Direct numerical simulation of incompressible acceleration-driven variable-density turbulence
NASA Astrophysics Data System (ADS)
Gat, Ilana; Matheou, Georgios; Chung, Daniel; Dimotakis, Paul
2015-11-01
Fully developed turbulence in variable-density flow driven by an externally imposed acceleration field, e.g., gravity, is fundamental in many applications, such as inertial confinement fusion, geophysics, and astrophysics. Aspects of this turbulence regime are poorly understood and are of interest to fluid modeling. We investigate incompressible acceleration-driven variable-density turbulence by a series of direct numerical simulations of high-density fluid in-between slabs of low-density fluid, in a triply-periodic domain. A pseudo-spectral numerical method with a Helmholtz-Hodge decomposition of the pressure field, which ensures mass conservation, is employed, as documented in Chung & Pullin (2010). A uniform dynamic viscosity and local Schmidt number of unity are assumed. This configuration encapsulates a combination of flow phenomena in a temporally evolving variable-density shear flow. Density ratios up to 10 and Reynolds numbers in the fully developed turbulent regime are investigated. The temporal evolution of the vertical velocity difference across the shear layer, shear-layer growth, mean density, and Reynolds number are discussed. Statistics of Lagrangian accelerations of fluid elements and of vorticity as a function of the density ratio are also presented. This material is based upon work supported by the AFOSR, the DOE, the NSF GRFP, and Caltech.
Convection in the Rayleigh-Bénard flow with all fluid properties variable
NASA Astrophysics Data System (ADS)
Sassos, Athanasios; Pantokratoras, Asterios
2011-10-01
In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Bénard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.
Benchmarking variable-density flow in saturated and unsaturated porous media
NASA Astrophysics Data System (ADS)
Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas
2015-04-01
In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.
A new numerical benchmark for variably saturated variable-density flow and transport in porous media
NASA Astrophysics Data System (ADS)
Guevara, Carlos; Graf, Thomas
2016-04-01
In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.
Application of SEAWAT to select variable-density and viscosity problems
Dausman, Alyssa M.; Langevin, Christian D.; Thorne, Danny T.; Sukop, Michael C.
2010-01-01
SEAWAT is a combined version of MODFLOW and MT3DMS, designed to simulate three-dimensional, variable-density, saturated groundwater flow. The most recent version of the SEAWAT program, SEAWAT Version 4 (or SEAWAT_V4), supports equations of state for fluid density and viscosity. In SEAWAT_V4, fluid density can be calculated as a function of one or more MT3DMS species, and optionally, fluid pressure. Fluid viscosity is calculated as a function of one or more MT3DMS species, and the program also includes additional functions for representing the dependence of fluid viscosity on temperature. This report documents testing of and experimentation with SEAWAT_V4 with six previously published problems that include various combinations of density-dependent flow due to temperature variations and/or concentration variations of one or more species. Some of the problems also include variations in viscosity that result from temperature differences in water and oil. Comparisons between the results of SEAWAT_V4 and other published results are generally consistent with one another, with minor differences considered acceptable.
The rotating movement of three immiscible fluids - A benchmark problem
Bakker, M.; Oude, Essink G.H.P.; Langevin, C.D.
2004-01-01
A benchmark problem involving the rotating movement of three immiscible fluids is proposed for verifying the density-dependent flow component of groundwater flow codes. The problem consists of a two-dimensional strip in the vertical plane filled with three fluids of different densities separated by interfaces. Initially, the interfaces between the fluids make a 45??angle with the horizontal. Over time, the fluids rotate to the stable position whereby the interfaces are horizontal; all flow is caused by density differences. Two cases of the problem are presented, one resulting in a symmetric flow field and one resulting in an asymmetric flow field. An exact analytical solution for the initial flow field is presented by application of the vortex theory and complex variables. Numerical results are obtained using three variable-density groundwater flow codes (SWI, MOCDENS3D, and SEAWAT). Initial horizontal velocities of the interfaces, as simulated by the three codes, compare well with the exact solution. The three codes are used to simulate the positions of the interfaces at two times; the three codes produce nearly identical results. The agreement between the results is evidence that the specific rotational behavior predicted by the models is correct. It also shows that the proposed problem may be used to benchmark variable-density codes. It is concluded that the three models can be used to model accurately the movement of interfaces between immiscible fluids, and have little or no numerical dispersion. ?? 2003 Elsevier B.V. All rights reserved.
Plasma volume methodology: Evans blue, hemoglobin-hematocrit, and mass density transformations
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Hinghofer-Szalkay, H.
1985-01-01
Methods for measuring absolute levels and changes in plasma volume are presented along with derivations of pertinent equations. Reduction in variability of the Evans blue dye dilution technique using chromatographic column purification suggests that the day-to-day variability in the plasma volume in humans is less than + or - 20 m1. Mass density determination using the mechanical-oscillator technique provides a method for measuring vascular fluid shifts continuously for assessing the density of the filtrate, and for quantifying movements of protein across microvascular walls. Equations for the calculation of volume and density of shifted fluid are presented.
Favre-Averaged Turbulence Statistics in Variable Density Mixing of Buoyant Jets
NASA Astrophysics Data System (ADS)
Charonko, John; Prestridge, Kathy
2014-11-01
Variable density mixing of a heavy fluid jet with lower density ambient fluid in a subsonic wind tunnel was experimentally studied using Particle Image Velocimetry and Planar Laser Induced Fluorescence to simultaneously measure velocity and density. Flows involving the mixing of fluids with large density ratios are important in a range of physical problems including atmospheric and oceanic flows, industrial processes, and inertial confinement fusion. Here we focus on buoyant jets with coflow. Results from two different Atwood numbers, 0.1 (Boussinesq limit) and 0.6 (non-Boussinesq case), reveal that buoyancy is important for most of the turbulent quantities measured. Statistical characteristics of the mixing important for modeling these flows such as the PDFs of density and density gradients, turbulent kinetic energy, Favre averaged Reynolds stress, turbulent mass flux velocity, density-specific volume correlation, and density power spectra were also examined and compared with previous direct numerical simulations. Additionally, a method for directly estimating Reynolds-averaged velocity statistics on a per-pixel basis is extended to Favre-averages, yielding improved accuracy and spatial resolution as compared to traditional post-processing of velocity and density fields.
A numerical study on the non-Boussinesq effect in the natural convection in horizontal annulus
NASA Astrophysics Data System (ADS)
Zhang, Yu; Cao, Yuhui
2018-04-01
In the present study, the non-Boussinesq effect in the thermal convection in an air-filled horizontal concentric annulus is studied numerically by using the variable property-based lattice Boltzmann flux solver (VPLBFS), with the radial temperature difference ratio of 1.0, the radius ratio of 2.0, and the Rayleigh number in the range 104 ≤ Ra ≤ 106. Several solutions are obtained by using the standard form or simplified versions of the VPLBFS, including the real solution with the total variation in fluid properties considered, named as the variable property solution (VPS), the constant property solution (CPS) based on the Boussinesq approximation, the solution with variable dynamic viscosity (VVS), the solution based on the partial Boussinesq approximation (PBAS), the solution with variable thermal conductivity (VCS) and the solution with variable fluid density (VDS). The discrepancy between these solutions is analyzed to illuminate the influence of the non-Boussinesq effects induced by partial or total variation in fluid properties on flow instability behaviors and heat transfer characteristics. The present study reveals the complicated flow instability behavior under non-Boussinesq conditions and its tight association with heat transfer characteristics. Also, it demonstrates the necessity of considering the integral effect of the total variation in fluid properties and highlights the essential role of the fluid density variation.
Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT
Thorne, D.; Langevin, C.D.; Sukop, M.C.
2006-01-01
SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.
Incompressible variable-density turbulence in an external acceleration field
Gat, Ilana; Matheou, Georgios; Chung, Daniel; ...
2017-08-24
Dynamics and mixing of a variable-density turbulent flow subject to an externally imposed acceleration field in the zero-Mach-number limit are studied in a series of direct numerical simulations. The flow configuration studied consists of alternating slabs of high- and low-density fluid in a triply periodic domain. Density ratios in the range ofmore » $$1.05\\leqslant R\\equiv \\unicode[STIX]{x1D70C}_{1}/\\unicode[STIX]{x1D70C}_{2}\\leqslant 10$$are investigated. The flow produces temporally evolving shear layers. A perpendicular density–pressure gradient is maintained in the mean as the flow evolves, with multi-scale baroclinic torques generated in the turbulent flow that ensues. For all density ratios studied, the simulations attain Reynolds numbers at the beginning of the fully developed turbulence regime. An empirical relation for the convection velocity predicts the observed entrainment-ratio and dominant mixed-fluid composition statistics. Two mixing-layer temporal evolution regimes are identified: an initial diffusion-dominated regime with a growth rate$${\\sim}t^{1/2}$$followed by a turbulence-dominated regime with a growth rate$${\\sim}t^{3}$$. In the turbulent regime, composition probability density functions within the shear layers exhibit a slightly tilted (‘non-marching’) hump, corresponding to the most probable mole fraction. In conclusion, the shear layers preferentially entrain low-density fluid by volume at all density ratios, which is reflected in the mixed-fluid composition.« less
Incompressible variable-density turbulence in an external acceleration field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gat, Ilana; Matheou, Georgios; Chung, Daniel
Dynamics and mixing of a variable-density turbulent flow subject to an externally imposed acceleration field in the zero-Mach-number limit are studied in a series of direct numerical simulations. The flow configuration studied consists of alternating slabs of high- and low-density fluid in a triply periodic domain. Density ratios in the range ofmore » $$1.05\\leqslant R\\equiv \\unicode[STIX]{x1D70C}_{1}/\\unicode[STIX]{x1D70C}_{2}\\leqslant 10$$are investigated. The flow produces temporally evolving shear layers. A perpendicular density–pressure gradient is maintained in the mean as the flow evolves, with multi-scale baroclinic torques generated in the turbulent flow that ensues. For all density ratios studied, the simulations attain Reynolds numbers at the beginning of the fully developed turbulence regime. An empirical relation for the convection velocity predicts the observed entrainment-ratio and dominant mixed-fluid composition statistics. Two mixing-layer temporal evolution regimes are identified: an initial diffusion-dominated regime with a growth rate$${\\sim}t^{1/2}$$followed by a turbulence-dominated regime with a growth rate$${\\sim}t^{3}$$. In the turbulent regime, composition probability density functions within the shear layers exhibit a slightly tilted (‘non-marching’) hump, corresponding to the most probable mole fraction. In conclusion, the shear layers preferentially entrain low-density fluid by volume at all density ratios, which is reflected in the mixed-fluid composition.« less
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less
A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids
NASA Astrophysics Data System (ADS)
Ciancio, Vincenzo; Palumbo, Annunziata
2018-04-01
In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.
2010-05-30
supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which have the potential of forming...With regard to physical properties, supercritical fluids have highly variable densities, no surface tension, and transport properties (i.e., mass...effects in supercritical fluids , often affecting chemical reaction pathways by facilitating the formation of certain transition states [6]. Because
2007-05-28
be supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which have the potential of forming...physical properties, supercritical fluids have highly variable densities, no surface tension, and transport properties (i.e., mass, energy, and momentum...are very dependent on pressure, chemical reaction rates in supercritical fluids can be highly pressure-dependent [6-9]. The kinetic reaction rate
SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport
Langevin, Christian D.; Thorne, Daniel T.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing
2008-01-01
The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant-head boundaries with the Time-Variant Constant-Head (CHD) Package. These options allow for increased flexibility when using CHD flow boundaries with the zero-dispersive flux solute boundaries implemented by MT3DMS at constant-head cells. This report contains revised input instructions for the MT3DMS Dispersion (DSP) Package, Variable-Density Flow (VDF) Package, Viscosity (VSC) Package, and CHD Package. The report concludes with seven cases of an example problem designed to highlight many of the new features.
Weatherill, D.; Simmons, C.T.; Voss, C.I.; Robinson, N.I.
2004-01-01
This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4??2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature. ?? 2004 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.
2016-09-01
In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.
Density-ratio effects on buoyancy-driven variable-density turbulent mixing
NASA Astrophysics Data System (ADS)
Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam
2017-11-01
Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.
A gravitational test of wave reinforcement versus fluid density models
NASA Technical Reports Server (NTRS)
Johnson, Jacqueline Umstead
1990-01-01
Spermatozoa, protozoa, and algae form macroscopic patterns somewhat analogous to thermally driven convection cells. These bioconvective patterns have attracted interest in the fluid dynamics community, but whether in all cases these waves were gravity driven was unknown. There are two conflicting theories, one gravity dependent (fluid density model), the other gravity independent (wave reinforcement theory). The primary objectives of the summer faculty fellows were to: (1) assist in sample collection (spermatozoa) and preparation for the KC-135 research airplane experiment; and (2) to collaborate on ground testing of bioconvective variables such as motility, concentration, morphology, etc., in relation to their macroscopic patterns. Results are very briefly given.
NASA Technical Reports Server (NTRS)
Bradas, James C.; Fennelly, Alphonsus J.; Smalley, Larry L.
1987-01-01
It is shown that a generalized (or 'power law') inflationary phase arises naturally and inevitably in a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan gravitation theory with the improved stress-energy-momentum tensor with the spin density of Ray and Smalley (1982, 1983). This is made explicit by an analytical solution of the field equations of motion of the fluid variables. The inflation is caused by the angular kinetic energy density due to spin. The model further elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in damping the inflation.
Critical asymmetry in renormalization group theory for fluids.
Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun
2013-06-21
The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.
Mesoscopic model for binary fluids
NASA Astrophysics Data System (ADS)
Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.
2017-10-01
We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.
2015-12-15
axial direction; v – fluid velocity; Twc – wall temperature; Tb – fuel bulk temperature; q″ – heat flux ; ρ – fluid density. INTRODUCTION In...and cyclic paraffins ] and distribution are not. Chromatograms demonstrating RP compositional variability are shown in Fig. 2 alongside aviation
The pointwise estimates of diffusion wave of the compressible micropolar fluids
NASA Astrophysics Data System (ADS)
Wu, Zhigang; Wang, Weike
2018-09-01
The pointwise estimates for the compressible micropolar fluids in dimension three are given, which exhibit generalized Huygens' principle for the fluid density and fluid momentum as the compressible Navier-Stokes equation, while the micro-rational momentum behaves like the fluid momentum of the Euler equation with damping. To circumvent the complexity from 7 × 7 Green's matrix, we use the decomposition of fluid part and electromagnetic part for the momentums to study three smaller Green's matrices. The following from this decomposition is that we have to deal with the new problem that the nonlinear terms contain nonlocal operators. We solve it by using the natural match of these new Green's functions and the nonlinear terms. Moreover, to derive the different pointwise estimates for different unknown variables such that the estimate of each unknown variable is in agreement with its Green's function, we develop some new estimates on the nonlinear interplay between different waves.
Density Effects on Post-shock Turbulence Structure
NASA Astrophysics Data System (ADS)
Tian, Yifeng; Jaberi, Farhad; Livescu, Daniel; Li, Zhaorui; Michigan State University Collaboration; Los Alamos National Laboratory Collaboration; Texas A&M University-Corpus Christi Collaboration
2017-11-01
The effects of density variations due to mixture composition on post-shock turbulence structure are studied using turbulence-resolving shock-capturing simulations. This work extends the canonical Shock-Turbulence Interaction (STI) problem to involve significant variable density effects. The numerical method has been verified using a series of grid and LIA convergence tests, and is used to generate accurate post-shock turbulence data for a detailed flow study. Density effects on post-shock turbulent statistics are shown to be significant, leading to an increased amplification of turbulent kinetic energy (TKE). Eulerian and Lagrangian analyses show that the increase in the post-shock correlation between rotation and strain is weakened in the case with significant density variations (referred to as the ``multi-fluid'' case). Similar to previous single-fluid results and LIA predictions, the shock wave significantly changes the topology of the turbulent structures, exhibiting a symmetrization of the joint PDF of second and third invariant of the deviatoric part of velocity gradient tensor. In the multi-fluid case, this trend is more significant and mainly manifested in the heavy fluid regions. Lagrangian data are also used to study the evolution of turbulence structure away from the shock wave and assess the accuracy of Lagrangian dynamical models.
A classical density-functional theory for describing water interfaces.
Hughes, Jessica; Krebs, Eric J; Roundy, David
2013-01-14
We develop a classical density functional for water which combines the White Bear fundamental-measure theory (FMT) functional for the hard sphere fluid with attractive interactions based on the statistical associating fluid theory variable range (SAFT-VR). This functional reproduces the properties of water at both long and short length scales over a wide range of temperatures and is computationally efficient, comparable to the cost of FMT itself. We demonstrate our functional by applying it to systems composed of two hard rods, four hard rods arranged in a square, and hard spheres in water.
NASA Astrophysics Data System (ADS)
Thiele, Michael
1998-04-01
Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives further evidence for the importance of simultaneously considering molecular diffusion and mechanical dispersion in gravity-affected solute transport in porous media.
Unified description of the slip phenomena in sheared polymer films: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Priezjev, Nikolai
2010-03-01
The dynamic behavior of the slip length in shear flow of polymer melts past atomically smooth surfaces is investigated using MD simulations. The polymer melt was modeled as a collection of FENE-LJ bead-spring chains. We consider shear flow conditions at low pressures and weak wall-fluid interaction energy so that fluid velocity profiles are linear throughout the channel at all shear rates examined. In agreement with earlier studies we confirm that for shear- thinning fluids the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that the rate dependence of the slip length depends on the lattice orientation at high shear rates. The MD results show that the ratio of slip length to viscosity follows a master curve when plotted as a function of a single variable that depends on the structure factor, contact density and temperature of the first fluid layer near the solid wall. The universal dependence of the slip length holds for a number of parameters of the interface: fluid density and structure (chain length), wall-fluid interaction energy, wall density, lattice orientation, thermal or solid walls.
Statistical Decoupling of a Lagrangian Fluid Parcel in Newtonian Cosmology
NASA Astrophysics Data System (ADS)
Wang, Xin; Szalay, Alex
2016-03-01
The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differential equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.
STATISTICAL DECOUPLING OF A LAGRANGIAN FLUID PARCEL IN NEWTONIAN COSMOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Szalay, Alex, E-mail: xwang@cita.utoronto.ca
The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differentialmore » equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.« less
NASA Technical Reports Server (NTRS)
Johnson, Adriel D.
1992-01-01
Conditions simulating low- and high-gravity, reveal changes in macroscopic pattern formation in selected microorganisms, but whether these structures are gravity dependent is not clear. Two theories have been identified in the fluid dynamics community which support macroscopic pattern formation. The first one is gravity dependent (fluid density models) where small concentrated regions of organisms sink unstably, and the second is gravity independent (wave reinforcement theory) where organisms align their movements in concert, such that either their swimming strokes beat in phase or their vortices entrain neighbors to follow parallel paths. Studies have shown that macroscopic pattern formation is consistent with the fluid density models for protozoa and algae and wave reinforcement hypothesis for caprine spermatozoa.
Options for refractive index and viscosity matching to study variable density flows
NASA Astrophysics Data System (ADS)
Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.
2018-02-01
Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a linearly stratified environment. The creation of the index-matched solutions and linear stratification in a large-scale experimental facility are detailed, as well as the practical challenges to obtain precise refractive index matching.
Langevin, Christian D.; Shoemaker, W. Barclay; Guo, Weixing
2003-01-01
SEAWAT-2000 is the latest release of the SEAWAT computer program for simulation of three-dimensional, variable-density, transient ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified version of MODFLOW-2000 and MT3DMS into a single computer program. The code was developed using the MODFLOW-2000 concept of a process, which is defined as ?part of the code that solves a fundamental equation by a specified numerical method.? SEAWAT-2000 contains all of the processes distributed with MODFLOW-2000 and also includes the Variable-Density Flow Process (as an alternative to the constant-density Ground-Water Flow Process) and the Integrated MT3DMS Transport Process. Processes may be active or inactive, depending on simulation objectives; however, not all processes are compatible. For example, the Sensitivity and Parameter Estimation Processes are not compatible with the Variable-Density Flow and Integrated MT3DMS Transport Processes. The SEAWAT-2000 computer code was tested with the common variable-density benchmark problems and also with problems representing evaporation from a salt lake and rotation of immiscible fluids.
Importance of Variable Density and Non-Boussinesq Effects on the Drag of Spherical Particles
NASA Astrophysics Data System (ADS)
Ganguli, Swetava; Lele, Sanjiva
2017-11-01
What are the forces that act on a particle as it moves in a fluid? How do they change in the presence of significant heat transfer from the particle, a variable density fluid or gravity? Last year, using particle-resolved simulations we quantified these effects on a single spherical particle and on particles in periodic lattices when O(10-3)
Fractionation of Cl/Br during fluid phase separation in magmatic-hydrothermal fluids
NASA Astrophysics Data System (ADS)
Seo, Jung Hun; Zajacz, Zoltán
2016-06-01
Brine and vapor inclusions were synthesized to study Cl/Br fractionation during magmatic-hydrothermal fluid phase separation at 900 °C and pressures of 90, 120, and 150 MPa in Li/Na/K halide salt-H2O systems. Laser ablation ICP-MS microanalysis of high-density brine inclusions show an elevated Cl/Br ratio compared to the coexisting low-density vapor inclusions. The degree of Cl/Br fractionation between vapor and brine is significantly dependent on the identity of the alkali metal in the system: stronger vapor partitioning of Br occurs in the Li halide-H2O system compared to the systems of K and Na halide-H2O. The effect of the identity of alkali-metals in the system is stronger compared to the effect of vapor-brine density contrast. We infer that competition between alkali-halide and alkali-OH complexes in high-temperature fluids might cause the Cl/Br fractionation, consistent with the observed molar imbalances of alkali metals compared to halides in the analyzed brine inclusions. Our experiments show that the identity of alkali metals controls the degrees of Cl/Br fractionation between the separating aqueous fluid phases at 900 °C, and suggest that a significant variability in the Cl/Br ratios of magmatic fluids can arise in Li-rich systems.
Supercritical Fluid: Liquid, Gas, Both or Neither? A Different Approach.
ERIC Educational Resources Information Center
Meyer, Edwin F.; Meyer, Thomas P.
1986-01-01
Presents a laboratory experiment which determines critical temperature and density of carbon dioxide. Discusses critical point and provides equations to estimate liquid volume fraction. Analyzes experimental results in terms of variables. (JM)
Effective field theory of dissipative fluids
Crossley, Michael; Glorioso, Paolo; Liu, Hong
2017-09-20
We develop an effctive fi eld theory for dissipative fluids which governs the dynamics of long-lived gapless modes associated with conserved quantities. The resulting theory gives a path integral formulation of fluctuating hydrodynamics which systematically incorporates nonlinear interactions of noises. The dynamical variables are mappings between a "fluid spacetime" and the physical spacetime and an essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. The theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z2 symmetry, to which we refer as the local KMSmore » condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, and a higher derivative deformation of supersymmetry in the full quantum regime.« less
Effective field theory of dissipative fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crossley, Michael; Glorioso, Paolo; Liu, Hong
We develop an effctive fi eld theory for dissipative fluids which governs the dynamics of long-lived gapless modes associated with conserved quantities. The resulting theory gives a path integral formulation of fluctuating hydrodynamics which systematically incorporates nonlinear interactions of noises. The dynamical variables are mappings between a "fluid spacetime" and the physical spacetime and an essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. The theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z2 symmetry, to which we refer as the local KMSmore » condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, and a higher derivative deformation of supersymmetry in the full quantum regime.« less
Electromotive force in strongly compressible magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance <ρ'2> (<·> denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density <ρ>, if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance <ρ'2> is generated by the large mean density variation ∂<ρ> coupled with the turbulent mass flux <ρ'u'>. This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂<ρ> and the mean magnetic field B may contribute to the EMF as ≈χ B×∂<ρ> with the turbulent transport coefficient χ proportional to the density variance (χ <ρ'2>). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow shock, the magnetic reconnection rate may be enhanced by this effect. Physical origin of this effect is discussed in some possible geophysical applications.
NASA Astrophysics Data System (ADS)
Gloor, Guy J.; Jackson, George; Blas, Felipe J.; del Río, Elvira Martín; de Miguel, Enrique
2004-12-01
A Helmholtz free energy density functional is developed to describe the vapor-liquid interface of associating chain molecules. The functional is based on the statistical associating fluid theory with attractive potentials of variable range (SAFT-VR) for the homogenous fluid [A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, and A. N. Burgess, J. Chem. Phys. 106, 4168 (1997)]. A standard perturbative density functional theory (DFT) is constructed by partitioning the free energy density into a reference term (which incorporates all of the short-range interactions, and is treated locally) and an attractive perturbation (which incorporates the long-range dispersion interactions). In our previous work [F. J. Blas, E. Martín del Río, E. de Miguel, and G. Jackson, Mol. Phys. 99, 1851 (2001); G. J. Gloor, F. J. Blas, E. Martín del Río, E. de Miguel, and G. Jackson, Fluid Phase Equil. 194, 521 (2002)] we used a mean-field version of the theory (SAFT-HS) in which the pair correlations were neglected in the attractive term. This provides only a qualitative description of the vapor-liquid interface, due to the inadequate mean-field treatment of the vapor-liquid equilibria. Two different approaches are used to include the correlations in the attractive term: in the first, the free energy of the homogeneous fluid is partitioned such that the effect of correlations are incorporated in the local reference term; in the second, a density averaged correlation function is incorporated into the perturbative term in a similar way to that proposed by Toxvaerd [S. Toxvaerd, J. Chem. Phys. 64, 2863 (1976)]. The latter is found to provide the most accurate description of the vapor-liquid surface tension on comparison with new simulation data for a square-well fluid of variable range. The SAFT-VR DFT is used to examine the effect of molecular chain length and association on the surface tension. Different association schemes (dimerization, straight and branched chain formation, and network structures) are examined separately. The surface tension of the associating fluid is found to be bounded between the nonassociating and fully associated limits (both of which correspond to equivalent nonassociating systems). The temperature dependence of the surface tension is found to depend strongly on the balance between the strength and range of the association, and on the particular association scheme. In the case of a system with a strong but very localized association interaction, the surface tension exhibits the characteristic "s shaped" behavior with temperature observed in fluids such as water and alkanols. The various types of curves observed in real substances can be reproduced by the theory. It is very gratifying that a DFT based on SAFT-VR free energy can provide an accurate quantitative description of the surface tension of both the model and experimental systems.
Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles
NASA Technical Reports Server (NTRS)
1993-01-01
A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.
Smoothed Particle Hydrodynamics Simulations of Ultrarelativistic Shocks with Artificial Viscosity
NASA Astrophysics Data System (ADS)
Siegler, S.; Riffert, H.
2000-03-01
We present a fully Lagrangian conservation form of the general relativistic hydrodynamic equations for perfect fluids with artificial viscosity in a given arbitrary background spacetime. This conservation formulation is achieved by choosing suitable Lagrangian time evolution variables, from which the generic fluid variables of rest-mass density, 3-velocity, and thermodynamic pressure have to be determined. We present the corresponding equations for an ideal gas and show the existence and uniqueness of the solution. On the basis of the Lagrangian formulation we have developed a three-dimensional general relativistic smoothed particle hydrodynamics (SPH) code using the standard SPH formalism as known from nonrelativistic fluid dynamics. One-dimensional simulations of a shock tube and a wall shock are presented together with a two-dimensional test calculation of an inclined shock tube. With our method we can model ultrarelativistic fluid flows including shocks with Lorentz factors of even 1000.
A statistical formulation of one-dimensional electron fluid turbulence
NASA Technical Reports Server (NTRS)
Fyfe, D.; Montgomery, D.
1977-01-01
A one-dimensional electron fluid model is investigated using the mathematical methods of modern fluid turbulence theory. Non-dissipative equilibrium canonical distributions are determined in a phase space whose co-ordinates are the real and imaginary parts of the Fourier coefficients for the field variables. Spectral densities are calculated, yielding a wavenumber electric field energy spectrum proportional to k to the negative second power for large wavenumbers. The equations of motion are numerically integrated and the resulting spectra are found to compare well with the theoretical predictions.
Growth and Morphology of Supercritical Fluids Studied in Microgravity on Mir
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
2000-01-01
The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center at Lewis Field and under the guidance of U.S. principal investigator Professor John Hegseth of the University of New Orleans and three French coinvestigators Daniel Beysens, Yves Garrabos, and Carole Chabot. In early 1999, GMSF experiments were operated for 20 days on the Russian Space Station Mir. Mir astronauts performed experiments One through Seven, which spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) to be applied to the sample.
Mode Propagation in Nonuniform Circular Ducts with Potential Flow
NASA Technical Reports Server (NTRS)
Cho, Y. C.; Ingard, K. U.
1982-01-01
A previously reported closed form solution is expanded to determine effects of isentropic mean flow on mode propagation in a slowly converging-diverging duct, a circular cosh duct. On the assumption of uniform steady fluid density, the mean flow increases the power transmission coefficient. The increase is directly related to the increase of the cutoff ratio at the duct throat. With the negligible transverse gradients of the steady fluid variables, the conversion from one mode to another is negligible, and the power transmission coefficient remains unchanged with the mean flow direction reversed. With a proper choice of frequency parameter, many different modes can be made subject to a single value of the power transmission loss. A systematic method to include the effects of the gradients of the steady fluid variables is also described.
Variable mixture ratio performance through nitrogen augmentation
NASA Technical Reports Server (NTRS)
Beichel, R.; Obrien, C. J.; Bair, E. K.
1988-01-01
High/variable mixture ratio O2/H2 candidate engine cycles are examined for earth-to-orbit vehicle application. Engine performance and power balance information are presented for the candidate cycles relative to chamber pressure, bulk density, and mixture ratio. Included in the cycle screening are concepts where a third fluid (liquid nitrogen) is used to achieve a variable mixture ratio over the trajectory from liftoff to earth orbit. The third fluid cycles offer a very low risk, fully reusable, low operation cost alternative to high/variable mixture ratio bipropellant cycles. Variable mixture ratio engines with extendible nozzle are slightly lower performing than a single mixture ratio engine (MR = 7:1) with extendible nozzle. Dual expander engines (MR = 7:1) have slightly better performance than the single mixture ratio engine. Dual fuel dual expander engines offer a 16 percent improvement over the single mixture ratio engine.
2013-08-28
and dispersion whose behavior is relevant to fuel-injection in propulsion devices. The latter investigations were conducted in water that allows...initially sharp scalar gradients in this high Schmidt-number fluid medium ( water : ⁄ ). Generally, such scalar plumes re reported to exhibit... Flowmetering : The Characteristics of Cylindrical Nozzles with Sharp Upstream Edges. Int. J. Heat and Fluid Flow 1(3):123-132. 3. Research personnel
NASA Astrophysics Data System (ADS)
Petrie, E. S.; Evans, J. P.; Richey, D.; Flores, S.; Barton, C.; Mozley, P.
2015-12-01
Sedimentary rocks in the San Rafael Swell, Utah, were deformed by Laramide compression and subsequent Neogene extension. We evaluate the effect of fault damage zone morphology as a function of structural position, and changes in mechanical stratigraphy on the distribution of secondary minerals across the reservoir-seal pair of the Navajo Sandstone and overlying Carmel Formation. We decipher paleo-fluid migration and examine the effect faults and fractures have on reservoir permeability and efficacy of top seal for a range of geo-engineering applications. Map-scale faults have an increased probability of allowing upward migration of fluids along the fault plane and within the damage zone, potentially bypassing the top seal. Field mapping, mesoscopic structural analyses, petrography, and geochemical observations demonstrate that fault zone thickness increases at structural intersections, fault relay zones, fault-related folds, and fault tips. Higher densities of faults with meters of slip and dense fracture populations are present in relay zones relative to single, discrete faults. Curvature analysis of the San Rafael monocline and fracture density data show that fracture density is highest where curvature is highest in the syncline hinge and near faults. Fractures cross the reservoir-seal interface where fracture density is highest and structural diagensis includes mineralization events and bleaching and calcite and gypsum mineralization. The link between fracture distributions and structural setting implys that transmissive fractures have predictable orientations and density distributions. At the m- to cm- scale, deformation-band faults and joints in the Navajo Sandstone penetrate the reservoir-seal interface and transition into open-mode fractures in the caprock seal. Scanline analysis and petrography of veins provide evidence for subsurface mineralization and fracture reactivation, suggesting that the fractures act as loci for fluid flow through time. Heterolithic caprock seals with variable fracture distributions and morphology highlight the strong link between the variation in material properties and the response to changing stress conditions. The variable connectivity of fractures and the changes in fracture density plays a critical role in subsurface fluid flow.
A one-dimensional model for gas-solid heat transfer in pneumatic conveying
NASA Astrophysics Data System (ADS)
Smajstrla, Kody Wayne
A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.
NASA Astrophysics Data System (ADS)
Zhao, Chongbin; Hobbs, B. E.; Ord, A.
2018-04-01
Reaction-infiltration instability, in which chemical reactions can dissolve minerals and therefore create preferential pore-fluid flow channels in fluid-saturated rocks, may play an important role in controlling groundwater quality in groundwater hydrology. Although this topic has been studied for many years, there is a recent debate, which says that the use of large-density asymptotics in the previous studies is invalid. However, there is a crucial conceptual mistake in this debate, which leads to results and conclusions that are inconsistent with the fundamental laws of physics. It is well known that in terms of distance, time and velocity, there are only two independent variables. But they are treated as three independent variables, a procedure that is the main source of the physically unrealistic results and conclusions in the debate. In this paper, we will discuss the results and conclusions related to the debate, with emphasis on the issues leading to the corresponding errors. In particular, we demonstrate that there is an unappreciated constraint condition between the dimensional/dimensionless distance, time and velocity in the debate. By using this constraint condition, it can be confirmed that as the ratio of the reactant concentration in the incoming fluid stream to the mineral concentration approaches zero, the dimensionless transport parameter, H, automatically approaches infinity. Therefore, it is further confirmed that the previous work conducted by Chadam and others remains valid.
A new class of variable capacitance generators based on the dielectric fluid transducer
NASA Astrophysics Data System (ADS)
Duranti, Mattia; Righi, Michele; Vertechy, Rocco; Fontana, Marco
2017-11-01
This paper introduces the novel concept of dielectric fluid transducer (DFT), which is an electrostatic variable capacitance transducer made by compliant electrodes, solid dielectrics and a dielectric fluid with variable volume and/or shape. The DFT can be employed in actuator mode and generator mode. In this work, DFTs are studied as electromechanical generators able to convert oscillating mechanical energy into direct current electricity. Beside illustrating the working principle of dielectric fluid generators (DFGs), we introduce different architectural implementations and provide considerations on limitations and best practices for their design. Additionally, the proposed concept is demonstrated in a preliminary experimental test campaign conducted on a first DFG prototype. During experimental tests a maximum energy per cycle of 4.6 {mJ} and maximum power of 0.575 {mW} has been converted, with a conversion efficiency up to 30%. These figures correspond to converted energy densities of 63.8 {mJ} {{{g}}}-1 with respect to the displaced dielectric fluid and 179.0 {mJ} {{{g}}}-1 with respect to the mass of the solid dielectric. This promising performance can be largely improved through the optimization of device topology and dimensions, as well as by the adoption of more performing conductive and dielectric materials.
NASA Technical Reports Server (NTRS)
Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.
1986-01-01
The purpose of this work was to perform a rather complete analysis for a cryogenic (oxygen) journal bearing. The Reynolds equation required coupling and simultaneous solution with the fluid energy equation. To correctly account for the changes in the fluid viscosity, the fluid energy equation was coupled with the shaft and bearing heat conduction energy equations. The effects of pressure and temperature on the density, viscosity, and load-carrying capacity were further discussed as analysis parameters, with respect to relative eccentricity and the angular velocity. The isothermal fluid case and the adiabatic fluid case represented the limiting boundaries. The discussion was further extrapolated to study the Sommerfeld number dependency on the fluid Nusselt number and its consequence on possible total loss of load-carrying capacity and/or seizure (catastrophic failure).
Exact statistical results for binary mixing and reaction in variable density turbulence
NASA Astrophysics Data System (ADS)
Ristorcelli, J. R.
2017-02-01
We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, ⟨ρ2⟩ . We show that the normalized density variance, ⟨ρ2⟩ , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance ⟨c2⟩ used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, c″ 2˜ , as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance ⟨ρ v ⟩ is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance ⟨c2⟩ its Favre analog c″ 2˜ , and various second moments including ⟨ρ v ⟩ . For moment closure models that evolve ⟨ρ v ⟩ and not ⟨ρ2⟩ , we provide a novel expression for ⟨ρ2⟩ in terms of a rational function of ⟨ρ v ⟩ that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived analytic results relating several other second and third order moments and see coupling between odd and even order moments demonstrating a natural and inherent skewness in the mixing in variable density turbulence. The analytic results have applications in the areas of isothermal material mixing, isobaric thermal mixing, and simple chemical reaction (in progress variable formulation).
Sedimentation of Inertialess Particles in Stokes Flows
NASA Astrophysics Data System (ADS)
Höfer, Richard M.
2018-05-01
We investigate the sedimentation of a cloud of rigid, spherical particles of identical radii under gravity in a Stokes fluid. Both inertia and rotation of particles are neglected. We consider the homogenization limit of many small particles in the case of a dilute system in which interactions between particles are still important. In the relevant time scale, we rigorously prove convergence of the dynamics to the solution of a macroscopic equation. This macroscopic equation resembles the Stokes equations for a fluid of variable density subject to gravitation.
Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows
NASA Technical Reports Server (NTRS)
Cheng, Gary; Farmer, Richard
2003-01-01
The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2013-10-01
Multi-pulsing coaxial helicity injection (M-CHI) method which aims to achieve both quasi-steady sustainment and good confinement has been proposed as a refluxing scenario of the CHI. To explore the usefulness of the M-CHI for spherical torus (ST) configurations, the double-pulsing operations have been carried out in the HIST, verifying the flux amplification and the formation of the closed flux surfaces after the second CHI pulse. The purpose of this study is to investigate the properties of the magnetic field and plasma flow structures during the sustainment by comparing the results of plasma flow, density, and magnetic fields measurements with those of two-fluid equilibrium calculations. The two-fluid flowing equilibrium model which is described by a pair of generalized Grad-Shafranov equations for ion and electron surface variables and Bernoulli equations for density is applied to reconstruct the ST configuration with poloidal flow shear observed in the HIST. Due to the negative steep density gradient in high field side, the toroidal field has a diamagnetic profile (volume average beta, < β > = 68 %) in the central open flux column region. The ion flow velocity with strong flow shear from the separatrix in the inboard side to the core region is the opposite direction to the electron flow velocity due to the diamagentic drift through the density gradient. The electric field is relatively small in the whole region, and thus the Lorentz force nearly balances with the two-fluid effect which is particularly significant in a region with the steep density gradient due to the ion and electron diamagnetic drifts.
Hamiltonian fluid closures of the Vlasov-Ampère equations: From water-bags to N moment models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perin, M.; Chandre, C.; Tassi, E.
2015-09-15
Moment closures of the Vlasov-Ampère system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two, and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary numbermore » of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.« less
Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows
NASA Astrophysics Data System (ADS)
Minier, Jean-Pierre; Profeta, Christophe
2015-11-01
This article analyzes the status of two classical one-particle probability density function (PDF) descriptions of the dynamics of discrete particles dispersed in turbulent flows. The first PDF formulation considers only the process made up by particle position and velocity Zp=(xp,Up) and is represented by its PDF p (t ;yp,Vp) which is the solution of a kinetic PDF equation obtained through a flux closure based on the Furutsu-Novikov theorem. The second PDF formulation includes fluid variables into the particle state vector, for example, the fluid velocity seen by particles Zp=(xp,Up,Us) , and, consequently, handles an extended PDF p (t ;yp,Vp,Vs) which is the solution of a dynamic PDF equation. For high-Reynolds-number fluid flows, a typical formulation of the latter category relies on a Langevin model for the trajectories of the fluid seen or, conversely, on a Fokker-Planck equation for the extended PDF. In the present work, a new derivation of the kinetic PDF equation is worked out and new physical expressions of the dispersion tensors entering the kinetic PDF equation are obtained by starting from the extended PDF and integrating over the fluid seen. This demonstrates that, under the same assumption of a Gaussian colored noise and irrespective of the specific stochastic model chosen for the fluid seen, the kinetic PDF description is the marginal of a dynamic PDF one. However, a detailed analysis reveals that kinetic PDF models of particle dynamics in turbulent flows described by statistical correlations constitute incomplete stand-alone PDF descriptions and, moreover, that present kinetic-PDF equations are mathematically ill posed. This is shown to be the consequence of the non-Markovian characteristic of the stochastic process retained to describe the system and the use of an external colored noise. Furthermore, developments bring out that well-posed PDF descriptions are essentially due to a proper choice of the variables selected to describe physical systems and guidelines are formulated to emphasize the key role played by the notion of slow and fast variables.
Communication: Non-Hadwiger terms in morphological thermodynamics of fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen-Goos, Hendrik, E-mail: hendrik.hansen-goos@uni-tuebingen.de
We demonstrate that the Hadwiger form of the free energy of a fluid in contact with a wall is insufficient to describe the low-density behavior of a hard-sphere fluid. This implies that morphological thermodynamics of the hard-sphere fluid is an approximate theory if only four geometric measures are included. In order to quantify deviations from the Hadwiger form we extend standard fundamental measure theory of the bulk fluid by introducing additional scaled-particle variables which allow for the description of non-Hadwiger coefficients. The theory is in excellent agreement with recent computer simulations. The fact that the leading non-Hadwiger coefficient is onemore » order of magnitude smaller than the smallest Hadwiger coefficient lends confidence to the numerous results that have been previously obtained within standard morphological thermodynamics.« less
Stochastic transport models for mixing in variable-density turbulence
NASA Astrophysics Data System (ADS)
Bakosi, J.; Ristorcelli, J. R.
2011-11-01
In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.
Evaluation of Stokes Settling Equation for Variable Density Aggregates.
1984-04-26
aggregate densities of the order 1.05 a/l (Sbglar to the hlab-made assroese fed b7 grame (t976)) aw* of the tpt esis "ae 110s10m0 ft the .01O of...work performed under this contract, this report will describe the behavior of Inorganic aggregates encountering fluids Of ilffering composition than...perimeter ofthe Fig. 2. Particle moving in 3-D * Pam . particle, while pixels above the theshold ere accumu- lated a,- its area. C. Ps J Arm Swa Tedvnftu
The Repeated Replacement Method: A Pure Lagrangian Meshfree Method for Computational Fluid Dynamics
Walker, Wade A.
2012-01-01
In this paper we describe the repeated replacement method (RRM), a new meshfree method for computational fluid dynamics (CFD). RRM simulates fluid flow by modeling compressible fluids’ tendency to evolve towards a state of constant density, velocity, and pressure. To evolve a fluid flow simulation forward in time, RRM repeatedly “chops out” fluid from active areas and replaces it with new “flattened” fluid cells with the same mass, momentum, and energy. We call the new cells “flattened” because we give them constant density, velocity, and pressure, even though the chopped-out fluid may have had gradients in these primitive variables. RRM adaptively chooses the sizes and locations of the areas it chops out and replaces. It creates more and smaller new cells in areas of high gradient, and fewer and larger new cells in areas of lower gradient. This naturally leads to an adaptive level of accuracy, where more computational effort is spent on active areas of the fluid, and less effort is spent on inactive areas. We show that for common test problems, RRM produces results similar to other high-resolution CFD methods, while using a very different mathematical framework. RRM does not use Riemann solvers, flux or slope limiters, a mesh, or a stencil, and it operates in a purely Lagrangian mode. RRM also does not evaluate numerical derivatives, does not integrate equations of motion, and does not solve systems of equations. PMID:22866175
Study of sulfur bonding on gallium arsenide (100) surfaces using supercritical fluid extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabauy, P.; Darici, Y.; Furton, K.G.
1995-12-01
In the last decades Gallium Arsenide (GaAs) has been considered the semiconductor that will replace silicon because of its direct band gap and high electron mobility. Problems with GaAs Fermi level pinning has halted its widespread use in the electronics industry. The formation of oxides on GaAs results in a high density of surface states that effectively pin the surface Fermi level at the midgap. Studies on sulfur passivation have eliminated oxidation and virtually unpinned the Fermi level on the GaAs surface. This has given rise to interest in sulfur-GaAs bonds. In this presentation, we will discuss the types ofmore » sulfur bonds extracted from a sulfur passivated GaAs (100) using Supercritical Fluid (CO2) Extraction (SFE). SFE can be a valuable tool in the study of chemical speciations on semiconductor surfaces. The variables evaluated to effectively study the sulfur species from the GaAs surface include passivation techniques, supercritical fluid temperatures, densities, and extraction times.« less
Nath, G; Sahu, P K
2016-01-01
A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.
Calibration of ultrasonic power output in water, ethanol and sodium polytungstate
NASA Astrophysics Data System (ADS)
Mentler, Axel; Schomakers, Jasmin; Kloss, Stefanie; Zechmeister-Boltenstern, Sophie; Schuller, Reinhard; Mayer, Herwig
2017-10-01
Ultrasonic power is the main variable that forms the basis for many soil disaggregation experiments. Thus, a procedure for the rapid determination of this variable has been developed and is described in this article. Calorimetric experiments serve to measure specific heat capacity and ultrasonic power. Ultrasonic power is determined experimentally for deionised water, 30% ethanol and sodium polytungstate with a density of 1.6 g cm-3 and 1.8 g cm-3. All experiments are performed with a pre-selected ultrasonic probe vibration amplitude. Under these conditions, it was found that the emitted ultrasonic power was comparable in the four fluids. It is suggested, however, to perform calibration experiments prior to dispersion experiments, since the used fluid, as well as the employed ultrasonic equipment, may influence the power output.
NASA Astrophysics Data System (ADS)
Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.
2017-12-01
Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.
Impact of mechanical heterogeneity on joint density in a welded ignimbrite
NASA Astrophysics Data System (ADS)
Soden, A. M.; Lunn, R. J.; Shipton, Z. K.
2016-08-01
Joints are conduits for groundwater, hydrocarbons and hydrothermal fluids. Robust fluid flow models rely on accurate characterisation of joint networks, in particular joint density. It is generally assumed that the predominant factor controlling joint density in layered stratigraphy is the thickness of the mechanical layer where the joints occur. Mechanical heterogeneity within the layer is considered a lesser influence on joint formation. We analysed the frequency and distribution of joints within a single 12-m thick ignimbrite layer to identify the controls on joint geometry and distribution. The observed joint distribution is not related to the thickness of the ignimbrite layer. Rather, joint initiation, propagation and termination are controlled by the shape, spatial distribution and mechanical properties of fiamme, which are present within the ignimbrite. The observations and analysis presented here demonstrate that models of joint distribution, particularly in thicker layers, that do not fully account for mechanical heterogeneity are likely to underestimate joint density, the spatial variability of joint distribution and the complex joint geometries that result. Consequently, we recommend that characterisation of a layer's compositional and material properties improves predictions of subsurface joint density in rock layers that are mechanically heterogeneous.
Thermostatistical description of gas mixtures from space partitions
NASA Astrophysics Data System (ADS)
Rohrmann, R. D.; Zorec, J.
2006-10-01
The new mathematical framework based on the free energy of pure classical fluids presented by Rohrmann [Physica A 347, 221 (2005)] is extended to multicomponent systems to determine thermodynamic and structural properties of chemically complex fluids. Presently, the theory focuses on D -dimensional mixtures in the low-density limit (packing factor η<0.01 ). The formalism combines the free-energy minimization technique with space partitions that assign an available volume v to each particle. v is related to the closeness of the nearest neighbor and provides a useful tool to evaluate the perturbations experimented by particles in a fluid. The theory shows a close relationship between statistical geometry and statistical mechanics. New, unconventional thermodynamic variables and mathematical identities are derived as a result of the space division. Thermodynamic potentials μil , conjugate variable of the populations Nil of particles class i with the nearest neighbors of class l are defined and their relationships with the usual chemical potentials μi are established. Systems of hard spheres are treated as illustrative examples and their thermodynamics functions are derived analytically. The low-density expressions obtained agree nicely with those of scaled-particle theory and Percus-Yevick approximation. Several pair distribution functions are introduced and evaluated. Analytical expressions are also presented for hard spheres with attractive forces due to Kac-tails and square-well potentials. Finally, we derive general chemical equilibrium conditions.
Simple and Double Alfven Waves: Hamiltonian Aspects
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Hu, Q.; le Roux, J. A.; Dasgupta, B.
2011-12-01
We discuss the nature of simple and double Alfvén waves. Simple waves depend on a single phase variable \\varphi, but double waves depend on two independent phase variables \\varphi1 and \\varphi2. The phase variables depend on the space and time coordinates x and t. Simple and double Alfvén waves have the same integrals, namely, the entropy, density, magnetic pressure, and group velocity (the sum of the Alfvén and fluid velocities) are constant throughout the flow. We present examples of both simple and double Alfvén waves, and discuss Hamiltonian formulations of the waves.
NASA Astrophysics Data System (ADS)
Rollin, Bertrand; Denissen, Nicholas A.; Reisner, Jon M.; Andrews, Malcolm J.
2012-11-01
The tilted rig experiment is a derivative of the rocket rig experiment designed to investigate turbulent mixing induced by the Rayleigh-Taylor (RT) instability. A tank containing two fluids of different densities is accelerated downwards between two parallel guiding rods by rocket motors. The acceleration is such that the pressure and density gradients face opposite directions at the fluids interface, creating a Rayleigh-Taylor unstable configuration. The rig is tilted such that the tank is initially at an angle and the acceleration is not perpendicular to the fluids interface when the rockets fire. This results in a two dimensional Rayleigh-Taylor instability case where the fluids experience RT mixing and a bulk overturning motion. The tilted rig is therefore a valuable experiment to help calibrating two-dimensional mixing models. Large Eddy Simulations of the tilted rig experiments will be compared to available experimental results. A study of the behavior of turbulence variables relevant to turbulence modeling will be presented. LA-UR 12-23829. This work was performed for the U.S. Department of Energy by Los Alamos National Laboratory under Contract No.DEAC52- 06NA2-5396.
Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.
Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun
2014-08-07
The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.
NASA Technical Reports Server (NTRS)
Mccarty, R. D.
1980-01-01
The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.
NASA Technical Reports Server (NTRS)
Chen, I. M.; Anderson, R. E.
1971-01-01
A semiempirical design-oriented model has been developed for the prediction of the effects of thermal stratification on tank pressure and heater temperature response for the Apollo supercritical oxygen tank. The heat transfer formulation describes laminar free convection at low-g and takes into account the radiation and conduction processes occurring in the tank. The nonequilibrium thermodynamic behavior of the system due to localized heating of the stored fluid is represented by the characteristics of a discrete number of fluid regions and thermal nodes. Solutions to the time dependent variable fluid property problem are obtained through the use of a reference temperature procedure. A criterion which establishes the reference temperature as a function of the fluid density ratio is derived. The analytical results are compared with the flight data.
