Sample records for variable geometry oblique

  1. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    NASA Technical Reports Server (NTRS)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  2. Monte Carlo simulation of portal dosimetry on a rectilinear voxel geometry: a variable gantry angle solution.

    PubMed

    Chin, P W; Spezi, E; Lewis, D G

    2003-08-21

    A software solution has been developed to carry out Monte Carlo simulations of portal dosimetry using the BEAMnrc/DOSXYZnrc code at oblique gantry angles. The solution is based on an integrated phantom, whereby the effect of incident beam obliquity was included using geometric transformations. Geometric transformations are accurate within +/- 1 mm and +/- 1 degrees with respect to exact values calculated using trigonometry. An application in portal image prediction of an inhomogeneous phantom demonstrated good agreement with measured data, where the root-mean-square of the difference was under 2% within the field. Thus, we achieved a dose model framework capable of handling arbitrary gantry angles, voxel-by-voxel phantom description and realistic particle transport throughout the geometry.

  3. Experimental Investigation of the Application of Microramp Flow Control to an Oblique Shock Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Anderson, Bernhard H.

    2009-01-01

    The effectiveness of microramp flow control devices in controlling an oblique shock interaction was tested in the 15- by 15-Centimeter Supersonic Wind Tunnel at NASA Glenn Research Center. Fifteen microramp geometries were tested varying the height, chord length, and spacing between ramps. Measurements of the boundary layer properties downstream of the shock reflection were analyzed using design of experiments methods. Results from main effects, D-optimal, full factorial, and central composite designs were compared. The designs provided consistent results for a single variable optimization.

  4. An Analytical Study for Subsonic Oblique Wing Transport Concept

    NASA Technical Reports Server (NTRS)

    Bradley, E. S.; Honrath, J.; Tomlin, K. H.; Swift, G.; Shumpert, P.; Warnock, W.

    1976-01-01

    The oblique wing concept has been investigated for subsonic transport application for a cruise Mach number of 0.95. Three different mission applications were considered and the concept analyzed against the selected mission requirements. Configuration studies determined the best area of applicability to be a commercial passenger transport mission. The critical parameter for the oblique wing concept was found to be aspect ratio which was limited to a value of 6.0 due to aeroelastic divergence. Comparison of the concept final configuration was made with fixed winged configurations designed to cruise at Mach 0.85 and 0.95. The crossover Mach number for the oblique wing concept was found to be Mach 0.91 for takeoff gross weight and direct operating cost. Benefits include reduced takeoff distance, installed thrust and mission block fuel and improved community noise characteristics. The variable geometry feature enables the final configuration to increase range by 10% at Mach 0.712 and to increase endurance by as much as 44%.

  5. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less

  6. RTJ-303: Variable geometry, oblique wing supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Antaran, Albert; Belete, Hailu; Dryzmkowski, Mark; Higgins, James; Klenk, Alan; Rienecker, Lisa

    1992-01-01

    This document is a preliminary design of a High Speed Civil Transport (HSCT) named the RTJ-303. It is a 300 passenger, Mach 1.6 transport with a range of 5000 nautical miles. It features four mixed-flow turbofan engines, variable geometry oblique wing, with conventional tail-aft control surfaces. The preliminary cost analysis for a production of 300 aircraft shows that flyaway cost would be 183 million dollars (1992) per aircraft. The aircraft uses standard jet fuel and requires no special materials to handle aerodynamic heating in flight because the stagnation temperatures are approximately 130 degrees Fahrenheit in the supersonic cruise condition. It should be stressed that this aircraft could be built with today's technology and does not rely on vague and uncertain assumptions of technology advances. Included in this report are sections discussing the details of the preliminary design sequence including the mission to be performed, operational and performance constraints, the aircraft configuration and the tradeoffs of the final choice, wing design, a detailed fuselage design, empennage design, sizing of tail geometry, and selection of control surfaces, a discussion on propulsion system/inlet choice and their position on the aircraft, landing gear design including a look at tire selection, tip-over criterion, pavement loading, and retraction kinematics, structures design including load determination, and materials selection, aircraft performance, a look at stability and handling qualities, systems layout including location of key components, operations requirements maintenance characteristics, a preliminary cost analysis, and conclusions made regarding the design, and recommendations for further study.

  7. Mathematical support for automated geometry analysis of lathe machining of oblique peakless round-nose tools

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Tarasov, S. Yu; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2017-01-01

    Automatization of engineering processes requires developing relevant mathematical support and a computer software. Analysis of metal cutting kinematics and tool geometry is a necessary key task at the preproduction stage. This paper is focused on developing a procedure for determining the geometry of oblique peakless round-nose tool lathe machining with the use of vector/matrix transformations. Such an approach allows integration into modern mathematical software packages in distinction to the traditional analytic description. Such an advantage is very promising for developing automated control of the preproduction process. A kinematic criterion for the applicable tool geometry has been developed from the results of this study. The effect of tool blade inclination and curvature on the geometry-dependent process parameters was evaluated.

  8. Obliquity Variations of Habitable Zone Planets Kepler-62f and Kepler-186f

    NASA Astrophysics Data System (ADS)

    Shan, Yutong; Li, Gongjie

    2018-06-01

    Obliquity variability could play an important role in the climate and habitability of a planet. Orbital modulations caused by planetary companions and the planet’s spin axis precession due to the torque from the host star may lead to resonant interactions and cause large-amplitude obliquity variability. Here we consider the spin axis dynamics of Kepler-62f and Kepler-186f, both of which reside in the habitable zone around their host stars. Using N-body simulations and secular numerical integrations, we describe their obliquity evolution for particular realizations of the planetary systems. We then use a generalized analytic framework to characterize regions in parameter space where the obliquity is variable with large amplitude. We find that the locations of variability are fine-tuned over the planetary properties and system architecture in the lower-obliquity regimes (≲40°). As an example, assuming a rotation period of 24 hr, the obliquities of both Kepler-62f and Kepler-186f are stable below ∼40°, whereas the high-obliquity regions (60°–90°) allow moderate variabilities. However, for some other rotation periods of Kepler-62f or Kepler-186f, the lower-obliquity regions could become more variable owing to resonant interactions. Even small deviations from coplanarity (e.g., mutual inclinations ∼3°) could stir peak-to-peak obliquity variations up to ∼20°. Undetected planetary companions and/or the existence of a satellite could also destabilize the low-obliquity regions. In all cases, the high-obliquity region allows for moderate variations, and all obliquities corresponding to retrograde motion (i.e., >90°) are stable.

  9. Fluidic Thrust Vectoring of an Axisymmetric Exhaust Nozzle at Static Conditions

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Giuliano, Victor J.

    1997-01-01

    A sub-scale experimental static investigation of an axisymmetric nozzle with fluidic injection for thrust vectoring was conducted at the NASA Langley Jet Exit Test Facility. Fluidic injection was introduced through flush-mounted injection ports in the divergent section. Geometric variables included injection-port geometry and location. Test conditions included a range of nozzle pressure ratios from 2 to 10 and a range of injection total pressure ratio from no-flow to 1.5. The results indicate that fluidic injection in an axisymmetric nozzle operating at design conditions produced significant thrust-vector angles with less reduction in thrust efficiency than that of a fluidically-vectored rectangular jet. The axisymmetric geometry promoted a pressure relief mechanism around the injection slot, thereby reducing the strength of the oblique shock and the losses associated with it. Injection port geometry had minimal effect on thrust vectoring.

