expansion ratios of one thousand to ne are easily obtained. Recent development work on sticky foams has included a changeover to environmentally friendly solvents, foams with very low toxicity, and the development of non-flammable silicone resin based foams. High expansion aqueous foams are useful visual and aural obscurants. Our recent aqueous foam development has concentrated on using very low toxicity foaming agents combined with oleoresin capsicum irritant to provide a safe but highly irritating foam.

  13. Thrust and efficiency model for electron-driven magnetic nozzles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, Justin M.; Choueiri, Edgar Y.

    2013-10-15

    A performance model is presented for magnetic nozzle plasmas driven by electron thermal expansion to investigate how the thrust coefficient and beam divergence efficiency scale with the incoming plasma flow and magnetic field geometry. Using a transformation from cylindrical to magnetic coordinates, an approximate analytical solution is derived to the axisymmetric two-fluid equations for a collisionless plasma flow along an applied magnetic field. This solution yields an expression for the half-width at half-maximum of the plasma density profile in the far-downstream region, from which simple scaling relations for the thrust coefficient and beam divergence efficiency are derived. It is foundmore » that the beam divergence efficiency is most sensitive to the density profile of the flow into the nozzle throat, with the highest efficiencies occurring for plasmas concentrated along the nozzle axis. Increasing the expansion ratio of the magnetic field leads to efficiency improvements that are more pronounced for incoming plasmas that are not concentrated along the axis. This implies that the additional magnet required to increase the expansion ratio may be worth the added complexity for plasma sources that exhibit poor confinement.« less

  14. Ratio index variables or ANCOVA? Fisher's cats revisited.

    PubMed

    Tu, Yu-Kang; Law, Graham R; Ellison, George T H; Gilthorpe, Mark S

    2010-01-01

    Over 60 years ago Ronald Fisher demonstrated a number of potential pitfalls with statistical analyses using ratio variables. Nonetheless, these pitfalls are largely overlooked in contemporary clinical and epidemiological research, which routinely uses ratio variables in statistical analyses. This article aims to demonstrate how very different findings can be generated as a result of less than perfect correlations among the data used to generate ratio variables. These imperfect correlations result from measurement error and random biological variation. While the former can often be reduced by improvements in measurement, random biological variation is difficult to estimate and eliminate in observational studies. Moreover, wherever the underlying biological relationships among epidemiological variables are unclear, and hence the choice of statistical model is also unclear, the different findings generated by different analytical strategies can lead to contradictory conclusions. Caution is therefore required when interpreting analyses of ratio variables whenever the underlying biological relationships among the variables involved are unspecified or unclear. (c) 2009 John Wiley & Sons, Ltd.

  15. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling

    NASA Astrophysics Data System (ADS)

    Bonde, Jeffrey

    2018-04-01

    The dynamics of a magnetized, expanding plasma with a high ratio of kinetic energy density to ambient magnetic field energy density, or β, are examined by adapting a model of gaseous bubbles expanding in liquids as developed by Lord Rayleigh. New features include scale magnitudes and evolution of the electric fields in the system. The collisionless coupling between the expanding and ambient plasma due to these fields is described as well as the relevant scaling relations. Several different responses of the ambient plasma to the expansion are identified in this model, and for most laboratory experiments, ambient ions should be pulled inward, against the expansion due to the dominance of the electrostatic field.

  16. Radiation effects in a glass-ceramic (Zerodur)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koumvakalis, N.; Jani, M.G.; Halliburton, L.E.

    1985-04-01

    Zerodur is a low-expansion glass-ceramic with important applications in laser-gyro guidance systems. The material contains by weight 70-75% crystalline quartz in the form of crystallites approximately 50 nm in diameter which are embedded in a glass matrix. The glass-crystal ratio is adjusted so that the resultant expansion coefficient at room temperature is near zero. Ionizing radiation causes numerous effects in Zerodur. The most obvious is a change in the optical absorption, and this will have possible consequences in the thermal expansion behavior. Thus, characterization of radiation-induced defects will help solve problems affecting Zerodur's performance in guidance systems and will providemore » an understanding of the basic properties of this unique class of materials.« less

  17. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    NASA Astrophysics Data System (ADS)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  18. Physical evaluation of a maize-based extruded snack with curry powder.

    PubMed

    Christofides, Vassilis; Ainsworth, Paul; Ibanoğlu, Senol; Gomes, Frances

    2004-02-01

    Response surface methodology was used to analyze the effect of screw speed (200-280 rpm), feed moisture (13.0-17.0%, wet basis), and curry powder (6.0-9.0%) on the bulk density, lateral expansion, and firmness of maize-based extruded snack with curry powder. Regression equations describing the effect of each variable on the responses were obtained. Responses were most affected by changes in feed moisture followed by screw speed and curry powder (p < 0.05). Lateral expansion increased linearly as the amount of curry powder added was increased whereas a quadratic increase was obtained in lateral expansion with decreasing feed moisture. The firmness of samples was increased with an increase in feed moisture. The bulk density of samples was increased with increasing feed moisture and screw speeds. Radial expansion was found to be a better index to measure the physical properties of the extruded product indicated by a higher correlation coefficient.

  19. Matched asymptotic expansion of the Hamilton-Jacobi-Bellman equation for aeroassisted plane-change maneuvers

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Melamed, Nahum

    1993-01-01

    In this paper we develop a general procedure for constructing a matched asymptotic expansion of the Hamilton-Jacobi-Bellman equation based on the method of characteristics. The development is for a class of perturbation problems whose solution exhibits two-time-scale behavior. A regular expansion for problems of this type is inappropriate since it is not uniformly valid over a narrow range of the independent variable. Of particular interest here is the manner in which matching and boundary conditions are enforced when the expansion is carried out to first order. Two cases are distinguished - one where the left boundary condition coincides with or lies to the right of the singular region and one where the left boundary condition lies to the left of the singular region. A simple example is used to illustrate the procedure, and its potential application to aeroassisted plane change is described.

  20. Multi-Agent simulation of generation capacity expansion decisions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botterud, A.; Mahalik, M.; Conzelmann, G.

    2008-01-01

    In this paper, we use a multi-agent simulation model, EMCAS, to analyze generation expansion in the Iberian electricity market. The expansion model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitorspsila actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We run the model using detailed data for the Iberian market. In a scenariomore » analysis, we look at the impact of market design variables, such as the energy price cap and carbon emission prices. We also analyze how market concentration and GenCospsila risk preferences influence the timing and choice of new generating capacity.« less

  1. Experimental performance of a high-area-ratio rocket nozzle at high combustion chamber pressure

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Kazaroff, John M.; Pavli, Albert J.

    1996-01-01

    An experimental investigation was conducted to determine the thrust coefficient of a high-area-ratio rocket nozzle at combustion chamber pressures of 12.4 to 16.5 MPa (1800 to 2400 psia). A nozzle with a modified Rao contour and an expansion area ratio of 1025:1 was tested with hydrogen and oxygen at altitude conditions. The same nozzle, truncated to an area ratio of 440:1, was also tested. Values of thrust coefficient are presented along with characteristic exhaust velocity efficiencies, nozzle wall temperatures, and overall thruster specific impulse.

  2. WE-AB-202-03: Quantifying Ventilation Change Due to Radiation Therapy Using 4DCT Jacobian Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    Purpose: Four-dimensional computed tomography (4DCT) and image registration can be used to determine regional lung ventilation changes after radiation therapy (RT). This study aimed to determine if lung ventilation change following radiation therapy was affected by the pre-RT ventilation of the lung. Methods: 13 subjects had three 4DCT scans: two repeat scans acquired before RT and one three months after RT. Regional ventilation was computed using Jacobian determinant calculations on the registered 4DCT images. The post-RT ventilation map was divided by the pre-RT ventilation map to get a voxel-by-voxel Jacobian ratio map depicting ventilation change over the course of RT.more » Jacobian ratio change was compared over the range of delivered doses. The first pre-RT ventilation image was divided by the second to establish a control for Jacobian ratio change without radiation delivered. The functional change between scans was assessed using histograms of the Jacobian ratios. Results: There were significantly (p < 0.05) more voxels that had a large decrease in Jacobian ratio in the post-RT divided by pre-RT map (15.6%) than the control (13.2%). There were also significantly (p < .01) more voxels that had a large increase in Jacobian ratio (16.2%) when compared to control (13.3%). Lung regions with low function (<10% expansion by Jacobian) showed a slight linear reduction in expansion (0.2%/10 Gy delivered), while high function regions (>10% expansion) showed a greater response (1.2% reduction/10 Gy). Contiguous high function regions > 1 liter occurred in 11 of 13 subjects. Conclusion: There is a significant change in regional ventilation following a course of radiation therapy. The change in Jacobian following RT is dependent both on the delivered dose and the initial ventilation of the lung tissue: high functioning lung has greater ventilation loss for equivalent radiation doses. Substantial regions of high function lung tissue are prevalent. Research support from NIH grants CA166119 and CA166703, a gift from Roger Koch, and a Pilot Grant from University of Iowa Carver College of Medicine.« less

  3. Determining whether a ball will land behind or in front of you: not just a combination of expansion and angular velocity.

    PubMed

    Brouwer, Anne-Marie; López-Moliner, Joan; Brenner, Eli; Smeets, Jeroen B J

    2006-02-01

    We propose and evaluate a source of information that ball catchers may use to determine whether a ball will land behind or in front of them. It combines estimates for the ball's horizontal and vertical speed. These estimates are based, respectively, on the rate of angular expansion and vertical velocity. Our variable could account for ball catchers' data of Oudejans et al. [The effects of baseball experience on movement initiation in catching fly balls. Journal of Sports Sciences, 15, 587-595], but those data could also be explained by the use of angular expansion alone. We therefore conducted additional experiments in which we asked subjects where simulated balls would land under conditions in which both angular expansion and vertical velocity must be combined for obtaining a correct response. Subjects made systematic errors. We found evidence for the use of angular velocity but hardly any indication for the use of angular expansion. Thus, if catchers use a strategy that involves combining vertical and horizontal estimates of the ball's speed, they do not obtain their estimates of the horizontal component from the rate of expansion alone.

  4. Co-extrusion of food grains-banana pulp for nutritious snacks: optimization of process variables.

    PubMed

    Mridula, D; Sethi, Swati; Tushir, Surya; Bhadwal, Sheetal; Gupta, R K; Nanda, S K

    2017-08-01

    Present study was undertaken to optimize the process conditions for development of food grains (maize, defatted soy flour, sesame seed)-banana based nutritious expanded snacks using extrusion processing. Experiments were designed using Box-Behnken design with banana pulp (8-24 g), screw speed (300-350 rpm) and feed moisture (14-16% w.b.). Seven responses viz. expansion ratio (ER), bulk density (BD), water absorption index (WAI), protein, minerals, iron and sensory acceptability were considered for optimizing independent parameters. ER, BD, WAI, protein content, total minerals, iron content, and overall acceptability ranged 2.69-3.36, 153.43-238.83 kg/m 3 , 4.56-4.88 g/g, 15.19-15.52%, 2.06-2.27%, 4.39-4.67 mg/100 g (w.b.) and 6.76-7.36, respectively. ER was significantly affected by all three process variables while BD was influenced by banana pulp and screw speed only. Studied process variables did not affected colour quality except 'a' value with banana pulp and screw speed. Banana pulp had positive correlation with water solubility index, total minerals and iron content and negative with WAI, protein and overall acceptability. Based upon multiple response analysis, optimized conditions were 8 g banana pulp, 350 rpm screw speed and 14% feed moisture indicating the protein, calorie, iron content and overall sensory acceptability in sample as 15.46%, 401 kcal/100 g, 4.48 mg/100 g and 7.6 respectively.

  5. Intraurban Differences in the Use of Ambulatory Health Services in a Large Brazilian City

    PubMed Central

    Lima-Costa, Maria Fernanda; Proietti, Fernando Augusto; Cesar, Cibele C.; Macinko, James

    2010-01-01

    A major goal of health systems is to reduce inequities in access to services, that is, to ensure that health care is provided based on health needs rather than social or economic factors. This study aims to identify the determinants of health services utilization among adults in a large Brazilian city and intraurban disparities in health care use. We combine household survey data with census-derived classification of social vulnerability of each household’s census tract. The dependent variable was utilization of physician services in the prior 12 months, and the independent variables included predisposing factors, health needs, enabling factors, and context. Prevalence ratios and 95% confidence intervals were estimated by the Hurdle regression model, which combined Poisson regression analysis of factors associated with any doctor visits (dichotomous variable) and zero-truncated negative binomial regression for the analysis of factors associated with the number of visits among those who had at least one. Results indicate that the use of health services was greater among women and increased with age, and was determined primarily by health needs and whether the individual had a regular doctor, even among those living in areas of the city with the worst socio-environmental indicators. The experience of Belo Horizonte may have implications for other world cities, particularly in the development and use of a comprehensive index to identify populations at risk and in order to guide expansion of primary health care services as a means of enhancing equity in health. PMID:21104332

  6. Paleoceanographic insights on oxygen minimum zone expansion: Lessons from the most recent deglaciation

    NASA Astrophysics Data System (ADS)

    Moffitt, S. E.; Moffitt, R.; Sauthoff, W.; Davis, C. V.; Hewett, K.; Hill, T. M.

    2013-12-01

    The expansion of low oxygen hydrographic zones in the modern ocean, known as Oxygen Minimum Zones (OMZ), has the potential to deteriorate ecosystems, alter ocean nutrient cycling and inflict mass mortality events upon benthic and pelagic communities. During the last deglaciation (18-10 ka), large, climate-driven changes in the oxygen content of the upper ocean occurred. We propose that previous climate-driven OMZ expansions are data-rich events with which to characterize the spatial scales of OMZ hydrographic perturbation, and the temporal scales of natural OMZ variability. Here we synthesize a global compilation of marine sediment records from modern OMZ regions to investigate deglacial changes in the vertical extent, intensity, and surface area impingements of hypoxic waters upon continental margins. We surveyed sediment core records within water depths of 183-3,296 meters below sea level (mbsl) and took advantage of cores with geochemical, sedimentary or microfossil oxygenation proxies to reconstruct the timing, depth and intensity of seafloor hypoxia. OMZ maximum vertical extent during the deglaciation was variable by region: Subarctic Pacific (~600-2,900 mbsl), California Current (~330-1,500 mbsl), Baja and Mexico (~330-830 mbsl), and Equatorial Pacific and Humboldt Current (~110-3,100 mbsl). Expansion timing is regionally coherent but not globally synchronous, such that Subarctic Pacific and California Current marginal areas exhibit tight correlation and oxygenation reversals with Northern Hemisphere deglacial events (Termination 1A, Bølling-Allerød, Younger Dryas and Termination 1B). Southern regions (Baja and Mexico, and the Equatorial Pacific and Humboldt Current) exhibit hypoxia expansion prior to Termination 1A (~16 ka), and no oxygenation reversals. Our analysis provides new evidence for the geospatially coherent and temporally rapid expansion of OMZs during the last deglaciation, and reveals the extreme shallowness of the upper hypoxic boundary in coastal waters during events of global-scale warming.

  7. Climate variability risks for electricity supply

    NASA Astrophysics Data System (ADS)

    Kling, Harald

    2017-12-01

    Hydropower represents about 20% of sub-Saharan electricity, and expansion is underway. Rainfall varies year-to-year in geographical clusters, increasing the risk of climate-related electricity supply disruption in dry years.

  8. Identification of informative subgraphs in brain networks

    NASA Astrophysics Data System (ADS)

    Marinazzo, D.; Wu, G.; Pellicoro, M.; Stramaglia, S.

    2013-01-01

    Measuring directed interactions in the brain in terms of information flow is a promising approach, mathematically treatable and amenable to encompass several methods. Here we present a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which provide information for the future state of each assigned target. Multiplets characterized by a large contribution to the expansion are associated to informational circuits present in the system, with an informational character (synergetic or redundant) which can be inferred from the sign of the contribution.

  9. Economic correlates of violent death rates in forty countries, 1962-2008: A cross-typological analysis.

    PubMed

    Lee, Bandy X; Marotta, Phillip L; Blay-Tofey, Morkeh; Wang, Winnie; de Bourmont, Shalila

    2014-01-01

    Our goal was to identify if there might be advantages to combining two major public health concerns, i.e., homicides and suicides, in an analysis with well-established macro-level economic determinants, i.e., unemployment and inequality. Mortality data, unemployment statistics, and inequality measures were obtained for 40 countries for the years 1962-2008. Rates of combined homicide and suicide, ratio of suicide to combined violent death, and ratio between homicide and suicide were graphed and analyzed. A fixed effects regression model was then performed for unemployment rates and Gini coefficients on homicide, suicide, and combined death rates. For a majority of nation states, suicide comprised a substantial proportion (mean 75.51%; range 0-99%) of the combined rate of homicide and suicide. When combined, a small but significant relationship emerged between logged Gini coefficient and combined death rates (0.0066, p < 0.05), suggesting that the combined rate improves the ability to detect a significant relationship when compared to either rate measurement alone. Results were duplicated by age group, whereby combining death rates into a single measure improved statistical power, provided that the association was strong. Violent deaths, when combined, were associated with an increase in unemployment and an increase in Gini coefficient, creating a more robust variable. As the effects of macro-level factors (e.g., social and economic policies) on violent death rates in a population are shown to be more significant than those of micro-level influences (e.g., individual characteristics), these associations may be useful to discover. An expansion of socioeconomic variables and the inclusion of other forms of violence in future research could help elucidate long-term trends.

  10. Economic correlates of violent death rates in forty countries, 1962–2008: A cross-typological analysis

    PubMed Central

    Lee, Bandy X.; Marotta, Phillip L.; Blay-Tofey, Morkeh; Wang, Winnie; de Bourmont, Shalila

    2015-01-01

    Objectives Our goal was to identify if there might be advantages to combining two major public health concerns, i.e., homicides and suicides, in an analysis with well-established macro-level economic determinants, i.e., unemployment and inequality. Methods Mortality data, unemployment statistics, and inequality measures were obtained for 40 countries for the years 1962–2008. Rates of combined homicide and suicide, ratio of suicide to combined violent death, and ratio between homicide and suicide were graphed and analyzed. A fixed effects regression model was then performed for unemployment rates and Gini coefficients on homicide, suicide, and combined death rates. Results For a majority of nation states, suicide comprised a substantial proportion (mean 75.51%; range 0–99%) of the combined rate of homicide and suicide. When combined, a small but significant relationship emerged between logged Gini coefficient and combined death rates (0.0066, p < 0.05), suggesting that the combined rate improves the ability to detect a significant relationship when compared to either rate measurement alone. Results were duplicated by age group, whereby combining death rates into a single measure improved statistical power, provided that the association was strong. Conclusions Violent deaths, when combined, were associated with an increase in unemployment and an increase in Gini coefficient, creating a more robust variable. As the effects of macro-level factors (e.g., social and economic policies) on violent death rates in a population are shown to be more significant than those of micro-level influences (e.g., individual characteristics), these associations may be useful to discover. An expansion of socioeconomic variables and the inclusion of other forms of violence in future research could help elucidate long-term trends. PMID:26028985

  11. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    NASA Astrophysics Data System (ADS)

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  12. Rex fortran 4 system for combinatorial screening or conventional analysis of multivariate regressions

    Treesearch

    L.R. Grosenbaugh

    1967-01-01

    Describes an expansible computerized system that provides data needed in regression or covariance analysis of as many as 50 variables, 8 of which may be dependent. Alternatively, it can screen variously generated combinations of independent variables to find the regression with the smallest mean-squared-residual, which will be fitted if desired. The user can easily...

  13. Already at the Table: Patterns of Play and Gambling Involvement Prior to Gambling Expansion.

    PubMed

    Nelson, Sarah E; LaPlante, Debi A; Gray, Heather M; Tom, Matthew A; Kleschinsky, John H; Shaffer, Howard J

    2018-03-01

    During 2011, the Governor of Massachusetts signed a bill to allow casino gambling in the state (Commonwealth of Massachusetts 2011). As a result, two resort casinos will begin operations during 2018 and 2019; a smaller slots parlor began operations during June 2015. Prior to this expansion, gambling was widely available in Massachusetts, through the state lottery, off-track betting, and gambling opportunities available in neighboring states. Within this context, it is important to understand the patterns of gambling involvement in the population prior to gambling expansion. The current study examined gambling involvement, patterns of play, and gambling-related problems prior to gambling expansion among a sample of 511 Massachusetts residents who were members of a statewide Internet panel. To measure patterns of play, we asked questions about past-year games played and frequency of play. To measure breadth of involvement, we assessed the number of different games played. To measure depth of involvement, we measured time spent gambling, amount wagered, and amount won or lost. Principal component analysis revealed four play pattern components accounting for more than 50% of the variance in game play frequency. Multiple regression analyses revealed that component scores composed of casino gambling and skill-based gambling (e.g., poker, sports) variables uniquely contributed to the prediction of gambling-related problems, even when depth of involvement was controlled. However, the addition of breadth of involvement to the model resulted in a model where no set of variables contributed significantly, suggesting a complex relationship among play patterns, depth, and breadth of involvement. The study established discrete and distinguishable gambling play patterns associated with gambling-related problems and identified groups of individuals potentially vulnerable to the effects of gambling expansion.

  14. [Comparison of three stand-level biomass estimation methods].

    PubMed

    Dong, Li Hu; Li, Feng Ri

    2016-12-01

    At present, the forest biomass methods of regional scale attract most of attention of the researchers, and developing the stand-level biomass model is popular. Based on the forestry inventory data of larch plantation (Larix olgensis) in Jilin Province, we used non-linear seemly unrelated regression (NSUR) to estimate the parameters in two additive system of stand-level biomass equations, i.e., stand-level biomass equations including the stand variables and stand biomass equations including the biomass expansion factor (i.e., Model system 1 and Model system 2), listed the constant biomass expansion factor for larch plantation and compared the prediction accuracy of three stand-level biomass estimation methods. The results indicated that for two additive system of biomass equations, the adjusted coefficient of determination (R a 2 ) of the total and stem equations was more than 0.95, the root mean squared error (RMSE), the mean prediction error (MPE) and the mean absolute error (MAE) were smaller. The branch and foliage biomass equations were worse than total and stem biomass equations, and the adjusted coefficient of determination (R a 2 ) was less than 0.95. The prediction accuracy of a constant biomass expansion factor was relatively lower than the prediction accuracy of Model system 1 and Model system 2. Overall, although stand-level biomass equation including the biomass expansion factor belonged to the volume-derived biomass estimation method, and was different from the stand biomass equations including stand variables in essence, but the obtained prediction accuracy of the two methods was similar. The constant biomass expansion factor had the lower prediction accuracy, and was inappropriate. In addition, in order to make the model parameter estimation more effective, the established stand-level biomass equations should consider the additivity in a system of all tree component biomass and total biomass equations.

  15. Experimental ammonia-free phosphate-bonded investments using Mg(H2PO4)2.

    PubMed

    Zhang, Z; Tamaki, Y; Miyazaki, T

    2001-12-01

    In previous study, we found that Mg(H2PO4)2 instead of NH4H2PO4 was available as a binder material for phosphate-bonded investments and possibly could be used to develop the phosphate-bonded investment without ammonia gas release. The purpose of the present study was to develop the experimental ammonia-free phosphate-bonded investments by investigating suitable refractories. Mg(H2PO4)2.nH2O and MgO were prepared as a binder. Cristobalite and quartz were selected as refractories. The power ratio of MgO/Mg(H2PO4)2.nH2O was set constant at 1.2 according to our previous findings. Fundamental properties of dental investment such as strength, manipulation and expansion were evaluated. Using cristobalite as the refractory material, further investigations were performed. The refractory/binder ratio was definitely effective. The increase of this ratio led to low mold strength and large mold expansion. The present findings suggested that C5 was desirable for dental investment.

  16. Parametric investigation of single-expansion-ramp nozzles at Mach numbers from 0.60 to 1.20

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Re, Richard J.; Bare, E. Ann

    1992-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of varying six nozzle geometric parameters on the internal and aeropropulsive performance characteristics of single-expansion-ramp nozzles. This investigation was conducted at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.5 to 12, and angles of attack of 0 deg +/- 6 deg. Maximum aeropropulsive performance at a particular Mach number was highly dependent on the operating nozzle pressure ratio. For example, as the nozzle upper ramp length or angle increased, some nozzles had higher performance at a Mach number of 0.90 because of the nozzle design pressure was the same as the operating pressure ratio. Thus, selection of the various nozzle geometric parameters should be based on the mission requirements of the aircraft. A combination of large upper ramp and large lower flap boattail angles produced greater nozzle drag coefficients at Mach number greater than 0.80, primarily from shock-induced separation on the lower flap of the nozzle. A static conditions, the convergent nozzle had high and nearly constant values of resultant thrust ratio over the entire range of nozzle pressure ratios tested. However, these nozzles had much lower aeropropulsive performance than the convergent-divergent nozzle at Mach number greater than 0.60.

  17. Robust transceiver design for reciprocal M × N interference channel based on statistical linearization approximation

    NASA Astrophysics Data System (ADS)

    Mayvan, Ali D.; Aghaeinia, Hassan; Kazemi, Mohammad

    2017-12-01

    This paper focuses on robust transceiver design for throughput enhancement on the interference channel (IC), under imperfect channel state information (CSI). In this paper, two algorithms are proposed to improve the throughput of the multi-input multi-output (MIMO) IC. Each transmitter and receiver has, respectively, M and N antennas and IC operates in a time division duplex mode. In the first proposed algorithm, each transceiver adjusts its filter to maximize the expected value of signal-to-interference-plus-noise ratio (SINR). On the other hand, the second algorithm tries to minimize the variances of the SINRs to hedge against the variability due to CSI error. Taylor expansion is exploited to approximate the effect of CSI imperfection on mean and variance. The proposed robust algorithms utilize the reciprocity of wireless networks to optimize the estimated statistical properties in two different working modes. Monte Carlo simulations are employed to investigate sum rate performance of the proposed algorithms and the advantage of incorporating variation minimization into the transceiver design.

  18. Macro-Scale Strength and Microstructure of ZrW2O8 Cementitious Composites with Tunable Low Thermal Expansion

    PubMed Central

    Ouyang, Jianshu; Chen, Bo; Huang, Dahai

    2018-01-01

    Concretes with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures or devices, are important for civil engineering applications, such as dams, bridges, and buildings. In natural materials, thermal expansion usually cannot be easily regulated and an extremely low thermal expansion coefficient (TEC) is still uncommon. Here we propose a novel cementitious composite, doped with ZrW2O8, showing a wide range of tunable thermal expansion coefficients, from 8.65 × 10−6 °C−1 to 2.48 × 10−6 °C−1. Macro-scale experiments are implemented to quantify the evolution of the thermal expansion coefficients, compressive and flexural strength over a wide range of temperature. Scanning Electron Microscope (SEM) imaging was conducted to quantify the specimens’ microstructural characteristics including pores ratio and size. It is shown that the TEC of the proposed composites depends on the proportion of ZrW2O8 and the ambient curing temperature. Macro-scale experimental results and microstructures have a good agreement. The TEC and strength gradually decrease as ZrW2O8 increases from 0% to 20%, subsequently fluctuates until 60%. The findings reported here provide a new routine to design cementitious composites with tunable thermal expansion for a wide range of engineering applications. PMID:29735957

  19. Solving differential equations for Feynman integrals by expansions near singular points

    NASA Astrophysics Data System (ADS)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  20. Trade-offs Between Socio-economic Development and Ecosystem Health under Changing Water Availability

    NASA Astrophysics Data System (ADS)

    Nazemi, A.; Hassanzadeh, E.; Elshorbagy, A. A.; Wheater, H. S.; Gober, P.; Jardine, T.; Lindenschmidt, K. E.

    2017-12-01

    Natural and human water systems at regional scales are often developed around key characteristics of streamflow. As a result, changes in streamflow regime can affect both socio-economic activities and freshwater ecosystems. In addition to natural variability and/or climate change, extensive water resource management to support socio-economic growth has also changed streamflow regimes. This study aims at understanding the trade-offs between agricultural expansion in the province of Saskatchewan, Canada, and alterations in the ecohydrological characteristics of the Saskatchewan River Delta (SRD) located downstream. Changes in climate along with extensive water resource management have altered the upstream flow regime. Moreover, Saskatchewan is investigating the possible expansion of irrigated agriculture to boost the provincial economy. To evaluate trade-offs across a range of possible scenarios for streamflow changes, the potential increase in provincial net benefit versus potential vulnerability of the SRD was assessed using perturbed flow realizations along with scenarios of irrigation expansion as input to an integrated water resource system model. This study sheds light on the potential variability in trade-offs between economic benefits and ecosystem health under a range of streamflow conditions, with the aim of informing decisions that can benefit both natural and human water systems.

  1. Graphite fiber reinforced structure for supporting machine tools

    DOEpatents

    Knight, Jr., Charles E.; Kovach, Louis; Hurst, John S.

    1978-01-01

    Machine tools utilized in precision machine operations require tool support structures which exhibit minimal deflection, thermal expansion and vibration characteristics. The tool support structure of the present invention is a graphite fiber reinforced composite in which layers of the graphite fibers or yarn are disposed in a 0/90.degree. pattern and bonded together with an epoxy resin. The finished composite possesses a low coefficient of thermal expansion and a substantially greater elastic modulus, stiffness-to-weight ratio, and damping factor than a conventional steel tool support utilized in similar machining operations.

  2. Some properties of the Catalan-Qi function related to the Catalan numbers.

    PubMed

    Qi, Feng; Mahmoud, Mansour; Shi, Xiao-Ting; Liu, Fang-Fang

    2016-01-01

    In the paper, the authors find some properties of the Catalan numbers, the Catalan function, and the Catalan-Qi function which is a generalization of the Catalan numbers. Concretely speaking, the authors present a new expression, asymptotic expansions, integral representations, logarithmic convexity, complete monotonicity, minimality, logarithmically complete monotonicity, a generating function, and inequalities of the Catalan numbers, the Catalan function, and the Catalan-Qi function. As by-products, an exponential expansion and a double inequality for the ratio of two gamma functions are derived.

  3. Pressure Hill and Zone of Influence over Flat-Faced Bluff Bodies

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasumasa; Suzuki, Kojiro; Rathakrishnan, Ethirajan

    2011-12-01

    An experimental visualization has been carried out to study the dependence of the pressure hill height and the influence zone expanse for flow past rectangular blocks of flat square face and varying length, over a Reynolds number range from 1364 to 4931. It is found that, the pressure hill length and the influence zone expanse decrease with the length to width ratio of the block, up to about L/W = 1, for Reynolds number up to 1586. For higher Reynolds numbers, both H/W and Z/W increase with the model length, till L/W = 1. For L/W more than 1, both H/W and Z/W gradually become independent of L/W. The ratio of Z/H is influenced only marginally by L/W up to 1, and for greater values of L/W, Z/H is almost a constant at all Reynolds numbers of the present study.