Variable flexure-based fluid filter
Brown, Steve B.; Colston, Jr., Billy W.; Marshall, Graham; Wolcott, Duane
2007-03-13
An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.
Propagation of exponential shock wave in an axisymmetric rotating non-ideal dusty gas
NASA Astrophysics Data System (ADS)
Nath, G.
2016-09-01
One-dimensional unsteady isothermal and adiabatic flow behind a strong exponential shock wave propagating in a rotational axisymmetric mixture of non-ideal gas and small solid particles, which has variable azimuthal and axial fluid velocities, is analyzed. The shock wave is driven out by a piston moving with time according to exponential law. The azimuthal and axial components of the fluid velocity in the ambient medium are assumed to be varying and obeying exponential laws. In the present work, small solid particles are considered as pseudo-fluid with the assumption that the equilibrium flow-conditions are maintained in the flow-field, and the viscous-stress and heat conduction of the mixture are negligible. Solutions are obtained in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector and compressibility. It is found that the assumption of zero temperature gradient brings a profound change in the density, axial component of vorticity vector and compressibility distributions as compared to that of the adiabatic case. To investigate the behavior of the flow variables and the influence on the shock wave propagation by the parameter of non-idealness of the gas overline{b} in the mixture as well as by the mass concentration of solid particles in the mixture Kp and by the ratio of the density of solid particles to the initial density of the gas G1 are worked out in detail. It is interesting to note that the shock strength increases with an increase in G1 ; whereas it decreases with an increase in overline{b} . Also, a comparison between the solutions in the cases of isothermal and adiabatic flows is made.
Critical parameters of hard-core Yukawa fluids within the structural theory
NASA Astrophysics Data System (ADS)
Bahaa Khedr, M.; Osman, S. M.
2012-10-01
A purely statistical mechanical approach is proposed to account for the liquid-vapor critical point based on the mean density approximation (MDA) of the direct correlation function. The application to hard-core Yukawa (HCY) fluids facilitates the use of the series mean spherical approximation (SMSA). The location of the critical parameters for HCY fluid with variable intermolecular range is accurately calculated. Good agreement is observed with computer simulation results and with the inverse temperature expansion (ITE) predictions. The influence of the potential range on the critical parameters is demonstrated and the universality of the critical compressibility ratio is discussed. The behavior of the isochoric and isobaric heat capacities along the equilibrium line and the near vicinity of the critical point is discussed in details.
Numerical Schemes for Dynamically Orthogonal Equations of Stochastic Fluid and Ocean Flows
2011-11-03
stages of the simulation (see §5.1). Also, because the pdf is discrete, we calculate the mo- ments using the biased estimator CYiYj ≈ 1q ∑ r Yr,iYr,j...independent random variables. For problems that require large p (e.g. non-Gaussian) and large s (e.g. large ocean or fluid simulations ), the number of...Sc = ν̂/K̂ is the Schmidt number which is the ratio of kinematic viscosity ν̂ to molecular diffusivity K̂ for the density field, ĝ′ = ĝ (ρ̂max−ρ̂min
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Z.; Department of Applied Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083; Lin, P.
In this paper, we investigate numerically a diffuse interface model for the Navier–Stokes equation with fluid–fluid interface when the fluids have different densities [48]. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a C{sup 0} finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy lawmore » (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with C{sup 0} finite element. A Newton method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme.« less
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2017-02-01
In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.
Extended q -Gaussian and q -exponential distributions from gamma random variables
NASA Astrophysics Data System (ADS)
Budini, Adrián A.
2015-05-01
The family of q -Gaussian and q -exponential probability densities fit the statistical behavior of diverse complex self-similar nonequilibrium systems. These distributions, independently of the underlying dynamics, can rigorously be obtained by maximizing Tsallis "nonextensive" entropy under appropriate constraints, as well as from superstatistical models. In this paper we provide an alternative and complementary scheme for deriving these objects. We show that q -Gaussian and q -exponential random variables can always be expressed as a function of two statistically independent gamma random variables with the same scale parameter. Their shape index determines the complexity q parameter. This result also allows us to define an extended family of asymmetric q -Gaussian and modified q -exponential densities, which reduce to the standard ones when the shape parameters are the same. Furthermore, we demonstrate that a simple change of variables always allows relating any of these distributions with a beta stochastic variable. The extended distributions are applied in the statistical description of different complex dynamics such as log-return signals in financial markets and motion of point defects in a fluid flow.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Burrows, R. H.; Ratkiewicz, R. E.
2011-02-01
Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ϕ, which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ϕ. This leads to an implicit equation for the phase function and a generalization of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure, and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigenequations require that the rate of change of the magnetic induction B with ϕ throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ϕ) or B(ϕ) are developed.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Zank, G. P.; Burrows, R.
2009-12-01
Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ǎrphi which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ǎrphi. This leads to an implicit equation for the phase function, and a generalisation of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigen-equations require that the rate of change of the magnetic induction B with ǎrphi throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ǎrphi) or B(ǎrphi) are developed.
Convection in an ideal gas at high Rayleigh numbers.
Tilgner, A
2011-08-01
Numerical simulations of convection in a layer filled with ideal gas are presented. The control parameters are chosen such that there is a significant variation of density of the gas in going from the bottom to the top of the layer. The relations between the Rayleigh, Peclet, and Nusselt numbers depend on the density stratification. It is proposed to use a data reduction which accounts for the variable density by introducing into the scaling laws an effective density. The relevant density is the geometric mean of the maximum and minimum densities in the layer. A good fit to the data is then obtained with power laws with the same exponent as for fluids in the Boussinesq limit. Two relations connect the top and bottom boundary layers: The kinetic energy densities computed from free fall velocities are equal at the top and bottom, and the products of free fall velocities and maximum horizontal velocities are equal for both boundaries.
Molecular mechanics and structure of the fluid-solid interface in simple fluids
NASA Astrophysics Data System (ADS)
Wang, Gerald J.; Hadjiconstantinou, Nicolas G.
2017-09-01
Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.
NASA Astrophysics Data System (ADS)
Singh, T.; Agrawal, Anil K.
1993-06-01
The Einstein field equations with perfect fluid source and variable Λ and G for Bianchi-type universes are studied under the assumption of a power-law time variation of the expansion factor, achieved via a suitable power-law assumption for the Hubble parameter suggested by M. S. Berman. All the models have a power-law variation of pressure and density and are singular at the epoch t=0. The variation of G( t) as 1 /t and Λ( t) as 1 /t 2 is consistent with these models.
The penalty immersed boundary method and its application to aerodynamics
NASA Astrophysics Data System (ADS)
Kim, Yongsam
The Immersed Boundary (IB) method has been widely applied to problems involving a moving elastic boundary that is immersed in fluid and interacting with it. But most applications of the IB method have involved a massless elastic boundary. Extending the method to cover the case of a massive boundary has required spreading the boundary mass out onto the fluid grid and then solving the Navier-Stokes equations with a variable mass density. The variable mass density makes Fourier transform methods inapplicable, and requires a multigrid solver. Here we propose a new and simple way to give mass to the elastic boundary. The key idea of the method is to introduce two representations of each boundary: one is a massive boundary which does not interact with the fluid, and the other is messless and plays the same role as the boundary of the IB method with the massless assumption. Although they are almost the same, we allow these two representations of the boundary to be different as long as the gap between them is small. This can be ensured by connecting them with a stiff spring with a zero rest length which generates force acting on both boundaries and pulling them together. We call this the 'Penalty IB method'. It does not spread mass to the fluid grid, retains the use of Fourier transform methodology, and is easy to implement in the context of an existing IB method code for the massless case. This thesis introduces the Penalty IB method and applies it to several problems in which the mass of the boundary is important. These problems are filaments in a flowing soap film, flows past a cylinder, windsocks, flags, and parachutes.
The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes
NASA Astrophysics Data System (ADS)
Barnes, A. P.; Lefloch, P. G.; Schmidt, B. G.; Stewart, J. M.
2004-11-01
We propose a new, augmented formulation of the coupled Euler Einstein equations for perfect fluids on plane-symmetric Gowdy spacetimes. The unknowns of the augmented system are the density and velocity of the fluid and the first- and second-order spacetime derivatives of the metric. We solve the Riemann problem for the augmented system, allowing propagating discontinuities in both the fluid variables and the first- and second-order derivatives of the geometry coefficients. Our main result, based on Glimm's random choice scheme, is the existence of solutions with bounded total variation of the Euler Einstein equations, up to the first time where a blow-up singularity (unbounded first-order derivatives of the geometry coefficients) occurs. We demonstrate the relevance of the augmented system for numerical relativity. We also consider general vacuum spacetimes and solve a Riemann problem, by relying on a theorem by Rendall on the characteristic value problem for the Einstein equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamgbade, Babatunde A; Wu, Yue; Baled, Hseen O
2013-08-01
Experimental high-temperature, high-pressure (HTHP) density data for bis(2-ethylhexyl) phthalate (DEHP) are reported in this study. DEHP is a popular choice as a reference fluid for viscosity calibrations in the HTHP region. However, reliable HTHP density values are needed for accurate viscosity calculations for certain viscometers (e.g. rolling ball). HTHP densities are determined at T = (373, 424, 476, 492, and 524) K and P to 270 MPa using a variable-volume, high-pressure view cell. The experimental density data are satisfactorily correlated by the modified Tait equation with a mean absolute percent deviation (δ) of 0.15. The experimental data are modeled withmore » the Peng–Robinson (PREoS), volume-translated PREoS (VT-PREoS), and perturbed chain statistical associating fluid theory (PC-SAFT EoS) models. The required parameters for the two PREoS and the PC-SAFT EoS models are determined using group contribution methods. The PC-SAFT EoS performs the best of the three models with a δ of 2.12. The PC-SAFT EoS is also fit to the experimental data to obtain a new set of pure component parameters that yield a δ of 0.20 for these HTHP conditions.« less
Forte, Esther; Llovell, Felix; Vega, Lourdes F; Trusler, J P Martin; Galindo, Amparo
2011-04-21
An accurate prediction of phase behavior at conditions far and close to criticality cannot be accomplished by mean-field based theories that do not incorporate long-range density fluctuations. A treatment based on renormalization-group (RG) theory as developed by White and co-workers has proven to be very successful in improving the predictions of the critical region with different equations of state. The basis of the method is an iterative procedure to account for contributions to the free energy of density fluctuations of increasing wavelengths. The RG method has been combined with a number of versions of the statistical associating fluid theory (SAFT), by implementing White's earliest ideas with the improvements of Prausnitz and co-workers. Typically, this treatment involves two adjustable parameters: a cutoff wavelength L for density fluctuations and an average gradient of the wavelet function Φ. In this work, the SAFT-VR (variable range) equation of state is extended with a similar crossover treatment which, however, follows closely the most recent improvements introduced by White. The interpretation of White's latter developments allows us to establish a straightforward method which enables Φ to be evaluated; only the cutoff wavelength L then needs to be adjusted. The approach used here begins with an initial free energy incorporating only contributions from short-wavelength fluctuations, which are treated locally. The contribution from long-wavelength fluctuations is incorporated through an iterative procedure based on attractive interactions which incorporate the structure of the fluid following the ideas of perturbation theories and using a mapping that allows integration of the radial distribution function. Good agreement close and far from the critical region is obtained using a unique fitted parameter L that can be easily related to the range of the potential. In this way the thermodynamic properties of a square-well (SW) fluid are given by the same number of independent intermolecular model parameters as in the classical equation. Far from the critical region the approach provides the correct limiting behavior reducing to the classical equation (SAFT-VR). In the critical region the β critical exponent is calculated and is found to take values close to the universal value. In SAFT-VR the free energy of an associating chain fluid is obtained following the thermodynamic perturbation theory of Wertheim from the knowledge of the free energy and radial distribution function of a reference monomer fluid. By determining L for SW fluids of varying well width a unique equation of state is obtained for chain and associating systems without further adjustment of critical parameters. We use computer simulation data of the phase behavior of chain and associating SW fluids to test the accuracy of the new equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Sal
2017-08-24
The code (aka computer program written as a Matlab script) uses a unique set of n independent equations to solve for n turbulence variables. The code requires the input of a characteristic dimension, a characteristic fluid velocity, the fluid dynamic viscosity, and the fluid density. Most importantly, the code estimates the size of three key turbulent eddies: Kolmogorov, Taylor, and integral. Based on the eddy sizes, dimples dimensions are prescribed such that the key eddies (principally Taylor, and sometimes Kolmogorov), can be generated by the dimple rim and flow unimpeded through the dimple’s concave cavity. It is hypothesized that turbulentmore » eddies are generated by the dimple rim at the dimple-surface interface. The newly-generated eddies in turn entrain the movement of surrounding regions of fluid, creating more mixing. The eddies also generate lift near the wall surrounding the dimple, as they accelerate and reduce pressure in the regions near and at the dimple cavity, thereby minimizing the fluid drag.« less
Transition from Selective Withdrawal to Light Layer Entrainment in an Oil-Water System
NASA Astrophysics Data System (ADS)
Hartenberger, Joel; O'Hern, Timothy; Webb, Stephen; James, Darryl
2010-11-01
Selective withdrawal refers to the selective removal of fluid of one density without entraining an adjacent fluid layer of a different density. Most prior literature has examined removal of the lower density fluid and the transition to entraining the higher density fluid. In the present experiments, a higher density liquid is removed through a tube that extends just below its interface with a lower density fluid. The critical depth for a given flow rate at which the liquid-liquid interface transitions to entrain the lighter fluid was measured. Experiments were performed for a range of different light layer silicone oils and heavy layer water or brine, covering a range of density and viscosity ratios. Applications include density-stratified reservoirs and brine removal from oil storage caverns. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Shang, Barry Z; Voulgarakis, Nikolaos K; Chu, Jhih-Wei
2012-07-28
This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.
NASA Astrophysics Data System (ADS)
Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin
2016-05-01
In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.
NASA Astrophysics Data System (ADS)
Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.
2018-02-01
We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.
Energy conversion system involving change in the density of an upwardly moving liquid
Petrick, Michael
1989-01-01
A system for converting thermal energy into electrical energy includes a fluid reservoir, a relatively high boiling point fluid such as lead or a lead alloy within the reservoir, a downcomer defining a vertical fluid flow path communicating at its upper end with the reservoir and an upcomer defining a further vertical fluid flow path communicating at its upper end with the reservoir. A variable area nozzle of rectangular section may terminate the upper end of the upcomer and the lower end of the of the downcomer communicates with the lower end of the upcomer. A mixing chamber is located at the lower end portion of the upcomer and receives a second relatively low boiling point fluid such as air, the mixing chamber serving to introduce the low boiling point fluid into the upcomer so as to produce bubbles causing the resultant two-phase fluid to move at high velocity up the upcomer. Means are provided for introducing heat into the system preferably between the lower end of the downcomer and the lower end of the upcomer. Power generating means are associated with the one of the vertical fluid flow paths one such power generating means being a magneto hydrodynamic electrical generator.
Malone-brayton cycle engine/heat pump
NASA Astrophysics Data System (ADS)
Gilmour, Thomas A.
1994-07-01
A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.
On the Origins of the Intercorrelations Between Solar Wind Variables
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.
2018-01-01
It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.
Structure and dynamics of mixed-species flocks in a Hawaiian rain forest
Hart, P.J.; Freed, L.A.
2003-01-01
Mixed-species flocks of native and introduced birds were studied for four years in an upper elevation Hawaiian rain forest. Those flocks were characterized by strong seasonality, large size, low species richness, high intraspecific abundance, a lack of migrants, and a general lack of territoriality or any sort of dominance hierarchy. There was high variability among years in patterns of occurrence at the species level, and high variability within years at the individual level. These flocks are loosely structured social groupings with apparently open membership. The fluid, unstable movement patterns, high degree of variability in size and composition, and lack of positive interspecific associations are not consistent with the “foraging enhancement” hypothesis for flocking. Two resident, endangered insectivores, the Akepa (Loxops coccineus) and Hawaii Creeper (Oreomystis mana) served as “nuclear” species. Flock composition was compared between two study sites that differed significantly in density of these two nuclear species. Flock size was similar at the two sites, primarily because the nuclear species were over-represented relative to their density. This observation suggests that birds are attempting to achieve a more optimal flock size at the lower density site.
Welch, William R W; Piri, Mohammad
2016-01-01
Molecular dynamics (MD) simulations were performed on a hydrocarbon mixture representing a typical gas condensate composed mostly of methane and other small molecules with small fractions of heavier hydrocarbons, representative of mixtures found in tight shale reservoirs. The fluid was examined both in bulk and confined to graphitic nano-scale slits and pores. Numerous widths and diameters of slits and pores respectively were examined under variable pressures at 300 K in order to find conditions in which the fluid at the center of the apertures would not be affected by capillary condensation due to the oil-wet walls. For the bulk fluid, retrograde phase behavior was verified by liquid volumes obtained from Voronoi tessellations. In cases of both one and two-dimensional confinement, for the smallest apertures, heavy molecules aggregated inside the pore space and compression of the gas outside the solid structure lead to decreases in density of the confined fluid. Normal density/pressure relationships were observed for slits having gaps of above 3 nm and pores having diameters above 6 nm. At 70 bar, the minimum gap width at which the fluid could pass through the center of slits without condensation effects was predicted to be 6 nm and the corresponding diameter in pores was predicted to be 8 nm. The models suggest that in nanoscale networks involving pores smaller than these limiting dimensions, capillary condensation should significantly impede transmission of natural gases with similar composition.
NASA Astrophysics Data System (ADS)
Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Johansson, A. V.
2013-10-01
The explicit algebraic Reynolds stress model of Wallin and Johansson [J. Fluid Mech. 403, 89 (2000)] is extended to compressible and variable-density turbulent flows. This is achieved by correctly taking into account the influence of the mean dilatation on the rapid pressure-strain correlation. The resulting model is formally identical to the original model in the limit of constant density. For two-dimensional mean flows the model is analyzed and the physical root of the resulting quartic equation is identified. Using a fixed-point analysis of homogeneously sheared and strained compressible flows, we show that the new model is realizable, unlike the previous model. Application of the model together with a K - ω model to quasi one-dimensional plane nozzle flow, transcending from subsonic to supersonic regime, also demonstrates realizability. Negative "dilatational" production of turbulence kinetic energy competes with positive "incompressible" production, eventually making the total production negative during the spatial evolution of the nozzle flow. Finally, an approach to include the baroclinic effect into the dissipation equation is proposed and an algebraic model for density-velocity correlations is outlined to estimate the corrections associated with density fluctuations. All in all, the new model can become a significant tool for CFD (computational fluid dynamics) of compressible flows.
Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
2001-01-01
The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the critical point, so getting heat out of the compressed bubble is observably slow. This gives the appearance of a backward heat flow, or heat flow from a cold surface to a warm fluid.
Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruszkiewicz, Miroslaw S.; Rother, Gernot; Wesolowski, David J.
2012-02-27
The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 °C and 97 °C) and supercritical carbon dioxide (between 32 C and 50°C) saturating hydrophobic silica aerogel (0.2 g/cm 3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercriticalmore » CO 2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.« less
Instability analysis of expansion-free sphere in f(𝒢) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Ikram, Ayesha
The aim of this paper is to study the dynamical instability of expansion-free spherically symmetric anisotropic fluid in the framework of f(𝒢) gravity. We apply perturbation scheme of the first-order to the metric functions as well as matter variables and construct modified field equations for both static and perturbed configurations using power-law f(𝒢) model. To discuss the instability dynamics, we use the contracted Bianchi identities to formulate the dynamical equations in both Newtonian and post-Newtonian regimes. It is found that the range of instability is independent of adiabatic index for expansion-free fluid but depends on anisotropic pressures, energy density and Gauss-Bonnet (GB) terms.
NASA Astrophysics Data System (ADS)
Schaen, A. T.; Ding, K.; Seyfried, W. E.
2013-12-01
Developments in electrochemistry and material science have facilitated the construction of ceramic (YSZ) based chemical sensor systems that can be used to measure and monitor pH and redox in aqueous fluids at elevated temperatures and pressures. In recent years, these sensor systems have been deployed to acquire real-time and time series in-situ data for high-temperature hydrothermal vent fluids at the Main Endeavour Field (Juan de Fuca Ridge), 9oN (East Pacific Rise), and at the ultramafic-hosted Rainbow field (36oN, Mid-Atlantic Ridge). Here we review in-situ pH data measured at these sites and apply these data to estimate the pH of fluids ascending to the seafloor from hydrothermal alteration zones deeper in the crust. In general, in-situ pH measured at virtually all vent sites is well in excess of that measured shipboard owing to the effects of temperature on the distribution of aqueous species and the solubility of metal sulfides, especially Cu and Zn, originally dissolved in the vent fluids. In situ pH measurements determined at MEF (Sully vent) and EPR 9oN (P-vent) in 2005 and 2008 were 4.4 ×0.02 and 5.05×0.05, respectively. The temperature and pressure (seafloor) of the vent fluids at each of the respective sites were 356oC and 220 bar, and 380oC and 250 bar. Plotting these data with respect to fluid density reveals that the in-situ pH of each vent fluid is approximately 1.5 pH units below neutrality. The density-pH (in-situ) correlation, however, is important because it provides a means from which the vent fluids were derived. Using dissolved silica and chloride from fluid samples at the MEF (Sully) suggest T/P conditions of approximately 435oC, 380 bar, based on quartz-fluid and NaCl-H2O systems. At the fluid density calculated for these conditions, pH (in-situ) is predicted to be ~6.2. Attempts are presently underway to assess the effect of the calculated pH on metal sulfide and silicate (e.g., plagioclase, chlorite) solubility in comparison with constraints imposed by the full range of chemical components in the vent fluids sampled and analyzed in association with pH (in-situ) measurements. Since pH is a master variable in all geochemical systems, the novel approach proposed here may provide new insight on hydrothermal alteration processes at conditions difficult or impossible to assess by more traditional means, ultimately influencing hydrothermal fluid fluxes.
Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.
NASA Technical Reports Server (NTRS)
Putre, H. A.
1971-01-01
Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.
Water Hammer Simulations of Monomethylhydrazine Propellant
NASA Technical Reports Server (NTRS)
Burkhardt, Zachary; Ramachandran, N.; Majumdar, A.
2017-01-01
Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK do not provide the thermodynamic properties of Monomethylhydrazine(MMH). This work illustrates the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight.
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries
Dong, S.; Wang, X.
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw
2014-01-01
Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less
NASA Astrophysics Data System (ADS)
Goldfarb, E. J.; Ikeda, K.; Tisato, N.
2017-12-01
Seismic and ultrasonic velocities of rocks are function of several variables including fluid saturation and type. Understanding the effect of each variable on elastic waves can be valuable when using seismic methods for subsurface modeling. Fluid type and saturation are of specific interest to volcanology, water, and hydrocarbon exploration. Laboratory testing is often employed to understand the effects of fluids on elastic waves. However, laboratory testing is expensive and time consuming. It normally requires cutting rare samples into regular shapes. Fluid injection can also destroy specimens as removing the fluid after testing can prove difficult. Another option is theoretical modeling, which can be used to predict the effect of fluids on elastic properties, but it is often inaccurate. Alternatively, digital rock physics (DRP) can be used to investigate the effect of fluid substitution. DRP has the benefit of being non invasive, as it does not require regular sample shapes or fluid injection. Here, we compare the three methods for dry and saturated Berea sandstone to test the reliability of DRP. First, ultrasonic velocities were obtained from laboratory testing. Second, for comparison, we used a purely theoretical approach - i.e., Hashin-Shtrikman and Biot theory - to estimate the wave speeds at dry and wet conditions. Third, we used DRP. The dry sample was scanned with micro Computed Tomography (µCT), and a three dimensional (3D) array was recorded. We employed a segmentation-less method to convert each 3D array value to density, porosity, elastic moduli, and wave speeds. Wave propagation was simulated numerically at similar frequency as the laboratory. To simulate fluid substitution, we numerically substituted air values for water and repeated the simulation. The results from DRP yielded similar velocities to the laboratory, and accurately predicted the velocity change from fluid substitution. Theoretical modeling could not accurately predict velocity, and under-predicted the velocity change from fluid substitution. The mathematical approach proved to be a poor comparison for the laboratory measurement. DRP proved to be effective, and could be used in future with drill cuttings, perhaps to limit the use of expensive cores. DRP could also limit the requirement for physically testing fluid substitution.
NASA Astrophysics Data System (ADS)
Tailleux, R.
2016-02-01
A new materially-conserved quasi-neutral density variable has been constructed, called thermodynamic neutral density. It is composed of two parts. The first part is the Lorenz reference density entering Lorenz theory of available potential energy, which can be interpreted as the potential density of a fluid parcel referenced to the pressure it would have in Lorenz reference state of minimum potential energy. The second part is an empirical correction for pressure, which can be suitably chosen to make thermodynamic neutral density a very good approximation of Jackett and McDougall (1997) neutral density over most of the ocean water masses for which the latter is defined. Thermodynamic neutral density possesses many advantages over the empirically constructed Jackett and McDougall (1997) neutral density: 1) it is physically-based; 2) it is easily computed using fast and efficient methods for arbitrary states of the ocean, not just the present state, using the recently developed methodology by Saenz et al. (2015); 3) it is exactly neutral in a state of rest, and approximately neutral in the present ocean; 4) it is exactly materially conserved (it is a function of salinity and potential temperature only) and not plagued by unphysical nonmaterial effects, so can be used unambiguously to define and diagnose diapycnal and isopycnal mixing; 5) it is based on available potential energy, and therefore is the most suitable variable to discuss the energy cost of adiabatic stirring; 6) it is the variable that should be used to define the isopycnal and diapycnal directions in rotated diffusion tensor, as it can be shown that using the directions defined by the local neutral tangent plane as currently done causes spurious destruction of water masses. References: J. A. Saenz, R. Tailleux, E.D. Butler, G.O. Hughes, and K.I.C. Oliver, 2015: Estimating Lorenz's reference state in an ocean with a nonlinear equation of state for seawater. J. Phys. Oceanogr., 45, 1242—1257
A study of perturbations in scalar-tensor theory using 1 + 3 covariant approach
NASA Astrophysics Data System (ADS)
Ntahompagaze, Joseph; Abebe, Amare; Mbonye, Manasse
This work discusses scalar-tensor theories of gravity, with a focus on the Brans-Dicke sub-class, and one that also takes note of the latter’s equivalence with f(R) gravitation theories. A 1 + 3 covariant formalism is used in this case to discuss covariant perturbations on a background Friedmann-Laimaître-Robertson-Walker (FLRW) spacetime. Linear perturbation equations are developed based on gauge-invariant gradient variables. Both scalar and harmonic decompositions are applied to obtain second-order equations. These equations can then be used for further analysis of the behavior of the perturbation quantities in such a scalar-tensor theory of gravitation. Energy density perturbations are studied for two systems, namely for a scalar fluid-radiation system and for a scalar fluid-dust system, for Rn models. For the matter-dominated era, it is shown that the dust energy density perturbations grow exponentially, a result which agrees with those already existing in the literatures. In the radiation-dominated era, it is found that the behavior of the radiation energy-density perturbations is oscillatory, with growing amplitudes for n > 1, and with decaying amplitudes for 0 < n < 1. This is a new result.
NASA Technical Reports Server (NTRS)
Burkhardt, Z.; Ramachandran, N.; Majumdar, A.
2017-01-01
Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure-density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK does not provide the thermodynamic properties of Monomethylhydrazine (MMH). This paper will illustrate the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight. Rigorous code validation of this approach will be done and reported at a future date.
Generation of large-scale density fluctuations by buoyancy
NASA Technical Reports Server (NTRS)
Chasnov, J. R.; Rogallo, R. S.
1990-01-01
The generation of fluid motion from a state of rest by buoyancy forces acting on a homogeneous isotropic small-scale density field is considered. Nonlinear interactions between the generated fluid motion and the initial isotropic small-scale density field are found to create an anisotropic large-scale density field with spectrum proportional to kappa(exp 4). This large-scale density field is observed to result in an increasing Reynolds number of the fluid turbulence in its final period of decay.
Regional flow in the Baltic Shield during Holocene coastal regression
Voss, Clifford I.; Andersson, Johan
1993-01-01
The occurrence of saline waters in the Baltic Shield in Sweden is consistent with ongoing but incomplete Holocene flushing and depends on the geometry and connectivity of conductive structures at both regional and local scales, and on the surface topography. Numerical simulation of regional variable-density fluid flow during Holocene land-rise and coastal regression shows that the existence of any old saline water, whether derived from submarine recharge in regions below Sweden's highest postglacial coastline or geochemical processes in the crystalline rock, is an indication either of slow fluid movements through the bedrock over long times, or of long travel distances through fracture systems before arriving at measurement points. During the land-rise period, regional flow is not affected by the variable density of fluids in the upper few kilometers of the shield, and the topography of the water table is the only driving force. The spatial distribution of meteoric flushing water and pre-Holocene waters may be complex, with the possibility of relatively fresh water in fracture zones below salty units even at depths of a few kilometers. The domination of the topographic driving force implies that deep saline water is not necessarily stagnant, and significant flow may be expected to occur in well-connected horizons even at depth. Local topography variation and fracture zone location combine to create a complex flow field in which local topographic driving forces extend to considerable depth in some areas, whereas regional topographic forces predominate in others. Thus, a pattern may be difficult to discern in measurements of the regional salinity distribution, although it is clear that the coastal region is the major zone of discharge for deeper pre-Holocene fluids. During the land-rise period, the regional flow field equilibrates with changing climatic conditions and coastal positions, while the distribution of flushing water and older water lags and will perpetually change between successive glaciations. These characteristics have direct implications for the safety of nuclear water repositories located at depth in Baltic Shield rocks.
A Geophysical Flow Experiment in a Compressible Critical Fluid
NASA Technical Reports Server (NTRS)
Hegseth, John; Garcia, Laudelino
1996-01-01
The first objective of this experiment is to build an experimental system in which, in analogy to a geophysical system, a compressible fluid in a spherical annulus becomes radially stratified in density through an A.C. electric field. When this density gradient is demonstrated, the system will be augmented so that the fluid can be driven by heating and rotation and tested in preparation for a microgravity experiment. This apparatus consists of a spherical capacitor filled with critical fluid in a temperature controlled environment. To make the fluid critical, the apparatus will be operated near the critical pressure, critical density, and critical temperature of the fluid. This will result in a highly compressible fluid because of the properties of the fluid near its critical point. A high voltage A.C. source applied across the capacitor will create a spherically symmetric central force because of the dielectric properties of the fluid in an electric field gradient. This central force will induce a spherically symmetric density gradient that is analogous to a geophysical fluid system. To generate such a density gradient the system must be small (approx. 1 inch diameter). This small cell will also be capable of driving the critical fluid by heating and rotation. Since a spherically symmetric density gradient can only be made in microgravity, another small cell, of the same geometry, will be built that uses incompressible fluid. The driving of the fluid by rotation and heating in these small cells will be developed. The resulting instabilities from the driving in these two systems will then be studied. The second objective is to study the pattern forming instabilities (bifurcations) resulting from the well controlled experimental conditions in the critical fluid cell. This experiment will come close to producing conditions that are geophysically similar and will be studied as the driving parameters are changed.
Ortiz, Marcos German; Boucher, Timothy J.
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
NASA Astrophysics Data System (ADS)
Krishna, Hemanth; Kumar, Hemantha; Gangadharan, Kalluvalappil
2017-08-01
A magneto rheological (MR) fluid damper offers cost effective solution for semiactive vibration control in an automobile suspension. The performance of MR damper is significantly depends on the electromagnetic circuit incorporated into it. The force developed by MR fluid damper is highly influenced by the magnetic flux density induced in the fluid flow gap. In the present work, optimization of electromagnetic circuit of an MR damper is discussed in order to maximize the magnetic flux density. The optimization procedure was proposed by genetic algorithm and design of experiments techniques. The result shows that the fluid flow gap size less than 1.12 mm cause significant increase of magnetic flux density.
Reequilibration of fluid inclusions in low-temperature calcium-carbonate cement
NASA Astrophysics Data System (ADS)
Goldstein, Robert H.
1986-09-01
Calcium-carbonate cements precipitated in low-temperature, near-surface, vadose environments contain fluid inclusions of variable vapor-to-liquid ratios that yield variable homogenization temperatures. Cements precipitated in low-temperature, phreatic environments contain one-phase, all-liquid fluid inclusions. Neomorphism of unstable calcium-carbonate phases may cause reequilibration of fluid inclusions. Stable calcium-carbonate cements of low-temperature origin, which have been deeply buried, contain fluid inclusions of variable homogenization temperature and variable salt composition. Most inclusion fluids are not representative of the fluids present during cement growth and are more indicative of burial pore fluids. Therefore, low-temperature fluid inclusions probably reequilibrate with burial fluids during progressive burial. Reequilibration is likely caused by high internal pressures in inclusions which result in hydrofracturing. The resulting fluid-inclusion population could contain a nearly complete record of burial fluids in which a particular rock has been bathed. *Present address: Department of Geology, University of Kansas, Lawrence, Kansas 66045
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
NASA Astrophysics Data System (ADS)
Henry de Frahan, Marc T.; Varadan, Sreenivas; Johnsen, Eric
2015-01-01
Although the Discontinuous Galerkin (DG) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall [1], we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (GPU) to achieve high speedup.
Ortiz, M.G.; Boucher, T.J.
1998-10-27
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Statistical Moments in Variable Density Incompressible Mixing Flows
2015-08-28
front tracking method: Verification and application to simulation of the primary breakup of a liquid jet . SIAM J. Sci. Comput., 33:1505–1524, 2011. [15... elliptic problem. In case of failure, Generalized Minimal Residual (GMRES) method [78] is used instead. Then update face velocities as follows: u n+1...of the ACM Solid and Physical Modeling Symposium, pages 159–170, 2008. [51] D. D. Joseph. Fluid dynamics of two miscible liquids with diffusion and
Study of density distribution in a near-critical simple fluid (19-IML-1)
NASA Technical Reports Server (NTRS)
Michels, Teun
1992-01-01
This experiment uses visual observation, interferometry, and light scattering techniques to observe and analyze the density distribution in SF6 above and below the critical temperature. Below the critical temperature, the fluid system is split up into two coexisting phases, liquid and vapor. The spatial separation of these phases on earth, liquid below and vapor above, is not an intrinsic property of the fluid system; it is merely an effect of the action of the gravity field. At a fixed temperature, the density of each of the coexisting phases is in principle fixed. However, near T sub c where the fluid is strongly compressible, gravity induced hydrostatic forces will result in a gradual decrease in density with increasing height in the sample container. This hydrostatic density profile is even more pronounced in the one phase fluid at temperatures slightly above T sub c. The experiment is set up to study the intrinsic density distributions and equilibration rates of a critical sample in a small container. Interferometry will be used to determine local density and thickness of surface and interface layers. The light scattering data will reveal the size of the density fluctuations on a microscopic scale.
Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter
NASA Technical Reports Server (NTRS)
Korman, Valentin
2007-01-01
Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.
A density functional theory for colloids with two multiple bonding associating sites.
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2016-06-22
Wertheim's multi-density formalism is extended for patchy colloidal fluids with two multiple bonding patches. The theory is developed as a density functional theory to predict the properties of an associating inhomogeneous fluid. The equation of state developed for this fluid depends on the size of the patch, and includes formation of cyclic, branched and linear clusters of associated species. The theory predicts the density profile and the fractions of colloids in different bonding states versus the distance from one wall as a function of bulk density and temperature. The predictions from our theory are compared with previous results for a confined fluid with four single bonding association sites. Also, comparison between the present theory and Monte Carlo simulation indicates a good agreement.
NASA Technical Reports Server (NTRS)
Knapp, Charles F.; Evans, Joyce M.
1996-01-01
A major focus of our program has been to develop a sensitive noninvasive procedure to quantify early weightlessness-induced changes in cardiovascular function or potential dysfunction. Forty studies of healthy young volunteers (10 men and 10 women, each studied twice) were conducted to determine changes in the sympatho-vagal balance of autonomic control of cardiovascular regulation during graded headward and footward blood volume shifts. Changes in sympatho-vagal balance were classified by changes in the mean levels and spectral content of cardiovascular variables and verified by changes in circulating levels of catecholamines and pancreatic polypeptide. Possible shifts in intra/extravascular fluid were assessed from changes in hematocrit and plasma mass density while changes in the stimulus to regulate plasma volume were determined from Plasma Renin Activity (PRA). Autonomic blockade was used to unmask the relative contribution of sympathetic and parasympathetic efferent influences in response to 10 min each of 0, 20 and 40 mmHg Lower Body Negative Pressure (LBNP) and 15 and 30 mmHg Positive Pressure (LBPP). The combination of muscarinic blockade with graded LBNP and LBPP was used to evoke graded increases and decreases in sympathetic activity without parasympathetic contributions. The combination of beta blockade with graded LBNP and LBPP was used to produce graded increases and decreases in parasympathetic activity without beta sympathetic contributions. Finally, a combination of both beta and muscarinic blockades with LBNP and LBPP was used to determine the contribution from other, primarily alpha adrenergic, sources. Mean values, spectral analyses and time frequency analysis of R-R interval (HR), Arterial Pressure (AP), peripheral blood flow (RF), Stroke Volume (SV) and peripheral resistance (TPR) were performed for all phases of the study. Skin blood Flow (SF) was also measured in other studies and similarly analyzed. Spectra were examined for changes in three frequency regions (low 0.006 - 0.005 Hz (LF), mid 0.05 - 0.15 Hz (W), and high 0.15 - 0.45 Hz (EF)). The primary objective of the study was to indicate which changes in the mean values and/or spectra of cardiovascular variables consistently correlated with changes in sympatho-vagal balance in response to headward and footward fluid shifts. A secondaey objective was to quantify the vascular and extravascular fluid shifts evoked by LBNP and LBPP. The principal hypothesis being tested was that headward fluid shifts would evoke an increase in parasympathetic activity and footward fluid shifts would evoke an increase in sympathetic activity both of which would be detected by spectral analysis and verified by circulating hormones. Hematocrit (HCT), plasma mass density and plasma renin activity increased with muscarinic blockade and with LBNP, a response indicative of a plasma shift to extravascular spaces. Beta blockade alone or after muscarinic blockade had no effect on HCT or plasma mass density. With respect to intravascular fluid volume distribution, LBNP and LBPP produced sufficient upper body vascular fluid shifts to evoke appropriate autonomic regulatory responses.
NASA Astrophysics Data System (ADS)
Aziznia, Amin; Oloman, Colin W.; Gyenge, Előd L.
2014-11-01
The Swiss-roll single-cell mixed reactant (SR-MRFC) borohydride - oxygen fuel cell equipped with Pt/carbon cloth 3D anode and either MnO2 or Ag gas-diffusion cathodes is investigated by a combination of experimental studies and preliminary mathematical modeling of the polarization curve. We investigate the effects of four variables: cathode side metallic mesh fluid distributor, separator type (Nafion 112® vs. Viledon®), cathode catalyst (MnO2 vs. Ag), and the hydrophilic pore volume fraction of the gas-diffusion cathode. Using a two-phase feed of alkaline borohydride solution (1 M NaBH4 - 2 M NaOH) and O2 gas in an SR-MRFC equipped with Pt/C 3D anode, MnO2 gas diffusion cathode, Viledon® porous diaphragm, expanded mesh cathode-side fluid distributor, the maximum superficial power density is 2230 W m-2 at 323 K and 105 kPa(abs). The latter superficial power density is almost 3.5 times higher than our previously reported superficial power density for the same catalyst combinations. Furthermore, with a Pt anode and Ag cathode catalyst combination, a superficial power density of 2500 W m-2 is achieved with superior performance durability compared to the MnO2 cathode. The fuel cell results are substantiated by impedance spectroscopy analysis and preliminary mathematical model predictions based on mixed potential theory.
Hamel, William R.
1984-01-01
This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.
Effects of viscous pressure on warm inflationary generalized cosmic Chaplygin gas model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharif, M.; Saleem, Rabia, E-mail: msharif.math@pu.edu.pk, E-mail: rabiasaleem1988@yahoo.com
This paper is devoted to study the effects of bulk viscous pressure on an inflationary generalized cosmic Chaplygin gas model using FRW background. The matter contents of the universe are assumed to be inflaton and imperfect fluid. We evaluate inflaton fields, potentials and entropy density for variable as well as constant dissipation and bulk viscous coefficients in weak as well as high dissipative regimes during intermediate era. In order to discuss inflationary perturbations, we evaluate entropy density, scalar (tensor) power spectra, their corresponding spectral indices, tensor-scalar ratio and running of spectral index in terms of inflaton which are constrained usingmore » recent Planck, WMAP7 and Bicep2 probes.« less
An Implementation of Hydrostatic Boundary Conditions for Variable Density Lattice Boltzmann Methods
NASA Astrophysics Data System (ADS)
Bardsley, K. J.; Thorne, D. T.; Lee, J. S.; Sukop, M. C.
2006-12-01
Lattice Boltzmann Methods (LBMs) have been under development for the last two decades and have become another capable numerical method for simulating fluid flow. Recent advances in lattice Boltzmann applications involve simulation of density-dependent fluid flow in closed (Dixit and Babu, 2006; D'Orazio et al., 2004) or periodic (Guo and Zhao, 2005) domains. However, standard pressure boundary conditions (BCs) are incompatible with concentration-dependent density flow simulations that use a body force for gravity. An implementation of hydrostatic BCs for use under these conditions is proposed here. The basis of this new implementation is an additional term in the pressure BC. It is derived to account for the incorporation of gravity as a body force and the effect of varying concentration in the fluid. The hydrostatic BC expands the potential of density-dependent LBM to simulate domains with boundaries other than the closed or periodic boundaries that have appeared in previous literature on LBM simulations. With this new implementation, LBM will be able to simulate complex concentration-dependent density flows, such as salt water intrusion in the classic Henry and Henry-Hilleke problems. This is demonstrated using various examples, beginning with a closed box system, and ending with a system containing two solid walls, one velocity boundary and one pressure boundary, as in the Henry problem. References Dixit, H. N., V. Babu, (2006), Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, Int. J. Heat Mass Transfer, 49, 727-739. D'Orazio, A., M. Corcione, G.P. Celata, (2004), Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary conditions, Int. J. Thermal Sci., 43, 575-586. Gou, Z., T.S. Zhao, (2005), Lattice Boltzmann simulation of natural convection with temperature-dependant viscosity in a porous cavity, Numerical Heat Transfer, Part B, 47, 157-177.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, Hayato; Mitsuda, Eiji; Nambu, Yasusada
In considering the gravitational collapse of matter, it is an important problem to clarify what kind of conditions leads to the formation of naked singularity. For this purpose, we apply the 1+3 orthonormal frame formalism introduced by Uggla et al. to the spherically symmetric gravitational collapse of a perfect fluid. This formalism allows us to construct an autonomous system of evolution and constraint equations for scale-invariant dynamical variables normalized by the volume expansion rate of the timelike orthonormal frame vector. We investigate the asymptotic evolution of such dynamical variables towards the formation of a central singularity and present a conjecturemore » that the steep spatial gradient for the normalized density function is a characteristic of the naked singularity formation.« less
NASA Astrophysics Data System (ADS)
van Westen, Thijs; Oyarzún, Bernardo; Vlugt, Thijs J. H.; Gross, Joachim
2015-06-01
We develop an equation of state (EoS) for describing isotropic-nematic (IN) phase equilibria of Lennard-Jones (LJ) chain fluids. The EoS is developed by applying a second order Barker-Henderson perturbation theory to a reference fluid of hard chain molecules. The chain molecules consist of tangentially bonded spherical segments and are allowed to be fully flexible, partially flexible (rod-coil), or rigid linear. The hard-chain reference contribution to the EoS is obtained from a Vega-Lago rescaled Onsager theory. For the description of the (attractive) dispersion interactions between molecules, we adopt a segment-segment approach. We show that the perturbation contribution for describing these interactions can be divided into an "isotropic" part, which depends only implicitly on orientational ordering of molecules (through density), and an "anisotropic" part, for which an explicit dependence on orientational ordering is included (through an expansion in the nematic order parameter). The perturbation theory is used to study the effect of chain length, molecular flexibility, and attractive interactions on IN phase equilibria of pure LJ chain fluids. Theoretical results for the IN phase equilibrium of rigid linear LJ 10-mers are compared to results obtained from Monte Carlo simulations in the isobaric-isothermal (NPT) ensemble, and an expanded formulation of the Gibbs-ensemble. Our results show that the anisotropic contribution to the dispersion attractions is irrelevant for LJ chain fluids. Using the isotropic (density-dependent) contribution only (i.e., using a zeroth order expansion of the attractive Helmholtz energy contribution in the nematic order parameter), excellent agreement between theory and simulations is observed. These results suggest that an EoS contribution for describing the attractive part of the dispersion interactions in real LCs can be obtained from conventional theoretical approaches designed for isotropic fluids, such as a Perturbed-Chain Statistical Associating Fluid Theory approach.
Drieberg, Susan L.; Hagemann, Steffen G.; Huston, David L.; Landis, Gary; Ryan, Chris G.; Van Achterbergh, Esmé; Vennemann, Torsten
2013-01-01
The ~3240 Ma Panorama volcanic-hosted massive sulfide (VHMS) district is unusual for its high degree of exposure and low degree of postdepositional modification. In addition to typical seafloor VHMS deposits, this district contains greisen- and vein-hosted Mo-Cu-Zn-Sn mineral occurrences that are contemporaneous with VHMS orebodies and are hosted by the Strelley granite complex, which also drove VHMS circulation. Hence the Panorama district is a natural laboratory to investigate the role of magmatic-hydrothermal fluids in VHMS hydrothermal systems. Regional and proximal high-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by chlorite-quartz ± albite assemblages, with lesser low-temperature sericite-quartz ± K-feldspar assemblages. These assemblages are typical of VHMS hydrothermal systems. In contrast, the alteration assemblages associated with granite-hosted greisens and veins include quartz-topaz-muscovite-fluorite and quartz-muscovite (sericite)-chlorite-ankerite. These vein systems generally do not extend into the overlying volcanic pile. Fluid inclusion and stable isotope studies suggest that the greisens were produced by high-temperature (~590°C), high-salinity (38–56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high δ18O (9.3 ± 0.6‰). These fluids are compatible with the measured characteristics of magmatic fluids evolved from the Strelley granite complex. In contrast, fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90°–270°C), lower salinity (5.0–11.2 wt % NaCl equiv), with lower densities (0.88–1.01 g/cm3) and lower δ18O (−0.8 ± 2.6‰). These fluids are compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the granite complex near the contact with the volcanic pile, were intermediate in temperature and isotopic composition between the greisen and volcanic pile fluids (T = 240°–315°C; δ18O = 4.3 ± 1.5‰) and are interpreted to indicate mixing between the two end-member fluids. Evidence of mixing between evolved seawater and magmatic-hydrothermal fluid within the granite complex, together with the lack of evidence for a magmatic component in fluids from the volcanic pile, suggest partitioning of magmatic-hydrothermal from evolved seawater hydrothermal systems in the Panorama VHMS system. This separation is interpreted to result from either the swamping of a relatively small magmatic-hydro-thermal system by evolved seawater or density contrasts precluding movement of magmatic-hydrothermal fluids into the volcanic pile. Variability in the salinity of fluids in the volcanic pile, combined with evidence for mixing of low- and high-salinity fluids in the massive sulfide lens, is interpreted to indicate that phase separation occurred within the Panorama hydrothermal system. Although we consider this phase separation to have most likely occurred at depth within the system, as has been documented in modern VHMS systems, the data do not allow the location of the inferred phase separation to be determined.
Improved gyro-flotation /damping/ fluids
NASA Technical Reports Server (NTRS)
Jacobs, S. S.
1969-01-01
Synthesis of a metal-stabilized halophosphazene compound with a density of 3 gm/cc at 137 degrees F serves as an improved stabilizer fluid for floated gyros. Gyro sensitivity can be increased with a fluid of higher density which could support a heavier float.
Aerated drilling cutting transport analysis in geothermal well
NASA Astrophysics Data System (ADS)
Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar
2017-12-01
Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.
Self-propulsion of a planar electric or magnetic microbot immersed in a polar viscous fluid
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2011-05-01
A planar sheet immersed in an electrically polar liquid like water can propel itself by means of a plane wave charge density propagating in the sheet. The corresponding running electric wave polarizes the fluid and causes an electrical torque density to act on the fluid. The sheet is convected by the fluid motion resulting from the conversion of rotational particle motion, generated by the torque density, into translational fluid motion by the mechanism of friction and spin diffusion. Similarly, a planar sheet immersed in a magnetic ferrofluid can propel itself by means of a plane wave current density in the sheet and the torque density acting on the fluid corresponding to the running wave magnetic field and magnetization. The effect is studied on the basis of the micropolar fluid equations of motion and Maxwell’s equations of electrostatics or magnetostatics, respectively. An analytic expression is derived for the velocity of the sheet by perturbation theory to second order in powers of the amplitude of the driving charge or current density. Under the assumption that the equilibrium magnetic equation of state may be used in linearized form and that higher harmonics than the first may be neglected, a set of self-consistent integral equations is derived which can be solved numerically by iteration. In typical situations the second-order perturbation theory turns out to be quite accurate.
Primary drainage in geological fractures: Effects of aperture variability and wettability
NASA Astrophysics Data System (ADS)
Yang, Z.; Méheust, Y.; Neuweiler, I.
2017-12-01
Understanding and controlling fluid-fluid displacement in porous and fractured media is a key asset for many practical applications, such as the geological storage of CO2, hydrocarbon recovery, groundwater remediation, etc. We numerically investigate fluid-fluid displacement in rough-walled fractures with a focus on the combined effect of wettability, the viscous contrast between the two fluids, and fracture surface topography on drainage patterns and interface growth. A model has been developed to simulate the dynamic displacement of one fluid by another immiscible one in a rough geological fracture; the model takes both capillary and viscous forces into account. Capillary pressures at the fluid-fluid interface are calculated based on the Young-Laplace equation using the two principal curvatures (aperture-induced curvature and in-plane curvature) [1], while viscous forces are calculated by continuously solving the fluid pressure field in the fracture. The aperture field of a fracture is represented by a spatially correlated random field, with a power spectral density of the fracture wall topographies scaling as a power law, and a cutoff wave-length above which the Fourier modes of the two walls are identical [2]. We consider flow scenarios with both rectangular and radial configurations. Results show that the model is able to produce displacement patterns of compact displacement, capillary fingering, and viscous fingering, as well as the transitions between them. Both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) can stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. These results suggest that for geometries typical of geological fractures we can extend the phase diagram in the parameter space of capillary number and mobility ratio by another dimension to take into account the combined effect of wettability and fracture aperture topography. References: [1] Yang, Z. et al. (2012), A generalized approach for estimation of in-plane curvature in invasion percolation models for drainage in fractures. Wat. Resour. Res., 48(9), W09507. [2] Yang, Z. et al. (2016), Fluid trapping during capillary displacement in fractures. Adv. Water Resour., 95, 264-275.