  10. Ventilation Processes in a Three-Dimensional Street Canyon

    NASA Astrophysics Data System (ADS)

    Nosek, Štěpán; Kukačka, Libor; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-05-01

    The ventilation processes in three different street canyons of variable roof geometry were investigated in a wind tunnel using a ground-level line source. All three street canyons were part of an urban-type array formed by courtyard-type buildings with pitched roofs. A constant roof height was used in the first case, while a variable roof height along the leeward or windward walls was simulated in the two other cases. All street-canyon models were exposed to a neutrally stratified flow with two approaching wind directions, perpendicular and oblique. The complexity of the flow and dispersion within the canyons of variable roof height was demonstrated for both wind directions. The relative pollutant removals and spatially-averaged concentrations within the canyons revealed that the model with constant roof height has higher re-emissions than models with variable roof heights. The nomenclature for the ventilation processes according to quadrant analysis of the pollutant flux was introduced. The venting of polluted air (positive fluctuations of both concentration and velocity) from the canyon increased when the wind direction changed from perpendicular to oblique, irrespective of the studied canyon model. Strong correlations (>0.5) between coherent structures and ventilation processes were found at roof level, irrespective of the canyon model and wind direction. This supports the idea that sweep and ejection events of momentum bring clean air in and detrain the polluted air from the street canyon, respectively.

  11. Reverse design of a bull's eye structure for oblique incidence and wider angular transmission efficiency.

    PubMed

    Yamada, Akira; Terakawa, Mitsuhiro

    2015-04-10

    We present a design method of a bull's eye structure with asymmetric grooves for focusing oblique incident light. The design method is capable of designing transmission peaks to a desired oblique angle with capability of collecting light from a wider range of angles. The bull's eye groove geometry for oblique incidence is designed based on the electric field intensity pattern around an isolated subwavelength aperture on a thin gold film at oblique incidence, calculated by the finite difference time domain method. Wide angular transmission efficiency is successfully achieved by overlapping two different bull's eye groove patterns designed with different peak angles. Our novel design method would overcome the angular limitations of the conventional methods.

  12. Graph Matching for the Registration of Persistent Scatterers to Optical Oblique Imagery

    NASA Astrophysics Data System (ADS)

    Schack, L.; Soergel, U.; Heipke, C.

    2016-06-01

    Matching Persistent Scatterers (PS) to airborne optical imagery is one possibility to augment applications and deepen the understanding of SAR processing and products. While recently this data registration task was done with PS and optical nadir images the alternatively available optical oblique imagery is mostly neglected. Yet, the sensing geometry of oblique images is very similar in terms of viewing direction with respect to SAR.We exploit the additional information coming with these optical sensors to assign individual PS to single parts of buildings. The key idea is to incorporate topology information which is derived by grouping regularly aligned PS at facades and use it together with a geometry based measure in order to establish a consistent and meaningful matching result. We formulate this task as an optimization problem and derive a graph matching based algorithm with guaranteed convergence in order to solve it. Two exemplary case studies show the plausibility of the presented approach.

  13. Designing a freeform optic for oblique illumination

    NASA Astrophysics Data System (ADS)

    Uthoff, Ross D.; Ulanch, Rachel N.; Williams, Kaitlyn E.; Ruiz Diaz, Liliana; King, Page; Koshel, R. John

    2017-11-01

    The Functional Freeform Fitting (F4) method is utilized to design a freeform optic for oblique illumination of Mark Rothko's Green on Blue (1956). Shown are preliminary results from an iterative freeform design process; from problem definition and specification development to surface fit, ray tracing results, and optimization. This method is applicable to both point and extended sources of various geometries.

  14. Structural architecture and tectonic evolution of the Maghara inverted basin, Northern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Moustafa, Adel R.

    2014-05-01

    Large NE-SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline-syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.

  15. The conceptual design of a Mach 2 Oblique Flying Wing supersonic transport

    NASA Technical Reports Server (NTRS)

    Vandervelden, Alexander J. M.

    1989-01-01

    This paper is based on a performance and economics study of a Mach two oblique flying wing transport aircraft that is to replace the B747B. In order to fairly compare our configuration with the B747B an equal structural technology level is assumed. It will be shown that the oblique flying wing configuration will equal or outperform the B747 in speed, economy and comfort while a modern stability and control system will balance the aircraft and smooth out gusts. The aircraft is designed to comply with the FAR25 airworthiness requirements and FAR36 stage 3 noise regulations. Geometry, aerodynamics, stability and control parameters of the oblique flying wing transport are discussed.

  16. Investigation of the Effect of Tool Edge Geometry upon Cutting Variables, Tool Wear and Burr Formation Using Finite Element Simulation — A Progress Report

    NASA Astrophysics Data System (ADS)

    Sartkulvanich, Partchapol; Al-Zkeri, Ibrahim; Yen, Yung-Chang; Altan, Taylan

    2004-06-01

    This paper summarizes some of the progress made on FEM simulations of metal cutting processes conducted at the Engineering Research Center (ERC/NSM). Presented research focuses on the performance of various cutting edge geometries (hone and chamfer edges) for different tool materials and specifically on: 1) the effect of round and chamfer edge geometries on the cutting variables in machining carbon steels and 2) the effect of the edge hone size upon the flank wear and burr formation behavior in face milling of A356-T6 aluminum alloy. In the second task, an innovative design of edge preparation with varying hone size around the tool nose is also explored using FEM. In order to model three-dimensional conventional turning and face milling with two-dimensional orthogonal cutting simulations, 2D simulation cross-sections consisting of the cutting speed direction and chip flow direction are selected at different locations along the tool nose radius. Then the geometries of the hone and chamfer edges and their associated tool angles as well as uncut chip thickness are determined on these planes and employed in cutting simulations. The chip flow direction on the tool rake face are obtained by examining the wear grooves on the experimental inserts or estimated by using Oxley's approximation theory of oblique cutting. Simulation results are compared with the available experimental results (e.g. cutting forces) both qualitatively and quantitatively.

  17. Frontal belt curvature and oblique ramp development at an obliquely collided irregular margin: Geometry and kinematics of the NW Taiwan fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Mouthereau, FréDéRic; Angelier, Jacques; Chu, Hao-Tsu; Lee, Jian-Cheng

    2003-06-01

    Combined structural and tectonic analyses demonstrate that the NW Foothills of the Taiwan collision belt constitute mainly an asymmetric "primary arc" type fold-thrust belt. The arcuate belt developed as a basin-controlled salient in the portion of the foreland basin that was initially thicker, due to the presence of a precollisional depocenter (the Taihsi basin). Additional but limited buttress effects at end points related to interaction with foreland basement highs (Kuanyin and Peikang highs) may have also slightly enhanced curvature. The complex structural pattern results from the interaction between low-angle thrusting related to shallow decollement tectonics and oblique inversion of extensional structures of the margin on the southern edge of the Kuanyin basement high. The tectonic regimes and mechanisms revealed by the pattern of paleostress indicators such as striated outcrop-scale faults are combined with the orientation and geometry of offshore and onshore regional faults in order to accurately define the Quaternary kinematics of the propagating units. The kinematics of this curved range is mainly controlled by distributed transpressional wrenching along the southern edge of the Kuanyin high, leading to the development of a regional-scale oblique ramp, the Kuanyin transfer fault zone, which is conjugate of the NW trending Pakua transfer fault zone north of the Peikang basement high. The divergence between the N120° regional transport direction and the maximum compressive trend that evolved from N120° to N150° (and even to N-S) in the northern part of the arc effectively supports distributed wrench deformation along its northern limb during the Pleistocene. The geometry and kinematics of the western Taiwan Foothills therefore appear to be highly influenced by both the preorogenic structural pattern of the irregularly shaped Chinese passive margin and the obliquity of its Plio-Quaternary collision with the Philippine Sea plate.

  18. Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.

    2018-06-01

    In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.

  19. Radio Occultation Investigation of the Rings of Saturn and Uranus

    NASA Technical Reports Server (NTRS)

    Marouf, Essam A.