  4. Use of an Expansion Tube to Examine Scramjet Combustion at Hypersonic Velocities

    NASA Technical Reports Server (NTRS)

    Rizkalla, Oussama; Bakos, Robert J.; Chinitz, Wallace; Pulsonetti, Maria V; Erdos, John I.

    1989-01-01

    Combustion testing at total enthalpy conditions corresponding to flight Math numbers in excess of 12 requires the use of impulse facilities. The expansion tube is the only operational facility of its size which can provide these conditions without excessive oxygen dissociation or driver gas contamination. Expansio tube operation is described herein and the operational parameters having the largest impact on its performance are determined. These are: driver-to-intermediate chamber pressure ratio, driver gas molecular weight and specific heat ratio, and driver gas temperature. Increases in the lase named parameter will markedly affect the test section static pressure. Preliminary calibration tests are discussed and test gas conditions which have been achieved are presented. Calculated and experimental test times are compared and the parameters affecting test time are discussed. The direction of future work using this important experimental tool is indicated.

  5. Community Characteristics and Qualified Health Plan Selection during the First Open Enrollment Period.

    PubMed

    Boudreaux, Michel; Blewett, Lynn A; Fried, Brett; Hempstead, Katherine; Karaca-Mandic, Pinar

    2017-06-01

    To examine state and community factors that contributed to geographic variation in qualified health plan selection during the first open enrollment period. Administrative data on qualified health plan selections at the ZIP code area merged with survey estimates from the American Community Survey. Descriptive and regression analyses. Data were generated by healthcare.gov and from a household survey. Thirty-one percent of the variation in qualified health plan selection ratios resulted from between-state differences, and the rest was driven by local area differences. Education, language, age, gender, and the ethnic composition of communities contributed to disparate levels of plan selection. Medicaid expansion states had a qualified health plan selection ratio that was 4.4 points lower than non-Medicaid expansion states, controlling for covariates. Our results suggest community-level differences in the intensity or receptiveness to outreach and enrollment activities during the first open enrollment period. © Health Research and Educational Trust.

  6. Internal performance characteristics of short convergent-divergent exhaust nozzles designed by the method of characteristics

    NASA Technical Reports Server (NTRS)

    Krull, H George; Beale, William T

    1956-01-01

    Internal performance data on a short exhaust nozzle designed by the method of characteristics were obtained over a range of pressure ratios from 1.5 to 22. The peak thrust coefficient was not affected by a shortened divergent section, but it occurred at lower pressure ratios due to reduction in expansion ratio. This nozzle contour based on characteristics solution gave higher thrust coefficients than a conical convergent-divergent nozzle of equivalent length. Abrupt-inlet sections permitted a reduction in nozzle length without a thrust-coefficient reduction.

  7. Differences in Expansion Potential of Naive Chimeric Antigen Receptor T Cells from Healthy Donors and Untreated Chronic Lymphocytic Leukemia Patients.

    PubMed

    Hoffmann, Jean-Marc; Schubert, Maria-Luisa; Wang, Lei; Hückelhoven, Angela; Sellner, Leopold; Stock, Sophia; Schmitt, Anita; Kleist, Christian; Gern, Ulrike; Loskog, Angelica; Wuchter, Patrick; Hofmann, Susanne; Ho, Anthony D; Müller-Tidow, Carsten; Dreger, Peter; Schmitt, Michael

    2017-01-01

    Therapy with chimeric antigen receptor T (CART) cells for hematological malignancies has shown promising results. Effectiveness of CART cells may depend on the ratio of naive (T N ) vs. effector (T E ) T cells, T N cells being responsible for an enduring antitumor activity through maturation. Therefore, we investigated factors influencing the T N /T E ratio of CART cells. CART cells were generated upon transduction of peripheral blood mononuclear cells with a CD19.CAR-CD28-CD137zeta third generation retroviral vector under two different stimulating culture conditions: anti-CD3/anti-CD28 antibodies adding either interleukin (IL)-7/IL-15 or IL-2. CART cells were maintained in culture for 20 days. We evaluated 24 healthy donors (HDs) and 11 patients with chronic lymphocytic leukemia (CLL) for the composition of cell subsets and produced CART cells. Phenotype and functionality were tested using flow cytometry and chromium release assays. IL-7/IL-15 preferentially induced differentiation into T N , stem cell memory (T SCM : naive CD27+ CD95+), CD4+ and CXCR3+ CART cells, while IL-2 increased effector memory (T EM ), CD56+ and CD4+ T regulatory (T Reg ) CART cells. The net amplification of different CART subpopulations derived from HDs and untreated CLL patients was compared. Particularly the expansion of CD4+ CART N cells differed significantly between the two groups. For HDs, this subtype expanded >60-fold, whereas CD4+ CART N cells of untreated CLL patients expanded less than 10-fold. Expression of exhaustion marker programmed cell death 1 on CART N cells on day 10 of culture was significantly higher in patient samples compared to HD samples. As the percentage of malignant B cells was expectedly higher within patient samples, an excessive amount of B cells during culture could account for the reduced expansion potential of CART N cells in untreated CLL patients. Final T N /T E ratio stayed <0.3 despite stimulation condition for patients, whereas this ratio was >2 in samples from HDs stimulated with IL-7/IL-15, thus demonstrating efficient CART N expansion. Untreated CLL patients might constitute a challenge for long-lasting CART effects in vivo since only a low number of T N among the CART product could be generated. Depletion of malignant B cells before starting CART production might be considered to increase the T N /T E ratio within the CART product.

  8. Drivers of Antarctic sea-ice expansion and Southern Ocean surface cooling over the past four decades

    NASA Astrophysics Data System (ADS)

    Purich, Ariaan; England, Matthew

    2017-04-01

    Despite global warming, total Antarctic sea-ice coverage has increased overall during the past four decades. In contrast, the majority of CMIP5 models simulate a decline. In addition, Southern Ocean surface waters have largely cooled, in stark contrast to almost all historical CMIP5 simulations. Subantarctic Surface Waters have cooled and freshened while waters to the north of the Antarctic Circumpolar Current have warmed and increased in salinity. It remains unclear as to what extent the cooling and Antarctic sea-ice expansion is due to natural variability versus anthropogenic forcing; due for example to changes in the Southern Annular Mode (SAM). It is also unclear what the respective role of surface buoyancy fluxes is compared to internal ocean circulation changes, and what the implications are for longer-term climate change in the region. In this presentation we will outline three distinct drivers of recent Southern Ocean surface trends that have each made a significant contribution to regional cooling: (1) wind-driven surface cooling and sea-ice expansion due to shifted westerly winds, (2) teleconnections of decadal variability from the tropical Pacific, and (3) surface cooling and ice expansion due to large-scale Southern Ocean freshening, most likely driven by SAM-related precipitation trends over the open ocean. We will also outline the main reasons why climate models for the most part miss these Southern Ocean cooling trends, despite capturing overall trends in the SAM.

  9. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, B.; Hummon, M.; Cochran, J.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minutemore » irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.« less

  10. Reduction of the uncertainty of the PTB vacuum pressure scale by a new large area non-rotating piston gauge

    NASA Astrophysics Data System (ADS)

    Bock, Th; Ahrendt, H.; Jousten, K.

    2009-10-01

    This paper describes the metrological characterization of a new large area piston gauge (FRS5, Furness Rosenberg Standard) installed at the vacuum metrology laboratory of the Physikalisch-Technische Bundesanstalt (PTB). The operational procedure and the uncertainty budget for pressures between 30 Pa and 11 kPa are given. Comparisons between the FRS5 and a mercury manometer, a rotary piston gauge and a force-balanced piston gauge are described. We show that the reproducibility of the calibration values of capacitance diaphragm gauges is enhanced by a factor of 6 compared with a static expansion primary standard (SE2). Improvements of the SE2 performance by reducing the number of expansions and smaller uncertainties of expansion ratios are discussed.

  11. Initial Expansion of C4 Vegetation in Australia During the Late Pliocene

    NASA Astrophysics Data System (ADS)

    Andrae, J. W.; McInerney, F. A.; Polissar, P. J.; Sniderman, J. M. K.; Howard, S.; Hall, P. A.; Phelps, S. R.

    2018-05-01

    Since the late Miocene, plants using the C4 photosynthetic pathway have increased to become major components of many tropical and subtropical ecosystems. However, the drivers for this expansion remain under debate, in part because of the varied histories of C4 vegetation on different continents. Australia hosts the highest dominance of C4 vegetation of all continents, but little is known about the history of C4 vegetation there. Carbon isotope ratios of plant waxes from scientific ocean drilling sediments off north-western Australia reveal the onset of Australian C4 expansion at 3.5 Ma, later than in many other regions. Pollen analysis from the same sediments reveals increasingly open C3-dominated biomes preceding the shift to open C4-dominated biomes by several million years. We hypothesize that the development of a summer monsoon climate beginning in the late Pliocene promoted a highly seasonal precipitation regime favorable to the expansion of C4 vegetation.

  12. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor.

    PubMed

    Tsai, Ang-Chen; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) are considered as a primary candidate in cell therapy owing to their self-renewability, high differentiation capabilities, and secretions of trophic factors. In clinical application, a large quantity of therapeutically competent hMSCs is required that cannot be produced in conventional petri dish culture. Bioreactors are scalable and have the capacity to meet the production demand. Microcarrier suspension culture in stirred-tank bioreactors is the most widely used method to expand anchorage dependent cells in a large scale. Stirred-tank bioreactors have the potential to scale up and microcarriers provide the high surface-volume ratio. As a result, a spinner flask bioreactor with microcarriers has been commonly used in large scale expansion of adherent cells. This chapter describes a detailed culture protocol for hMSC expansion in a 125 mL spinner flask using microcarriers, Cytodex I, and a procedure for cell seeding, expansion, metabolic sampling, and quantification and visualization using microculture tetrazolium (MTT) reagent.

  13. Dimensional changes of upper airway after rapid maxillary expansion: a prospective cone-beam computed tomography study.

    PubMed

    Chang, Yoon; Koenig, Lisa J; Pruszynski, Jessica E; Bradley, Thomas G; Bosio, Jose A; Liu, Dawei

    2013-04-01

    The aim of this prospective study was to use cone-beam computed tomography to assess the dimensional changes of the upper airway in orthodontic patients with maxillary constriction treated by rapid maxillary expansion. Fourteen orthodontic patients (mean age, 12.9 years; range, 9.7-16 years) were recruited. The patients with posterior crossbite and constricted maxilla were treated with rapid maxillary expansion as the initial part of their comprehensive orthodontic treatments. Before and after rapid maxillary expansion cone-beam computed tomography scans were taken to measure the retropalatal and retroglossal airway changes in terms of volume, and sagittal and cross-sectional areas. The transverse expansions by rapid maxillary expansion were assessed between the midlingual alveolar bone plates at the maxillary first molar and first premolar levels. The measurements of the before and after rapid maxillary expansion scans were compared by using paired t tests with the Bonferroni adjustment for multiple comparisons. After rapid maxillary expansion, significant and equal amounts of 4.8 mm of expansion were observed at the first molar (P = 0.0000) and the first premolar (P = 0.0000) levels. The width increase at the first premolar level (20.0%) was significantly greater than that at the first molar level (15.0%) (P = 0.035). As the primary outcome variable, the cross-sectional airway measured from the posterior nasal spine to basion level was the only parameter showing a significant increase of 99.4 mm(2) (59.6%) after rapid maxillary expansion (P = 0.0004). These results confirm the findings of previous studies of the effect of rapid maxillary expansion on the maxilla. Additionally, we found that only the cross-sectional area of the upper airway at the posterior nasal spine to basion level significantly gains a moderate increase after rapid maxillary expansion. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Objectively Quantifying Radiation Esophagitis With Novel Computed Tomography–Based Metrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedzielski, Joshua S., E-mail: jsniedzielski@mdanderson.org; University of Texas Houston Graduate School of Biomedical Science, Houston, Texas; Yang, Jinzhong

    Purpose: To study radiation-induced esophageal expansion as an objective measure of radiation esophagitis in patients with non-small cell lung cancer (NSCLC) treated with intensity modulated radiation therapy. Methods and Materials: Eighty-five patients had weekly intra-treatment CT imaging and esophagitis scoring according to Common Terminlogy Criteria for Adverse Events 4.0, (24 Grade 0, 45 Grade 2, and 16 Grade 3). Nineteen esophageal expansion metrics based on mean, maximum, spatial length, and volume of expansion were calculated as voxel-based relative volume change, using the Jacobian determinant from deformable image registration between the planning and weekly CTs. An anatomic variability correction method wasmore » validated and applied to these metrics to reduce uncertainty. An analysis of expansion metrics and radiation esophagitis grade was conducted using normal tissue complication probability from univariate logistic regression and Spearman rank for grade 2 and grade 3 esophagitis endpoints, as well as the timing of expansion and esophagitis grade. Metrics' performance in classifying esophagitis was tested with receiver operating characteristic analysis. Results: Expansion increased with esophagitis grade. Thirteen of 19 expansion metrics had receiver operating characteristic area under the curve values >0.80 for both grade 2 and grade 3 esophagitis endpoints, with the highest performance from maximum axial expansion (MaxExp1) and esophageal length with axial expansion ≥30% (LenExp30%) with area under the curve values of 0.93 and 0.91 for grade 2, 0.90 and 0.90 for grade 3 esophagitis, respectively. Conclusions: Esophageal expansion may be a suitable objective measure of esophagitis, particularly maximum axial esophageal expansion and esophageal length with axial expansion ≥30%, with 2.1 Jacobian value and 98.6 mm as the metric value for 50% probability of grade 3 esophagitis. The uncertainty in esophageal Jacobian calculations can be reduced with anatomic correction methods.« less

  15. A database strategy for new variables

    Treesearch

    B. Tyler Wilson; Ali Conner; Glenn Christensen; John Shaw; Jason Meade; Larry Royer

    2012-01-01

    The introduction of new variables into the annual inventory system of the U.S. Forest Service’s Forest Inventory and Analysis (FIA) program can create issues with population estimates since evaluations (or expansion factors) based on a full cycle’s worth of data should not be used with new data that have not been collected for a full cycle. This manuscript provides...

  16. Linking environmental variability to population and community dynamics: Chapter 7

    USGS Publications Warehouse

    Pantel, Jelena H.; Pendleton, Daniel E.; Walters, Annika W.; Rogers, Lauren A.

    2014-01-01

    Linking population and community responses to environmental variability lies at the heart of ecology, yet methodological approaches vary and existence of broad patterns spanning taxonomic groups remains unclear. We review the characteristics of environmental and biological variability. Classic approaches to link environmental variability to population and community variability are discussed as are the importance of biotic factors such as life history and community interactions. In addition to classic approaches, newer techniques such as information theory and artificial neural networks are reviewed. The establishment and expansion of observing networks will provide new long-term ecological time-series data, and with it, opportunities to incorporate environmental variability into research. This review can help guide future research in the field of ecological and environmental variability.

  17. The Benefit of Microskin in Combination With Autologous Keratinocyte Suspension to Treat Full Skin Loss In Vivo.

    PubMed

    Yuru, Shang; Dawei, Li; Chuanan, Shen; Kai, Yin; Li, Ma; Longzhu, Li; Dongxu, Zhao; Wenfeng, Cheng

    Patients with extensive deep burns often lack enough autologous skin to cover the wounds. This study explores a new method using microskin in combination with autologous keratinocytes in the treatment of extensive deep burn. Wounds in the combination group were treated with automicroskin at an area expansion ratio of 20:1 (wound area to automicroskin area) and autologous keratinocyte suspension, which were compared with the following treatments: no autotransplant, only allografts (control group); autologous keratinocyte suspension only (keratinocyte only group); automicroskin at an area expansion ratio of 20:1 (20:1 group); and automicroskin at an area expansion ratio of 10:1 (10:1 group, positive control). The authors used epithelialization rate (epithelialized area on day 21 divided by original wound area), hematoxylin and eosin staining, laminin, and type IV collagen immunohistochemistry to assess wound healing. The epithelialization rate of combination group (74.2% ± 8.0%) was similar to that of 10: 1 group (84.3% ± 11.9%, P = .085) and significantly (P < .05) higher than that of 20:1 group (59.2% ± 10.8%), keratinocyte only group (53.8% ± 11.5%), and control group (22.7% ± 5.5%). The hematoxylin and eosin staining and immunohistochemistry showed the epithelialization in the combination group was better than that in the keratinocyte only group and control group. Microskin in combination with autologous keratinocyte suspension can promote the reepithelialization of full-thickness wounds and reduce the requirements for automircoskin, and it is a useful option in the treatment of extensive deep burns.

  18. Inter- and intraobserver variability of (semi-)quantitative parameters commonly used in feline thyroid scintigraphy.

    PubMed

    Volckaert, Veerle; Vandermeulen, Eva; Duchateau, Luc; Saunders, Jimmy H; Peremans, Kathelijne

    2016-04-01

    The aim of this study was to assess inter- and intraobserver variability of commonly used semi-quantitative and quantitative parameters in feline thyroid scintigraphy: thyroid to salivary gland ratio (T/S), thyroid to background ratio (T/B) and the percentage technetium pertechnetate uptake for the thyroid glands (%TcUT). These parameters are being used to diagnose thyroid disease and to assess its severity, but may be influenced by operator related factors when processing the images. Additionally, inter- and intraobserver variability of the percentage technetium pertechnetate uptake for the salivary glands was determined (%TcUSG). The study included technetium pertechnetate scans of 100 hyperthyroid cats. Variability within and between three observers was determined using a random effects model and variance components were estimated by the restricted maximum likelihood procedure. The %TcU for the thyroid and salivary glands, as well as the T/S ratio, showed little to no difference in inter- and intraobserver variability, whereas this was clearly present for the T/B ratio. Overall, the T/S ratio and %TcUSG showed a good repeatability and reproducibility with low inter- and intraobserver variabilities. Inter- and intraobserver variability was higher for the %TcUT, however variations were still considered to be acceptable. On the contrary, inter- and intraobserver variability was clearly larger for the T/B ratio. These findings suggest the preferential use of the T/S ratio or %TcU, especially in facilities with a less experienced staff. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Medicaid enrollment after liver transplantation: Effects of medicaid expansion.

    PubMed

    Tumin, Dmitry; Hayes, Don; Washburn, W Kenneth; Tobias, Joseph D; Black, Sylvester M

    2016-08-01

    Liver transplantation (LT) recipients in the United States have low rates of paid employment, making some eligible for Medicaid public health insurance after transplant. We test whether recent expansions of Medicaid eligibility increased Medicaid enrollment and insurance coverage in this population. Patients of ages 18-59 years receiving first-time LTs in 2009-2013 were identified in the United Network for Organ Sharing registry and stratified according to insurance at transplantation (private versus Medicaid/Medicare). Posttransplant insurance status was assessed through June 2015. Difference-in-difference multivariate competing-risks models stratified on state of residence estimated effects of Medicaid expansion on Medicaid enrollment or use of uninsured care after LT. Of 12,837 patients meeting inclusion criteria, 6554 (51%) lived in a state that expanded Medicaid eligibility. Medicaid participation after LT was more common in Medicaid-expansion states (25%) compared to nonexpansion states (19%; P < 0.001). Multivariate analysis of 7279 patients with private insurance at transplantation demonstrated that after the effective date of Medicaid expansion (January 1, 2014), the hazard of posttransplant Medicaid enrollment increased in states participating in Medicaid expansion (hazard ratio [HR] = 1.5; 95% confidence interval [CI] = 1.1-2.0; P = 0.01), but not in states opting out of Medicaid expansion (HR = 0.8; 95% CI = 0.5-1.3; P = 0.37), controlling for individual characteristics and time-invariant state-level factors. No effects of Medicaid expansion on the use of posttransplant uninsured care were found, regardless of private or government insurance status at transplantation. Medicaid expansion increased posttransplant Medicaid enrollment among patients who had private insurance at transplantation, but it did not improve overall access to health insurance among LT recipients. Liver Transplantation 22 1075-1084 2016 AASLD. © 2016 American Association for the Study of Liver Diseases.

  20. A double expansion method for the frequency response of finite-length beams with periodic parameters

    NASA Astrophysics Data System (ADS)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response and remarkable reduction of the maximum frequency response for certain parametric wave number and wave amplitude. The results have the potential application to structural vibration control.

  1. Relaxation of an unsteady turbulent boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gurta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semi-infinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion-tube flows. The flow-governing equations have been transformed into the Crocco variables, and a time-similar solution is presented in terms of the dimensionless distance-time variable alpha and the dimensionless velocity variable beta. An eddy-viscosity model, similar to that of time-steady boundary layers, is applied to the inner and outer regions of the boundary layer. A turbulent Prandtl number equal to the molecular Prandtl number is used to relate the turbulent heat flux to the eddy viscosity. The numerical results, obtained by using the Gauss-Seidel line-relaxation method, indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin friction than a laminar boundary layer. The results also give a fairly good estimate of the local skin friction and heat transfer for near steady-flow conditions.

  2. Genetic variability of Echinococcus granulosus based on the mitochondrial 16S ribosomal RNA gene.

    PubMed

    Wang, Ning; Wang, Jiahai; Hu, Dandan; Zhong, Xiuqin; Jiang, Zhongrong; Yang, Aiguo; Deng, Shijin; Guo, Li; Tsering, Dawa; Wang, Shuxian; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2015-06-01

    Echinococcus granulosus is the etiological agent of cystic echinococcosis, a major zoonotic disease of both humans and animals. In this study, we assessed genetic variability and genetic structure of E. granulosus in the Tibet plateau, using the complete mitochondrial 16 S ribosomal RNA gene for the first time. We collected and sequenced 62 isolates of E. granulosus from 3 populations in the Tibet plateau. A BLAST analysis indicated that 61 isolates belonged to E. granulosus sensu stricto (genotypes G1-G3), while one isolate belonged to E. canadensis (genotype G6). We detected 16 haplotypes with a haplotype network revealing a star-like expansion, with the most common haplotype occupying the center of the network. Haplotype diversity and nucleotide diversity were low, while negative values were observed for Tajima's D and Fu's Fs. AMOVA results and Fst values revealed that the three geographic populations were not genetically differentiated. Our results suggest that a population bottleneck or population expansion has occurred in the past, and that this explains the low genetic variability of E. granulosus in the Tibet Plateau.

  3. Role of multidecadal climate variability in a range extension of pinyon pine

    USGS Publications Warehouse

    Gray, Stephen T.; Betancourt, Julio L.; Jackson, Stephen T.; Eddy, Robert G.

    2006-01-01

    Evidence from woodrat middens and tree rings at Dutch John Mountain (DJM) in northeastern Utah reveal spatiotemporal patterns of pinyon pine (Pinus edulis Engelm.) colonization and expansion in the past millennium. The DJM population, a northern outpost of pinyon, was established by long-distance dispersal (~40 km). Growth of this isolate was markedly episodic and tracked multidecadal variability in precipitation. Initial colonization occurred by AD 1246, but expansion was forestalled by catastrophic drought (1250–1288), which we speculate produced extensive mortality of Utah Juniper (Juniperus osteosperma (Torr.) Little), the dominant tree at DJM for the previous ~8700 years. Pinyon then quickly replaced juniper across DJM during a few wet decades (1330–1339 and 1368–1377). Such alternating decadal-scale droughts and pluvial events play a key role in structuring plant communities at the landscape to regional level. These decadal-length precipitation anomalies tend to be regionally coherent and can synchronize physical and biological processes across large areas. Vegetation forecast models must incorporate these temporal and geographic aspects of climate variability to accurately predict the effects of future climate change.

  4. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter.

    PubMed

    Suzuki, Keijiro; Cong, Guangwei; Tanizawa, Ken; Kim, Sang-Hun; Ikeda, Kazuhiro; Namiki, Shu; Kawashima, Hitoshi

    2015-04-06

    We demonstrate a record-high extinction-ratio of 50.4 dB in a 2 × 2 silicon Mach-Zehnder switch equipped with a variable splitter as the front 3-dB splitter. The variable splitter is adjusted to compensate for the splitting-ratio mismatch between the front and rear 3-dB splitters. The high extinction ratio does not rely on waveguide crossings and meets a strong demand in applications to multiport circuit switches. Large fabrication tolerance will make the high extinction ratio compatible with a volume production with standard complementary metal-oxide semiconductor fabrication facilities.

  5. Healthcare Utilization After a Children's Health Insurance Program Expansion in Oregon.

    PubMed

    Bailey, Steffani R; Marino, Miguel; Hoopes, Megan; Heintzman, John; Gold, Rachel; Angier, Heather; O'Malley, Jean P; DeVoe, Jennifer E

    2016-05-01

    The future of the Children's Health Insurance Program (CHIP) is uncertain after 2017. Survey-based research shows positive associations between CHIP expansions and children's healthcare utilization. To build on this prior work, we used electronic health record (EHR) data to assess temporal patterns of healthcare utilization after Oregon's 2009-2010 CHIP expansion. We hypothesized increased post-expansion utilization among children who gained public insurance. Using EHR data from 154 Oregon community health centers, we conducted a retrospective cohort study of pediatric patients (2-18 years old) who gained public insurance coverage during the Oregon expansion (n = 3054), compared to those who were continuously publicly insured (n = 10,946) or continuously uninsured (n = 10,307) during the 2-year study period. We compared pre-post rates of primary care visits, well-child visits, and dental visits within- and between-groups. We also conducted longitudinal analysis of monthly visit rates, comparing the three insurance groups. After Oregon's 2009-2010 CHIP expansions, newly insured patients' utilization rates were more than double their pre-expansion rates [adjusted rate ratios (95 % confidence intervals); increases ranged from 2.10 (1.94-2.26) for primary care visits to 2.77 (2.56-2.99) for dental visits]. Utilization among the newly insured spiked shortly after coverage began, then leveled off, but remained higher than the uninsured group. This study used EHR data to confirm that CHIP expansions are associated with increased utilization of essential pediatric primary and preventive care. These findings are timely to pending policy decisions that could impact children's access to public health insurance in the United States.

  6. Does stinging nettle (Urtica dioica) have an effect on bone formation in the expanded inter-premaxillary suture?

    PubMed

    Irgin, Celal; Çörekçi, Bayram; Ozan, Fatih; Halicioğlu, Koray; Toptaş, Orçun; Birinci Yildirim, Arzu; Türker, Arzu; Yilmaz, Fahri

    2016-09-01

    To determine whether systemically given stinging nettle (SN) has an effect on bone formation in response to expansion of the rat inter-premaxillary suture. A total of 28 male Wistar albino rats were randomly divided into 4 equal groups: control (C), only expansion (OE), SN extract given only during the expansion and retention periods (SN group; a total of 17days), and SN extract given during the nursery phase before expansion (a period of 40days) and during the expansion and retention periods (N+SN group; a total of 57days). After the 5-day expansion period was completed, the rats in the OE, SN, and N+SN groups underwent 12days of mechanical retention, after which they were sacrificed, and their premaxilla were dissected and fixed. A histologic evaluation was done to determine the number of osteoblasts, osteoclasts, and capillaries, as well as the number and intensity of inflammatory cells and new bone formation. Statistically significant differences were found between the groups in all histologic parameters except the ratio of intensities of inflammatory cells. New bone formation and the number of capillaries were significantly higher in the SN groups than in the other groups. The statistical analysis also showed that the numbers of osteoblasts, osteoclasts, and capillaries were highest in the N+SN group. Systemic administration of SN may be effective in accelerating new bone formation and reducing inflammation in the maxillary expansion procedure. It may also be beneficial in preventing relapse after the expansion procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Unusual thermal expansion of Sr{sub 2}IrO{sub 4}: A variable temperature synchrotron X-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjbar, Ben; Kennedy, Brendan J.

    The structure of Sr{sub 2}IrO{sub 4} has been studied between 20 and 1273 K using synchrotron X-ray diffraction. Sr{sub 2}IrO{sub 4} undergoes an apparently continuous transition from I4{sub 1}/acd to I4/mmm near 1123 K. The cooperative tilting of the corner sharing IrO{sub 6} octahedra in I4{sub 1}/acd results in highly anisotropic and unusual thermal expansion behavior with negative thermal expansion along the c-axis. - Graphical abstract: The progressive reduction in the magnitude of the tilting of the corner sharing IrO{sub 6} octahedra in Sr{sub 2}IrO{sub 4} results in negative thermal expansion along the c-axis before undergoing an apparently continuous transitionmore » from I4{sub 1}/acd to I4/mmm near 1123 K. - Highlights: • Thermal expansion of Sr{sub 2}IrO{sub 4} was studied using Synchrotron-XRD. • Unusual negative thermal expansion along c-axis observed. • I4{sub 1}/acd→I4/mmm phase transition detected near 1120 K. • Tilting of the corner sharing IrO{sub 6} octahedra related to the observed NTE.« less

  8. Species–genus ratios reflect a global history of diversification and range expansion in marine bivalves

    PubMed Central

    Krug, Andrew Z; Jablonski, David; Valentine, James W

    2008-01-01

    The distribution of marine bivalve species among genera and higher taxa takes the form of the classic hollow curve, wherein few lineages are species rich and many are species poor. The distribution of species among genera (S/G ratio) varies with latitude, with temperate S/G's falling within the null expectation, and tropical and polar S/G's exceeding it. Here, we test several hypotheses for this polar overdominance in the species richness of small numbers of genera. We find a significant positive correlation between the latitudinal range of a genus and its species richness, both globally and within regions. Genus age and species richness are also positively related, but this relationship breaks down when the analysis is limited to genera endemic to climate zones or with narrow latitudinal ranges. The data suggest a link between speciation and range-expansion, with genera expanding out of the tropical latitudinal bins tending to speciate more prolifically, both globally and regionally. These genera contain more species within climate zones than taxa endemic to that zone. Range expansion thus appears to be fundamentally coupled with speciation, producing the skewed distribution of species among genera, both globally and regionally, whereas clade longevity is achieved through extinction—resistance conferred by broad geographical ranges. PMID:18270156

  9. Zirconium tungstate/epoxy nanocomposites: effect of nanoparticle morphology and negative thermal expansivity.

    PubMed

    Wu, Hongchao; Rogalski, Mark; Kessler, Michael R

    2013-10-09

    The ability to tailor the coefficient of thermal expansion (CTE) of a polymer is essential for mitigating thermal residual stress and reducing microcracks caused by CTE mismatch of different components in electronic applications. This work studies the effect of morphology and thermal expansivity of zirconium tungstate nanoparticles on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of ZrW2O8/epoxy nanocomposites. Three types of ZrW2O8 nanoparticles were synthesized under different hydrothermal conditions and their distinct properties were characterized, including morphology, particle size, aspect ratio, surface area, and CTE. Nanoparticles with a smaller particle size and larger surface area led to a more significant reduction in gel-time and glass transition temperature of the epoxy nanocomposites, while a higher initial viscosity and significant shear thinning behavior was found in prepolymer suspensions containing ZrW2O8 with larger particle sizes and aspect ratios. The thermo- and dynamic-mechanical properties of epoxy-based nanocomposites improved with increasing loadings of the three types of ZrW2O8 nanoparticles. In addition, the introduced ZrW2O8 nanoparticles did not negatively affect the dielectric constant or the breakdown strength of the epoxy resin, suggesting potential applications of ZrW2O8/epoxy nanocomposites in the microelectronic insulation industry.