Zhao, Libo; Hu, Yingjie; Wang, Tongdong; Ding, Jianjun; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde
2016-01-01
Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS) technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail. PMID:27275823
A numerical solution of the Navier-Stokes equations for supercritical fluid thermodynamic analysis
NASA Technical Reports Server (NTRS)
Heinmiller, P. J.
1971-01-01
An explicit numerical solution of the compressible Navier-Stokes equations is applied to the thermodynamic analysis of supercritical oxygen in the Apollo cryogenic storage system. The wave character is retained in the conservation equations which are written in the basic fluid variables for a two-dimensional Cartesian coordinate system. Control-volume cells are employed to simplify imposition of boundary conditions and to ensure strict observance of local and global conservation principles. Non-linear real-gas thermodynamic properties responsible for the pressure collapse phenomonon in supercritical fluids are represented by tabular and empirical functions relating pressure and temperature to density and internal energy. Wall boundary conditions are adjusted at one cell face to emit a prescribed mass flowrate. Scaling principles are invoked to achieve acceptable computer execution times for very low Mach number convection problems. Detailed simulations of thermal stratification and fluid mixing occurring under low acceleration in the Apollo 12 supercritical oxygen tank are presented which model the pressure decay associated with de-stratification induced by an ordinary vehicle maneuver and heater cycle operation.
[Perinatal outcome in patients with meconial amniotic fluid in labor].
Simon Pereira, Luis A; Gorbea, Viridiana; Lira Plascencia, Josefina; Ahued Ahued, Roberto; García Benítez, Carlos Quesnel; Rosas Priego, Paola Iturralde
2002-03-01
To evaluate the perinatal morbidity and mortality with the presence of meconial amniotic fluid. Retrospective study of case review, performed from 1st of June 1995 to May 1997. The patients included were at delivery, with a pregnancy of 32 weeks or older and had meconial amniotic fluid. The variables analyzed were: motherhood age, pre-existing associated illness, resolution of the pregnancy, PSS interpretation, fetal weight, Apgar and final destiny of the product. Of the 432 patients the motherhood aged varied from 13 to 43 years old, mean 27.4; with a number of pregnancies from 1 to 10, mean 2.25. The gestational age went from 32.2 to 42.4 weeks. The fetal weight varied form 1025 to 5080 g. The Apgar grade mean was 7 at the first minute and 8 at the fifth. The pregnancy was interrupted by cesarean in 52.5%. Although there was not a significant difference with the arterial gas, the density of the amniotic fluid did determine the final destiny of the product. There is a relation between the presence of amniotic fluid and the Apgar grade; both determining the final destiny of the product. When the amniotic fluid had thick meconium the products had a greater morbidity.
Uosyte, Raimonda; Shaw, Darren J; Gunn-Moore, Danielle A; Fraga-Manteiga, Eduardo; Schwarz, Tobias
2015-01-01
Turbinate destruction is an important diagnostic criterion in canine and feline nasal computed tomography (CT). However decreased turbinate visibility may also be caused by technical CT settings and nasal fluid. The purpose of this experimental, crossover study was to determine whether fluid reduces conspicuity of canine and feline nasal turbinates in CT and if so, whether CT settings can maximize conspicuity. Three canine and three feline cadaver heads were used. Nasal slabs were CT-scanned before and after submerging them in a water bath; using sequential, helical, and ultrahigh resolution modes; with images in low, medium, and high frequency image reconstruction kernels; and with application of additional posterior fossa optimization and high contrast enhancing filters. Visible turbinate length was measured by a single observer using manual tracing. Nasal density heterogeneity was measured using the standard deviation (SD) of mean nasal density from a region of interest in each nasal cavity. Linear mixed-effect models using the R package ‘nlme’, multivariable models and standard post hoc Tukey pair-wise comparisons were performed to investigate the effect of several variables (nasal content, scanning mode, image reconstruction kernel, application of post reconstruction filters) on measured visible total turbinate length and SD of mean nasal density. All canine and feline water-filled nasal slabs showed significantly decreased visibility of nasal turbinates (P < 0.001). High frequency kernels provided the best turbinate visibility and highest SD of aerated nasal slabs, whereas medium frequency kernels were optimal for water-filled nasal slabs. Scanning mode and filter application had no effect on turbinate visibility. PMID:25867935
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leishear, R.; Poirier, M.; Lee, S.
2012-06-26
This paper documents testing methods, statistical data analysis, and a comparison of experimental results to CFD models for blending of fluids, which were blended using a single pump designed with dual opposing nozzles in an eight foot diameter tank. Overall, this research presents new findings in the field of mixing research. Specifically, blending processes were clearly shown to have random, chaotic effects, where possible causal factors such as turbulence, pump fluctuations, and eddies required future evaluation. CFD models were shown to provide reasonable estimates for the average blending times, but large variations -- or scatter -- occurred for blending timesmore » during similar tests. Using this experimental blending time data, the chaotic nature of blending was demonstrated and the variability of blending times with respect to average blending times were shown to increase with system complexity. Prior to this research, the variation in blending times caused discrepancies between CFD models and experiments. This research addressed this discrepancy, and determined statistical correction factors that can be applied to CFD models, and thereby quantified techniques to permit the application of CFD models to complex systems, such as blending. These blending time correction factors for CFD models are comparable to safety factors used in structural design, and compensate variability that cannot be theoretically calculated. To determine these correction factors, research was performed to investigate blending, using a pump with dual opposing jets which re-circulate fluids in the tank to promote blending when fluids are added to the tank. In all, eighty-five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of vertical cooling coils below the liquid surface for a full scale, liquid radioactive waste storage tank. Also, different jet diameters and different horizontal orientations of the jets were investigated with respect to blending. Two types of blending tests were performed. The first set of eighty-one tests blended small quantities of tracer fluids into solution. Data from these tests were statistically evaluated to determine blending times for the addition of tracer solution to tanks, and blending times were successfully compared to Computational Fluid Dynamics (CFD) models. The second set of four tests blended bulk quantities of solutions of different density and viscosity. For example, in one test a quarter tank of water was added to a three quarters of a tank of a more viscous salt solution. In this case, the blending process was noted to significantly change due to stratification of fluids, and blending times increased substantially. However, CFD models for stratification and the variability of blending times for different density fluids was not pursued, and further research is recommended in the area of blending bulk quantities of fluids. All in all, testing showed that CFD models can be effectively applied if statistically validated through experimental testing, but in the absence of experimental validation CFD model scan be extremely misleading as a basis for design and operation decisions.« less
Díez, G; Soto, M; Blanco, J M
2015-07-01
This study characterized the morphology, density and orientation of the dermal denticles along the body of a shortfin mako shark Isurus oxyrinchus and identified the hydrodynamic parameters of its body through a computational fluid-dynamics model. The study showed a great variability in the morphology, size, shape, orientation and density of dermal denticles along the body of I. oxyrinchus. There was a significant higher density in dorsal and ventral areas of the body and their highest angular deviations were found in the lower part of the mouth and in the areas between the pre-caudal pit and the second dorsal and pelvic fins. A detailed three-dimensional geometry from a scanned body of a shark was carried out to evaluate the hydrodynamic properties such as drag coefficient, lift coefficient and superficial (skin) friction coefficient of the skin together with flow velocity field, according to different roughness coefficients simulating the effect of the dermal denticles. This preliminary approach contributed to detailed information of the denticle interactions. As the height of the denticles was increased, flow velocity and the effect of lift decreased whereas drag increased. The highest peaks of skin friction coefficient were observed around the pectoral fins. © 2015 The Fisheries Society of the British Isles.
SEADYN Analysis of a Tow Line for a High Altitude Towed Glider
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
1996-01-01
The concept of using a system, consisting of a tow aircraft, glider and tow line, which would enable subsonic flight at altitudes above 24 km (78 kft) has previously been investigated. The preliminary results from these studies seem encouraging. Under certain conditions these studies indicate the concept is feasible. However, the previous studies did not accurately take into account the forces acting on the tow line. Therefore in order to investigate the concept further a more detailed analysis was needed. The code that was selected was the SEADYN cable dynamics computer program which was developed at the Naval Facilities Engineering Service Center. The program is a finite element based structural analysis code that was developed over a period of 10 years. The results have been validated by the Navy in both laboratory and at actual sea conditions. This code was used to simulate arbitrarily-configured cable structures subjected to excitations encountered in real-world operations. The Navy's interest was mainly for modeling underwater tow lines, however the code is also usable for tow lines in air when the change in fluid properties is taken into account. For underwater applications the fluid properties are basically constant over the length of the tow line. For the tow aircraft/glider application the change in fluid properties is considerable along the length of the tow line. Therefore the code had to be modified in order to take into account the variation in atmospheric properties that would be encountered in this application. This modification consisted of adding a variable density to the fluid based on the altitude of the node being calculated. This change in the way the code handled the fluid density had no effect on the method of calculation or any other factor related to the codes validation.
On hydrodynamic phase field models for binary fluid mixtures
NASA Astrophysics Data System (ADS)
Yang, Xiaogang; Gong, Yuezheng; Li, Jun; Zhao, Jia; Wang, Qi
2018-05-01
Two classes of thermodynamically consistent hydrodynamic phase field models have been developed for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two incompressible viscous fluid components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous fluids especially when the two fluid components have a large density deviation.
Kim, Deokman; Hong, Seongkyeol; Park, Junhong
2017-01-01
The determination of fluid density and viscosity using most cantilever-based sensors is based on changes in resonant frequency and peak width. Here, we present a wave propagation analysis using piezoelectrically excited micro-cantilevers under distributed fluid loading. The standing wave shapes of microscale-thickness cantilevers partially immersed in liquids (water, 25% glycerol, and acetone), and nanoscale-thickness microfabricated cantilevers fully immersed in gases (air at three different pressures, carbon dioxide, and nitrogen) were investigated to identify the effects of fluid-structure interactions to thus determine the fluid properties. This measurement method was validated by comparing with the known fluid properties, which agreed well with the measurements. The relative differences for the liquids were less than 4.8% for the densities and 3.1% for the viscosities, and those for the gases were less than 6.7% for the densities and 7.3% for the viscosities, showing better agreements in liquids than in gases. PMID:29077005
Impact of a large density gradient on linear and nonlinear edge-localized mode simulations
Xi, P. W.; Xu, X. Q.; Xia, T. Y.; ...
2013-09-27
Here, the impact of a large density gradient on edge-localized modes (ELMs) is studied linearly and nonlinearly by employing both two-fluid and gyro-fluid simulations. In two-fluid simulations, the ion diamagnetic stabilization on high-n modes disappears when the large density gradient is taken into account. But gyro-fluid simulations show that the finite Larmor radius (FLR) effect can effectively stabilize high-n modes, so the ion diamagnetic effect alone is not sufficient to represent the FLR stabilizing effect. We further demonstrate that additional gyroviscous terms must be kept in the two-fluid model to recover the linear results from the gyro-fluid model. Nonlinear simulations show that the density variation significantly weakens the E × B shearing at the top of the pedestal and thus leads to more energy loss during ELMs. The turbulence spectrum after an ELM crash is measured and has the relation ofmore » $$P(k_{z})\\propto k_{z}^{-3.3}$$ .« less
Pressure- and buoyancy-driven thermal convection in a rectangular enclosure
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Churchill, S. W.
1975-01-01
Results are presented for unsteady laminar thermal convection in compressible fluids at various reduced levels of gravity in a rectangular enclosure which is heated on one side and cooled on the opposite side. The results were obtained by solving numerically the equations of conservation for a viscous, compressible, heat-conducting, ideal gas in the presence of a gravitational body force. The formulation differs from the Boussinesq simplification in that the effects of variable density are completely retained. A conservative, explicit, time-dependent, finite-difference technique was used and good agreement was found for the limited cases where direct comparison with previous investigations was possible. The solutions show that the thermally induced motion is acoustic in nature at low levels of gravity and that the unsteady-state rate of heat transfer is thereby greatly enhanced relative to pure conduction. The nonlinear variable density profile skews the streamlines towards the cooler walls but is shown to have little effect on the steady-state isotherms.
Characterizing the chaotic nature of ocean ventilation
NASA Astrophysics Data System (ADS)
MacGilchrist, Graeme A.; Marshall, David P.; Johnson, Helen L.; Lique, Camille; Thomas, Matthew
2017-09-01
Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional "filamentation number," which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces—implying highly chaotic ventilation pathways—and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior.
NASA Astrophysics Data System (ADS)
Brauer, Uwe; Karp, Lavi
This paper deals with the construction of initial data for the coupled Einstein-Euler system. We consider the condition where the energy density might vanish or tend to zero at infinity, and where the pressure is a fractional power of the energy density. In order to achieve our goals we use a type of weighted Sobolev space of fractional order. The common Lichnerowicz-York scaling method (Choquet-Bruhat and York, 1980 [9]; Cantor, 1979 [7]) for solving the constraint equations cannot be applied here directly. The basic problem is that the matter sources are scaled conformally and the fluid variables have to be recovered from the conformally transformed matter sources. This problem has been addressed, although in a different context, by Dain and Nagy (2002) [11]. We show that if the matter variables are restricted to a certain region, then the Einstein constraint equations have a unique solution in the weighted Sobolev spaces of fractional order. The regularity depends upon the fractional power of the equation of state.
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas
2005-01-01
The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.
Ultrasonic fluid densitometer for process control
Greenwood, Margaret S.
2000-01-01
The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.
Volume and density changes of biological fluids with temperature
NASA Technical Reports Server (NTRS)
Hinghofer-Szalkay, H.
1985-01-01
The thermal expansion of human blood, plasma, ultrafiltrate, and erythrocycte concentration at temperatures in the range of 4-48 C is studied. The mechanical oscillator technique which has an accuracy of 1 x 10 to the -5 th g/ml is utilized to measure fluid density. The relationship between thermal expansion, density, and temperature is analyzed. The study reveals that: (1) thermal expansion increases with increasing temperature; (2) the magnitude of the increase declines with increasing temperature; (3) thermal expansion increases with density at temperatures below 40 C; and (4) the thermal expansion of intracellular fluid is greater than that of extracellular fluid in the temperature range of 4-10 C, but it is equal at temperatures greater than or equal to 40 C.
BHR equations re-derived with immiscible particle effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarzkopf, John Dennis; Horwitz, Jeremy A.
2015-05-01
Compressible and variable density turbulent flows with dispersed phase effects are found in many applications ranging from combustion to cloud formation. These types of flows are among the most challenging to simulate. While the exact equations governing a system of particles and fluid are known, computational resources limit the scale and detail that can be simulated in this type of problem. Therefore, a common method is to simulate averaged versions of the flow equations, which still capture salient physics and is relatively less computationally expensive. Besnard developed such a model for variable density miscible turbulence, where ensemble-averaging was applied tomore » the flow equations to yield a set of filtered equations. Besnard further derived transport equations for the Reynolds stresses, the turbulent mass flux, and the density-specific volume covariance, to help close the filtered momentum and continuity equations. We re-derive the exact BHR closure equations which include integral terms owing to immiscible effects. Physical interpretations of the additional terms are proposed along with simple models. The goal of this work is to extend the BHR model to allow for the simulation of turbulent flows where an immiscible dispersed phase is non-trivially coupled with the carrier phase.« less
Mao, X.; Prommer, H.; Barry, D.A.; Langevin, C.D.; Panteleit, B.; Li, L.
2006-01-01
PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. ?? 2004 Elsevier Ltd. All rights reserved.
Evolving Nonthermal Electron Distributions in Simulations of Sgr A*
NASA Astrophysics Data System (ADS)
Chael, Andrew; Narayan, Ramesh
2018-01-01
The accretion flow around Sagittarius A* (Sgr A*), the black hole at the Galactic Center, produces strong variability from the radio to X-rays on timescales of minutes to hours. This rapid, powerful variability is thought to be powered by energetic particle acceleration by plasma processes like magnetic reconnection and shocks. These processes can accelerate particles into non-thermal distributions which do not quickly isothermal in the low densities found around hot accretion flows. Current state-of-the-art simulations of accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. We present results from incorporating the self-consistent evolution of a non-thermal electron population in a GRRMHD simulation of Sgr A*. The electron distribution is evolved across space, time, and Lorentz factor in parallel with background thermal ion, electron, and radiation fluids. Energy injection into the non-thermal distribution is modeled with a sub-grid prescription based on results from particle-in-cell simulations of magnetic reconnection. The energy distribution of the non-thermal electrons shows strong variability, and the spectral shape traces the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity. Results from these simulations will be used in interpreting forthcoming data from the Event Horizon Telescope that resolves Sgr A*'s sub-mm variability in both time and space.
Malheiro, Carine; Mendiboure, Bruno; Plantier, Frédéric; Blas, Felipe J; Miqueu, Christelle
2014-04-07
As a first step of an ongoing study of thermodynamic properties and adsorption of complex fluids in confined media, we present a new theoretical description for spherical monomers using the Statistical Associating Fluid Theory for potential of Variable Range (SAFT-VR) and a Non-Local Density Functional Theory (NLDFT) with Weighted Density Approximations (WDA). The well-known Modified Fundamental Measure Theory is used to describe the inhomogeneous hard-sphere contribution as a reference for the monomer and two WDA approaches are developed for the dispersive terms from the high-temperature Barker and Henderson perturbation expansion. The first approach extends the dispersive contributions using the scalar and vector weighted densities introduced in the Fundamental Measure Theory (FMT) and the second one uses a coarse-grained (CG) approach with a unique weighted density. To test the accuracy of this new NLDFT/SAFT-VR coupling, the two versions of the theoretical model are compared with Grand Canonical Monte Carlo (GCMC) molecular simulations using the same molecular model. Only the version with the "CG" approach for the dispersive terms provides results in excellent agreement with GCMC calculations in a wide range of conditions while the "FMT" extension version gives a good representation solely at low pressures. Hence, the "CG" version of the theoretical model is used to reproduce methane adsorption isotherms in a Carbon Molecular Sieve and compared with experimental data after a characterization of the material. The whole results show an excellent agreement between modeling and experiments. Thus, through a complete and consistent comparison both with molecular simulations and with experimental data, the NLDFT/SAFT-VR theory has been validated for the description of monomers.
NASA Astrophysics Data System (ADS)
Huang, H.-P.; Wright, I. P.; Gilmour, I.; Pillinger, C. T.
1994-11-01
Silica aerogel represents an ideal material for use as a cosmic dust capture medium. Its low density enables impacting particles to decelerate and stop within a small quality of the material, but without any severe heating. Hence the particles, which remain unmelted, can subsequently be removed and studied. Since a large proportion of the prospective cosmic dust is likely to be enriched in elements such as carbon and hydrogen (typically 5 wt% C, 20 wt% H2O), it is imperative that the aerogel used in the capture cell contains minimal quantities of these elements. Unfortunately the lowest density aerogels contain carbon at levels of 5 wt%; water is present in even greater amounts. Thus, techniques need to be identified to remove these contaminants. Herein, an attempt is made to use supercritical fluid extraction to remove carbon (and water). The investigation was tried to identify the most suitable parameters (i.e. CO2 density, solvating power using single or multiple extractions, use of modifier, etc.) necessary for removal of contaminants. A set of conditions was derived which was able to remove 90% of carbon contaminants from an aerogel of 0.12 g/cu cm density. This involved the use of multiple extractions with gradient temperatures (i.e. variable CO2 density), but without the use of a methanol modifier. Unfortunately, the same technique was less efficacious at removing carbon from aerogels with densities less than 0.12 g/cu cm. At present the extraction procedure has only been tried on a laboratory scale, but clearly this could be scaled-up in the future.
Method and apparatus for determining fluid mass flowrates
Hamel, W.R.
1982-10-07
This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required bending of the fluid flow.
Online capacitive densitometer
Porges, K.G.
1988-01-21
This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained. 7 figs.
Online capacitive densitometer
Porges, Karl G.
1990-01-01
This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.
The non-equilibrium statistical mechanics of a simple geophysical fluid dynamics model
NASA Astrophysics Data System (ADS)
Verkley, Wim; Severijns, Camiel
2014-05-01
Lorenz [1] has devised a dynamical system that has proved to be very useful as a benchmark system in geophysical fluid dynamics. The system in its simplest form consists of a periodic array of variables that can be associated with an atmospheric field on a latitude circle. The system is driven by a constant forcing, is damped by linear friction and has a simple advection term that causes the model to behave chaotically if the forcing is large enough. Our aim is to predict the statistics of Lorenz' model on the basis of a given average value of its total energy - obtained from a numerical integration - and the assumption of statistical stationarity. Our method is the principle of maximum entropy [2] which in this case reads: the information entropy of the system's probability density function shall be maximal under the constraints of normalization, a given value of the average total energy and statistical stationarity. Statistical stationarity is incorporated approximately by using `stationarity constraints', i.e., by requiring that the average first and possibly higher-order time-derivatives of the energy are zero in the maximization of entropy. The analysis [3] reveals that, if the first stationarity constraint is used, the resulting probability density function rather accurately reproduces the statistics of the individual variables. If the second stationarity constraint is used as well, the correlations between the variables are also reproduced quite adequately. The method can be generalized straightforwardly and holds the promise of a viable non-equilibrium statistical mechanics of the forced-dissipative systems of geophysical fluid dynamics. [1] E.N. Lorenz, 1996: Predictability - A problem partly solved, in Proc. Seminar on Predictability (ECMWF, Reading, Berkshire, UK), Vol. 1, pp. 1-18. [2] E.T. Jaynes, 2003: Probability Theory - The Logic of Science (Cambridge University Press, Cambridge). [3] W.T.M. Verkley and C.A. Severijns, 2014: The maximum entropy principle applied to a dynamical system proposed by Lorenz, Eur. Phys. J. B, 87:7, http://dx.doi.org/10.1140/epjb/e2013-40681-2 (open access).
Metals Electroprocessing in Molten Salts
NASA Technical Reports Server (NTRS)
Sadoway, D. R.
1985-01-01
The present study seeks to explain the poor quality of solid electrodeposits in molten salts through a consideration of the effects of fluid flow of the electrolyte. Transparent cells allow observation of electrolyte circulation by a laser schlieren optical technique during the electrodeposition of solid zinc from the molten salt electrolyte, ZnCl2 - LiCl-KCl. Experimental variables are current, density, electrolyte composition, and cell geometry. Based on the results of earlier electrodeposition studies as well as reports in the literature, these parameters are identified as having the primary influence on cell performance and deposit quality. Experiments are conducted to measure the fluid flow patterns and the electrochemical cell characteristics, and to correlate this information with the morphology of the solid electrodeposit produced. Specifically, cell voltage, cell current, characteristic time for dendrite evolution, and dendrite growth directions are noted. Their relationship to electrolyte flow patterns and the morphology of the resulting electrodeposit are derived. Results to date indicate that laser schlieren imaging is capable of revealing fluid flow patterns in a molten salt electrolyte.
Management of fluid mud in estuaries, bays, and lakes. II: Measurement, modeling, and management
McAnally, W.H.; Teeter, A.; Schoellhamer, David H.; Friedrichs, C.; Hamilton, D.; Hayter, E.; Shrestha, P.; Rodriguez, H.; Sheremet, A.; Kirby, R.
2007-01-01
Techniques for measurement, modeling, and management of fluid mud are available, but research is needed to improve them. Fluid mud can be difficult to detect, measure, or sample, which has led to new instruments and new ways of using existing instruments. Multifrequency acoustic fathometers sense neither density nor viscosity and are, therefore, unreliable in measuring fluid mud. Nuclear density probes, towed sleds, seismic, and drop probes equipped with density meters offer the potential for accurate measurements. Numerical modeling of fluid mud requires solving governing equations for flow velocity, density, pressure, salinity, water surface, plus sediment submodels. A number of such models exist in one-, two-, and three-dimensional form, but they rely on empirical relationships that require substantial site-specific validation to observations. Management of fluid mud techniques can be classified as those that accomplish: Source control, formation control, and removal. Nautical depth, a fourth category, defines the channel bottom as a specific fluid mud density or alternative parameter as safe for navigation. Source control includes watershed management measures to keep fine sediment out of waterways and in-water measures such as structures and traps. Formation control methods include streamlined channels and structures plus other measures to reduce flocculation and structures that train currents. Removal methods include the traditional dredging and transport of dredged material plus agitation that contributes to formation control and/or nautical depth. Conditioning of fluid mud by dredging and aerating offers the possibility of improved navigability. Two examples—the Atchafalaya Bar Channel and Savannah Harbor—illustrate the use of measurements and management of fluid mud.
Exact density functional theory for ideal polymer fluids with nearest neighbor bonding constraints.
Woodward, Clifford E; Forsman, Jan
2008-08-07
We present a new density functional theory of ideal polymer fluids, assuming nearest-neighbor bonding constraints. The free energy functional is expressed in terms of end site densities of chain segments and thus has a simpler mathematical structure than previously used expressions using multipoint distributions. This work is based on a formalism proposed by Tripathi and Chapman [Phys. Rev. Lett. 94, 087801 (2005)]. Those authors obtain an approximate free energy functional for ideal polymers in terms of monomer site densities. Calculations on both repulsive and attractive surfaces show that their theory is reasonably accurate in some cases, but does differ significantly from the exact result for longer polymers with attractive surfaces. We suggest that segment end site densities, rather than monomer site densities, are the preferred choice of "site functions" for expressing the free energy functional of polymer fluids. We illustrate the application of our theory to derive an expression for the free energy of an ideal fluid of infinitely long polymers.
On The Dynamics And Kinematics Of Two Fluid Phase Flow In Porous Media
2015-06-16
fluid-fluid interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled...saturation data intended to denote an equilibrium state is likely a sampling from a dynamic system undergoing changes of interfacial curvatures that are not... interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled physics is shown
NASA Technical Reports Server (NTRS)
Blumenthal, Rob; Kim, Dongmoon; Bache, George
1992-01-01
The hydrogen mixer for the Space Transportation Main Engine is used to mix cold hydrogen bypass flow with warm hydrogen coolant chamber gas, which is then fed to the injectors. It is very important to have a uniform fuel temperature at the injectors in order to minimize mixture ratio problems due to the fuel density variations. In addition, the fuel at the injector has certain total pressure requirements. In order to achieve these objectives, the hydrogen mixer must provide a thoroughly mixed fluid with a minimum pressure loss. The AEROVISC computational fluid dynamics (CFD) code was used to analyze the STME hydrogen mixer, and proved to be an effective tool in optimizing the mixer design. AEROVISC, which solves the Reynolds Stress-Averaged Navier-Stokes equations in primitive variable form, was used to assess the effectiveness of different mixer designs. Through a parametric study of mixer design variables, an optimal design was selected which minimized mixed fuel temperature variation and fuel mixer pressure loss. The use of CFD in the design process of the STME hydrogen mixer was effective in achieving an optimal mixer design while reducing the amount of hardware testing.
Kamal, Ayesha; Singh, Vikesh K; Akshintala, Venkata S; Kawamoto, Satomi; Tsai, Salina; Haider, Maera; Fishman, Elliot K; Kamel, Ihab R; Zaheer, Atif
2015-08-01
Compare CT and MRI for fluid/debris component estimate and pancreatic duct (PD) communication with organized pancreatic fluid collections in acute pancreatitis. Evaluate fat density globules on CT as marker for debris. 29 Patients with 46 collections with CECT and MRI performed ≥4 weeks of symptom onset assessed for necrotizing pancreatitis, estimated percentage of fluid volume and PD involvement by two radiologists on separate occasions. T2WI used as standard for estimated percentage of fluid volume. Presence of fat globules and fluid attenuation on CT was recorded. Spearman rank correlation and kappa statistics were used to assess the correlation between imaging techniques and interreader agreement, respectively. Necrotizing pancreatitis seen on CT in 27 (93%, κ 0.119) vs. 20 (69%, κ 0.748) patients on MRI. CT identified 42 WON and 4 pseudocysts vs. 34 WON, and 12 pseudocysts on MRI. Higher interreader agreement for percentage fluid volume on MRI (κ = 0.55) vs. CT (κ = 0.196). Accuracy of CT in evaluation of percentage fluid volume was 65% using T2WI MRI used as standard. Fat globules identified on CT in 13(65%) out of 20 collections containing <75% fluid vs. 4(15%) out of 26 collections containing >75% fluid (p = 0.0001). PD involvement confidently excluded on CT in 68% collections vs. 93% on MRI. MRI demonstrates higher reproducibility for fluid to debris component estimation. Fat globules on CT were frequently seen in organized pancreatic fluid collections with large amount of debris. PD disruption more confidently excluded on MRI. This information may be helpful for pre-procedure planning.
Thermophysical Properties of Pore-confined Supercritical CO2 by Vibrating Tube Densimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruszkiewicz, Miroslaw; Wesolowski, David J; Cole, David R
2011-01-01
Properties of fluids confined in pore systems are needed for modeling fluid flow, fluid-rock interactions, and changes in reservoir porosity. The properties of CO2-rich fluids are particularly relevant to geothermal heat mining using carbon dioxide instead of water. While manometric, volumetric, and gravimetric techniques have been used successfully to investigate adsorption of low-density subcritical vapors, the results have not been satisfactory at higher, liquid-like densities of supercritical fluids. Even if the requirements for high experimental accuracy in the neighborhood of the critical region were met, these methods are fundamentally unable to deliver the total adsorption capacity, since the properties (e.g.more » density) of the adsorbed phase are in general not known. In this work we utilize vibrating tube densimetry for the first time to measure the total amount of fluid contained within a mesoporous solid. The method is first demonstrated using propane at subcritical and supercritical temperatures between 35 C and 97 C confined in silica aerogel (density 0.2 g cm-3, porosity 90%) that was synthesized inside Hastelloy U-tubes. Sorption and desorption of carbon dioxide on the same solid was measured at 35 C at pressures to 120 bar (density to 0.767 g cm-3). The results show total adsorption increasing monotonically with increasing pressure, unlike excess adsorption isotherms which show a maximum close to the critical density.« less
Umeda, Yasuyuki; Ishida, Fujimaro; Tsuji, Masanori; Furukawa, Kazuhiro; Shiba, Masato; Yasuda, Ryuta; Toma, Naoki; Sakaida, Hiroshi; Suzuki, Hidenori
2017-01-01
This study aimed to predict recurrence after coil embolization of unruptured cerebral aneurysms with computational fluid dynamics (CFD) using porous media modeling (porous media CFD). A total of 37 unruptured cerebral aneurysms treated with coiling were analyzed using follow-up angiograms, simulated CFD prior to coiling (control CFD), and porous media CFD. Coiled aneurysms were classified into stable or recurrence groups according to follow-up angiogram findings. Morphological parameters, coil packing density, and hemodynamic variables were evaluated for their correlations with aneurysmal recurrence. We also calculated residual flow volumes (RFVs), a novel hemodynamic parameter used to quantify the residual aneurysm volume after simulated coiling, which has a mean fluid domain > 1.0 cm/s. Follow-up angiograms showed 24 aneurysms in the stable group and 13 in the recurrence group. Mann-Whitney U test demonstrated that maximum size, dome volume, neck width, neck area, and coil packing density were significantly different between the two groups (P < 0.05). Among the hemodynamic parameters, aneurysms in the recurrence group had significantly larger inflow and outflow areas in the control CFD and larger RFVs in the porous media CFD. Multivariate logistic regression analyses demonstrated that RFV was the only independently significant factor (odds ratio, 1.06; 95% confidence interval, 1.01-1.11; P = 0.016). The study findings suggest that RFV collected under porous media modeling predicts the recurrence of coiled aneurysms.
Horoshenkov, Kirill V; Groby, Jean-Philippe; Dazel, Olivier
2016-05-01
Modeling of sound propagation in porous media requires the knowledge of several intrinsic material parameters, some of which are difficult or impossible to measure directly, particularly in the case of a porous medium which is composed of pores with a wide range of scales and random interconnections. Four particular parameters which are rarely measured non-acoustically, but used extensively in a number of acoustical models, are the viscous and thermal characteristic lengths, thermal permeability, and Pride parameter. The main purpose of this work is to show how these parameters relate to the pore size distribution which is a routine characteristic measured non-acoustically. This is achieved through the analysis of the asymptotic behavior of four analytical models which have been developed previously to predict the dynamic density and/or compressibility of the equivalent fluid in a porous medium. In this work the models proposed by Johnson, Koplik, and Dashn [J. Fluid Mech. 176, 379-402 (1987)], Champoux and Allard [J. Appl. Phys. 70(4), 1975-1979 (1991)], Pride, Morgan, and Gangi [Phys. Rev. B 47, 4964-4978 (1993)], and Horoshenkov, Attenborough, and Chandler-Wilde [J. Acoust. Soc. Am. 104, 1198-1209 (1998)] are compared. The findings are then used to compare the behavior of the complex dynamic density and compressibility of the fluid in a material pore with uniform and variable cross-sections.
Stabilization of a finite slice in miscible displacement in homogeneous porous media
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Mishra, Manoranjan
2016-11-01
We numerically studied the miscible displacement of a finite slice of variable viscosity and density. The stability of the finite slice depends on different flow parameters, such as displacement velocity U, mobility ratio R , and the density contrast. Series of numerical simulations corresponding to different ordered pair (R, U) in the parameter space, and a given density contrast reveal six different instability regions. We have shown that independent of the width of the slice, there always exists a region of stable displacement, and below a critical value of the slice width, this stable region increases with decreasing slice width. Further we observe that the viscous fingering (buoyancy-induced instability) at the upper interface induces buoyancy-induced instability (viscous fingering) at the lower interface. Besides the fundamental fluid dynamics understanding, our results can be helpful to model CO2 sequestration and chromatographic separation.
Friedel, Michael J.
2001-01-01
This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water-heat-solute transport. The first three problems considered in model verification were compared to either analytical or numerical solutions, whereas the coupled problem was compared to measured laboratory results for which no known analytic solutions or numerical models are available. The test results indicate the model is accurate and applicable for a wide range of conditions, including when water (liquid and vapor), heat (sensible and latent), and solute are coupled in ground-water systems. The cumulative residual errors for the coupled problem tested was less than 10-8 cubic centimeter per cubic centimeter, 10-5 moles per kilogram, and 102 calories per cubic meter for liquid water content, solute concentration and heat content, respectively. This model should be useful to hydrologists, engineers, and researchers interested in studying coupled processes associated with variably saturated transport in ground-water systems.
Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen
NASA Technical Reports Server (NTRS)
Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)
2000-01-01
Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past, however none of these studies identified the crucial differences between the subcritical and supercritical behavior. In fact, in two of these studies, it was found that the subcritical and supercritical behavior is similar as the drop diameter decreased according to the classical d(exp 2)-law over a wide range of pressures and drop diameters. The present study is devoted to the exploration of differences in fluid-behavior characteristics under subcritical and supercritical conditions in the particular case of heptane fluid drops in nitrogen; these substances were selected because of the availability of experimental observations for model validation.
Kawcak, Chris E; Frisbie, David D; McIlwraith, C Wayne
2011-06-01
To evaluate effects of extracorporeal shock wave therapy (ESWT) and polysulfated glycosaminoglycan treatment (PSGAGT) on subchondral bone (SCB), serum biomarkers, and synovial fluid biomarkers in horses with induced osteoarthritis. 24 healthy 2- to 3-year-old horses. An osteochondral fragment was created on the distal aspect of the radial carpal bone in 1 middle carpal joint of each horse. Horses were randomly allocated to receive local application of ESWT (days 14 and 28; n = 8), PSGAGT (IM, q 4 d for 28 days; 8), or a sham ESWT probe (placebo; days 14 and 28; 8). Serum biomarkers were measured every 7 days, and synovial fluid biomarkers were measured every 14 days. Bone density was measured by use of computed tomography on days 0 and 70, and microdamage and bone formation variables were compared among groups at the end of the study (day 70). There was no significant effect of ESWT or PSGAGT on any bone variable. Serum osteocalcin concentration was significantly greater in horses that received ESWT, compared with placebo-treated horses, and serum concentration of the C-terminal telopeptide of type I collagen was significantly higher in horses that received ESWT, compared with placebo- and PSGAG-treated horses. Concentrations of the synovial fluid epitope CS846 were significantly higher in joints with osteoarthritis treated with ESWT CONCLUSIONS AND CLINICAL RELEVANCE: Treatment of osteoarthritis with ESWT had no effect on SCB but did induce increases in serum biomarkers indicative of bone remodeling. Treatment of osteoarthritis with PSGAG had no effect on SCB or biomarkers.
Foam vessel for cryogenic fluid storage
Spear, Jonathan D [San Francisco, CA
2011-07-05
Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.
NASA Astrophysics Data System (ADS)
Bazhenov, Alexiev M.; Heyes, David M.
1990-01-01
The thermodynamics, structure, and transport coefficients, as defined by the Green-Kubo integrals, of the one-dimensional Lennard-Jones fluid are evaluated for a wide range of state points by molecular dynamics computer simulation. These calculations are performed for the first time for thermal conductivity and the viscosity. We observe a transition from hard-rod behavior at low number density to harmonic-spring fluid behavior in the close-packed limit. The self-diffusion coefficient decays with increasing density to a finite limiting value. The thermal conductivity increases with density, tending to ∞ in the close-packed limit. The viscosity in contrast maximizes at intermediate density, tending to zero in the zero density and close-packed limits.
Method of filtering a target compound from a first solvent that is above its critical density
Phelps, Max R [Richland, WA; Yonker, Clement R [Kennewick, WA; Fulton, John L [Richland, WA; Bowman, Lawrence E [Richland, WA
2001-07-24
The present invention is a method of separating a first compound having a macromolecular structure from a mixture. The first solvent is a fluid that is a gas at standard temperature and pressure and is at a density greater than a critical density of the fluid. A macromolecular structure containing a first compound is dissolved therein as a mixture. The mixture is contacted onto a selective barrier and the first solvent passed through the selective barrier thereby retaining the first compound, followed by recovering the first compound. By using a fluid that is a gas at standard temperature and pressure at a density greater than its critical density, separation without depressurization is fast and efficient.
Fluid overpressure estimates from the aspect ratios of mineral veins
NASA Astrophysics Data System (ADS)
Philipp, Sonja L.
2012-12-01
Several hundred calcite veins and (mostly) normal faults were studied in limestone and shale layers of a Mesozoic sedimentary basin next to the village of Kilve at the Bristol Channel (SW-England). The veins strike mostly E-W (239 measurements), that is, parallel with the associated normal faults. The mean vein dip is 73°N (44 measurements). Field observations indicate that these faults transported the fluids up into the limestone layers. The vein outcrop (trace) length (0.025-10.3 m) and thickness (0.1-28 mm) size distributions are log-normal. Taking the thickness as the dependent variable and the outcrop length as the independent variable, linear regression gives a coefficient of determination (goodness of fit) of R2 = 0.74 (significant with 99% confidence), but natural logarithmic transformation of the thickness-length data increases the coefficient of determination to R2 = 0.98, indicating that nearly all the variation in thickness can be explained in terms of variation in trace length. The geometric mean of the aspect (length/thickness) ratio, 451, gives the best representation of the data set. With 95% confidence, the true geometric mean of the aspect ratios of the veins lies in the interval 409-497. Using elastic crack theory, appropriate elastic properties of the host rock, and the mean aspect ratio, the fluid overpressure (that is, the total fluid pressure minus the normal stress on the fracture plane) at the time of vein formation is estimated at around 18 MPa. From these results, and using the average host rock and water densities, the depth to the sources of the fluids (below the present exposures) forming the veins is estimated at between around 300 m and 1200 m. These results are in agreement to those obtained by independent isotopic studies and indicate that the fluids were of rather local origin, probably injected from sill-like sources (water sills) inside the sedimentary basin.
Pressure balanced drag turbine mass flow meter
Dacus, M.W.; Cole, J.H.
1980-04-23
The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.
Pressure balanced drag turbine mass flow meter
Dacus, Michael W.; Cole, Jack H.
1982-01-01
The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.
Studies of metals electroprocessing in molten salts
NASA Technical Reports Server (NTRS)
Sadoway, D. R.
1982-01-01
Fluid flow patterns in molten salt electrolytes were observed in order to determine how mass transport affects the morphology of the metal deposit. Studies conducted on the same metal, both in aqueous electrolytes in which coherent solid electrodeposits are produced, as well as in transparent molten salt electrolytes are described. Process variables such as current density and composition of the electrolyte are adjusted to change the morphology of the electrodeposit and, thus, to permit the study of the nature of electrolyte flow in relation to the quality of the electrodeposit.
NASA Astrophysics Data System (ADS)
Klein, Evandro L.; Harris, Chris; Renac, Christophe; Giret, André; Moura, Candido A. V.; Fuzikawa, Kazuo
2006-05-01
The Serrinha gold deposit of the Gurupi Belt, northern Brazil, belongs to the class of orogenic gold deposits. The deposit is hosted in highly strained graphitic schist belonging to a Paleoproterozoic (˜2,160 Ma) metavolcano-sedimentary sequence. The ore-zones are up to 11 m thick, parallel to the regional NW-SE schistosity, and characterized by quartz-carbonate-sulfide veinlets and minor disseminations. Textural and structural data indicate that mineralization was syn- to late-tectonic and postmetamorphic. Fluid inclusion studies identified early CO2 (CH4-N2) and CO2 (CH4-N2)-H2O-NaCl inclusions that show highly variable phase ratios, CO2 homogenization, and total homogenization temperatures both to liquid and vapor, interpreted as the product of fluid immiscibility under fluctuating pressure conditions, more or less associated with postentrapment modifications. The ore-bearing fluid typically has 18-33mol% of CO2, up to 4mol% of N2, and less than 2mol% of CH4 and displays moderate to high densities with salinity around 4.5wt% NaCl equiv. Mineralization occurred around 310 to 335°C and 1.3 to 3.0 kbar, based on fluid inclusion homogenization temperatures and oxygen isotope thermometry with estimated oxygen fugacity indicating relatively reduced conditions. Stable isotope data on quartz, carbonate, and fluid inclusions suggest that veins formed from fluids with δ18OH2O and δDH2O (310-335°C) values of +6.2 to +8.4‰ and -19 to -80‰, respectively, which might be metamorphic and/or magmatic and/or mantle-derived. The carbon isotope composition (δ13C) varies from -14.2 to -15.7‰ in carbonates; it is -17.6‰ in fluid inclusion CO2 and -23.6‰ in graphite from the host rock. The δ34S values of pyrite are -2.6 to -7.9‰. The strongly to moderately negative carbon isotope composition of the carbonates and inclusion fluid CO2 reflects variable contribution of organic carbon to an originally heavier fluid (magmatic, metamorphic, or mantle-derived) at the site of deposition and sulfur isotopes indicate some oxidation of the originally reduced fluid. The deposition of gold is interpreted to have occurred mainly in response to phase separation and fluid-rock interactions such as CO2 removal and desulfidation reactions that provoked variations in the fluid pH and redox conditions.
Calculation of Water Entry Problem for Free-falling Bodies Using a Developed Cartesian Cut Cell Mesh
NASA Astrophysics Data System (ADS)
Wenhua, Wang; Yanying, Wang
2010-05-01
This paper describes the development of free surface capturing method on Cartesian cut cell mesh to water entry problem for free-falling bodies with body-fluid interaction. The incompressible Euler equations for a variable density fluid system are presented as governing equations and the free surface is treated as a contact discontinuity by using free surface capturing method. In order to be convenient for dealing with the problem with moving body boundary, the Cartesian cut cell technique is adopted for generating the boundary-fitted mesh around body edge by cutting solid regions out of a background Cartesian mesh. Based on this mesh system, governing equations are discretized by finite volume method, and at each cell edge inviscid flux is evaluated by means of Roe's approximate Riemann solver. Furthermore, for unsteady calculation in time domain, a time accurate solution is achieved by a dual time-stepping technique with artificial compressibility method. For the body-fluid interaction, the projection method of momentum equations and exact Riemann solution are applied in the calculation of fluid pressure on the solid boundary. Finally, the method is validated by test case of water entry for free-falling bodies.
NASA Astrophysics Data System (ADS)
Hutter, Kolumban; Schneider, Lukas
2010-06-01
This article points at some critical issues which are connected with the theoretical formulation of the thermodynamics of solid-fluid mixtures of frictional materials. It is our view that a complete thermodynamic exploitation of the second law of thermodynamics is necessary to obtain the proper parameterizations of the constitutive quantities in such theories. These issues are explained in detail in a recently published book by Schneider and Hutter (Solid-Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context, 2009), which we wish to advertize with these notes. The model is a saturated mixture of an arbitrary number of solid and fluid constituents which may be compressible or density preserving, which exhibit visco-frictional (visco-hypoplastic) behavior, but are all subject to the same temperature. Mass exchange between the constituents may account for particle size separation and phase changes due to fragmentation and abrasion. Destabilization of a saturated soil mass from the pre- and the post-critical phases of a catastrophic motion from initiation to deposition is modeled by symmetric tensorial variables which are related to the rate independent parts of the constituent stress tensors.
Microcanonical ensemble simulation method applied to discrete potential fluids
NASA Astrophysics Data System (ADS)
Sastre, Francisco; Benavides, Ana Laura; Torres-Arenas, José; Gil-Villegas, Alejandro
2015-09-01
In this work we extend the applicability of the microcanonical ensemble simulation method, originally proposed to study the Ising model [A. Hüller and M. Pleimling, Int. J. Mod. Phys. C 13, 947 (2002), 10.1142/S0129183102003693], to the case of simple fluids. An algorithm is developed by measuring the transition rates probabilities between macroscopic states, that has as advantage with respect to conventional Monte Carlo NVT (MC-NVT) simulations that a continuous range of temperatures are covered in a single run. For a given density, this new algorithm provides the inverse temperature, that can be parametrized as a function of the internal energy, and the isochoric heat capacity is then evaluated through a numerical derivative. As an illustrative example we consider a fluid composed of particles interacting via a square-well (SW) pair potential of variable range. Equilibrium internal energies and isochoric heat capacities are obtained with very high accuracy compared with data obtained from MC-NVT simulations. These results are important in the context of the application of the Hüller-Pleimling method to discrete-potential systems, that are based on a generalization of the SW and square-shoulder fluids properties.
Nanoscale hydrodynamics near solids
NASA Astrophysics Data System (ADS)
Camargo, Diego; de la Torre, J. A.; Duque-Zumajo, D.; Español, Pep; Delgado-Buscalioni, Rafael; Chejne, Farid
2018-02-01
Density Functional Theory (DFT) is a successful and well-established theory for the study of the structure of simple and complex fluids at equilibrium. The theory has been generalized to dynamical situations when the underlying dynamics is diffusive as in, for example, colloidal systems. However, there is no such a clear foundation for Dynamic DFT (DDFT) for the case of simple fluids in contact with solid walls. In this work, we derive DDFT for simple fluids by including not only the mass density field but also the momentum density field of the fluid. The standard projection operator method based on the Kawasaki-Gunton operator is used for deriving the equations for the average value of these fields. The solid is described as featureless under the assumption that all the internal degrees of freedom of the solid relax much faster than those of the fluid (solid elasticity is irrelevant). The fluid moves according to a set of non-local hydrodynamic equations that include explicitly the forces due to the solid. These forces are of two types, reversible forces emerging from the free energy density functional, and accounting for impenetrability of the solid, and irreversible forces that involve the velocity of both the fluid and the solid. These forces are localized in the vicinity of the solid surface. The resulting hydrodynamic equations should allow one to study dynamical regimes of simple fluids in contact with solid objects in isothermal situations.
Microfluidic devices, systems, and methods for quantifying particles using centrifugal force
Schaff, Ulrich Y.; Sommer, Gregory J.; Singh, Anup K.
2015-11-17
Embodiments of the present invention are directed toward microfluidic systems, apparatus, and methods for measuring a quantity of cells in a fluid. Examples include a differential white blood cell measurement using a centrifugal microfluidic system. A method may include introducing a fluid sample containing a quantity of cells into a microfluidic channel defined in part by a substrate. The quantity of cells may be transported toward a detection region defined in part by the substrate, wherein the detection region contains a density media, and wherein the density media has a density lower than a density of the cells and higher than a density of the fluid sample. The substrate may be spun such that at least a portion of the quantity of cells are transported through the density media. Signals may be detected from label moieties affixed to the cells.
Fluid inclusion geothermometry
Cunningham, C.G.
1977-01-01
Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.
Atomistic Modeling of the Fluid-Solid Interface in Simple Fluids
NASA Astrophysics Data System (ADS)
Hadjiconstantinou, Nicolas; Wang, Gerald
2017-11-01
Fluids can exhibit pronounced structuring effects near a solid boundary, typically manifested in a layered structure that has been extensively shown to directly affect transport across the interface. We present and discuss several results from molecular-mechanical modeling and molecular-dynamics (MD) simulations aimed at characterizing the structure of the first fluid layer directly adjacent to the solid. We identify a new dimensionless group - termed the Wall number - which characterizes the degree of fluid layering, by comparing the competing effects of wall-fluid interaction and thermal energy. We find that in the layering regime, several key features of the first layer layer - including its distance from the solid, its width, and its areal density - can be described using mean-field-energy arguments, as well as asymptotic analysis of the Nernst-Planck equation. For dense fluids, the areal density and the width of the first layer can be related to the bulk fluid density using a simple scaling relation. MD simulations show that these results are broadly applicable and robust to the presence of a second confining solid boundary, different choices of wall structure and thermalization, strengths of fluid-solid interaction, and wall geometries.
The fluid dynamic approach to equidistribution methods for grid generation and adaptation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delzanno, Gian Luca; Finn, John M
2009-01-01
The equidistribution methods based on L{sub p} Monge-Kantorovich optimization [Finn and Delzanno, submitted to SISC, 2009] and on the deformation [Moser, 1965; Dacorogna and Moser, 1990, Liao and Anderson, 1992] method are analyzed primarily in the context of grid generation. It is shown that the first class of methods can be obtained from a fluid dynamic formulation based on time-dependent equations for the mass density and the momentum density, arising from a variational principle. In this context, deformation methods arise from a fluid formulation by making a specific assumption on the time evolution of the density (but with some degreemore » of freedom for the momentum density). In general, deformation methods do not arise from a variational principle. However, it is possible to prescribe an optimal deformation method, related to L{sub 1} Monge-Kantorovich optimization, by making a further assumption on the momentum density. Some applications of the L{sub p} fluid dynamic formulation to imaging are also explored.« less
Continuous blood densitometry - Fluid shifts after graded hemorrhage in animals
NASA Technical Reports Server (NTRS)
Hinghofer-Szalkay, H.
1986-01-01
Rapid fluid shifts in four pigs and two dogs subjected to graded hemorrhage are investigated. Arterial blood density (BD), mean arterial pressure (MAP), central venous pressure (CVP), arterial plasma density (PD), hematocrit (Hct) and erythrocyte density were measured. The apparatus and mechancial oscillator technique for measuring density are described. Fluid shifts between red blood cells and blood plasma and alterations in the whole-body-to-large vessel Hct, F(cell) are studied using two models. The bases of the model calculations are discussed. A decrease in MAP, CVP, and BP is detected at the beginning of hemorrhaging; continued bleeding results in further BD decrease correlating with volume displacement. The data reveal that at 15 ml/kg blood loss the mean PD and BD dropped by 0.99 + or - 0.15 and 2.42 + or 0.26 g/liter, respectively, and the Hct dropped by 2.40 + or 0.47 units. The data reveal that inward-shifted fluid has a higher density than normal ultrafiltrate and/or there is a rise in the F(cell) ratio. It is noted that rapid fluid replacement ranged from 5.8 + or - 0.8 to 10.6 + or - 2.0 percent of the initial plasma volume.