    1997-01-01

    The proposed work addresses two main objectives: (1) to pursue the development of the random diffraction screen model for analytical/computational characterization of the extinction and near-forward scattering by ring models that include particle crowding, uniform clustering, and clustering along preferred orientations (anisotropy). The characterization is crucial for proper interpretation of past (Voyager) and future (Cassini) ring, occultation observations in terms of physical ring properties, and is needed to address outstanding puzzles in the interpretation of the Voyager radio occultation data sets; (2) to continue the development of spectral analysis techniques to identify and characterize the power scattered by all features of Saturn's rings that can be resolved in the Voyager radio occultation observations, and to use the results to constrain the maximum particle size and its abundance. Characterization of the variability of surface mass density among the main ring, features and within individual features is important for constraining the ring mass and is relevant to investigations of ring dynamics and origin. We completed the developed of the stochastic geometry (random screen) model for the interaction of electromagnetic waves with of planetary ring models; used the model to relate the oblique optical depth and the angular spectrum of the near forward scattered signal to statistical averages of the stochastic geometry of the randomly blocked area. WE developed analytical results based on the assumption of Poisson statistics for particle positions, and investigated the dependence of the oblique optical depth and angular spectrum on the fractional area blocked, vertical ring profile, and incidence angle when the volume fraction is small. Demonstrated agreement with the classical radiative transfer predictions for oblique incidence. Also developed simulation procedures to generate statistical realizations of random screens corresponding to uniformly packed ring models, and used the results to characterize dependence of the extinction and near-forward scattering on ring thickness, packing fraction, and the ring opening angle.

  20. Screech Tones from Rectangular Jets with Spanwise Oblique Shock-Cell Structures

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh

    1996-01-01

    Understanding screech is especially important for the design of advanced aircraft because screech can cause sonic fatigue failure of aircraft structures. Although the connection between shock-cell spacing and screech frequency is well understood, the relation between non-uniformities in the shock-cell structures and the resulting amplitude, mode, and steadiness of screech have remained unexplored. This paper addresses the above issues by intentionally producing spanwise (larger nozzle dimension) variations in the shock-cell structures and studying the resulting spanwise screech mode. The spanwise oblique shock-cell structures were produced using imperfectly expanded convergent-divergent rectangular nozzles (aspect ratio = 5) with nonuniform exit geometries. Three geometries were studied: (a) a nozzle with a spanwise uniform edge, (b) a nozzle with a spanwise oblique (single bevelled) edge, and (c) a nozzle that had two spanwise oblique (double bevelled) cuts to form an arrowhead-shaped nozzle. For all nozzles considered, the screech mode was antisymmetric in the transverse (smaller nozzle dimension) direction allowing focus on changes in the spanwise direction. Three types of spanwise modes were observed: symmetric (1), antisymmetric (2), and oblique (3). The following significant results emerged: (1) for all cases the screech mode corresponds with the spanwise shock-cell structure, (2) when multiple screech modes are present, the technique presented here makes it possible to distinguish between coexisting and mutually exclusive modes, (3) the strength of shocks 3 and 4 influences the screech source amplitude and determines whether screech is unsteady. The results presented here offer hope for a better understanding of screech and for tailoring shock-containing jets to minimize fatigue failure of aircraft components.

  1. 3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2017-04-01

    The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x 160 km) numerical experiments of oceanic subduction beneath a continent, focusing on the conditions under which strain partitioning occurs in the continental plate. In addition to different slab geometries and obliquity angles, we consider the effect of a continental crustal of uniform strength (friction angle Φ=15^°) versus one including a weak zone in the continental crust (Φ=4^°) that runs parallel to the margin. Results of our experiments show that the obliquity angle has the largest effect on initiating strain partitioning, as expected based on strain partitioning theory, but strain partitioning is clearly enhanced by the presence of a continental weakness. Margin-parallel mass transport velocities in the continental sliver are similar to the values observed in the NVZ (about 1 cm/year) in models with a continental weakness and twice as high as those without. In addition, a shallower subduction angle results in formation of a wider continental sliver. Based upon our results, the lack of strain partitioning observed in the PFSS results from both a low convergence obliquity and lack of a weak zone in the continent, even though the shallow subduction should make strain partitioning more favorable.

  2. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    PubMed

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of orientation in visual working memory.

  3. Effects of Magnetic Field Geometry on the Broadband Emission of Blazars

    NASA Astrophysics Data System (ADS)

    Joshi, Manasvita; Marscher, Alan; Boettcher, Markus

    2018-01-01

    The knowledge of the structure of the magnetic field inside a blazar jet, as deduced from polarization observations at radio to opticalwavelengths, is closely related to the formation and propagation of relativistic jets that result from accretion onto supermassive blackholes. However, a largely unexplored aspect of the theoretical understanding of radiation transfer physics in blazar jets has beenthe magnetic field geometry as revealed by the polarized emission and the connection between the variability in polarization and flux acrossthe spectrum.Here, we explore the effects of various magnetic geometries that can exist inside a blazar jet: parallel, transverse, oblique, toroidal,helical, and tangled. We investigate the effects of changing the orientation of the magnetic field, according to the above-mentionedgeometries, on the resulting high-energy spectral energy distributions (SEDs) and spectral variability patterns (SVPs) of a typicalblazar. We use the MUlti-ZOne Radiation Feedback (MUZORF) model to carry out this study and to relate the geometry of the field to the observed SEDs. One of the goals of the study is to address the issue of the reason for the appearance of some of the gamma-ray "orphan flares" observed in a few blazars. This can be associated with the directionality of the magnetic field, which creates a difference in the radiation field as seen by an observer versus that seen by the electrons in the emission region.This research was supported in part by NASA through Fermi grants NNX10AO59G, NNX08AV65G, and NNX08AV61G, NASA through Swift grants NNX09AR11G, NNX10AL13G, and NNX10AF88G, and by NSF grant AST-0907893.

  4. On the tunability of quality-factor for optical Tamm plasmon modes

    NASA Astrophysics Data System (ADS)

    Kumar, Samir; Das, Ritwick

    2017-09-01

    We present a comprehensive investigation to ascertain the impact of gold and silver films on modifying the quality-factor (Q-factor) of optical Tamm-plasmon (OTP) resonance in a metal-distributed Bragg reflector (M-DBR) geometry. Here, OTP mode is excited using direct incidence of white-light-source at normal incidence as well as oblique incidence on M-DBR geometry. The lifetime of OTP in gold and silver deposited films on DBR mirror was determined from OTP resonance linewidth. The lifetime and the Q-factor of OTP modes are found to depend on DBR bilayers, metal film thickness as well as on different plasmon active metals. This finding would facilitate tuning the Q-factor and consequently, the lifetime of OTP modes for various applications in all-optical switches and modulators. In addition, we discuss the spectral characteristics of OTP modes excited using normal and oblique incident of source.

  5. Space Debris Surfaces - Probability of no penetration versus impact velocity and obliquity

    NASA Technical Reports Server (NTRS)

    Elfer, N.; Meibaum, R.; Olsen, G.

    1992-01-01

    A collection of computer codes called Space Debris Surfaces (SD-SURF), have been developed to assist in the design and analysis of space debris protection systems. An SD-SURF analysis will show which obliquities and velocities are most likely to cause a penetration to help the analyst select a shield design best suited to the predominant penetration mechanism. Examples of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration are presented.

  6. Use of Vertical Aerial Images for Semi-Oblique Mapping

    NASA Astrophysics Data System (ADS)

    Poli, D.; Moe, K.; Legat, K.; Toschi, I.; Lago, F.; Remondino, F.