  10. Synergistic Effects of Ethanol and Isopentenyl Pyrophosphate on Expansion of γδ T Cells in Synovial Fluid from Patients with Arthritis

    PubMed Central

    Laurent, Agneta J.; Bindslev, Niels; Johansson, Björn; Berg, Louise

    2014-01-01

    Low to moderate ethanol consumption has been associated with protective effects in autoimmune diseases such as rheumatoid arthritis, RA. An expansion of γδ T cells induced by isopentenyl pyrophosphate, IPP, likewise seems to have a protective role in arthritis. The aim of this project was to test the hypothesis that low doses of ethanol can enhance IPP-induced expansion of synovial fluid γδ T cells from patients with arthritis and may thereby potentially account for the beneficial effects of ethanol on symptoms of the arthritic process. Thus, mononuclear cells from synovial fluid (SF) from 15 patients with arthritis and from peripheral blood (PB) from 15 healthy donors were stimulated with low concentrations of ethanol and IPP for 7 days in vitro. IPP in combination with ethanol 0.015%, 2.5 mM, equivalent to the decrease per hour in blood ethanol concentration due to metabolism, gave a significantly higher fractional expansion of SF γδ T cells compared with IPP alone after 7 days (ratio 10.1+/−4.0, p<0.0008, n = 12) in patients with arthritis. Similar results were obtained for PB γδ T cells from healthy controls (ratio 2.0+/−0.4, p<0.011, n = 15). The augmented expansion of γδ T cells in SF is explained by a higher proliferation (p = 0.0034, n = 11) and an increased survival (p<0.005, n = 11) in SF cultures stimulated with IPP plus ethanol compared to IPP alone. The synergistic effects of IPP and ethanol indicate a possible allosteric effect of ethanol. Similar effects could be seen when stimulating PB with ethanol in presence of risedronate, which has the ability to increase endogenous levels of IPP. We conclude that expansion of γδ T cells by combinatorial drug effects, possibly in fixed-dose combination, FDC, of ethanol in the presence of IPP might give a protective role in diseases such as arthritis. PMID:25090614

  11. Effects of agricultural intensification on ability of natural enemies to control aphids

    PubMed Central

    Zhao, Zi-Hua; Hui, Cang; He, Da-Han; Li, Bai-Lian

    2015-01-01

    Agricultural intensification through increasing fertilization input and cropland expansion has caused rapid loss of semi-natural habitats and the subsequent loss of natural enemies of agricultural pests. It is however extremely difficult to disentangle the effects of agricultural intensification on arthropod communities at multiple spatial scales. Based on a two-year study of seventeen 1500 m-radius sites, we analyzed the relative importance of nitrogen input and cropland expansion on cereal aphids and their natural enemies. Both the input of nitrogen fertilizer and cropland expansion benefited cereal aphids more than primary parasitoids and leaf-dwelling predators, while suppressing ground-dwelling predators, leading to an disturbance of the interspecific relationship. The responses of natural enemies to cropland expansion were asymmetric and species-specific, with an increase of primary parasitism but a decline of predator/pest ratio with the increasing nitrogen input. As such, agricultural intensification (increasing nitrogen fertilizer and cropland expansion) can destabilize the interspecific relationship and lead to biodiversity loss. To this end, sustainable pest management needs to balance the benefit and cost of agricultural intensification and restore biocontrol service through proliferating the role of natural enemies at multiple scales. PMID:25620737

  12. When do particle ratios freeze out in relativistic heavy ion collisions?

    NASA Astrophysics Data System (ADS)

    Humanic, Thomas; Bellwied, Rene

    1999-10-01

    The systematics of CERN SPS data for transverse mass distributions have been shown to imply that thermal equilibrium is achieved at freeze out in these collisions. This conclusion is based on the observation that for p+p, S+S, and Pb+Pb collisions freeze out occurs at a single temperature for all particle species measured if one assumes a certain uniform expansion velocity after hadronization for each colliding system [1]. A recent final- state rescattering calculation for SPS Pb+Pb collisions has shown that these systematics can be described as a consequence of particle rescattering where the system is assumed initially (i.e. at hadronization) to have a common temperature for all particles and no initial expansion velocity [2]. In addition to kinetic observables, it is equally interesting to investigate the time dependence of particle abundances through particle ratios in such a calculation. Two questions immediately arise: 1) is chemical equilibrium established in these collisions, and 2) when does chemical freeze out occur with respect to thermal freeze out for different particle ratios? How rescattering influences particle ratios is clearly of interest if one would like to deduce information about the hadronization stage of the collision from particle ratios measured at freeze out. For the present work we will show results for strange and non-strange particle ratios within the context of a version of the dynamic transport code used in Ref. [2]. [1] NA44 colaboration, I.G. Bearden et al., Phys. Rev. Lett. 78,2080(1997), [2] T. J. Humanic, Phys. Rev. C 57,866(1998)

  13. An eddy-viscosity treatment of the unsteady turbulent boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semiinfinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion tube flows. The flow-governing equations have been transformed into the Lamcrocco variables. The numerical results indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin-friction than a fully laminar boundary layer.

  14. The F(N) method for the one-angle radiative transfer equation applied to plant canopies

    NASA Technical Reports Server (NTRS)

    Ganapol, B. D.; Myneni, R. B.

    1992-01-01

    The paper presents a semianalytical solution method, called the F(N) method, for the one-angle radiative transfer equation in slab geometry. The F(N) method is based on two integral equations specifying the intensities exiting the boundaries of the vegetation canopy; the solution is obtained through an expansion in a set of basis functions with expansion coefficients to be determined. The advantage of this method is that it avoids spatial truncation error entirely because it requires discretization only in the angular variable.

  15. High Voltage Flux Compression Generators

    DTIC Science & Technology

    2008-04-02

    the generator: the armature radial expansion speed, the high explosive (HE) detonation speed, and the armature-stator helical contact speed. Clearly... detonation speeds, which are also the speed at which the self-similar expanding armature cone moves axially, are on the order of 8 to 9 mm/μs...product of detonation speed and the ratio of stator underside circumference to pitch, ( )prvv sc π2Δ= rr . For a typical circumference-to-pitch ratio

  16. Laboratory Evaluation of the Effects of 3-Chloride Compounds on the Geotechnical Properties of an Expansive Subgrade Soil

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, G.; Anjan Kumar, M.; Raju, G. V. R. Prasada

    2017-12-01

    Expansive soils are known to be problematic due to their nature and behavior. These soils show volume changes due to changes in moisture content, which cause distortions to structures constructed on them. Relentless efforts are being made all over the world to find solution to the problems of expansive soils. In the case of flexible pavements, unless the subgrade is appropriately treated during the construction stage, the maintenance cost will increase substantially due to deterioration. There are many methods of stabilising expansive subgrade soils. Chemical stabilisation is one such technique employed in improving the engineering properties of the expansive soil. Investigations on chemical stabilization of expansive soils revealed that conventionally used lime could be replaced by the chloride compound chemicals because of their ready dissolvability in water, ease of mixing with soil and supply of sufficient cations for ready cation exchange. The main objective of this work is to study the effectiveness of three chloride compound chemicals, ammonium chloride (NH4Cl), magnesium chloride (MgCl2) and aluminum chloride (AlCl3) on the geotechnical properties of an expansive soil. The chemicals content up to 2% were added to the soil and its effect on the index limits, swell pressure, compaction characteristics as well as California bearing ratio are studied. It was observed that aluminum chloride chemical content has a significantly higher influence than the other two chemicals and it could be recognized as an effective chemical stabilizer.

  17. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    PubMed

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  18. Coupling-parameter expansion in thermodynamic perturbation theory.

    PubMed

    Ramana, A Sai Venkata; Menon, S V G

    2013-02-01

    An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.

  19. Phase behaviour, thermal expansion and compressibility of SnMo2O8

    NASA Astrophysics Data System (ADS)

    Araujo, Luiza R.; Gallington, Leighanne C.; Wilkinson, Angus P.; Evans, John S. O.

    2018-02-01

    The phase behaviour and thermoelastic properties of SnMo2O8, derived from variable temperature and pressure synchrotron powder diffraction data, are reported. SnMo2O8 is a member of the AM2O8 family of negative thermal expansion (NTE) materials, but unexpectedly, has positive thermal expansion. Over the P-T space explored (298-513 K, ambient to 310 MPa) four different forms of SnMo2O8 are observed: α, β, γ and γ‧. The γ to β transition is temperature-, pressure-, and time-dependent. SnMo2O8 is a much softer material (α and γ form have BT = 29 and 26 GPa at 298 K) than other members of the AM2O8 family. Counter-intuitively, its high temperature β phase becomes stiffer with increasing temperature (BT ∼36 GPa at 490 K). The pressure dependence of the thermal expansion for each phase is reported.

  20. Phase behaviour, thermal expansion and compressibility of SnMo 2 O 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Luiza R.; Gallington, Leighanne C.; Wilkinson, Angus P.

    The phase behaviour and thermoelastic properties of SnMo2O8, derived from variable temperature and pressure synchrotron powder diffraction data, are reported. SnMo2O8 is a member of the AM2O8 family of negative thermal expansion (NTE) materials, but unexpectedly, has positive thermal expansion. Over the P-T space explored (298–513 K, ambient to 310 MPa) four different forms of SnMo2O8 are observed: α, β, γ and γ'. The γ to β transition is temperature-, pressure-, and time-dependent. SnMo2O8 is a much softer material (α and γ form have BT = 29 and 26 GPa at 298 K) than other members of the AM2O8 family.more » Counter-intuitively, its high temperature β phase becomes stiffer with increasing temperature (BT ~36 GPa at 490 K). The pressure dependence of the thermal expansion for each phase is reported.« less

  1. A Meta-Analysis of Global Urban Land Expansion

    PubMed Central

    Seto, Karen C.; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K.

    2011-01-01

    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely. PMID:21876770

  2. Influence of fire on black-tailed prairie dog colony expansion in shortgrass steppe

    USGS Publications Warehouse

    Augustine, D.J.; Cully, J.F.; Johnson, T.L.

    2007-01-01

    Factors influencing the distribution and abundance of black-tailed prairie dog (Cynomys ludovicianus) colonies are of interest to rangeland managers because of the significant influence prairie dogs can exert on both livestock and biodiversity. We examined the influence of 4 prescribed burns and one wildfire on the rate and direction of prairie dog colony expansion in shortgrass steppe of southeastern Colorado. Our study was conducted during 2 years with below-average precipitation, when prairie dog colonies were expanding throughout the study area. Under these dry conditions, the rate of black-tailed prairie dog colony expansion into burned grassland (X?? = 2.6 ha??100-m perimeter-1??y-1; range = 0.8-5.9 ha??100-m perimeter-1??y-1; N = 5 colonies) was marginally greater than the expansion rate into unburned grassland (X?? =1.3 ha??100-m perimeter-1??y-1; range = 0.2-4.9 ha??100-m perimeter-1??y-1; N = 23 colonies; P = 0.066). For 3 colonies that were burned on only a portion of their perimeter, we documented consistently high rates of expansion into the adjacent burned grassland (38%-42% of available burned habitat colonized) but variable expansion rates into the adjacent unburned grassland (2%-39% of available unburned habitat colonized). While our results provide evidence that burning can increase colony expansion rate even under conditions of low vegetative structure, this effect was minor at the scale of the overall colony complex because some unburned colonies were also able to expand at high rates. This result highlights the need to evaluate effects of fire on colony expansion during above-average rainfall years, when expansion into unburned grassland may be considerably lower.

  3. Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley; Frew, Bethany; Mai, Trieu

    Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision-makers. With the recent surge in variable renewable energy (VRE) generators — primarily wind and solar photovoltaics — the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. This report summarizes the analyses and model experiments that were conducted as part of two workshops on modeling VRE for national-scale capacity expansion models. It discusses the various methods for treatingmore » VRE among four modeling teams from the Electric Power Research Institute (EPRI), the U.S. Energy Information Administration (EIA), the U.S. Environmental Protection Agency (EPA), and the National Renewable Energy Laboratory (NREL). The report reviews the findings from the two workshops and emphasizes the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making. This research is intended to inform the energy modeling community on the modeling of variable renewable resources, and is not intended to advocate for or against any particular energy technologies, resources, or policies.« less

  4. QCD equation of state to O (μB6) from lattice QCD

    NASA Astrophysics Data System (ADS)

    Bazavov, A.; Ding, H.-T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, Swagato; Ohno, H.; Petreczky, P.; Sandmeyer, H.; Steinbrecher, P.; Schmidt, C.; Sharma, S.; Soeldner, W.; Wagner, M.

    2017-03-01

    We calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ∈[135 MeV ,330 MeV ] using up to four different sets of lattice cutoffs corresponding to lattices of size Nσ3×Nτ with aspect ratio Nσ/Nτ=4 and Nτ=6 - 16 . The strange quark mass is tuned to its physical value, and we use two strange to light quark mass ratios ms/ml=20 and 27, which in the continuum limit correspond to a pion mass of about 160 and 140 MeV, respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (μB≤2 T ). The fourth-order equation of state thus is suitable for the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √{sN N}˜12 GeV . We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth-order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -μB plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. We argue that results on sixth-order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for μB/T ≤2 and T /Tc(μB=0 )>0.9 .

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazavov, A.; Ding, H. -T.; Hegde, P.

    In this work, we calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ϵ [135 MeV, 330 MeV] using up to four different sets of lattice cut-offs corresponding to lattices of size Nmore » $$3\\atop{σ}$$ × N τ with aspect ratio N σ/N τ = 4 and N τ = 6-16. The strange quark mass is tuned to its physical value and we use two strange to light quark mass ratios m s/m l = 20 and 27, which in the continuum limit correspond to a pion mass of about 160 MeV and 140 MeV respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (µ B ≤ 2T ). The fourth-order equation of state thus is suitable for √the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √sNN ~ 12 GeV. We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -µ B plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. Lastly, we argue that results on sixth order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for µ B/T ≤ 2 and T/T c(µ B = 0) > 0.9.« less

  6. Investigation of Thermal Expansion Properties of Single Walled Carbon Nanotubes by Raman Spectroscopy and Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Casimir, Daniel

    The mechanical properties of nano-sized materials seem to differ significantly from the predicted behavior of their bulk macroscopic counterparts (Smart, 2014, 16). The former tend to be stronger, more malleable and exhibit greater flexibility. The thermal properties of materials have also been shown to be altered significantly after having been shrunken to nanometer dimensions. The nano material that exhibits this peculiar behavior that is studied in this dissertation are single walled carbon nanotubes. Single walled carbon nanotubes are hollow cylindrical tubes that are one atomic layer in thickness and made up of sp2 hybridized carbon atoms. The majority of samples have diameters on the order 1 nm, with lengths ranging from 1 micron to sometimes a centimeter (Tomanek, 2008, v). The thermo-mechanical quantity that I specifically examine in this research is the linear and volume thermal expansion coefficients of SWCNTs. The mean linear thermal expansion coefficient is the ratio of the change in unit length in response to a 1 degree Celsius rise in temperature. The "true" value of this quantity is obtained in the theoretical limit of a vanishing temperature range DeltaT in the ratio stated above. However, this simply stated thermo-mechanical quantity for Carbon Nanotubes still remains a controversial topic, with widespread discrepancies among results of certain magnitudes - such as the temperature at the occurrence of maximum contraction, and at the transition from contraction to expansion. In conclusion, there is much incentive in examining the somewhat controversial variation in the behavior and quoted values of the thermal expansion of these quasi one-dimensional objects. In this study, I examine this important property of single walled carbon nanotubes using Resonant Raman Spectroscopy and Molecular Dynamics Simulation based on the Adaptive Intermolecular Reactive Empirical Bond Order potential. The latter is a well established potential that is well-suited to modeling chemical reactions in condensed hydrocarbons (Stuart, et al., 2000, 6472).

  7. Pavement Technology and Airport Infrastructure Expansion Impact

    NASA Astrophysics Data System (ADS)

    Sabib; Setiawan, M. I.; Kurniasih, N.; Ahmar, A. S.; Hasyim, C.

    2018-01-01

    This research aims for analyzing construction and infrastructure development activities potential contribution towards Airport Performance. This research is correlation study with variable research that includes Airport Performance as X variable and construction and infrastructure development activities as Y variable. The population in this research is 148 airports in Indonesia. The sampling technique uses total sampling, which means 148 airports that becomes the population unit then all of it become samples. The results of coefficient correlation (R) test showed that construction and infrastructure development activities variable have a relatively strong relationship with Airport Performance variable, but the value of Adjusted R Square shows that an increase in the construction and infrastructure development activities is influenced by factor other than Airport Performance.

  8. Evaluation of the rapid and slow maxillary expansion using cone-beam computed tomography: a randomized clinical trial

    PubMed Central

    Pereira, Juliana da S.; Jacob, Helder B.; Locks, Arno; Brunetto, Mauricio; Ribeiro, Gerson L. U.

    2017-01-01

    ABSTRACT OBJECTIVE: The aim of this randomized clinical trial was to evaluate the dental, dentoalveolar, and skeletal changes occurring right after the rapid maxillary expansion (RME) and slow maxillary expansion (SME) treatment using Haas-type expander. METHODS: All subjects performed cone-beam computed tomography (CBCT) before installation of expanders (T1) and right after screw stabilization (T2). Patients who did not follow the research parameters were excluded. The final sample resulted in 21 patients in RME group (mean age of 8.43 years) and 16 patients in SME group (mean age of 8.70 years). Based on the skewness and kurtosis statistics, the variables were judged to be normally distributed and paired t-test and student t-test were performed at significance level of 5%. RESULTS: Intermolar angle changed significantly due to treatment and RME showed greater buccal tipping than SME. RME showed significant changes in other four measurements due to treatment: maxilla moved forward and mandible showed backward rotation and, at transversal level both skeletal and dentoalveolar showed significant changes due to maxillary expansion. SME showed significant dentoalveolar changes due to maxillary expansion. CONCLUSIONS: Only intermolar angle showed significant difference between the two modalities of maxillary expansion with greater buccal tipping for RME. Also, RME produced skeletal maxillary expansion and SME did not. Both maxillary expansion modalities were efficient to promote transversal gain at dentoalveolar level. Sagittal and vertical measurements did not show differences between groups, but RME promoted a forward movement of the maxilla and backward rotation of the mandible. PMID:28658357

  9. A fixed mass method for the Kramers-Moyal expansion--application to time series with outliers.

    PubMed

    Petelczyc, M; Żebrowski, J J; Orłowska-Baranowska, E

    2015-03-01

    Extraction of stochastic and deterministic components from empirical data-necessary for the reconstruction of the dynamics of the system-is discussed. We determine both components using the Kramers-Moyal expansion. In our earlier papers, we obtained large fluctuations in the magnitude of both terms for rare or extreme valued events in the data. Calculations for such events are burdened by an unsatisfactory quality of the statistics. In general, the method is sensitive to the binning procedure applied for the construction of histograms. Instead of the commonly used constant width of bins, we use here a constant number of counts for each bin. This approach-the fixed mass method-allows to include in the calculation events, which do not yield satisfactory statistics in the fixed bin width method. The method developed is general. To demonstrate its properties, here, we present the modified Kramers-Moyal expansion method and discuss its properties by the application of the fixed mass method to four representative heart rate variability recordings with different numbers of ectopic beats. These beats may be rare events as well as outlying, i.e., very small or very large heart cycle lengths. The properties of ectopic beats are important not only for medical diagnostic purposes but the occurrence of ectopic beats is a general example of the kind of variability that occurs in a signal with outliers. To show that the method is general, we also present results for two examples of data from very different areas of science: daily temperatures at a large European city and recordings of traffics on a highway. Using the fixed mass method, to assess the dynamics leading to the outlying events we studied the occurrence of higher order terms of the Kramers-Moyal expansion in the recordings. We found that the higher order terms of the Kramers-Moyal expansion are negligible for heart rate variability. This finding opens the possibility of the application of the Langevin equation to the whole range of empirical signals containing rare or outlying events. Note, however, that the higher order terms are non-negligible for the other data studied here and for it the Langevin equation is not applicable as a model.

  10. Study of polytropic exponent based on high pressure switching expansion reduction

    NASA Astrophysics Data System (ADS)

    Wang, Xuanyin; Luo, Yuxi; Xu, Zhipeng

    2011-10-01

    Switching expansion reduction (SER) uses a switch valve to substitute the throttle valve to reduce pressure for high pressure pneumatics. The experiments indicate that the simulation model well predicts the actual characteristics. The heat transfers and polytropic exponents of the air in expansion tank and supply tanks of SER have been studied on the basis of the experiments and the simulation model. Through the mathematical reasoning in this paper, the polytropic exponent can be calculated by the air mass, heat, and work exchanges of the pneumatic container. For the air in a constant volume tank, when the heat-absorption is large enough to raise air temperature in discharging process, the polytropic exponent is less than 1; when the air is experiencing a discharging and heat-releasing process, the polytropic exponent exceeds the specific heat ratio (the value of 1.4).

  11. Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA.

    PubMed

    Yu, Yanwu; Jiang, Lan; Cao, Qiang; Xia, Bo; Wang, Qingsong; Lu, Yongfeng

    2015-12-14

    A pump-probe shadowgraph imaging technique was used to reveal the femtosecond-picosecond-nanosecond multitimescale fundamentals of high-quality, high-aspect-ratio (up to 287:1) microhole drilling in poly-methyl-meth-acrylate (PMMA) by a single-shot femtosecond laser Bessel beam. The propagation of Bessel beam in PMMA (at 1.98 × 10⁸ m/s) and it induced cylindrical pressure wave expansion (at 3000-3950 m/s in radius) were observed during drilling processes. Also, it was unexpectedly found that the expansion of the cylindrical pressure wave in PMMA showed a linear relation with time and was insensitive to the laser energy fluctuation, quite different from the case in air. It was assumed that the energy insensitivity was due to the anisotropy of wave expansion in PMMA and the ambient air.

  12. Evaluation of Four Advanced Nozzle Concepts for Short Takeoff and Landing Performance

    NASA Technical Reports Server (NTRS)

    Quinto, P. Frank; Kemmerly, Guy T.; Paulson, John W., Jr.

    1993-01-01

    Four advanced nozzle concepts were tested on a canard-wing fighter in the Langley 14- by 22-Foot Subsonic Tunnel. The four vectoring-nozzle concepts were as follows: (1) an axisymmetric nozzle (AXI); (2) an asymmetric, load balanced exhaust nozzle (ALBEN); (3) a low aspect ratio, single expansion ramp nozzle (LASERN); and (4) a high aspect ratio, single expansion ramp nozzle (HASERN). The investigation was conducted to determine the most suitable nozzle concept for short takeoff and landing (STOL) performance. The criterion for the best STOL performance was a takeoff ground roll of less than 1000 ft. At approach, the criteria were high lift and sufficient drag to maintain a glide slope of -3 to -6 deg with enough pitching-moment control from the canards. The test was performed at a dynamic pressure of 45 lb/sq ft and an angle-of-attack range of 0 to 20 deg. The nozzle pressure ratio was varied from 1.0 to 4.3 at both dry power and after burning nozzle configurations with nozzle vectoring to 60 deg. In addition, the model was tested in and out of ground effects. The ALBEN concept was the best of the four nozzle concepts tested for STOL performance.

  13. Expansion of a multicomponent current-carrying plasma jet into vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasov, V. I.; Paperny, V. L., E-mail: paperny@math.isu.runnet.ru

    An expression for the ion−ion coupling in a multicomponent plasma jet is derived for an arbitrary ratio between the thermal and relative velocities of the components. The obtained expression is used to solve the problem on the expansion of a current-carrying plasma microjet emitted from the cathode surface into vacuum. Two types of plasmas with two ion components are analyzed: (i) plasma in which the ion components of equal masses are in the charge states Z{sub 1}= +1 and Z{sub 2}= +2 and (ii) plasma with ions in equal charge states but with the mass ratio m{sub 1}/m{sub 2} =more » 2. It is shown that, for such plasmas, the difference between the velocities of the plasma components remains substantial (about 10% of the average jet velocity in case (i) and 15% in case (ii)) at distances of several centimeters from the emission center, where it can be measured experimentally, provided that its initial value at the emitting cathode surface exceeds a certain threshold. This effect is investigated as a function of the mass ratio and charge states of the ion components.« less

  14. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    NASA Astrophysics Data System (ADS)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  15. Solitons, Lie Group Analysis and Conservation Laws of a (3+1)-Dimensional Modified Zakharov-Kuznetsov Equation in a Multicomponent Magnetised Plasma

    NASA Astrophysics Data System (ADS)

    Du, Xia-Xia; Tian, Bo; Chai, Jun; Sun, Yan; Yuan, Yu-Qiang

    2017-11-01

    In this paper, we investigate a (3+1)-dimensional modified Zakharov-Kuznetsov equation, which describes the nonlinear plasma-acoustic waves in a multicomponent magnetised plasma. With the aid of the Hirota method and symbolic computation, bilinear forms and one-, two- and three-soliton solutions are derived. The characteristics and interaction of the solitons are discussed graphically. We present the effects on the soliton's amplitude by the nonlinear coefficients which are related to the ratio of the positive-ion mass to negative-ion mass, number densities, initial densities of the lower- and higher-temperature electrons and ratio of the lower temperature to the higher temperature for electrons, as well as by the dispersion coefficient, which is related to the ratio of the positive-ion mass to the negative-ion mass and number densities. Moreover, using the Lie symmetry group theory, we derive the Lie point symmetry generators and the corresponding symmetry reductions, through which certain analytic solutions are obtained via the power series expansion method and the (G'/G) expansion method. We demonstrate that such an equation is strictly self-adjoint, and the conservation laws associated with the Lie point symmetry generators are derived.

  16. Stiffness and Poisson ratio in longitudinal compression of fiber yarns in meso-FE modelling of composite reinforcement forming

    NASA Astrophysics Data System (ADS)

    Wang, D.; Naouar, N.; Vidal-Salle, E.; Boisse, P.

    2018-05-01

    In meso-scale finite element modeling, the yarns of the reinforcement are considered to be solids made of a continuous material in contact with their neighbors. The present paper consider the mechanical behavior of these yarns that can happen for some loadings of the reinforcement. The yarns present a specific mechanical behavior when under longitudinal compression because they are made up of a large number of fibers, Local buckling of the fibers causes the compressive stiffness of the continuous material representing the yarn to be much weaker than when under tension. In addition, longitudinal compression causes an important transverse expansion. It is shown that the transverse expansion can be depicted by a Poisson ratio that remained roughly constant when the yarn length and the compression strain varied. Buckling of the fibers significantly increases the transverse dimensions of the yarn which leads to a large Poisson ratio (up to 12 for a yarn analyzed in the present study). Meso-scale finite element simulations of reinforcements with binder yarns submitted to longitudinal compression showed that these improvements led to results in good agreement with micro-CT analyses.

  17. Assessment of vertical changes during maxillary expansion using quad helix or bonded rapid maxillary expander.

    PubMed

    Conroy-Piskai, Cara; Galang-Boquiren, Maria Therese S; Obrez, Ales; Viana, Maria Grace Costa; Oppermann, Nelson; Sanchez, Flavio; Edgren, Bradford; Kusnoto, Budi

    2016-11-01

    To determine if there is a significantly different effect on vertical changes during phase I palatal expansion treatment using a quad helix and a bonded rapid maxillary expander in growing skeletal Class I and Class II patients. This retrospective study looked at 2 treatment groups, a quad helix group and a bonded rapid maxillary expander group, before treatment (T1) and at the completion of phase I treatment (T2). Each treatment group was compared to an untreated predicted growth model. Lateral cephalograms at T1 and T2 were traced and analyzed for changes in vertical dimension. No differences were found between the treatment groups at T1, but significant differences at T2 were found for convexity, lower facial height, total facial height, facial axis, and Frankfort Mandibular Plane Angle (FMA) variables. A comparison of treatment groups at T2 to their respective untreated predicted growth models found a significant difference for the lower facial height variable in the quad helix group and for the upper first molar to palatal plane (U6-PP) variable in the bonded expander group. Overall, both the quad helix expander and the bonded rapid maxillary expander showed minimal vertical changes during palatal expansion treatment. The differences at T2 suggested that the quad helix expander had more control over skeletal vertical measurements. When comparing treatment results to untreated predicted growth values, the quad helix expander appeared to better maintain lower facial height and the bonded rapid maxillary expander appeared to better maintain the maxillary first molar vertical height.

  18. Theoretical performance of some rocket propellants containing hydrogen, nitrogen, and oxygen

    NASA Technical Reports Server (NTRS)

    Miller, Riley O; Ordin, Paul M

    1948-01-01

    Theoretical performance data including nozzle-exit temperature, specific impulse, volume specific impulse and composition, temperature, and mean molecular weight of reaction products based on frozen equilibrium and isentropic expansion are presented for 13 propellant combinations at reaction pressure of 300 pounds per square inch absolute and expansion ratio of 20.4. On basis of maximum specific impulse alone, five fuels had the following order for any given oxidant: liquid hydrogen, hydrazine, liquid ammonia, and either hydrazine hydrate or hydroxylamine. Three oxidants with a given fuel had the following order: liquid ozone, liquid oxygen, and 100-percent hydrogen peroxide.

  19. Conformal Dimensions via Large Charge Expansion

    NASA Astrophysics Data System (ADS)

    Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico

    2018-02-01

    We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O (2 ) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U (1 ) charge can be obtained via a series expansion in the inverse charge 1 /Q . We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.

  20. Conformal Dimensions via Large Charge Expansion.

    PubMed

    Banerjee, Debasish; Chandrasekharan, Shailesh; Orlando, Domenico

    2018-02-09

    We construct an efficient Monte Carlo algorithm that overcomes the severe signal-to-noise ratio problems and helps us to accurately compute the conformal dimensions of large-Q fields at the Wilson-Fisher fixed point in the O(2) universality class. Using it, we verify a recent proposal that conformal dimensions of strongly coupled conformal field theories with a global U(1) charge can be obtained via a series expansion in the inverse charge 1/Q. We find that the conformal dimensions of the lowest operator with a fixed charge Q are almost entirely determined by the first few terms in the series.