Amniotic fluid index predicts the relief of variable decelerations after amnioinfusion bolus.
Spong, C Y; McKindsey, F; Ross, M G
1996-10-01
Our purpose was to determine whether intrapartum amniotic fluid index before amnioinfusion can be used to predict response to therapeutic amnioinfusion. Intrapartum patients (n = 85) with repetitive variable decelerations in fetal heart rate that necessitated amnioinfusion (10 ml/min for 60 minutes) underwent determination of amniotic fluid index before and after bolus amnioinfusion. The fetal heart tracing was scored (scorer blinded to amniotic fluid index values) for number and characteristics of variable decelerations before and 1 hour after initiation of amnioinfusion. The amnioinfusion was considered successful if it resulted in a decrease of > or = 50% in total number of variable decelerations or a decrease of > or = 50% in the rate of atypical or severe variable decelerations after administration of the bolus. Spontaneous vaginal births before completion of administration of the bolus (n = 18) were excluded from analysis. The probability of success of amnioinfusion in relation to amniotic fluid index was analyzed with the chi(2) test for progressive sequence. The mean amniotic fluid index before amnioinfusion was 6.2 +/- 3.3 cm. An amniotic fluid index of < or = 5 cm was present in 40% of patients (27/67), and an amniotic fluid index of < or = 8 cm was present in 72% of patients (48/67). The probability of success of amnioinfusion decreased with increasing amniotic fluid index before amnioinfusion (76% [16/21] when initial amniotic fluid index was 0 to 4 cm, 63% [17/27] when initial amniotic fluid index was 4 to 8 cm, 44% [7/16] when initial amniotic fluid index was 8 to 12 cm, and 33% [1/3] when initial amniotic fluid index was > 12 cm, p = 0.03). The incidence of nuchal cords or true umbilical cord knots increased in relation to amniotic fluid index before amnioinfusion. Amniotic fluid index before amnioinfusion can be used to predict the success of amnioinfusion for relief of variable decelerations in fetal heart rate. Failure of amnioinfusion at a high amniotic fluid index before amnioinfusion may be explained by the increased prevalence of nuchal cords or true knots in the umbilical cord.
Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid
NASA Astrophysics Data System (ADS)
Felderhof, B. U.
2015-02-01
The self-propulsion of a sphere immersed in a polar liquid or ferrofluid is studied on the basis of ferrohydrodynamics. In the electrical case an oscillating charge density located inside the sphere generates an electrical field that polarizes the fluid. The lag of polarization with respect to the electrical field due to relaxation generates a time-independent electrical torque density acting on the fluid, causing it to move. The resulting propulsion velocity of the sphere is calculated in perturbation theory to second order in powers of the charge density.
Documentation of the seawater intrusion (SWI2) package for MODFLOW
Bakker, Mark; Schaars, Frans; Hughes, Joseph D.; Langevin, Christian D.; Dausman, Alyssa M.
2013-01-01
The SWI2 Package is the latest release of the Seawater Intrusion (SWI) Package for MODFLOW. The SWI2 Package allows three-dimensional vertically integrated variable-density groundwater flow and seawater intrusion in coastal multiaquifer systems to be simulated using MODFLOW-2005. Vertically integrated variable-density groundwater flow is based on the Dupuit approximation in which an aquifer is vertically discretized into zones of differing densities, separated from each other by defined surfaces representing interfaces or density isosurfaces. The numerical approach used in the SWI2 Package does not account for diffusion and dispersion and should not be used where these processes are important. The resulting differential equations are equivalent in form to the groundwater flow equation for uniform-density flow. The approach implemented in the SWI2 Package allows density effects to be incorporated into MODFLOW-2005 through the addition of pseudo-source terms to the groundwater flow equation without the need to solve a separate advective-dispersive transport equation. Vertical and horizontal movement of defined density surfaces is calculated separately using a combination of fluxes calculated through solution of the groundwater flow equation and a simple tip and toe tracking algorithm. Use of the SWI2 Package in MODFLOW-2005 only requires the addition of a single additional input file and modification of boundary heads to freshwater heads referenced to the top of the aquifer. Fluid density within model layers can be represented using zones of constant density (stratified flow) or continuously varying density (piecewise linear in the vertical direction) in the SWI2 Package. The main advantage of using the SWI2 Package instead of variable-density groundwater flow and dispersive solute transport codes, such as SEAWAT and SUTRA, is that fewer model cells are required for simulations using the SWI2 Package because every aquifer can be represented by a single layer of cells. This reduction in number of required model cells and the elimination of the need to solve the advective-dispersive transport equation results in substantial model run-time savings, which can be large for regional aquifers. The accuracy and use of the SWI2 Package is demonstrated through comparison with existing exact solutions and numerical solutions with SEAWAT. Results for an unconfined aquifer are also presented to demonstrate application of the SWI2 Package to a large-scale regional problem.
Study of the hard-disk system at high densities: the fluid-hexatic phase transition.
Mier-Y-Terán, Luis; Machorro-Martínez, Brian Ignacio; Chapela, Gustavo A; Del Río, Fernando
2018-06-21
Integral equations of uniform fluids have been considered unable to predict any characteristic feature of the fluid-solid phase transition, including the shoulder that arises in the second peak of the fluid-phase radial distribution function, RDF, of hard-core systems obtained by computer simulations, at fluid densities very close to the structural two-step phase transition. This reasoning is based on the results of traditional integral approximations, like Percus-Yevick, PY, which does not show such a shoulder in hard-core systems, neither in two nor three dimensions. In this work, we present results of three Ansätze, based on the PY theory, that were proposed to remedy the lack of PY analytical solutions in two dimensions. This comparative study shows that one of those Ansätze does develop a shoulder in the second peak of the RDF at densities very close to the phase transition, qualitatively describing this feature. Since the shoulder grows into a peak at still higher densities, this integral equation approach predicts the appearance of an orientational order characteristic of the hexatic phase in a continuous fluid-hexatic phase transition.
Physical Properties of AZ91D Measured Using the Draining Crucible Method: Effect of SF6
NASA Astrophysics Data System (ADS)
Roach, Steven J.; Henein, Hani
2012-03-01
The draining crucible (DC) technique was used for measurements on AZ91D under Ar and SF6. The DC technique is a new method developed to simultaneously measure the physical properties of fluids, the density, surface tension, and viscosity. Based on the relationship between the height of a metal in a crucible and the outgoing flow rate, a multi-variable regression is used to calculate the values of these fluid properties. Experiments performed with AZ91D at temperatures from 923 K to 1173 K indicate that under argon, the surface tension (N · m-1) and density (kg · m-3) are [0.63 - 2.13 × 10-4 ( T - T L)] and [1656 - 0.158 ( T - T L)], respectively. The viscosity (Pa · s) has been determined to be [1.455 × 10-3 - 1.209 × 10-5 ( T - T L)] over the temperature range from 921 K to 967 K superheat. Above 967 K, the viscosity of the alloy under argon seems to be constant at (2.66 × 10-4 ± 8.67 × 10-5) Pa · s. SF6 reduces the surface tension of AZ91D.
Supercritical fluid reverse micelle separation
Fulton, John L.; Smith, Richard D.
1993-01-01
A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.
Supercritical fluid reverse micelle separation
Fulton, J.L.; Smith, R.D.
1993-11-30
A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.
Wang, X.; Chou, I-Ming; Hu, W.; Burruss, Robert; Sun, Q.; Song, Y.
2011-01-01
Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (Δ, cm−1) and CO2 density (ρ, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2fluids having densities between 0.21 and 0.75 g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060 g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9 cm−1. The relationship between the CO2 Fermi diad split and density can be represented by: ρ = 47513.64243 − 1374.824414 × Δ + 13.25586152 × Δ2 − 0.04258891551 × Δ3(r2 = 0.99835, σ = 0.0253 g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined.
Solid H2 in the interstellar medium
NASA Astrophysics Data System (ADS)
Füglistaler, A.; Pfenniger, D.
2018-06-01
Context. Condensation of H2 in the interstellar medium (ISM) has long been seen as a possibility, either by deposition on dust grains or thanks to a phase transition combined with self-gravity. H2 condensation might explain the observed low efficiency of star formation and might help to hide baryons in spiral galaxies. Aims: Our aim is to quantify the solid fraction of H2 in the ISM due to a phase transition including self-gravity for different densities and temperatures in order to use the results in more complex simulations of the ISM as subgrid physics. Methods: We used molecular dynamics simulations of fluids at different temperatures and densities to study the formation of solids. Once the simulations reached a steady state, we calculated the solid mass fraction, energy increase, and timescales. By determining the power laws measured over several orders of magnitude, we extrapolated to lower densities the higher density fluids that can be simulated with current computers. Results: The solid fraction and energy increase of fluids in a phase transition are above 0.1 and do not follow a power law. Fluids out of a phase transition are still forming a small amount of solids due to chance encounters of molecules. The solid mass fraction and energy increase of these fluids are linearly dependent on density and can easily be extrapolated. The timescale is below one second, the condensation can be considered instantaneous. Conclusions: The presence of solid H2 grains has important dynamic implications on the ISM as they may be the building blocks for larger solid bodies when gravity is included. We provide the solid mass fraction, energy increase, and timescales for high density fluids and extrapolation laws for lower densities.
Mathematical Model of Solidification During Electroslag Casting of Pilger Roll
NASA Astrophysics Data System (ADS)
Liu, Fubin; Li, Huabing; Jiang, Zhouhua; Dong, Yanwu; Chen, Xu; Geng, Xin; Zang, Ximin
A mathematical model for describing the interaction of multiple physical fields in slag bath and solidification process in ingot during pilger roll casting with variable cross-section which is produced by the electroslag casting (ESC) process was developed. The commercial software ANSYS was applied to calculate the electromagnetic field, magnetic driven fluid flow, buoyancy-driven flow and heat transfer. The transportation phenomenon in slag bath and solidification characteristic of ingots are analyzed for variable cross-section with variable input power under the conditions of 9Cr3NiMo steel and 70%CaF2 - 30%Al2O3 slag system. The calculated results show that characteristic of current density distribution, velocity patterns and temperature profiles in the slag bath and metal pool profiles in ingot have distinct difference at variable cross-sections due to difference of input power and cooling condition. The pool shape and the local solidification time (LST) during Pilger roll ESC process are analyzed.
Variable pressure power cycle and control system
Goldsberry, Fred L.
1984-11-27
A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.
Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?
NASA Astrophysics Data System (ADS)
Evonuk, M.; Samuel, H.
2012-04-01
Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.
Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?
NASA Astrophysics Data System (ADS)
Evonuk, M.; Samuel, H.
2012-12-01
Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.
Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?
NASA Astrophysics Data System (ADS)
Evonuk, M.; Samuel, H.
2012-02-01
Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratificationmay be non-negligible.
Adsorption behaviors of supercritical Lennard-Jones fluid in slit-like pores.
Li, Yingfeng; Cui, Mengqi; Peng, Bo; Qin, Mingde
2018-05-18
Understanding the adsorption behaviors of supercritical fluid in confined space is pivotal for coupling the supercritical technology and the membrane separation technology. Based on grand canonical Monte Carlo simulations, the adsorption behaviors of a Lennard-Jones (LJ) fluid in slit-like pores at reduced temperatures over the critical temperature, T c * = 1.312, are investigated; and impacts of the wall-fluid interactions, the pore width, and the temperature are taken into account. It is found that even if under supercritical conditions, the LJ fluid can undergo a "vapor-liquid phase transition" in confined space, i.e., the adsorption density undergoes a sudden increase with the bulk density. A greater wall-fluid attractive potential, a smaller pore width, and a lower temperature will bring about a stronger confinement effect. Besides, the adsorption pressure reaches a local minimum when the bulk density equals to a certain value, independent of the wall-fluid potential or pore width. The insights in this work have both practical and theoretical significances. Copyright © 2018 Elsevier Inc. All rights reserved.
An EQT-cDFT approach to determine thermodynamic properties of confined fluids.
Mashayak, S Y; Motevaselian, M H; Aluru, N R
2015-06-28
We present a continuum-based approach to predict the structure and thermodynamic properties of confined fluids at multiple length-scales, ranging from a few angstroms to macro-meters. The continuum approach is based on the empirical potential-based quasi-continuum theory (EQT) and classical density functional theory (cDFT). EQT is a simple and fast approach to predict inhomogeneous density and potential profiles of confined fluids. We use EQT potentials to construct a grand potential functional for cDFT. The EQT-cDFT-based grand potential can be used to predict various thermodynamic properties of confined fluids. In this work, we demonstrate the EQT-cDFT approach by simulating Lennard-Jones fluids, namely, methane and argon, confined inside slit-like channels of graphene. We show that the EQT-cDFT can accurately predict the structure and thermodynamic properties, such as density profiles, adsorption, local pressure tensor, surface tension, and solvation force, of confined fluids as compared to the molecular dynamics simulation results.
Effective use of surface-water management to control saltwater intrusion
NASA Astrophysics Data System (ADS)
Hughes, J. D.; White, J.
2012-12-01
The Biscayne aquifer in southeast Florida is susceptible to saltwater intrusion and inundation from rising sea-level as a result of high groundwater withdrawal rates and low topographic relief. Groundwater levels in the Biscayne aquifer are managed by an extensive canal system that is designed to control flooding, supply recharge to municipal well fields, and control saltwater intrusion. We present results from an integrated surface-water/groundwater model of a portion of the Biscayne aquifer to evaluate the ability of the existing managed surface-water control network to control saltwater intrusion. Surface-water stage and flow are simulated using a hydrodynamic model that solves the diffusive-wave approximation of the depth-integrated shallow surface-water equations. Variable-density groundwater flow and fluid density are solved using the Oberbeck--Boussinesq approximation of the three-dimensional variable-density groundwater flow equation and a sharp interface approximation, respectively. The surface-water and variable-density groundwater domains are implicitly coupled during each Picard iteration. The Biscayne aquifer is discretized into a multi-layer model having a 500-m square horizontal grid spacing. All primary and secondary surface-water features in the active model domain are discretized into segments using the 500-m square horizontal grid. A 15-year period of time is simulated and the model includes 66 operable surface-water control structures, 127 municipal production wells, and spatially-distributed daily internal and external hydrologic stresses. Numerical results indicate that the existing surface-water system can be effectively used in many locations to control saltwater intrusion in the Biscayne aquifer resulting from increases in groundwater withdrawals or sea-level rise expected to occur over the next 25 years. In other locations, numerical results indicate surface-water control structures and/or operations may need to be modified to control saltwater intrusion.
Measurement of average density and relative volumes in a dispersed two-phase fluid
Sreepada, Sastry R.; Rippel, Robert R.
1992-01-01
An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.
Charged anisotropic matter with linear or nonlinear equation of state
NASA Astrophysics Data System (ADS)
Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi
2010-08-01
Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua’s method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (1019C) and maximum electric field intensities are very large (1023-1024statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.
NASA Astrophysics Data System (ADS)
Fattah, K. A.; Lashin, A.
2016-05-01
Drilling fluid density/type is an important factor in drilling and production operations. Most of encountered problems during rotary drilling are related to drilling mud types and weights. This paper aims to investigate the effect of mud weight on filter cake properties and formation damage through two experimental approaches. In the first approach, seven water-based drilling fluid samples with same composition are prepared with different densities (9.0-12.0 lb/gal) and examined to select the optimum mud weight that has less damage. The second approach deals with investigating the possible effect of the different weighting materials (BaSO4 and CaCO3) on filter cake properties. High pressure/high temperature loss tests and Scanning Electron Microscopy (SEM) analyses were carried out on the filter cake (two selected samples). Data analysis has revealed that mud weigh of 9.5 lb/gal has the less reduction in permeability of ceramic disk, among the seven used mud densities. Above 10.5 ppg the effect of the mud weight density on formation damage is stabilized at constant value. Fluids of CaCO3-based weighting material, has less reduction in the porosity (9.14%) and permeability (25%) of the filter disk properties than the BaSO4-based fluid. The produced filter cake porosity increases (from 0.735 to 0.859) with decreasing of fluid density in case of drilling samples of different densities. The filtration loss tests indicated that CaCO3 filter cake porosity (0.52) is less than that of the BaSO4 weighted material (0.814). The thickness of the filter cake of the BaSO4-based fluid is large and can cause some problems. The SEM analysis shows that some major elements do occur on the tested samples (Ca, Al, Si, and Ba), with dominance of Ca on the expense of Ba for the CaCO3 fluid sample and vice versa. The less effect of 9.5 lb/gal mud sample is reflected in the well-produced inter-particle pore structure and relatively crystal size. A general recommendation is given to minimize the future utilization of Barium Sulfate as a drilling fluid.
Micromechanical transient sensor for measuring viscosity and density of a fluid
Thundat, Thomas G.; Oden, Patrick I.; Warmack, Robert J.; Finot, Eric Laurent
2001-01-01
A method and apparatus for measuring the viscosity and/or specific density of a fluid utilizes a microcantilever vibrated in the analyte fluid. The source of vibration is switched on and off and the transient behavior or decay in amplitude of the vibration is monitored. The method is particularly useful for the measurement of process conditions in remote locations in real time.
Ishida, Fujimaro; Tsuji, Masanori; Furukawa, Kazuhiro; Shiba, Masato; Yasuda, Ryuta; Toma, Naoki; Sakaida, Hiroshi; Suzuki, Hidenori
2017-01-01
Objective This study aimed to predict recurrence after coil embolization of unruptured cerebral aneurysms with computational fluid dynamics (CFD) using porous media modeling (porous media CFD). Method A total of 37 unruptured cerebral aneurysms treated with coiling were analyzed using follow-up angiograms, simulated CFD prior to coiling (control CFD), and porous media CFD. Coiled aneurysms were classified into stable or recurrence groups according to follow-up angiogram findings. Morphological parameters, coil packing density, and hemodynamic variables were evaluated for their correlations with aneurysmal recurrence. We also calculated residual flow volumes (RFVs), a novel hemodynamic parameter used to quantify the residual aneurysm volume after simulated coiling, which has a mean fluid domain > 1.0 cm/s. Result Follow-up angiograms showed 24 aneurysms in the stable group and 13 in the recurrence group. Mann-Whitney U test demonstrated that maximum size, dome volume, neck width, neck area, and coil packing density were significantly different between the two groups (P < 0.05). Among the hemodynamic parameters, aneurysms in the recurrence group had significantly larger inflow and outflow areas in the control CFD and larger RFVs in the porous media CFD. Multivariate logistic regression analyses demonstrated that RFV was the only independently significant factor (odds ratio, 1.06; 95% confidence interval, 1.01–1.11; P = 0.016). Conclusion The study findings suggest that RFV collected under porous media modeling predicts the recurrence of coiled aneurysms. PMID:29284057
Papaioannou, Vasileios; Lafitte, Thomas; Avendaño, Carlos; Adjiman, Claire S; Jackson, George; Müller, Erich A; Galindo, Amparo
2014-02-07
A generalization of the recent version of the statistical associating fluid theory for variable range Mie potentials [Lafitte et al., J. Chem. Phys. 139, 154504 (2013)] is formulated within the framework of a group contribution approach (SAFT-γ Mie). Molecules are represented as comprising distinct functional (chemical) groups based on a fused heteronuclear molecular model, where the interactions between segments are described with the Mie (generalized Lennard-Jonesium) potential of variable attractive and repulsive range. A key feature of the new theory is the accurate description of the monomeric group-group interactions by application of a high-temperature perturbation expansion up to third order. The capabilities of the SAFT-γ Mie approach are exemplified by studying the thermodynamic properties of two chemical families, the n-alkanes and the n-alkyl esters, by developing parameters for the methyl, methylene, and carboxylate functional groups (CH3, CH2, and COO). The approach is shown to describe accurately the fluid-phase behavior of the compounds considered with absolute average deviations of 1.20% and 0.42% for the vapor pressure and saturated liquid density, respectively, which represents a clear improvement over other existing SAFT-based group contribution approaches. The use of Mie potentials to describe the group-group interaction is shown to allow accurate simultaneous descriptions of the fluid-phase behavior and second-order thermodynamic derivative properties of the pure fluids based on a single set of group parameters. Furthermore, the application of the perturbation expansion to third order for the description of the reference monomeric fluid improves the predictions of the theory for the fluid-phase behavior of pure components in the near-critical region. The predictive capabilities of the approach stem from its formulation within a group-contribution formalism: predictions of the fluid-phase behavior and thermodynamic derivative properties of compounds not included in the development of group parameters are demonstrated. The performance of the theory is also critically assessed with predictions of the fluid-phase behavior (vapor-liquid and liquid-liquid equilibria) and excess thermodynamic properties of a variety of binary mixtures, including polymer solutions, where very good agreement with the experimental data is seen, without the need for adjustable mixture parameters.
General dynamical density functional theory for classical fluids.
Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim
2012-09-21
We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, M.G.; Boucher, T.J.
1998-11-10
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, M.G.
1998-02-10
A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, Marcos German; Boucher, Timothy J
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, Marcos German
1998-01-01
A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Spectroscopic Measurement Techniques for Aerospace Flows
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Bathel, Brett F.; Johansen, Craig T.; Cutler, Andrew D.; Hurley, Samantha
2014-01-01
The conditions that characterize aerospace flows are so varied, that a single diagnostic technique is not sufficient for its measurement. Fluid dynamists use knowledge of similarity to help categorize and focus on different flow conditions. For example, the Reynolds number represents the ratio of inertial to viscous forces in a flow. When the velocity scales, length scales, and gas density are large and the magnitude of the molecular viscosity is low, the Reynolds number becomes large. This corresponds to large scale vehicles (e.g Airbus A380), fast moving objects (e.g. artillery projectiles), vehicles in dense fluids (e.g. submarine in water), or flows with low dynamic viscosity (e.g. skydiver in air). In each of these cases, the inertial forces dominate viscous forces, and unsteady turbulent fluctuations in the flow variables are observed. In contrast, flows with small length scales (e.g. dispersion of micro-particles in a solid rocket nozzle), slow moving objects (e.g. micro aerial vehicles), flows with low density gases (e.g. atmospheric re-entry), or fluids with a large magnitude of viscosity (e.g. engine coolant flow), all have low Reynolds numbers. In these cases, viscous forces become very important and often the flows can be steady and laminar. The Mach number, which is the ratio of the velocity to the speed of sound in the medium, also helps to differentiate types of flows. At very low Mach numbers, acoustic waves travel much faster than the object, and the flow can be assumed to be incompressible (e.g. Cessna 172 aircraft). As the object speed approaches the speed of sound, the gas density can become variable (e.g. flow over wing of Learjet 85). When the object speed is higher than the speed of sound (Ma > 1), the presences of shock waves and other gas dynamic features can become important to the vehicle performance (e.g. SR-71 Blackbird). In the hypersonic flow regime (Ma > 5), large changes in temperature begin to affect flow properties, causing real-gas effects to occur (e.g. X-43 Scramjet). At even higher Mach numbers, chemistry and nonequilibrium effects come into play (e.g. Startdust re-entry capsule), further complicating the measurement. These limits can be predicted by calculating the ratio of chemical and thermal relaxation time to the flow time scales. Other non-dimensional numbers can be used to further differentiate types of aerospace flows.
multiUQ: An intrusive uncertainty quantification tool for gas-liquid multiphase flows
NASA Astrophysics Data System (ADS)
Turnquist, Brian; Owkes, Mark
2017-11-01
Uncertainty quantification (UQ) can improve our understanding of the sensitivity of gas-liquid multiphase flows to variability about inflow conditions and fluid properties, creating a valuable tool for engineers. While non-intrusive UQ methods (e.g., Monte Carlo) are simple and robust, the cost associated with these techniques can render them unrealistic. In contrast, intrusive UQ techniques modify the governing equations by replacing deterministic variables with stochastic variables, adding complexity, but making UQ cost effective. Our numerical framework, called multiUQ, introduces an intrusive UQ approach for gas-liquid flows, leveraging a polynomial chaos expansion of the stochastic variables: density, momentum, pressure, viscosity, and surface tension. The gas-liquid interface is captured using a conservative level set approach, including a modified reinitialization equation which is robust and quadrature free. A least-squares method is leveraged to compute the stochastic interface normal and curvature needed in the continuum surface force method for surface tension. The solver is tested by applying uncertainty to one or two variables and verifying results against the Monte Carlo approach. NSF Grant #1511325.
The way from microscopic many-particle theory to macroscopic hydrodynamics.
Haussmann, Rudolf
2016-03-23
Starting from the microscopic description of a normal fluid in terms of any kind of local interacting many-particle theory we present a well defined step by step procedure to derive the hydrodynamic equations for the macroscopic phenomena. We specify the densities of the conserved quantities as the relevant hydrodynamic variables and apply the methods of non-equilibrium statistical mechanics with projection operator techniques. As a result we obtain time-evolution equations for the hydrodynamic variables with three kinds of terms on the right-hand sides: reversible, dissipative and fluctuating terms. In their original form these equations are completely exact and contain nonlocal terms in space and time which describe nonlocal memory effects. Applying a few approximations the nonlocal properties and the memory effects are removed. As a result we find the well known hydrodynamic equations of a normal fluid with Gaussian fluctuating forces. In the following we investigate if and how the time-inversion invariance is broken and how the second law of thermodynamics comes about. Furthermore, we show that the hydrodynamic equations with fluctuating forces are equivalent to stochastic Langevin equations and the related Fokker-Planck equation. Finally, we investigate the fluctuation theorem and find a modification by an additional term.
Axisymmetric contour dynamics for buoyant vortex rings
NASA Astrophysics Data System (ADS)
Chang, Ching; Llewellyn Smith, Stefan
2017-11-01
Vortex rings are important in many fluid flows in engineering and environmental applications. A family of steady propagating vortex rings including thin-core rings and Hill's spherical vortex was obtained by Norbury (1973). However, the dynamics of vortex rings in the presence of buoyancy has not been investigated yet in detail. When the core of a ring is thin, we may formulate reduced equations using momentum balance for vortex filaments, but that is not the case for ``fat'' rings. In our study, we use contour dynamics to study the time evolution of axisymmetric vortex rings when the density of the fluid inside the ring differs from that of the ambient. Axisymmetry leads to an almost-conserved material variable when the Boussinesq approximation is made. A set of integro-differential equations is solved numerically for these buoyant vortex rings. The same physical settings are also used to run a DNS code and compare to the results from contour dynamics.
Bárcenas, M; Reyes, Y; Romero-Martínez, A; Odriozola, G; Orea, P
2015-02-21
Coexistence and interfacial properties of a triangle-well (TW) fluid are obtained with the aim of mimicking the Lennard-Jones (LJ) potential and approach the properties of noble gases. For this purpose, the scope of the TW is varied to match vapor-liquid densities and surface tension. Surface tension and coexistence curves of TW systems with different ranges were calculated with replica exchange Monte Carlo and compared to those data previously reported in the literature for truncated and shifted (STS), truncated (ST), and full Lennard-Jones (full-LJ) potentials. We observed that the scope of the TW potential must be increased to approach the STS, ST, and full-LJ properties. In spite of the simplicity of TW expression, a remarkable agreement is found. Furthermore, the variable scope of the TW allows for a good match of the experimental data of argon and xenon.
NASA Astrophysics Data System (ADS)
Zhang, Sai; Xu, Bai-qiang; Cao, Wenwu
2018-03-01
We have investigated low-frequency forbidden transmission (LFT) of acoustic waves with frequency lower than the first Bragg bandgap in a solid-fluid superlattice (SFSL). LFT is formed when the acoustic planar wave impinges on the interface of a SFSL within a certain angle range. However, for the SFSL comprised of metallic material and water, the angle range of LFT is extremely narrow, which restricts its practical applications. The variation characteristics of the angle range have been comprehensively studied here by the control variable method. The results suggest that the filling ratio, layer number, wave velocity, and mass density of the constituent materials have a significant impact on the angle range. Based on our results, an effective strategy for obtaining LFT with a broad angle range is provided, which will be useful for potential applications of LFT in various devices, such as low frequency filters and subwavelength one-way diodes.
Fluid transition layer between rigid solute and liquid solvent: is there depletion or enrichment?
Djikaev, Yuri S; Ruckenstein, Eli
2016-03-21
The fluid layer between solute and liquid solvent is studied by combining the density functional theory with the probabilistic hydrogen bond model. This combination allows one to obtain the equilibrium distribution of fluid molecules, taking into account the hydrogen bond contribution to the external potential whereto they are subjected near the solute. One can find the effective width of the fluid solvent-solute transition layer and fluid average density in that layer, and determine their dependence on temperature, solvent-solute affinity, vicinal hydrogen bond (hb) energy alteration ratio, and solute radius. Numerical calculations are performed for the solvation of a plate and spherical solutes of four different radii in two model solvents (associated liquid and non-associated one) in the temperature range from 293 K to 333 K for various solvent-solute affinities and hydrogen bond energy alteration ratios. The predictions of our model for the effective width and average density of the transition layer are consistent with experiments and simulations. The small-to-large crossover lengthscale for hydrophobic hydration is expected to be about 3-5 nm. Remarkably, characterizing the transition layer with the average density, one can observe that for small hydrophobes, the transition layer becomes enriched with rather than depleted of fluid when the solvent-solute affinity and hb-energy alteration ratio become large enough. The boundary values of solvent-solute affinity and hb-energy alteration ratio, needed for the "depletion-to-enrichment" crossover (in the smoothed density sense), are predicted to decrease with increasing temperature.
NASA Technical Reports Server (NTRS)
Yoda, M.; Bailey, B. C.
2000-01-01
On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.
Computerized tomography calibrator
NASA Technical Reports Server (NTRS)
Engel, Herbert P. (Inventor)
1991-01-01
A set of interchangeable pieces comprising a computerized tomography calibrator, and a method of use thereof, permits focusing of a computerized tomographic (CT) system. The interchangeable pieces include a plurality of nestable, generally planar mother rings, adapted for the receipt of planar inserts of predetermined sizes, and of predetermined material densities. The inserts further define openings therein for receipt of plural sub-inserts. All pieces are of known sizes and densities, permitting the assembling of different configurations of materials of known sizes and combinations of densities, for calibration (i.e., focusing) of a computerized tomographic system through variation of operating variables thereof. Rather than serving as a phanton, which is intended to be representative of a particular workpiece to be tested, the set of interchangeable pieces permits simple and easy standardized calibration of a CT system. The calibrator and its related method of use further includes use of air or of particular fluids for filling various openings, as part of a selected configuration of the set of pieces.
Ill-posedness of Dynamic Equations of Compressible Granular Flow
NASA Astrophysics Data System (ADS)
Shearer, Michael; Gray, Nico
2017-11-01
We introduce models for 2-dimensional time-dependent compressible flow of granular materials and suspensions, based on the rheology of Pouliquen and Forterre. The models include density dependence through a constitutive equation in which the density or volume fraction of solid particles with material density ρ* is taken as a function of an inertial number I: ρ = ρ * Φ(I), in which Φ(I) is a decreasing function of I. This modelling has different implications from models relying on critical state soil mechanics, in which ρ is treated as a variable in the equations, contributing to a flow rule. The analysis of the system of equations builds on recent work of Barker et al in the incompressible case. The main result is the identification of a criterion for well-posedness of the equations. We additionally analyze a modification that applies to suspensions, for which the rheology takes a different form and the inertial number reflects the role of the fluid viscosity.
Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence
NASA Astrophysics Data System (ADS)
Cheminet, Adam; Blanquart, Guillaume
2011-11-01
Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.
Zeno: Critical Fluid Light Scattering Experiment
NASA Technical Reports Server (NTRS)
Gammon, Robert W.; Shaumeyer, J. N.; Briggs, Matthew E.; Boukari, Hacene; Gent, David A.; Wilkinson, R. Allen
1996-01-01
The Zeno (Critical Fluid Light Scattering) experiment is the culmination of a long history of critical fluid light scattering in liquid-vapor systems. The major limitation to making accurate measurements closer to the critical point was the density stratification which occurs in these extremely compressible fluids. Zeno was to determine the critical density fluctuation decay rates at a pair of supplementary angles in the temperature range 100 mK to 100 (mu)K from T(sub c) in a sample of xenon accurately loaded to the critical density. This paper gives some highlights from operating the instrument on two flights March, 1994 on STS-62 and February, 1996 on STS-75. More detail of the experiment Science Requirements, the personnel, apparatus, and results are displayed on the Web homepage at http://www.zeno.umd.edu.
Code of Federal Regulations, 2013 CFR
2013-07-01
... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...
Code of Federal Regulations, 2014 CFR
2014-07-01
... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...
Code of Federal Regulations, 2012 CFR
2012-07-01
... multiplying the density of the small volume NAF-cuttings discharges (ρsvd) times the volume of the small...-cuttings discharges (kg) ρsvd = density of the small volume NAF-cuttings discharges (kg/bbl) VSVD = volume of the small volume NAF-cuttings discharges (bbl) The density of the small volume NAF-cuttings...
NASA Astrophysics Data System (ADS)
Márquez-Zavalía, M. Florencia; Heinrich, Christoph A.
2016-10-01
Alto de la Blenda is a ˜6.6-Ma intermediate-sulphidation epithermal vein system in the Farallón Negro Volcanic Complex, which also hosts the 7.1-Ma porphyry-Cu-Au deposit of Bajo de la Alumbrera. The epithermal vein system is characterised by a large extent and continuity (2 km × 400 m open to depth × 6 m maximum width) and an average gold grade of ˜8 g/t. The vein is best developed within an intrusion of a fine-grained equigranular monzonite, interpreted as the central conduit of a stratovolcano whose extrusive activity ended prior to porphyry-Cu-Au emplacement at Bajo de la Alumbrera, which is in turn cut by minor epithermal veins. The Alto de la Blenda vein consists predominantly of variably Mn-rich carbonates and quartz, with a few percent of pyrite, sphalerite, galena and other sulphide and sulphosalt minerals. Four phases of vein opening, hydrothermal mineralisation and repeated brecciation can be correlated between different vein segments. Stages 2 and 3 contain the greatest fraction of sulphide and gold. They are separated by the emplacement of a polymictic breccia containing clasts of quartz feldspar porphyry as well as basement rocks. Fluid inclusions in quartz related to stages 2 to 4 are liquid rich with 2-4 wt% NaCl(eq). They homogenise between 160 and 300 °C, with very consistent values within each assemblage. Vapour inclusions are practically absent in the epithermal vein. Quartz fragments in the polymictic breccia contain inclusions of intermediate to vapour-like density and similar low salinity (˜3 wt% NaCl(eq)), besides rare brine inclusions containing halite. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of epithermal inclusions indicate high concentrations of K, Fe, As, Sb, Cs, and Pb that significantly vary within and through subsequent vein stages. Careful consideration of detection limits for individual inclusions shows high gold concentrations of ˜0.5 to 3 ppm dissolved in the ore fluid, which contains variably high sulphur concentrations in excess over Fe and other chalcophile metals. Compositional variations are interpreted to reflect cooling and contraction of lower-density magmatic fluids at depth, like those preserved in porphyry clasts that were mechanically transported up by the polymictic breccia. Ore mineral precipitation from the magmatic fluid occurred by further cooling and possibly minor mixing with surface-derived water, leading to sulphide saturation, de-sulphidation of the magmatic fluid and consequent gold precipitation. The absence of flash boiling and/or reduction by carbonaceous host rocks has led to relatively modest but constant gold grades in the carbonate-base metal-gold veins of Alto de la Blenda.
NASA Technical Reports Server (NTRS)
Siegel, R.; Goldstein, M. E.
1972-01-01
An analytical solution is obtained for flow and heat transfer in a three-dimensional porous medium. Coolant from a reservoir at constant pressure and temperature enters one portion of the boundary of the medium and exits through another portion of the boundary which is at a specified uniform temperature and uniform pressure. The variation with temperature of coolant density and viscosity are both taken into account. A general solution is found that provides the temperature distribution in the medium and the mass and heat fluxes along the portion of the surface through which the coolant is exiting.
NASA Astrophysics Data System (ADS)
Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio
2017-04-01
Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau rheological equation is well approximated by the more tractable truncated power-law model. Results for flow of such fluids between parallel walls are already available. This study extends the adoption of the truncated power-law model to variable aperture fractures, with the aim of understanding the joint influence of rheology and aperture spatial variability. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and perpendicular to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results are then compared with those obtained for pure power-law fluids for different combinations of model parameters. It is seen that the adoption of the pure power law model leads to significant overestimation of the flowrate with respect to the truncated model, more so for large external pressure gradient and/or aperture variability.
NASA Astrophysics Data System (ADS)
Birdsell, D.; Rajaram, H.; Dempsey, D.; Viswanathan, H.
2014-12-01
Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated from an environmental and public health perspective and to understand formation damage from an oil and gas production perspective. Upward pressure gradients, permeable pathways such as faults or improperly abandoned wellbores, and the density contrast of the HF fluid to the surrounding brine encourages upward HF fluid migration. In contrast, the very low shale permeability and the imbibition of water into partially-saturated shale may sequester much of the HF fluid. Using the Finite Element Heat and Mass Transfer Code (FEHM), single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore as flowback and produced water and how much reaches overlying aquifers; imbibition is calculated with a semi-analytical one-dimensional solution and treated as a sink term. The travel time for HF fluid to reach the shallow aquifers is highly dependent on the amount of water imbibed and the suction applied to the well. If imbibition rates and suction are small, the pressure transient due to injection and the density contrast allows rapid upward plume migration at early times. The density contrast diminishes considerably within tens to hundreds of years as mixing occurs. We present estimates of HF fluid migration to shallow aquifers during the first 1,000 years after hydraulic fracturing begins for ranges of subsurface properties.
Ding, Ding; Shen, Minhong; Liu, Xishi
2015-01-01
This study was undertaken to test the hypotheses that, due to gradual accumulation of dead erythrocytes and their ingested products resulting from repeated hemorrhage, older endometriomas (whitish in color) contain chocolate fluid with higher iron content than younger (brownish/blackish in color) ones with concomitant higher collagen content and more adhesions. We recruited 30 premenopausal women with histologically confirmed ovarian endometriomas and collected samples of their endometriotic lesions and chocolate fluid and measured the viscosity, density, and the concentration of total bilirubin, ferritin, and free iron of the chocolate fluid. We also evaluated the lesion color and adhesion scores. In addition, we performed Masson trichrome and Picro-Sirius red staining on all endometriotic cysts and evaluated the extent of fibrosis in the lesions. We found that fluids taken from white-colored endometriomas had significantly higher concentration of total bilirubin, ferritin, and free iron, respectively, than black/brown-colored ones. In addition, older cysts had fluids that had significantly higher density and viscosity. Fluid density correlated positively with the concentrations of total bilirubin, ferritin, and free iron. Older lesions had significantly more collagen content and higher adhesion scores. Taken together, these data supports the notion that older cysts, having experienced more bleeding episodes, contain chocolate fluid that is higher in viscosity, density, and iron content and higher fibrotic content than younger ones. This provides another piece of evidence that endometriotic lesions are wounds that undergo repeated injury and repair, resulting ultimately fibrotic lesions that are resistant to hormonal treatment. PMID:25676579
Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.
Das, Shankar P; Yoshimori, Akira
2013-10-01
Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.
Particle-bearing currents in uniform density and two-layer fluids
NASA Astrophysics Data System (ADS)
Sutherland, Bruce R.; Gingras, Murray K.; Knudson, Calla; Steverango, Luke; Surma, Christopher
2018-02-01
Lock-release gravity current experiments are performed to examine the evolution of a particle bearing flow that propagates either in a uniform-density fluid or in a two-layer fluid. In all cases, the current is composed of fresh water plus micrometer-scale particles, the ambient fluid is saline, and the current advances initially either over the surface as a hypopycnal current or at the interface of the two-layer fluid as a mesopycnal current. In most cases the tank is tilted so that the ambient fluid becomes deeper with distance from the lock. For hypopycnal currents advancing in a uniform density fluid, the current typically slows as particles rain out of the current. While the loss of particles alone from the current should increase the current's buoyancy and speed, in practice the current's speed decreases because the particles carry with them interstitial fluid from the current. Meanwhile, rather than settling on the sloping bottom of the tank, the particles form a hyperpycnal (turbidity) current that advances until enough particles rain out that the relatively less dense interstitial fluid returns to the surface, carrying some particles back upward. When a hypopycnal current runs over the surface of a two-layer fluid, the particles that rain out temporarily halt their descent as they reach the interface, eventually passing through it and again forming a hyperpycnal current. Dramatically, a mesopycnal current in a two-layer fluid first advances along the interface and then reverses direction as particles rain out below and fresh interstitial fluid rises above.
Quartz resonator fluid density and viscosity monitor
Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.
1998-01-01
A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.
Textured-surface quartz resonator fluid density and viscosity monitor
Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.
1998-08-25
A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.
NASA Astrophysics Data System (ADS)
Moritz, Katharina; Kleinrahm, Reiner; McLinden, Mark O.; Richter, Markus
2017-12-01
For the determination of dew-point densities and pressures of fluid mixtures, a new densimeter has been developed. The new apparatus is based on the well-established two-sinker density measurement principle with the additional capability of quantifying sorption effects. In the vicinity of the dew line, such effects cause a change in composition of the gas mixture under study, which can significantly distort accurate density measurements. The new experimental technique enables the accurate measurement of dew-point densities and pressures and the quantification of sorption effects at the same time.
Computing Thermal Effects of Cavitation in Cryogenic Liquids
NASA Technical Reports Server (NTRS)
Hosangadi, Ashvin; Ahuja, Vineet; Dash, Sanford M.
2005-01-01
A computer program implements a numerical model of thermal effects of cavitation in cryogenic fluids. The model and program were developed for use in designing and predicting the performances of turbopumps for cryogenic fluids. Prior numerical models used for this purpose do not account for either the variability of properties of cryogenic fluids or the thermal effects (especially, evaporative cooling) involved in cavitation. It is important to account for both because in a cryogenic fluid, the thermal effects of cavitation are substantial, and the cavitation characteristics are altered by coupling between the variable fluid properties and the phase changes involved in cavitation. The present model accounts for both thermal effects and variability of properties by incorporating a generalized representation of the properties of cryogenic fluids into a generalized compressible-fluid formulation for a cavitating pump. The model has been extensively validated for liquid nitrogen and liquid hydrogen. Using the available data on the properties of these fluids, the model has been shown to predict accurate temperature-depression values.
Superfluidity, Bose-Einstein condensation, and structure in one-dimensional Luttinger liquids
NASA Astrophysics Data System (ADS)
Vranješ Markić, L.; Vrcan, H.; Zuhrianda, Z.; Glyde, H. R.
2018-01-01
We report diffusion Monte Carlo (DMC) and path integral Monte Carlo (PIMC) calculations of the properties of a one-dimensional (1D) Bose quantum fluid. The equation of state, the superfluid fraction ρS/ρ0 , the one-body density matrix n (x ) , the pair distribution function g (x ) , and the static structure factor S (q ) are evaluated. The aim is to test Luttinger liquid (LL) predictions for 1D fluids over a wide range of fluid density and LL parameter K . The 1D Bose fluid examined is a single chain of 4He atoms confined to a line in the center of a narrow nanopore. The atoms cannot exchange positions in the nanopore, the criterion for 1D. The fluid density is varied from the spinodal density where the 1D liquid is unstable to droplet formation to the density of bulk liquid 4He. In this range, K varies from K >2 at low density, where a robust superfluid is predicted, to K <0.5 , where fragile 1D superflow and solidlike peaks in S (q ) are predicted. For uniform pore walls, the ρS/ρ0 scales as predicted by LL theory. The n (x ) and g (x ) show long range oscillations and decay with x as predicted by LL theory. The amplitude of the oscillations is large at high density (small K ) and small at low density (large K ). The K values obtained from different properties agree well verifying the internal structure of LL theory. In the presence of disorder, the ρS/ρ0 does not scale as predicted by LL theory. A single vJ parameter in the LL theory that recovers LL scaling was not found. The one body density matrix (OBDM) in disorder is well predicted by LL theory. The "dynamical" superfluid fraction, ρSD/ρ0 , is determined. The physics of the deviation from LL theory in disorder and the "dynamical" ρSD/ρ0 are discussed.
Calculation of nanodrop profile from fluid density distribution.
Berim, Gersh O; Ruckenstein, Eli
2016-05-01
Two approaches are examined, which can be used to determine the drop profile from the fluid density distributions (FDDs) obtained on the basis of microscopic theories. For simplicity, only two-dimensional (cylindrical, or axisymmetrical) distributions are examined and it is assumed that the fluid is either in contact with a smooth solid or separated from the smooth solid by a lubricating liquid film. The first approach is based on the sharp-kink interface approximation in which the density of the liquid inside and the density of the vapor outside the drop are constant with the exception of the surface layer of the drop where the density is different from the above ones. In this case, the drop profile was calculated by minimizing the total potential energy of the system. The second approach is based on a nonuniform FDD obtained either by the density functional theory or molecular dynamics simulations. To determine the drop profile from such an FDD, which does not contain sharp interfaces, three procedures can be used. In the first two procedures, P1 and P2, the one-dimensional FDDs along straight lines which are parallel to the surface of the solid are extracted from the two-dimensional FDD. Each of those one-dimensional FDDs has a vapor-liquid interface at which the fluid density changes from vapor-like to liquid-like values. Procedure P1 uses the locations of the equimolar dividing surfaces for the one-dimensional FDDs as points of the drop profile. Procedure P2 is based on the assumption that the fluid density is constant on the surface of the drop, that density being selected either arbitrarily or as a fluid density at the location of the equimolar dividing surface for one of the one-dimensional FDDs employed in procedure P1. In the third procedure, P3, which is suggested for the first time in this paper, the one-dimensional FDDs are taken along the straight lines passing through a selected point inside the drop (radial line). Then, the drop profile is calculated like in procedure P1. It is shown, that procedure P3 provides a drop profile which is more reasonable than the other ones. Relationship of the discussed procedures to those used in image analysis is briefly discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2016-08-12
When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhou, Shiqi; Jamnik, Andrej
2005-09-22
The structure of a Lennard-Jones (LJ) fluid subjected to diverse external fields maintaining the equilibrium with the bulk LJ fluid is studied on the basis of the third-order+second-order perturbation density-functional approximation (DFA). The chosen density and potential parameters for the bulk fluid correspond to the conditions situated at "dangerous" regions of the phase diagram, i.e., near the critical temperature or close to the gas-liquid coexistence curve. The accuracy of DFA predictions is tested against the results of a grand canonical ensemble Monte Carlo simulation. It is found that the DFA theory presented in this work performs successfully for the nonuniform LJ fluid only on the condition of high accuracy of the required bulk second-order direct correlation function. The present report further indicates that the proposed perturbation DFA is efficient and suitable for both supercritical and subcritical temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malheiro, Carine; Mendiboure, Bruno; Plantier, Frédéric
As a first step of an ongoing study of thermodynamic properties and adsorption of complex fluids in confined media, we present a new theoretical description for spherical monomers using the Statistical Associating Fluid Theory for potential of Variable Range (SAFT-VR) and a Non-Local Density Functional Theory (NLDFT) with Weighted Density Approximations (WDA). The well-known Modified Fundamental Measure Theory is used to describe the inhomogeneous hard-sphere contribution as a reference for the monomer and two WDA approaches are developed for the dispersive terms from the high-temperature Barker and Henderson perturbation expansion. The first approach extends the dispersive contributions using the scalarmore » and vector weighted densities introduced in the Fundamental Measure Theory (FMT) and the second one uses a coarse-grained (CG) approach with a unique weighted density. To test the accuracy of this new NLDFT/SAFT-VR coupling, the two versions of the theoretical model are compared with Grand Canonical Monte Carlo (GCMC) molecular simulations using the same molecular model. Only the version with the “CG” approach for the dispersive terms provides results in excellent agreement with GCMC calculations in a wide range of conditions while the “FMT” extension version gives a good representation solely at low pressures. Hence, the “CG” version of the theoretical model is used to reproduce methane adsorption isotherms in a Carbon Molecular Sieve and compared with experimental data after a characterization of the material. The whole results show an excellent agreement between modeling and experiments. Thus, through a complete and consistent comparison both with molecular simulations and with experimental data, the NLDFT/SAFT-VR theory has been validated for the description of monomers.« less
Two-fluid flowing equilibria of spherical torus sustained by coaxial helicity injection
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Steinhauer, Loren; Nagata, Masayoshi
2007-11-01
Two-dimensional equilibria in helicity-driven systems using two-fluid model were previously computed, showing the existence of an ultra-low-q spherical torus (ST) configuration with diamagnetism and higher beta. However, this computation assumed purely toroidal ion flow and uniform density. The purpose of the present study is to apply the two-fluid model to the two-dimensional equilibria of helicity-driven ST with non-uniform density and both toroidal and poloidal flows for each species by means of the nearby-fluids procedure, and to explore their properties. We focus our attention on the equilibria relevant to the HIST device, which are characterized by either driven or decaying λ profiles. The equilibrium for the driven λ profile has a diamagnetic toroidal field, high-β (βt = 32%), and centrally broad density. By contrast, the decaying equilibrium has a paramagnetic toroidal field, low-β (βt = 10%), and centrally peaked density with a steep gradient in the outer edge region. In the driven case, the toroidal ion and electron flows are in the same direction, and two-fluid effects are less important since the ExB drift is dominant. In the decaying case, the toroidal ion and electron flows are opposite in the outer edge region, and two-fluid effects are significant locally in the edge due to the ion diamagnetic drift.
NASA Astrophysics Data System (ADS)
Roy, Victor; Pu, Shi
2015-12-01
We estimate the event-by-event (e-by-e) distribution of the ratio (σ ) of the magnetic and electric field energy density to the fluid energy density in the transverse plane of Au-Au collisions at √{sN N}=200 GeV. A Monte Carlo (MC) Glauber model is used to calculate σ in the transverse plane for impact parameter b =0 , 12 fm at time τi˜0.5 fm. The fluid energy density is obtained by using Gaussian smoothing with two different smoothing parameter σg=0.25 , 0.5 fm. For b =0 fm collisions σ is found to be ≪1 in the central region of the fireball and σ ≳1 at the periphery. For b =12 fm collisions σ ≳1 is observed for some events. The e-by-e correlation between σ and the fluid energy density (ɛ ) is studied. We did not find strong correlation between σ and ɛ at the center of the fireball, whereas they are mostly anticorrelated at the periphery of the fireball.