    2017-05-01

    The paper proposes a methodology for the use of the oblique sections of images from large-format photogrammetric cameras, by exploiting the effect of the central perspective geometry in the lateral parts of the nadir images ("semi-oblique" images). The point of origin of the investigation was the execution of a photogrammetric flight over Norcia (Italy), which was seriously damaged after the earthquake of 30/10/2016. Contrary to the original plan of oblique acquisitions, the flight was executed on 15/11/2017 using an UltraCam Eagle camera with focal length 80 mm, and combining two flight plans, rotated by 90º ("crisscross" flight). The images (GSD 5 cm) were used to extract a 2.5D DSM cloud, sampled to a XY-grid size of 2 GSD, a 3D point clouds with a mean spatial resolution of 1 GSD and a 3D mesh model at a resolution of 10 cm of the historic centre of Norcia for a quantitative assessment of the damages. From the acquired nadir images the "semi-oblique" images (forward, backward, left and right views) could be extracted and processed in a modified version of GEOBLY software for measurements and restitution purposes. The potential of such semi-oblique image acquisitions from nadir-view cameras is hereafter shown and commented.

  7. The SCEC 3D Community Fault Model (CFM-v5): An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.

    2014-12-01

    Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from projecting near-surface data down-dip, or modeled from surface strain and potential field data alone.

  8. Swept Impinging Oblique Shock/Boundary-Layer Interactions

    NASA Astrophysics Data System (ADS)

    Little, Jesse; Threadgill, James; Stab, Ilona

    2016-11-01

    Oblique shock waves impinging on boundary layers are common flow features associated with high-speed flows around complex body geometries and through internal channel flows. The increasingly three-dimensional surface geometries of modern vehicles has led to a prevalence of complex shock/boundary-layer interactions. Sweep has been observed to vary the interaction structure, unsteadinesses, and similarity scalings. Sharp-fins and highly-swept ramps have been noted to induce a quasi-conical development of the interaction, in contrast to a quasi-cylindrical scaling observed in low-sweep interactions. However, swept impinging oblique shock cases have largely been overlooked, with evidence of only cylindrical similarities observed in hypersonic conditions. Flow deflection beyond the maximum turning angle has been proposed as the mechanism for conical interaction development but such behavior has not been established for the present configuration. This study examines the effect of sweep on the interaction induced by a 12.5° generator in Mach 2.3 flow using oil-flow, Schlieren and PIV. Results document the development of similarity scalings at various angles of sweep, and highlight the difficulty in replicating a quasi-infinite span conditions in a moderately sized wind tun Supported by the Air Force Office of Scientific Research (FA9550-15-1-0430) and Raytheon Missile Systems.

  9. Connective Tissue Characteristics around Healing Abutments of Different Geometries: New Methodological Technique under Circularly Polarized Light.

    PubMed

    Delgado-Ruiz, Rafael Arcesio; Calvo-Guirado, Jose Luis; Abboud, Marcus; Ramirez-Fernandez, Maria Piedad; Maté-Sánchez de Val, José Eduardo; Negri, Bruno; Gomez-Moreno, Gerardo; Markovic, Aleksa

    2015-08-01

    To describe contact, thickness, density, and orientation of connective tissue fibers around healing abutments of different geometries by means of a new method using coordinates. Following the bilateral extraction of mandibular premolars (P2, P3, and P4) from six fox hound dogs and a 2-month healing period, 36 titanium implants were inserted, onto which two groups of healing abutments of different geometry were screwed: Group A (concave abutments) and Group B (wider healing abutment). After 3 months the animals were sacrificed and samples extracted containing each implant and surrounding soft and hard tissues. Histological analysis was performed without decalcifying the samples by means of circularly polarized light under optical microscope and a system of vertical and horizontal coordinates across all the connective tissue in an area delimited by the implant/abutment, epithelium, and bone tissue. In no case had the connective tissue formed a connection to the healing abutment/implant in the internal zone; a space of 35 ± 10 μm separated the connective tissue fibers from the healing abutment surface. The total thickness of connective tissue in the horizontal direction was significantly greater in the medial zone in Group B than in Group A (p < .05). The orientation of the fibers varied according to the coordinate area so that internal coordinates showed a higher percentage of parallel fibers in Group A (p < .05) and a higher percentage of oblique fibers in Group B (p < .05); medial coordinates showed more oblique fibers (p < .05); and the area of external coordinates showed the highest percentage of perpendicular fibers (p < .05). The fiber density was higher in the basal and medial areas (p < .05). Abutment geometry influences the orientation of collagen fibers; therefore, an abutment with a profile wider than the implant platform favors oblique and perpendicular orientation of collagen fibers and greater connective tissue thickness. © 2013 Wiley Periodicals, Inc.

  10. On the time-variable nature of Titan's obliquity

    NASA Astrophysics Data System (ADS)

    Noyelles, Benoit; Nimmo, Francis

    2014-05-01

    Titan presents an unexpectedly high obliquity (Stiles et al. 2008, Meriggiola & Iess 2012) while its topography and gravity suggest a non-hydrostatic ice shell (Hemingway et al. 2013). We here present a 6-dof model of the rotation of Titan simultaneously simulating the full orientation of the shell and the inner core, and considering a global subsurface ocean with a partially-compensated shell of spatially-variable thickness. Between 10 and 13% of our realistic interior models induce a resonance with the annual forcing, that dramatically raises the obliquity. The relevant model Titans are composed of a 130-140 km thick shell floating on a ~250 km thick ocean. The observed obliquity should not be considered as a mean one but as an instantaneous one, that should vary by ~7 arcmin over the duration of the Cassini mission.

  11. The Of?p stars of the Magellanic Clouds: Are they strongly magnetic?

    NASA Astrophysics Data System (ADS)

    Munoz, M.; Wade, G. A.; Nazé, Y.; Bagnulo, S.; Puls, J.

    2018-01-01

    All known Galactic Of?p stars have been shown to host strong, organized, magnetic fields. Recently, five Of?p stars have been discovered in the Magellanic Clouds. They posses photometric (Nazé et al., 2015) and spectroscopic (Walborn et al., 2015) variability compatible with the Oblique Rotator Model (ORM). However, their magnetic fields have yet to be directly detected. We have developed an algorithm allowing for the synthesis of photometric observables based on the Analytic Dynamical Magnetosphere (ADM) model by Owocki et al. (2016). We apply our model to OGLE photometry in order to constrain their magnetic geometries and surface dipole strengths. We predict that the field strengths for some of theses candidate extra-Galactic magnetic stars may be within the detection limits of the FORS2 instrument

  12. Making structured metals transparency for broadband and wide-incidence-angle electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Fan, Renhao; Peng, Ruwen; Huang, Xianrong; Wang, Mu

    2014-03-01

    Very recently, we have demonstrated that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic (EM) waves under oblique incidence. However, the oblique-incidence geometry, is inconvenient for the technological applications. To overcome this drawback, here we instead use oblique metal gratings with optimal tilt angles to achieve normal-incidence broadband transparence for EM waves. Further we use two-dimensional periodic metallic cuboids to achieve broadband and broad-angle high transmission and antireflection. By introducing such metallic cuboids arrays into silicon solar cells, we find that high performance of light trapping in the cells can be obtained with a significant enhancement of the ultimate quantum efficiency. The structured metals, which achieve broadband and broad-angle high transmission for EM waves, may have many other potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.

  13. Large capacity oblique all-wing transport aircraft

    NASA Technical Reports Server (NTRS)

    Galloway, Thomas L.; Phillips, James A.; Kennelly, Robert A., Jr.; Waters, Mark H.

    1996-01-01

    Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.

  14. Influence of fracture geometry on bone healing under locking plate fixations: A comparison between oblique and transverse tibial fractures.