  1. Expansion of Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Salem, S.; Moslem, W. M.; Radi, A.

    2017-05-01

    Self-similar plasma expansion approach is used to solve a plasma model based on the losing phenomenon of Titan atmospheric composition. To this purpose, a set of hydrodynamic fluid equations describing a plasma consisting of two positive ions with different masses and isothermal electrons is used. With the aid of self-similar transformation, numerical solution of the fluid equations has been performed to examine the density, velocity, and potential profiles. The effects of different plasma parameters, i.e., density and temperature ratios, are studied on the expanding plasma profiles. The present investigation could be useful to recognize the ionized particles escaping from Titan atmosphere.

  2. AC/DC current ratio in a current superimposition variable flux reluctance machine

    NASA Astrophysics Data System (ADS)

    Kohara, Akira; Hirata, Katsuhiro; Niguchi, Noboru; Takahara, Kazuaki

    2018-05-01

    We have proposed a current superimposition variable flux reluctance machine for traction motors. The torque-speed characteristics of this machine can be controlled by increasing or decreasing the DC current. In this paper, we discuss an AC/DC current ratio in the current superimposition variable flux reluctance machine. The structure and control method are described, and the characteristics are computed using FEA in several AC/DC ratios.

  3. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  4. Structure of physical crystalline membranes within the self-consistent screening approximation.

    PubMed

    Gazit, Doron

    2009-10-01

    The anomalous exponents governing the long-wavelength behavior of the flat phase of physical crystalline membranes are calculated within a self-consistent screening approximation (SCSA) applied to second order expansion in 1/dC ( dC is the codimension), extending the seminal work of Le Doussal and Radzihovsky [Phys. Rev. Lett. 69, 1209 (1992)]. In particular, the bending rigidity is found to harden algebraically in the long-wavelength limit with an exponent eta=0.789... , which is used to extract the elasticity softening exponent eta(u)=0.422... , and the roughness exponent zeta=0.605... . The scaling relation eta(u)=2-2eta is proven to hold to all orders in SCSA. Further, applying the SCSA to an expansion in 1/dC , is found to be essential, as no solution to the self-consistent equations is found in a two-bubble level, which is the naive second-order expansion. Surprisingly, even though the expansion parameter for physical membrane is 1/dC=1 , the SCSA applied to second-order expansion deviates only slightly from the first order, increasing zeta by mere 0.016. This supports the high quality of the SCSA for physical crystalline membranes, as well as improves the comparison to experiments and numerical simulations of these systems. The prediction of SCSA applied to first order expansion for the Poisson ratio is shown to be exact to all orders.

  5. Flute Instability of Expanding Plasma Cloud

    NASA Astrophysics Data System (ADS)

    Dudnikova, Galina; Vshivkov, Vitali

    2000-10-01

    The expansion of plasma against a magnetized background where collisions play no role is a situation common to many plasma phenomena. The character of interaction between expanding plasma and background plasma is depending of the ratio of the expansion velocity to the ambient Alfven velocity. If the expansion speed is greater than the background Alfven speed (super-Alfvenic flows) a collisionless shock waves are formed in background plasma. It is originally think that if the expansion speed is less than Alfvenic speed (sub-Alfvenic flows) the interaction of plasma flows will be laminar in nature. However, the results of laboratory experiments and chemical releases in magnetosphere have shown the development of flute instability on the boundary of expanding plasma (Rayleigh-Taylor instability). A lot of theoretical and experimental papers have been devoted to study the Large Larmor Flute Instability (LLFI) of plasma expanding into a vacuum magnetic field. In the present paper on the base of computer simulation of plasma cloud expansion in magnetizied background plasma the regimes of development and stabilization LLFI for super- and sub-Alfvenic plasma flows are investigated. 2D hybrid numerical model is based on kinetic Vlasov equation for ions and hydrodynamic approximation for electrons. The similarity parameters characterizing the regimes of laminar flows are founded. The stabilization of LLFI takes place with the transition from sub- to super-Alfvenic plasma cloud expansion. The results of the comparision between computer simulation and laboratory simulation are described.

  6. Spatial Dimension as a Variable in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Doren, Douglas James

    Several approximation methods potentially useful in electronic structure calculations are developed. These methods all treat the spatial dimension, D, as a variable. In an Introduction, the motivations for these methods are described, with special attention to the semiclassical 1/D expansion. Several terms in this expansion have been calculated for two-electron atoms. The results have qualitative appeal but poor convergence properties when D = 3. Chapter 1 shows that this convergence problem is due to singularities in the energy at D = 1 and a method of removing their effects is demonstrated. Chapter 2 treats several model problems, showing how to identify special dimensions at which the energy becomes singular or the Hamiltonian simplifies. Expansions are developed about these special finite values of D which are quite accurate at low order, regardless of the physical parameters of the Hamiltonian. In Chapter 3, expansions about singular points in the energy at finite values of D are used to resum the 1/D series in cases where its leading orders are not sufficient. This leads to a hybrid expansion which typically improves on both the 1/D and the finite D series. These methods are applied in Chapter 4 to two -electron atoms. The ground state energy of few-electron systems is dominated by the presence of a pole when D = 1. The residue of this pole is determined by the eigenvalue of a simple limiting Schrodinger equation. The limit and first order correction are determined for both unapproximated nonrelativistic two-electron atoms and the Hartree-Fock approximation to them. The hybrid expansion using only the first few terms in the 1/D series determines the energy at arbitrary D, providing estimates accurate to four or five figures when D = 3. Degeneracies between D = 3 states and those in nonphysical dimensions are developed in Chapter 5 which provide additional applications for this series. Chapter 6 illustrates these methods in an application to the H(' -) ion, an especially stringent test case. Proposals for future work in this field are described in the final chapter.

  7. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  8. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  9. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  10. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  11. The Gaia-ESO Survey: dynamical models of flattened, rotating globular clusters

    NASA Astrophysics Data System (ADS)

    Jeffreson, S. M. R.; Sanders, J. L.; Evans, N. W.; Williams, A. A.; Gilmore, G. F.; Bayo, A.; Bragaglia, A.; Casey, A. R.; Flaccomio, E.; Franciosini, E.; Hourihane, A.; Jackson, R. J.; Jeffries, R. D.; Jofré, P.; Koposov, S.; Lardo, C.; Lewis, J.; Magrini, L.; Morbidelli, L.; Pancino, E.; Randich, S.; Sacco, G. G.; Worley, C. C.; Zaggia, S.

    2017-08-01

    We present a family of self-consistent axisymmetric rotating globular cluster models which are fitted to spectroscopic data for NGC 362, NGC 1851, NGC 2808, NGC 4372, NGC 5927 and NGC 6752 to provide constraints on their physical and kinematic properties, including their rotation signals. They are constructed by flattening Modified Plummer profiles, which have the same asymptotic behaviour as classical Plummer models, but can provide better fits to young clusters due to a slower turnover in the density profile. The models are in dynamical equilibrium as they depend solely on the action variables. We employ a fully Bayesian scheme to investigate the uncertainty in our model parameters (including mass-to-light ratios and inclination angles) and evaluate the Bayesian evidence ratio for rotating to non-rotating models. We find convincing levels of rotation only in NGC 2808. In the other clusters, there is just a hint of rotation (in particular, NGC 4372 and NGC 5927), as the data quality does not allow us to draw strong conclusions. Where rotation is present, we find that it is confined to the central regions, within radii of R ≤ 2rh. As part of this work, we have developed a novel q-Gaussian basis expansion of the line-of-sight velocity distributions, from which general models can be constructed via interpolation on the basis coefficients.

  12. Analysis of transonic flow about lifting wing-body configurations

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1975-01-01

    An analytical solution was obtained for the perturbation velocity potential for transonic flow about lifting wing-body configurations with order-one span-length ratios and small reduced-span-length ratios and equivalent-thickness-length ratios. The analysis is performed with the method of matched asymptotic expansions. The angles of attack which are considered are small but are large enough to insure that the effects of lift in the region far from the configuration are either dominant or comparable with the effects of thickness. The modification to the equivalence rule which accounts for these lift effects is determined. An analysis of transonic flow about lifting wings with large aspect ratios is also presented.

  13. Exact semi-separation of variables in waveguides with non-planar boundaries

    NASA Astrophysics Data System (ADS)

    Athanassoulis, G. A.; Papoutsellis, Ch. E.

    2017-05-01

    Series expansions of unknown fields Φ =∑φn Zn in elongated waveguides are commonly used in acoustics, optics, geophysics, water waves and other applications, in the context of coupled-mode theories (CMTs). The transverse functions Zn are determined by solving local Sturm-Liouville problems (reference waveguides). In most cases, the boundary conditions assigned to Zn cannot be compatible with the physical boundary conditions of Φ, leading to slowly convergent series, and rendering CMTs mild-slope approximations. In the present paper, the heuristic approach introduced in Athanassoulis & Belibassakis (Athanassoulis & Belibassakis 1999 J. Fluid Mech. 389, 275-301) is generalized and justified. It is proved that an appropriately enhanced series expansion becomes an exact, rapidly convergent representation of the field Φ, valid for any smooth, non-planar boundaries and any smooth enough Φ. This series expansion can be differentiated termwise everywhere in the domain, including the boundaries, implementing an exact semi-separation of variables for non-separable domains. The efficiency of the method is illustrated by solving a boundary value problem for the Laplace equation, and computing the corresponding Dirichlet-to-Neumann operator, involved in Hamiltonian equations for nonlinear water waves. The present method provides accurate results with only a few modes for quite general domains. Extensions to general waveguides are also discussed.

  14. Effects of MC-Type Carbide Forming and Graphitizing Elements on Thermal Fatigue Behavior of Indefinite Chilled Cast Iron Rolls

    NASA Astrophysics Data System (ADS)

    Ahiale, Godwin Kwame; Choi, Won-Doo; Suh, Yongchan; Lee, Young-Kook; Oh, Yong-Jun

    2015-11-01

    The thermal fatigue behavior of indefinite chilled cast iron rolls with various V+Nb contents and Si/Cr ratios was evaluated. Increasing the ratio of Si/Cr prolonged the life of the rolls by reducing brittle cementites. Higher V+Nb addition also increased the life through the formation of carbides that refined and toughened the martensite matrix and reduced the thermal expansion mismatch in the microstructure.

  15. A hybrid gyrokinetic ion and isothermal electron fluid code for astrophysical plasma

    NASA Astrophysics Data System (ADS)

    Kawazura, Y.; Barnes, M.

    2018-05-01

    This paper describes a new code for simulating astrophysical plasmas that solves a hybrid model composed of gyrokinetic ions (GKI) and an isothermal electron fluid (ITEF) Schekochihin et al. (2009) [9]. This model captures ion kinetic effects that are important near the ion gyro-radius scale while electron kinetic effects are ordered out by an electron-ion mass ratio expansion. The code is developed by incorporating the ITEF approximation into AstroGK, an Eulerian δf gyrokinetics code specialized to a slab geometry Numata et al. (2010) [41]. The new code treats the linear terms in the ITEF equations implicitly while the nonlinear terms are treated explicitly. We show linear and nonlinear benchmark tests to prove the validity and applicability of the simulation code. Since the fast electron timescale is eliminated by the mass ratio expansion, the Courant-Friedrichs-Lewy condition is much less restrictive than in full gyrokinetic codes; the present hybrid code runs ∼ 2√{mi /me } ∼ 100 times faster than AstroGK with a single ion species and kinetic electrons where mi /me is the ion-electron mass ratio. The improvement of the computational time makes it feasible to execute ion scale gyrokinetic simulations with a high velocity space resolution and to run multiple simulations to determine the dependence of turbulent dynamics on parameters such as electron-ion temperature ratio and plasma beta.

  16. Ultraearly hematoma growth in active intracerebral hemorrhage

    PubMed Central

    Coscojuela, Pilar; Rubiera, Marta; Hill, Michael D.; Dowlatshahi, Dar; Aviv, Richard I.; Silva, Yolanda; Dzialowski, Imanuel; Lum, Cheemun; Czlonkowska, Anna; Boulanger, Jean-Martin; Kase, Carlos S.; Gubitz, Gord; Bhatia, Rohit; Padma, Vasantha; Roy, Jayanta; Tomasello, Alejandro; Demchuk, Andrew M.; Molina, Carlos A.

    2016-01-01

    Objective: To determine the association of ultraearly hematoma growth (uHG) with the CT angiography (CTA) spot sign, hematoma expansion, and clinical outcomes in patients with acute intracerebral hemorrhage (ICH). Methods: We analyzed data from 231 patients enrolled in the multicenter Predicting Haematoma Growth and Outcome in Intracerebral Haemorrhage Using Contrast Bolus CT study. uHG was defined as baseline ICH volume/onset-to-CT time (mL/h). The spot sign was used as marker of active hemorrhage. Outcome parameters included significant hematoma expansion (>33% or >6 mL, primary outcome), rate of hematoma expansion, early neurologic deterioration, 90-day mortality, and poor outcome. Results: uHG was higher in spot sign patients (p < 0.001) and in patients scanned earlier (p < 0.001). Both uHG >4.7 mL/h (p = 0.002) and the CTA spot sign (p = 0.030) showed effects on rate of hematoma expansion but not its interaction (2-way analysis of variance, p = 0.477). uHG >4.7 mL/h improved the sensitivity of the spot sign in the prediction of significant hematoma expansion (73.9% vs 46.4%), early neurologic deterioration (67.6% vs 35.3%), 90-day mortality (81.6% vs 44.9%), and poor outcome (72.8% vs 29.8%), respectively. uHG was independently related to significant hematoma expansion (odds ratio 1.06, 95% confidence interval 1.03–1.10) and clinical outcomes. Conclusions: uHG is a useful predictor of hematoma expansion and poor clinical outcomes in patients with acute ICH. The combination of high uHG and the spot sign is associated with a higher rate of hematoma expansion, highlighting the need for very fast treatment in ICH patients. PMID:27343067

  17. Future of endemic flora of biodiversity hotspots in India.

    PubMed

    Chitale, Vishwas Sudhir; Behera, Mukund Dev; Roy, Partha Sarthi

    2014-01-01

    India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models.

  18. Future of Endemic Flora of Biodiversity Hotspots in India

    PubMed Central

    Chitale, Vishwas Sudhir; Behera, Mukund Dev; Roy, Partha Sarthi

    2014-01-01

    India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models. PMID:25501852

  19. Defatted flaxseed meal incorporated corn-rice flour blend based extruded product by response surface methodology.

    PubMed

    Ganorkar, Pravin M; Patel, Jhanvi M; Shah, Vrushti; Rangrej, Vihang V

    2016-04-01

    Considering the evidence of flaxseed and its defatted flaxseed meal (DFM) for human health benefits, response surface methodology (RSM) based on three level four factor central composite rotatable design (CCRD) was employed for the development of DFM incorporated corn - rice flour blend based extruded snack. The effect of DFM fortification (7.5-20 %), moisture content of feed (14-20 %, wb), extruder barrel temperature (115-135 °C) and screw speed (300-330 RPM) on expansion ratio (ER), breaking strength (BS), overall acceptability (OAA) score and water solubility index (WSI) of extrudates were investigated using central composite rotatable design (CCRD). Significant regression models explained the effect of considered variables on all responses. DFM incorporation level was found to be most significant independent variable affecting on extrudates characteristics followed by extruder barrel temperature and then screw rpm. Feed moisture content did not affect extrudates characteristics. As DFM level increased (7.5 % to 20 %), ER and OAA value decreased. However, BS and WSI values were found to increase with increase in DFM level. Based on the defined criteria for numerical optimization, the combination for the production of DFM incorporated extruded snack with desired sensory attributes was achieved by incorporating 10 % DFM (replacing rice flour in flour blend) and by keeping 20 % moisture content, 312 screw rpm and 125 °C barrel temperature.

  20. Probabilistic Simulation of Progressive Fracture in Bolted-Joint Composite Laminates

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Singhal, S. N.; Chamis, C. C.

    1996-01-01

    This report describes computational methods to probabilistically simulate fracture in bolted composite structures. An innovative approach that is independent of stress intensity factors and fracture toughness was used to simulate progressive fracture. The effect of design variable uncertainties on structural damage was also quantified. A fast probability integrator assessed the scatter in the composite structure response before and after damage. Then the sensitivity of the response to design variables was computed. General-purpose methods, which are applicable to bolted joints in all types of structures and in all fracture processes-from damage initiation to unstable propagation and global structure collapse-were used. These methods were demonstrated for a bolted joint of a polymer matrix composite panel under edge loads. The effects of the fabrication process were included in the simulation of damage in the bolted panel. Results showed that the most effective way to reduce end displacement at fracture is to control both the load and the ply thickness. The cumulative probability for longitudinal stress in all plies was most sensitive to the load; in the 0 deg. plies it was very sensitive to ply thickness. The cumulative probability for transverse stress was most sensitive to the matrix coefficient of thermal expansion. In addition, fiber volume ratio and fiber transverse modulus both contributed significantly to the cumulative probability for the transverse stresses in all the plies.

  1. Uranium Isotope Ratios in Modern and Precambrian Soils

    NASA Astrophysics Data System (ADS)

    DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.

    2015-12-01

    Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.

  2. Pulse Detonation Rocket Magnetohydrodynamic Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.

    2003-01-01

    The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar

    The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured.more » The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.« less

  4. The comparison of landslide ratio-based and general logistic regression landslide susceptibility models in the Chishan watershed after 2009 Typhoon Morakot

    NASA Astrophysics Data System (ADS)

    WU, Chunhung

    2015-04-01

    The research built the original logistic regression landslide susceptibility model (abbreviated as or-LRLSM) and landslide ratio-based ogistic regression landslide susceptibility model (abbreviated as lr-LRLSM), compared the performance and explained the error source of two models. The research assumes that the performance of the logistic regression model can be better if the distribution of landslide ratio and weighted value of each variable is similar. Landslide ratio is the ratio of landslide area to total area in the specific area and an useful index to evaluate the seriousness of landslide disaster in Taiwan. The research adopted the landside inventory induced by 2009 Typhoon Morakot in the Chishan watershed, which was the most serious disaster event in the last decade, in Taiwan. The research adopted the 20 m grid as the basic unit in building the LRLSM, and six variables, including elevation, slope, aspect, geological formation, accumulated rainfall, and bank erosion, were included in the two models. The six variables were divided as continuous variables, including elevation, slope, and accumulated rainfall, and categorical variables, including aspect, geological formation and bank erosion in building the or-LRLSM, while all variables, which were classified based on landslide ratio, were categorical variables in building the lr-LRLSM. Because the count of whole basic unit in the Chishan watershed was too much to calculate by using commercial software, the research took random sampling instead of the whole basic units. The research adopted equal proportions of landslide unit and not landslide unit in logistic regression analysis. The research took 10 times random sampling and selected the group with the best Cox & Snell R2 value and Nagelkerker R2 value as the database for the following analysis. Based on the best result from 10 random sampling groups, the or-LRLSM (lr-LRLSM) is significant at the 1% level with Cox & Snell R2 = 0.190 (0.196) and Nagelkerke R2 = 0.253 (0.260). The unit with the landslide susceptibility value > 0.5 (≦ 0.5) will be classified as a predicted landslide unit (not landslide unit). The AUC, i.e. the area under the relative operating characteristic curve, of or-LRLSM in the Chishan watershed is 0.72, while that of lr-LRLSM is 0.77. Furthermore, the average correct ratio of lr-LRLSM (73.3%) is better than that of or-LRLSM (68.3%). The research analyzed in detail the error sources from the two models. In continuous variables, using the landslide ratio-based classification in building the lr-LRLSM can let the distribution of weighted value more similar to distribution of landslide ratio in the range of continuous variable than that in building the or-LRLSM. In categorical variables, the meaning of using the landslide ratio-based classification in building the lr-LRLSM is to gather the parameters with approximate landslide ratio together. The mean correct ratio in continuous variables (categorical variables) by using the lr-LRLSM is better than that in or-LRLSM by 0.6 ~ 2.6% (1.7% ~ 6.0%). Building the landslide susceptibility model by using landslide ratio-based classification is practical and of better performance than that by using the original logistic regression.

  5. Program for solution of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Sloate, H.

    1973-01-01

    A program for the solution of linear and nonlinear first order ordinary differential equations is described and user instructions are included. The program contains a new integration algorithm for the solution of initial value problems which is particularly efficient for the solution of differential equations with a wide range of eigenvalues. The program in its present form handles up to ten state variables, but expansion to handle up to fifty state variables is being investigated.

  6. Comparison between rapid and mixed maxillary expansion through an assessment of arch changes on dental casts.

    PubMed

    Grassia, Vincenzo; d'Apuzzo, Fabrizia; Jamilian, Abdolreza; Femiano, Felice; Favero, Lorenzo; Perillo, Letizia

    2015-01-01

    Aim of this retrospective observational study was to compare upper and lower dental changes in patients treated with Rapid Maxillary Expansion (RME) and Mixed Maxillary Expansion (MME), assessed by dental cast analysis. Treatment groups consisted of 42 patients: the RME group (n = 21) consisted of 13 female and 8 male subjects with the mean age of 8.8 years ± 1.37 at T0 and 9.6 years ± 1.45 at T1; the MME group (n = 21) consisted of 12 female and 9 male patients with a mean age of 8.9 years ± 2.34 at T0 and 10.5 years ± 2.08 at T1. The upper and lower arch analysis was performed on four dental bilateral landmarks, on upper and lower casts; also upper and lower arch depths were measured. The groups were compared using independent sample t-test to estimate dental changes in upper and lower arches. Before expansion treatment (T0), the groups were similar for all examined variables (p>0.05). In both RME and MME group, significant increments in all the variables for maxillary and mandibular arch widths were observed after treatment. No significant differences in maxillary and mandibular arch depths were observed at the end of treatment in both groups. An evaluation of the changes after RME and MME (T1) showed statistically significant differences in mandibular arch depth (p<0.001) and maxillary intercanine widths (p<0.05). Differences in maxillary arch depth and arch width measurements were not significant. RME and MME can be considered two effective treatment options to improve transverse arch dimensions and gain space in the dental arches. A greater lower arch expansion was observed in the MME group, which might be attributed to the "lip bumper effects" observed in the MME protocol.

  7. Wetlands inform how climate extremes influence surface water expansion and contraction

    NASA Astrophysics Data System (ADS)

    Vanderhoof, Melanie K.; Lane, Charles R.; McManus, Michael G.; Alexander, Laurie C.; Christensen, Jay R.

    2018-03-01

    Effective monitoring and prediction of flood and drought events requires an improved understanding of how and why surface water expansion and contraction in response to climate varies across space. This paper sought to (1) quantify how interannual patterns of surface water expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence the relationship between climate inputs and surface water dynamics. Due to differences in glacial history, the PPR and NP show distinct patterns in regards to drainage development and wetland density, together providing a diversity of conditions to examine surface water dynamics. We used Landsat imagery to characterize variability in surface water extent across 11 Landsat path/rows representing the PPR and NP (images spanned 1985-2015). The PPR not only experienced a 2.6-fold greater surface water extent under median conditions relative to the NP, but also showed a 3.4-fold greater change in surface water extent between drought and deluge conditions. The relationship between surface water extent and accumulated water availability (precipitation minus potential evapotranspiration) was quantified per watershed and statistically related to variables representing hydrology-related landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To investigate the influence stream connectivity has on the rate at which surface water leaves a given location, we modeled stream-connected and stream-disconnected surface water separately. Stream-connected surface water showed a greater expansion with wetter climatic conditions in landscapes with greater total wetland area, but lower total wetland density. Disconnected surface water showed a greater expansion with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and less anthropogenic drainage. From these findings, we can expect that shifts in precipitation and evaporative demand will have uneven effects on surface water quantity. Accurate predictions regarding the effect of climate change on surface water quantity will require consideration of hydrology-related landscape characteristics including wetland storage and arrangement.

  8. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change.

    PubMed

    Zhang, Min; Duan, Hongtao; Shi, Xiaoli; Yu, Yang; Kong, Fanxiang

    2012-02-01

    Cyanobacterial blooms are often a result of eutrophication. Recently, however, their expansion has also been found to be associated with changes in climate. To elucidate the effects of climatic variables on the expansion of cyanobacterial blooms in Taihu, China, we analyzed the relationships between climatic variables and bloom events which were retrieved by satellite images. We then assessed the contribution of each climate variable to the phenology of blooms using multiple regression models. Our study demonstrates that retrieving ecological information from satellite images is meritorious for large-scale and long-term ecological research in freshwater ecosystems. Our results show that the phenological changes of blooms at an inter-annual scale are strongly linked to climate in Taihu during the past 23 yr. Cyanobacterial blooms occur earlier and last longer with the increase of temperature, sunshine hours, and global radiation and the decrease of wind speed. Furthermore, the duration increases when the daily averages of maximum, mean, and minimum temperature each exceed 20.3 °C, 16.7 °C, and 13.7 °C, respectively. Among these factors, sunshine hours and wind speed are the primary contributors to the onset of the blooms, explaining 84.6% of their variability over the past 23 yr. These factors are also good predictors of the variability in the duration of annual blooms and determined 58.9% of the variability in this parameter. Our results indicate that when nutrients are in sufficiently high quantities to sustain the formation of cyanobacterial blooms, climatic variables become crucial in predicting cyanobacterial bloom events. Climate changes should be considered when we evaluate how much the amount of nutrients should be reduced in Taihu for lake management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Reevaluating Suitability Estimates Based on Dynamics of Cropland Expansion in the Brazilian Amazon

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; Noojipady, Praveen; Macedo, Marcia M.; Victoria, Daniel C.; Bolfe, Edson L.

    2016-01-01

    Agricultural suitability maps are a key input for land use zoning and projections of cropland expansion. Suitability assessments typically consider edaphic conditions, climate, crop characteristics, and sometimes incorporate accessibility to transportation and market infrastructure. However, correct weighting among these disparate factors is challenging, given rapid development of new crop varieties, irrigation, and road networks, as well as changing global demand for agricultural commodities. Here, we compared three independent assessments of cropland suitability to spatial and temporal dynamics of agricultural expansion in the Brazilian state of Mato Grosso during 2001 2012. We found that areas of recent cropland expansion identified using satellite data were generally designated as low to moderate suitability for rainfed crop production. Our analysis highlighted the abrupt nature of suitability boundaries, rather than smooth gradients of agricultural potential, with little additional cropland expansion beyond the extent of the flattest areas (0-2% slope). Satellite-based estimates of the interannual variability in the use of existing crop areas also provided an alternate means to assess suitability. On average, cropland areas in the Cerrado biome had higher utilization (84%) than croplands in the Amazon region of northern Mato Grosso (74%). Areas of more recent expansion had lower utilization than croplands established before 2002, providing empirical evidence for lower suitability or alternative management strategies (e.g., pasture soya rotations) for lands undergoing more recent land use transitions. This unplanted reserve constitutes a large area of potentially available cropland (PAC)without further expansion, within the management limits imposed for pest management and fallow cycles. Using two key constraints on future cropland expansion, slope and restrictions on further deforestation of Amazon or Cerrado vegetation, we found little available flat land for further legal expansion of crop production in Mato Grosso. Dynamics of cropland expansion from more than a decade of satellite observations indicated narrow ranges of suitability criteria, restricting PAC under current policy conditions, and emphasizing the advantages of field-scale information to assess suitability and utilization.

  10. Multiple pathways of commodity crop expansion in tropical forest landscapes

    NASA Astrophysics Data System (ADS)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement, and livelihood outcomes; (v) intensive commodity crops may fail to spare land when inducing displacement. We conclude that understanding pathways of commodity crop expansion is essential to improve land use governance.

  11. Utility-Scale Lithium-Ion Storage Cost Projections for Use in Capacity Expansion Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J.; Marcy, Cara; Krishnan, Venkat K.

    2016-11-21

    This work presents U.S. utility-scale battery storage cost projections for use in capacity expansion models. We create battery cost projections based on a survey of literature cost projections of battery packs and balance of system costs, with a focus on lithium-ion batteries. Low, mid, and high cost trajectories are created for the overnight capital costs and the operating and maintenance costs. We then demonstrate the impact of these cost projections in the Regional Energy Deployment System (ReEDS) capacity expansion model. We find that under reference scenario conditions, lower battery costs can lead to increased penetration of variable renewable energy, withmore » solar photovoltaics (PV) seeing the largest increase. We also find that additional storage can reduce renewable energy curtailment, although that comes at the expense of additional storage losses.« less

  12. Approximation methods for combined thermal/structural design

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Shore, C. P.

    1979-01-01

    Two approximation concepts for combined thermal/structural design are evaluated. The first concept is an approximate thermal analysis based on the first derivatives of structural temperatures with respect to design variables. Two commonly used first-order Taylor series expansions are examined. The direct and reciprocal expansions are special members of a general family of approximations, and for some conditions other members of that family of approximations are more accurate. Several examples are used to compare the accuracy of the different expansions. The second approximation concept is the use of critical time points for combined thermal and stress analyses of structures with transient loading conditions. Significant time savings are realized by identifying critical time points and performing the stress analysis for those points only. The design of an insulated panel which is exposed to transient heating conditions is discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mörtsell, E., E-mail: edvard@fysik.su.se

    The bimetric generalization of general relativity has been proven to be able to give an accelerated background expansion consistent with observations. Apart from the energy densities coupling to one or both of the metrics, the expansion will depend on the cosmological constant contribution to each of them, as well as the three parameters describing the interaction between the two metrics. Even for fixed values of these parameters can several possible solutions, so called branches, exist. Different branches can give similar background expansion histories for the observable metric, but may have different properties regarding, for example, the existence of ghosts andmore » the rate of structure growth. In this paper, we outline a method to find viable solution branches for arbitrary parameter values. We show how possible expansion histories in bimetric gravity can be inferred qualitatively, by picturing the ratio of the scale factors of the two metrics as the spatial coordinate of a particle rolling along a frictionless track. A particularly interesting example discussed is a specific set of parameter values, where a cosmological dark matter background is mimicked without introducing ghost modes into the theory.« less

  14. Oscillating flow and heat transfer in a channel with sudden cross section change

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Hashim, Waqar

    1993-01-01

    We have computationally examined oscillating flow (zero mean) between two parallel plates with a sudden change in cross section. The flow was assumed to be laminar incompressible with the inflow velocity uniform over the channel cross section but varying sinusoidally with time. The cases studied cover wide ranges of Re(sub max) (from 187.5 to 2000), Va (from 1 to 10.66), the expansion ratio (1:2 and 1:4) and A(sub r) (2 and 4). Also, three different geometric cases were discussed: (1) asymmetric expansion/contraction; (2) symmetric expansion/contraction; and (3) symmetric blunt body. For these oscillating flow conditions, the fluid undergoes sudden expansion in one-half of the cycle and sudden contraction inthe other half. The instantaneous friction factor, for some ranges of Re(sub max) and Va, deviated substantially from the steady-state friction factor for the same flow parameters. A region has been identified below which the flow is laminar quasi-steady. A videotape showing computer simulations of the oscillating flow demonstrates the usefulness of the current analyses in providing information on the transient hydraulic phenomena.