NASA Astrophysics Data System (ADS)
Patel, Jitendra Kumar; Natarajan, Ganesh
2018-05-01
We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The proposed diffuse interface immersed boundary method is shown to be discretely mass-preserving while being temporally second-order accurate and exhibits nominal second-order accuracy in space. We examine the efficacy of the proposed approach through extensive numerical experiments involving one or more fluids and solids, that include two-particle sedimentation in homogeneous and stratified environment. The results from the numerical simulations show that the proposed methodology results in reduced spurious force oscillations in case of moving bodies while accurately resolving complex flow phenomena in multiphase flows with moving solids. These studies demonstrate that the proposed diffuse interface immersed boundary method, which could be related to a class of penalisation approaches, is a robust and promising alternative to computationally expensive conformal moving mesh algorithms as well as the class of sharp interface immersed boundary methods for multibody problems in multi-phase flows.
Fluid flow plate for decreased density of fuel cell assembly
Vitale, Nicholas G.
1999-01-01
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Non-invasive fluid density and viscosity measurement
Sinha, Dipen N [Los Alamos, NM
2012-05-01
The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.
NASA Astrophysics Data System (ADS)
Kim, Woojin; Lee, Injae; Choi, Haecheon
2018-04-01
We present a weak-coupling approach for fluid-structure interaction with low density ratio (ρ) of solid to fluid. For accurate and stable solutions, we introduce predictors, an explicit two-step method and the implicit Euler method, to obtain provisional velocity and position of fluid-structure interface at each time step, respectively. The incompressible Navier-Stokes equations, together with these provisional velocity and position at the fluid-structure interface, are solved in an Eulerian coordinate using an immersed-boundary finite-volume method on a staggered mesh. The dynamic equation of an elastic solid-body motion, together with the hydrodynamic force at the provisional position of the interface, is solved in a Lagrangian coordinate using a finite element method. Each governing equation for fluid and structure is implicitly solved using second-order time integrators. The overall second-order temporal accuracy is preserved even with the use of lower-order predictors. A linear stability analysis is also conducted for an ideal case to find the optimal explicit two-step method that provides stable solutions down to the lowest density ratio. With the present weak coupling, three different fluid-structure interaction problems were simulated: flows around an elastically mounted rigid circular cylinder, an elastic beam attached to the base of a stationary circular cylinder, and a flexible plate, respectively. The lowest density ratios providing stable solutions are searched for the first two problems and they are much lower than 1 (ρmin = 0.21 and 0.31, respectively). The simulation results agree well with those from strong coupling suggested here and also from previous numerical and experimental studies, indicating the efficiency and accuracy of the present weak coupling.
Pitch-catch only ultrasonic fluid densitometer
Greenwood, M.S.; Harris, R.V.
1999-03-23
The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.
Pitch-catch only ultrasonic fluid densitometer
Greenwood, Margaret S.; Harris, Robert V.
1999-01-01
The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.
NASA Astrophysics Data System (ADS)
Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping
2017-09-01
A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84 % , and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.
Yu, Zhaosheng; Lin, Zhaowu; Shao, Xueming; Wang, Lian-Ping
2017-09-01
A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle volume fraction of 0.84%, and the particle-fluid density ratio ranging from 1 to 104.2. The results show that the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage. The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory) is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous distribution of the particles at the density ratio of the order of 10.
Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M
2007-08-30
Static measures such as density and entropy, which are intimately connected to structure, have featured prominently in modern thinking about the dynamics of the liquid state. Here, we explore the connections between self-diffusivity, density, and excess entropy for two of the most widely used model "simple" liquids, the equilibrium Lennard-Jones and square-well fluids, in both bulk and confined environments. We find that the self-diffusivity data of the Lennard-Jones fluid can be approximately collapsed onto a single curve (i) versus effective packing fraction and (ii) in appropriately reduced form versus excess entropy, as suggested by two well-known scaling laws. Similar data collapse does not occur for the square-well fluid, a fact that can be understood on the basis of the nontrivial effects that temperature has on its static structure. Nonetheless, we show that the implications of confinement for the self-diffusivity of both of these model fluids, over a broad range of equilibrium conditions, can be predicted on the basis of knowledge of the bulk fluid behavior and either the effective packing fraction or the excess entropy of the confined fluid. Excess entropy is perhaps the most preferable route due to its superior predictive ability and because it is a standard, unambiguous thermodynamic quantity that can be readily predicted via classical density functional theories of inhomogeneous fluids.
Scaling behavior of immersed granular flows
NASA Astrophysics Data System (ADS)
Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.
2017-06-01
The shear behavior of granular materials immersed in a viscous fluid depends on fluid properties (viscosity, density), particle properties (size, density) and boundary conditions (shear rate, confining pressure). Using computational fluid dynamics simulations coupled with molecular dynamics for granular flow, and exploring a broad range of the values of parameters, we show that the parameter space can be reduced to a single parameter that controls the packing fraction and effective friction coefficient. This control parameter is a modified inertial number that incorporates viscous effects.
Chemical reactions in reverse micelle systems
Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.
1993-08-24
This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.
NASA Astrophysics Data System (ADS)
Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.
2002-12-01
Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNaCl. Dynamic viscosities are currently approximated by the approach of Palliser and McKibbin [4]. The numerical solutions of the governing equations and the equation of state are embedded in our object-oriented C++ code CSP3D4.0 [6]. Comparisons of the numerical solutions carried out with CSP for solute transport with analytical solutions and classical test cases for density dependent flow (i.e., Elder problem [1]) show very good agreement. The numerical solutions carried out with CSP and the established United States Geological Survey code HYDROTHERM [3] for multi-phase flow and energy transport also yield a very good agreement. Fluid inclusion data can be used to constrain the PTX properties of the hydrothermal fluids in numerical solutions. [1] Journal of Fluid Mechanics 27, 609-623 [2] ANU Mathematical Research Report, MRR01-023 [3] USGS Water Investigations Report 94-4045 [4] Transport in Porous Media 33, 155-171 [5] AAPG Bulletin 80, 1763-1779 [6] CSP User's Guide, Dept. of Earth Sciences ETH Zurich
Voss, Clifford I.; Provost, A.M.
2002-01-01
SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between freshwater and saltwater. SUTRA energy-transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal-energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. Mesh construction, which is quite flexible for arbitrary geometries, employs quadrilateral finite elements in 2D Cartesian or radial-cylindrical coordinate systems, and hexahedral finite elements in 3D systems. 3D meshes are currently restricted to be logically rectangular; in other words, they are similar to deformable finite-difference-style grids. Permeabilities may be anisotropic and may vary in both direction and magnitude throughout the system, as may most other aquifer and fluid properties. Boundary conditions, sources and sinks may be time dependent. A number of input data checks are made to verify the input data set. An option is available for storing intermediate results and restarting a simulation at the intermediate time. Output options include fluid velocities, fluid mass and solute mass or energy budgets, and time-varying observations at points in the system. Both the mathematical basis for SUTRA and the program structure are highly general, and are modularized to allow for straightforward addition of new methods or processes to the simulation. The FORTRAN-90 coding stresses clarity and modularity rather than efficiency, providing easy access for later modifications.
Fluids in porous media. IV. Quench effect on chemical potential.
Qiao, C Z; Zhao, S L; Liu, H L; Dong, W
2017-06-21
It appears to be a common sense to measure the crowdedness of a fluid system by the densities of the species constituting it. In the present work, we show that this ceases to be valid for confined fluids under some conditions. A quite thorough investigation is made for a hard sphere (HS) fluid adsorbed in a hard sphere matrix (a quench-annealed system) and its corresponding equilibrium binary mixture. When fluid particles are larger than matrix particles, the quench-annealed system can appear much more crowded than its corresponding equilibrium binary mixture, i.e., having a much higher fluid chemical potential, even when the density of each species is strictly the same in both systems, respectively. We believe that the insight gained from this study should be useful for the design of functionalized porous materials.
NASA Astrophysics Data System (ADS)
Fort, Charles; Fu, Christopher D.; Weichselbaum, Noah A.; Bardet, Philippe M.
2015-12-01
To deploy optical diagnostics such as particle image velocimetry or planar laser-induced fluorescence (PLIF) in complex geometries, it is beneficial to use index-matched facilities. A binary mixture of para-cymene and cinnamaldehyde provides a viable option for matching the refractive index of acrylic, a common material for scaled models and test sections. This fluid is particularly appropriate for large-scale facilities and when a low-density and low-viscosity fluid is sought, such as in fluid-structure interaction studies. This binary solution has relatively low kinematic viscosity and density; its use enables the experimentalist to select operating temperature and to increase fluorescence signal in PLIF experiments. Measurements of spectral and temperature dependence of refractive index, density, and kinematic viscosity are reported. The effect of the binary mixture on solubility control of Rhodamine 6G is also characterized.
Measurement of the Density of Base Fluids at Pressures 0.422 to 2.20 Gpa
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Jacobson, B. O.; Bergstroem, S. I.
1985-01-01
The influence of pressure on the density of six base fluids is experimentally studied for a range of pressures from 0.422 to 2.20 GPa. An important parameter used to describe the results is the change in relative volume with change in pressure dv sub r/dp. For pressures less than the solidification pressure (p ps) a small change in pressure results in a large change in dv sub r/ps. For pressures greater than the solidification pressure (p ps) there is no change in dv sub r/dp with changing pressure. The solidification pressures of the base fluids varies considerably, as do the slopes that the experimental data assumes for p ps. A new formula is developed that describes the effect of pressure on density in terms of four constants. These constants vary for the different base fluids tested.
Magnetic dynamo activity in mechanically driven compressible magnetohydrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.; Montgomery, David
1989-01-01
Magnetic dynamo activity in a homogeneous, dissipative, polytropic, two-dimensional, turbulent magneto-fluid is simulated numerically. The magneto-fluid is simulated numerically. The magneto-fluid is, in a number of cases, mechanically forced so that energy input balances dissipation, thereby maintaining constant energy. In the presence of a mean magnetic field, a magneto-fluid whose initial turbulent magnetic energy is zero quickly arrives at a state of non-zero turbulent magnetic energy. If the mean magnetic field energy density is small, the turbulent magnetic field can achieve a local energy density more than four hundred times larger; if the mean magnetic field energy density is large, then equipartition between the turbulent magnetic and kinetic energy is achieved. Compared to the presence of a mean magnetic field, compressibility appears to have only a marginal effect in mediating the transfer of turbulent kinetic energy into magnetic energy.
NASA Astrophysics Data System (ADS)
Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.; Bieler, A.
2016-12-01
Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on the BATS-R-US code of the University of Michigan, which is capable of computing both the inner and outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov-Gerasimenko at various heliocentric distances and demonstrated that it yields comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we characterize the cometary H2O expansion speeds and demonstrate the nonlinear dependencies of production rate and heliocentric distance. Our results are also compared to previous modeling work and remote observations, which serve as further validation of our model.
Early Fluid and Protein Shifts in Men During Water Immersion
NASA Technical Reports Server (NTRS)
Hinghofer-Szalkay, H.; Harrison, M. H.; Greenleaf, J. E.
1987-01-01
High precision blood and plasma densitometry was used to measure transvascular fluid shifts during water immersion to the neck. Six men (28-49 years) undertook 30 min of standing immersion in water at 35.0 +/- 0.2 C; immersion was preceded by 30 min control standing in air at 28 +/- 1 C. Blood was sampled from an antecubital catheter for determination of Blood Density (BD), Plasma Density (PD), Haematocrit (Ht), total Plasma Protein Concentration (PPC), and Plasma Albumin Concentration (PAC). Compared to control, significant decreases (p less than 0.01) in all these measures were observed after 20 min immersion. At 30 min, plasma volume had increased by 11.0 +/- 2.8%; the average density of the fluid shifted from extravascular fluid into the vascular compartment was 1006.3 g/l; albumin moved with the fluid and its albumin concentration was about one-third of the plasma protein concentration during early immersion. These calculations are based on the assumption that the F-cell ratio remained unchanged. No changes in erythrocyte water content during immersion were found. Thus, immersion-induced haemodilution is probably accompanied by protein (mainly albumin) augmentation which accompanies the intra-vascular fluid shift.
NASA Astrophysics Data System (ADS)
Hidalgo, J. J.; MacMinn, C. W.; Cueto-Felgueroso, L.; Fe, J.
2011-12-01
Dissolution by convective mixing is one of the main trapping mechanisms during CO2 sequestration in saline aquifers. The free-phase CO2 tends to rise due to buoyancy, accumulate beneath the caprock and dissolve into the brine, initially by diffusion. The CO2-brine mixture, however, is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. Although this is a well-known process, it remains unclear how convective mixing scales with the governing parameters of the system and its impact on the actual mixing of CO2 and brine. Here, we perform high-resolution numerical simulations and laboratory experiments with an analogue fluid system (water and propylene glycol) to explore the dependence of the CO2 dissolution flux on the nonlinearity of the density and viscosity of the fluid mixture. We find that the convective flux depends strongly on the value of the concentration for which the density of the mixture is maximum, and on the viscosity contrast between the fluids. From the experimental and simulation results we elucidate the scaling behavior of convective mixing, and clarify the role of nonlinear density and viscosity feedbacks in the interpretation of the analogue-fluid experiments.
NASA Astrophysics Data System (ADS)
Esler, J. G.
2017-12-01
A theory (Esler and Ashbee in J Fluid Mech 779:275-308, 2015) describing the statistics of N freely-evolving point vortices in a bounded two-dimensional domain is extended. First, the case of a non-neutral vortex gas is addressed, and it is shown that the density of states function can be identified with the probability density function of an infinite sum of independent non-central chi-squared random variables, the details of which depend only on the shape of the domain. Equations for the equilibrium energy spectrum and other statistical quantities follow, the validity of which are verified against direct numerical simulations of the equations of motion. Second, domains with additional conserved quantities associated with a symmetry (e.g., circle, periodic channel) are investigated, and it is shown that the treatment of the non-neutral case can be modified to account for the additional constraint.
Zhao, Feihu; Vaughan, Ted J; Mc Garrigle, Myles J; McNamara, Laoise M
2017-10-01
Tissue formation within tissue engineering (TE) scaffolds is preceded by growth of the cells throughout the scaffold volume and attachment of cells to the scaffold substrate. It is known that mechanical stimulation, in the form of fluid perfusion or mechanical strain, enhances cell differentiation and overall tissue formation. However, due to the complex multi-physics environment of cells within TE scaffolds, cell transport under mechanical stimulation is not fully understood. Therefore, in this study, we have developed a coupled multiphysics model to predict cell density distribution in a TE scaffold. In this model, cell transport is modelled as a thermal conduction process, which is driven by the pore fluid pressure under applied loading. As a case study, the model is investigated to predict the cell density patterns of pre-osteoblasts MC3T3-e1 cells under a range of different loading regimes, to obtain an understanding of desirable mechanical stimulation that will enhance cell density distribution within TE scaffolds. The results of this study have demonstrated that fluid perfusion can result in a higher cell density in the scaffold region closed to the outlet, while cell density distribution under mechanical compression was similar with static condition. More importantly, the study provides a novel computational approach to predict cell distribution in TE scaffolds under mechanical loading. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rabbi, Md Shifat-E; Hasan, Md Kamrul
2017-02-01
Strain imaging though for solid lesions provides an effective way for determining their pathologic condition by displaying the tissue stiffness contrast, for fluid filled lesions such an imaging is yet an open problem. In this paper, we propose a novel speckle content based strain imaging technique for visualization and classification of fluid filled lesions in elastography after automatic identification of the presence of fluid filled lesions. Speckle content based strain, defined as a function of speckle density based on the relationship between strain and speckle density, gives an indirect strain value for fluid filled lesions. To measure the speckle density of the fluid filled lesions, two new criteria based on oscillation count of the windowed radio frequency signal and local variance of the normalized B-mode image are used. An improved speckle tracking technique is also proposed for strain imaging of the solid lesions and background. A wavelet-based integration technique is then proposed for combining the strain images from these two techniques for visualizing both the solid and fluid filled lesions from a common framework. The final output of our algorithm is a high quality composite strain image which can effectively visualize both solid and fluid filled breast lesions in addition to the speckle content of the fluid filled lesions for their discrimination. The performance of our algorithm is evaluated using the in vivo patient data and compared with recently reported techniques. The results show that both the solid and fluid filled lesions can be better visualized using our technique and the fluid filled lesions can be classified with good accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.
The potential for free and mixed convection in sedimentary basins
Raffensperger, Jeff P.; Vlassopoulos, D.
1999-01-01
Free thermal convection and mixed convection are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed convection occurs when horizontal flows (forced convection) are superimposed on thermally driven flows. In cross section, mixed convection is characterized by convection cells that migrate laterally in the direction of forced convective flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free convection, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-convection pattern. Results from these experiments indicate that forced convection becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-convection fluid flux exceeds the total flux possible due to free convection. Calculations of the thermal rock alteration index (RAI=q????T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free convection produces a distinct pattern of alternating positive and negative RAIs, whereas mixed convection produces a simpler layering of positive and negative values and in general less diagenetic alteration. ?? Springer-Verlag.
Accurate fluid force measurement based on control surface integration
NASA Astrophysics Data System (ADS)
Lentink, David
2018-01-01
Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non-intrusively and accurately determine fluid force in most applications.
The reliability of Raman micro-spectroscopy in measuring the density of CO2 mantle fluids
NASA Astrophysics Data System (ADS)
Remigi, S.; Frezzotti, M. L.; Ferrando, S.; Villa, I. M.; Maffeis, A.
2017-12-01
Recent evaluations of carbon fluxes into and out the Earth's interior recognize that a significant part of the total outgassing of deep Earth carbon occurs in tectonically active areas (Kelemen and Manning, 2015). Potential tracers of carbon fluxes at mantle depths include CO2 fluid inclusions in peridotites. Raman micro-spectroscopy allows calculating the density of CO2 fluids based on the distance of the CO2 Fermi doublet, Δ, in cm-1 (Rosso and Bodnar, 1995). The aim of this work is to check the reliability of Raman densimeter equations (cf. Lamadrid et al., 2016) for high-density CO2 fluids originating at mantle depths. Forty pure CO2 inclusions in peridotites (El Hierro, Canary Islands) of known density (microthermometry) have been analyzed by Raman micro-spectroscopy. In order to evaluate the influence of contaminants on the reliability of equations, 22 CO2-rich inclusions containing subordinate amounts of N2, CO, SO2 have also been studied. Raman spectrometer analytical conditions are: 532 nm laser, 80 mW emission power, T 18°C, 1800 and 600 grating, 1 accumulation x 80 sec. Daily calibration included diamond and atmosphere N2. Results suggest that the "Raman densimeter" represents an accurate method to calculate the density of CO2 mantle fluids. Equations, however, must be applied only to pure CO2 fluids, since contaminants, even in trace amounts (0.39 mol%), affect the Δ resulting in density overestimation. Present study further highlights how analytical conditions and data processing, such as spectral resolution (i.e., grating), calibration linearity, and statistical treatment of spectra, influence the accuracy and the precision of Δ measurements. As a consequence, specific analytical protocols for single Raman spectrometers should be set up in order to get reliable CO2 density data. Kelemen, Peter B., & Craig E. Manning. PNAS, 112.30 (2015): E3997-E4006.Lamadrid, H. M., Moore, L. R., Moncada, D., Rimstidt, J. D., Burruss, R. C., & Bodnar, R. J. Chem. Geol. (2016).Rosso, K. M., & Bodnar, R. J. Geochim. et Cosmochim. Acta, 59(19), 3961-3975 (1995).
Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
2000-01-01
This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.
Colten-Bradley, Virginia
1987-01-01
Evaluation of the effects of pressure on the temperature of interlayer water loss (dehydration) by smectites under diagenetic conditions indicates that smectites are stable as hydrated phases in the deep subsurface. Hydraulic and differential pressure conditions affect dehydration differently. The temperature of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration under differential-presssure conditions are inversely related to pressure and interlayer water density. The model presented assumes the effects of pore fluid composition and 2:1 layer reactivity to be negligible. Agreement between theoretical and experimental results validate this assumption. Additional aspects of the subject are discussed.
Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun
2014-12-07
Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.
NASA Astrophysics Data System (ADS)
Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun
2014-12-01
Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.
Tseng, Huan-Chang; Wu, Jiann-Shing; Chang, Rong-Yeu
2009-04-28
Shear dilatancy, a significant nonlinear behavior of nonequilibrium thermodynamics states, has been observed in nonequilibrium molecular dynamics (NEMD) simulations for liquid n-hexadecane fluid under extreme shear conditions. The existence of shear dilatancy is relevant to the relationship between the imposed shear rate gamma and the critical shear rate gamma(c). Consequently, as gamma
Devices, systems, and methods for conducting sandwich assays using sedimentation
Schaff, Ulrich Y; Sommer, Gregory J; Singh, Anup K; Hatch, Anson V
2015-02-03
Embodiments of the present invention are directed toward devices, systems, and method for conducting sandwich assays using sedimentation. In one example, a method includes generating complexes on a plurality of beads in a fluid sample, individual ones of the complexes comprising a capture agent, a target analyte, and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
Viscosity of Xenon Examined in Microgravity
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.
1999-01-01
Why does water flow faster than honey? The short answer, that honey has a greater viscosity, merely rephrases the question. The fundamental answer is that viscosity originates in the interactions between a fluid s molecules. These interactions are so complicated that, except for low-density gases, the viscosity of a fluid cannot be accurately predicted. Progress in understanding viscosity has been made by studying moderately dense gases and, more recently, fluids near the critical point. Modern theories predict a universal behavior for all pure fluids near the liquid-vapor critical point, and they relate the increase in viscosity to spontaneous fluctuations in density near this point. The Critical Viscosity of Xenon (CVX) experiment tested these theories with unprecedented precision when it flew aboard the Space Shuttle Discovery (STS-85) in August 1997. Near the critical point, xenon is a billion times more compressible than water, yet it has about the same density. Because the fluid is so "soft," it collapses under its own weight when exposed to the force of Earth s gravity - much like a very soft spring. Because the CVX experiment is conducted in microgravity, it achieves a very uniform fluid density even very close to the critical point. At the heart of the CVX experiment is a novel viscometer built around a small nickel screen. An oscillating electric field forces the screen to oscillate between pairs of electrodes. Viscosity, which dampens the oscillations, can be calculated by measuring the screen motion and the force applied to the screen. So that the fluid s delicate state near the critical point will not be disrupted, the screen oscillations are set to be both slow and small.
NASA Astrophysics Data System (ADS)
Shvarts, Dov
2017-10-01
Hydrodynamic instabilities, and the mixing that they cause, are of crucial importance in describing many phenomena, from very large scales such as stellar explosions (supernovae) to very small scales, such as inertial confinement fusion (ICF) implosions. Such mixing causes the ejection of stellar core material in supernovae, and impedes attempts at ICF ignition. The Rayleigh-Taylor instability (RTI) occurs at an accelerated interface between two fluids with the lower density accelerating the higher density fluid. The Richtmyer-Meshkov (RM) instability occurs when a shock wave passes an interface between the two fluids of different density. In the RTI, buoyancy causes ``bubbles'' of the light fluid to rise through (penetrate) the denser fluid, while ``spikes'' of the heavy fluid sink through (penetrate) the lighter fluid. With realistic multi-mode initial conditions, in the deep nonlinear regime, the mixing zone width, H, and its internal structure, progress through an inverse cascade of spatial scales, reaching an asymptotic self-similar evolution: hRT =αRT Agt2 for RT and hRM =αRM tθ for RM. While this characteristic behavior has been known for years, the self-similar parameters αRT and θRM and their dependence on dimensionality and density ratio have continued to be intensively studied and a relatively wide distribution of those values have emerged. This talk will describe recent theoretical advances in the description of this turbulent mixing evolution that sheds light on the spread in αRT and θRM. Results of new and specially designed experiments, done by scientists from several laboratories, were performed recently using NIF, the only facility that is powerful enough to reach the self-similar regime, for quantitative testing of this theoretical advance, will be presented.
NASA Technical Reports Server (NTRS)
Fessler, T. E.
1977-01-01
A computer program subroutine, FLUID, was developed to calculate thermodynamic and transport properties of pure fluid substances. It provides for determining the thermodynamic state from assigned values for temperature-density, pressure-density, temperature-pressure, pressure-entropy, or pressure-enthalpy. Liquid or two-phase (liquid-gas) conditions are considered as well as the gas phase. A van der Waals model is used to obtain approximate state values; these values are then corrected for real gas effects by model-correction factors obtained from tables based on experimental data. Saturation conditions, specific heat, entropy, and enthalpy data are included in the tables for each gas. Since these tables are external to the FLUID subroutine itself, FLUID can implement any gas for which a set of tables has been generated. (A setup phase is used to establish pointers dynamically to the tables for a specific gas.) Data-table preparation is described. FLUID is available in both SFTRAN and FORTRAN
Fluid Mechanics and Complex Variable Theory: Getting Past the 19th Century
ERIC Educational Resources Information Center
Newton, Paul K.
2017-01-01
The subject of fluid mechanics is a rich, vibrant, and rapidly developing branch of applied mathematics. Historically, it has developed hand-in-hand with the elegant subject of complex variable theory. The Westmont College NSF-sponsored workshop on the revitalization of complex variable theory in the undergraduate curriculum focused partly on…
Buoyancy driven mixing of miscible fluids by volumetric energy deposition of microwaves.
Wachtor, Adam J; Mocko, Veronika; Williams, Darrick J; Goertz, Matthew P; Jebrail, Farzaneh F
2013-01-01
An experiment that seeks to investigate buoyancy driven mixing of miscible fluids by microwave volumetric energy deposition is presented. The experiment involves the use of a light, non-polar fluid that initially rests on top of a heavier fluid which is more polar. Microwaves preferentially heat the polar fluid, and its density decreases due to thermal expansion. As the microwave heating continues, the density of the lower fluid eventually becomes less than that of the upper, and buoyancy driven Rayleigh-Taylor mixing ensues. The choice of fluids is crucial to the success of the experiment, and a description is given of numerous fluid combinations considered and characterized. After careful consideration, the miscible pair of toluene/tetrahydrofuran (THF) was determined as having the best potential for successful volumetric energy deposition buoyancy driven mixing. Various single fluid calibration experiments were performed to facilitate the development of a heating theory. Thereafter, results from two-fluid mixing experiments are presented that demonstrate the capability of this novel Rayleigh-Taylor driven experiment. Particular interest is paid to the onset of buoyancy driven mixing and unusual aspects of the experiment in the context of typical Rayleigh-Taylor driven mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ho-Young; Kang, In Man, E-mail: imkang@ee.knu.ac.kr; Shon, Chae-Hwa
2015-05-07
A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. Tomore » improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.« less
Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations
Perry, Mark E.; Hansen, Candice J.; Waite, J. Hunter; Porco, Carolyn C.; Spencer, John R.; Howett, Carly J. A.
2017-01-01
Abstract During three low-altitude (99, 66, 66 km) flybys through the Enceladus plume in 2010 and 2011, Cassini's ion neutral mass spectrometer (INMS) made its first high spatial resolution measurements of the plume's gas density and distribution, detecting in situ the individual gas jets within the broad plume. Since those flybys, more detailed Imaging Science Subsystem (ISS) imaging observations of the plume's icy component have been reported, which constrain the locations and orientations of the numerous gas/grain jets. In the present study, we used these ISS imaging results, together with ultraviolet imaging spectrograph stellar and solar occultation measurements and modeling of the three-dimensional structure of the vapor cloud, to constrain the magnitudes, velocities, and time variability of the plume gas sources from the INMS data. Our results confirm a mixture of both low and high Mach gas emission from Enceladus' surface tiger stripes, with gas accelerated as fast as Mach 10 before escaping the surface. The vapor source fluxes and jet intensities/densities vary dramatically and stochastically, up to a factor 10, both spatially along the tiger stripes and over time between flyby observations. This complex spatial variability and dynamics may result from time-variable tidal stress fields interacting with subsurface fissure geometry and tortuosity beyond detectability, including changing gas pathways to the surface, and fluid flow and boiling in response evolving lithostatic stress conditions. The total plume gas source has 30% uncertainty depending on the contributions assumed for adiabatic and nonadiabatic gas expansion/acceleration to the high Mach emission. The overall vapor plume source rate exhibits stochastic time variability up to a factor ∼5 between observations, reflecting that found in the individual gas sources/jets. Key Words: Cassini at Saturn—Geysers—Enceladus—Gas dynamics—Icy satellites. Astrobiology 17, 926–940. PMID:28872900
Effect of lower-body positive pressure on postural fluid shifts in men
NASA Technical Reports Server (NTRS)
Hinghofer-Szalkay, H.; Kravik, S. E.; Greenleaf, J. E.
1988-01-01
The effect of the lower-body positive pressure (LBPP) on the orthostatic fluid and protein shifts were investigated in five men during combined tilt-table/antigravity suit inflation and deflation experiments. Changes in the mass densities of venous blood and plasma were measured and the values were used to calculate the densities of erythrocytes, whole-body blood, and shifted fluid. It was found that the application of 60 mm Hg LBPP during 60-deg head-up tilt prevented about half of the postural hemoconcentration occurring during passive head-up tilt.
Effect of age on variability in the production of text-based global inferences.
Williams, Lynne J; Dunlop, Joseph P; Abdi, Hervé
2012-01-01
As we age, our differences in cognitive skills become more visible, an effect especially true for memory and problem solving skills (i.e., fluid intelligence). However, by contrast with fluid intelligence, few studies have examined variability in measures that rely on one's world knowledge (i.e., crystallized intelligence). The current study investigated whether age increased the variability in text based global inference generation--a measure of crystallized intelligence. Global inference generation requires the integration of textual information and world knowledge and can be expressed as a gist or lesson. Variability in generating two global inferences for a single text was examined in young-old (62 to 69 years), middle-old (70 to 76 years) and old-old (77 to 94 years) adults. The older two groups showed greater variability, with the middle elderly group being most variable. These findings suggest that variability may be a characteristic of both fluid and crystallized intelligence in aging.
NASA Astrophysics Data System (ADS)
Donini, A.; Martin, S. M.; Bastiaans, R. J. M.; van Oijen, J. A.; de Goey, L. P. H.
2013-10-01
In the present paper a computational analysis of a high pressure confined premixed turbulent methane/air jet flames is presented. In this scope, chemistry is reduced by the use of the Flamelet Generated Manifold method [1] and the fluid flow is modeled in an LES and RANS context. The reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the turbulence effect on the reaction is represented by the progress variable variance. The interaction between chemistry and turbulence is considered through a presumed probability density function (PDF) approach. The use of FGM as a combustion model shows that combustion features at gas turbine conditions can be satisfactorily reproduced with a reasonable computational effort. Furthermore, the present analysis indicates that the physical and chemical processes controlling carbon monoxide (CO) emissions can be captured only by means of unsteady simulations.
Chemistry-split techniques for viscous reactive blunt body flow computations
NASA Technical Reports Server (NTRS)
Li, C. P.
1987-01-01
The weak-coupling structure between the fluid and species equations has been exploited and resulted in three, closely related, time-iterative implicit techniques. While the primitive variables are solved in two separated groups and each by an Alternating Direction Implicit (ADI) factorization scheme, the rate-species Jacobian can be treated in either full or diagonal matrix form, or simply ignored. The latter two versions render the split technique to solving for species as scalar rather than vector variables. The solution is completed at the end of each iteration after determining temperature and pressure from the flow density, energy and species concentrations. Numerical experimentation has shown that the split scalar technique, using partial rate Jacobian, yields the best overall stability and consistency. Satisfactory viscous solutions were obtained for an ellipsoidal body of axis ratio 3:1 at Mach 35 and an angle of attack of 20 degrees.
The shallow water equation and the vorticity equation for a change in height of the topography.
Da, ChaoJiu; Shen, BingLu; Yan, PengCheng; Ma, DeShan; Song, Jian
2017-01-01
We consider the shallow water equation and the vorticity equations for a variable height of topography. On the assumptions that the atmosphere is incompressible and a constant density, we simplify the coupled dynamic equations. The change in topographic height is handled as the sum of the inherent and changing topography using the perturbation method, together with appropriate boundary conditions of the atmosphere, to obtain the relationship between the relative height of the flow, the inherent topography and the changing topography. We generalize the conservation of the function of relative position, and quantify the relationship between the height of the topography and the relative position of a fluid element. If the height of the topography increases (decreases), the relative position of a fluid element descends (ascends). On this basis, we also study the relationship between the vorticity and the topography to find the vorticity decreasing (increasing) for an increasing (decreasing) height of the topography.
The shallow water equation and the vorticity equation for a change in height of the topography
Shen, BingLu; Yan, PengCheng; Ma, DeShan; Song, Jian
2017-01-01
We consider the shallow water equation and the vorticity equations for a variable height of topography. On the assumptions that the atmosphere is incompressible and a constant density, we simplify the coupled dynamic equations. The change in topographic height is handled as the sum of the inherent and changing topography using the perturbation method, together with appropriate boundary conditions of the atmosphere, to obtain the relationship between the relative height of the flow, the inherent topography and the changing topography. We generalize the conservation of the function of relative position, and quantify the relationship between the height of the topography and the relative position of a fluid element. If the height of the topography increases (decreases), the relative position of a fluid element descends (ascends). On this basis, we also study the relationship between the vorticity and the topography to find the vorticity decreasing (increasing) for an increasing (decreasing) height of the topography. PMID:28591129
NASA Astrophysics Data System (ADS)
Khan, Noor Saeed; Gul, Taza; Khan, Muhammad Altaf; Bonyah, Ebenezer; Islam, Saeed
Mixed convection in gravity-driven non-Newtonian nanofluid films (Casson and Williamson) flow containing both nanoparticles and gyrotactic microorganisms along a convectively heated vertical surface is investigated. The actively controlled nanofluid model boundary conditions are used to explore the liquid films flow. The study exhibits an analytical approach for the non-Newtonian thin film nanofluids bioconvection based on physical mechanisms responsible for the nanoparticles and the base fluid, such as Brownian motion and thermophoresis. Both the fluids have almost the same behaviors for the effects of all the pertinent parameters except the effect of Schmidt number on the microorganism density function where the effect is opposite. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by HAM (Homotopy Analysis Method). The solution is expressed through graphs and illustrated which show the influences of all the parameters. The study is relevant to novel microbial fuel cell technologies combining the nanofluid with bioconvection phenomena.
Mechanical Balance Laws for Boussinesq Models of Surface Water Waves
NASA Astrophysics Data System (ADS)
Ali, Alfatih; Kalisch, Henrik
2012-06-01
Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of these quantities are not known. This work presents a systematic derivation of mass, momentum and energy densities and fluxes associated with a general family of Boussinesq systems. The derivation is based on a reconstruction of the velocity field and the pressure in the fluid column below the free surface, and the derivation of differential balance equations which are of the same asymptotic validity as the evolution equations. It is shown that all these mechanical quantities can be expressed in terms of the principal dependent variables of the Boussinesq system: the surface excursion η and the horizontal velocity w at a given level in the fluid.
NASA Astrophysics Data System (ADS)
Lecoutre, C.; Marre, S.; Garrabos, Y.; Beysens, D.; Hahn, I.
2018-05-01
Analyses of ground-based experiments on near-critical fluids to precisely determine their density can be hampered by several effects, especially the density stratification of the sample, the liquid wetting behavior at the cell walls, and a possible singular curvature of the "rectilinear" diameter of the density coexisting curve. For the latter effect, theoretical efforts have been made to understand the amplitude and shape of the critical hook of the density diameter, which depart from predictions from the so-called ideal lattice-gas model of the uniaxial 3D-Ising universality class. In order to optimize the observation of these subtle effects on the position and shape of the liquid-vapor meniscus in the particular case of SF6, we have designed and filled a cell that is highly symmetrized with respect to any median plane of the total fluid volume. In such a viewed quasi-perfect symmetrical fluid volume, the precise detection of the meniscus position and shape for different orientations of the cell with respect to the Earth's gravity acceleration field becomes a sensitive probe to estimate the cell mean density filling and to test the singular diameter effects. After integration of this cell in the ALI-R insert, we take benefit of the high optical and thermal performances of the DECLIC Engineering Model. Here we present the sensitive imaging method providing the precise ground-based SF6 benchmark data. From these data analysis it is found that the temperature dependence of the meniscus position does not reflect the expected critical hook in the rectilinear density diameter. Therefore the off-density criticality of the cell is accurately estimated, before near future experiments using the same ALI-R insert in the DECLIC facility already on-board the International Space Station.
New exact perfect fluid solutions of Einstein's equations. II
NASA Astrophysics Data System (ADS)
Uggla, Claes; Rosquist, Kjell
1990-12-01
A family of new spatially homogeneous Bianchi type VIh perfect fluid solutions of the Einstein equations is presented. The fluid flow is orthogonal to the spatially homogeneous hypersurfaces, and the pressure is proportional to the energy density.
Immersed Boundary Methods for Optimization of Strongly Coupled Fluid-Structure Systems
NASA Astrophysics Data System (ADS)
Jenkins, Nicholas J.
Conventional methods for design of tightly coupled multidisciplinary systems, such as fluid-structure interaction (FSI) problems, traditionally rely on manual revisions informed by a loosely coupled linearized analysis. These approaches are both inaccurate for a multitude of applications, and they require an intimate understanding of the assumptions and limitations of the procedure in order to soundly optimize the design. Computational optimization, in particular topology optimization, has been shown to yield remarkable results for problems in solid mechanics using density interpolations schemes. In the context of FSI, however, well defined boundaries play a key role in both the design problem and the mechanical model. Density methods neither accurately represent the material boundary, nor provide a suitable platform to apply appropriate interface conditions. This thesis presents a new framework for shape and topology optimization of FSI problems that uses for the design problem the Level Set method (LSM) to describe the geometry evolution in the optimization process. The Extended Finite Element method (XFEM) is combined with a fictitiously deforming fluid domain (stationary arbitrary Lagrangian-Eulerian method) to predict the FSI response. The novelty of the proposed approach lies in the fact that the XFEM explicitly captures the material boundary defined by the level set iso-surface. Moreover, the XFEM provides a means to discretize the governing equations, and weak immersed boundary conditions are applied with Nitsche's Method to couple the fields. The flow is predicted by the incompressible Navier-Stokes equations, and a finite-deformation solid model is developed and tested for both hyperelastic and linear elastic problems. Transient and stationary numerical examples are presented to validate the FSI model and numerical solver approach. Pertaining to the optimization of FSI problems, the parameters of the discretized level set function are defined as explicit functions of the optimization variables, and the parameteric optimization problem is solved by nonlinear programming methods. The gradients of the objective and constrains are computed by the adjoint method for the global monolithic fluid-solid system. Two types of design problems are explored for optimization of the fluid-structure response: 1) the internal structural topology is varied, preserving the fluid-solid interface geometry, and 2) the fluid-solid interface is manipulated directly, which leads to simultaneously configuring both internal structural topology and outer mold shape. The numerical results show that the LSM-XFEM approach is well suited for designing practical applications, while at the same time reducing the requirement on highly refined mesh resolution compared to traditional density methods. However, these results also emphasize the need for a more robust embedded boundary condition framework. Further, the LSM can exhibit greater dependence on initial design seeding, and can impede design convergence. In particular for the strongly coupled FSI analysis developed here, the thinning and eventual removal of structural members can cause jumps in the evolution of the optimization functions.
NASA Technical Reports Server (NTRS)
Chiu, Joseph; Brown, Andrew M.
2017-01-01
A number of valuable conclusions can be drawn from this study. First, knockdown factors for a specific fluid are not constant but instead are dependent on the mode shape, although the largest this variability gets is about 10% for LOX, the densest fluid. The factors decrease the most for lower frequency shapes and less for higher ones. It follows, therefore, that mode number mismatch between air and fluid operation becomes not only possible, but common, as a knockdown factor for a particular mode shape may be higher than for another mode shape. Since this is a function of added mass, the mismatch is more prevalent for higher density fluids, but it initiates even for very low density ones. Another important conclusion reached is that it appears that the basic mode shapes of a structure do not change if it is fully symmetric, which includes its geometry and boundary conditions. There is some indication of small changes in the relative magnitudes within the mode shape. This conclusion is evident in the results from the cantilever rectangular plate and the inducer, which are not symmetric, and the fixed-fixed plate and the annular disk, which are. For non-symmetric structures, though, the mode shapes almost universally change for dense fluids, as shown by the very low MAC calculations. For the inducer in particular, the changes follow a trend of reduced parabolic and sine wavelengths with increasing density. It is critical to recognize the change in mode shape for several reasons. First, model updating with modal test becomes problematic if the shapes change. Second, design to avoid resonance is highly critical on the mode shape for modes other than the primary ones, as resonance is only a factor when the excitation shape matches the mode shape. Finally, application of the modal superposition method of forced response analysis is dependent on the use of accurate mode shapes. A more-refined assessment of the "knockdown" factor values and ranges than any previously reported in the literature for a realistic engineering structure is also presented in this paper. This data is of tremendous benefit for preliminary analysis and design, where a quick estimate is necessary. These results are important not just for rocket engine turbomachinery, but for water pumps and turbines, propellers, and any other structure operating in a heavy fluid with dynamic excitation. The clear avenue for future work for this endeavor is to expand the analytical techniques discussed in the literature to develop analytical expressions and justification for the mode shape changes and associated frequency knockdowns. These expressions must be able to accurately predict the functional relationship to the shapes, which will enable accurate tracing of the mode number from vacuum analysis (or testing in air) to analysis and operation in the intended fluid environment.
[Discrimination of varieties of brake fluid using visual-near infrared spectra].
Jiang, Lu-lu; Tan, Li-hong; Qiu, Zheng-jun; Lu, Jiang-feng; He, Yong
2008-06-01
A new method was developed to fast discriminate brands of brake fluid by means of visual-near infrared spectroscopy. Five different brands of brake fluid were analyzed using a handheld near infrared spectrograph, manufactured by ASD Company, and 60 samples were gotten from each brand of brake fluid. The samples data were pretreated using average smoothing and standard normal variable method, and then analyzed using principal component analysis (PCA). A 2-dimensional plot was drawn based on the first and the second principal components, and the plot indicated that the clustering characteristic of different brake fluid is distinct. The foregoing 6 principal components were taken as input variable, and the band of brake fluid as output variable to build the discriminate model by stepwise discriminant analysis method. Two hundred twenty five samples selected randomly were used to create the model, and the rest 75 samples to verify the model. The result showed that the distinguishing rate was 94.67%, indicating that the method proposed in this paper has good performance in classification and discrimination. It provides a new way to fast discriminate different brands of brake fluid.
Krishnamurthy, Vani; Satish, Suchitha; Doreswamy, Srinivasa Murthy; Vimalambike, Manjunath Gubbanna
2016-07-01
Cytological evaluation of body fluids is an important diagnostic technique. Cytocentrifuge has contributed immensely to improve the diagnostic yield of the body fluids. Cytocentrifuge requires a filter card for absorbing the cell free fluid. This is the only consumable which needs to be purchased from the manufacturer at a significant cost. To compare the cell density in cytocentrifuge preparations made from commercially available filter cards with custom made filter cards. This was a prospective analytical study undertaken in department of pathology of a tertiary care centre. A 300 GSM handmade paper with the absorbability similar to the conventional card was obtained and fashioned to suit the filter card slot of the cytospin. Thirty seven body fluids were centrifuged using both conventional and custom made filter card. The cell density was measured as number of cells per 10 high power fields. The median cell density was compared using Mann-Whitney U test. The agreement between the values was analysed using Bland Altman analysis. The median cell count per 10 High power field (HPF) with conventional card was 386 and that with custom made card was 408. The difference was not statistically significant (p = 0.66). There was no significant difference in the cell density and alteration in the morphology between the cell preparations using both the cards. Custom made filter card can be used for cytospin cell preparations of body fluids without loss of cell density or alteration in the cell morphology and at a very low cost.
Carbonate Mineral Assemblages as Inclusions in Yakutian Diamonds: TEM Verifications
NASA Astrophysics Data System (ADS)
Logvinova, A. M.; Wirth, R.; Sobolev, N. V.; Taylor, L. A.
2014-12-01
Carbonate mineral inclusions are quite rare in diamonds from the upper mantle, but are evidence for a carbonate abundance in the mantle. It is believed that such carbonatitic inclusions originated from high-density fluids (HDFs) that were enclosed in diamond during its growth. Using TEM and EPMA, several kinds of carbonate inclusions have been identified in Yakutian diamonds : aragonite, dolomite, magnesite, Ba-, Sr-, and Fe-rich carbonates. Most of them are represented by multi-phase inclusions of various chemically distinct carbonates, rich in Ca, Mg, and K and associated with minor amounts of silicate, oxide, saline, and volatile phases. Volatiles, leaving some porosity, played a significant role in the diamond growth. A single crystal of aragonite (60μm) is herein reported for the first time. This inclusion is located in the center of a diamond from the Komsomolskaya pipe. Careful CL imaging reveals the total absence of cracks around the aragonite inclusion - i.e., closed system. This inclusion has been identified by X-ray diffraction and microprobe analysis. At temperatures above 1000 0C, aragonite is only stable at high pressures of 5-6 GPa. Inside this aragonite, we observed nanocrystalline inclusions of titanite, Ni-rich sulfide, magnetite, water-bearing Mg-silicate, and fluid bubbles. Dolomite is common in carbonate multi-phase inclusions in diamonds from the Internatsionalnaya, Yubileinaya, and Udachnaya kimberlite pipes. Alluvial diamonds of the northeastern Siberian Platform are divided into two groups based on the composition of HDFs: 1) Mg-rich multi-phase inclusions (60% magnesite + dolomite + Fe-spinel + Ti-silicate + fluid bubbles); and 2) Ca-rich multi-phase inclusions (Ca,Ba-, Ca,Sr-, Ca,Fe-carbonates + Ti-silicate + Ba-apatite + fluid bubbles). High-density fluids also contain K. Volatiles in the fluid bubbles are represented by water, Cl, F, S, CO2, CH4, and heavy hydrocarbons. Origin of the second group of HDFs may be related to the non-silicate carbonatitic melt. We consider the primary hydrous, Сa-rich and Mg-poor carbonate melts as having formed in subducted oceanic crust. Variations of carbonate-inclusion compositions among diamonds indicate the variability in the source media during the formation of diamond and may be the result of metasomatic interaction with host rocks.
Ionic fluids with r-6 pair interactions have power-law electrostatic screening
NASA Astrophysics Data System (ADS)
Kjellander, Roland; Forsberg, Björn
2005-06-01
The decay behaviour of radial distribution functions for large distances r is investigated for classical Coulomb fluids where the ions interact with an r-6 potential (e.g. a dispersion interaction) in addition to the Coulombic and the short-range repulsive potentials (e.g. a hard core). The pair distributions and the density-density (NN), charge-density (QN) and charge-charge (QQ) correlation functions are investigated analytically and by Monte Carlo simulations. It is found that the NN correlation function ultimately decays like r-6 for large r, just as it does for fluids of electroneutral particles interacting with an r-6 potential. The prefactor is proportional to the squared compressibility in both cases. The QN correlations decay in general like r-8 and the QQ correlations like r-10 in the ionic fluid. The average charge density around an ion decays generally like r-8 and the average electrostatic potential like r-6. This behaviour is in stark contrast to the decay behaviour for classical Coulomb fluids in the absence of the r-6 potential, where all these functions decay exponentially for large r. The power-law decays are, however, the same as for quantum Coulomb fluids. This indicates that the inclusion of the dispersion interaction as an effective r-6 interaction potential in classical systems yields the same decay behaviour for the pair correlations as in quantum ionic systems. An exceptional case is the completely symmetric binary electrolyte for which only the NN correlation has a power-law decay but not the QQ correlations. These features are shown by an analysis of the bridge function.
Electric field effects on a near-critical fluid in microgravity
NASA Technical Reports Server (NTRS)
Zimmerli, G.; Wilkinson, R. A.; Ferrell, R. A.; Hao, H.; Moldover, M. R.
1994-01-01
The effects of an electric field on a sample of SF6 fluid in the vicinity of the liquid-vapor critical point is studied. The isothermal increase of the density of a near-critical sample as a function of the applied electric field was measured. In agreement with theory, this electrostriction effect diverges near the critical point as the isothermal compressibility diverges. Also as expected, turning on the electric field in the presence of density gradients can induce flow within the fluid, in a way analogous to turning on gravity. These effects were observed in a microgravity environment by using the Critical Point Facility which flew onboard the Space Shuttle Columbia in July 1994 as part of the Second International Microgravity Laboratory Mission. Both visual and interferometric images of two separate sample cells were obtained by means of video downlink. The interferometric images provided quantitative information about the density distribution throughout the sample. The electric field was generated by applying 500 Volts to a fine wire passing through the critical fluid.
NASA Astrophysics Data System (ADS)
Bordin, José Rafael
2018-04-01
In this paper we explore the self-assembly patterns in a two dimensional colloidal system using extensive Langevin Dynamics simulations. The pair potential proposed to model the competitive interaction have a short range length scale between first neighbors and a second characteristic length scale between third neighbors. We investigate how the temperature and colloidal density will affect the assembled morphologies. The potential shows aggregate patterns similar to observed in previous works, as clusters, stripes and porous phase. Nevertheless, we observe at high densities and temperatures a porous mesophase with a high mobility, which we name fluid porous phase, while at lower temperatures the porous structure is rigid. triangular packing was observed for the colloids and pores in both solid and fluid porous phases. Our results show that the porous structure is well defined for a large range of temperature and density, and that the fluid porous phase is a consequence of the competitive interaction and the random forces from the Langevin Dynamics.
NASA Astrophysics Data System (ADS)
Wheatley, Vincent; Bond, Daryl; Li, Yuan; Samtaney, Ravi; Pullin, Dale
2017-11-01
The Richtmyer-Meshkov instability (RMI) of a shock accelerated perturbed density interface is important in both inertial confinement fusion and astrophysics, where the materials involved are typically in the plasma state. Initial density interfaces can be due to either temperature or ion-species discontinuities. If the Atwood number of the interfaces and specific heat ratios of the fluids are matched, these two cases behave similarly when modeled using the equations of either hydrodynamics or magnetohydrodynamics. In the two-fluid ion-electron plasma model, however, there is a significant difference between them: In the thermal interface case, there is a discontinuity in electron density that is also subject to the RMI, while for the ion-species interface case there is not. It will be shown via ideal two-fluid plasma simulations that this causes substantial differences in the dynamics of the flow between the two cases. This work was partially supported by the KAUST Office of Sponsored Research under Award URF/1/2162-01.
Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.
Desgranges, Caroline; Delhommelle, Jerome
2015-11-10
Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.