    PubMed

    Miramini, Saeed; Zhang, Lihai; Richardson, Martin; Mendis, Priyan; Ebeling, Peter R

    2016-10-01

    Mechano-regulation plays a crucial role in bone healing and involves complex cellular events. In this study, we investigate the change of mechanical microenvironment of stem cells within early fracture callus as a result of the change of fracture obliquity, gap size and fixation configuration using mechanical testing in conjunction with computational modelling. The research outcomes show that angle of obliquity (θ) has significant effects on interfragmentary movement (IFM) which influences mechanical microenvironment of the callus cells. Axial IFM at near cortex of fracture decreases with θ, while shear IFM significantly increases with θ. While a large θ can increase shear IFM by four-fold compared to transverse fracture, it also result in the tension-stress effect at near cortex of fracture callus. In addition, mechanical stimuli for cell differentiation within the callus are found to be strongly negatively correlated to angle of obliquity and gap size. It is also shown that a relatively flexible fixation could enhance callus formation in presence of a large gap but could lead to excessive callus strain and interstitial fluid flow when a small transverse fracture gap is present. In conclusion, there appears to be an optimal fixation configuration for a given angle of obliquity and gap size. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    NASA Astrophysics Data System (ADS)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry, the seasons, and insolation. Users select a calendar date and the Earth is placed in its orbit using Kepler's laws; the calendar can be started on either vernal equinox (March 20) or perihelion (Jan. 3). Global insolation is computed as a function of latitude and day of year, using the chosen Milankovitch parameters. 3D surface plots of insolation and insolation anomalies (with respect to J2000) are then produced. Insolation computations use the model's own orbital geometry with no additional a-priori input other than the Milankovitch parameter solutions. Insolation computations are successfully validated against Laskar et al. (2004) values. The model outputs other relevant parameters as well, e.g. Earth's radius-vector length, solar declination and day length for the chosen date and latitude. Time-series plots of the Milankovitch parameters and EPICA ice core CO2 and temperature data can be produced. Envisioned future developments include computational efficiency improvements, more options for insolation plots on user-chosen spatio-temporal scales, and overlaying additional paleoclimatological proxy data.

  16. Trivelpiece-Gould modes in a uniform unbounded plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L.; Urrutia, J. M.

    Trivelpiece-Gould (TG) modes originally described electrostatic surface waves on an axially magnetized cylindrical plasma column. Subsequent studies of electromagnetic waves in such plasma columns revealed two modes, a predominantly magnetic helicon mode (H) and the mixed magnetic and electrostatic Trivelpiece-Gould modes (TG). The latter are similar to whistler modes near the oblique cyclotron resonance in unbounded plasmas. The wave propagation in cylindrical geometry is assumed to be paraxial while the modes exhibit radial standing waves. The present work shows that TG modes also arise in a uniform plasma without radial standing waves. It is shown experimentally that oblique cyclotron resonancemore » arises in large mode number helicons. Their azimuthal wave number far exceeds the axial wave number which creates whistlers near the oblique cyclotron resonance. Cyclotron damping absorbs the TG mode and can energize electrons in the center of a plasma column rather than the edge of conventional TG modes. The angular orbital field momentum can produce new perpendicular wave-particle interactions.« less

  17. Space Debris Surfaces (Computer Code): Probability of No Penetration Versus Impact Velocity and Obliquity

    NASA Technical Reports Server (NTRS)

    Elfer, N.; Meibaum, R.; Olsen, G.

    1995-01-01

    A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design that is best suited to the predominant penetration mechanism. The analysis also suggests the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs or Microsoft-EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII. The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs. Examples will be presented of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration.

  18. Multistability inspired by the oblique, pennate architectures of skeletal muscle

    NASA Astrophysics Data System (ADS)

    Kidambi, Narayanan; Harne, Ryan L.; Wang, K. W.

    2017-04-01

    Skeletal muscle mechanics exhibit a range of noteworthy characteristics, providing great inspiration for the development of advanced structural and material systems. These characteristics arise from the synergies demonstrated between muscle's constituents across the various length scales. From the macroscale oblique orientation of muscle fibers to the microscale lattice spacing of sarcomeres, muscle takes advantage of geometries and multidimensionality for force generation or length change along a desired axis. Inspired by these behaviors, this research investigates how the incorporation of multidimensionality afforded by oblique, pennate architectures can uncover novel mechanics in structures exhibiting multistability. Experimental investigation of these mechanics is undertaken using specimens of molded silicone rubber with patterned voids, and results reveal tailorable mono-, bi-, and multi-stability under axial displacements by modulation of transverse confinement. If the specimen is considered as an architected material, these results show its ability to generate intriguing, non-monotonic shear stresses. The outcomes would foster the development of novel, advanced mechanical metamaterials that exploit pennation and multidimensionality.

  19. Obliquity (41kyr) Paced SE Asian Monsoon Variability Following the Miocene Climate Transition

    NASA Astrophysics Data System (ADS)

    Heitmann, E. O.; Breecker, D.; Ji, S.; Nie, J.

    2016-12-01

    We investigated Asian monsoon variability during the Miocene, which may provide a good analog for the future given the lack of northern hemisphere ice sheets. In the Miocene Yanwan Section (Tianshui Basin, China) 25cm thick CaCO3-cemented horizons overprint siltstones every 1m. We suggest this rhythmic layering records variations in water availability influenced by the Asian monsoon. We interpret the siltstones as stacked soils that formed in a seasonal climate with a fluctuating water table, evidenced by roots, clay films, mottling, presence of CaCO3 nodules, and stacked carbonate nodule δ13C and δ18O profiles that mimic modern soils. We interpret the CaCO3-cemented horizons as capillary-fringe carbonates that formed in an arid climate with a steady water table and high potential evapotranspiration (PET), evidenced by sharp upper and basal contacts, micrite, sparite, and root-pore cements. The magnetostratigraphy-based age model indicates obliquity-pacing of the CaCO3-cemented horizons suggesting an orbital control on water availability, for which we propose two mechanisms: 1) summer monsoon strength, moderated by the control of obliquity on the cross-equatorial pressure gradient, and 2) PET, moderated by the control of precession on 35oN summer insolation. We use orbital configurations to predict lithology. Coincidence of obliquity minima and insolation maxima drives strong summer monsoons, seasonal variations in water table depth and soil formation. Coincidence of obliquity maxima and insolation minima drives weak summer monsoons, high PET, and carbonate accumulation above a deepened, stable water table. Coincidence of obliquity and insolation minima drives strong monsoons, low PET, and a high water table, explaining the evidence for aquatic plants previously observed in this section. Southern hemisphere control of summer monsoon variability in the Miocene may thus have resulted in large water availability variations in central China.

  20. Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric

    2018-05-01

    Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.

  1. Monte Carlo simulations of particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Jones, Frank C.

    1994-01-01

    The Fermi shock acceleration mechanism may be responsible for the production of high-energy cosmic rays in a wide variety of environments. Modeling of this phenomenon has largely focused on plane-parallel shocks, and one of the most promising techniques for its study is the Monte Carlo simulation of particle transport in shocked fluid flows. One of the principal problems in shock acceleration theory is the mechanism and efficiency of injection of particles from the thermal gas into the accelerated population. The Monte Carlo technique is ideally suited to addressing the injection problem directly, and previous applications of it to the quasi-parallel Earth bow shock led to very successful modeling of proton and heavy ion spectra, as well as other observed quantities. Recently this technique has been extended to oblique shock geometries, in which the upstream magnetic field makes a significant angle Theta(sub B1) to the shock normal. Spectral resutls from test particle Monte Carlo simulations of cosmic-ray acceleration at oblique, nonrelativistic shocks are presented. The results show that low Mach number shocks have injection efficiencies that are relatively insensitive to (though not independent of) the shock obliquity, but that there is a dramatic drop in efficiency for shocks of Mach number 30 or more as the obliquity increases above 15 deg. Cosmic-ray distributions just upstream of the shock reveal prominent bumps at energies below the thermal peak; these disappear far upstream but might be observable features close to astrophysical shocks.