  15. Cosmological histories in bimetric gravity: a graphical approach

    NASA Astrophysics Data System (ADS)

    Mörtsell, E.

    2017-02-01

    The bimetric generalization of general relativity has been proven to be able to give an accelerated background expansion consistent with observations. Apart from the energy densities coupling to one or both of the metrics, the expansion will depend on the cosmological constant contribution to each of them, as well as the three parameters describing the interaction between the two metrics. Even for fixed values of these parameters can several possible solutions, so called branches, exist. Different branches can give similar background expansion histories for the observable metric, but may have different properties regarding, for example, the existence of ghosts and the rate of structure growth. In this paper, we outline a method to find viable solution branches for arbitrary parameter values. We show how possible expansion histories in bimetric gravity can be inferred qualitatively, by picturing the ratio of the scale factors of the two metrics as the spatial coordinate of a particle rolling along a frictionless track. A particularly interesting example discussed is a specific set of parameter values, where a cosmological dark matter background is mimicked without introducing ghost modes into the theory.

  16. THERMAL PROPERTIES AND HEATING AND COOLING DURABILITY OF REACTOR SHIELDING CONCRETE (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosoi, J.; Chujo, K.; Saji, K.

    1959-01-01

    A study was made of the thermal properties of various concretes made of domestic raw materials for radiation shields of a power reactor and of a high- flux research reactor. The results of measurements of thermal expansion coefficient, specific heat, thermal diffusivity, thermal conductivity, cyclical heating, and cooling durability are described. Relationships between thermal properties and durability are discussed and several photographs of the concretes are given. It is shown that the heating and cooling durability of such a concrete which has a large thermal expansion coefficient or a considerable difference between the thermal expansion of coarse aggregate and themore » one of cement mortar part or aggregates of lower strength is very poor. The decreasing rates of bending strength and dynamical modulus of elasticity and the residual elongation of the concrete tested show interesting relations with the modified thermal stress resistance factor containing a ratio of bending strength and thermal expansion coefficient. The thermal stress resistance factor seems to depend on the conditions of heat transfer on the surface and on heat release in the concrete. (auth)« less

  17. Rod Has High Tensile Strength And Low Thermal Expansion

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Everton, R. L.; Howe, E.; O'Malley, M.

    1996-01-01

    Thoriated tungsten extension rod fabricated to replace stainless-steel extension rod attached to linear variable-differential transformer in gap-measuring gauge. Threads formed on end of rod by machining with special fixtures and carefully chosen combination of speeds and feeds.

  18. Climate controls the distribution of a widespread invasive species: Implications for future range expansion

    USGS Publications Warehouse

    McDowell, W.G.; Benson, A.J.; Byers, J.E.

    2014-01-01

    1. Two dominant drivers of species distributions are climate and habitat, both of which are changing rapidly. Understanding the relative importance of variables that can control distributions is critical, especially for invasive species that may spread rapidly and have strong effects on ecosystems. 2. Here, we examine the relative importance of climate and habitat variables in controlling the distribution of the widespread invasive freshwater clam Corbicula fluminea, and we model its future distribution under a suite of climate scenarios using logistic regression and maximum entropy modelling (MaxEnt). 3. Logistic regression identified climate variables as more important than habitat variables in controlling Corbicula distribution. MaxEnt modelling predicted Corbicula's range expansion westward and northward to occupy half of the contiguous United States. By 2080, Corbicula's potential range will expand 25–32%, with more than half of the continental United States being climatically suitable. 4. Our combination of multiple approaches has revealed the importance of climate over habitat in controlling Corbicula's distribution and validates the climate-only MaxEnt model, which can readily examine the consequences of future climate projections. 5. Given the strong influence of climate variables on Corbicula's distribution, as well as Corbicula's ability to disperse quickly and over long distances, Corbicula is poised to expand into New England and the northern Midwest of the United States. Thus, the direct effects of climate change will probably be compounded by the addition of Corbicula and its own influences on ecosystem function.

  19. High dimensional model representation method for fuzzy structural dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Chowdhury, R.; Friswell, M. I.

    2011-03-01

    Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.

  20. Turbulent forced convection of nanofluids downstream an abrupt expansion

    NASA Astrophysics Data System (ADS)

    Kimouche, Abdelali; Mataoui, Amina

    2018-03-01

    Turbulent forced convection of Nanofluids through an axisymmetric abrupt expansion is investigated numerically in the present study. The governing equations are solved by ANYS 14.0 CFD code based on the finite volume method by implementing the thermo-physical properties of each nanofluid. All results are analyzed through the evolutions of skin friction coefficient and Nusselt number. For each nanofluid, the effect of both volume fraction and Reynolds number on this type of flow configuration, are examined. An increase on average Nusselt number with the volume fraction and Reynolds number, are highlighted and correlated. Two relationships are proposed. The first one, determines the average Nusselt number versus Reynolds number, volume fraction and the ratio of densities of the solid particles to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, ρ_s/ρ_f) ). The second one varies according Reynolds number, volume fraction and the conductivities ratio of solid particle to that of the base fluid ( \\overline{Nu}=f(\\operatorname{Re},φ, k_s/k_f) ).

  1. Realization of a quantum gate using gravitational search algorithm by perturbing three-dimensional harmonic oscillator with an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Sharma, Navneet; Rawat, Tarun Kumar; Parthasarathy, Harish; Gautam, Kumar

    2016-06-01

    The aim of this paper is to design a current source obtained as a representation of p information symbols \\{I_k\\} so that the electromagnetic (EM) field generated interacts with a quantum atomic system producing after a fixed duration T a unitary gate U( T) that is as close as possible to a given unitary gate U_g. The design procedure involves calculating the EM field produced by \\{I_k\\} and hence the perturbing Hamiltonian produced by \\{I_k\\} finally resulting in the evolution operator produced by \\{I_k\\} up to cubic order based on the Dyson series expansion. The gate error energy is thus obtained as a cubic polynomial in \\{I_k\\} which is minimized using gravitational search algorithm. The signal to noise ratio (SNR) in the designed gate is higher as compared to that using quadratic Dyson series expansion. The SNR is calculated as the ratio of the Frobenius norm square of the desired gate to that of the desired gate error.

  2. Double-Stage Delay Multiply and Sum Beamforming Algorithm Applied to Ultrasound Medical Imaging.

    PubMed

    Mozaffarzadeh, Moein; Sadeghi, Masume; Mahloojifar, Ali; Orooji, Mahdi

    2018-03-01

    In ultrasound (US) imaging, delay and sum (DAS) is the most common beamformer, but it leads to low-quality images. Delay multiply and sum (DMAS) was introduced to address this problem. However, the reconstructed images using DMAS still suffer from the level of side lobes and low noise suppression. Here, a novel beamforming algorithm is introduced based on expansion of the DMAS formula. We found that there is a DAS algebra inside the expansion, and we proposed use of the DMAS instead of the DAS algebra. The introduced method, namely double-stage DMAS (DS-DMAS), is evaluated numerically and experimentally. The quantitative results indicate that DS-DMAS results in an approximately 25% lower level of side lobes compared with DMAS. Moreover, the introduced method leads to 23%, 22% and 43% improvement in signal-to-noise ratio, full width at half-maximum and contrast ratio, respectively, compared with the DMAS beamformer. Copyright © 2018. Published by Elsevier Inc.

  3. A shock wave capability for the improved Two-Dimensional Kinetics (TDK) computer program

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dang, L. D.

    1984-01-01

    The Two Dimensional Kinetics (TDK) computer program is a primary tool in applying the JANNAF liquid rocket engine performance prediction procedures. The purpose of this contract has been to improve the TDK computer program so that it can be applied to rocket engine designs of advanced type. In particular, future orbit transfer vehicles (OTV) will require rocket engines that operate at high expansion ratio, i.e., in excess of 200:1. Because only a limited length is available in the space shuttle bay, it is possible that OTV nozzles will be designed with both relatively short length and high expansion ratio. In this case, a shock wave may be present in the flow. The TDK computer program was modified to include the simulation of shock waves in the supersonic nozzle flow field. The shocks induced by the wall contour can produce strong perturbations of the flow, affecting downstream conditions which need to be considered for thrust chamber performance calculations.

  4. Least squares polynomial chaos expansion: A review of sampling strategies

    NASA Astrophysics Data System (ADS)

    Hadigol, Mohammad; Doostan, Alireza

    2018-04-01

    As non-institutive polynomial chaos expansion (PCE) techniques have gained growing popularity among researchers, we here provide a comprehensive review of major sampling strategies for the least squares based PCE. Traditional sampling methods, such as Monte Carlo, Latin hypercube, quasi-Monte Carlo, optimal design of experiments (ODE), Gaussian quadratures, as well as more recent techniques, such as coherence-optimal and randomized quadratures are discussed. We also propose a hybrid sampling method, dubbed alphabetic-coherence-optimal, that employs the so-called alphabetic optimality criteria used in the context of ODE in conjunction with coherence-optimal samples. A comparison between the empirical performance of the selected sampling methods applied to three numerical examples, including high-order PCE's, high-dimensional problems, and low oversampling ratios, is presented to provide a road map for practitioners seeking the most suitable sampling technique for a problem at hand. We observed that the alphabetic-coherence-optimal technique outperforms other sampling methods, specially when high-order ODE are employed and/or the oversampling ratio is low.

  5. Static Internal Performance of a Two-Dimensional Convergent-Divergent Nozzle with External Shelf

    NASA Technical Reports Server (NTRS)

    Lamb, Milton; Taylor, John G.; Frassinelli, Mark C.

    1996-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a two-dimensional convergent-divergent nozzle. The nozzle design was tested with dry and afterburning throat areas, which represent different power settings and three expansion ratios. For each of these configurations, three trailing-edge geometries were tested. The baseline geometry had a straight trailing edge. Two different shaping techniques were applied to the baseline nozzle design to reduce radar observables: the scarfed design and the sawtooth design. A flat plate extended downstream of the lower divergent flap trailing edge parallel to the model centerline to form a shelf-like expansion surface. This shelf was designed to shield the plume from ground observation (infrared radiation (IR) signature suppression). The shelf represents the part of the aircraft structure that might be present in an installed configuration. These configurations were tested at nozzle pressure ratios from 2.0 to 12.0.

  6. Future earth orbit transportation systems/technology implications

    NASA Technical Reports Server (NTRS)

    Henry, B. Z.; Decker, J. P.

    1976-01-01

    Assuming Space Shuttle technology to be state-of-the-art, projected technological advances to improve the capabilities of single-stage-to-orbit (SSTO) derivatives are examined. An increase of about 30% in payload performance can be expected from upgrading the present Shuttle system through weight and drag reductions and improvements in the propellants and engines. The ODINEX (Optimal Design Integration Executive Computer Program) program has been used to explore design options. An advanced technology SSTO baseline system derived from ODINEX analysis has a conventional wing-body configuration using LOX/LH engines, three with two-position nozzles with expansion ratios of 40 and 200 and four with fixed nozzles with an expansion ratio of 40. Two assisted-takeoff approaches are under consideration in addition to a concept in which the orbital vehicle takes off empty using airbreathing propulsion and carries out a rendezvous with two large cryogenic tankers carrying propellant at an altitude of 6100 m. Further approaches under examination for propulsion, aerothermodynamic design, and design integration are described.

  7. Realization of the medium and high vacuum primary standard in CENAM, Mexico

    NASA Astrophysics Data System (ADS)

    Torres-Guzman, J. C.; Santander, L. A.; Jousten, K.

    2005-12-01

    A medium and high vacuum primary standard, based on the static expansion method, has been set up at Centro Nacional de Metrología (CENAM), Mexico. This system has four volumes and covers a measuring range of 1 × 10-5 Pa to 1 × 103 Pa of absolute pressure. As part of its realization, a characterization was performed, which included volume calibrations, several tests and a bilateral key comparison. To determine the expansion ratios, two methods were applied: the gravimetric method and the method with a linearized spinning rotor gauge. The outgassing ratios for the whole system were also determined. A comparison was performed with Physikalisch-Technische Bundesanstalt (comparison SIM-Euromet.M.P-BK3). By means of this comparison, a link has been achieved with the Euromet comparison (Euromet.M.P-K1.b). As a result, it is concluded that the value obtained at CENAM is equivalent to the Euromet reference value, and therefore the design, construction and operation of CENAM's SEE-1 vacuum primary standard were successful.

  8. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  9. Lattice QCD phase diagram in and away from the strong coupling limit.

    PubMed

    de Forcrand, Ph; Langelage, J; Philipsen, O; Unger, W

    2014-10-10

    We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the μ-T phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated at next-to-leading order.

  10. Body composition analysis: Cellular level modeling of body component ratios.

    PubMed

    Wang, Z; Heymsfield, S B; Pi-Sunyer, F X; Gallagher, D; Pierson, R N

    2008-01-01

    During the past two decades, a major outgrowth of efforts by our research group at St. Luke's-Roosevelt Hospital is the development of body composition models that include cellular level models, models based on body component ratios, total body potassium models, multi-component models, and resting energy expenditure-body composition models. This review summarizes these models with emphasis on component ratios that we believe are fundamental to understanding human body composition during growth and development and in response to disease and treatments. In-vivo measurements reveal that in healthy adults some component ratios show minimal variability and are relatively 'stable', for example total body water/fat-free mass and fat-free mass density. These ratios can be effectively applied for developing body composition methods. In contrast, other ratios, such as total body potassium/fat-free mass, are highly variable in vivo and therefore are less useful for developing body composition models. In order to understand the mechanisms governing the variability of these component ratios, we have developed eight cellular level ratio models and from them we derived simplified models that share as a major determining factor the ratio of extracellular to intracellular water ratio (E/I). The E/I value varies widely among adults. Model analysis reveals that the magnitude and variability of each body component ratio can be predicted by correlating the cellular level model with the E/I value. Our approach thus provides new insights into and improved understanding of body composition ratios in adults.

  11. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials

    NASA Astrophysics Data System (ADS)

    Borrell, Amparo; García-Moreno, Olga; Torrecillas, Ramón; García-Rocha, Victoria; Fernández, Adolfo

    2012-02-01

    Materials with a very low or tailored thermal expansion have many applications ranging from cookware to the aerospace industry. Among others, lithium aluminosilicates (LAS) are the most studied family with low and negative thermal expansion coefficients. However, LAS materials are electrical insulators and have poor mechanical properties. Nanocomposites using LAS as a matrix are promising in many applications where special properties are achieved by the addition of one or two more phases. The main scope of this work is to study the sinterability of carbon nanofiber (CNFs)/LAS and CNFs/alumina/LAS nanocomposites, and to adjust the ratio among components for obtaining a near-zero or tailored thermal expansion. Spark plasma sintering of nanocomposites, consisting of commercial CNFs and alumina powders and an ad hoc synthesized β-eucryptite phase, is proposed as a solution to improving mechanical and electrical properties compared with the LAS ceramics obtained under the same conditions. X-ray diffraction results on phase compositions and microstructure are discussed together with dilatometry data obtained in a wide temperature range (-150 to 450 °C). The use of a ceramic LAS phase makes it possible to design a nanocomposite with a very low or tailored thermal expansion coefficient and exceptional electrical and mechanical properties.

  12. Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Isolated Nozzles

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.

    2011-01-01

    Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-ft Supersonic Wind Tunnel at the NASA Glenn Research Center to validate the computational study. Results demonstrated how the nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion, causing a favorable change in the observed pressure signature. Experimental results were presented for comparison to the CFD results. The strong nozzle lip shock at high values of NPR intersected the nozzle boat-tail expansion and suppressed the expansion wave. Based on these results, it may be feasible to reduce the boat-tail expansion for a future supersonic aircraft with under-expanded nozzle exhaust flow by modifying nozzle pressure or nozzle divergent section geometry.

  13. Extrusion-formed uranium-2. 4 wt % article with decreased linear thermal expansion and method for making the same. [Patent application

    DOEpatents

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-05-24

    The present invention is directed to the fabrication of an article of uranium-2.4 wt % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 and 600/sup 0/C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/s. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630/sup 0/C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/s. These critical extrusion parameters provide the article with a desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  14. Extrusion-formed uranium-2.4 wt. % article with decreased linear thermal expansion and method for making the same

    DOEpatents

    Anderson, Robert C.; Jones, Jack M.; Kollie, Thomas G.

    1982-01-01

    The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22.degree. C. and 600.degree. C. which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/sec. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630.degree. C. and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  15. Predicting Intracerebral Hemorrhage Growth With the Spot Sign: The Effect of Onset-to-Scan Time.

    PubMed

    Dowlatshahi, Dar; Brouwers, H Bart; Demchuk, Andrew M; Hill, Michael D; Aviv, Richard I; Ufholz, Lee-Anne; Reaume, Michael; Wintermark, Max; Hemphill, J Claude; Murai, Yasuo; Wang, Yongjun; Zhao, Xingquan; Wang, Yilong; Li, Na; Sorimachi, Takatoshi; Matsumae, Mitsunori; Steiner, Thorsten; Rizos, Timolaos; Greenberg, Steven M; Romero, Javier M; Rosand, Jonathan; Goldstein, Joshua N; Sharma, Mukul

    2016-03-01

    Hematoma expansion after acute intracerebral hemorrhage is common and is associated with early deterioration and poor clinical outcome. The computed tomographic angiography (CTA) spot sign is a promising predictor of expansion; however, frequency and predictive values are variable across studies, possibly because of differences in onset-to-CTA time. We performed a patient-level meta-analysis to define the relationship between onset-to-CTA time and frequency and predictive ability of the spot sign. We completed a systematic review for studies of CTA spot sign and hematoma expansion. We subsequently pooled patient-level data on the frequency and predictive values for significant hematoma expansion according to 5 predefined categorized onset-to-CTA times. We calculated spot-sign frequency both as raw and frequency-adjusted rates. Among 2051 studies identified, 12 met our inclusion criteria. Baseline hematoma volume, spot-sign status, and time-to-CTA were available for 1176 patients, and 1039 patients had follow-up computed tomographies for hematoma expansion analysis. The overall spot sign frequency was 26%, decreasing from 39% within 2 hours of onset to 13% beyond 8 hours (P<0.001). There was a significant decrease in hematoma expansion in spot-positive patients as onset-to-CTA time increased (P=0.004), with positive predictive values decreasing from 53% to 33%. The frequency of the CTA spot sign is inversely related to intracerebral hemorrhage onset-to-CTA time. Furthermore, the positive predictive value of the spot sign for significant hematoma expansion decreases as time-to-CTA increases. Our results offer more precise risk stratification for patients with acute intracerebral hemorrhage and will help refine clinical prediction rules for intracerebral hemorrhage expansion. © 2016 American Heart Association, Inc.

  16. Ratio Variables in Aggregate Data Analysis: Their Uses, Problems, and Alternatives.

    ERIC Educational Resources Information Center

    Bollen, Kenneth A.; Ward, Sally

    1979-01-01

    Three different uses of ratio variables in aggregate data analysis are discussed: (1) as measures of theoretical concepts, (2) as a means to control an extraneous factor, and (3) as a correction for heteroscedasticity. Alternatives to ratios for each of these cases are discussed and evaluated. (Author/JKS)

  17. Experimental study of flow reattachment in a single-sided sudden expansion

    NASA Technical Reports Server (NTRS)

    Westphal, R. V.; Johnston, J. P.; Eaton, J. K.

    1984-01-01

    The reattachment of a fully turbulent, two dimensional, separated shear layer downstream of a single-sided sudden expansion in a planar duct flow was examined experimentally. The importance of changing the structure of the separated shear layer on the reattachment process itself was examined. For all cases, the Reynolds number based on step height was greater than 20,000, the expansion ratio was 5/3, and the inlet boundary layer was less than one-half step height in thickness. A crucially important phase was the development of a pulsed wall probe for measurement of skin friction in the reattachment region, thus providing an unambiguous definition of the reattachment length. Quantitative features of reattachment - including streamwise development of the mean and fluctuating velocity field, pressure rise, and skin friction - were found to be similar for all cases studied when scaled by the reattachment length. A definition of the reattachment zone is proposed.

  18. Prevalence odds ratio versus prevalence ratio: choice comes with consequences.

    PubMed

    Tamhane, Ashutosh R; Westfall, Andrew O; Burkholder, Greer A; Cutter, Gary R

    2016-12-30

    Odds ratio, risk ratio, and prevalence ratio are some of the measures of association which are often reported in research studies quantifying the relationship between an independent variable and the outcome of interest. There has been much debate on the issue of which measure is appropriate to report depending on the study design. However, the literature on selecting a particular category of the outcome to be modeled and/or change in reference group for categorical independent variables and the effect on statistical significance, although known, is scantly discussed nor published with examples. In this article, we provide an example of a cross-sectional study wherein prevalence ratio was chosen over (Prevalence) odds ratio and demonstrate the analytic implications of the choice of category to be modeled and choice of reference level for independent variables. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance

    PubMed Central

    Huang, Runzhou; Xu, Xinwu; Lee, Sunyoung; Zhang, Yang; Kim, Birm-June; Wu, Qinglin

    2013-01-01

    The effect of individual and combined talc and glass fibers (GFs) on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE) composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE) values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites. PMID:28788322

  20. Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory.

    PubMed

    Chevalier, Christian; Bourdon, Matthieu; Pirrello, Julien; Cheniclet, Catherine; Gévaudant, Frédéric; Frangne, Nathalie

    2014-06-01

    The growth of a plant organ depends upon the developmental processes of cell division and cell expansion. The activity of cell divisions sets the number of cells that will make up the organ; the cell expansion activity then determines its final size. Among the various mechanisms that may influence the determination of cell size, endopolyploidy by means of endoreduplication appears to be of great importance in plants. Endoreduplication is widespread in plants and supports the process of differentiation of cells and organs. Its functional role in plant cells is not fully understood, although it is commonly associated with ploidy-dependent cell expansion. During the development of tomato fruit, cells from the (fleshy) pericarp tissue become highly polyploid, reaching a DNA content barely encountered in other plant species (between 2C and 512C). Recent investigations using tomato fruit development as a model provided new data in favour of the long-standing karyoplasmic ratio theory, stating that cells tend to adjust their cytoplasmic volume to the nuclear DNA content. By establishing a highly structured cellular system where multiple physiological functions are integrated, endoreduplication does act as a morphogenetic factor supporting cell growth during tomato fruit development. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Simplified Helium Refrigerator Cycle Analysis Using the `Carnot Step'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Knudsen; V. Ganni

    2006-05-01

    An analysis of the Claude form of an idealized helium liquefier for the minimum input work reveals the ''Carnot Step'' for helium refrigerator cycles. As the ''Carnot Step'' for a multi-stage polytropic compression process consists of equal pressure ratio stages; similarly for an idealized helium liquefier the ''Carnot Step'' consists of equal temperature ratio stages for a given number of expansion stages. This paper presents the analytical basis and some useful equations for the preliminary examination of existing and new Claude helium refrigeration cycles.

  2. Triphasic contrast enhanced CT simulation with bolus tracking for pancreas SBRT target delineation.

    PubMed

    Godfrey, Devon J; Patel, Bhavik N; Adamson, Justus D; Subashi, Ergys; Salama, Joseph K; Palta, Manisha

    Bolus-tracked multiphasic contrast computed tomography (CT) is often used in diagnostic radiology to enhance the visibility of pancreas tumors, but is uncommon in radiation therapy pancreas CT simulation, and its impact on gross tumor volume (GTV) delineation is unknown. This study evaluates the lesion conspicuity and consistency of pancreas stereotactic body radiation therapy (SBRT) GTVs contoured in the different contrast phases of triphasic CT simulation scans. Triphasic, bolus-tracked planning CT simulation scans of 10 consecutive pancreas SBRT patients were acquired, yielding images of the pancreas during the late arterial (LA), portal venous (PV), and either the early arterial or delayed phase. GTVs were contoured on each phase by a gastrointestinal-specialized radiation oncologist and reviewed by a fellowship-trained abdominal radiologist who specializes in pancreatic imaging. The volumes of the registered GTVs, their overlap ratio, and the 3-dimensional margin expansions necessary for each GTV to fully encompass GTVs from the other phases were calculated. The contrast difference between tumor and normal pancreas was measured, and 2 radiation oncologists rank-ordered the phases according to their value for the lesion-contouring task. Tumor-to-pancreas enhancement was on average much larger for the LA and PV than the delayed phase or early arterial phases; the LA and PV phases were also consistently preferred by the radiation oncologists. Enhancement differences among the phases resulted in highly variable GTV volumes with no observed trends. Overlap ratios ranged from 18% to 75% across all 3 phases, improving to 43% to 91% when considering only the preferred LA and PV phases. GTV expansions necessary to encompass all GTVs ranged from 0.3 to 1.8 cm for all 3 phases, improving slightly to 0.1 to 1.4 cm when considering just the LA and PV phases. For pancreas SBRT, we recommend combining the GTVs from a multiphasic CT simulation with bolus-tracking, including, at a minimum, a Boolean "OR" of the LA and PV phases. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  3. Effects of sediment discharge from Namibian diamond mines on intertidal and subtidal rocky-reef communities and the rock lobster Jasus lalandii

    NASA Astrophysics Data System (ADS)

    Pulfrich, Andrea; Branch, George M.

    2014-10-01

    Extensive terrestrial diamond mining occurs on the southern coast of Namibia, and at Elizabeth Bay near Lüderitz sediment tailings totalling about 2 million tons.yr-1, have been discharged onto the beach. We report here on monitoring spanning 2004-2012 to assess (1) the impacts of increased tailings discharges following an expansion of the mine in 2005, and (2) recovery after discharges halted in 2009. Sampling covered three levels of wave exposure, and compared impacted sites with comparable unmined reference sites. Benthic communities were quantified on both intertidal and subtidal reefs, and kelp densities and rock-lobster abundances, lengths and sex ratios on subtidal reefs. Prior to intensification of mining, deposition of tailings significantly influenced intertidal communities only at sheltered localities where wave action was insufficient to disperse them. Following the mine expansion, effects spread to both semi-exposed and exposed sites. After mining was suspended, recovery of the biota was limited, even three years later. Reductions of intertidal diversity and grazers, proliferation of macroalgae, and increased dominance by filter feeders were recorded at the impacted sites and were persistent, but the affects of wave exposure on community composition generally exceeded those of mining discharges. On subtidal reefs, tailings deposition reduced predators and grazers, increased filter feeders and ephemeral green algae, and decreased all other algae, possibly driven by light reduction due to plumes of suspended fine sediments. Increased discharges post-2005 also substantially influenced bathymetry, wave and current regimes, transforming 2 km of previously wave-exposed rocky coastline into a semi-exposed sandy beach. Tailings discharge appeared to influence community composition in four ways: (1) inundation and blanketing; (2) increased suspended particulate materials; (3) indirect top-down ripple effects, and (4) light reduction. Throughout the period 2004-2007, tailings-deposition had no detectable effects on the sex ratio, sizes or density of rock lobsters, but following suspension of mining activities, densities in 2010-2012 at impact sites exceeded those at reference sites. High natural variability in the abundance of rock lobsters may mask mining impacts, but the data strongly indicate an absence of any negative effects on rock lobsters.

  4. Aerodynamic Shape Optimization of a Dual-Stream Supersonic Plug Nozzle

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Gray, Justin S.; Park, Michael A.; Nielsen, Eric J.; Carlson, Jan-Renee

    2015-01-01

    Aerodynamic shape optimization was performed on an isolated axisymmetric plug nozzle sized for a supersonic business jet. The dual-stream concept was tailored to attenuate nearfield pressure disturbances without compromising nozzle performance. Adjoint-based anisotropic mesh refinement was applied to resolve nearfield compression and expansion features in the baseline viscous grid. Deformed versions of the adapted grid were used for subsequent adjoint-driven shape optimization. For design, a nonlinear gradient-based optimizer was coupled to the discrete adjoint formulation of the Reynolds-averaged Navier- Stokes equations. All nozzle surfaces were parameterized using 3rd order B-spline interpolants and perturbed axisymmetrically via free-form deformation. Geometry deformations were performed using 20 design variables shared between the outer cowl, shroud and centerbody nozzle surfaces. Interior volume grid deformation during design was accomplished using linear elastic mesh morphing. The nozzle optimization was performed at a design cruise speed of Mach 1.6, assuming core and bypass pressure ratios of 6.19 and 3.24, respectively. Ambient flight conditions at design were commensurate with 45,000-ft standard day atmosphere.

  5. Synthesis, PtS-type structure, and anomalous mechanics of the Cd(CN)2 precursor Cd(NH3)2[Cd(CN)4].

    PubMed

    Coates, Chloe S; Makepeace, Joshua W; Seel, Andrew G; Baise, Mia; Slater, Ben; Goodwin, Andrew L

    2018-05-15

    We report the nonaqueous synthesis of Cd(CN)2 by oxidation of cadmium metal with Hg(CN)2 in liquid ammonia. The reaction proceeds via an intermediate of composition Cd(NH3)2[Cd(CN)4], which converts to Cd(CN)2 on prolonged heating. Powder X-ray diffraction measurements allow us to determine the crystal structure of the previously-unreported Cd(NH3)2[Cd(CN)4], which we find to adopt a twofold interpenetrating PtS topology. We discuss the effect of partial oxidation on the Cd/Hg composition of this intermediate, as well as its implications for the reconstructive nature of the deammination process. Variable-temperature X-ray diffraction measurements allow us to characterise the anisotropic negative thermal expansion (NTE) behaviour of Cd(NH3)2[Cd(CN)4] together with the effect of Cd/Hg substitution; ab initio density functional theory (DFT) calculations reveal a similarly anomalous mechanical response in the form of both negative linear compressibility (NLC) and negative Poisson's ratios.