Espíndola-Heredia, Rodolfo; del Río, Fernando; Malijevsky, Anatol
2009-01-14
The free energy of square-well (SW) systems of hard-core diameter sigma with ranges 1 < or = lambda < or = 3 is expanded in a perturbation series. This interval covers most ranges of interest, from short-ranged SW fluids (lambda approximately 1.2) used in modeling colloids to long ranges (lambda approximately 3) where the van der Waals classic approximation holds. The first four terms are evaluated by means of extensive Monte Carlo simulations. The calculations are corrected for the thermodynamic limit and care is taken to evaluate and to control the various sources of error. The results for the first two terms in the series confirm well-known independent results but have an increased estimated accuracy and cover a wider set of well ranges. The results for the third- and fourth-order terms are novel. The free-energy expansion for systems with short and intermediate ranges, 1 < or = lambda < or = 2, is seen to have properties similar to those of systems with longer ranges, 2 < or = lambda < or = 3. An equation of state (EOS) is built to represent the free-energy data. The thermodynamics given by this EOS, confronted against independent computer simulations, is shown to predict accurately the internal energy, pressure, specific heat, and chemical potential of the SW fluids considered and for densities 0 < or = rho sigma(3) < or = 0.9 including subcritical temperatures. This fourth-order theory is estimated to be accurate except for a small region at high density, rho sigma(3) approximately 0.9, and low temperature where terms of still higher order might be needed.
NASA Astrophysics Data System (ADS)
Zlotnik, V. A.; Ledder, G.; Kacimov, A. R.
2014-12-01
Disposal of excessive runoff or treated sewage into wadis and ephemeral streams is a common practice and an important hydrological problem in many Middle Eastern countries. While chemical and biological properties of the injected treated wastewater may be different from those of the receiving aquifer, the density contrast between the two fluids can be small. Therefore, studies of the fluid interface for variable density fluids or water intrusion are not directly relevant in many Managed Aquifer Recharge (MAR) problems. Other factors, such as the transient nature of injection and lack of detailed aquifer information must be considered. The disposed water reaching the water table through the vadose zone creates groundwater mounds, deforms the original water table, and develops finite-size convex-concave lenses of treated water over receiving water. After cessation of infiltration, these mounds flatten, water levels become horizontal, and infiltrated water becomes fully embedded in the receiving aquifer. The shape of the treated water body is controlled by the aquifer parameters, the magnitude of ambient flow, and the duration, rate, and cyclicity of infiltration. In case of limited aquifer data, advective transport modeling offers the most appropriate tools for predicting plume shapes over time, but surprisingly little work has been done on this important 3D flow problem. We investigate the lateral and vertical spreading of infiltrated water combining techniques of spatial velocity analyses by Zlotnik and Ledder (1992, 1993) with particle tracking. This approach allows for evaluating the geometry of the plume and the protection zone, the flow development phases, and other temporal and spatial effects and results can be used in conditions of limited data availability and quality. (Funding was provided by the USAID, DAI Subcontract 1001624-12S-19745)
Kinetic theory of Lennard-Jones fluids
NASA Astrophysics Data System (ADS)
Leegwater, Jan A.
1991-12-01
A kinetic theory that describes the time evolution of a fluid consisting of Lennard-Jones particles at all densities is proposed. The kinetic equation assumes binary collisions, but takes into account the finite time duration of a collision. Furthermore, it is an extension of a kinetic equation for the square well fluid as well as the hard sphere Enskog theory. In the low density limit, the Boltzmann theory is obtained. It is shown that the proposed theory obeys all the conservation laws. The exchange of potential and kinetic energies is studied and it is shown that at high density this is a fast process. The dominant mechanism for energy exchange is found to be collisions at the strongly repulsive part of the potential that are disturbed by third particles. The kinetic equation is also used to calculate the Green-Kubo integrands for shear viscosity and heat conductivity. The major structures found in molecular dynamics simulations are reproduced at intermediate densities quantitatively and at high density semiquantitatively. It is found that at high density, not only correlated collisions have to be taken into account, but that even the concept of collisions in the sense of sudden changes in the velocity is no longer useful.
Hunter, M; Lee, J
1992-11-01
A dispersion and extraction model of the lung is developed to assess how the infusion of hypertonic saline into the pulmonary artery changes the gravimetric density of pulmonary venous blood. The dispersion analysis is built on the indicator dilution curve measured for the pulmonary circulation. The extraction model consists of microvascular and interstitial compartments separated by a permeable pulmonary endothelium. Because the density of fluid extracted by the hypertonic disturbance is lower than the blood density, the extraction leads to a decrease in blood density. Two cases of fluid extraction are analyzed, a hypertonic infusion to elevate the osmotic pressure in the pulmonary arterial blood in the form of a step function and an infusion performed over a period of 1 sec. Both cases show that the dispersion significantly attenuates the changes in osmotic pressure and density as they are transported by the blood along the pulmonary vasculature. Because the model has taken into account the effect of dispersion and pulmonary blood flow, the equations developed here provide the basis to calculate from the density change in pulmonary venous blood the characteristics of osmotic extraction intrinsic to the lung.
Ultrasonic fluid densitometry and densitometer
Greenwood, Margaret S.; Lail, Jason C.
1998-01-01
The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.
Ultrasonic fluid densitometry and densitometer
Greenwood, M.S.; Lail, J.C.
1998-01-13
The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.
Device for measuring the fluid density of a two-phase mixture
Cole, Jack H.
1980-01-01
A device for measuring the fluid density of a two-phase mixture flowing through a tubular member. A rotor assembly is rotatively supported within the tubular member so that it can also move axially within the tubular member. The rotor assembly is balanced against a pair of springs which exert an axial force in the opposite direction upon the rotor assembly. As a two-phase mixture flows through the tubular member it contacts the rotor assembly causing it to rotate about its axis. The rotor assembly is forced against and partially compresses the springs. Means are provided to measure the rotational speed of the rotor assembly and the linear displacement of the rotor assembly. From these measurements the fluid density of the two-phase mixture is calculated.
The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionised plasma
NASA Astrophysics Data System (ADS)
Hillier, A.; Takasao, S.; Nakamura, N.
2016-06-01
The role of slow-mode magnetohydrodynamic (MHD) shocks in magnetic reconnection is of great importance for energy conversion and transport, but in many astrophysical plasmas the plasma is not fully ionised. In this paper, we use numerical simulations to investigate the role of collisional coupling between a proton-electron, charge-neutral fluid and a neutral hydrogen fluid for the one-dimensional (1D) Riemann problem initiated in a constant pressure and density background state by a discontinuity in the magnetic field. This system, in the MHD limit, is characterised by two waves. The first is a fast-mode rarefaction wave that drives a flow towards a slow-mode MHD shock wave. The system evolves through four stages: initiation, weak coupling, intermediate coupling, and a quasi-steady state. The initial stages are characterised by an over-pressured neutral region that expands with characteristics of a blast wave. In the later stages, the system tends towards a self-similar solution where the main drift velocity is concentrated in the thin region of the shock front. Because of the nature of the system, the neutral fluid is overpressured by the shock when compared to a purely hydrodynamic shock, which results in the neutral fluid expanding to form the shock precursor. Once it has formed, the thickness of the shock front is proportional to ξ I-1.2 , which is a smaller exponent than would be naively expected from simple scaling arguments. One interesting result is that the shock front is a continuous transition of the physical variables of subsonic velocity upstream of the shock front (a c-shock) to a sharp jump in the physical variables followed by a relaxation to the downstream values for supersonic upstream velocity (a j-shock). The frictional heating that results from the velocity drift across the shock front can amount to ~2 per cent of the reference magnetic energy.
Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel
2017-01-01
Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal’s energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum. PMID:28695119
Tricomi, Leonardo; Melchiori, Tommaso; Chiaramonti, David; Boulet, Micaël; Lavoie, Jean Michel
2017-01-01
Based upon the two fluid model (TFM) theory, a CFD model was implemented to investigate a cold multiphase-fluidized bubbling bed reactor. The key variable used to characterize the fluid dynamic of the experimental system, and compare it to model predictions, was the time-pressure drop induced by the bubble motion across the bed. This time signal was then processed to obtain the power spectral density (PSD) distribution of pressure fluctuations. As an important aspect of this work, the effect of the sampling time scale on the empirical power spectral density (PSD) was investigated. A time scale of 40 s was found to be a good compromise ensuring both simulation performance and numerical validation consistency. The CFD model was first numerically verified by mesh refinement process, after what it was used to investigate the sensitivity with regards to minimum fluidization velocity (as a calibration point for drag law), restitution coefficient, and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D model provided a fair match with the empirical time-averaged pressure drop, the relating fluctuations amplitude, and the signal's energy computed as integral of the PSD. A 3D version of the TFM was also used and it improved the match with the empirical PSD in the very first part of the frequency spectrum.
NASA Astrophysics Data System (ADS)
Bin-Mohsin, Bandar; Ahmed, Naveed; Adnan; Khan, Umar; Tauseef Mohyud-Din, Syed
2017-04-01
This article deals with the bioconvection flow in a parallel-plate channel. The plates are parallel and the flowing fluid is saturated with nanoparticles, and water is considered as a base fluid because microorganisms can survive only in water. A highly nonlinear and coupled system of partial differential equations presenting the model of bioconvection flow between parallel plates is reduced to a nonlinear and coupled system (nondimensional bioconvection flow model) of ordinary differential equations with the help of feasible nondimensional variables. In order to find the convergent solution of the system, a semi-analytical technique is utilized called variation of parameters method (VPM). Numerical solution is also computed and the Runge-Kutta scheme of fourth order is employed for this purpose. Comparison between these solutions has been made on the domain of interest and found to be in excellent agreement. Also, influence of various parameters has been discussed for the nondimensional velocity, temperature, concentration and density of the motile microorganisms both for suction and injection cases. Almost inconsequential influence of thermophoretic and Brownian motion parameters on the temperature field is observed. An interesting variation are inspected for the density of the motile microorganisms due to the varying bioconvection parameter in suction and injection cases. At the end, we make some concluding remarks in the light of this article.
Devices, systems, and methods for detecting nucleic acids using sedimentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory J.
Embodiments of the present invention are directed toward devices, systems, and method for conducting nucleic acid purification and quantification using sedimentation. In one example, a method includes generating complexes which bind to a plurality of beads in a fluid sample, individual ones of the complexes comprising a nucleic acid molecule such as DNA or RNA and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transportingmore » occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.« less
NASA Astrophysics Data System (ADS)
Hopkins, Paul; Fortini, Andrea; Archer, Andrew J.; Schmidt, Matthias
2010-12-01
We describe a test particle approach based on dynamical density functional theory (DDFT) for studying the correlated time evolution of the particles that constitute a fluid. Our theory provides a means of calculating the van Hove distribution function by treating its self and distinct parts as the two components of a binary fluid mixture, with the "self " component having only one particle, the "distinct" component consisting of all the other particles, and using DDFT to calculate the time evolution of the density profiles for the two components. We apply this approach to a bulk fluid of Brownian hard spheres and compare to results for the van Hove function and the intermediate scattering function from Brownian dynamics computer simulations. We find good agreement at low and intermediate densities using the very simple Ramakrishnan-Yussouff [Phys. Rev. B 19, 2775 (1979)] approximation for the excess free energy functional. Since the DDFT is based on the equilibrium Helmholtz free energy functional, we can probe a free energy landscape that underlies the dynamics. Within the mean-field approximation we find that as the particle density increases, this landscape develops a minimum, while an exact treatment of a model confined situation shows that for an ergodic fluid this landscape should be monotonic. We discuss possible implications for slow, glassy, and arrested dynamics at high densities.
Performance of journal bearings with semi-compressible fluids
NASA Technical Reports Server (NTRS)
Carpino, M.; Peng, J.-P.
1991-01-01
Cryogenic fluids in isothermal rigid surface and foil type journal bearings can sometimes be treated as semicompressible fluids. In these applications, the fluid density is a function of the pressure. At low pressures, the fluids can change from a liquid to a saturated liquid-vapor phase. The performance of a rigid surface journal bearing with an idealized semicompressible fluid is discussed. Pressure solutions are based upon a Reynolds equation which includes the effects of a compressibility via the bulk modulus of the fluid. Results are contrasted with the performance of isothermal constant property incompressible fluids.
30 CFR 250.456 - What safe practices must the drilling fluid program follow?
Code of Federal Regulations, 2011 CFR
2011-07-01
... fluid. You must circulate a volume of drilling fluid equal to the annular volume with the drill pipe... fluid volume needed to fill the hole. Both sets of numbers must be posted near the driller's station... warrant. Your tests must conform to industry-accepted practices and include density, viscosity, and gel...
Witt, Cordelie E.; Linnau, Ken F.; Maier, Ronald V.; Rivara, Frederick P.; Vavilala, Monica S.; Bulger, Eileen M.; Arbabi, Saman
2017-01-01
Background The objectives of this study were to assess current variability in management preferences for blunt trauma patients with pericardial fluid, and to identify characteristics associated with operative intervention for patients with pericardial fluid on admission computed tomography (CT) scan. Methods This was a mixed-methods study of blunt trauma patients with pericardial fluid. The first portion was a research survey of members of the Eastern Association for the Surgery of Trauma conducted in 2016, in which surgeons were presented with four clinical scenarios of blunt trauma patients with pericardial fluid. The second portion of the study was a retrospective evaluation of all blunt trauma patients ≥14 years treated at our Level I trauma center between 1/1/2010 and 11/1/2015 with pericardial fluid on admission CT scan. Results For the survey portion of our study, 393 surgeons responded (27% response rate). There was significant variability in management preferences for scenarios depicting trace pericardial fluid on CT with concerning hemodynamics, and for scenarios depicting hemopericardium intraoperatively. For the separate retrospective portion of our study, we identified 75 blunt trauma patients with pericardial fluid on admission CT scan. Seven underwent operative management; six of these had hypotension and/or electrocardiogram changes. In multivariable analysis, pericardial fluid amount was a significant predictor of receiving pericardial window (relative risk for one category increase in pericardial fluid amount: 3.99, 95% CI 1.47-10.81) but not of mortality. Conclusions There is significant variability in management preferences for patients with pericardial fluid from blunt trauma, indicating a need for evidence-based research. Our institutional data suggest that patients with minimal to small amounts of pericardial fluid without concerning clinical findings may be observed. Patients with moderate to large amounts of pericardial fluid who are clinically stable with normal hemodynamics may also appear appropriate for observation, although confirmation in larger studies is needed. Patients with hemodynamic instability should undergo operative exploration. Level of Evidence Level IV, Therapeutic/Care Management PMID:28129264
Wetting of heterogeneous substrates. A classical density-functional-theory approach
NASA Astrophysics Data System (ADS)
Yatsyshin, Peter; Parry, Andrew O.; Rascón, Carlos; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim
2017-11-01
Wetting is a nucleation of a third phase (liquid) on the interface between two different phases (solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid-fluid and fluid-substrate intermolecular interactions leads to the appearance of a whole ``zoo'' of exciting interface phase transitions, associated with the formation of nano-droplets/bubbles, and thin films. Practical applications of wetting at small scales are numerous and include the design of lab-on-a-chip devices and superhydrophobic surfaces. In this talk, we will use a fully microscopic approach to explore the phase space of a planar wall, decorated with patches of different hydrophobicity, and demonstrate the highly non-trivial behaviour of the liquid-gas interface near the substrate. We will present fluid density profiles, adsorption isotherms and wetting phase diagrams. Our analysis is based on a formulation of statistical mechanics, commonly known as classical density-functional theory. It provides a computationally-friendly and rigorous framework, suitable for probing small-scale physics of classical fluids and other soft-matter systems. EPSRC Grants No. EP/L027186,EP/K503733;ERC Advanced Grant No. 247031.
Influence of process fluids properties on component surface convective heat emission
NASA Astrophysics Data System (ADS)
Ivanova, T. N.; Korshunov, A. I.; Zavialov, P. M.
2018-03-01
When grinding with metal-working process fluid, a thin layer of inhibited liquid is formed between the component and the grinding wheel under the action of viscous forces. This can be defined as a hydrodynamic boundary layer or a thermal boundary layer. In this work, the thickness of the layers is studied depending on the viscosity of the fluid, inertia forces, velocity and pressure of the flow; also the causes of their occurrence are identified. It is established that under turbulent flow, the viscosity of the flow and the diffusion rate are much higher than in laminar flow, which also affects heat emission. Calculation of heat transfer in a single-phase chemically homogeneous medium of process liquids has shown that their properties, such as viscosity, thermal conductivity, density and heat capacity are of primary importance. The results of experimental studies of these characteristics are presented. When determining the heat transfer coefficient, functional correlations between the physical variables of the process fluid and the change in time and space have been established. As a result of the studies carried out to determine the heat transfer coefficient of a plate immersed in the process fluid, it is established that the intensification of the cooling process of the treated surface immersed in the coolant is more intense than with other methods of coolant supplying. An increase in the pulsation rate of the process liquid flow and the length of the flow displacement path leads to an increase in the heat transfer coefficient of the treated surface and a decrease in the temperature that arises during grinding.
Paleohydrogeology of the San Joaquin basin, California
Wilson, A.M.; Garven, G.; Boles, J.R.
1999-01-01
Mass transport can have a significant effect on chemical diagenetic processes in sedimentary basins. This paper presents results from the first part of a study that was designed to explore the role of an evolving hydrodynamic system in driving mass transport and chemical diagenesis, using the San Joaquin basin of California as a field area. We use coupled hydrogeologic models to establish the paleohydrogeology, thermal history, and behavior of nonreactive solutes in the basin. These models rely on extensive geological information and account for variable-density fluid flow, heat transport, solute transport, tectonic uplift, sediment compaction, and clay dehydration. In our numerical simulations, tectonic uplift and ocean regression led to large-scale changes in fluid flow and composition by strengthening topography-driven fluid flow and allowing deep influx of fresh ground water in the San Joaquin basin. Sediment compaction due to rapid deposition created moderate overpressures, leading to upward flow from depth. The unusual distribution of salinity in the basin reflects influx of fresh ground water to depths of as much as 2 km and dilution of saline fluids by dehydration reactions at depths greater than ???2.5 km. Simulations projecting the future salinity of the basin show marine salinities persisting for more than 10 m.y. after ocean regression. Results also show a change from topography-to compaction-driven flow in the Stevens Sandstone at ca. 5 Ma that coincides with an observed change in the diagenetic sequence. Results of this investigation provide a framework for future hydrologic research exploring the link between fluid flow and diagenesis.
Heller, Axel R; Zimmermann, Katrin; Seele, Kristin; Rössel, Thomas; Koch, Thea; Litz, Rainer J
2006-08-01
Although local anesthetics (LAs) are hyperbaric at room temperature, density drops within minutes after administration into the subarachnoid space. LAs become hypobaric and therefore may cranially ascend during spinal anesthesia in an uncontrolled manner. The authors hypothesized that temperature and density of LA solutions have a nonlinear relation that may be described by a polynomial equation, and that conversion of this equation may provide the temperature at which individual LAs are isobaric. Density of cerebrospinal fluid was measured using a vibrating tube densitometer. Temperature-dependent density data were obtained from all LAs commonly used for spinal anesthesia, at least in triplicate at 5 degrees, 20 degrees, 30 degrees, and 37 degrees C. The hypothesis was tested by fitting the obtained data into polynomial mathematical models allowing calculations of substance-specific isobaric temperatures. Cerebrospinal fluid at 37 degrees C had a density of 1.000646 +/- 0.000086 g/ml. Three groups of local anesthetics with similar temperature (T, degrees C)-dependent density (rho) characteristics were identified: articaine and mepivacaine, rho1(T) = 1.008-5.36 E-06 T2 (heavy LAs, isobaric at body temperature); L-bupivacaine, rho2(T) = 1.007-5.46 E-06 T2 (intermediate LA, less hypobaric than saline); bupivacaine, ropivacaine, prilocaine, and lidocaine, rho3(T) = 1.0063-5.0 E-06 T (light LAs, more hypobaric than saline). Isobaric temperatures (degrees C) were as follows: 5 mg/ml bupivacaine, 35.1; 5 mg/ml L-bupivacaine, 37.0; 5 mg/ml ropivacaine, 35.1; 20 mg/ml articaine, 39.4. Sophisticated measurements and mathematic models now allow calculation of the ideal injection temperature of LAs and, thus, even better control of LA distribution within the cerebrospinal fluid. The given formulae allow the adaptation on subpopulations with varying cerebrospinal fluid density.
NASA Astrophysics Data System (ADS)
Duchêne, Vincent
2014-08-01
The rigid-lid approximation is a commonly used simplification in the study of density-stratified fluids in oceanography. Roughly speaking, one assumes that the displacements of the surface are negligible compared with interface displacements. In this paper, we offer a rigorous justification of this approximation in the case of two shallow layers of immiscible fluids with constant and quasi-equal mass density. More precisely, we control the difference between the solutions of the Cauchy problem predicted by the shallow-water (Saint-Venant) system in the rigid-lid and free-surface configuration. We show that in the limit of a small density contrast, the flow may be accurately described as the superposition of a baroclinic (or slow) mode, which is well predicted by the rigid-lid approximation, and a barotropic (or fast) mode, whose initial smallness persists for large time. We also describe explicitly the first-order behavior of the deformation of the surface and discuss the case of a nonsmall initial barotropic mode.
Hierarchical Bayesian Modeling of Fluid-Induced Seismicity
NASA Astrophysics Data System (ADS)
Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.
2017-11-01
In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.
Effect of Age on Variability in the Production of Text-Based Global Inferences
Williams, Lynne J.; Dunlop, Joseph P.; Abdi, Hervé
2012-01-01
As we age, our differences in cognitive skills become more visible, an effect especially true for memory and problem solving skills (i.e., fluid intelligence). However, by contrast with fluid intelligence, few studies have examined variability in measures that rely on one’s world knowledge (i.e., crystallized intelligence). The current study investigated whether age increased the variability in text based global inference generation–a measure of crystallized intelligence. Global inference generation requires the integration of textual information and world knowledge and can be expressed as a gist or lesson. Variability in generating two global inferences for a single text was examined in young-old (62 to 69 years), middle-old (70 to 76 years) and old-old (77 to 94 years) adults. The older two groups showed greater variability, with the middle elderly group being most variable. These findings suggest that variability may be a characteristic of both fluid and crystallized intelligence in aging. PMID:22590523
Simulated molecular-scale interaction of supercritical fluid mobile and stationary phases.
Siders, Paul D
2017-12-08
In supercritical fluid chromatography, molecules from the mobile phase adsorb on the stationary phase. Stationary-phase alkylsilane-terminated silica surfaces might adsorb molecules at the silica, among the silanes, on a silane layer, or in pore space between surfaces. Mobile phases of carbon dioxide, pure and modified with methanol, and stationary phases were simulated at the molecular scale. Classical atomistic force fields were used in Gibbs-ensemble hybrid Monte Carlo calculations. Excess adsorption of pure carbon dioxide mobile phase peaked at fluid densities of 0.002-0.003Å -3 . Mobile phase adsorption from 7% methanol in carbon dioxide peaked at lower fluid density. Methanol was preferentially adsorbed from the mixed fluid. Surface silanes prevented direct interaction of fluid-phase molecules with silica. Some adsorbed molecules mixed with tails of bonded silanes; some formed layers above the silanes. Much adsorption occurred by filling the space between surfaces in the stationary-phase model. The distribution in the stationary phase of methanol molecules from a modified fluid phase varied with pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Huaizhen; Zhang, Guangzhi
2017-05-01
Fracture detection and fluid identification are important tasks for a fractured reservoir characterization. Our goal is to demonstrate a direct approach to utilize azimuthal seismic data to estimate fluid bulk modulus, porosity, and dry fracture weaknesses, which decreases the uncertainty of fluid identification. Combining Gassmann's (Vier. der Natur. Gesellschaft Zürich 96:1-23, 1951) equations and linear-slip model, we first establish new simplified expressions of stiffness parameters for a gas-bearing saturated fractured rock with low porosity and small fracture density, and then we derive a novel PP-wave reflection coefficient in terms of dry background rock properties (P-wave and S-wave moduli, and density), fracture (dry fracture weaknesses), porosity, and fluid (fluid bulk modulus). A Bayesian Markov chain Monte Carlo nonlinear inversion method is proposed to estimate fluid bulk modulus, porosity, and fracture weaknesses directly from azimuthal seismic data. The inversion method yields reasonable estimates in the case of synthetic data containing a moderate noise and stable results on real data.
Transport properties at fluids interfaces: a molecular study for a macroscopic modelling
NASA Astrophysics Data System (ADS)
Russo, Antonio; Morciano, Matteo; Sibley, David N.; Nold, Andreas; Goddard, Benjamin D.; Asinari, Pietro; Kalliadasis, Serafim
2017-11-01
Rapid developments in the field of micro- and nano-fluidics require detailed analysis of the properties of matter at the molecular level. But despite numerous works in the literature, appropriate macroscopic relations able to integrate a microscopic description of fluid and soft matter properties at liquid-vapour and multi-fluid interfaces are missing. As a consequence, studies on interfacial phenomena and micro-device designs often rely on oversimplified assumptions, e.g. that the viscosities can be considered constant across interfaces. In our work, we present non-equilibrium MD simulations to scrutinise efficiently and systematically, through the tools of statistical mechanics, the anisotropic properties of fluids, namely density variations, stress tensor, and shear viscosity, at the fluid interfaces between liquid and vapour and between two partially miscible fluids. Our analysis has led to the formulation of a general relation between shear viscosity and density variations validated for a wide spectrum of interfacial fluid problems. In addition, it provides a rational description of other interfacial quantities of interest, including surface tension and its origins, and more generally, it offers valuable insight of molecular transport phenomena at interfaces.
Oscillatory interfacial instability between miscible fluids
NASA Astrophysics Data System (ADS)
Shevtsova, Valentina; Gaponenko, Yuri; Mialdun, Aliaksandr; Torregrosa, Marita; Yasnou, Viktar
Interfacial instabilities occurring between two fluids are of fundamental interest in fluid dynamics, biological systems and engineering applications such as liquid storage, solvent extraction, oil recovery and mixing. Horizontal vibrations applied to stratified layers of immiscible liquids may generate spatially periodic waving of the interface, stationary in the reference frame of the vibrated cell, referred to as a "frozen wave". We present experimental evidence that frozen wave instability exists between two ordinary miscible liquids of similar densities and viscosities. At the experiments and at the numerical model, two superimposed layers of ordinary liquids, water-alcohol of different concentrations, are placed in a closed cavity in a gravitationally stable configuration. The density and viscosity of these fluids are somewhat similar. Similar to the immiscible fluids this instability has a threshold. When the value of forcing is increased the amplitudes of perturbations grow continuously displaying a saw-tooth structure. The decrease of gravity drastically changes the structure of frozen waves.
Mi, Jianguo; Tang, Yiping; Zhong, Chongli; Li, Yi-Gui
2005-11-03
Our recently improved renormalization group (RG) theory is further reformulated within the context of density functional theory. To improve the theory for polar and associating fluids, an explicit and complete expression of the theory is derived in which the density fluctuation is expanded up to the third-order term instead of the original second-order term. A new predictive equation of state based on the first-order mean spherical approximation statistical associating fluid theory (FMSA-SAFT) and the newly improved RG theory is proposed for systems containing polar and associating fluids. The calculated results for both pure fluids and mixtures are in good agreement with experimental data both inside and outside the critical region. This work demonstrates that the RG theory incorporated with the solution of FMSA is a promising route for accurately describing the global phase behavior of complex fluids and mixtures.
Measurement of the Specific Heat Using a Gravity Cancellation Approach
NASA Technical Reports Server (NTRS)
Zhong, Fang
2003-01-01
The specific heat at constant volume C(sob V) of a simple fluid diverges near its liquid-vapor critical point. However, gravity-induced density stratification due to the divergence of isothermal susceptibility hinders the direct comparison of the experimental data with the predictions of renormalization group theory. In the past, a microgravity environment has been considered essential to eliminate the density stratification. We propose to perform specific heat measurements of He-3 on the ground using a method to cancel the density stratification. A He-3 fluid layer will be heated from below, using the thermal expansion of the fluid to cancel the hydrostatic compression. A 6% density stratification at a reduced temperature of 10(exp -5) can be cancelled to better than 0.1% with a steady 1.7 micro K temperature difference across a 0.05 cm thick fluid layer. A conventional AC calorimetry technique will be used to determine the heat capacity. The minimized bulk density stratification with a relaxation time 6500 sec at a reduced temperature of 10(exp -5) will stay unchanged during 1 Hz AC heating. The smear of the specific heat divergence due to the temperature difference across the cell is about 0.1% at a reduced temperature of 10(exp -6). The combination of using High Resolution Thermometry with a 0.5 n K temperature resolution in the AC technique and the cancellation of the density stratification will enable C(sub V) to be measured down to a reduced temperature of 10(exp -6) with less than a 1% systematic error.
Indirect measurement of lung density and air volume from electrical impedance tomography (EIT) data.
Nebuya, Satoru; Mills, Gary H; Milnes, Peter; Brown, Brian H
2011-12-01
This paper describes a method for estimating lung density, air volume and changes in fluid content from a non-invasive measurement of the electrical resistivity of the lungs. Resistivity in Ω m was found by fitting measured electrical impedance tomography (EIT) data to a finite difference model of the thorax. Lung density was determined by comparing the resistivity of the lungs, measured at a relatively high frequency, with values predicted from a published model of lung structure. Lung air volume can then be calculated if total lung weight is also known. Temporal changes in lung fluid content will produce proportional changes in lung density. The method was implemented on EIT data, collected using eight electrodes placed in a single plane around the thorax, from 46 adult male subjects and 36 adult female subjects. Mean lung densities (±SD) of 246 ± 67 and 239 ± 64 kg m(-3), respectively, were obtained. In seven adult male subjects estimates of 1.68 ± 0.30, 3.42 ± 0.49 and 4.40 ± 0.53 l in residual volume, functional residual capacity and vital capacity, respectively, were obtained. Sources of error are discussed. It is concluded that absolute differences in lung density of about 30% and changes over time of less than 30% should be detected using the current technology in normal subjects. These changes would result from approximately 300 ml increase in lung fluid. The method proposed could be used for non-invasive monitoring of total lung air and fluid content in normal subjects but needs to be assessed in patients with lung disease.
Øien, Alf H; Wiig, Helge
2016-07-07
Interstitial exclusion refers to the limitation of space available for plasma proteins and other macromolecules based on collagen and negatively charged glycosaminoglycans (GAGs) in the interstitial space. It is of particular importance to interstitial fluid and plasma volume regulation. Here we present a novel mechanical and mathematical model of the dynamic interactions of structural elements within the interstitium of the dermis at the microscopic level that may explain volume exclusion of charged and neutral macroparticles. At this level, the interstitium is considered to consist of elements called extracellular matrix (ECM) cells, again containing two main interacting structural components on a fluid background including anions and cations setting up osmotic forces: one smaller GAG component, having an intrinsic expansive electric force, and one bigger collagen component, having an intrinsic elastic force. Because of size differences, the GAG component interacts with a fraction of the collagen component only at normal hydration. This fraction, however, increases with rising hydration as a consequence of the modeled form of the interaction force between the GAGs and collagen. Collagen is locally displaced at variable degrees as hydration changes. Two models of GAGs are considered, having largely different geometries which demands different, but related, forms of GAG-collagen interaction forces. The effects of variable fixed charges on GAGs and of GAG density in tissue are evaluated taking into account observed volume exclusion properties of charged macromolecules as a function of tissue hydration. The presented models may improve our biophysical understanding of acting forces influencing tissue fluid dynamics. Such knowledge is significant when evaluating the transport of electrically charged and neutral macromolecules into and through the interstitium, and therefore to drug uptake and the therapeutic effects of macromolecular agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Imaging the Subsurface of the Thuringian Basin (Germany) on Different Spatial Scales
NASA Astrophysics Data System (ADS)
Goepel, A.; Krause, M.; Methe, P.; Kukowski, N.
2014-12-01
Understanding the coupled dynamics of near surface and deep fluid flow patterns is essential to characterize the properties of sedimentary basins, to identify the processes of compaction, diagenesis, and transport of mass and energy. The multidisciplinary project INFLUINS (Integrated FLUid dynamics IN Sedimentary basins) aims for investigating the behavior of fluids in the Thuringian Basin, a small intra-continental sedimentary basin in Germany, at different spatial scales, ranging from the pore scale to the extent of the entire basin. As hydraulic properties often significantly vary with spatial scales, e.g. seismic data using different frequencies are required to gain information about the spatial variability of elastic and hydraulic subsurface properties. For the Thuringian Basin, we use seismic and borehole data acquired in the framework of INFLUINS. Basin-wide structural imaging data are available from 2D reflection seismic profiles as well as 2.5D and 3D seismic travel time tomography. Further, core material from a 1,179 m deep drill hole completed in 2013 is available for laboratory seismic experiments on mm- to cm-scale. The data are complemented with logging data along the entire drill hole. This campaign yielded e.g. sonic and density logs allowing the estimation of in-situ P-velocity and acoustic impedance with a spatial resolution on the cm-scale and provides improved information about petrologic and stratigraphic variability at different scales. Joint interpretation of basin scale structural and elastic properties data with laboratory scale data from ultrasound experiments using core samples enables a detailed and realistic imaging of the subsurface properties on different spatial scales. Combining seismic travel time tomography with stratigraphic interpretation provides useful information of variations in the elastic properties for certain geological units and therefore gives indications for changes in hydraulic properties.
NASA Astrophysics Data System (ADS)
Hendrickson, Kelli; Yue, Dick
2016-11-01
This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.
Modeling variable density turbulence in the wake of an air-entraining transom stern
NASA Astrophysics Data System (ADS)
Hendrickson, Kelli; Yue, Dick
2015-11-01
This work presents a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flows in the near wake region of a transom stern. This three-dimensional flow is comprised of convergent corner waves that originate from the body and collide on the ship center plane forming the ``rooster tail'' that then widens to form the divergent wave train. These violent free-surface flows and breaking waves are characterized by significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) ~ 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. To whit, this work utilizes high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM) to capture the turbulence and large scale air entrainment. Analysis of the simulation results across and along the wake for the TMF budget and turbulent anisotropy provide the physical basis of the development of multiphase turbulence closure models. Performance of isotropic and anisotropic turbulent mass flux closure models will be presented. Sponsored by the Office of Naval Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, P.R.; Ramshaw, J.D.
MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equationmore » voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.« less
Al-Tarawneh, Emad; AL-Qudah, Mohammad; Hadidi, Fadi; Jubouri, Shams; Hadidy, Azmy
2014-01-01
Intraosseous pneumatocyst is a gas containing lesion located within a bone. It is a relatively rare condition of unclear etiology and with an undetermined natural course. Gas-density-fluid level pneumatocyst is even rarer. Pneumatocyst is frequently seen in adults but rarely reported in pediatrics. The lesion is usually small and is seen in the vertebral bodies as well as around the sacroiliac joints. Rarely does it occur in other parts of the skeleton. We are reporting a case of large blood signal intensity containing intraosseous pneumatocyst in a 14 year old boy and reviewing other pediatric cases of pneumatocysts as well as those with gas-density-fluid level. The recognition of this incidental rare benign lesion is essential to avoid over investigation and an inappropriate aggressive intervention. PMID:24967024
NASA Astrophysics Data System (ADS)
Sibley, David; Nold, Andreas; Kalliadasis, Serafim
2015-11-01
Density Functional Theory (DFT), a statistical mechanics of fluids approach, captures microscopic details of the fluid density structure in the vicinity of contact lines, as seen in computations in our recent study. Contact lines describe the location where interfaces between two fluids meet solid substrates, and have stimulated a wealth of research due to both their ubiquity in nature and technological applications and also due to their rich multiscale behaviour. Whilst progress can be made computationally to capture the microscopic to mesoscopic structure from DFT, complete analytical results to fully bridge to the macroscale are lacking. In this work, we describe our efforts to bring asymptotic methods to DFT to obtain results for contact angles and other macroscopic quantities in various parameter regimes. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.
NASA Technical Reports Server (NTRS)
Kaup, D. J.; Hansen, P. J.; Choudhury, S. Roy; Thomas, Gary E.
1986-01-01
The equations for the single-particle orbits in a nonneutral high density plasma in the presence of inhomogeneous crossed fields are obtained. Using these orbits, the linearized Vlasov equation is solved as an expansion in the orbital radii in the presence of inhomogeneities and density gradients. A model distribution function is introduced whose cold-fluid limit is exactly the same as that used in many previous studies of the cold-fluid equations. This model function is used to reduce the linearized Vlasov-Poisson equations to a second-order ordinary differential equation for the linearized electrostatic potential whose eigenvalue is the perturbation frequency.
NASA Astrophysics Data System (ADS)
Arbañil, José D. V.; Zanchin, Vilson T.
2018-05-01
We study the static equilibrium configurations of uncharged and charged spheres composed by a relativistic polytropic fluid, and we compare with those of spheres composed by a nonrelativistic polytropic fluid, the later case being already studied in a previous work [J. D. Arbañil, P. S. Lemos, and V. T. Zanchin, Phys. Rev. D 88, 084023 (2013), 10.1103/PhysRevD.88.084023]. An equation of state connecting the pressure p and the energy density ρ is assumed. In the nonrelativistic fluid case, the connection is through a nonrelativistic polytropic equation of state, p =ω ργ , with ω and γ being respectively the polytropic constant and the polytropic exponent. In the relativistic fluid case, the connection is through a relativistic polytropic equation of state, p =ω δγ, with δ =ρ -p /(γ -1 ), and δ being the rest-mass density of the fluid. For the electric charge distribution, we assume that the charge density ρe is proportional to the energy density ρ , ρe=α ρ , with α being a constant such that 0 ≤|α |≤1 . The study is developed by integrating numerically the hydrostatic equilibrium equation. Some properties of the charged spheres such as the gravitational mass, the total electric charge, the radius, the surface redshift, and the speed of sound are analyzed by varying the central rest-mass density, the charge fraction, and the polytropic exponent. In addition, some limits that arise in general relativity, such as the Chandrasekhar limit, the Oppenheimer-Volkoff limit, the Buchdahl bound, and the Buchdahl-Andréasson bound are studied. It is confirmed that charged relativistic polytropic spheres with γ →∞ and α →1 saturate the Buchdahl-Andréasson bound, thus indicating that it reaches the quasiblack hole configuration. We show by means of numerical analysis that, as expected, the major differences between the two cases appear in the high energy density region.
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Hansen, C. J.; Jarboe, T. R.
2017-10-01
A self-consistent, two-fluid (plasma-neutral) dynamic neutral model has been implemented into the 3-D, Extended-MHD code PSI-Tet. A monatomic, hydrogenic neutral fluid reacts with a plasma fluid through elastic scattering collisions and three inelastic collision reactions: electron-impact ionization, radiative recombination, and resonant charge-exchange. Density, momentum, and energy are evolved for both the plasma and neutral species. The implemented plasma-neutral model in PSI-Tet is being used to simulate decaying spheromak configurations in the HIT-SI experimental geometry, which is being compare to two-photon absorption laser induced fluorescence measurements (TALIF) made on the HIT-SI3 experiment. TALIF is used to measure the absolute density and temperature of monatomic deuterium atoms. Neutral densities on the order of 1015 m-3 and neutral temperatures between 0.6-1.7 eV were measured towards the end of decay of spheromak configurations with initial toroidal currents between 10-12 kA. Validation results between TALIF measurements and PSI-Tet simulations with the implemented dynamic neutral model will be presented. Additionally, preliminary dynamic neutral simulations of the HIT-SI/HIT-SI3 spheromak plasmas sustained with inductive helicity injection will be presented. Lastly, potential benefits of an expansion of the two-fluid model into a multi-fluid model that includes multiple neutral species and tracking of charge states will be discussed.
Rinehart, Joseph; Liu, Ngai; Alexander, Brenton; Cannesson, Maxime
2012-01-01
Closed-loop (automated) controllers are encountered in all aspects of modern life in applications ranging from air-conditioning to spaceflight. Although these systems are virtually ubiquitous, they are infrequently used in anesthesiology because of the complexity of physiologic systems and the difficulty in obtaining reliable and valid feedback data from the patient. Despite these challenges, closed-loop systems are being increasingly studied and improved for medical use. Two recent developments have made fluid administration a candidate for closed-loop control. First, the further description and development of dynamic predictors of fluid responsiveness provides a strong parameter for use as a control variable to guide fluid administration. Second, rapid advances in noninvasive monitoring of cardiac output and other hemodynamic variables make goal-directed therapy applicable for a wide range of patients in a variety of clinical care settings. In this article, we review the history of closed-loop controllers in clinical care, discuss the current understanding and limitations of the dynamic predictors of fluid responsiveness, and examine how these variables might be incorporated into a closed-loop fluid administration system.
Analysis of the Distribution of Magnetic Fluid inside Tumors by a Giant Magnetoresistance Probe
Gooneratne, Chinthaka P.; Kurnicki, Adam; Yamada, Sotoshi; Mukhopadhyay, Subhas C.; Kosel, Jürgen
2013-01-01
Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42°C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. PMID:24312280
Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics
NASA Astrophysics Data System (ADS)
Benjamin, Robert F.
1999-09-01
A series of low-cost simple, "kitchen-physics" experiments demonstrates Rayleigh-Taylor Instability (RTI), the growth of ripples at an interface between fluids when the higher-density fluid is on top. We also describe the importance of RTI in ocean dynamics and commercial products.
Detectability of primordial gravitational waves produced in bouncing models
NASA Astrophysics Data System (ADS)
Pinto-Neto, Nelson; Scardua, Arthur
2017-06-01
It is widely known that bouncing models with a dust hydrodynamical fluid satisfying cs2=pd/ρd≈0 , where cs , pd , ρd are the sound velocity, pressure, and energy density of the dust fluid, respectively, have almost scale invariant spectrum of scalar perturbations and negligible primordial gravitational waves. We investigate whether adding another fluid with 1 /3
Fail-fixed servovalve with positive fluid feedback
NASA Technical Reports Server (NTRS)
Kast, Howard B. (Inventor)
1984-01-01
The servovalve includes a primary jet of fluid. A variable control signal is adapted to vary the angular position of the primary jet from its maximum recovery position. A first fluid path is adapted to supply fluid to a servopiston at a variable pressure determined at least in part by the control signal. A second fluid path is adapted to receive a predetermined portion of the primary jet fluid when the control signal reaches a predetermined value. The second fluid path terminates in the vicinity of the primary jet and is adapted to direct a secondary jet of fluid at the primary jet to deflect the primary jet toward the input orifice of the second fluid path. The resultant positive fluid feedback in the second fluid path causes the primary jet to latch in a first angular position relative to the maximum recovery position when the control signal reaches a predetermined value. The servovalve may further include a means to discharge the fluid and a means to block the first fluid path to the servopiston when the control signal falls below a second predetermined value. A method of operating a fail-fixed servovalve is also described.
Quinn, Timothy D; Brovman, Ethan Y; Urman, Richard D
2017-09-01
Fluid therapy in the perioperative period varies greatly between anesthesia providers and may have a negative impact on surgical outcomes. We conducted a retrospective analysis of 705 elective colorectal cases consisting of colectomies, ileocolic resections, and low anterior resections at an academic institution from January 1, 2010 to May 29, 2015, collected by our electronic medical record before implementation of Enhanced Recovery After Surgery (ERAS ® ) pathways. The mean for total crystalloid administration was 2578 mL with a standard deviation (SD) that was approximately 50% of the mean value. A combination of both normal saline and lactated Ringer's solution was used in almost all cases without a clear rationale for fluid choice. Fluid administered to patients was disproportional to measured intraoperative fluid losses (estimated blood loss and urine output) by a factor of 10. The average rate of fluid given was 1050 mL/h with an SD of nearly the same amount (951 mL). There was a variability of over 67% in total crystalloid administered based on both ideal body weight and total body weight. We found that a wide variability in the amount and type of fluid therapy administered existed at our institution before implementation of a colorectal ERAS pathway or routine use of goal-directed fluid therapy (GDFT). ERAS pathways with GDFT protocols could lead to more rational and consistent fluid therapy leading to improved outcomes.
The complexity of oral physiology and its impact on salivary diagnostics.
Helmerhorst, E J; Dawes, C; Oppenheim, F G
2018-04-01
Saliva contains biomarkers for systemic as well as oral diseases. This study was undertaken to assess the variability in the sources of such biomarkers (plasma, cells) and attempted to identify saliva deterioration markers in order to improve saliva diagnostic outcomes. Inter- and intrasubject variations in salivary gingival crevicular fluid levels were determined by measuring salivary albumin and transferrin levels. The purity of collected glandular secretions was determined by bacterial culture, and the variability in epithelial cell numbers by cell counting and optical density measurement. Saliva sample deterioration markers were identified by RP-HPLC and LC-ESI-MS/MS. Tenfold variations were observed in plasma-derived albumin and transferrin levels, emphasizing the need for biomarker normalization with respect to plasma contributions to saliva. Epithelial cell levels varied 50-fold in samples collected before and after a meal. Salivary fungal levels varied within subjects and among subjects from 0 to >1,000 colony-forming units per milliliter. In saliva samples incubated for various time intervals at 37°C, five peptides were identified that steadily increased in intensity over time and which could be explored as "deterioration markers." Taking saliva characteristics appropriately into account will help realize the promise that this body fluid is suitable to be exploited for reliable healthcare monitoring and surveillance. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Trace elements in Gem-Quality Diamonds - Origin and evolution of diamond-forming fluid inclusions
NASA Astrophysics Data System (ADS)
Pearson, Graham; Krebs, Mandy; Stachel, Thomas; Woodland, Sarah; Chinn, Ingrid; Kong, Julie
2017-04-01
In the same way that melt inclusions in phenocrysts have expanded our idea of melt formation and evolution in basalts, studying fluids trapped in diamonds is providing important new constraints on the nature of diamond-forming fluids. Fibrous and cloudy diamonds trap a high but variable density of fluid inclusions and so have been extensively studied using major and trace element compositions. In contrast, constraining the nature of the diamond-forming fluid for high purity gem-quality diamonds has been restricted by the rarity of available high quality trace element data. This is due to the extremely low concentrations of impurities that gem diamonds contain - often in the ppt range. The recent discovery of fluids in gem diamonds showing similar major element chemistry to fluid-rich diamonds suggest that many diamonds may share a common spectrum of parental fluids. Here we test this idea further. Recent advances in analytical techniques, in particular the development of the "off-line" laser ablation pre-concentration approach, have allowed fully quantitative trace element data to be recovered from "fluid-poor", high quality gem diamonds. We present trace element data for gem diamonds from a variety of locations from Canada, S. Africa and Russia, containing either silicate or sulphide inclusions to examine possible paragenetic or genetic differences between fluids. REE abundance in the "gem" diamonds vary from 0.1 to 0.0001 x chondrite. To a first order, we observe the same spectrum of trace element compositions in the gem diamonds as that seen in fluid-rich "fibrous" diamonds, supporting a common origin for the fluids. REE patterns range from extremely flat (Ce/Yb)n 2.5 to 5 (commonly in sulphide-bearing diamonds) to >70, the latter having significantly greater inter-element HFSE/LILE fractionation. In general, the fluids from the sulphide-bearing diamonds are less REE-enriched than the silicate-bearing diamonds, but the ranges overlap significantly. The very large range in REE fractionation mimics very closely that produced in high pressure (5-6 GPa) experimental melts of CO2-H2O fluxed peridotite. Hence, the elemental characteristics of the fluids could be reconciled by the diamonds growing from such melts over a range of T and hence F, with the sulphide-bearing diamonds generally being produced by larger fraction (higher T) melts that have reacted less with their wall rocks. It is also possible that the less REE enriched fluids are consistent with derivation from more reduced CH4-bearing fluids that have lower solute capacity than oxidised fluids. This option is being evaluated.
Experiments and High-resolution Simulations of Density and Viscosity Feedbacks on Convective Mixing
NASA Astrophysics Data System (ADS)
Hidalgo, Juan J.; Fe, Jaime; MacMinn, Christopher W.; Cueto-Felgueroso, Luis; Juanes, Ruben
2011-11-01
Dissolution by convective mixing is one of the main trapping mechanisms during CO2 sequestration in saline aquifers. Initially, the buoyant CO2 dissolves into the underlying brine by diffusion. The CO2-brine mixture is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. Although this is a well-known process, it remains unclear how convective mixing scales with the governing parameters of the system and its impact on the actual mixing of CO2 and brine. We explore the dependence of the CO2 dissolution flux on the nonlinearity of the density and viscosity of the fluid mixture by means of high-resolution numerical simulations and laboratory experiments with an analogue fluid system (water and propylene glycol). We find that the value of the concentration for which the density of the mixture is maximum, and the viscosity contrast between the fluids, both exert a powerful control on the convective flux. From the experimental and simulation results, we obtain the scaling behavior of convective mixing, and clarify the role of nonlinear density and viscosity feedbacks. JJH acknowledges the support from the FP7 Marie Curie Actions of the European Commission, via the CO2-MATE project (PIOF-GA-2009-253678).
NASA Astrophysics Data System (ADS)
Levin, Lisa A.; Mendoza, Guillermo F.; Grupe, Benjamin M.
2017-03-01
Authigenic carbonate rocks at methane seeps are recognized as hosting diverse and abundant invertebrate assemblages, with potential forcing from fluid seepage and hydrography. Mensurative studies of carbonate macrofauna (>0.3 mm) at Hydrate Ridge, OR revealed little effect of water depth and overlying oxygenation (at 600 m and 800 m) but a large influence of seepage activity on density, taxonomic composition, diversity, and biological traits (feeding, lifestyle, motility, size and calcification). Rocks exposed to active seepage had 3-4× higher total macrofaunal densities than under inactive conditions. Assemblages exhibited higher species richness and reduced evenness (greater dominance) under active seepage than inactive conditions, but no difference in H‧ or rarefaction diversity. Actively seeping sites were characterized by errant (motile), bacterial grazing, small- and medium-sized, heavily calcified species, whereas inactive sites exhibited a greater diversity of feeding modes and more burrowers, sessile, large and lightly calcified species. Active rocks supported more exogonid (Syllidae), ampharetid, and cirratulid polychaetes, provannid snails, pyropeltid limpets, nemerteans, and sponges; whereas inactive rocks supported higher densities of ophiuroids, isopods, gammarid amphipods, hydroids, Typosyllis (Syllidae) and tanaids. Transplant experiments, in which rocks were transferred between active and inactive sites at Hydrate Ridge North (600 m), revealed that assemblages respond within 13 months to increase or cessation of seepage, taking on the feeding, size and calcification characteristics of the background fauna at the new site. Lifestyles and motility patterns shifted more slowly as the sessile, attached species did not track seepage as quickly. Provannid snails and pyropeltid limpets rapidly colonized rocks transplanted to active sites and disappeared when transplanted to inactive sites. Given the known variability of fluid fluxes and rapid community response, a mosaic of communities changing in space and time is hypothesized to generate the relatively high species diversity at methane seeps.
NASA Astrophysics Data System (ADS)
Mohyud Din, S. T.; Zubair, T.; Usman, M.; Hamid, M.; Rafiq, M.; Mohsin, S.
2018-04-01
This study is devoted to analyze the influence of variable diffusion coefficient and variable thermal conductivity on heat and mass transfer in Casson fluid flow. The behavior of concentration and temperature profiles in the presence of Joule heating and viscous dissipation is also studied. The dimensionless conversation laws with suitable BCs are solved via Modified Gegenbauer Wavelets Method (MGWM). It has been observed that increase in Casson fluid parameter (β ) and parameter ɛ enhances the Nusselt number. Moreover, Nusselt number of Newtonian fluid is less than that of the Casson fluid. The phenomenon of mass transport can be increased by solute of variable diffusion coefficient rather than solute of constant diffusion coefficient. A detailed analysis of results is appropriately highlighted. The obtained results, error estimates, and convergence analysis reconfirm the credibility of proposed algorithm. It is concluded that MGWM is an appropriate tool to tackle nonlinear physical models and hence may be extended to some other nonlinear problems of diversified physical nature also.