  2. Subduction obliquity as a prime indicator for geotherm in subduction zone

    NASA Astrophysics Data System (ADS)

    Plunder, Alexis; Thieulot, Cédric; van Hinsbergen, Douwe

    2016-04-01

    The geotherm of a subduction zone is thought to vary as a function of subduction rate and the age of the subducting lithosphere. Along a single subduction zone the rate of subduction can strongly vary due to changes in the angle between the trench and the plate convergence vector, namely the subduction obliquity. This phenomenon is observed all around the Pacific (i.e., Marianna, South America, Aleutian…). However due to observed differences in subducting lithosphere age or lateral convergence rate in nature, the quantification of temperature variation due to obliquity is not obvious. In order to investigate this effect, 3D generic numerical models were carried out using the finite element code ELEFANT. We designed a simplified setup to avoid interaction with other parameters. An ocean/ocean subduction setting was chosen and the domain is represented by a 800 × 300 × 200 km Cartesian box. The trench geometry is prescribed by means of a simple arc-tangent function. Velocity of the subducting lithosphere is prescribed using the analytical solution for corner flow and only the energy conservation equation is solved in the domain. Results are analysed after steady state is reached. First results show that the effect of the trench curvature on the geotherm with respect to the convergence direction is not negligible. A small obliquity yields isotherms which are very slightly deflected upwards where the obliquity is maximum. With an angle of ˜30°, the isotherms are deflected upwards of about 10 kilometres. Strong obliquity (i.e., angles from 60° to almost 90°) reveal extreme effects of the position of the isotherms. Further model will include other parameter as the dip of the slab and convergence rate to highlight their relative influence on the geotherm of subduction zone.

  3. Magnetization reversal in epitaxial exchange-biased IrMn/FeGa bilayers with anisotropy geometries controlled by oblique deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhan, Qingfeng; Zuo, Zhenghu; Yang, Huali; Zhang, Xiaoshan; Dai, Guohong; Liu, Yiwei; Yu, Ying; Wang, Jun; Wang, Baomin; Li, Run-Wei

    2015-05-01

    We fabricated epitaxial exchange biased (EB) IrMn/FeGa bilayers by oblique deposition and systematically investigated their magnetization reversal. Two different configurations with the uniaxial magnetic anisotropy Ku parallel and perpendicular to the unidirectional anisotropy Ke b were obtained by controlling the orientation of the incident FeGa beam during deposition. A large ratio of Ku/Ke b was obtained by obliquely depositing the FeGa layer to achieve a large Ku while reducing the IrMn thickness to obtain a small Ke b. Besides the previously reported square loops, conventional asymmetrically shaped loops, and one-sided and two-sided two-step loops, unusual asymmetrically shaped loops with a three-step magnetic transition for the descending branch and a two-step transition for the ascending branch and biased three-step loops were observed at various field orientations in the films of both IrMn (tIrMn=1.5 to 20 nm)/FeGa (10 nm) with Ku⊥ Ke b and IrMn (tIrMn≤2 nm)/FeGa (10 nm) with Ku|| Ke b . Considering the geometries of anisotropies, a model based on domain wall nucleation and propagation was employed to quantitatively describe the angular dependent behaviors of IrMn/FeGa bilayers. The biased three-step magnetic switching was predicted to take place when | Ku|> ɛ90°+Ke b , where ɛ90° is the 90° domain wall nucleation energy, and the EB leads to the appearance of the unusual asymmetrically shaped hysteresis loops.

  4. Flight-determined aerodynamic derivatives of the AD-1 oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Sim, A. G.; Curry, R. E.

    1984-01-01

    The AD-1 is a variable-sweep oblique-wing research airplane that exhibits unconventional stability and control characteristics. In this report, flight-determined and predicted stability and control derivatives for the AD-1 airplane are compared. The predictions are based on both wind tunnel and computational results. A final best estimate of derivatives is presented.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Simon; Winn, Joshua N.; Hirano, Teruyuki

    We present precise radial-velocity (RV) measurements of WASP-1 and WASP-2 throughout transits of their giant planets. Our goal was to detect the Rossiter-McLaughlin (RM) effect, the anomalous RV observed during eclipses of rotating stars, which can be used to study the obliquities of planet-hosting stars. For WASP-1, a weak signal of a prograde orbit was detected with {approx}2{sigma} confidence, and for WASP-2 no signal was detected. The resulting upper bounds on the RM amplitude have different implications for these two systems because of the contrasting transit geometries and the stellar types. Because WASP-1 is an F7V star, and such starsmore » are typically rapid rotators, the most probable reason for the suppression of the RM effect is that the star is viewed nearly pole-on. This implies that the WASP-1 star has a high obliquity with respect to the edge-on planetary orbit. Because WASP-2 is a K1V star, and is expected to be a slow rotator, no firm conclusion can be drawn about the stellar obliquity. Our data and our analysis contradict an earlier claim that WASP-2b has a retrograde orbit, thereby revoking this system's status as an exception to the pattern that cool stars have low obliquities.« less

  6. Controls on Early-Rift Geometry: New Perspectives From the Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, Å.; Biggs, J.; Mdala, H.

    2018-05-01

    We use the ˜110-km long Bilila-Mtakataka fault in the amagmatic southern East African Rift, Malawi, to investigate the controls on early-rift geometry at the scale of a major border fault. Morphological variations along the 14 ± 8-m high scarp define six 10- to 40-km long segments, which are either foliation parallel or oblique to both foliation and the current regional extension direction. As the scarp is neither consistently parallel to foliation nor well oriented for the current regional extension direction, we suggest that the segmented surface expression is related to the local reactivation of well-oriented weak shallow fabrics above a broadly continuous structure at depth. Using a geometrical model, the geometry of the best fitting subsurface structure is consistent with the local strain field from recent seismicity. In conclusion, within this early-rift, preexisting weaknesses only locally control border fault geometry at subsurface.

  7. The northern Lesser Antilles oblique subduction zone: new insight about the upper plate deformation, 3D slab geometry and interplate coupling.

    NASA Astrophysics Data System (ADS)

    Marcaillou, B.; Laurencin, M.; Graindorge, D.; Klingelhoefer, F.

    2017-12-01

    In subduction zones, the 3D geometry of the plate interface is thought to be a key parameter for the control of margin tectonic deformation, interplate coupling and seismogenic behavior. In the northern Caribbean subduction, precisely between the Virgin Islands and northern Lesser Antilles, these subjects remain controversial or unresolved. During the ANTITHESIS cruises (2013-2016), we recorded wide-angle seismic, multichannel reflection seismic and bathymetric data along this zone in order to constrain the nature and the geometry of the subducting and upper plate. This experiment results in the following conclusions: 1) The Anegada Passage is a 450-km long structure accross the forearc related to the extension due to the collision with the Bahamas platform. 2) More recently, the tectonic partitioning due to the plate convergence obliquity re-activated the Anegada Passage in the left-lateral strike-slip system. The partitioning also generated the left-lateral strike-slip Bunce Fault, separating the accretionary prism from the forearc. 3) Offshore of the Virgin Islands margin, the subducting plate shows normal faults parallel to the ancient spreading center that correspond to the primary fabric of the oceanic crust. In contrast, offshore of Barbuda Island, the oceanic crust fabric is unresolved (fracture zone?, exhumed mantle? ). 4) In the direction of the plate convergence vector, the slab deepening angle decreases northward. It results in a shallower slab beneath the Virgin Islands Platform compared to the St Martin-Barbuda forearc. In the past, the collision of the Bahamas platform likely changed the geodynamic settings of the northeastern corner of the Caribbean subduction zone and we present a revised geodynamic history of the region. Currently, various features are likely to control the 3D geometry of the slab: the margin convexity, the convergence obliquity, the heterogeneity of the primary fabric of the oceanic crust and the Bahamas docking. We suggest that the slab deepening angle lower beneath the Virgin Islands segment than beneath the St Martin-Barbuda segment possibly generates a northward increasing interplate coupling. As a result, it possibly favors an increase in the seismic activity and the tectonic partitioning beneath the Virgin Islands margin contrary to the St Martin-Barbuda segment.