  6. Collective Modes in a Trapped Gas from Second-Order Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Lewis, William; Romatschke, Paul

    Navier-Stokes equations are often used to analyze collective oscillations and expansion dynamics of strongly interacting quantum gases. However, their use, for example, in precision determination of transport properties such as the ratio shear viscosity to entropy density (η / s) in strongly interacting Fermi gases problematic. Second-order hydrodynamics addresses this by promoting the viscous stress tensor to a hydrodynamic variable relaxing to the Navier-Stokes form on a timescale τπ. We derive frequencies, damping rates, and spatial structure of collective oscillations up to the decapole mode of a harmonically trapped gas in this framework. We find damping of higher-order modes (i.e. beyond quadrupolar) exhibits greater sensitivity to shear viscosity. Thus measurement of the hexapolar mode, for example, may lead to a stronger experimental constraint on η / s . Additionally, we find ``non-hydrodynamic'' modes not contained in a Navier-Stokes description. We calculate excitation amplitudes of non-hydrodynamic modes demonstrating they should be observable. Non-hydrodynamic modes may have implications for the hydrodynamization timescale, the existence of quasi-particles, and universal transport behavior in strongly interacting quantum fluids.

  7. Temperature history of the Caribbean mixed layer as derived from sclerosponges

    NASA Astrophysics Data System (ADS)

    Estrella, J.; Winter, A.; Sherman, C.; Mangini, A.; Ramírez, W.

    2011-12-01

    We present a high resolution record of the Caribbean mixed layer temperature at different depths derived from oxygen isotopic ratios obtained from the sclerosponge Ceratoporella nicholsoni. Sclerosponges precipitate their calcium carbonate skeleton in equilibrium with their surrounding environment and are capable of living at great depths (down to 200 m). The sponges for this project were collected off Puerto Rico and St. Croix in northeastern region of the Caribbean Sea. The record obtained closest to the surface (36 m) indicates a sudden rise in sea surface temperature that started in 1866 and ended in 1877 with a total rise of 0.5 °C. At this time the rise decelerated until it finally stopped in 1935. From there onwards the record shows a declining trend that lasts until present day. We found that up to 51 % of the temperature variability in this record can be attributed to the Atlantic Multidecadal Oscillation (Trenberth and Shea, 2006). Further work is taking place on sponges located at various depths to determine the rate of expansion of the mixed layer.

  8. Minimum weight design of rectangular and tapered helicopter rotor blades with frequency constraints

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Walsh, Joanne L.

    1988-01-01

    The minimum weight design of a helicopter rotor blade subject to constraints on coupled flap-lag natural frequencies has been studied. A constraint has also been imposed on the minimum value of the autorotational inertia of the blade in order to ensure that it has sufficient inertia to autorotate in the case of engine failure. The program CAMRAD is used for the blade modal analysis and CONMIN is used for the optimization. In addition, a linear approximation analysis involving Taylor series expansion has been used to reduce the analysis effort. The procedure contains a sensitivity analysis which consists of analytical derivatives of the objective function and the autorotational inertia constraint and central finite difference derivatives of the frequency constraints. Optimum designs have been obtained for both rectangular and tapered blades. Design variables include taper ratio, segment weights, and box beam dimensions. It is shown that even when starting with an acceptable baseline design, a significant amount of weight reduction is possible while satisfying all the constraints for both rectangular and tapered blades.

  9. Minimum weight design of rectangular and tapered helicopter rotor blades with frequency constraints

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Walsh, Joanne L.

    1988-01-01

    The minimum weight design of a helicopter rotor blade subject to constraints on coupled flap-lag natural frequencies has been studied. A constraint has also been imposed on the minimum value of the autorotational inertia of the blade in order to ensure that it has sufficient inertia to aurorotate in the case of engine failure. The program CAMRAD is used for the blade modal analysis and CONMIN is used for the optimization. In addition, a linear approximation analysis involving Taylor series expansion has been used to reduce the analysis effort. The procedure contains a sensitivity analysis which consists of analytical derivatives of the objective function and the autorotational inertia constraint and central finite difference derivatives of the frequency constraints. Optimum designs have been obtained for both rectangular and tapered blades. Design variables include taper ratio, segment weights, and box beam dimensions. It is shown that even when starting with an acceptable baseline design, a significant amount of weight reduction is possible while satisfying all the constraints for both rectangular and tapered blades.

  10. Minimum weight design of helicopter rotor blades with frequency constraints

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Walsh, Joanne L.

    1989-01-01

    The minimum weight design of helicopter rotor blades subject to constraints on fundamental coupled flap-lag natural frequencies has been studied in this paper. A constraint has also been imposed on the minimum value of the blade autorotational inertia to ensure that the blade has sufficient inertia to autorotate in case of an engine failure. The program CAMRAD has been used for the blade modal analysis and the program CONMIN has been used for the optimization. In addition, a linear approximation analysis involving Taylor series expansion has been used to reduce the analysis effort. The procedure contains a sensitivity analysis which consists of analytical derivatives of the objective function and the autorotational inertia constraint and central finite difference derivatives of the frequency constraints. Optimum designs have been obtained for blades in vacuum with both rectangular and tapered box beam structures. Design variables include taper ratio, nonstructural segment weights and box beam dimensions. The paper shows that even when starting with an acceptable baseline design, a significant amount of weight reduction is possible while satisfying all the constraints for blades with rectangular and tapered box beams.

  11. Following The Trail: Factors Underlying the Sudden Expansion of the Egyptian Mongoose (Herpestes ichneumon) in Portugal

    PubMed Central

    Barros, Tânia; Carvalho, João; Pereira, Maria João Ramos; Ferreira, Joaquim P.; Fonseca, Carlos

    2015-01-01

    Species range-limits are influenced by a combination of several factors. In our study we aimed to unveil the drivers underlying the expansion of the Egyptian mongoose in Portugal, a carnivore that was confined to southern Portugal and largely increased its range during the last three decades. We evaluated the expansion of the species in three periods (1980-1990, 1990-2000 and 2000-2010), by projecting the presence/absence data of the species in each temporal range and proposed four hypotheses to explain this sudden expansion associated to changes in the barrier effects of human infrastructure and topographic features, and in the availability of suitable areas due to climate change or land use. An exploratory analysis was made using Spearman rank correlation, followed by a hierarchical partitioning analysis to select uncorrelated potential explanatory variables associated with the different hypotheses. We then ran Generalized Linear Models (GLM) for every period for each hypothesis and for every combination of hypotheses. Our main findings suggest that dynamic transitions of land-use coupled with temperature and rainfall variations over the decades are the main drivers promoting the mongoose expansion. The geographic barriers and the human infrastructures functioned as barriers for mongoose expansion and have shaped its distribution. The expansion of the Egyptian mongoose across the Portuguese territory was due to a variety of factors. Our results suggest a rapid shift in species range in response to land-use and climate changes, underlining the close link between species ranges and a changing environment. PMID:26266939

  12. Following the trail: factors underlying the sudden expansion of the Egyptian mongoose (Herpestes ichneumon) in Portugal.

    PubMed

    Barros, Tânia; Carvalho, João; Pereira, Maria João Ramos; Ferreira, Joaquim P; Fonseca, Carlos

    2015-01-01

    Species range-limits are influenced by a combination of several factors. In our study we aimed to unveil the drivers underlying the expansion of the Egyptian mongoose in Portugal, a carnivore that was confined to southern Portugal and largely increased its range during the last three decades. We evaluated the expansion of the species in three periods (1980-1990, 1990-2000 and 2000-2010), by projecting the presence/absence data of the species in each temporal range and proposed four hypotheses to explain this sudden expansion associated to changes in the barrier effects of human infrastructure and topographic features, and in the availability of suitable areas due to climate change or land use. An exploratory analysis was made using Spearman rank correlation, followed by a hierarchical partitioning analysis to select uncorrelated potential explanatory variables associated with the different hypotheses. We then ran Generalized Linear Models (GLM) for every period for each hypothesis and for every combination of hypotheses. Our main findings suggest that dynamic transitions of land-use coupled with temperature and rainfall variations over the decades are the main drivers promoting the mongoose expansion. The geographic barriers and the human infrastructures functioned as barriers for mongoose expansion and have shaped its distribution. The expansion of the Egyptian mongoose across the Portuguese territory was due to a variety of factors. Our results suggest a rapid shift in species range in response to land-use and climate changes, underlining the close link between species ranges and a changing environment.

  13. Asymptotic expansions for 2D symmetrical laminar wakes

    NASA Astrophysics Data System (ADS)

    Belan, Marco; Tordella, Daniela

    1999-11-01

    An extension of the well known asymptotic representation of the 2D laminar incompressible wake past a symmetrical body is presented. Using the thin free shear layer approximation we determined solutions in terms of infinite asymptotic expansions. These are power series of the streamwise space variable with fractional negative coefficients. The general n-th order term has been analytically established. Through analysis of the behaviour of the same expansions inserted into the Navier-Stokes equations, we verified the self-consistency of the approximation showing that at the third order the correction due to pressure variations identically vanishes while the contribution of the longitudinal diffusion is still two-three order of magnitude smaller than that of the transversal diffusion, depending on Re. When the procedure is applied to the Navier-Stokes equations, we showed that further mathematical difficulties do not arise. Where opportune one may thus easily shift to the complete model. Through a spatial multiscaling approach, a brief account on the stability properties of these expansions as representing the non parallel basic flow of 2D wakes will be given.

  14. Effective potential of the three-dimensional Ising model: The pseudo-ɛ expansion study

    NASA Astrophysics Data System (ADS)

    Sokolov, A. I.; Kudlis, A.; Nikitina, M. A.

    2017-08-01

    The ratios R2k of renormalized coupling constants g2k that enter the effective potential and small-field equation of state acquire the universal values at criticality. They are calculated for the three-dimensional scalar λϕ4 field theory (3D Ising model) within the pseudo-ɛ expansion approach. Pseudo-ɛ expansions for the critical values of g6, g8, g10, R6 =g6 / g42, R8 =g8 / g43 and R10 =g10 / g44 originating from the five-loop renormalization group (RG) series are derived. Pseudo-ɛ expansions for the sextic coupling have rapidly diminishing coefficients, so addressing Padé approximants yields proper numerical results. Use of Padé-Borel-Leroy and conformal mapping resummation techniques further improves the accuracy leading to the values R6* = 1.6488 and R6* = 1.6490 which are in a brilliant agreement with the result of advanced lattice calculations. For the octic coupling the numerical structure of the pseudo-ɛ expansions is less favorable. Nevertheless, the conform-Borel resummation gives R8* = 0.868, the number being close to the lattice estimate R8* = 0.871 and compatible with the result of 3D RG analysis R8* = 0.857. Pseudo-ɛ expansions for R10* and g10* are also found to have much smaller coefficients than those of the original RG series. They remain, however, fast growing and big enough to prevent obtaining fair numerical estimates.

  15. Simplified Technique for Predicting Offshore Pipeline Expansion

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Kim, D. K.; Choi, H. S.; Yu, S. Y.; Park, K. S.

    2018-06-01

    In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs, which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio (SDR) versus virtual anchor length (L A ) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline, offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.

  16. All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries

    PubMed Central

    Hwang, Chihyun; Kim, Tae-Hee; Cho, Yoon-Gyo; Kim, Jieun; Song, Hyun-Kon

    2015-01-01

    All-in-one assemblies of separator, electrode and current collector (SECA) for lithium ion batteries are presented by using 1D nanowires of Si and Cu (nwSi and nwCu). Even without binders, integrity of SECA is secured via structural joints based on ductility of Cu as well as entanglement of nwSi and nwCu. By controlling the ratio of the nanowires, the number of contact points and voids accommodating volume expansion of Si active material are tunable. Zero volume expansion and high energy density are simultaneously achievable by the architecture. PMID:25720334

  17. Theoretical Rocket Performance of Liquid Methane with Several Fluorine-Oxygen Mixtures Assuming Frozen Composition

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Kastner, Michael E

    1958-01-01

    Theoretical rocket performance for frozen composition during expansion was calculated for liquid methane with several fluorine-oxygen mixtures for a range of pressure ratios and oxidant-fuel ratios. The parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, and thermal conductivity. The maximum calculated value of specific impulse for a chamber pressure of 600 pounds per square inch absolute (40.827atm) and an exit pressure of 1 atmosphere is 315.3 for 79.67 percent fluorine in the oxidant.

  18. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes

    PubMed Central

    Durr, Alexandra; Bauer, Peter; Figueroa, Karla P.; Ichikawa, Yaeko; Brussino, Alessandro; Forlani, Sylvie; Rakowicz, Maria; Schöls, Ludger; Mariotti, Caterina; van de Warrenburg, Bart P.C.; Orsi, Laura; Giunti, Paola; Filla, Alessandro; Szymanski, Sandra; Klockgether, Thomas; Berciano, José; Pandolfo, Massimo; Boesch, Sylvia; Melegh, Bela; Timmann, Dagmar; Mandich, Paola; Camuzat, Agnès; Goto, Jun; Ashizawa, Tetsuo; Cazeneuve, Cécile; Tsuji, Shoji; Pulst, Stefan-M.; Brusco, Alfredo; Riess, Olaf; Stevanin, Giovanni

    2014-01-01

    Polyglutamine-coding (CAG)n repeat expansions in seven different genes cause spinocerebellar ataxias. Although the size of the expansion is negatively correlated with age at onset, it accounts for only 50–70% of its variability. To find other factors involved in this variability, we performed a regression analysis in 1255 affected individuals with identified expansions (spinocerebellar ataxia types 1, 2, 3, 6 and 7), recruited through the European Consortium on Spinocerebellar Ataxias, to determine whether age at onset is influenced by the size of the normal allele in eight causal (CAG)n-containing genes (ATXN1–3, 6–7, 17, ATN1 and HTT). We confirmed the negative effect of the expanded allele and detected threshold effects reflected by a quadratic association between age at onset and CAG size in spinocerebellar ataxia types 1, 3 and 6. We also evidenced an interaction between the expanded and normal alleles in trans in individuals with spinocerebellar ataxia types 1, 6 and 7. Except for individuals with spinocerebellar ataxia type 1, age at onset was also influenced by other (CAG)n-containing genes: ATXN7 in spinocerebellar ataxia type 2; ATXN2, ATN1 and HTT in spinocerebellar ataxia type 3; ATXN1 and ATXN3 in spinocerebellar ataxia type 6; and ATXN3 and TBP in spinocerebellar ataxia type 7. This suggests that there are biological relationships among these genes. The results were partially replicated in four independent populations representing 460 Caucasians and 216 Asian samples; the differences are possibly explained by ethnic or geographical differences. As the variability in age at onset is not completely explained by the effects of the causative and modifier sister genes, other genetic or environmental factors must also play a role in these diseases. PMID:24972706

  19. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.

    PubMed

    Tomé, Stéphanie; Manley, Kevin; Simard, Jodie P; Clark, Greg W; Slean, Meghan M; Swami, Meera; Shelbourne, Peggy F; Tillier, Elisabeth R M; Monckton, Darren G; Messer, Anne; Pearson, Christopher E

    2013-01-01

    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases.

  20. MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice

    PubMed Central

    Simard, Jodie P.; Clark, Greg W.; Slean, Meghan M.; Swami, Meera; Shelbourne, Peggy F.; Tillier, Elisabeth R. M.; Monckton, Darren G.; Messer, Anne; Pearson, Christopher E.

    2013-01-01

    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases. PMID:23468640

  1. The Impact of Post-Procedural Asymmetry, Expansion, and Eccentricity of Bioresorbable Everolimus-Eluting Scaffold and Metallic Everolimus-Eluting Stent on Clinical Outcomes in the ABSORB II Trial.

    PubMed

    Suwannasom, Pannipa; Sotomi, Yohei; Ishibashi, Yuki; Cavalcante, Rafael; Albuquerque, Felipe N; Macaya, Carlos; Ormiston, John A; Hill, Jonathan; Lang, Irene M; Egred, Mohaned; Fajadet, Jean; Lesiak, Maciej; Tijssen, Jan G; Wykrzykowska, Joanna J; de Winter, Robbert J; Chevalier, Bernard; Serruys, Patrick W; Onuma, Yoshinobu

    2016-06-27

    The study sought to investigate the relationship between post-procedural asymmetry, expansion, and eccentricity indices of metallic everolimus-eluting stent (EES) and bioresorbable vascular scaffold (BVS) and their respective impact on clinical events at 1-year follow-up. Mechanical properties of a fully BVS are inherently different from those of permanent metallic stent. The ABSORB II (A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions) trial compared the BVS and metallic EES in the treatment of a de novo coronary artery stenosis. Protocol-mandated intravascular ultrasound imaging was performed pre- and post-procedure in 470 patients (162 metallic EES and 308 BVS). Asymmetry index (AI) was calculated per lesion as: (1 - minimum scaffold/stent diameter/maximum scaffold/stent diameter). Expansion index and optimal scaffold/stent expansion followed the definition of the MUSIC (Multicenter Ultrasound Stenting in Coronaries) study. Eccentricity index (EI) was calculated as the ratio of minimum and maximum scaffold/stent diameter per cross section. The incidence of device-oriented composite endpoint (DoCE) was collected. Post-procedure, the metallic EES group was more symmetric and concentric than the BVS group. Only 8.0% of the BVS arm and 20.0% of the metallic EES arm achieved optimal scaffold/stent expansion (p < 0.001). At 1 year, there was no difference in the DoCE between both devices (BVS 5.2% vs. EES 3.1%; p = 0.29). Post-procedural devices asymmetry and eccentricity were related to higher event rates while there was no relevance to the expansion status. Subsequent multivariate analysis identified that post-procedural AI >0.30 is an independent predictor of DoCE (hazard ratio: 3.43; 95% confidence interval: 1.08 to 10.92; p = 0.037). BVS implantation is more frequently associated with post-procedural asymmetric and eccentric morphology compared to metallic EES. Post-procedural devices asymmetry were independently associated with DoCE following percutaneous coronary intervention. However, this approach should be viewed as hypothesis generating due to low event rates. (ABSORB II Randomized Controlled Trial [ABSORB II]; NCT01425281). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Identifying the driving forces of urban expansion and its environmental impact in Jakarta-Bandung mega urban region

    NASA Astrophysics Data System (ADS)

    Pravitasari, A. E.; Rustiadi, E.; Mulya, S. P.; Setiawan, Y.; Fuadina, L. N.; Murtadho, A.

    2018-05-01

    The socio-economic development in Jakarta-Bandung Mega Urban Region (JBMUR) caused the increasing of urban expansion and led to a variety of environmental damage such as uncontrolled land use conversion and raising anthropogenic disaster. The objectives of this study are: (1) to identify the driving forces of urban expansion that occurs on JBMUR and (2) to analyze the environmental quality decline on JBMUR by producing time series spatial distribution map and spatial autocorrelation of floods and landslide as the proxy of anthropogenic disaster. The driving forces of urban expansion in this study were identified by employing Geographically Weighted Regression (GWR) model using 6 (six) independent variables, namely: population density, percentage of agricultural land, distance to the center of capital city/municipality, percentage of household who works in agricultural sector, distance to the provincial road, and distance to the local road. The GWR results showed that local demographic, social and economic factors including distance to the road spatially affect urban expansion in JBMUR. The time series spatial distribution map of floods and landslide event showed the spatial cluster of anthropogenic disaster in some areas. Through Local Moran Index, we found that environmental damage in one location has a significant impact on the condition of its surrounding area.

  3. Fourier-Legendre expansion of the one-electron density matrix of ground-state two-electron atoms.

    PubMed

    Ragot, Sébastien; Ruiz, María Belén

    2008-09-28

    The density matrix rho(r,r(')) of a spherically symmetric system can be expanded as a Fourier-Legendre series of Legendre polynomials P(l)(cos theta=rr(')rr(')). Application is here made to harmonically trapped electron pairs (i.e., Moshinsky's and Hooke's atoms), for which exact wavefunctions are known, and to the helium atom, using a near-exact wavefunction. In the present approach, generic closed form expressions are derived for the series coefficients of rho(r,r(')). The series expansions are shown to converge rapidly in each case, with respect to both the electron number and the kinetic energy. In practice, a two-term expansion accounts for most of the correlation effects, so that the correlated density matrices of the atoms at issue are essentially a linear functions of P(l)(cos theta)=cos theta. For example, in the case of Hooke's atom, a two-term expansion takes in 99.9% of the electrons and 99.6% of the kinetic energy. The correlated density matrices obtained are finally compared to their determinantal counterparts, using a simplified representation of the density matrix rho(r,r(')), suggested by the Legendre expansion. Interestingly, two-particle correlation is shown to impact the angular delocalization of each electron, in the one-particle space spanned by the r and r(') variables.

  4. Coupling long and short term decisions in the design of urban water supply infrastructure for added reliability and flexibility

    NASA Astrophysics Data System (ADS)

    Marques, G.; Fraga, C. C. S.; Medellin-Azuara, J.

    2016-12-01

    The expansion and operation of urban water supply systems under growing demands, hydrologic uncertainty and water scarcity requires a strategic combination of supply sources for reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources involves integration of long and short term planning to determine what and when to expand, and how much to use of each supply source accounting for interest rates, economies of scale and hydrologic variability. This research presents an integrated methodology coupling dynamic programming optimization with quadratic programming to optimize the expansion (long term) and operations (short term) of multiple water supply alternatives. Lagrange Multipliers produced by the short-term model provide a signal about the marginal opportunity cost of expansion to the long-term model, in an iterative procedure. A simulation model hosts the water supply infrastructure and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions; (b) evaluation of water transfers between urban supply systems; and (c) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion.

  5. Electric Grid Expansion Planning with High Levels of Variable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W.; You, Shutang; Shankar, Mallikarjun

    2016-02-01

    Renewables are taking a large proportion of generation capacity in U.S. power grids. As their randomness has increasing influence on power system operation, it is necessary to consider their impact on system expansion planning. To this end, this project studies the generation and transmission expansion co-optimization problem of the US Eastern Interconnection (EI) power grid with a high wind power penetration rate. In this project, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. This study analyzed a time series creation method to capture the diversity of load and wind powermore » across balancing regions in the EI system. The obtained time series can be easily introduced into the MIP co-optimization problem and then solved robustly through available MIP solvers. Simulation results show that the proposed time series generation method and the expansion co-optimization model and can improve the expansion result significantly after considering the diversity of wind and load across EI regions. The improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare. This study shows that modelling load and wind variations and diversities across balancing regions will produce significantly different expansion result compared with former studies. For example, if wind is modeled in more details (by increasing the number of wind output levels) so that more wind blocks are considered in expansion planning, transmission expansion will be larger and the expansion timing will be earlier. Regarding generation expansion, more wind scenarios will slightly reduce wind generation expansion in the EI system and increase the expansion of other generation such as gas. Also, adopting detailed wind scenarios will reveal that it may be uneconomic to expand transmission networks for transmitting a large amount of wind power through a long distance in the EI system. Incorporating more details of renewables in expansion planning will inevitably increase the computational burden. Therefore, high performance computing (HPC) techniques are urgently needed for power system operation and planning optimization. As a scoping study task, this project tested some preliminary parallel computation techniques such as breaking down the simulation task into several sub-tasks based on chronology splitting or sample splitting, and then assigning these sub-tasks to different cores. Testing results show significant time reduction when a simulation task is split into several sub-tasks for parallel execution.« less

  6. Factors affecting energy deposition and expansion in single wire low current experiments

    NASA Astrophysics Data System (ADS)

    Duselis, Peter U.; Vaughan, Jeffrey A.; Kusse, Bruce R.

    2004-08-01

    Single wire experiments were performed on a low current pulse generator at Cornell University. A 220 nF capacitor charged to 15-25 kV was used to drive single wire experiments. The capacitor and wire holder were connected in series through an external variable inductor to control the current rise rate. This external series inductance was adjustable from 0.2 to 2 μH. When coupled with the range of charging voltages this results in current rise rates from 5 to 50 A/ns. The current heated the wire through liquid and vapor phases until plasma formed around the wire. Energy deposition and expansion rates were measured as functions of the current rise rate. These results indicated better energy deposition and higher expansion rates with faster current rise rates. Effects of the wire-electrode connection method and wire polarity were also studied.

  7. Dynamical effects on the core-mantle boundary from depth-dependent thermodynamical properties of the lower mantle

    NASA Technical Reports Server (NTRS)

    Zhang, Shuxia; Yuen, David A.

    1988-01-01

    A common assumption in modeling dynamical processes in the lower mantle is that both the thermal expansivity and thermal conductivity are reasonably constant. Recent work from seismic equation of state leads to substantially higher values for the thermal conductivity and much lower thermal expansivity values in the deep mantle. The dynamical consequences of incorporating depth-dependent thermodynamic properties on the thermal-mechanical state of the lower mantle are examined with the spherical-shell mean-field equations. It is found that the thermal structure of the seismically resolved anomalous zone at the base of the mantle is strongly influenced by these variable properties and, in particular, that the convective distortion of the core-mantle boundary (CMB) is reduced with the decreasing thermal expansivity. Such a reduction of the dynamically induced topography from pure thermal convection would suggest that some other dynamical mechanism must be operating at the CMB.

  8. Mixing of Supersonic Jets in a RBCC Strutjet Propulsion System

    NASA Technical Reports Server (NTRS)

    Muller, S.; Hawk, Clark W.; Bakker, P. G.; Parkinson, D.; Turner, M.

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during take-off and low speed flight. A scale model of the Strutjet device was built and tested to investigate the mixing of the streams as a function of distance from the Strut exit plane in simulated sea level take-off conditions. The Planar Laser Induced Fluorescence (PLIF) diagnostic method has been employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air. The ratio of the pressure in the turbine exhaust to that in the rocket nozzle wall at the point where the two jets meet, is the independent variable in these experiments. Tests were accomplished at values of 1.0 (the original design point), 1.5 and 2.0 for this parameter at 8 locations downstream of the rocket nozzle exit. The results illustrate the development of the mixing zone from the exit plane of the strut to a distance of about 18 equivalent rocket nozzle exit diameters downstream (18"). These images show the turbine exhaust to be confined until a short distance downstream. The expansion into the ingested air is more pronounced at a pressure ratio of 1.0 and 1.5 and shows that mixing with this air would likely begin at a distance of 2" downstream of the nozzle exit plane. Of the pressure ratios tested in this research, 2.0 is the best value for delaying the mixing at the operating conditions considered.

  9. Liquid Engine Design: Effect of Chamber Dimensions on Specific Impulse

    NASA Technical Reports Server (NTRS)

    Hoggard, Lindsay; Leahy, Joe

    2009-01-01

    Which assumption of combustion chemistry - frozen or equilibrium - should be used in the prediction of liquid rocket engine performance calculations? Can a correlation be developed for this? A literature search using the LaSSe tool, an online repository of old rocket data and reports, was completed. Test results of NTO/Aerozine-50 and Lox/LH2 subscale and full-scale injector and combustion chamber test results were found and studied for this task. NASA code, Chemical Equilibrium with Applications (CEA) was used to predict engine performance using both chemistry assumptions, defined here. Frozen- composition remains frozen during expansion through the nozzle. Equilibrium- instantaneous chemical equilibrium during nozzle expansion. Chamber parameters were varied to understand what dimensions drive chamber C* and Isp. Contraction Ratio is the ratio of the nozzle throat area to the area of the chamber. L is the length of the chamber. Characteristic chamber length, L*, is the length that the chamber would be if it were a straight tube and had no converging nozzle. Goal: Develop a qualitative and quantitative correlation for performance parameters - Specific Impulse (Isp) and Characteristic Velocity (C*) - as a function of one or more chamber dimensions - Contraction Ratio (CR), Chamber Length (L ) and/or Characteristic Chamber Length (L*). Determine if chamber dimensions can be correlated to frozen or equilibrium chemistry.

  10. Cooking characterization of Coleus tuberosus noodle in various arenga starch substitution

    NASA Astrophysics Data System (ADS)

    Miftakhussolikhah, Ariani, Dini; Angwar, Mukhamad; Jeremia Kevin M., M.

    2017-01-01

    Coleus tuberosus is one of local commodities in Indonesia which contains high carbohydrate. However, its utilization isn't done maximally. Therefore, C. tuberosus made into flour by grater method, and then be used for noodle making with arenga strach as substituting material. The aim of this study was to determine the effect of C. tuberosus flour substitution in the noodle preparation from arenga starch on its cooking properties. In this study, noodle was made in some variations which were 100% arenga starch; 75% arenga starch:25% C. tuberosus flour; 50% arenga starch:50% C. tuberosus flour; 25% arenga starch:75% C. tuberosus flour and 100% C. tuberosus flour. Characterization of noodle were investigated including water content, cooking time, cooking loss, swelling index, and expansion ratio Noodle was compared with two commercial products. The result showed that arenga starch substitution in C. tuberosus noodle affect cooking properties of noodle. The higher concentration of C. tuberosus flour caused swelling index and expansion ratio getting low. The water content, cooking loss and cooking time were increased as the C. tuberosus flour substitution ratio increase. None of the noodle resulted from C. tuberosus flour and arenga starch mixture was exactly as same as maize and rice commercial noodles. However 25% of C.tuberosus noodle has better characteristics than other C.tuberosus noodles.

  11. Film cooling performance of a row of dual-fanned holes at various injection angles

    NASA Astrophysics Data System (ADS)

    Li, Guangchao; Wang, Haofeng; Zhang, Wei; Kou, Zhihai; Xu, Rangshu

    2017-10-01

    Film cooling performance about a row of dual-fanned holes with injection angles of 30°, 60 ° and 90° were experimentally investigated at blowing ratios of 1.0 and 2.0. Dual-fanned hole is a novel shaped hole which has both inlet expansion and outlet expansion. A transient thermochromic liquid crystal technique was used to reveal the local values of film cooling effectiveness and heat transfer coefficient. The results show that injection angles have strong influence on the two dimensional distributions of film cooling effectiveness and heat transfer coefficient. For the small injection angle of 30 degree and small blowing ratio of 1.0, there is only a narrow spanwise region covered with film. The increase of injection angle and blowing ratio both leads to the enhanced spanwise film diffusion, but reduced local cooling ability far away from the hole. Injection angles have comprehensive influence on the averaged film cooling effectiveness for various x/d locations. As injection angles are 30 and 60 degree, two bands of high heat transfer coefficients are found in mixing region of the gas and coolant. As injection angle increases to 90 degree, the mixing leads to the enhanced heat transfer region near the film hole. The averaged heat transfer coefficient increases with the increase of injection angle.

  12. Physicochemical, nutritional and infrared spectroscopy evaluation of an optimized soybean/corn flour extrudate

    USDA-ARS?s Scientific Manuscript database

    A central composite design using RMS successfully described the effect of independent variables (feed moisture, die temperature and soybean proportion) on the specific parameters of product quality (expansion index, water absorption index, water solubility index and total color difference) studied. ...