Maximizing the value of pressure data in saline aquifer characterization
NASA Astrophysics Data System (ADS)
Yoon, Seonkyoo; Williams, John R.; Juanes, Ruben; Kang, Peter K.
2017-11-01
The injection and storage of freshwater in saline aquifers for the purpose of managed aquifer recharge is an important technology that can help ensure sustainable water resources. As a result of the density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial salinity distribution, and therefore experiences transient changes. The effect of variable density can be quantified by the mixed convection ratio, which is a ratio between the strength of two convection processes: free convection due to the density differences and forced convection due to hydraulic gradients. We combine a density-dependent flow and transport simulator with an ensemble Kalman filter (EnKF) to analyze the effects of freshwater injection rates on the value-of-information of transient pressure data for saline aquifer characterization. The EnKF is applied to sequentially estimate heterogeneous aquifer permeability fields using real-time pressure data. The performance of the permeability estimation is analyzed in terms of the accuracy and the uncertainty of the estimated permeability fields as well as the predictability of breakthrough curve arrival times in a realistic push-pull setting. This study demonstrates that injecting fluids at a rate that balances the two characteristic convections can maximize the value of pressure data for saline aquifer characterization.
Cascadia subduction tremor muted by crustal faults
Wells, Ray; Blakely, Richard J.; Wech, Aaron G.; McCrory, Patricia A.; Michael, Andrew
2017-01-01
Deep, episodic slow slip on the Cascadia subduction megathrust of western North America is accompanied by low-frequency tremor in a zone of high fluid pressure between 30 and 40 km depth. Tremor density (tremor epicenters per square kilometer) varies along strike, and lower tremor density statistically correlates with upper plate faults that accommodate northward motion and rotation of forearc blocks. Upper plate earthquakes occur to 35 km depth beneath the faults. We suggest that the faults extend to the overpressured megathrust, where they provide fracture pathways for fluid escape into the upper plate. This locally reduces megathrust fluid pressure and tremor occurrence beneath the faults. Damping of tremor and related slow slip caused by fluid escape could affect fault properties of the megathrust, possibly influencing the behavior of great earthquakes.
Subgrid-scale effects in compressible variable-density decaying turbulence
GS, Sidharth; Candler, Graham V.
2018-05-08
We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less
Subgrid-scale effects in compressible variable-density decaying turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
GS, Sidharth; Candler, Graham V.
We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less
Accurate bulk density determination of irregularly shaped translucent and opaque aerogels
NASA Astrophysics Data System (ADS)
Petkov, M. P.; Jones, S. M.
2016-05-01
We present a volumetric method for accurate determination of bulk density of aerogels, calculated from extrapolated weight of the dry pure solid and volume estimates based on the Archimedes' principle of volume displacement, using packed 100 μm-sized monodispersed glass spheres as a "quasi-fluid" media. Hard particle packing theory is invoked to demonstrate the reproducibility of the apparent density of the quasi-fluid. Accuracy rivaling that of the refractive index method is demonstrated for both translucent and opaque aerogels with different absorptive properties, as well as for aerogels with regular and irregular shapes.
Capacitive Sensors for Measuring Masses of Cryogenic Fluids
NASA Technical Reports Server (NTRS)
Nurge, Mark; Youngquist, Robert
2003-01-01
An effort is under way to develop capacitive sensors for measuring the masses of cryogenic fluids in tanks. These sensors are intended to function in both microgravitational and normal gravitational settings, and should not be confused with level sensors, including capacitive ones. A sensor of this type is conceptually simple in the sense that (1) it includes only one capacitor and (2) if properly designed, its single capacitance reading should be readily convertible to a close approximation of the mass of the cryogenic fluid in the tank. Consider a pair of electrically insulated electrodes used as a simple capacitive sensor. In general, the capacitance is proportional to the permittivity of the dielectric medium (in this case, a cryogenic fluid) between the electrodes. The success of design and operation of a sensor of the present type depends on the accuracy of the assumption that to a close approximation, the permittivity of the cryogenic fluid varies linearly with the density of the fluid. Data on liquid nitrogen, liquid oxygen, and liquid hydrogen, reported by the National Institute of Standards and Technology, indicate that the permittivities and densities of these fluids are, indeed, linearly related to within a few tenths of a percent over the pressure and temperature regions of interest. Hence, ignoring geometric effects for the moment, the capacitance between two electrodes immersed in the fluid should vary linearly with the density, and, hence, with the mass of the fluid. Of course, it is necessary to take account of the tank geometry. Because most cryogenic tanks do not have uniform cross sections, the readings of level sensors, including capacitive ones, are not linearly correlated with the masses of fluids in the tanks. In a sensor of the present type, the capacitor electrodes are shaped so that at a given height, the capacitance per unit height is approximately proportional to the cross-sectional area of the tank in the horizontal plane at that height (see figure).
Idrissi, Abdenacer; Vyalov, Ivan; Georgi, Nikolaj; Kiselev, Michael
2013-10-10
We combined molecular dynamics simulation and DBSCAN algorithm (Density Based Spatial Clustering of Application with Noise) in order to characterize the local density inhomogeneity distribution in supercritical fluids. The DBSCAN is an algorithm that is capable of finding arbitrarily shaped density domains, where domains are defined as dense regions separated by low-density regions. The inhomogeneity of density domain distributions of Ar system in sub- and supercritical conditions along the 50 bar isobar is associated with the occurrence of a maximum in the fluctuation of number of particles of the density domains. This maximum coincides with the temperature, Tα, at which the thermal expansion occurs. Furthermore, using Voronoi polyhedral analysis, we characterized the structure of the density domains. The results show that with increasing temperature below Tα, the increase of the inhomogeneity is mainly associated with the density fluctuation of the border particles of the density domains, while with increasing temperature above Tα, the decrease of the inhomogeneity is associated with the core particles.
Prediction of nanofluids properties: the density and the heat capacity
NASA Astrophysics Data System (ADS)
Zhelezny, V. P.; Motovoy, I. V.; Ustyuzhanin, E. E.
2017-11-01
The results given in this report show that the additives of Al2O3 nanoparticles lead to increase the density and decrease the heat capacity of isopropanol. Based on the experimental data the excess molar volume and the excess molar heat capacity were calculated. The report suggests new method for predicting the molar volume and molar heat capacity of nanofluids. It is established that the values of the excess thermodynamic functions are determined by the properties and the volume of the structurally oriented layers of the base fluid molecules near the surface of nanoparticles. The heat capacity of the structurally oriented layers of the base fluid is less than the heat capacity of the base fluid for given parameters due to the greater regulation of its structure. It is shown that information on the geometric dimensions of the structured layers of the base fluid near nanoparticles can be obtained from data on the nanofluids density and at ambient temperature - by the dynamic light scattering method. For calculations of the nanofluids heat capacity over a wide range of temperatures a new correlation based on the extended scaling is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, R.; Hatori, T.; Miura, H., E-mail: miura.hideaki@nifs.ac.jp
Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. Themore » formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability.« less
Relative density of urine: methods and clinical significance.
Pradella, M; Dorizzi, R M; Rigolin, F
1988-01-01
The physical properties and chemical composition of urine are highly variable and are determined in large measure by the quantity and the type of food consumed. The specific gravity is the ratio of the density to that of water, and it is dependent on the number and weight of solute particles and on the temperature of the sample. The weight of solute particles is constituted mainly of urea (73%), chloride (5.4%), sodium (5.1%), potassium (2.4%), phosphate (2.0%), uric acid (1.7%), and sulfate (1.3%). Nevertheless, urine osmolality depends only on the number of solute particles. The renal production of maximally concentrated urine and formation of dilute urine may be reduced to two basic elements: (1) generation and maintenance of a renal medullary solute concentration hypertonic to plasma and (2) a mechanism for osmotic equilibration between the inner medulla and the collecting duct fluid. The interaction of the renal medullary countercurrent system, circulating levels of antidiuretic hormone, and thirst regulates water metabolism. Renin, aldosterone, prostaglandins, and kinins also play a role. Clinical estimation of the concentrating and diluting capacity can be performed by relatively simple provocative tests. However, urinary specific gravity after taking no fluids for 12 h overnight should be 1.025 or more, so that the second urine in the morning is a useful sample for screening purposes. Many preservation procedures affect specific gravity measurements. The concentration of solids (or water) in urine can be measured by weighing, hydrometer, refractometry, surface tension, osmolality, a reagent strip, or oscillations of a capillary tube. These measurements are interrelated, not identical. Urinary density measurement is useful to assess the disorders of water balance and to discriminate between prerenal azotemia and acute tubular necrosis. The water balance regulates the serum sodium concentration, therefore disorders are revealed by hypo- and hypernatremia. The disturbances are due to renal and nonrenal diseases, mainly liver, cardiovascular, intestinal, endocrine, and iatrogenic. Fluid management is an important topic of intensive care medicine. Moreover, the usefulness of specific gravity measurement of urine lies in interpreting other findings of urinalysis, both chemical and microscopical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru
2016-09-15
Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describesmore » static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the height of the free boundary on the density of the fluid. Self-similar continuous and discontinuous solutions are obtained for a system on a slope, and a solution is found to the initial discontinuity decay problem in this case.« less
NASA Astrophysics Data System (ADS)
Nakayama, Masaki; Katano, Hiroaki; Sato, Haruki
2014-05-01
A precise determination of the critical temperature and density for technically important fluids would be possible on the basis of the digital image for the visual observation of the phase boundary in the vicinity of the critical point since the sensitivity and resolution are higher than those of naked eyes. In addition, the digital image can avoid the personal uncertainty of an observer. A strong density gradient occurs in a sample cell at the critical point due to gravity. It was carefully assessed to determine the critical density, where the density profile in the sample cell can be observed from the luminance profile of a digital image. The density-gradient profile becomes symmetric at the critical point. One of the best fluids, whose thermodynamic properties have been measured with the highest reliability among technically important fluids, would be carbon dioxide. In order to confirm the reliability of the proposed method, the critical temperature and density of carbon dioxide were determined using the digital image. The critical temperature and density values of carbon dioxide are ( and ( kg m, respectively. The critical temperature and density values agree with the existing best values within estimated uncertainties. The reliability of the method was confirmed. The critical pressure, 7.3795 MPa, corresponding to the determined critical temperature of 304.143 K is also proposed. A new set of parameters for the vapor-pressure equation is also provided.
Viscous entrainment on hairy surfaces
NASA Astrophysics Data System (ADS)
Nasto, Alice; Brun, P.-T.; Hosoi, A. E.
2018-02-01
Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.
Moore, J.C.; Klaus, A.; Bangs, N.L.; Bekins, B.; Bucker, C.J.; Bruckmann, W.; Erickson, S.N.; Hansen, O.; Horton, T.; Ireland, P.; Major, C.O.; Moore, Gregory F.; Peacock, S.; Saito, S.; Screaton, E.J.; Shimeld, J.W.; Stauffer, P.H.; Taymaz, T.; Teas, P.A.; Tokunaga, T.
1998-01-01
Borehole logs from the northern Barbados accretionary prism show that the plate-boundary decollement initiates in a low-density radiolarian claystone. With continued thrusting, the decollement zone consolidates, but in a patchy manner. The logs calibrate a three-dimensional seismic reflection image of the decollement zone and indicate which portions are of low density and enriched in fluid, and which portions have consolidated. The seismic image demonstrates that an underconsolidated patch of the decollement zone connects to a fluid-rich conduit extending down the decollement surface. Fluid migration up this conduit probably supports the open pore structure in the underconsolidated patch.
High Density Thermal Energy Storage with Supercritical Fluids
NASA Technical Reports Server (NTRS)
Ganapathi, Gani B.; Wirz, Richard
2012-01-01
A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Bierschenk, T. R.; Juhlke, T. J.; Kawa, H.; Lagow, R. J.
1993-01-01
A series of perfluoropolyalkylether (PFPAE) fluids was synthesized by direct fluorination. Viscosity-temperature properties, oxidation stabilities, oxidation-corrosion properties, bulk modulus, lubricity, surface tension and density were measured. It was shown that as the carbon to oxygen ratio in the polymer repeating unit decreases, the viscometric properties improve, the fluids may become poorer boundary lubricants, the bulk modulus increases, the surface tension increases and the fluid density increases. The presence of difluoromethylene oxide units in the polymer does not significantly lower the oxidation and oxidation-corrosion stabilities as long as the difluoromethylene oxide units are separated by other units.
Contextual analysis of fluid intelligence.
Salthouse, Timothy A; Pink, Jeffrey E; Tucker-Drob, Elliot M
2008-01-01
The nature of fluid intelligence was investigated by identifying variables that were, and were not, significantly related to this construct. Relevant information was obtained from three sources: re-analyses of data from previous studies, a study in which 791 adults performed storage-plus-processing working memory tasks, and a study in which 236 adults performed a variety of working memory, updating, and cognitive control tasks. The results suggest that fluid intelligence represents a broad individual difference dimension contributing to diverse types of controlled or effortful processing. The analyses also revealed that very few of the age-related effects on the target variables were statistically independent of effects on established cognitive abilities, which suggests most of the age-related influences on a wide variety of cognitive control variables overlap with age-related influences on cognitive abilities such as fluid intelligence, episodic memory, and perceptual speed.
NASA Astrophysics Data System (ADS)
Shou, Yinsi; Combi, Michael R.; Toth, Gabor; Huang, Zhenguang; Jia, Xianzhe; Fougere, Nicolas; Tenishev, Valeriy; Gombosi, T. I.; Hansen, Kenneth C.; Bieler, Andre
2016-10-01
Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on BATS-R-US in the University of Michigan's SWMF (Space Weather Modeling Framework), which is capable of computing both the inner and the outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov-Gerasimenko (CG) at various heliocentric distances and demonstrated that it is able to yield comparable results as the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we can characterize the cometary H2O expansion speeds and demonstrate the nonlinear effect of production rates or photochemical heating. Our results are also compared to previous modeling work (e.g., Bockelee-Morvan & Crovisier 1987) and remote observations (e.g., Tseng et al. 2007), which serve as further validation of our model. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.
NASA Astrophysics Data System (ADS)
Sonntag, Simon J.; Kaufmann, Tim A. S.; Büsen, Martin R.; Laumen, Marco; Linde, Torsten; Schmitz-Rode, Thomas; Steinseifer, Ulrich
2013-04-01
Heart disease is one of the leading causes of death in the world. Due to a shortage in donor organs artificial hearts can be a bridge to transplantation or even serve as a destination therapy for patients with terminal heart insufficiency. A pusher plate driven pulsatile membrane pump, the Total Artificial Heart (TAH) ReinHeart, is currently under development at the Institute of Applied Medical Engineering of RWTH Aachen University.This paper presents the methodology of a fully coupled three-dimensional time-dependent Fluid Structure Interaction (FSI) simulation of the TAH using a commercial partitioned block-Gauss-Seidel coupling package. Partitioned coupling of the incompressible fluid with the slender flexible membrane as well as a high fluid/structure density ratio of about unity led inherently to a deterioration of the stability (‘artificial added mass instability’). The objective was to conduct a stable simulation with high accuracy of the pumping process. In order to achieve stability, a combined resistance and pressure outlet boundary condition as well as the interface artificial compressibility method was applied. An analysis of the contact algorithm and turbulence condition is presented. Independence tests are performed for the structural and the fluid mesh, the time step size and the number of pulse cycles. Because of the large deformation of the fluid domain, a variable mesh stiffness depending on certain mesh properties was specified for the fluid elements. Adaptive remeshing was avoided. Different approaches for the mesh stiffness function are compared with respect to convergence, preservation of mesh topology and mesh quality. The resulting mesh aspect ratios, mesh expansion factors and mesh orthogonalities are evaluated in detail. The membrane motion and flow distribution of the coupled simulations are compared with a top-view recording and stereo Particle Image Velocimetry (PIV) measurements, respectively, of the actual pump.
NASA Astrophysics Data System (ADS)
Kullmann, Tamás; Szipőcs, Annamária
2017-09-01
The seasonal variability of certain non-allergic respiratory diseases is not clearly understood. Analysis of the breath condensate, the liquid that can be collected by breathing into a cold tube, has been proposed to bring closer to the understanding of airway pathologies. It has been assumed, that (1) airway lining fluid was a stable body liquid and (2) the breath condensate samples were representative of the airway lining fluid. Research was focussed on the identification of biomarkers indicative of respiratory pathologies. Despite 30 years of extended investigations breath condensate analysis has not gained any clinical implementation so far. The pH of the condensate is the characteristic that can be determined with the highest reproducibility. The present paper shows, that contrary to the initial assumptions, breath condensate is not a representative of the airway lining fluid, and the airway lining fluid is not a stable body liquid. Condensate pH shows baseline variability and it is influenced by drinking and by the ambient temperature. The changes in condensate pH are linked to changes in airway lining fluid pH. The variability of airway lining fluid pH may explain seasonal incidence of certain non-allergic respiratory diseases such as the catching of a common cold and the increased incidence of COPD exacerbations and exercise-induced bronchoconstriction in cold periods.
Dark Solitons in High Velocity Waveguide Polariton Fluids.
Walker, P M; Tinkler, L; Royall, B; Skryabin, D V; Farrer, I; Ritchie, D A; Skolnick, M S; Krizhanovskii, D N
2017-09-01
We study exciton-polariton nonlinear optical fluids in the high momentum waveguide regime for the first time. We demonstrate the formation of dark solitons with the expected dependence of width on fluid density for both main classes of soliton-forming fluid defects. The results are well described by numerical modeling of the fluid propagation. We deduce a continuous wave nonlinearity more than ten times that on picosecond time scales, arising due to interaction with the exciton reservoir.
Spiral waves in driven dusty plasma medium: Generalized hydrodynamic fluid description
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Patel, Bhavesh; Das, Amita
2018-04-01
Spiral waves are observed in many natural phenomena. They have been extensively represented by the mathematical FitzHugh-Nagumo model [Barkley et al., Phys. Rev. A 42, 2489 (1990)] of excitable media. Also, in incompressible fluid simulations, the excitation of thermal spiral waves has been reported by Li et al. [Phys. of Fluids 22, 011701 (2010)]. In the present paper, the spatiotemporal development of spiral waves in the context of weak and strong coupling limits has been shown. While the weakly coupled medium has been represented by a simple fluid description, for strong coupling, a generalized visco-elastic fluid description has been employed. The medium has been driven by an external force in the form of a rotating electric field. It is shown that when the amplitude of force is small, the density perturbations in the medium are also small. In this case, the excitations do not develop as a spiral wave. Only when the amplitude of force is high so as to drive the density perturbations to nonlinear amplitudes does the spiral density wave formation occurs. The role of the forcing frequency and the effect of strong coupling and the sound velocity of medium in the formation and evolution of spiral waves have been investigated in detail.
Role of head of turbulent 3-D density currents in mixing during slumping regime
NASA Astrophysics Data System (ADS)
Bhaganagar, Kiran
2017-02-01
A fundamental study was conducted to shed light on entrainment and mixing in buoyancy-driven Boussinesq density currents. Large-eddy simulation was performed on lock-exchange (LE) release density currents—an idealized test bed to generate density currents. As dense fluid was released over a sloping surface into an ambient lighter fluid, the dense fluid slumps to the bottom and forms a characteristic head of the current. The dynamics of the head dictated the mixing processes in LE currents. The key contribution of this study is to resolve an ongoing debate on mixing: We demonstrate that substantial mixing occurs in the early stages of evolution in an LE experiment and that entrainment is highly inhomogeneous and unsteady during the slumping regime. Guided by the flow physics, entrainment is calculated using two different but related perspectives. In the first approach, the entrainment parameter (E) is defined as the fraction of ambient fluid displaced by the head that entrains into the current. It is an indicator of the efficiency in which ambient fluid is displaced into the current and it serves as an important metric to compare the entrainment of dense currents over different types of surfaces, e.g., roughness configuration. In the second approach, E measures the net entrainment in the current at an instantaneous time t over the length of the current. Net entrainment coefficient is a metric to compare the effects of flow dynamical conditions, i.e., lock-aspect ratio that dictates the fraction of buoyancy entering the head, and also the effect of the sloping angle. Together, the entrainment coefficient and the net entrainment coefficient provide an insight into the entrainment process. The "active" head of the current acts as an engine that mixes the ambient fluid with the existing dense fluid, the 3-D lobes and clefts on the frontal end of the current causes recirculation of the ambient fluid into the current, and Kelvin-Helmholtz rolls are the mixers that entrain the ambience into the current. Buoyancy and shear production occur at the interface in the head region of the current, and transport of turbulence kinetic energy (TKE) by Reynolds stresses results in high TKE.
Settling equivalence of detrital minerals and grain-size dependence of sediment composition
NASA Astrophysics Data System (ADS)
Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni
2008-08-01
This study discusses the laws which govern sediment deposition, and consequently determine size-dependent compositional variability. A theoretical approach is substantiated by robust datasets on major Alpine, Himalayan, and African sedimentary systems. Integrated (bulk-petrography, heavy-mineral, X-ray powder diffraction) multiple-window analyses at 0.25ϕ to 0.50ϕ sieve interval of eighty-five fluvial, beach, and eolian-dune samples, ranging from very fine silt to coarse sand, document homologous intrasample compositional trends, revealed by systematic concentration of denser grains in finer-grained fractions (“size-density sorting”). These trends are explained by the settling-equivalence principle, stating that detrital minerals are deposited together if their settling velocity is the same. Settling of silt is chiefly resisted by fluid viscosity, and Stokes' law predicts that size differences between detrital minerals in ϕ units (“size shifts”) are half the difference between the logarithms of their submerged densities. Settling of pebbles is chiefly resisted by turbulence effects, and the Impact law predicts double size shifts than Stokes' law. Settling of sand is resisted by both viscosity and turbulence, the settling-equivalence formula is complex, and size shifts increase - with increasing settling velocity and grain size - from those predicted by Stokes' law to those predicted by the Impact law. In wind-laid sands, size shifts match those predicted by the Impact law; size-density sorting is thus greater than in water-laid fine sands. New analytical, graphical, and statistical techniques for rigorous settling-equivalence analysis of terrigenous sediments are illustrated. Deviations associated with non-spherical shape, density anomalies, inheritance from source rocks, or mixing of detrital species with contrasting provenance and different size distribution are also tentatively assessed. Such integrated theoretical and experimental approach allows us to mathematically predict intrasample compositional variability of water-laid and wind-laid sediments, once the density of detrital components is known.
Dissepiments, density bands and signatures of thermal stress in Porites skeletons
NASA Astrophysics Data System (ADS)
DeCarlo, Thomas M.; Cohen, Anne L.
2017-09-01
The skeletons of many reef-building corals are accreted with rhythmic structural patterns that serve as valuable sclerochronometers. Annual high- and low-density band couplets, visible in X-radiographs or computed tomography scans, are used to construct age models for paleoclimate reconstructions and to track variability in coral growth over time. In some corals, discrete, anomalously high-density bands, called "stress bands," preserve information about coral bleaching. However, the mechanisms underlying the formation of coral skeletal density banding remain unclear. Dissepiments—thin, horizontal sheets of calcium carbonate accreted by the coral to support the living polyp—play a key role in the upward growth of the colony. Here, we first conducted a vital staining experiment to test whether dissepiments were accreted with lunar periodicity in Porites coral skeleton, as previously hypothesized. Over 6, 15, and 21 months, dissepiments consistently formed in a 1:1 ratio to the number of full moons elapsed over each study period. We measured dissepiment spacing to reconstruct multiple years of monthly skeletal extension rates in two Porites colonies from Palmyra Atoll and in another from Palau that bleached in 1998 under anomalously high sea temperatures. Spacing between successive dissepiments exhibited strong seasonality in corals containing annual density bands, with narrow (wide) spacing associated with high (low) density, respectively. A high-density "stress band" accreted during the 1998 bleaching event was associated with anomalously low dissepiment spacing and missed dissepiments, implying that thermal stress disrupts skeletal extension. Further, uranium/calcium ratios increased within stress bands, indicating a reduction in the carbonate ion concentration of the coral's calcifying fluid under stress. Our study verifies the lunar periodicity of dissepiments, provides a mechanistic basis for the formation of annual density bands in Porites, and reveals the underlying cause of high-density stress bands.
Iverson, R.M.; Denlinger, R.P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.; Denlinger, Roger P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
Geometrical Description of fractional quantum Hall quasiparticles
NASA Astrophysics Data System (ADS)
Park, Yeje; Yang, Bo; Haldane, F. D. M.
2012-02-01
We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.
NASA Astrophysics Data System (ADS)
Okubo, C. H.
2011-12-01
The equatorial layered deposits on Mars exhibit abundant evidence for the sustained presence of groundwater, and therefore insight into past water-related processes may be gained through the study of these deposits. Pyroclastic and evaporitic sediments are two broad lithologies that are known or inferred to comprise these deposits. Investigations into the effects of faulting on fluid flow potential through such Mars analog lithologies have been limited. Thus a study into the effects of faulting on fluid flow pathways through fine-grained pyroclastic sediments has been undertaken, and the results of this study are presented here. Faults and their damage zones can influence the trapping and migration of fluids by acting as either conduits or barriers to fluid flow. In clastic sedimentary rocks, the conductivity of fault damage zones is primarily a function of the microstructure of the host rock, stress history, phyllosilicate content, and cementation. The chemical composition of the host rock influences the mechanical strength of the grains, the susceptibility of the grains to alteration, and the availability of authigenic cements. The spatial distribution of fault-related damage is investigated within the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. Damage is characterized by measuring fracture densities along the fault, and by mapping the gas permeability of the surrounding rock. The Joe Lott Tuff is a partially welded, crystal-poor, rhyolite ash-flow tuff of Miocene age. While the rhyolitic chemical composition of the Joe Lott Tuff is not analogous to the basaltic compositions expected for Mars, the mechanical behavior of a poorly indurated mixture of fine-grained glass and pumice is pertinent to understanding the fundamental mechanics of faulting in Martian pyroclastic sediments. Results of mapping around two faults are presented here. The first fault is entirely exposed in cross-section and has a down-dip height of ~10 m. The second fault is partially exposed, with ~21 m visible in cross-section. Both faults have a predominantly normal sense of offset and a minor dextral strike-slip component. The 10 m fault has a single well-defined surface, while the 21 m fault takes the form of a 5-10 cm wide fault core. Fracture density at the 10 m fault is highest near its upper and lower tips, forming distinct near-tip fracture damage zones. At the 21 m fault, fracture density is broadly consistent along the exposed height of the fault, with the highest fracture densities nearest to the fault core. Fracture density is higher in the hanging walls than in the footwalls of both faults, and the footwall of the 21 m fault exhibits m-scale areas of significant distributed cataclasis. Gas permeability has a marked decrease, several orders of magnitude relative to the non-deformed host rock, at 1.5 m on either side of the 10 m fault. Permeability is lowest outboard of the fault's near-tip fracture damage zones. A similar permeability drop occurs at 1-5 m from the center of the 21 m fault's core, with the permeability drop extending furthest from the fault core in the footwall. These findings will be used to improve existing numerical methods for predicting subsurface fluid flow patterns from observed fault geometries on Mars.
Toxin activity assays, devices, methods and systems therefor
Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon
2016-04-05
Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.
Temperature and density anti-correlations in solar wind fluctuations
NASA Technical Reports Server (NTRS)
Zank, G. P.; Matthaeus, W. H.; Klein, L. W.
1990-01-01
Recent theoretical investigations of low Mach number flows, that describe two distinct approaches by fluids to the incompressible regime are summarized. The first includes the effects of relatively strong density and temperature fluctuations (Type I), while the second places fluctuations in mechanical pressure, density, and temperature on an equal footing (Type II). In the latter case, the relations between density and pressure are recovered, whereas the former case yields departures from incompressible behavior in that density and temperature fluctuations are predicted to be anti-correlated. It is suggested that nearly incompressible fluids can be classified as either Type I or II, and it is shown that the well-known pressure-balanced structures represent a subclass of static solutions within this classification. Two examples from Voyager data illustrate the potential for observing these distinct nearly incompressible dynamical ordering in the solar wind.
Tissue densities in developing avian embryos. [under acceleration stresses
NASA Technical Reports Server (NTRS)
Smith, A. H.; Abbott, U. K.; Morzenti, A.
1984-01-01
The density changes in the components of the incubated egg, the embryo, and the embryo's body parts were measured in the course of 21 days of incubation. In the first two-thirds of the incubation period there is a sequence of increasing density among egg contents: amniotic fluid, embryo, yolk, and albumin. As a result, the embryo is located at the bottom of the amniotic fluid, but at the top of the albumin. This position provides the embryo with mechanical protection and a proximity to the egg's air cell. The observed density changes and the asymmetry of these changes among various body parts of the embryo suggest a functional relationship. The density distributions among the body parts are particularly important in gravitational investigations of embryogenesis since they will produce forces tending to dislocate parts of the embryo.
The energy density distribution of an ideal gas and Bernoulli’s equations
NASA Astrophysics Data System (ADS)
Santos, Leonardo S. F.
2018-05-01
This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the null pressure only if the gas was compressible. Only the last situation describes an intuitive behaviour for an ideal gas.
Particle Image Velocimetry Study of Density Current Fronts
ERIC Educational Resources Information Center
Martin, Juan Ezequiel
2009-01-01
Gravity currents are flows that occur when a horizontal density difference causes fluid to move under the action of gravity; density currents are a particular case, for which the scalar causing the density difference is conserved. Flows with a strong effect of the horizontal density difference, even if only partially driven by it--such as the…
The Buoyancy Approach to U-Tube Problems
ERIC Educational Resources Information Center
Binder, P.-M.; Magowan, M. A.
2016-01-01
In this note we unify two physical situations treatable with hydrostatics: an object floating on a denser fluid and an open U-shaped tube with two immiscible fluids. We begin by reviewing the problem of a partially floating uniform, rectangular prism of horizontal area "A" immersed in a denser fluid, with respective densities ?[subscript…
Effect of elastic constants of liquid crystals in their electro-optical properties
NASA Astrophysics Data System (ADS)
Parang, Z.; Ghaffary, T.; Gharahbeigi, M. M.
Recently following the success of the density functional theory (DFT) in obtaining the structure and thermodynamics of homogeneous and inhomogeneous classical systems such as simple fluids, dipolar fluid and binary hard spheres, this theory was also applied to obtain the density profile of a molecular fluid in between hard planar walls by Kalpaxis and Rickayzen. In the theory of molecular fluids, the direct correlation function (DCF) can be used to calculate the equation of state, free energy, phase transition, elastic constants, etc. It is well known that the hard core molecular models play an important role in understanding complex liquids such as liquid crystals. In this paper, a classical fluid of nonspherical molecules is studied. The required homogeneous (DCF) is obtained by solving Orenstein-Zernike (OZ) integral equation numerically. Some of the molecules in the liquid crystals have a sphere shape and this kind of molecular fluid is considered here. The DCF sphere of the molecular fluid is calculated and it will be shown that the results are in good agreement with the pervious works and the results of computer simulation. Finally the electro-optical properties of ellipsoid liquid crystal using DCF of these molecules are calculated.
Slump Flows inside Pipes: Numerical Results and Comparison with Experiments
NASA Astrophysics Data System (ADS)
Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.
2008-07-01
In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.
Bulk properties and near-critical behaviour of SiO2 fluid
NASA Astrophysics Data System (ADS)
Green, Eleanor C. R.; Artacho, Emilio; Connolly, James A. D.
2018-06-01
Rocky planets and satellites form through impact and accretion processes that often involve silicate fluids at extreme temperatures. First-principles molecular dynamics (FPMD) simulations have been used to investigate the bulk thermodynamic properties of SiO2 fluid at high temperatures (4000-6000 K) and low densities (500-2240 kg m-3), conditions which are relevant to protoplanetary disc condensation. Liquid SiO2 is highly networked at the upper end of this density range, but depolymerises with increasing temperature and volume, in a process characterised by the formation of oxygen-oxygen (Odbnd O) pairs. The onset of vaporisation is closely associated with the depolymerisation process, and is likely to be non-stoichiometric at high temperature, initiated via the exsolution of O2 molecules to leave a Si-enriched fluid. By 6000 K the simulated fluid is supercritical. A large anomaly in the constant-volume heat capacity occurs near the critical temperature. We present tabulated thermodynamic properties for silica fluid that reconcile observations from FPMD simulations with current knowledge of the SiO2 melting curve and experimental Hugoniot curves.
NASA Technical Reports Server (NTRS)
Santosh, M.; Jackson, D. H.; Mattey, D. P.; Harris, N. B. W.
1988-01-01
Carbon dioxide-rich inclusions commonly occur in the banded charnockites and khondalites of southern Kerala as well as in the incipient charnockites formed by desiccation of gneisses along oriented zones. The combined high density fluid inclusion isochores and the range of thermometric estimates from mineral assemblages indicate entrapment pressures in the range of 5.4 to 6.1 Kbar. The CO2 equation of state barometry closely compares with the 5 plus or minus 1 Kbar estimate from mineral phases for the region. The isochores for the high density fluid inclusions in all the three rock types pass through the P-T domain recorded by phase equilibria, implying that carbon dioxide was the dominating ambient fluid species during peak metamorphic conditions. In order to constrain the source of fluids and to evaluate the mechanism of desiccation, researchers undertook detailed investigations of the carbon stable isotope composition of entrapped fluids. Researchers report here the results of preliminary studies in some of the classic localities in southern Kerala namely, Ponmudi, Kottavattom, Manali and Kadakamon.
NASA Astrophysics Data System (ADS)
Garzon, B.
Several simulations of dipolar and quadrupolar linear Kihara fluids using the Monte Carlo method in the canonical ensemble have been performed. Pressure and internal energy have been directly determined from simulations and Helmholtz free energy using thermodynamic integration. Simulations were carried out for fluids of fixed elongation at two different densities and several values of temperature and dipolar or quadrupolar moment for each density. Results are compared with the perturbation theory developed by Boublik for this same type of fluid and good agreement between simulated and theoretical values was obtained especially for quadrupole fluids. Simulations are also used to obtain the liquid structure giving the first few coefficients of the expansion of pair correlation functions in terms of spherical harmonics. Estimations of the triple point temperature to critical temperature ratio are given for some dipole and quadrupole linear fluids. The stability range of the liquid phase of these substances is shortly discussed and an analysis about the opposite roles of the dipole moment and the molecular elongation on this stability is also given.
NASA Astrophysics Data System (ADS)
Donkov, Sava; Stefanov, Ivan Z.
2018-03-01
We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.
NASA Astrophysics Data System (ADS)
Abbaspour, Mohsen; Akbarzadeh, Hamed; Salemi, Sirous; Abroodi, Mousarreza
2016-11-01
By considering the anisotropic pressure tensor, two separate equations of state (EoS) as functions of the density, temperature, and carbon nanotube (CNT) diameter have been proposed for the radial and axial directions for the confined Lennard-Jones (LJ) fluid into (11,11), (12,10), and (19,0) CNTs from 120 to 600 K using molecular dynamics (MD) simulations. We have also investigated the effects of the pore size, pore loading, chirality, and temperature on some of the structural and dynamical properties of the confined LJ fluid into (11,11), (12,10), (19,0), and (19,19) CNTs such as the radial density profile and self-diffusion coefficient. We have also determined the EoS for the confined LJ fluid into double and triple walled CNTs.
Reconstruction techniques of holograms from Spacelab 3
NASA Technical Reports Server (NTRS)
Witherow, William K.
1987-01-01
Fluid transport effects in a ground-based laboratory are fairly well known. Bouyancy driven transport occurs when there is a local density change in the fluid. In a low-g environment these density changes become less important, and other transport mechanisms dominate. To better understand fluid flows in a low-g environment, a fluid experiment system (FES) was designed to fly aboard the Shuttle orbiter in Spacelab. The FES is a holographic system designed for acquisition of the maximum amount of data from an experiment. The FES flew for the first time in May 1985 on Spacelab 3 for investigation of triglycine sulfate (TGS) crystal growth in low-g. This paper describes the FES optical system. The reconstruction techniques of the holograms are examined in detail, and the multiuser and reflight capabilities are discussed. Proposed future experiments are mentioned.
Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.
2013-01-01
Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of the earlier magmatic fluids or may reflect the compositional evolution of fluids that exsolved from the magma. Trails of inclusions consisting of only vapor-rich inclusions are common in the shallow parts of the system, and are associated with advanced argillic alteration, suggesting that intense boiling (“flashing”) occurred at (or below) this level. Fluid inclusion assemblages consisting of coexisting vapor-rich and halite-bearing inclusions are observed in samples extending from the surface to the upper part of the late-potassic zone, indicating that fluid immiscibility occurred within this depth interval.
Vapor-liquid coexistence of the Stockmayer fluid in nonuniform external fields.
Samin, Sela; Tsori, Yoav; Holm, Christian
2013-05-01
We investigate the structure and phase behavior of the Stockmayer fluid in the presence of nonuniform electric fields using molecular simulation. We find that an initially homogeneous vapor phase undergoes a local phase separation in a nonuniform field due to the combined effect of the field gradient and the fluid vapor-liquid equilibrium. This results in a high-density fluid condensing in the strong field region. The system polarization exhibits a strong field dependence due to the fluid condensation.
CFD analyses of coolant channel flowfields
NASA Technical Reports Server (NTRS)
Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.
Fluid flow characteristics during polymer flooding
NASA Astrophysics Data System (ADS)
Yao, S. L.; Dou, H. E.; Wu, M.; Zhang, H. J.
2018-05-01
At present the main problems of polymer flooding is the high injection pressure which could not guarantee the later injection. In this paper the analyses of polymer’s physical properties and its solution’s variable movement characteristics in porous media reveal the inevitable trend of decrease in injection capacity and liquid production due to the increase of fluid viscosity and flow rate with more flow resistance. The injection rate makes the primary contribution to the active viscosity of the polymer solution in porous media. The higher injection rate, the greater shearing degradation and the more the viscosity loss. Besides the quantitative variation, the rate also changes qualitatively as that the injection rate demonstrates composite change of injection intensity and density. Due to the different adjustment function of the polymer solution on its injection profile, there should be different adjustment model of rates in such stages. Here in combination of the on-site recognitions, several conclusions and recommendations are made based on the study of the injection pattern adjustment during polymer flooding to improve the pressure distribution system, which would be a meaningful reference for extensive polymer flooding in the petroleum industry.
Variation in bed level shear stress on surfaces sheltered by nonerodible roughness elements
NASA Astrophysics Data System (ADS)
Sutton, Stephen L. F.; McKenna-Neuman, Cheryl
2008-09-01
Direct bed level observations of surface shear stress, pressure gradient variability, turbulence intensity, and fluid flow patterns were carried out in the vicinity of cylindrical roughness elements mounted in a boundary layer wind tunnel. Paired corkscrew vortices shed from each of the elements result in elevated shear stress and increased potential for the initiation of particle transport within the far wake. While the size and shape of these trailing vortices change with the element spacing, they persist even for large roughness densities. Wake interference coincides with the impingement of the upwind horseshoe vortices upon one another at a point when their diameter approaches half the distance between the roughness elements. While the erosive capability of the horseshoe vortex has been suggested for a variety of settings, the present study shows that the fluid stress immediately beneath this coherent structure is actually small in comparison to that caused by compression of the incident flow as it is deflected around the element and attached vortex. Observations such as these are required for further refinement of models of stress partitioning on rough surfaces.
Pancreatic fluid collections: What is the ideal imaging technique?
Dhaka, Narendra; Samanta, Jayanta; Kochhar, Suman; Kalra, Navin; Appasani, Sreekanth; Manrai, Manish; Kochhar, Rakesh
2015-12-28
Pancreatic fluid collections (PFCs) are seen in up to 50% of cases of acute pancreatitis. The Revised Atlanta classification categorized these collections on the basis of duration of disease and contents, whether liquid alone or a mixture of fluid and necrotic debris. Management of these different types of collections differs because of the variable quantity of debris; while patients with pseudocysts can be drained by straight-forward stent placement, walled-off necrosis requires multi-disciplinary approach. Differentiating these collections on the basis of clinical severity alone is not reliable, so imaging is primarily performed. Contrast-enhanced computed tomography is the commonly used modality for the diagnosis and assessment of proportion of solid contents in PFCs; however with certain limitations such as use of iodinated contrast material especially in renal failure patients and radiation exposure. Magnetic resonance imaging (MRI) performs better than computed tomography (CT) in characterization of pancreatic/peripancreatic fluid collections especially for quantification of solid debris and fat necrosis (seen as fat density globules), and is an alternative in those situations where CT is contraindicated. Also magnetic resonance cholangiopancreatography is highly sensitive for detecting pancreatic duct disruption and choledocholithiasis. Endoscopic ultrasound is an evolving technique with higher reproducibility for fluid-to-debris component estimation with the added advantage of being a single stage procedure for both diagnosis (solid debris delineation) and management (drainage of collection) in the same sitting. Recently role of diffusion weighted MRI and positron emission tomography/CT with (18)F-FDG labeled autologous leukocytes is also emerging for detection of infection noninvasively. Comparative studies between these imaging modalities are still limited. However we look forward to a time when this gap in literature will be fulfilled.
Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling
NASA Astrophysics Data System (ADS)
Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting
2018-02-01
Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep-water drilling through hydrate formation, the drilling fluid with low temperatures should be given priority. The drilling process should be kept under balanced pressures, and the drilling time should be shortened.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurin, Péter; Varga, Szabolcs
2015-06-14
We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluidmore » layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore.« less
A parameter study of the two-fluid solar wind
NASA Technical Reports Server (NTRS)
Sandbaek, Ornulf; Leer, Egil; Holzer, Thomas E.
1992-01-01
A two-fluid model of the solar wind was introduced by Sturrock and Hartle (1966) and Hartle and Sturrock (1968). In these studies the proton energy equation was integrated neglecting the heat conductive term. Later several authors solved the equations for the two-fluid solar wind model keeping the proton heat conductive term. Methods where the equations are integrated simultaneously outward and inward from the critical point were used. The equations were also integrated inward from a large heliocentric distance. These methods have been applied to cases with low coronal base electron densities and high base temperatures. In this paper we present a method of integrating the two-fluid solar wind equations using an iteration procedure where the equations are integrated separately and the proton flux is kept constant during the integrations. The technique is applicable for a wide range of coronal base densities and temperatures. The method is used to carry out a parameter study of the two-fluid solar wind.
Higher dimensional strange quark matter solutions in self creation cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Şen, R., E-mail: ramazansen-1991@hotmail.com; Aygün, S., E-mail: saygun@comu.edu.tr
In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.
[X-ray computed tomographic aspects of spinal aneurysmal cysts in children].
Bernard, C; Hoeffel, J C; Marchal, A L; Vergnat, C; Régent, D
1985-10-01
The interest of CT imaging in a case of aneurysmal bone cyst of the posterior arch of the 6th cervical vertebra in a 10 y.o. child is underlined. The value of intra tumoral densities which are relatively low, inferior to 100 Hounsfield unit is stressed but the most contributory feature in this case was the presence of a fluid level inside the cyst due to different densities of fluid components into the cyst.
Fuel Effects on Nozzle Flow and Spray Using Fully Coupled Eulerian Simulations
2015-09-01
Density of liquid fuel, kg/m 3 = Density of ambient gas , kg/m 3 VOF = Volume of Fluid model = Volume of Fluid Scalar ROI = Rate of...have been reported arising from individual refinery processes, crude oil source, and also varying with season, year and age of the fuel. This myriad...configurations. Under reacting conditions, Violi et al. (6) presented a surrogate mixture of six pure hydrocarbon ( Utah surrogate) and found that it
Acoustic metamaterials with circular sector cavities and programmable densities.
Akl, W; Elsabbagh, A; Baz, A
2012-10-01
Considerable interest has been devoted to the development of various classes of acoustic metamaterials that can control the propagation of acoustical wave energy throughout fluid domains. However, all the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of composite one-dimensional acoustic metamaterials with effective densities that are programmed to adapt to any prescribed pattern along the metamaterial. The proposed acoustic metamaterial is composed of a periodic arrangement of cell structures, in which each cell consists of a circular sector cavity bounded by actively controlled flexible panels to provide the capability for manipulating the overall effective dynamic density. The theoretical analysis of this class of multilayered composite active acoustic metamaterials (CAAMM) is presented and the theoretical predictions are determined for a cascading array of fluid cavities coupled to flexible piezoelectric active boundaries forming the metamaterial domain with programmable dynamic density. The stiffness of the piezoelectric boundaries is electrically manipulated to control the overall density of the individual cells utilizing the strong coupling with the fluid domain and using direct acoustic pressure feedback. The interaction between the neighboring cells of the composite metamaterial is modeled using a lumped-parameter approach. Numerical examples are presented to demonstrate the performance characteristics of the proposed CAAMM and its potential for generating prescribed spatial and spectral patterns of density variation.
Stochastic characteristics and Second Law violations of atomic fluids in Couette flow
NASA Astrophysics Data System (ADS)
Raghavan, Bharath V.; Karimi, Pouyan; Ostoja-Starzewski, Martin
2018-04-01
Using Non-equilibrium Molecular Dynamics (NEMD) simulations, we study the statistical properties of an atomic fluid undergoing planar Couette flow, in which particles interact via a Lennard-Jones potential. We draw a connection between local density contrast and temporal fluctuations in the shear stress, which arise naturally through the equivalence between the dissipation function and entropy production according to the fluctuation theorem. We focus on the shear stress and the spatio-temporal density fluctuations and study the autocorrelations and spectral densities of the shear stress. The bispectral density of the shear stress is used to measure the degree of departure from a Gaussian model and the degree of nonlinearity induced in the system owing to the applied strain rate. More evidence is provided by the probability density function of the shear stress. We use the Information Theory to account for the departure from Gaussian statistics and to develop a more general probability distribution function that captures this broad range of effects. By accounting for negative shear stress increments, we show how this distribution preserves the violations of the Second Law of Thermodynamics observed in planar Couette flow of atomic fluids, and also how it captures the non-Gaussian nature of the system by allowing for non-zero higher moments. We also demonstrate how the temperature affects the band-width of the shear-stress and how the density affects its Power Spectral Density, thus determining the conditions under which the shear-stress acts is a narrow-band or wide-band random process. We show that changes in the statistical characteristics of the parameters of interest occur at a critical strain rate at which an ordering transition occurs in the fluid causing shear thinning and affecting its stability. A critical strain rate of this kind is also predicted by the Loose-Hess stability criterion.
Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid
NASA Astrophysics Data System (ADS)
Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová
2017-09-01
This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.
21 CFR 866.5600 - Low-density lipoprotein immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 866.5600 - Low-density lipoprotein immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 866.5600 - Low-density lipoprotein immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 866.5600 - Low-density lipoprotein immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the low-density lipoprotein in serum and other body fluids. Measurement of low-density lipoprotein in... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Low-density lipoprotein immunological test system. 866.5600 Section 866.5600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
NASA Technical Reports Server (NTRS)
Simanonok, K.; Mosely, E.; Charles, J.
1992-01-01
Nine preflight variables related to fluid, electrolyte, and cardiovascular status from 64 first-time Shuttle crewmembers were differentially weighted by discrimination analysis to predict the incidence and severity of each crewmember's space sickness as rated by NASA flight surgeons. The nine variables are serum uric acid, red cell count, environmental temperature at the launch site, serum phosphate, urine osmolality, serum thyroxine, sitting systolic blood pressure, calculated blood volume, and serum chloride. Using two methods of cross-validation on the original samples (jackknife and a stratefied random subsample), these variables enable the prediction of space sickness incidence (NONE or SICK) with 80 percent sickness and space severity (NONE, MILD, MODERATE, of SEVERE) with 59 percent success by one method of cross-validation and 67 percent by another method. Addition of a tenth variable, hours spent in the Weightlessness Environment Training Facility (WETF) did not improve the prediction of space sickness incidences but did improve the prediction of space sickness severity to 66 percent success by the first method of cross-validation of original samples and to 71 percent by the second method. Results to date suggest the presence of predisposing physiologic factors to space sickness that implicate fluid shift etiology. The data also suggest that prior exposure to fluid shift during WETF training may produce some circulatory pre-adaption to fluid shifts in weightlessness that results in a reduction of space sickness severity.
Sliding Mode Control of a Thermal Mixing Process
NASA Technical Reports Server (NTRS)
Richter, Hanz; Figueroa, Fernando
2004-01-01
In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.
Thermoelectric Generation Using Counter-Flows of Ideal Fluids
NASA Astrophysics Data System (ADS)
Meng, Xiangning; Lu, Baiyi; Zhu, Miaoyong; Suzuki, Ryosuke O.
2017-08-01
Thermoelectric (TE) performance of a three-dimensional (3-D) TE module is examined by exposing it between a pair of counter-flows of ideal fluids. The ideal fluids are thermal sources of TE module flow in the opposite direction at the same flow rate and generate temperature differences on the hot and cold surfaces due to their different temperatures at the channel inlet. TE performance caused by different inlet temperatures of thermal fluids are numerically analyzed by using the finite-volume method on 3-D meshed physical models and then compared with those using a constant boundary temperature. The results show that voltage and current of the TE module increase gradually from a beginning moment to a steady flow and reach a stable value. The stable values increase with inlet temperature of the hot fluid when the inlet temperature of cold fluid is fixed. However, the time to get to the stable values is almost consistent for all the temperature differences. Moreover, the trend of TE performance using a fluid flow boundary is similar to that of using a constant boundary temperature. Furthermore, 3-D contours of fluid pressure, temperature, enthalpy, electromotive force, current density and heat flux are exhibited in order to clarify the influence of counter-flows of ideal fluids on TE generation. The current density and heat flux homogeneously distribute on an entire TE module, thus indicating that the counter-flows of thermal fluids have high potential to bring about fine performance for TE modules.
NASA Astrophysics Data System (ADS)
Collell, Julien; Galliero, Guillaume
2014-05-01
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.
NASA Astrophysics Data System (ADS)
Herold, Christoph; Schwille, Petra; Petrov, Eugene P.