  8. A unifying model for planform straightness of ripples and dunes in air and water

    USGS Publications Warehouse

    Rubin, David M.

    2012-01-01

    Geologists, physicists, and mathematicians have studied ripples and dunes for more than a century, but despite considerable effort, no general model has been proposed to explain perhaps the most fundamental property of their morphology: why are some bedforms straight, continuous, parallel, and uniform in planform geometry (i.e. two-dimensional) whereas others are irregular (three-dimensional)? Here we argue that physical coupling along the crest of a bedform is required to produce straight crests and that along-crest flow and sand transport provide effective physical mechanisms for that coupling. Ripples and dunes with the straightest and most continuous crests include longitudinal and oblique dunes in unidirectional flows, wave ripples, dunes in reversing flows, wind ripples, and ripples migrating along a slope. At first glance, these bedforms appear quite different (ripples and dunes; air and water; transverse, oblique, and longitudinal orientations relative to the net sand-transport direction), but they all have one property in common: a process that increases the amount of along-crest sand transport (that lengthens and straightens their crests) relative to the across-crest transport (that makes them migrate and take the more typical and more three-dimensional planform geometry). In unidirectional flows that produce straight bedforms, along-crest transport of sand is caused by along-crest flow (non-transverse bedform orientation), gravitational transport along an inclined crest, or ballistic splash in air. Bedforms in reversing flows tend to be straighter than their unidirectional counterparts, because reverse transport across the bedform crest reduces the net across-crest transport (that causes the more typical irregular geometry) relative to the along-crest transport (that smoothes and straightens planform geometry).

  9. Fourier crosstalk analysis of multislice and cone-beam helical CT

    NASA Astrophysics Data System (ADS)

    La Riviere, Patrick J.

    2004-05-01

    Multi-slice helical CT scanners allow for much faster scanning and better x-ray utilization than do their single-slice predecessors, but they engender considerably more complicated data sampling patterns due to the interlacing of the samples from different rows as the patient is translated. Characterizing and optimizing this sampling is challenging because the conebeam geometry of such scanners means that the projections measured by each detector row are at least slightly oblique, making it difficult to apply standard multidimensional sampling analyses. In this study, we seek to apply a more general framework for analyzing sampled imaging systems known as Fourier crosstalk analysis. Our purpose in this preliminary work is to compare the information content of the data acquired in three different scanner geometries and operating conditions with ostensibly equivalent volume coverage and average longitudinal sampling interval: a single-slice scanner operating at pitch 1, a four-slice scanner operating at pitch 3 and a 15-slice scanner operating at pitch 15. We find that moving from a single-slice to a multi-slice geometry introduces longitudinal crosstalk characteristic of the longitudinal sampling interval between periods of individual each detector row, and not of the overall interlaced sampling pattern. This is attributed to data inconsistencies caused by the obliqueness of the projections in a multi-slice/conebeam configuration. However, these preliminary results suggest that the significance of this additional crosstalk actually decreases as the number of detector rows increases.

  10. Dynamic simulation of train-truck collision at level crossings

    NASA Astrophysics Data System (ADS)

    Ling, Liang; Guan, Qinghua; Dhanasekar, Manicka; Thambiratnam, David P.

    2017-01-01

    Trains crashing onto heavy road vehicles stuck across rail tracks are more likely occurrences at level crossings due to ongoing increase in the registration of heavy vehicles and these long heavy vehicles getting caught in traffic after partly crossing the boom gate; these incidents lead to significant financial losses and societal costs. This paper presents an investigation of the dynamic responses of trains under frontal collision on road trucks obliquely stuck on rail tracks at level crossings. This study builds a nonlinear three-dimensional multi-body dynamic model of a passenger train colliding with an obliquely stuck road truck on a ballasted track. The model is first benchmarked against several train dynamics packages and its predictions of the dynamic response and derailment potential are shown rational. A geometry-based derailment assessment criterion is applied to evaluate the derailment behaviour of the frontal obliquely impacted trains under different conditions. Sensitivities of several key influencing parameters, such as the train impact speed, the truck mass, the friction at truck tyres, the train-truck impact angle, the contact friction at the collision zone, the wheel/rail friction and the train suspension are reported.

  11. Collisionless kinetic theory of oblique tearing instabilities

    DOE PAGES

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    2018-02-15

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less

  12. Collisionless kinetic theory of oblique tearing instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less

  13. Collisionless kinetic theory of oblique tearing instabilities

    NASA Astrophysics Data System (ADS)

    Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.

    2018-02-01

    The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. We find that this stabilization is associated with the density-gradient-driven diamagnetic drift. The analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. A simple analytic estimate for the stability criterion is provided.

  14. Misalignment Effect Function Measurement for Oblique Rotation Axes: Counterintuitive Predictions and Theoretical Extensions

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Adelstein, Bernard D.; Yeom, Kiwon

    2013-01-01

    The Misalignment Effect Function (MEF) describes the decrement in manual performance associated with a rotation between operators' visual display frame of reference and that of their manual control. It now has been empirically determined for rotation axes oblique to canonical body axes and is compared with the MEF previously measured for rotations about canonical axes. A targeting rule, called the Secant Rule, based on these earlier measurements is derived from a hypothetical process and shown to describe some of the data from three previous experiments. It explains the motion trajectories determined for rotations less than 65deg in purely kinematic terms without the need to appeal to a mental rotation process. Further analysis of this rule in three dimensions applied to oblique rotation axes leads to a somewhat surprising expectation that the difficulty posed by rotational misalignment should get harder as the required movement is shorter. This prediction is confirmed. Geometry underlying this rule also suggests analytic extensions for predicting more generally the difficulty of making movements in arbitrary directions subject to arbitrary misalignments.

  15. The ice age cycle and the deglaciations: an application of nonlinear regression modelling

    NASA Astrophysics Data System (ADS)

    Dalgleish, A. N.; Boulton, G. S.; Renshaw, E.

    2000-03-01

    We have applied the nonlinear regression technique known as additivity and variance stabilisation (AVAS) to time series which reflect Earth's climate over the last 600 ka. AVAS estimates a smooth, nonlinear transform for each variable, under the assumption of an additive model. The Earth's orbital parameters and insolation variations have been used as regression variables. Analysis of the contribution of each variable shows that the deglaciations are characterised by periods of increasing obliquity and perihelion approaching the vernal equinox, but not by any systematic change in eccentricity. The magnitude of insolation changes also plays no role. By approximating the transforms we can obtain a future prediction, with a glacial maximum at 60 ka AP, and a subsequent obliquity and precession forced deglaciation.

  16. Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene

    NASA Astrophysics Data System (ADS)

    Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Kirtland Turner, Sandra; Lohmann, Gerrit; Sexton, Philip; Zachos, James; Pälike, Heiko

    2018-02-01

    North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth's ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today's climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5-46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation.

  17. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Swanson, Mark T.

    2005-05-01

    Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The sidewall ripout model, as a mechanism for adhesive wear during fault zone deformation, can be useful in studies of fault zone geometry, kinematics and evolution from outcrop- to crustal-scales.