  13. Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amber N. Hoover; Jaya Shankar Tumuluru; Farzaneh Teymouri

    Pelletization process variables including grind size (4, 6 mm), die speed (40, 50, 60 Hz), and preheating (none, 70 degrees C) were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also the durability of the pelletized AFEX corn stover was >97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating ormore » a larger grind size (6 mm) had similar or lower sugar yields. Pellets generated with 4 mm AFEX-treated corn stover, a 60 Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.« less

  14. Identification of quantitative trait loci for popping traits and kernel characteristics in sorghum grain

    USDA-ARS?s Scientific Manuscript database

    Popped grain sorghum has developed a niche among specialty snack-food consumers. In contrast to popcorn, sorghum has not benefited from persistent selective breeding for popping efficiency and kernel expansion ratio. While recent studies have already demonstrated that popping characteristics are h...

  15. Calculating the Financial Impact of Population Growth on Education.

    ERIC Educational Resources Information Center

    Cline, Daniel H.

    It is particularly difficult to make accurate enrollment projections for areas that are experiencing a rapid expansion in their population. The traditional method of calculating cohort survival ratios must be modified and supplemented with additional information to ensure accuracy; cost projection methods require detailed analyses of current costs…

  16. Inter-Annual Variability of Fledgling Sex Ratio in King Penguins.

    PubMed

    Bordier, Célia; Saraux, Claire; Viblanc, Vincent A; Gachot-Neveu, Hélène; Beaugey, Magali; Le Maho, Yvon; Le Bohec, Céline

    2014-01-01

    As the number of breeding pairs depends on the adult sex ratio in a monogamous species with biparental care, investigating sex-ratio variability in natural populations is essential to understand population dynamics. Using 10 years of data (2000-2009) in a seasonally monogamous seabird, the king penguin (Aptenodytes patagonicus), we investigated the annual sex ratio at fledging, and the potential environmental causes for its variation. Over more than 4000 birds, the annual sex ratio at fledging was highly variable (ranging from 44.4% to 58.3% of males), and on average slightly biased towards males (51.6%). Yearly variation in sex-ratio bias was neither related to density within the colony, nor to global or local oceanographic conditions known to affect both the productivity and accessibility of penguin foraging areas. However, rising sea surface temperature coincided with an increase in fledging sex-ratio variability. Fledging sex ratio was also correlated with difference in body condition between male and female fledglings. When more males were produced in a given year, their body condition was higher (and reciprocally), suggesting that parents might adopt a sex-biased allocation strategy depending on yearly environmental conditions and/or that the effect of environmental parameters on chick condition and survival may be sex-dependent. The initial bias in sex ratio observed at the juvenile stage tended to return to 1∶1 equilibrium upon first breeding attempts, as would be expected from Fisher's classic theory of offspring sex-ratio variation.

  17. Validation of a New Methodology to Determine 3-Dimensional Endograft Apposition, Position, and Expansion in the Aortic Neck After Endovascular Aneurysm Repair.

    PubMed

    Schuurmann, Richte C L; Overeem, Simon P; van Noort, Kim; de Vries, Bastiaan A; Slump, Cornelis H; de Vries, Jean-Paul P M

    2018-04-01

    To validate a novel methodology employing regular postoperative computed tomography angiography (CTA) scans to assess essential factors contributing to durable endovascular aneurysm repair (EVAR), including endograft deployment accuracy, neck adaptation to radial forces, and effective apposition of the fabric within the aortic neck. Semiautomatic calculation of the apposition surface between the endograft and the infrarenal aortic neck was validated in vitro by comparing the calculated surfaces over a cylindrical silicon model with known dimensions on CTA reconstructions with various slice thicknesses. Interobserver variabilities were assessed for calculating endograft position, apposition, and expansion in a retrospective series of 24 elective EVAR patients using the repeatability coefficient (RC) and the intraclass correlation coefficient (ICC). The variability of these calculations was compared with variability of neck length and diameter measurements on centerline reconstructions of the preoperative and first postoperative CTA scans. In vitro validation showed accurate calculation of apposition, with deviation of 2.8% from the true surface for scans with 1-mm slice thickness. Excellent agreement was achieved for calculation of the endograft dimensions (ICC 0.909 to 0.996). Variability was low for calculation of endograft diameter (RC 2.3 mm), fabric distances (RC 5.2 to 5.7 mm), and shortest apposition length (RC 4.1 mm), which was the same as variability of regular neck diameter (RC 0.9 to 1.1 mm) and length (RC 4.0 to 8.0 mm) measurements. This retrospective validation study showed that apposition surfaces between an endograft and the infrarenal neck can be calculated accurately and with low variability. Determination of the (ap)position of the endograft in the aortic neck and detection of subtle changes during follow-up are crucial to determining eventual failure after EVAR.

  18. Chaperones in Polyglutamine Aggregation: Beyond the Q-Stretch

    PubMed Central

    Kuiper, E. F. E.; de Mattos, Eduardo P.; Jardim, Laura B.; Kampinga, Harm H.; Bergink, Steven

    2017-01-01

    Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to inherited neuronal dysfunction and degeneration. The expansion size in all diseases correlates with age at onset (AO) of disease and with polyQ protein aggregation, indicating that the expanded polyQ stretch is the main driving force for the disease onset. Interestingly, there is marked interpatient variability in expansion thresholds for a given disease. Between different polyQ diseases the repeat length vs. AO also indicates the existence of modulatory effects on aggregation of the upstream and downstream amino acid sequences flanking the Q expansion. This can be either due to intrinsic modulation of aggregation by the flanking regions, or due to differential interaction with other proteins, such as the components of the cellular protein quality control network. Indeed, several lines of evidence suggest that molecular chaperones have impact on the handling of different polyQ proteins. Here, we review factors differentially influencing polyQ aggregation: the Q-stretch itself, modulatory flanking sequences, interaction partners, cleavage of polyQ-containing proteins, and post-translational modifications, with a special focus on the role of molecular chaperones. By discussing typical examples of how these factors influence aggregation, we provide more insight on the variability of AO between different diseases as well as within the same polyQ disorder, on the molecular level. PMID:28386214

  19. CD4(+) T-cell help amplifies innate signals for primary CD8(+) T-cell immunity.

    PubMed

    Bedoui, Sammy; Heath, William R; Mueller, Scott N

    2016-07-01

    CD8(+) T cells provide an important component of protection against intracellular infections and cancer. Immune responses by these T cells involve a primary phase of effector expansion and differentiation, followed by a contraction phase leading to memory formation and, if antigen is re-encountered, a secondary expansion phase with more rapid differentiation. Both primary and secondary phases of CD8(+) T-cell immunity have been shown to depend on CD4(+) T-cell help, although during certain infections the primary phase is variable in this requirement. One explanation for such variability relates to the strength of associated inflammatory signals, with weak signals requiring help. Here, we focus on our studies that have dissected the requirements for help in the primary phase of the CTL response to herpes simplex virus, elucidating intricate interactions and communications between CD4(+) T cells, various dendritic cell subsets, and CD8(+) T cells. We place our studies in the context of others and describe a simple model of help where CD40 signaling amplifies innate signals to enable efficient CD8(+) T-cell expansion and differentiation. This model facilitates CTL induction to various different agents, without altering the qualitative innate signals that direct other important arms of immunity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Aerobic capacity and its correlates in patients with ankylosing spondylitis.

    PubMed

    Hsieh, Lin-Fen; Wei, James Cheng-Chung; Lee, Hsin-Yi; Chuang, Chih-Cheng; Jiang, Jiunn-Song; Chang, Kae-Chwen

    2016-05-01

    To evaluate aerobic capacity in patients with ankylosing spondylitis (AS) and determine possible relationships between aerobic capacity, pulmonary function, and disease-related variables. Forty-two patients with AS and 42 healthy controls were recruited in the study. Descriptive data, disease-related variables (grip strength, lumbosacral mobility, occiput-to-wall distance, chest expansion, finger-to-floor distance, Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Global Score, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and hemoglobin), and chest and thoracic spine x-rays were collected in each patient with AS. All subjects took standard pulmonary function and exercise tolerance tests, and forced vital capacity (FVC) and aerobic capacity were recorded. Both aerobic capacity and FVC in patients with AS were significantly lower than those in normal subjects (P < 0.05). AS patients with BASFI scores of < 3 or BASDI scores of < 4 had a higher aerobic capacity. There was significant correlation between aerobic capacity, vital capacity, chest expansion, Schober's test, cervical range of motion, and BASFI in patients with AS. Neither aerobic capacity nor vital capacity correlated with disease duration, ESR, CRP, and hemoglobin. Significantly reduced aerobic capacity and FVC were observed in patients with AS, and there was significant correlation between aerobic capacity, vital capacity, chest expansion, and BASFI. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  1. Micro-CT evaluation and histological analysis of screw-bone interface of expansive pedicle screw in osteoporotic sheep.

    PubMed

    Wan, Shi-yong; Lei, Wei; Wu, Zi-xiang; Lv, Rong; Wang, Jun; Fu, Suo-chao; Li, Bo; Zhan, Ce

    2008-04-01

    To investigate the properties of screw-bone interface of expansive pedicle screw (EPS) in osteoporotic sheep by micro-CT and histological observation. Six female sheep with bilateral ovariectomy-induced osteoporosis were employed in this experiment. After EPS insertion in each femoral condyle, the sheep were randomly divided into two groups: 3 sheep were bred for 3 months (Group A), while the other 3 were bred for 6 months (Group B). After the animals being killed, the femoral condyles with EPS were obtained, which were three-dimensionally-imaged and reconstructed by micro-CT. Histological evaluation was made thereafter. The trabecular microstructure was denser at the screw-bone interface than in the distant parts in expansive section, especially within the spiral marking. In the non-expansive section, however, there was no significant difference between the interface and the distant parts. The regions of interest (ROI) adjacent to EPS were reconstructed and analyzed by micro-CT with the same thresholds. The three-dimensional (3-D) parameters, including tissue mineral density (TMD), bone volume fraction (BVF, BV/TV), bone surface/bone volume (BS/BV) ratio, trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp), were significantly better in expansive sections than non-expansive sections (P less than 0.05). Histologically, newly-formed bony trabeculae crawled along the expansive fissures and into the center of EPS. The newly-formed bones, as well as the bones at the bone-screw interface, closely contacted with the EPS and constructed four compartments. The findings of the current study, based on micro-CT and histological evaluation, suggest that EPS can significantly provide stabilization in osteoporotic cancellous bones.

  2. Climate Informed Economic Instruments to Enhance Urban Water Supply Resilience to Hydroclimatological Variability and Change

    NASA Astrophysics Data System (ADS)

    Brown, C.; Carriquiry, M.; Souza Filho, F. A.

    2006-12-01

    Hydroclimatological variability presents acute challenges to urban water supply providers. The impact is often most severe in developing nations where hydrologic and climate variability can be very high, water demand is unmet and increasing, and the financial resources to mitigate the social effects of that variability are limited. Furthermore, existing urban water systems face a reduced solution space, constrained by competing and conflicting interests, such as irrigation demand, recreation and hydropower production, and new (relative to system design) demands to satisfy environmental flow requirements. These constraints magnify the impacts of hydroclimatic variability and increase the vulnerability of urban areas to climate change. The high economic and social costs of structural responses to hydrologic variability, such as groundwater utilization and the construction or expansion of dams, create a need for innovative alternatives. Advances in hydrologic and climate forecasting, and the increasing sophistication and acceptance of incentive-based mechanisms for achieving economically efficient water allocation offer potential for improving the resilience of existing water systems to the challenge of variable supply. This presentation will explore the performance of a system of climate informed economic instruments designed to facilitate the reduction of hydroclimatologic variability-induced impacts on water-sensitive stakeholders. The system is comprised of bulk water option contracts between urban water suppliers and agricultural users and insurance indexed on reservoir inflows designed to cover the financial needs of the water supplier in situations where the option is likely to be exercised. Contract and insurance parameters are linked to forecasts and the evolution of seasonal precipitation and streamflow and designed for financial and political viability. A simulation of system performance is presented based on ongoing work in Metro Manila, Philippines. The system is further evaluated as an alternative strategy to infrastructure expansion for climate change adaptation in the water resources sector.

  3. Signal Clarity: An Account of the Variability in Infant Quantity Discrimination Tasks

    ERIC Educational Resources Information Center

    Cantrell, Lisa; Boyer, Ty W.; Cordes, Sara; Smith, Linda B.

    2015-01-01

    Infants have shown variable success in quantity comparison tasks, with infants of a given age sometimes successfully discriminating numerical differences at a 2:3 ratio but requiring 1:2 and even 1:4 ratios of change at other times. The current explanations for these variable results include the two-systems proposal--a theoretical framework that…

  4. An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order

    PubMed Central

    Almeida, Ricardo

    2013-01-01

    We obtain approximation formulas for fractional integrals and derivatives of Riemann-Liouville and Marchaud types with a variable fractional order. The approximations involve integer-order derivatives only. An estimation for the error is given. The efficiency of the approximation method is illustrated with examples. As applications, we show how the obtained results are useful to solve differential equations, and problems of the calculus of variations that depend on fractional derivatives of Marchaud type. PMID:24319382

  5. Numerical Simulation and Experiments of Fatigue Crack Growth in Multi-Layer Structures of MEMS and Microelectronic Devices

    DTIC Science & Technology

    2006-12-01

    ABAQUS by use of the UEL subroutine feature. The damage variable was defined on averaged variables per element (Roe and Siegmund, 2003). The location of... thermal expansion (CTE) which is similar to silicon. During the anodic bonding process, the stack of silicon and glass wafers is placed on a hot plate and...Brinckmann, T. Siegmund, "Modeling fatigue crack growth with ABAQUS ," 2005 ABAQUS Fracture Review Team Meeting, Providence, RI, (2005). 8. S

  6. Application of classification-tree methods to identify nitrate sources in ground water

    USGS Publications Warehouse

    Spruill, T.B.; Showers, W.J.; Howe, S.S.

    2002-01-01

    A study was conducted to determine if nitrate sources in ground water (fertilizer on crops, fertilizer on golf courses, irrigation spray from hog (Sus scrofa) wastes, and leachate from poultry litter and septic systems) could be classified with 80% or greater success. Two statistical classification-tree models were devised from 48 water samples containing nitrate from five source categories. Model I was constructed by evaluating 32 variables and selecting four primary predictor variables (??15N, nitrate to ammonia ratio, sodium to potassium ratio, and zinc) to identify nitrate sources. A ??15N value of nitrate plus potassium 18.2 indicated inorganic or soil organic N. A nitrate to ammonia ratio 575 indicated nitrate from golf courses. A sodium to potassium ratio 3.2 indicated spray or poultry wastes. A value for zinc 2.8 indicated poultry wastes. Model 2 was devised by using all variables except ??15N. This model also included four variables (sodium plus potassium, nitrate to ammonia ratio, calcium to magnesium ratio, and sodium to potassium ratio) to distinguish categories. Both models were able to distinguish all five source categories with better than 80% overall success and with 71 to 100% success in individual categories using the learning samples. Seventeen water samples that were not used in model development were tested using Model 2 for three categories, and all were correctly classified. Classification-tree models show great potential in identifying sources of contamination and variables important in the source-identification process.

  7. Variability of intensity ratios of H to He and He to ions with Z not smaller than 3 in solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Van Allen, J. A.; Venkatarangan, P.; Venkatesan, D.

    1974-01-01

    Data from the solid-state detector on Explorer 35 are applied to a study of two intensity ratios in the sub-MeV per nucleon specific kinetic energy range for several energetic particle events. It is found that the intensity ratios vary markedly from event to event, particularly during the time history of the individual events. This implies that the ratios have no simple relationship to 'solar abundances' in the usual sense of the term. The pattern of the variability of each ratio is established; the ratio of He to ions with Z not smaller than 3 starts with a low value and increases as the event proceeds. The H/He ratio exhibits a qualitatively similar time history with marked relative enhancement of He early in an event. Differential diffusion of the various ionic species with differing magnetic rigidities is seen to be the dominant physical cause for the variabilities observed.

  8. QCD equation of state to O ( μ B 6 ) from lattice QCD

    DOE PAGES

    Bazavov, A.; Ding, H. -T.; Hegde, P.; ...

    2017-03-07

    In this work, we calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range T ϵ [135 MeV, 330 MeV] using up to four different sets of lattice cut-offs corresponding to lattices of size Nmore » $$3\\atop{σ}$$ × N τ with aspect ratio N σ/N τ = 4 and N τ = 6-16. The strange quark mass is tuned to its physical value and we use two strange to light quark mass ratios m s/m l = 20 and 27, which in the continuum limit correspond to a pion mass of about 160 MeV and 140 MeV respectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature (µ B ≤ 2T ). The fourth-order equation of state thus is suitable for √the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to √sNN ~ 12 GeV. We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the T -µ B plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. Lastly, we argue that results on sixth order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for µ B/T ≤ 2 and T/T c(µ B = 0) > 0.9.« less

  9. High Accuracy Thermal Expansion Measurement At Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Presson, Joan; Tucker, James; Daspit, Gregory; Nein, Max

    2003-01-01

    A new, interferometer based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program. Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  10. Image Display and Manipulation System (IDAMS) program documentation, Appendixes A-D. [including routines, convolution filtering, image expansion, and fast Fourier transformation

    NASA Technical Reports Server (NTRS)

    Cecil, R. W.; White, R. A.; Szczur, M. R.

    1972-01-01

    The IDAMS Processor is a package of task routines and support software that performs convolution filtering, image expansion, fast Fourier transformation, and other operations on a digital image tape. A unique task control card for that program, together with any necessary parameter cards, selects each processing technique to be applied to the input image. A variable number of tasks can be selected for execution by including the proper task and parameter cards in the input deck. An executive maintains control of the run; it initiates execution of each task in turn and handles any necessary error processing.

  11. Fitting by Orthonormal Polynomials of Silver Nanoparticles Spectroscopic Data

    NASA Astrophysics Data System (ADS)

    Bogdanova, Nina; Koleva, Mihaela

    2018-02-01

    Our original Orthonormal Polynomial Expansion Method (OPEM) in one-dimensional version is applied for first time to describe the silver nanoparticles (NPs) spectroscopic data. The weights for approximation include experimental errors in variables. In this way we construct orthonormal polynomial expansion for approximating the curve on a non equidistant point grid. The corridors of given data and criteria define the optimal behavior of searched curve. The most important subinterval of spectra data is investigated, where the minimum (surface plasmon resonance absorption) is looking for. This study describes the Ag nanoparticles produced by laser approach in a ZnO medium forming a AgNPs/ZnO nanocomposite heterostructure.

  12. Novel Materials through Non-Hydrolytic Sol-Gel Processing: Negative Thermal Expansion Oxides and Beyond

    PubMed Central

    Lind, Cora; Gates, Stacy D.; Pedoussaut, Nathalie M.; Baiz, Tamam I.

    2010-01-01

    Low temperature methods have been applied to the synthesis of many advanced materials. Non-hydrolytic sol-gel (NHSG) processes offer an elegant route to stable and metastable phases at low temperatures. Excellent atomic level homogeneity gives access to polymorphs that are difficult or impossible to obtain by other methods. The NHSG approach is most commonly applied to the preparation of metal oxides, but can be easily extended to metal sulfides. Exploration of experimental variables allows control over product stoichiometry and crystal structure. This paper reviews the application of NHSG chemistry to the synthesis of negative thermal expansion oxides and selected metal sulfides.

  13. Front acceleration by dynamic selection in Fisher population waves

    NASA Astrophysics Data System (ADS)

    Bénichou, O.; Calvez, V.; Meunier, N.; Voituriez, R.

    2012-10-01

    We introduce a minimal model of population range expansion in which the phenotypes of individuals present no selective advantage and differ only in their diffusion rate. We show that such neutral phenotypic variability (i.e., that does not modify the growth rate) alone can yield phenotype segregation at the front edge, even in absence of genetic noise, and significantly impact the dynamical properties of the expansion wave. We present an exact asymptotic traveling wave solution and show analytically that phenotype segregation accelerates the front propagation. The results are compatible with field observations such as invasions of cane toads in Australia or bush crickets in Britain.

  14. A study of delamination buckling of laminates

    NASA Technical Reports Server (NTRS)

    Mukherjee, Yu-Xie; Xie, Zhi-Cheng; Ingraffea, Anthony

    1990-01-01

    The subject of this paper is the buckling of laminated plates, with a preexisting delamination, subjected to in-plane loading. Each laminate is modelled as an orthotropic Mindlin plate. The analysis is carried out by a combination of the finite element and asymptotic expansion methods. By applying the finite element method, plates with general delamination regions can be studied. The asymptotic expansion method reduces the number of unknown variables of the eigenvalue equation to that of the equation for a single Kirchhoff plate. Numerical results are presented for several examples. The effects of the shape, size, and position of the delamination on the buckling load are studied through these examples.

  15. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  16. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  17. Periodic Alpha Signatures and the Origins of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Blume, Catherine; Kepko, Larry

    2017-01-01

    The origin of the slow solar wind has puzzled scientists for decades. Both flux tube geometry of field lines open to the heliosphere and magnetic reconnection that opens field lines that were previously closed to the heliosphere have been proposed as explanations (via the expansion factor and S-web models, respectively), but the observations to date have proven an inadequate test for distinguishing between the theories. However, short term (~hours) variability of alpha particles could provide the set of observations that tips the balance. Alpha particles compose about 4% of the solar wind, and its precise composition is determined by dynamics in the solar atmosphere. Therefore, compositional changes in the alpha to proton ratio must have originated at the Sun, making alphs tracer particles of sorts and carrying signatures of their solar creation. We examined in situ alpha density and proton density data from the Wind, ACE, STEREO-B, AND STEREO-A spacecraft, focusing on a pseudostreamer that occurred August 9, 2008. This case study found one clear periodic structure in the slow solar wind preceding the pseudostreamer in Wind/ACE and the same periodic structure in the in situ data at STEREO-B. The existence of this slow wind structure in association with a pseudostreamer directly contradicts the expansion factor model, which predicts that pseudostreamers produce fast wind. The structure's appearance at STEREO-B, which was located 30 degrees behind the Earth-Sun line, further indicates that the mechanism at the Sun is responsible for its formation was active for at least three days. Moreover, an analysis of both helmet streamer and pseudostreamer events between 2007-2009 finds that similar density structures exist in at least 35% of all streamers. This indicates that the same physical process that produces this slow solar wind occurs with a degree of frequency in association with both types of streamers. The clarity, duration, and frequency of these periodic density structures seem to support the S-web model over the expansion factor model and can provide additional constrains to slow solar wind models moving forward.

  18. The Amazon Basin in transition

    Treesearch

    Eric A. Davidson; Alessandro C. de Araujo; Paulo Artaxo; Jennifer K. Balch; I. Foster Brown; Mercedes M.C. Bustamente; Michael T. Coe; Ruth S. DeFriess; Michael Keller; Marcos Longo; J. William Munger; Wilfrid Schroeder; Britaldo Soares-Filho; Carlos M. Souza, Jr.; Steven C. Wofsy

    2012-01-01

    Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional...

  19. Estimating basin lagtime and hydrograph-timing indexes used to characterize stormflows for runoff-quality analysis

    USGS Publications Warehouse

    Granato, Gregory E.

    2012-01-01

    A nationwide study to better define triangular-hydrograph statistics for use with runoff-quality and flood-flow studies was done by the U.S. Geological Survey (USGS) in cooperation with the Federal Highway Administration. Although the triangular hydrograph is a simple linear approximation, the cumulative distribution of stormflow with a triangular hydrograph is a curvilinear S-curve that closely approximates the cumulative distribution of stormflows from measured data. The temporal distribution of flow within a runoff event can be estimated using the basin lagtime, (which is the time from the centroid of rainfall excess to the centroid of the corresponding runoff hydrograph) and the hydrograph recession ratio (which is the ratio of the duration of the falling limb to the rising limb of the hydrograph). This report documents results of the study, methods used to estimate the variables, and electronic files that facilitate calculation of variables. Ten viable multiple-linear regression equations were developed to estimate basin lagtimes from readily determined drainage basin properties using data published in 37 stormflow studies. Regression equations using the basin lag factor (BLF, which is a variable calculated as the main-channel length, in miles, divided by the square root of the main-channel slope in feet per mile) and two variables describing development in the drainage basin were selected as the best candidates, because each equation explains about 70 percent of the variability in the data. The variables describing development are the USGS basin development factor (BDF, which is a function of the amount of channel modifications, storm sewers, and curb-and-gutter streets in a basin) and the total impervious area variable (IMPERV) in the basin. Two datasets were used to develop regression equations. The primary dataset included data from 493 sites that have values for the BLF, BDF, and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and BDF variables. The secondary dataset included data from 896 sites that have values for the BLF and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and IMPERV variables. Analysis of hydrograph recession ratios and basin characteristics for 41 sites indicated that recession ratios are random variables. Thus, recession ratios cannot be estimated quantitatively using multiple linear regression equations developed using the data available for these sites. The minimums of recession ratios for different streamgages are well characterized by a value of one. The most probable values and maximum values of recession ratios for different streamgages are, however, more variable than the minimums. The most probable values of recession ratios for the 41 streamgages analyzed ranged from 1.0 to 3.52 and had a median of 1.85. The maximum values ranged from 2.66 to 11.3 and had a median of 4.36.

  20. Assessing nursing staffing ratios: variability in workload intensity.

    PubMed

    Upenieks, Valda V; Kotlerman, Jenny; Akhavan, Jaleh; Esser, Jennifer; Ngo, Myha J

    2007-02-01

    In 2004, California became the first state to implement specific nurse-to-patient ratios for all hospitals. These mandated enactments have caused significant controversy among health care professionals as well as nursing unions and professional organizations. Supporters of minimum nurse-to-patient ratios cite patient care quality, safety, and outcomes, whereas critics point to the lack of solid data and the use of a universally standardized acuity tool. Much more remains to be learned about staffing policies before mature links may be made regarding set staffing ratios and patient outcomes - specifically, how nurses spend their time in terms of variability in their daily work. This study examines two comparable telemetry units with a 1:3 staffing ratio within a California hospital system to determine the relative rates of variability in nursing activities. The results demonstrate significant differences in categorical nursing activities (e.g., direct care, indirect care, etc.) between the two telemetry units (chi(2) = 91.2028; p < or = .0001). No correlation was noted between workload categories with daily staffing ratios and staffing mix between the two units. Although patients were grouped in a similar telemetry classification category and care was mandated at a set ratio, patient needs were variable, creating a significant difference in registered nurse (RN) categorical activities on the two units.

  1. Following the 'tracks': Tramtrack69 regulates epithelial tube expansion in the Drosophila ovary through Paxillin, Dynamin, and the homeobox protein Mirror.

    PubMed

    Peters, Nathaniel C; Thayer, Nathaniel H; Kerr, Scott A; Tompa, Martin; Berg, Celeste A

    2013-06-15

    Epithelial tubes are the infrastructure for organs and tissues, and tube morphogenesis requires precise orchestration of cell signaling, shape, migration, and adhesion. Follicle cells in the Drosophila ovary form a pair of epithelial tubes whose lumens act as molds for the eggshell respiratory filaments, or dorsal appendages (DAs). DA formation is a robust and accessible model for studying the patterning, formation, and expansion of epithelial tubes. Tramtrack69 (TTK69), a transcription factor that exhibits a variable embryonic DNA-binding preference, controls DA lumen volume and shape by promoting tube expansion; the tramtrack mutation twin peaks (ttk(twk)) reduces TTK69 levels late in oogenesis, inhibiting this expansion. Microarray analysis of wild-type and ttk(twk) ovaries, followed by in situ hybridization and RNAi of candidate genes, identified the Phospholipase B-like protein Lamina ancestor (LAMA), the scaffold protein Paxillin, the endocytotic regulator Shibire (Dynamin), and the homeodomain transcription factor Mirror, as TTK69 effectors of DA-tube expansion. These genes displayed enriched expression in DA-tube cells, except lama, which was expressed in all follicle cells. All four genes showed reduced expression in ttk(twk) mutants and exhibited RNAi phenotypes that were enhanced in a ttk(twk)/+ background, indicating ttk(twk) genetic interactions. Although previous studies show that Mirror patterns the follicular epithelium prior to DA tubulogenesis, we show that Mirror has an independent, novel role in tube expansion, involving positive regulation of Paxillin. Thus, characterization of ttk(twk)-differentially expressed genes expands the network of TTK69 effectors, identifies novel epithelial tube-expansion regulators, and significantly advances our understanding of this vital developmental process. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Analysis of the dentoalveolar effects of slow and rapid maxillary expansion in complete bilateral cleft lip and palate patients: a randomized clinical trial.

    PubMed

    de Medeiros Alves, Arthur César; Garib, Daniela Gamba; Janson, Guilherme; de Almeida, Araci Malagodi; Calil, Louise Resti

    2016-09-01

    The purpose of this study was to compare the dentoalveolar effects of slow (SME) and rapid (RME) maxillary expansions in patients with complete bilateral cleft lip and palate (BCLP). A sample of 50 patients with BCLP and maxillary arch constriction was randomly and equally allocated into two groups. Group SME comprised patients (mean age of 8.8 years) treated with quad-helix appliance. Group RME comprised individuals (mean age of 8.9 years) treated with Hyrax expander. Digital dental models obtained immediately pre-expansion (T1) and 6 months after the active expansion period (T2) were used for measuring maxillary dental arch widths, arch perimeter, arch length, palatal depth, buccolingual inclination of posterior teeth and differential amount of expansion accomplished at the canine and molar regions. Inter-phase and intergroup comparisons were performed using paired t tests and t tests, respectively (p < 0.05). SME and RME caused significant increase of arch widths and arch perimeter. Arch length and palatal depth decreased nonsignificantly with SME but significantly with RME. Buccal tooth inclination was significant only for maxillary deciduous canines in both groups. The quad-helix appliance showed a significant differential expansion between anterior and posterior regions. No differences were observed between SME and RME for all variables. Differences were not found between the dentoalveolar effects of SME and RME in patients with BCLP. SME demanded a greater therapy time compared to RME. Both expansion procedures can be similarly indicated to correct maxillary arch constriction in patients with BCLP in the mixed dentition.

  3. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    PubMed

    Sand, Håkan; Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.

  4. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    PubMed Central

    Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators’ primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves’ choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population. PMID:28030549

  5. Stress and Dilatancy Relation of Methane Hydrate Bearing Sand with Various Fines Content

    NASA Astrophysics Data System (ADS)

    Hyodo, M.