2016-02-01
We present experimental results on the interaction of DNA macromolecules with cationic lipid membranes with different properties, including freestanding membranes in the fluid and gel state, and supported lipid membranes in the fluid state and under conditions of fluid-gel phase coexistence. We observe diverse conformational dynamics of membrane-bound DNA molecules controlled by the local properties of the lipid bilayer. In case of fluid-state freestanding lipid membranes, the behaviour of DNA on the membrane is controlled by the membrane charge density: whereas DNA bound to weakly charged membranes predominantly behaves as a 2D random coil, an increase in the membrane charge density leads to membrane-driven irreversible DNA collapse and formation of subresolution-sized DNA globules. On the other hand, electrostatic binding of DNA macromolecules to gel-state freestanding membranes leads to completely arrested diffusion and conformational dynamics of membrane-adsorbed DNA. A drastically different picture is observed in case of DNA interaction with supported cationic lipid bilayers: When the supported bilayer is in the fluid state, membrane-bound DNA molecules undergo 2D translational Brownian motion and conformational fluctuations, irrespectively of the charge density of the supported bilayer. At the same time, when the supported cationic membrane shows fluid-gel phase coexistence, membrane-bound DNA molecules are strongly attracted to micrometre-sized gel-phase domains enriched with the cationic lipid, which results in 2D compaction of the membrane-bound macromolecules. This DNA compaction, however, is fully reversible, and disappears as soon as the membrane is heated above the fluid-gel coexistence. We also discuss possible biological implications of our experimental findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr
2014-05-21
The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less
Method and apparatus for jet-assisted drilling or cutting
Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz
2012-09-04
An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.
Method and apparatus for jet-assisted drilling or cutting
Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz
2013-07-02
An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.
Fluid property measurements study
NASA Technical Reports Server (NTRS)
Devaney, W. E.
1976-01-01
Fluid properties of refrigerant-21 were investigated at temperatures from the freezing point to 423 Kelvin and at pressures to 1.38 x 10 to the 8th power N/sq m (20,000 psia). The fluid properties included were: density, vapor pressure, viscosity, specific heat, thermal conductivity, thermal expansion coefficient, freezing point and bulk modulus. Tables of smooth values are reported.
An Engineering Approach to the Variable Fluid Property Problem in Free Convection
NASA Technical Reports Server (NTRS)
Gregg, J. L.; Sparrow, E. M.
1956-01-01
An analysis is made for the variable fluid property problem for laminar free convection on an isothermal vertical flat plate. For a number of specific cases, solutions of the boundary layer equations appropriate to the variable property situation were carried out for gases and liquid mercury. Utilizing these findings, a simple and accurate shorthand procedure is presented for calculating free convection heat transfer under variable property conditions. This calculation method is well established in the heat transfer field. It involves the use of results which have been derived for constant property fluids, and of a set of rules (called reference temperatures) for extending these constant property results to variable property situations. For gases, the constant property heat transfer results are generalized to the variable property situation by replacing beta (expansion coefficient) by one over T sub infinity and evaluating the other properties at T sub r equals T sub w minus zero point thirty-eight (T sub w minus T sub infinity). For liquid mercury, the generalization may be accomplished by evaluating all the properties (including beta) at this same T sub r. It is worthwhile noting that for these fluids, the film temperature (with beta equals one over T sub infinity for gases) appears to serve as an adequate reference temperature for most applications. Results are also presented for boundary layer thickness and velocity parameters.
NASA Astrophysics Data System (ADS)
Stotsky, Jay A.; Hammond, Jason F.; Pavlovsky, Leonid; Stewart, Elizabeth J.; Younger, John G.; Solomon, Michael J.; Bortz, David M.
2016-07-01
The goal of this work is to develop a numerical simulation that accurately captures the biomechanical response of bacterial biofilms and their associated extracellular matrix (ECM). In this, the second of a two-part effort, the primary focus is on formally presenting the heterogeneous rheology Immersed Boundary Method (hrIBM) and validating our model by comparison to experimental results. With this extension of the Immersed Boundary Method (IBM), we use the techniques originally developed in Part I ([19]) to treat biofilms as viscoelastic fluids possessing variable rheological properties anchored to a set of moving locations (i.e., the bacteria locations). In particular, we incorporate spatially continuous variable viscosity and density fields into our model. Although in [14,15], variable viscosity is used in an IBM context to model discrete viscosity changes across interfaces, to our knowledge this work and Part I are the first to apply the IBM to model a continuously variable viscosity field. We validate our modeling approach from Part I by comparing dynamic moduli and compliance moduli computed from our model to data from mechanical characterization experiments on Staphylococcus epidermidis biofilms. The experimental setup is described in [26] in which biofilms are grown and tested in a parallel plate rheometer. In order to initialize the positions of bacteria in the biofilm, experimentally obtained three dimensional coordinate data was used. One of the major conclusions of this effort is that treating the spring-like connections between bacteria as Maxwell or Zener elements provides good agreement with the mechanical characterization data. We also found that initializing the simulations with different coordinate data sets only led to small changes in the mechanical characterization results. Matlab code used to produce results in this paper will be available at https://github.com/MathBioCU/BiofilmSim.
Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.
Keh, Huan J; Ding, Jau M
2003-07-15
An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.
An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows
Pantano, C.; Saurel, R.; Schmitt, T.
2017-02-01
Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-knownmore » pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. As a result, the combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement.« less
An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pantano, C.; Saurel, R.; Schmitt, T.
Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-knownmore » pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. As a result, the combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement.« less
Cosmology with a stiff matter era
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2015-11-01
We consider the possibility that the Universe is made of a dark fluid described by a quadratic equation of state P =K ρ2 , where ρ is the rest-mass density and K is a constant. The energy density ɛ =ρ c2+K ρ2 is the sum of two terms: a rest-mass term ρ c2 that mimics "dark matter" (P =0 ) and an internal energy term u =K ρ2=P that mimics a "stiff fluid" (P =ɛ ) in which the speed of sound is equal to the speed of light. In the early universe, the internal energy dominates and the dark fluid behaves as a stiff fluid (P ˜ɛ , ɛ ∝a-6). In the late universe, the rest-mass energy dominates and the dark fluid behaves as pressureless dark matter (P ≃0 , ɛ ∝a-3). We provide a simple analytical solution of the Friedmann equations for a universe undergoing a stiff matter era, a dark matter era, and a dark energy era due to the cosmological constant. This analytical solution generalizes the Einstein-de Sitter solution describing the dark matter era, and the Λ CDM model describing the dark matter era and the dark energy era. Historically, the possibility of a primordial stiff matter era first appeared in the cosmological model of Zel'dovich where the primordial universe is assumed to be made of a cold gas of baryons. A primordial stiff matter era also occurs in recent cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the internal energy of the dark fluid mimicking stiff matter is positive, the primordial universe is singular like in the standard big bang theory. It expands from an initial state with a vanishing scale factor and an infinite density. We consider the possibility that the internal energy of the dark fluid is negative (while, of course, its total energy density is positive), so that it mimics anti-stiff matter. This happens, for example, when the BECs have an attractive self-interaction with a negative scattering length. In that case, the primordial universe is nonsingular and bouncing like in loop quantum cosmology. At t =0 , the scale factor is finite and the energy density is equal to zero. The universe first has a phantom behavior where the energy density increases with the scale factor, then a normal behavior where the energy density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter regime where the scale factor increases exponentially rapidly with time. This can account for the accelerating expansion of the Universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.
Thermal inertia and reversing buoyancy in flow in porous media
NASA Astrophysics Data System (ADS)
Menand, Thierry; Raw, Alan; Woods, Andrew W.
2003-03-01
The displacement of fluids through porous rocks is fundamental for the recharge of geothermal and hydrocarbon reservoirs [Grant et al., 1982; Lake, 1989], for contaminant dispersal through the groundwater [Bear, 1972] and in controlling mineral reactions in permeable rocks [Phillips, 1991]. In many cases, the buoyancy force associated with density differences between the formation fluid and the displacing fluid controls the rate and pattern of flow through the permeable rock [Phillips, 1991; Barenblatt, 1996; Turcotte and Schubert, 2002]. Here, using new laboratory experiments, we establish that a striking range of different flow patterns may develop depending on whether this density contrast is associated with differences in temperature and/or composition between the two fluids. Owing to the effects of thermal inertia in a porous rock, thermal fronts lag behind compositional fronts [Woods and Fitzgerald, 1993; Turcotte and Schubert, 2002], so that two zones of different density develop in the region flooded with injected fluid. This can lead to increasing, decreasing or even reversing buoyancy in the injected liquid; in the latter case it may then form a double-flood front, spreading along both the upper and lower boundary of the rock. Recognition of these different flow regimes is key for predicting sweep efficiency and dispersal patterns in natural and engineered flows, and offers new opportunities for the enhanced recovery of natural resources in porous rocks.
Self-regulation in self-propelled nematic fluids.
Baskaran, A; Marchetti, M C
2012-09-01
We consider the hydrodynamic theory of an active fluid of self-propelled particles with nematic aligning interactions. This class of materials has polar symmetry at the microscopic level, but forms macrostates of nematic symmetry. We highlight three key features of the dynamics. First, as in polar active fluids, the control parameter for the order-disorder transition, namely the density, is dynamically convected by the order parameter via active currents. The resulting dynamical self-regulation of the order parameter is a generic property of active fluids and destabilizes the uniform nematic state near the mean-field transition. Secondly, curvature-driven currents render the system unstable deep in the nematic state, as found previously. Finally, and unique to self-propelled nematics, nematic order induces local polar order that in turn leads to the growth of density fluctuations. We propose this as a possible mechanism for the smectic order of polar clusters seen in numerical simulations.
Nishiyama, Yoshihiro
2002-12-01
It has been considered that the effective bending rigidity of fluid membranes should be reduced by thermal undulations. However, recent thorough investigation by Pinnow and Helfrich revealed the significance of measure factors for the partition sum. Accepting the local curvature as a statistical measure, they found that fluid membranes are stiffened macroscopically. In order to examine this remarkable idea, we performed extensive ab initio simulations for a fluid membrane. We set up a transfer matrix that is diagonalized by means of the density-matrix renormalization group. Our method has an advantage, in that it allows us to survey various statistical measures. As a consequence, we found that the effective bending rigidity flows toward strong coupling under the choice of local curvature as a statistical measure. On the contrary, for other measures such as normal displacement and tilt angle, we found a clear tendency toward softening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghobadi, Ahmadreza F.; Elliott, J. Richard, E-mail: elliot1@uakron.edu
2014-07-14
In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A newmore » chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces the excess accumulation of ethane at the interface.« less
Analysis of Required Supporting Systems for the Supercritical CO(2) Power Conversion System
2007-09-01
been drawn to the viability of using S-C02 as a working fluid in modern reactor designs. Near the critical point, C02 has a rapid rise in density...viability of using S-CO2 as a working fluid in modern reactor designs. Near the critical point, CO2 has a rapid rise in density allowing a significant...32 Figure 2.2.3 Effect on Mass Transferred of Changing ICV Initial Temperature for emptying PCS ...................32 Figure 2.2.4 Effect
Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 1. Noise Sources
1991-08-01
243. 62 Brown, Garry L.; and Roshko, Anatol On Density Effects and Large Structure in Turbulent Mixing Layers J. Fluid Aeci, vol 64, pt 4, July 24, 1974...Structure in Jet Turbulence. J. Fluid Mech., vol. 48, pt. 3, Aug. 16, 1971, pp. 547-591. 2 Brown, Garry L., and Roshko, Anatol On Density Effects and Large...depending on such things as engine power setting and combustor and turbine design considerations. The dominant frequencies associated with both combustion
Hydroetching of high surface area ceramics using moist supercritical fluids
Fryxell, Glen; Zemanian, Thomas S.
2004-11-02
Aerogels having a high density of hydroxyl groups and a more uniform pore size with fewer bottlenecks are described. The aerogel is exposed to a mixture of a supercritical fluid and water, whereupon the aerogel forms a high density of hydroxyl groups. The process also relaxes the aerogel into a more open uniform internal structure, in a process referred to as hydroetching. The hydroetching process removes bottlenecks from the aerogels, and forms the hydrogels into more standard pore sizes while preserving their high surface area.
Trumble, Troy N; Billinghurst, R Clark; McIlwraith, C Wayne
2004-09-01
To evaluate the temporal pattern of prostaglandin (PG) E2 concentrations in synovial fluid after transection of the cranial cruciate ligament (CCL) in dogs and to correlate PGE2 concentrations with ground reaction forces and subjective clinical variables for lameness or pain. 19 purpose-bred adult male Walker Hounds. Force plate measurements, subjective clinical analysis of pain or lameness, and samples of synovial fluid were obtained before (baseline) and at various time points after arthroscopic transection of the right CCL. Concentrations of PGE2 were measured in synovial fluid samples, and the PGE2 concentrations were correlated with ground reaction forces and clinical variables. The PGE2 concentration increased significantly above the baseline value throughout the entire study, peaking 14 days after transection. Peak vertical force and vertical impulse significantly decreased by day 14 after transection, followed by an increase over time without returning to baseline values. All clinical variables (eg, lameness, degree of weight bearing, joint extension, cumulative pain score, effusion score, and total protein content of synovial fluid, except for WBC count in synovial fluid) increased significantly above baseline values. Significant negative correlations were detected between PGE2 concentrations and peak vertical force (r, -0.5720) and vertical impulse (r, -0.4618), and significant positive correlations were detected between PGE2 concentrations and the subjective lameness score (r, 0.5016) and effusion score (r, 0.6817). Assessment of the acute inflammatory process by measurement of PGE2 concentrations in synovial fluid may be correlated with the amount of pain or lameness in dogs.
Instability of a shear layer between multicomponent fluids at supercritical pressure
NASA Astrophysics Data System (ADS)
Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun
2018-04-01
The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.
Flippin' Fluid Mechanics - Quasi-experimental Pre-test and Post-test Comparison Using Two Groups
NASA Astrophysics Data System (ADS)
Webster, D. R.; Majerich, D. M.; Luo, J.
2014-11-01
A flipped classroom approach has been implemented in an undergraduate fluid mechanics course. Students watch short on-line videos before class, participate in active in-class problem solving (in dyads), and complete individualized on-line quizzes weekly. In-class activities are designed to achieve a trifecta of: 1. developing problem solving skills, 2. learning subject content, and 3. developing inquiry skills. The instructor and assistants provide critical ``just-in-time tutoring'' during the in-class problem solving sessions. Comparisons are made with a simultaneous section offered in a traditional mode by a different instructor. Regression analysis was used to control for differences among students and to quantify the effect of the flipped fluid mechanics course. The dependent variable was the students' combined final examination and post-concept inventory scores and the independent variables were pre-concept inventory score, gender, major, course section, and (incoming) GPA. The R-square equaled 0.45 indicating that the included variables explain 45% of the variation in the dependent variable. The regression results indicated that if the student took the flipped fluid mechanics course, the dependent variable (i.e., combined final exam and post-concept inventory scores) was raised by 7.25 points. Interestingly, the comparison group reported significantly more often that their course emphasized memorization than did the flipped classroom group.
Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings
NASA Technical Reports Server (NTRS)
Johnson, Wesley Louis
2010-01-01
Multilayer insulation (MLI) has been shown to be the best performing cryogenic insulation system at high vacuum (less that 10 (exp 3) torr), and is widely used on spaceflight vehicles. Over the past 50 years, many investigations into MLI have yielded a general understanding of the many variables that are associated with MLI. MLI has been shown to be a function of variables such as warm boundary temperature, the number of reflector layers, and the spacer material in between reflectors, the interstitial gas pressure and the interstitial gas. Since the conduction between reflectors increases with the thickness of the spacer material, yet the radiation heat transfer is inversely proportional to the number of layers, it stands to reason that the thermal performance of MLI is a function of the number of layers per thickness, or layer density. Empirical equations that were derived based on some of the early tests showed that the conduction term was proportional to the layer density to a power. This power depended on the material combination and was determined by empirical test data. Many authors have graphically shown such optimal layer density, but none have provided any data at such low densities, or any method of determining this density. Keller, Cunnington, and Glassford showed MLI thermal performance as a function of layer density of high layer densities, but they didn't show a minimal layer density or any data below the supposed optimal layer density. However, it was recently discovered that by manipulating the derived empirical equations and taking a derivative with respect to layer density yields a solution for on optimal layer density. Various manufacturers have begun manufacturing MLI at densities below the optimal density. They began this based on the theory that increasing the distance between layers lowered the conductive heat transfer and they had no limitations on volume. By modifying the circumference of these blankets, the layer density can easily be varied. The simplest method of determining the thermal performance of MLI at cryogenic temperature is by boil-off calorimetry. Several blankets were procured and tested at various layer densities at the Cryogenics Test Laboratory at Kennedy Space Center. The densities that the blankets were tested over covered a wide range of layer densities including the analytical minimum. Several of the blankets were tested at the same insulation thickness while changing the layer density (thus a different number of reflector layers). Optimizing the layer density of multilayer insulation systems for heat transfer would remove a layer density from the complex method of designing such insulation systems. Additional testing was performed at various warm boundary temperatures and pressures. The testing and analysis was performed to simplify the analysis of cryogenic thermal insulation systems. This research was funded by the National Aeronautics and Space Administration's Exploration Technology Development Program's Cryogenic Fluid Management Project
NASA Technical Reports Server (NTRS)
Caldwell, Richard A. (Inventor)
1991-01-01
A lift producing device is disclosed which is adapted to be connected to a vehicle to provide lift to the vehicle when the vehicle is moved relative to a first fluid medium having a first density and viscosity and being in contact with a second fluid medium adjacent the vehicle. The second fluid medium has a second fluid density which is different from the first fluid density. The lift producing device comprises opposed first and second major surfaces joined at a longitudinally extending leading edge and at a longitudinally extending trailing edge, with at least a portion of the longitudinally extending leading edge being spaced from the longitudinally extending trailing edge by a predetermined mean chord length. When the vehicle is moved relative to the first fluid medium at a velocity within a range of predetermined velocities, with each of the velocities having a direction inclined from a plane extending through the leading edge and the trailing edge within a predetermined angular range, a region of high pressure is generated in the first fluid medium adjacent the first major surface and a region of low pressure is generated in the first fluid medium adjacent the second major surface. The lift producing device has a cross-sectional shape which will generate a pressure distribution around the device when the vehicle is moved relative to the first fluid medium at a velocity within the range of predetermined velocities such that the first fluid medium exhibits attached laminar flow along the device for a portion of the predetermined mean chord length from the leading edge to the trailing edge and will neither form a laminar separation bubble adjacent the second major surface of the device, nor exhibit turbulent separation adjacent the second major surface for substantially all of the predetermined mean chord length from the leading edge to the trailing edge. The portion along which attached laminar flow is maintained is the longest portion which will still fulfill the flow separation requirements. A method for producing the foil is also disclosed.
Pleural pressure theory revisited: a role for capillary equilibrium.
Casha, Aaron R; Caruana-Gauci, Roberto; Manche, Alexander; Gauci, Marilyn; Chetcuti, Stanley; Bertolaccini, Luca; Scarci, Marco
2017-04-01
Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes' hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation.
Warnakulasuriya, Samantha R; Davies, Simon J; Wilson, R Jonathan T; Yates, David R A
2016-11-01
This study aims to investigate if there is equivalence in volumes of fluid administered when intravenous fluid therapy is guided by Pleth Variability Index (PVI) compared to the established technology of esophageal Doppler in low-risk patients undergoing major colorectal surgery. Randomized controlled trial. Operating room. Forty low-risk patients undergoing elective colorectal surgery. Patients were monitored by esophageal Doppler and PVI probes and were randomized to have fluid therapy directed by using one of these technologies, with 250 mL boluses of colloid to maintain a maximal stroke volume, or a PVI of less than 14%. Absolute volumes of fluid volumes given intraoperatively were measured as were 24 hours fluid volumes. Perioperative measurements of lactate and base excess were recorded as were postoperative complications. There was no significant difference between PVI and esophageal Doppler groups in mean total fluid administered (1286 vs 1520 mL, P=.300) or mean intraoperative fluid balance (+839 v+1145 mL, P=.150). PVI offers an entirely non-invasive alternative for goal-directed fluid therapy in this group of patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Fluid Interactions with Explosion-Induced Fractures
NASA Astrophysics Data System (ADS)
Swanson, E.; Sussman, A. J.; Wilson, J.; Broome, S.
2016-12-01
Fluids can chemically interact with the fractures they flow through, a process that may affect the movement of fluids in the subsurface. This is a topic of interest to a large variety of research areas, including (but not limited to) production of oil and gas, contaminant tracking, geothermal energy production, CO2 sequestration, and nuclear test monitoring. A study performed as part of the Source Physics Experiment, designed to look at the effects of underground chemical explosions, provides a rare opportunity to compare cores from pre-shot and post-shot rock, from damage created in situ. We present data on the variability of microfracture density with distance from the explosion, as well as the occurrence of fractures that either open or contain clay infill. We find that both open and filled fractures occur more frequently within the post-shot samples (by a factor of up to 4x), with similar spatial distributions. This calls into question the validity of the commonly made assumption that all filled fractures were present prior to the explosive shot, and only open fractures can represent explosion-induced damage. These results suggest that fluid-rock interactions might have a significant influence on the permeabilities that result from explosions, even within a few weeks. Additional data on the mechanical properties of the pre-shot and post-shot core samples show an unexpected pattern during unconfined compressive strength tests: the samples retrieved following 2 successive shots failed at higher stresses than did samples retrieved after 1 shot. We present these results, along with some evidence this behavior may arise from trace differences in water content during testing.
Spinning fluids in general relativity
NASA Technical Reports Server (NTRS)
Ray, J. R.; Smalley, L. L.
1982-01-01
General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.
Unbiased estimators for spatial distribution functions of classical fluids
NASA Astrophysics Data System (ADS)
Adib, Artur B.; Jarzynski, Christopher
2005-01-01
We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density ρ(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.
Electrostatically frequency tunable micro-beam-based piezoelectric fluid flow energy harvester
NASA Astrophysics Data System (ADS)
Rezaee, Mousa; Sharafkhani, Naser
2017-07-01
This research investigates the dynamic behavior of a sandwich micro-beam based piezoelectric energy harvester with electrostatically adjustable resonance frequency. The system consists of a cantilever micro-beam immersed in a fluid domain and is subjected to the simultaneous action of cross fluid flow and nonlinear electrostatic force. Two parallel piezoelectric laminates are extended along the length of the micro-beam and connected to an external electric circuit which generates an output power as a result of the micro-beam oscillations. The fluid-coupled structure is modeled using Euler-Bernoulli beam theory and the equivalent force terms for the fluid flow. Fluid induced forces comprise the added inertia force which is evaluated using equivalent added mass and the drag and lift forces which are evaluated using relative velocity and Van der Pol equation. In addition to flow velocity and fluid density, the influence of several design parameters such as external electrical resistance, piezo layer position, and dc voltage on the generated power are investigated by using Galerkin and step by step linearization method. It is shown that for given flowing fluid parameters, i.e., density and velocity, one can adjust the applied dc voltage to tune resonance frequency so that the lock-in phenomenon with steady large amplitude oscillations happens, also by adjusting the harvester parameters including the mechanical and electrical ones, the maximal output power of the harvester becomes possible.
Direct numerical simulation of variable surface tension flows using a Volume-of-Fluid method
NASA Astrophysics Data System (ADS)
Seric, Ivana; Afkhami, Shahriar; Kondic, Lou
2018-01-01
We develop a general methodology for the inclusion of a variable surface tension coefficient into a Volume-of-Fluid based Navier-Stokes solver. This new numerical model provides a robust and accurate method for computing the surface gradients directly by finding the tangent directions on the interface using height functions. The implementation is applicable to both temperature and concentration dependent surface tension coefficient, along with the setups involving a large jump in the temperature between the fluid and its surrounding, as well as the situations where the concentration should be strictly confined to the fluid domain, such as the mixing of fluids with different surface tension coefficients. We demonstrate the applicability of our method to the thermocapillary migration of bubbles and the coalescence of drops characterized by a different surface tension coefficient.
Stirling engine with air working fluid
Corey, John A.
1985-01-01
A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.
NASA Astrophysics Data System (ADS)
Motevaselian, Mohammad Hossein; Mashayak, Sikandar Y.; Aluru, Narayana R.
2015-11-01
We present an empirical potential-based quasi-continuum theory (EQT) that seamlessly integrates the interatomic potentials into a continuum framework such as the Nernst-Planck equation. EQT is a simple and fast approach, which provides accurate predictions of potential of mean force (PMF) and density distribution of confined fluids at multiple length-scales, ranging from few Angstroms to macro meters. The EQT potentials can be used to construct the excess free energy functional in the classical density functional theory (cDFT). The combination of EQT and cDFT (EQT-cDFT), allows one to predict the thermodynamic properties of confined fluids. Recently, the EQT-cDFT framework was developed for single component LJ fluids confined in slit-like graphene channels. In this work, we extend the framework to confined LJ fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen molecules inside slit-like graphene channels. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the MD simulations. In addition, our results show that graphene nanochannels exhibit a selective adsorption of methane over hydrogen.
NASA Astrophysics Data System (ADS)
Yin, Qiong; Liu, Wei
2017-12-01
This paper focuses on beryl mines in the Maji region of Yunnan Province, which are characterized by fluid inclusions. Based on petrography theory, mineralogy, and ore-forming geological conditions, beryl can be divided as CO2 and CO2-H2O inclusions. In addition, the characteristics of inclusions in the coordinate of A/B is summarized. The homogenization temperature of fluid inclusions in the coordinate of A ranges from 250 °C to 397 °C, while the salinity of fluid inclusions ranges from 0.18% to 4.27%. By contrast, the homogenization temperature in the coordinate of B ranges from 210 °C to 340 °C, and the salinity is from 0.22% to 5.11%. The pressure of ore-forming fluid in the coordinate of A/B is approximately 83 MPa with densities of 0.8034 g/m3 and 0.8363 g/m3, which are characteristic of mediumtemperature, low-salinity, and medium-density fluids. Based on Raman spectra and different metallogenic depths, the two types of beryl belong to different metallogenic belts. The beryl deposits in Gongshan are of medium-temperature gas-hydrothermal type.
Consumption, supply and transport: self-organization without direct communication
NASA Technical Reports Server (NTRS)
Kessler, J. O.
1996-01-01
Swimming bacteria of the species Bacillus subtilis require and consume oxygen. In static liquid cultures the cells' swimming behaviour leads them to accumulate up oxygen concentration gradients generated by consumption and supply. Since the density of bacterial cells exceeds that of the fluid in which they live, fluid regions where cells have accumulated are denser than depleted regions. These density variations cause convection. The fluid motion is dynamically maintained by the swimming of the cells toward regions of attraction: the air-fluid interface and the fluctuating advecting attractors, gradients of oxygen concentration that are embedded in the convecting fluid. Because of the fluid dynamical conservation laws, these complex physical and biological factors generate patterns ordered over distances > 10000 bacterial cell diameters. The convection enhances long-range transport and mixing of oxygen, cells and extracellular products by orders of magnitude. Thus, through the interplay of physical and biological factors, a population of undifferentiated selfish cells creates functional dynamic patterns. Populations of bacteria that have organised themselves into regularly patterned regions of vigorous convection and varying cell concentration interact with their environment as if they were one purposeful, coherent multicellular individual. The mathematical and experimental ingredients of these remarkable phenomena are presented here.
Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background
Floerchinger, Stefan; Martinez, Mauricio
2015-12-11
Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity, and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane, and rapidity. Here, we examine how the time evolution of linear perturbations depends on the equation of statemore » as well as on shear viscosity, bulk viscosity, and heat conductivity for modes with different azimuthal, radial, and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.« less
Liquid-vapor rectilinear diameter revisited
NASA Astrophysics Data System (ADS)
Garrabos, Y.; Lecoutre, C.; Marre, S.; Beysens, D.; Hahn, I.
2018-02-01
In the modern theory of critical phenomena, the liquid-vapor density diameter in simple fluids is generally expected to deviate from a rectilinear law approaching the critical point. However, by performing precise scannerlike optical measurements of the position of the SF6 liquid-vapor meniscus, in an approach much closer to criticality in temperature and density than earlier measurements, no deviation from a rectilinear diameter can be detected. The observed meniscus position from far (10 K ) to extremely close (1 mK ) to the critical temperature is analyzed using recent theoretical models to predict the complete scaling consequences of a fluid asymmetry. The temperature dependence of the meniscus position appears consistent with the law of rectilinear diameter. The apparent absence of the critical hook in SF6 therefore seemingly rules out the need for the pressure scaling field contribution in the complete scaling theoretical framework in this SF6 analysis. More generally, this work suggests a way to clarify the experimental ambiguities in the simple fluids for the near-critical singularities in the density diameter.
Anomalous phase behavior of first-order fluid-liquid phase transition in phosphorus
NASA Astrophysics Data System (ADS)
Zhao, G.; Wang, H.; Hu, D. M.; Ding, M. C.; Zhao, X. G.; Yan, J. L.
2017-11-01
Although the existence of liquid-liquid phase transition has become more and more convincing, whether it will terminate at a critical point and what is the order parameter are still open. To explore these questions, we revisit the fluid-liquid phase transition (FLPT) in phosphorus (P) and study its phase behavior by performing extensive first-principles molecular dynamics simulations. The FLPT observed in experiments is well reproduced, and a fluid-liquid critical point (FLCP) at T = 3000 ˜ 3500 K, P = 1.5-2.0 Kbar is found. With decreasing temperature from the FLCP along the transition line, the density difference (Δρ) between two coexisting phases first increases from zero and then anomalously decreases; however, the entropy difference (ΔS) continuously increases from zero. These features suggest that an order parameter containing contributions from both the density and the entropy is needed to describe the FLPT in P, and at least at low temperatures, the entropy, instead of the density, governs the FLPT.
Maximizing fluid delivered by bubble-free electroosmotic pump with optimum pulse voltage waveform.
Tawfik, Mena E; Diez, Francisco J
2017-03-01
In generating high electroosmotic (EO) flows for use in microfluidic pumps, a limiting factor is faradaic reactions that are more pronounced at high electric fields. These reactions lead to bubble generation at the electrodes and pump efficiency reduction. The onset of gas generation for high current density EO pumping depends on many parameters including applied voltage, working fluid, and pulse duration. The onset of gas generation can be delayed and optimized for maximum volume pumped in the minimum time possible. This has been achieved through the use of a novel numerical model that predicts the onset of gas generation during EO pumping using an optimized pulse voltage waveform. This method allows applying current densities higher than previously reported. Optimal pulse voltage waveforms are calculated based on the previous theories for different current densities and electrolyte molarity. The electroosmotic pump performance is investigated by experimentally measuring the fluid volume displaced and flow rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Chenadec, Vincent, E-mail: vlechena@stanford.edu; Pitsch, Heinz; Institute for Combustion Technology, RWTH Aachen, Templergraben 64, 52056 Aachen
2013-09-15
This paper presents a novel approach for solving the conservative form of the incompressible two-phase Navier–Stokes equations. In order to overcome the numerical instability induced by the potentially large density ratio encountered across the interface, the proposed method includes a Volume-of-Fluid type integration of the convective momentum transport, a monotonicity preserving momentum rescaling, and a consistent and conservative Ghost Fluid projection that includes surface tension effects. The numerical dissipation inherent in the Volume-of-Fluid treatment of the convective transport is localized in the interface vicinity, enabling the use of a kinetic energy conserving discretization away from the singularity. Two- and three-dimensionalmore » tests are presented, and the solutions shown to remain accurate at arbitrary density ratios. The proposed method is then successfully used to perform the detailed simulation of a round water jet emerging in quiescent air, therefore suggesting the applicability of the proposed algorithm to the computation of realistic turbulent atomization.« less
Drinking with a hairy tongue: viscous entrainment by dipping hairy surfaces
NASA Astrophysics Data System (ADS)
Nasto, Alice; Brun, Pierre-Thomas; Alvarado, José; Bush, John; Hosoi, Anette
2016-11-01
Nectar-drinking bats have tongues covered with hair-like papillae, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory reminiscent of Landau-Levich-Derjaguin dip coating, we rationalize this mechanism of viscous entrainment in a hairy texture. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS elastomer. Modeling the liquid trapped within the texture using a Darcy-Brinkman like approach, we derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the dipping speed. We find that there is an optimal hair density to maximize fluid uptake.
Structure and orientational ordering in a fluid of elongated quadrupolar molecules
NASA Astrophysics Data System (ADS)
Singh, Ram Chandra
2013-01-01
A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic-nematic transition in a system of fluids of elongated molecules interacting via the Gay-Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein-Zernike equation using the Percus-Yevick integral equation theory in the (reduced) temperature range of 1.6≤T∗≤3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic-nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.
Lahann, R.W.; Swarbrick, R.E.
2011-01-01
Basin model studies which have addressed the importance of smectite conversion to illite as a source of overpressure in the Gulf of Mexico have principally relied on a single-shale compaction model and treated the smectite reaction as only a fluid-source term. Recent fluid pressure interpretation and shale petrology studies indicate that conversion of bound water to mobile water, dissolution of load-bearing grains, and increased preferred orientation change the compaction properties of the shale. This results in substantial changes in effective stress and fluid pressure. The resulting fluid pressure can be 1500-3000psi higher than pressures interpreted from models based on shallow compaction trends. Shale diagenesis changes the mineralogy, volume, and orientation of the load-bearing grains in the shale as well as the volume of bound water. This process creates a weaker (more compactable) grain framework. When these changes occur without fluid export from the shale, some of the stress is transferred from the grains onto the fluid. Observed relationships between shale density and calculated effective stress in Gulf of Mexico shelf wells confirm these changes in shale properties with depth. Further, the density-effective stress changes cannot be explained by fluid-expansion or fluid-source processes or by prediagenesis compaction, but are consistent with a dynamic diagenetic modification of the shale mineralogy, texture, and compaction properties during burial. These findings support the incorporation of diagenetic modification of compaction properties as part of the fluid pressure interpretation process. ?? 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Estakhr, Ahmad Reza
2013-11-01
``When i meet God, I am going to ask him two questions, why relativity and why turbulence. A. Einstein'' You probably will not need to ask these questions of God, I've already answered both of them. Uμ = γ (c , u (r --> , t)) denotes four-velocity field. Jμ = ρUμ denotes four-current mass density. Estakhr's Material-Geodesic equation is developed analogy of Navier Stokes equation and Einstein Geodesic equation. DJμ/Dτ =dJμ/Dτ +ΓαβμJαUβ =JνΩμν +∂νTμν +ΓαβμJαUβ Covariant formulation of fluid dynamics, describe the motion of fluid substances. The local existence and uniqueness theorem for geodesics states that geodesics on a smooth manifold with an affine connection exist, and are unique. EMG equation is also applicable in different branches of physics, it all depend on what you mean by 4-current density, if you mean 4-current electron number density then it is plasma physics, if you mean 4-current electron charge density then it is DJμ/Dτ =JνFμν +∂νTμν +ΓαβμJαUβ electromagnetism.
NASA Astrophysics Data System (ADS)
Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.
2014-10-01
In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.
Simpson, Mark P.; Strmic Palinkas, Sabina; Mauk, Jeffrey L.; Bodnar, Robert J.
2015-01-01
LA-ICP-MS analyses show that in some cases different fluid inclusion assemblages (FIAs) within a single sample trapped fluids with variable chemistries. These differences likely reflect modification of a single parent fluid through mineral dissolution and precipitation, water/rock interactions, boiling and vapor loss, conductive cooling, and mixing.
Ad libitum fluid consumption via self- or external administration.
Yeargin, Susan W; Finn, Megan E; Eberman, Lindsey E; Gage, Matthew J; McDermott, Brendon P; Niemann, Andrew
2015-01-01
During team athletic events, athletic trainers commonly provide fluids with water bottles. When a limited number of water bottles exist, various techniques are used to deliver fluids. To determine whether fluid delivered via water-bottle administration influenced fluid consumption and hydration status. Crossover study. Outdoor field (22.2°C ± 3.5°C). Nineteen participants (14 men, 5 women, age = 30 ± 10 years, height = 176 ± 8 cm, mass = 72.5 ± 10 kg) were recruited from the university and local running clubs. The independent variable was fluid delivery with 3 levels: self-administration with mouth-to-bottle direct contact (SA-DC), self-administration with no contact between mouth and bottle (SA-NC), and external administration with no contact between the mouth and the bottle (EA-NC). Participants warmed up for 10 minutes before completing 5 exercise stations, after which an ad libitum fluid break was given, for a total of 6 breaks. We measured the fluid variables of total volume consumed, total number of squirts, and average volume per squirt. Hydration status via urine osmolality and body-mass loss, and perceptual variables for thirst and fullness were recorded. We calculated repeated-measures analyses of variance to assess hydration status, fluid variables, and perceptual measures to analyze conditions across time. The total volume consumed for EA-NC was lower than for SA-DC (P = .001) and SA-NC (P = .001). The total number of squirts for SA-DC was lower than for SA-NC (P = .009). The average volume per squirt for EA-NC was lower than for SA-DC (P = .020) and SA-NC (P = .009). Participants arrived (601.0 ± 21.3 mOsm/L) and remained (622.3 ± 38.3 mOsm/L) hydrated, with no difference between conditions (P = .544); however, the EA-NC condition lost more body mass than did the SA-DC condition (P = .001). There was no main effect for condition on thirst (P = .147) or fullness (P = .475). External administration of fluid decreased total volume consumed via a decreased average volume per squirt. The SA-DC method requires fewer squirts within a specific time frame. Fluid breaks every 15 minutes resulted in maintenance of euhydration; however, loss of body mass was influenced by fluid administration. Athletic trainers should avoid external administration to promote positive hydration behaviors. When fluid is self-administered, individual bottles may be the best clinical practice because more volume can be consumed per squirt.
Variable Density Effects in Stochastic Lagrangian Models for Turbulent Combustion
2016-07-20
PDF methods in dealing with chemical reaction and convection are preserved irrespective of density variation. Since the density variation in a typical...combustion process may be as large as factor of seven, including variable- density effects in PDF methods is of significance. Conventionally, the...strategy of modelling variable density flows in PDF methods is similar to that used for second-moment closure models (SMCM): models are developed based on
Martínez-Ruiz, Francisco José; Blas, Felipe J; Moreno-Ventas Bravo, A Ignacio; Míguez, José Manuel; MacDowell, Luis G
2017-05-17
The statistical associating fluid theory for attractive potentials of variable range (SAFT-VR) density functional theory (DFT) developed by [Gloor et al., J. Chem. Phys., 2004, 121, 12740-12759] is used to predict the interfacial behaviour of molecules modelled as fully-flexible square-well chains formed from tangentially-bonded monomers of diameter σ and potential range λ = 1.5σ. Four different model systems, comprising 4, 8, 12, and 16 monomers per molecule, are considered. In addition to that, we also compute a number of interfacial properties of molecular chains from direct simulation of the vapour-liquid interface. The simulations are performed in the canonical ensemble, and the vapour-liquid interfacial tension is evaluated using the wandering interface (WIM) method, a technique based on the thermodynamic definition of surface tension. Apart from surface tension, we also obtain density profiles, coexistence densities, vapour pressures, and critical temperature and density, paying particular attention to the effect of the chain length on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapour-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The interfacial thickness and surface tension appear to exhibit an asymptotic limiting behaviour for long chains. A similar behaviour is also observed for the coexistence densities and critical properties. Agreement between theory and simulation results indicates that SAFT-VR DFT is only able to predict qualitatively the interfacial properties of the model. Our results are also compared with simulation data taken from the literature, including the vapour-liquid coexistence densities, vapour pressures, and surface tension.
Background oriented schlieren in a density stratified fluid.
Verso, Lilly; Liberzon, Alex
2015-10-01
Non-intrusive quantitative fluid density measurement methods are essential in the stratified flow experiments. Digital imaging leads to synthetic schlieren methods in which the variations of the index of refraction are reconstructed computationally. In this study, an extension to one of these methods, called background oriented schlieren, is proposed. The extension enables an accurate reconstruction of the density field in stratified liquid experiments. Typically, the experiments are performed by the light source, background pattern, and the camera positioned on the opposite sides of a transparent vessel. The multimedia imaging through air-glass-water-glass-air leads to an additional aberration that destroys the reconstruction. A two-step calibration and image remapping transform are the key components that correct the images through the stratified media and provide a non-intrusive full-field density measurements of transparent liquids.
Engine lubrication circuit including two pumps
Lane, William H.
2006-10-03
A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.
ERIC Educational Resources Information Center
Clift, Philip A.
1992-01-01
Provides a student worksheet and set-up instructions for a science experiment to demonstrate the concept of density. Students are asked to explain the phenomenon in which a liquid of lower density placed in the bottom of two vertical flasks flows up to replace the liquid of higher density in the upper flask. (MDH)
Hansen, J S; Daivis, Peter J; Todd, B D
2009-10-01
In this paper we present equilibrium molecular-dynamics results for the shear, rotational, and spin viscosities for fluids composed of linear molecules. The density dependence of the shear viscosity follows a stretched exponential function, whereas the rotational viscosity and the spin viscosities show approximately power-law dependencies. The frequency-dependent shear and spin viscosities are also studied. It is found that viscoelastic behavior is first manifested in the shear viscosity and that the real part of the spin viscosities features a maximum for nonzero frequency. The calculated transport coefficients are used together with the extended Navier-Stokes equations to investigate the effect of the coupling between the intrinsic angular momentum and linear momentum for highly confined fluids. Both steady and oscillatory flows are studied. It is shown, for example, that the fluid flow rate for Poiseuille flow is reduced by up to 10% in a 2 nm channel for a buta-triene fluid at density 236 kg m(-3) and temperature 306 K. The coupling effect may, therefore, become very important for nanofluidic applications.
On the nonlinear interfacial instability of rotating core-annular flow
NASA Technical Reports Server (NTRS)
Coward, Aidrian V.; Hall, Philip
1993-01-01
The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.
Heat shock protein-containing exosomes in mid-trimester amniotic fluids.
Asea, Alexzander; Jean-Pierre, Claudel; Kaur, Punit; Rao, Preethi; Linhares, Iara M; Skupski, Daniel; Witkin, Steven S
2008-10-01
Exosomes are multivesicular bodies formed by inverse membrane budding into the lumen of an endocytic compartment. Fusion with the plasma membrane leads to their release into the external milieu. The incorporation of heat shock proteins into exosomes has been associated with immune regulatory activity. We have examined whether heat shock protein-containing exosomes are present in mid-trimester amniotic fluid. Exosomes were isolated from mid-trimester amniotic fluids by sequential low-speed and high-speed centrifugation followed by sucrose density gradient centrifugation. Biochemical characterization included floatation pattern in sucrose gradients, acetylcholinesterase (AChE) activity and Western blot analysis for exosome-containing proteins. Exosomes were present in each of 23 amniotic fluids tested. They banded at a density of 1.17g/ml in sucrose gradients, were positive for AChE activity and contained tubulin, the inducible 72kDa heat shock protein, Hsp72 and the constitutively expressed heat shock protein, Hsc73; they were negative for calnexin. Exosome concentrations correlated positively with the number of pregnancies. Heat shock protein-containing exosomes are constituents of mid-trimester amniotic fluids and may contribute to immune regulation within the amniotic cavity.
Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J
2009-03-15
Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.
Working fluid selection for space-based two-phase heat transport systems
NASA Technical Reports Server (NTRS)
Mclinden, Mark O.
1988-01-01
The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.
Relation between boundary slip mechanisms and waterlike fluid behavior.
Ternes, Patricia; Salcedo, Evy; Barbosa, Marcia C
2018-03-01
The slip of a fluid layer in contact with a solid confining surface is investigated for different temperatures and densities using molecular dynamic simulations. We show that for an anomalous waterlike fluid the slip goes as follows: for low levels of shear, defect slip appears and is related to the particle exchange between the fluid layers; at high levels of shear, global slip occurs and is related to the homogeneous distribution of the fluid in the confining surfaces. The oscillations in the transition velocity from defect to global slip are shown to be associated with changes in the layering distribution in the anomalous fluid.
The conditional moment closure method for modeling lean premixed turbulent combustion
NASA Astrophysics Data System (ADS)
Martin, Scott Montgomery
Natural gas fired lean premixed gas turbines have become the method of choice for new power generation systems due to their high efficiency and low pollutant emissions. As emission regulations for these combustion systems become more stringent, the use of numerical modeling has become an important a priori tool in designing clean and efficient combustors. Here a new turbulent combustion model is developed in an attempt to improve the state of the art. The Conditional Moment Closure (CMC) method is a new theory that has been applied to non-premixed combustion with good success. The application of the CMC method to premixed systems has been proposed, but has not yet been done. The premixed CMC method replaces the species mass fractions as independent variables with the species mass fractions that are conditioned on a reaction progress variable (RPV). Conservation equations for these new variables are then derived and solved. The general idea behind the CMC method is that the behavior of the chemical species is closely coupled to the reaction progress variable. Thus, species conservation equations that are conditioned on the RPV will have terms involving the fluctuating quantities that are much more likely to be negligible. The CMC method accounts for the interaction between scalar dissipation (micromixing) and chemistry, while de-coupling the kinetics from the bulk flow (macromixing). Here the CMC method is combined with a commercial computational fluid dynamics program, which calculates the large-scale fluid motions. The CMC model is validated by comparison to 2-D reacting backward facing step data. Predicted species, temperature and velocity fields are compared to experimental data with good success. The CMC model is also validated against the University of Washington's 3-D jet stirred reactor (JSR) data, which is an idealized lean premixed combustor. The JSR results are encouraging, but not as good as the backward facing step. The largest source of error is from the turbulence models, which are inadequate for the variable density and recirculating flows modeled here. The limitations of the turbulence models affected the calculation of the flow statistics, which are used to calculate the variance of the RPV, the scalar dissipation and the PDF.
van der Waals-Tonks-type equations of state for hard-hypersphere fluids in four and five dimensions
NASA Astrophysics Data System (ADS)
Wang, Xian-Zhi
2004-04-01
Recently, we developed accurate van der Waals-Tonks-type equations of state for hard-disk and hard-sphere fluids by using the known virial coefficients. In this paper, we derive the van der Waals-Tonks-type equations of state. We further apply these equations of state to hard-hypersphere fluids in four and five dimensions. In the low-density fluid regime, these equations of state are in good agreement with the simulation results and existing equations of state.
Ravazzoli, C L; Santos, J E; Carcione, J M
2003-04-01
We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.
NASA Astrophysics Data System (ADS)
Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh
2018-03-01
The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.
Trace-element patterns of fibrous and monocrystalline diamonds: Insights into mantle fluids
NASA Astrophysics Data System (ADS)
Rege, S.; Griffin, W. L.; Pearson, N. J.; Araujo, D.; Zedgenizov, D.; O'Reilly, S. Y.
2010-08-01
During their growth diamonds may trap micron-scale inclusions of the fluids from which they grew, and these "time capsules" provide insights into the metasomatic processes that have modified the subcontinental lithospheric mantle. LAM-ICPMS analysis of trace elements in > 500 fibrous and monocrystalline diamonds worldwide has been used to understand the nature of these fluids. Analyses of fibrous diamonds define two general types of pattern, a "fibrous-high" (FH) one with high contents of LREE, Ba and K, and a "fibrous-low" (FL) pattern characterized by depletion in LREE/MREE, Ba and K, negative anomalies in Sr and Y, and subchondritic Zr/Hf and Nb/Ta. Both types may be found in fibrous diamonds from single deposits, and in three Yakutian pipes some diamonds show abrupt transitions from inclusion-rich cores with FH patterns to clearer rims with FL patterns. Most monocrystalline diamonds show FL-type patterns, but some have patterns that resemble those of FH fibrous diamonds. Peridotitic and eclogitic monocrystalline diamonds may show either patterns with relatively flat REE, or patterns with more strongly depleted LREE. Kimberlites that contain peridotitic diamonds with "high" patterns also contain eclogitic diamonds with "high" patterns. Strong similarities in the patterns of these two groups of diamonds may suggest high fluid/rock ratios. Many diamonds of the "superdeep" paragenesis have trace-element patterns similar to those of other monocrystalline diamonds. This may be evidence that the trace-element compositions of deep-seated fluids are generally similar to those that form diamonds in the subcontinental lithospheric mantle. The element fractionations observed between the FH and FL patterns are consistent with the immiscible separation of a silicic fluid from a carbonatite-silicate fluid, leaving a residual carbonatitic fluid strongly enriched in LREE, Ba and alkalies. This model would suggest that most monocrystalline diamonds crystallized from the more silicic fraction. Comparison with studies of single fluid inclusions in fibrous diamonds suggests that the FH patterns reflect trapped inclusions of high-Mg and low-Mg carbonatitic high-density fluids. In terms of the rock-forming elements, the fluids that precipitated the rims of some fibrous diamonds (FL pattern) and most monocrystalline diamonds are broadly similar to some hydro-silicic high-density fluids found in fibrous diamonds. However, there are still significant differences between the trace-element patterns of most monocrystalline diamonds and known high-density fluids, and further research is required to understand the formation and growth of these diamonds.
Measured acoustic properties of variable and low density bulk absorbers
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Rice, E. J.
1985-01-01
Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.
Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth; Okong'o, Nora
2003-01-01
This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence. The simulations were performed for two different fluid pairs O2/H2 and C7H16/N2 at similar reduced initial pressures (reduced pressure is defined as pressure divided by critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.
An asymptotically consistent approximant method with application to soft- and hard-sphere fluids.
Barlow, N S; Schultz, A J; Weinstein, S J; Kofke, D A
2012-11-28
A modified Padé approximant is used to construct an equation of state, which has the same large-density asymptotic behavior as the model fluid being described, while still retaining the low-density behavior of the virial equation of state (virial series). Within this framework, all sequences of rational functions that are analytic in the physical domain converge to the correct behavior at the same rate, eliminating the ambiguity of choosing the correct form of Padé approximant. The method is applied to fluids composed of "soft" spherical particles with separation distance r interacting through an inverse-power pair potential, φ = ε(σ∕r)(n), where ε and σ are model parameters and n is the "hardness" of the spheres. For n < 9, the approximants provide a significant improvement over the 8-term virial series, when compared against molecular simulation data. For n ≥ 9, both the approximants and the 8-term virial series give an accurate description of the fluid behavior, when compared with simulation data. When taking the limit as n → ∞, an equation of state for hard spheres is obtained, which is closer to simulation data than the 10-term virial series for hard spheres, and is comparable in accuracy to other recently proposed equations of state. By applying a least square fit to the approximants, we obtain a general and accurate soft-sphere equation of state as a function of n, valid over the full range of density in the fluid phase.
Engine with exhaust gas recirculation system and variable geometry turbocharger
Keating, Edward J.
2015-11-03
An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.
Architecture of fluid intelligence and working memory revealed by lesion mapping.
Barbey, Aron K; Colom, Roberto; Paul, Erick J; Grafman, Jordan
2014-03-01
Although cognitive neuroscience has made valuable progress in understanding the role of the prefrontal cortex in human intelligence, the functional networks that support adaptive behavior and novel problem solving remain to be well characterized. Here, we studied 158 human brain lesion patients to investigate the cognitive and neural foundations of key competencies for fluid intelligence and working memory. We administered a battery of neuropsychological tests, including the Wechsler Adult Intelligence Scale (WAIS) and the N-Back task. Latent variable modeling was applied to obtain error-free scores of fluid intelligence and working memory, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. The observed latent variable modeling and lesion results support an integrative framework for understanding the architecture of fluid intelligence and working memory and make specific recommendations for the interpretation and application of the WAIS and N-Back task to the study of fluid intelligence in health and disease.
Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Väänänen, Veli-Matti
2016-01-01
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.