    2016-12-01

    This study presents an experimental and numerical study on the shear behaviour of methane hydrate bearing sand with variable confining pressures and methane hydrate saturations. A representative grading curve of Nankai Trough is selected as the grain size distribution of host sand to artificially produce the methane hydrate bearing sand. A shear strength estimation equation for methane hydrate bearing sand from test results is established. A simple constitutive model has been proposed to predict the stress-strain response of methane hydrate bearing sand based on a few well-known relationships. Experimental results indicate that the inclination of stress-dilatancy curve becomes steeper with a rise in methane hydrate saturation. A revised stress-dilatancy equation has been integrated with this simple model to consider the variance in the inclination of stress-dilatancy curve. The mean stress Pcr at critical state when the peak stress ratio reduces to the residual stress ratio increases with the level of methane hydrate saturation. The dilatancy parameter a tends to increase with the methane hydrate saturation. The shear deformability parameter A exhibits a decreasing tendency with the rise in methane hydrate saturation at each confining pressure. This model is capable of reasonably predicting the strength and stiffness enhancement and the dilation behaviour as methane hydrate saturation increases. The volumetric variation from contraction to expansion of MH bearing sand at a lower confining pressure and only pure volumetric contraction a higher confining pressure can be represented by this simple model.

  6. Magnetically Controlled Variable Transformer

    NASA Technical Reports Server (NTRS)

    Kleiner, Charles T.

    1994-01-01

    Improved variable-transformer circuit, output voltage and current of which controlled by use of relatively small current supplied at relatively low power to control windings on its magnetic cores. Transformer circuits of this type called "magnetic amplifiers" because ratio between controlled output power and power driving control current of such circuit large. This ratio - power gain - can be as large as 100 in present circuit. Variable-transformer circuit offers advantages of efficiency, safety, and controllability over some prior variable-transformer circuits.

  7. Effect of several geometric parameters on the static internal performance of three nonaxisymmetric nozzle concepts

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Re, R. J.

    1979-01-01

    Effects of several geometric parameters on the internal performance of nonaxisymmetric convergent-divergent, single-ramp expansion, and wedge nozzles were investigated at nozzle pressure ratios up to approximately 10. In addition, two different thrust-vectoring schemes were investigated with the wedge nozzle. The results indicated that as with conventional round nozzles, peak nonaxisymmetric nozzle, internal performance occurred near the nozzle pressure ratio required for fully expanded exhaust flow. Nozzle sidewall length or area generally had little effect on the internal performance of the nozzles investigated.

  8. Prevalence Odds Ratio versus Prevalence Ratio: Choice Comes with Consequences

    PubMed Central

    Tamhane, Ashutosh R; Westfall, Andrew O; Burkholder, Greer A; Cutter, Gary R

    2016-01-01

    Odds ratio (OR), risk ratio (RR), and prevalence ratio (PR) are some of the measures of association which are often reported in research studies quantifying the relationship between an independent variable and the outcome of interest. There has been much debate on the issue of which measure is appropriate to report depending on the study design. However, the literature on selecting a particular category of the outcome to be modeled and/or change in reference group for categorical independent variables and the effect on statistical significance, although known, is scantly discussed nor published with examples. In this article, we provide an example of a cross-sectional study wherein PR was chosen over (Prevalence) OR and demonstrate the analytic implications of the choice of category to be modeled and choice of reference level for independent variables. PMID:27460748

  9. Regulatory T cells (CD4(+)CD25(bright)FoxP3(+)) expansion in systemic sclerosis correlates with disease activity and severity.

    PubMed

    Slobodin, Gleb; Ahmad, Mohammad Sheikh; Rosner, Itzhak; Peri, Regina; Rozenbaum, Michael; Kessel, Aharon; Toubi, Elias; Odeh, Majed

    2010-01-01

    The role and function of T regulatory (Treg) cells have not been fully investigated in patients with systemic sclerosis (SSc). Ten patients with SSc donated 20ml of peripheral blood. Activity (Valentini) and severity (Medsger) scores for SSc were calculated for all patients. Healthy volunteers (controls) were matched to each patient by gender and age. CD4(+) cells were separated using the MACS system. The numbers of Treg cells were estimated by flow cytometry after staining for CD4, CD25, and FoxP3 and calculated as patient-to-control ratio separately for each experiment. Correlations with activity and severity indices of the disease were performed. Twenty-four-hour production of TGF-beta and IL-10 by activated CD4(+) cells was measured by ELISA in culture supernatants. The numbers of Treg cells, expressed as patient-to-control ratio, correlated significantly with both activity and severity indices (r=0.71, p=0.034 and r=0.67, p=0.044, respectively). ELISA-measured production of TGF-beta and IL-10 by CD4(+) cells was similar in patients and controls. Increased numbers of Treg cells are present in patients with SSc, correlating with activity and severity of the disease. This expansion of Treg cells was not accompanied, however, by heightened TGF-beta or IL-10 production. Further studies to elaborate the causes and functional significance of Treg cell expansion in SSc are needed. 2010 Elsevier Inc. All rights reserved.

  10. Generation of monodisperse droplets by spontaneous condensation of flow in nozzles

    NASA Technical Reports Server (NTRS)

    Lai, Der-Shaiun; Kadambi, J. R.

    1993-01-01

    Submicron size monodisperse particles are of interest in many industrial and scientific applications. These include the manufacture of ceramic parts using fine ceramic particles, the production of thin films by deposition of ionized clusters, monodisperse seed particles for laser anemometry, and the study of size dependence of cluster chemical and physical properties. An inexpensive and relatively easy way to generate such particles is by utilizing the phenomenon of spontaneous condensation. The phenomenon occurs when the vapor or a mixture of a vapor and a noncondensing gas is expanded at a high expansion rate. The saturation line is crossed with the supercooled vapor behaving like a gas, until all of a sudden at the so called Wilson point, condensation occurs, resulting in a large number of relatively monodisperse droplets. The droplet size is a function of the expansion rate, inlet conditions, mass fraction of vapor, gas properties, etc. Spontaneous condensation of steam and water vapor and air mixture in a one dimensional nozzle was modeled and the resulting equations solved numerically. The droplet size distribution at the exit of various one dimensional nozzles and the flow characteristics such as pressure ratio, mean droplet radius, vapor and droplet temperatures, nucleation flux, supercooling, wetness, etc., along the axial distance were obtained. The numerical results compared very well with the available experimental data. The effect of inlet conditions, nozzle expansion rates, and vapor mass fractions on droplet mean radius, droplet size distribution, and pressure ratio were examined.

  11. Hearing Outcomes After Stereotactic Radiosurgery for Unilateral Intracanalicular Vestibular Schwannomas: Implication of Transient Volume Expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Hoon; Department of Neurosurgery, Seoul National University College of Medicine, Seoul; Kim, Dong Gyu, E-mail: gknife@plaza.snu.ac.kr

    2013-01-01

    Purpose: We evaluated the prognostic factors for hearing outcomes after stereotactic radiosurgery (SRS) for unilateral sporadic intracanalicular vestibular schwannomas (IC-VSs) as a clinical homogeneous group of VSs. Methods and Materials: Sixty consecutive patients with unilateral sporadic IC-VSs, defined as tumors in the internal acoustic canal, and serviceable hearing (Gardner-Roberson grade 1 or 2) were treated with SRS as an initial treatment. The mean tumor volume was 0.34 {+-} 0.03 cm{sup 3} (range, 0.03-1.00 cm{sup 3}), and the mean marginal dose was 12.2 {+-} 0.1 Gy (range, 11.5-13.0 Gy). The median follow-up duration was 62 months (range, 36-141 months). Results: Themore » actuarial rates of serviceable hearing preservation were 70%, 63%, and 55% at 1, 2, and 5 years after SRS, respectively. In multivariate analysis, transient volume expansion of {>=}20% from initial tumor size was a statistically significant risk factor for loss of serviceable hearing and hearing deterioration (increase of pure tone average {>=}20 dB) (odds ratio = 7.638; 95% confidence interval, 2.317-25.181; P=.001 and odds ratio = 3.507; 95% confidence interval, 1.228-10.018; P=.019, respectively). The cochlear radiation dose did not reach statistical significance. Conclusions: Transient volume expansion after SRS for VSs seems to be correlated with hearing deterioration when defined properly in a clinically homogeneous group of patients.« less

  12. Spot sign on 90-second delayed computed tomography angiography improves sensitivity for hematoma expansion and mortality: prospective study.

    PubMed

    Ciura, Viesha A; Brouwers, H Bart; Pizzolato, Raffaella; Ortiz, Claudia J; Rosand, Jonathan; Goldstein, Joshua N; Greenberg, Steven M; Pomerantz, Stuart R; Gonzalez, R Gilberto; Romero, Javier M

    2014-11-01

    The computed tomography angiography (CTA) spot sign is a validated biomarker for poor outcome and hematoma expansion in intracerebral hemorrhage. The spot sign has proven to be a dynamic entity, with multimodal imaging proving to be of additional value. We investigated whether the addition of a 90-second delayed CTA acquisition would capture additional intracerebral hemorrhage patients with the spot sign and increase the sensitivity of the spot sign. We prospectively enrolled consecutive intracerebral hemorrhage patients undergoing first pass and 90-second delayed CTA for 18 months at a single academic center. Univariate and multivariate logistic regression were performed to assess clinical and neuroimaging covariates for relationship with hematoma expansion and mortality. Sensitivity of the spot sign for hematoma expansion on first pass CTA was 55%, which increased to 64% if the spot sign was present on either CTA acquisition. In multivariate analysis the spot sign presence was associated with significant hematoma expansion: odds ratio, 17.7 (95% confidence interval, 3.7-84.2; P=0.0004), 8.3 (95% confidence interval, 2.0-33.4; P=0.004), and 12.0 (95% confidence interval, 2.9-50.5; P=0.0008) if present on first pass, delayed, or either CTA acquisition, respectively. Spot sign presence on either acquisitions was also significant for mortality. We demonstrate improved sensitivity for predicting hematoma expansion and poor outcome by adding a 90-second delayed CTA, which may enhance selection of patients who may benefit from hemostatic therapy. © 2014 American Heart Association, Inc.

  13. Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning.

    PubMed

    Shepard, Kathryn N; Chong, Kelly K; Liu, Robert C

    2016-01-01

    Tonotopic map plasticity in the adult auditory cortex (AC) is a well established and oft-cited measure of auditory associative learning in classical conditioning paradigms. However, its necessity as an enduring memory trace has been debated, especially given a recent finding that the areal expansion of core AC tuned to a newly relevant frequency range may arise only transiently to support auditory learning. This has been reinforced by an ethological paradigm showing that map expansion is not observed for ultrasonic vocalizations (USVs) or for ultrasound frequencies in postweaning dams for whom USVs emitted by pups acquire behavioral relevance. However, whether transient expansion occurs during maternal experience is not known, and could help to reveal the generality of cortical map expansion as a correlate for auditory learning. We thus mapped the auditory cortices of maternal mice at postnatal time points surrounding the peak in pup USV emission, but found no evidence of frequency map expansion for the behaviorally relevant high ultrasound range in AC. Instead, regions tuned to low frequencies outside of the ultrasound range show progressively greater suppression of activity in response to the playback of ultrasounds or pup USVs for maternally experienced animals assessed at their pups' postnatal day 9 (P9) to P10, or postweaning. This provides new evidence for a lateral-band suppression mechanism elicited by behaviorally meaningful USVs, likely enhancing their population-level signal-to-noise ratio. These results demonstrate that tonotopic map enlargement has limits as a construct for conceptualizing how experience leaves neural memory traces within sensory cortex in the context of ethological auditory learning.

  14. Development of a novel anisotropic self-inflating tissue expander: in vivo submucoperiosteal performance in the porcine hard palate.

    PubMed

    Swan, Marc C; Bucknall, David G; Czernuszka, Jan T; Pigott, David W; Goodacre, Timothy E E

    2012-01-01

    The advent of self-inflating hydrogel tissue expanders heralded a significant advance in the reconstructive potential of this technique. Their use, however, is limited by their uncontrolled isotropic (i.e., uniform in all directions) expansion. Anisotropy (i.e., directional dependence) was achieved by annealing a hydrogel copolymer of poly(methyl methacrylate-co-vinyl pyrrolidone) under a compressive load for a specified time period. The expansion ratio is dictated by the percentage of vinyl pyrrolidone content and the degree of compression. The expansion rate is modified by incorporating the polymer within a silicone membrane. The in vivo efficacy of differing prototype devices was investigated in juvenile pigs under United Kingdom Home Office Licence. The devices were implanted within a submucoperiosteal pocket in a total of six porcine palates; all were euthanized by 6 weeks after implantation. A longitudinal volumetric assessment of the expanded tissue was conducted, in addition to postmortem analysis of the bony and mucoperiosteal palatal elements. Uncoated devices caused excessive soft-tissue expansion that resulted in mucoperiosteal ulceration, thus necessitating animal euthanasia. The silicone-coated devices produced controlled soft-tissue expansion over the 6-week study period. There was a statistically significant increase in the volume of expanded soft tissue with no evidence of a significant acute inflammatory response to the implant, although peri-implant capsule formation was observed. Attenuation of the bony palatal shelf was noted. A unique anisotropic hydrogel device capable of controlled expansion has been developed that addresses a number of the shortcomings of the technology hitherto available.

  15. Neoclassical toroidal viscosity in perturbed equilibria with general tokamak geometry

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas C.; Park, Jong-Kyu; Kim, Kimin; Wang, Zhirui; Berkery, John W.

    2013-12-01

    This paper presents a calculation of neoclassical toroidal viscous torque independent of large-aspect-ratio expansions across kinetic regimes. The Perturbed Equilibrium Nonambipolar Transport (PENT) code was developed for this purpose, and is compared to previous combined regime models as well as regime specific limits and a drift kinetic δf guiding center code. It is shown that retaining general expressions, without circular large-aspect-ratio or other orbit approximations, can be important at experimentally relevant aspect ratio and shaping. The superbanana plateau, a kinetic resonance effect recently recognized for its relevance to ITER, is recovered by the PENT calculations and shown to require highly accurate treatment of geometric effects.

  16. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  17. Long-Term Corrosion Fatigue of Welded Marine Steels.

    DTIC Science & Technology

    1984-01-01

    MPa ksi MPa I C API 5L Grade B 35 240 60 min. 415 mrin. ASTM A53 Grade B 35 240 60 min. 415 min. ASTM A135 Grade B 35 240 60 min. 415 min. ASTM A139...2% max. cold expansion 42 290 60 min. 415 min. API 5LX Grade X52 2% max. cold expansion 52 360 66 min. 455 min. ASTM AS00 Grade B 42-46 290-320 58 mi...Environments 3.38 " 3.5 Influence of Load Ratio on the Corrosion Fatigue Crack Growth Rates in API X-70 Linepipe Steel in 3.5% NaCl (From (3.30]) 3.39 3.6

  18. The Role of Second Phase Hard Particles on Hole Stretchability of two AA6xxx Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaohua; Sun, Xin; Golovashchenko, Sergey F.

    The hole stretchability of two Aluminum Alloys (AA6111 and AA6022) are studied by using a two stages integrated finite element framework where the edge geometry and edge damages from the hole piercing processes were considered in the subsequent hole expansion processes. Experimentally it has been found that AA6022 has higher hole expansion ratios than those of AA6111. This observation has been nicely captured by finite element simulations. The main cause of differences have been identified to the volume fractions of the random distributed second phase hard particles which play a critical role in determining the fracture strains of the materials.

  19. Comparing mechanistic and empirical approaches to modeling the thermal niche of almond

    NASA Astrophysics Data System (ADS)

    Parker, Lauren E.; Abatzoglou, John T.

    2017-09-01

    Delineating locations that are thermally viable for cultivating high-value crops can help to guide land use planning, agronomics, and water management. Three modeling approaches were used to identify the potential distribution and key thermal constraints on on almond cultivation across the southwestern United States (US), including two empirical species distribution models (SDMs)—one using commonly used bioclimatic variables (traditional SDM) and the other using more physiologically relevant climate variables (nontraditional SDM)—and a mechanistic model (MM) developed using published thermal limitations from field studies. While models showed comparable results over the majority of the domain, including over existing croplands with high almond density, the MM suggested the greatest potential for the geographic expansion of almond cultivation, with frost susceptibility and insufficient heat accumulation being the primary thermal constraints in the southwestern US. The traditional SDM over-predicted almond suitability in locations shown by the MM to be limited by frost, whereas the nontraditional SDM showed greater agreement with the MM in these locations, indicating that incorporating physiologically relevant variables in SDMs can improve predictions. Finally, opportunities for geographic expansion of almond cultivation under current climatic conditions in the region may be limited, suggesting that increasing production may rely on agronomical advances and densifying current almond plantations in existing locations.

  20. The Geopolitical Context of United States Intervention in North America.

    ERIC Educational Resources Information Center

    Rice, Marion J.

    1988-01-01

    Examines the general concept of intervention and analyzes specific types of U.S. intervention from a geopolitical perspective. Considers the variables relating to the geography of intervention such as land mass, terrain, population, level of development, political stability, cultural heritage, sphere of influence, expansion, and acquisition of…

  1. Residential expansion as a continental threat to U.S. coastal ecosystems

    Treesearch

    J.G. Bartlett; D.M. Mageean; R.J. O' Connor

    2000-01-01

    Spatially extensive analysis of satellite, climate, and census data reveals human-environment interactions of regional or continental concern in the United States. A grid-based principal components analysis of Bureau of Census variables revealed two independent demographic phenomena, a-settlement reflecting traditional human settlement patterns and p-settlement...

  2. Dynamic flashing yellow arrow (FYA): a study on variable left-turn mode operational and safety impacts phase II - model expansion and testing : [summary].

    DOT National Transportation Integrated Search

    2016-05-01

    In phase two of this project, the UCF team further developed the DSS to automate selection of FYA left-turn modes based on traffic volumes at intersections acquired in real time from existing sensors.

  3. Workplace-Based Practicum: Enabling Expansive Practices

    ERIC Educational Resources Information Center

    Pridham, Bruce A.; Deed, Craig; Cox, Peter

    2013-01-01

    Effective pre-service teacher education integrates theoretical and practical knowledge. One means of integration is practicum in a school workplace. In a time of variable approaches to, and models of, practicum, we outline an innovative model of school immersion as part of a teacher preparation program. We apply Fuller and Unwin's (2004) expansive…

  4. AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)

    EPA Science Inventory

    Abstract

    A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...

  5. Women's Schooling, Patterns of Fertility, and Child Survival.

    ERIC Educational Resources Information Center

    LeVine, Robert

    1987-01-01

    Expansion of women's schooling is associated with lower fertility and child mortality. This article provides demographic evidence and a framework for discovering how educational processes operate on maternal behavior. Findings from a study in Mexico focus on mother-infant interaction and social attitudes as important variables. Research needs are…

  6. School Choice, Gentrification, and the Variable Significance of Racial Stratification in Urban Neighborhoods

    ERIC Educational Resources Information Center

    Pearman, Francis A., III; Swain, Walker A.

    2017-01-01

    Racial and socioeconomic stratification have long governed patterns of residential sorting in the American metropolis. However, recent expansions of school choice policies that allow parents to select schools outside their neighborhood raise questions as to whether this weakening of the neighborhood-school connection might influence the…

  7. Counter Clockwise Rotation of Cylinder with Variable Position to Control Base Flows

    NASA Astrophysics Data System (ADS)

    Asadullah, Mohammed; Khan, S. A.; Asrar, Waqar; Sulaeman, E.

    2018-05-01

    Experimental study of supersonic base flow at Mach 2 has been carried out to see the effect of cylinder when rotated counter clockwise inside the dead zone at variable locations near its base to control base pressure for different level of expansion for area ratio 9. Active cylinder of 2 mm diameter rotating counter clockwise when seen from top, is mounted as a controller. Three locations are chosen from the side wall of square duct namely at 2, 4, 6 mm respectively and 8 mm from square nozzle exit in the base region to mount the controller. Base pressure in recirculation zone and wall pressure along the square duct length has been measured with and without control. The experiments were carried out for NPR 2, 3, 6, 7.8 and 8.5. Cylinder when rotated counter clockwise as an active controller were found to reduce the base drag as high as 62 percent at NPR 8.5 when located near to duct wall and 50 percent when located away from duct wall for the same NPR. For perfectly expanded flows at NPR 7.8 the reduction in base drag was 53 percent near duct wall and 44 percent near duct wall. The active controller was up to 19 percentage effective for over expanded flows near to duct wall and up to 12 percent when located away from duct wall. Also, the control did not adversely affect the flow field.

  8. (In)Tolerable Zero Tolerance Policy

    ERIC Educational Resources Information Center

    Dickerson, Sean L.

    2014-01-01

    The spread of zero tolerance policies for school-based scenarios flourished under President William J. Clinton who wanted to close a loophole in the Guns-Free School Zones Act of 1990. Expansion in the coverage of zero tolerance policy to offenses outside the initial scope of weapon and drug offenses has led to a disproportional ratio of African…

  9. Facilities Standards and Planning Manual for New Jersey County Community Colleges.

    ERIC Educational Resources Information Center

    New Jersey State Dept. of Higher Education, Trenton. Office of Community Coll. Programs.

    After some general comments concerning all guidelines, planning standards are described for--(1) various types of new facilities, (2) expansion of present facilities, (3) minimum space requirements for a college, (4) net-to-gross space ratios, and (5) total project costs. Information regarding capital construction project submissions procedure is…

  10. Measuring the Speed of Sound through Gases Using Nitrocellulose

    ERIC Educational Resources Information Center

    Molek, Karen Sinclair; Reyes, Karl A.; Burnette, Brandon A.; Stepherson, Jacob R.

    2015-01-01

    Measuring the heat capacity ratios, ?, of gases either through adiabatic expansion or sound velocity is a well established physical chemistry experiment. The most accurate experiments depend on an exact determination of sound origin, which necessitates the use of lasers or a wave generator, where time zero is based on an electrical trigger. Other…

  11. Preliminary engineering report for design of a subscale ejector/diffuser system for high expansion ratio space engine testing

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Kurzius, S. C.; Doktor, M. F.

    1984-01-01

    The design of a subscale jet engine driven ejector/diffuser system is examined. Analytical results and preliminary design drawings and plans are included. Previously developed performance prediction techniques are verified. A safety analysis is performed to determine the mechanism for detonation suppression.

  12. Inflation in the early universe.

    NASA Astrophysics Data System (ADS)

    Carmeli, M.

    1998-04-01

    In this talk it will be assumed that gravitation is negligible. Under this assumption, the receding velocities of galaxies and the distances between them in the Hubble expansion are united into a four-dimensional pseudo-Euclidean manifold, similarly to space and time in ordinary special relativity. The Hubble law is assumed and is written in an invariant way that enables one to derive a four-dimensional transformation which is similar to the Lorentz transformation. The parameter in the new transformation is the ratio between the cosmic time to the Hubble time. Accordingly, the new transformation relates physical quantities at different cosmic times in the limit of weak or negligible gravitation. The transformation is then applied to the problem of the expansion of the Universe at the very early stage when gravity was negligible and thus the transformation is applicable. The author calculates the ratio of the volumes of the Universe at two different times T1 and T2 after the big bang. The result conforms with the standard inflationary universe theory, but now it is obtained without assuming that the Universe is propelled by antigravity.

  13. Internal performance of a nonaxisymmetric nozzle with a rotating upper flap and a center-pivoted lower flap

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Leavitt, Laurence D.; Re, Richard J.

    1993-01-01

    An investigation was conducted at wind-off conditions in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance characteristics of a single expansion-ramp nozzle with thrust-vectoring capability to 105 degrees. Thrust vectoring was accomplished by the downward rotation of an upper flap with adaptive capability for internal contouring and a corresponding rotation of a center-pivoted lower flap. The static internal performance of configurations with pitch thrust-vector angles of 0 degrees, 60 degrees, and 105 degrees each with two throat areas, was investigated. The nozzle pressure ratio was varied from 1.5 to approximately 8.0 (5.0 for the maximum throat area configurations). Results of this study indicated that the nozzle configuration of the present investigation, when vectored, provided excellent flow-turning capability with relatively high levels of internal performance. In all cases, the thrust vector angle was a function of the nozzle pressure ratio. This result is expected because the flow is bounded by a single expansion surface on both vectored- and unvectored-nozzle geometries.

  14. Nice to know you: Positive emotions, self–other overlap, and complex understanding in the formation of a new relationship

    PubMed Central

    WAUGH, CHRISTIAN E.; FREDRICKSON, BARBARA L.

    2007-01-01

    Based on Fredrickson's ((1998). What good are positive emotions? Review of General Psychology, 2, 300–319.; (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56, 218–226) broaden-and-build theory and Aron and Aron's ((1986). Love as expansion of the self: Understanding attraction and satisfaction. New York: Hemisphere) self-expansion theory, it was hypothesized that positive emotions broaden people's feelings of self–other overlap in the beginning of a new relationship. In a prospective study of first-year college students, we found that, after 1 week in college, positive emotions predicted increased self–other overlap with new roommates, which in turn predicted a more complex understanding of the roommate. In addition, participants who experienced a high ratio of positive to negative emotions throughout the first month of college reported a greater increase in self–other overlap and complex understanding than participants with a low positivity ratio. Implications for the role of positive emotions in the formation of new relationships are discussed. PMID:21691460

  15. Properties of experimental titanium cast investment mixing with water reducing agent solution.

    PubMed

    Zhang, Zutai; Ding, Ning; Tamaki, Yukimichi; Hotta, Yasuhiro; Han-Cheol, Cho; Miyazaki, Takashi

    2012-01-01

    This study aimed to develop a dental investment for titanium casting. ZrO(2) and Al(2)O(3) were selected as refractory materials to prepare three investments (Codes: A-C) according to the quantity of Zr. Al(2)O(3) cement was used as a binder at a ratio of 15%, they were mixed with special mixing liquid. B1 was used as a control mixed with water. Fundamental examinations were statistically evaluated. A casting test was performed with investment B. Fluidities, setting times, and green strengths showed no remarkable differences; however, they were significantly different from those of B1. Expansion values for A, B, C, and B1 at 850°C were 1.03%±0.08%, 1.96%±0.17%, 4.35%±0.23%, and 1.50%±0.28%, respectively. Castings were covered by only small amounts of mold materials. The hardness test showed no significant differences between castings from B and the ones from commercial investments. The experimental special mixing liquid effectively reduced the water/powder ratio and improved the strength and thermal expansion.

  16. Nice to know you: Positive emotions, self-other overlap, and complex understanding in the formation of a new relationship.

    PubMed

    Waugh, Christian E; Fredrickson, Barbara L

    2006-04-01

    Based on Fredrickson's ((1998). What good are positive emotions? Review of General Psychology, 2, 300-319.; (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56, 218-226) broaden-and-build theory and Aron and Aron's ((1986). Love as expansion of the self: Understanding attraction and satisfaction. New York: Hemisphere) self-expansion theory, it was hypothesized that positive emotions broaden people's feelings of self-other overlap in the beginning of a new relationship. In a prospective study of first-year college students, we found that, after 1 week in college, positive emotions predicted increased self-other overlap with new roommates, which in turn predicted a more complex understanding of the roommate. In addition, participants who experienced a high ratio of positive to negative emotions throughout the first month of college reported a greater increase in self-other overlap and complex understanding than participants with a low positivity ratio. Implications for the role of positive emotions in the formation of new relationships are discussed.

  17. Proton core-beam system in the expanding solar wind: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Trávníček, Pavel M.

    2011-11-01

    Results of a two-dimensional hybrid expanding box simulation of a proton beam-core system in the solar wind are presented. The expansion with a strictly radial magnetic field leads to a decrease of the ratio between the proton perpendicular and parallel temperatures as well as to an increase of the ratio between the beam-core differential velocity and the local Alfvén velocity creating a free energy for many different instabilities. The system is indeed most of the time marginally stable with respect to the parallel magnetosonic, oblique Alfvén, proton cyclotron and parallel fire hose instabilities which determine the system evolution counteracting some effects of the expansion and interacting with each other. Nonlinear evolution of these instabilities leads to large modifications of the proton velocity distribution function. The beam and core protons are slowed with respect to each other and heated, and at later stages of the evolution the two populations are not clearly distinguishable. On the macroscopic level the instabilities cause large departures from the double adiabatic prediction leading to an efficient isotropization of effective proton temperatures in agreement with Helios observations.

  18. Turbulent transport models for scramjet flowfields

    NASA Technical Reports Server (NTRS)

    Sindir, M. M.; Harsha, P. T.

    1984-01-01

    Turbulence modeling approaches were examined from the standpoint of their capability to predict the complex flowfield features observed in scramjet combustions. Thus, for example, the accuracy of each turbulence model, with respect to the prediction of recirculating flows, was examined. It was observed that for large diameter ratio axisymmetric sudden expansion flows, a choice of turbulence model was not critical because of the domination of their flowfields by pressure forces. For low diameter ratio axisymmetric sudden expansions and planar backward-facing steps flows, where turbulent shear stresses are of greater significance, the algebraic Reynolds stress approach, modified to increase its sensitivity to streamline curvature, was found to provide the best results. Results of the study also showed that strongly swirling flows provide a stringent test of turbulence model assumptions. Thus, although flows with very high swirl are not of great practical interest, they are useful for turbulence model development. Finally, it was also noted that numerical flowfields solution techniques have a strong interrelation with turbulence models, particularly with the turbulent transport models which involve source-dominated transport equations.

  19. Estimating variability in grain legume yields across Europe and the Americas

    NASA Astrophysics Data System (ADS)

    Cernay, Charles; Ben-Ari, Tamara; Pelzer, Elise; Meynard, Jean-Marc; Makowski, David

    2015-06-01

    Grain legume production in Europe has recently come under scrutiny. Although legume crops are often promoted to provide environmental services, European farmers tend to turn to non-legume crops. It is assumed that high variability in legume yields explains this aversion, but so far this hypothesis has not been tested. Here, we estimate the variability of major grain legume and non-legume yields in Europe and the Americas from yield time series over 1961-2013. Results show that grain legume yields are significantly more variable than non-legume yields in Europe. These differences are smaller in the Americas. Our results are robust at the level of the statistical methods. In all regions, crops with high yield variability are allocated to less than 1% of cultivated areas. Although the expansion of grain legumes in Europe may be hindered by high yield variability, some species display risk levels compatible with the development of specialized supply chains.

  20. The effect of variable S/N on the subjective evaluation of protection ratios for direct-TV satellite services

    NASA Technical Reports Server (NTRS)

    Groumpos, P. P.; Dimitriadis, B. D.; Whyte, W.

    1984-01-01

    Protection ratios, the ratio of wanted-to-unwanted signal power at the receiver input, for acceptable picture quality were experimentally evaluated for four different still pictures. The variation of carrier-to-interference, C/I, with picture impairment grade is investigated when different noise levels are present. Results are presented which show the relationship between the impairment grade and the C/I ratio for FM/TV co-channel systems under variable S/N conditions.

Top