  18. Comparison of surgical techniques of 111 medial malleolar fractures classified by fracture geometry.

    PubMed

    Ebraheim, Nabil A; Ludwig, Todd; Weston, John T; Carroll, Trevor; Liu, Jiayong

    2014-05-01

    Evaluation of operative techniques used for medial malleolar fractures by classifying fracture geometry has not been well documented. One hundred eleven patients with medial malleolar fractures (transverse n = 63, oblique n = 29, vertical n = 7, comminuted n = 12) were included in this study. Seventy-two patients had complicating comorbidities. All patients were treated with buttress plate, lag screw, tension band, or K-wire fixation. Treatment outcomes were evaluated on the basis of radiological outcome (union, malunion, delayed union, or nonunion), need for operative revision, presence of postoperative complications, and AOFAS Ankle-Hindfoot score. For transverse fractures, tension band fixation showed the highest rate of union (79%), highest average AOFAS score (86), lowest revision rate (5%), and lowest complication rate (16%). For oblique fractures, lag screws showed the highest rate of union (71%), highest average AOFAS score (80), lowest revision rate (19%), and lowest complication rate (33%) of the commonly used fixation techniques. For vertical fractures, buttress plating was used in every case but 1, achieving union (whether normal or delayed) in all cases with an average AOFAS score of 84, no revisions, and a 17% complication rate. Comminuted fractures had relatively poor outcomes regardless of fixation method. The results of this study suggest that both tension bands and lag screws result in similar rates of union for transverse fractures of the medial malleolus, but that tension band constructs are associated with less need for revision surgery and fewer complications. In addition, our data demonstrate that oblique fractures were most effectively treated with lag screws and that vertical fractures attained superior outcomes with buttress plating. Level III, retrospective comparative series.

  19. Acoustic Receptivity of a Blasius Boundary Layer with 2-D and Oblique Surface Waviness

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Breuer, Kenneth S.

    2000-01-01

    An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional (2-D) and oblique (3-D) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well defined wavenumber spectrum with fundamental wavenumber k (sub w). A planar downstream traveling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to k (sub ts) = k (sub w). The range of acoustic forcing levels, epsilon, and roughness heights, DELTA h, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination epsilon dot DELTA h resulted in subsequent nonlinear development of the Tollmien-Schlichting (T-S) wave. This study provided the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the 2-D and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber a,, and measuring the T-S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.

  20. Aeroacoustic features of coupled twin jets with spanwise oblique shock-cells

    NASA Astrophysics Data System (ADS)

    Panickar, Praveen; Srinivasan, K.; Raman, Ganesh

    2004-11-01

    This paper experimentally investigates the aeroacoustics of coupled twin jets of complex geometry. The study was motivated by the fact that twin jet configurations that are commonly used in aircraft propulsion systems can undergo unpredictable resonant coupling resulting in structural damage. Further, nozzles with spanwise oblique exits are increasingly being considered for their aerodynamic and acoustic advantages, as well as stealth benefits. Although several studies have examined aspects of twin jet coupling, very little data is available on the coupling of jets from nozzles of complex geometry. Our study focuses on twin convergent nozzles with an aspect ratio of 7 with spanwise oblique exits operated over the fully expanded Mach number range from 1.3 to 1.6. The inter-nozzle spacing ( s/ h) was varied from 7.4 to 13.5. However, the focus remained on the lower spacing that is more representative of aircraft applications. Several interesting results have emerged from this study: (1) Coupling of twin nozzles with a beveled exit was observed only when the beveled edges faced each other and the nozzles formed a 'V' shape in the inter-nozzle region. Specifically, if the two beveled edges were oriented away from each other to form an arrowhead ('A') shape no coupling was observed. (2) Despite the presence of spanwise antisymmetric, spanwise symmetric and spanwise oblique modes for the single nozzles, only the first two modes were evident in the coupling. (3) The symmetric coupling produced unsteady pressures in the inter-nozzle region that were up to 7.5 dB higher than the antisymmetrically coupled case. (4) Dynamic tests conducted by moving the nozzles apart while they were operating or by continuously changing the stagnation pressure at fixed inter-nozzle spacing revealed that coupling modes could co-exist at non-harmonically related frequencies. These dynamic tests reproduced the static test data. (5) The frequency of both coupling modes agrees with the higher order waveguide modes based on Tam's theory. (6) Differences in broadband shock noise between the 'V' and 'A' configurations were also documented. Our results provide an understanding of complex twin jet coupling and will serve as benchmark data for validating computational models.

  1. Evaluating climatic response to external radiative forcing during the late Miocene to early Pliocene: New perspectives from eastern equatorial Pacific (IODP U1338) and North Atlantic (ODP 982) locations

    NASA Astrophysics Data System (ADS)

    Drury, Anna Joy; John, Cédric M.; Shevenell, Amelia E.

    2016-01-01

    Orbital-scale climate variability during the latest Miocene-early Pliocene is poorly understood due to a lack of high-resolution records spanning 8.0-3.5 Ma, which resolve all orbital cycles. Assessing this variability improves understanding of how Earth's system sensitivity to insolation evolves and provides insight into the factors driving the Messinian Salinity Crisis (MSC) and the Late Miocene Carbon Isotope Shift (LMCIS). New high-resolution benthic foraminiferal Cibicidoides mundulus δ18O and δ13C records from equatorial Pacific International Ocean Drilling Program Site U1338 are correlated to North Atlantic Ocean Drilling Program Site 982 to obtain a global perspective. Four long-term benthic δ18O variations are identified: the Tortonian-Messinian, Miocene-Pliocene, and Early-Pliocene Oxygen Isotope Lows (8-7, 5.9-4.9, and 4.8-3.5 Ma) and the Messinian Oxygen Isotope High (MOH; 7-5.9 Ma). Obliquity-paced variability dominates throughout, except during the MOH. Eleven new orbital-scale isotopic stages are identified between 7.4 and 7.1 Ma. Cryosphere and carbon cycle sensitivities, estimated from δ18O and δ13C variability, suggest a weak cryosphere-carbon cycle coupling. The MSC termination coincided with moderate cryosphere sensitivity and reduced global ice sheets. The LMCIS coincided with reduced carbon cycle sensitivity, suggesting a driving force independent of insolation changes. The response of the cryosphere and carbon cycle to obliquity forcing is established, defined as Earth System Response (ESR). Observations reveal that two late Miocene-early Pliocene climate states existed. The first is a prevailing dynamic state with moderate ESR and obliquity-driven Antarctic ice variations, associated with reduced global ice volumes. The second is a stable state, which occurred during the MOH, with reduced ESR and lower obliquity-driven variability, associated with expanded global ice volumes.

  2. Structural analysis of Nalagarh lobe, NW Himalaya: implication of thrusting across tectonic edge of NW limb of Nahan salient, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Bhakuni, S. S.; Philip, G.; Suresh, N.

    2017-07-01

    The Main Boundary Fault (MBF), convex towards southwest, forms the leading edge of the Nahan salient. Near the southern end of an oblique ramp, a lobe-shaped physiographic front, named in this work as Nalagarh lobe, has developed across NW limb of salient. The lobe has formed across the MBF that separates the hanging wall Lower Tertiary Dharmsala rocks from the footwall Upper Tertiary Siwalik rocks and overlying Quaternaries. In front of lobe, thrust fault splays (Splay-1 and Splay-2) and associated tectonic fabrics have developed within the Late Pleistocene fan deposit. Structural elements developed across the front of Nalagarh lobe are analysed with reference to evolution of lobe. An unweathered 15-m-high hanging wall or wedge top forms the uplifted and rejuvenated bedrock fault scarp of the MBF. Below the MBF, the fan deposit has underthrust along Splay-1. Later the Splay-2 formed within fan deposit near south of Splay-1. Geometry of the overturned limb of tight to isoclinal fault propagation fold, formed on Splay-2 plane, suggests that the fold formed by normal drag, produced by intermittent fault-slips along Splay-2. The displacement along Splay-2 offset the marker bed to 1 m by which some clasts rotated parallel to the traces of brittle axial planes of fold. The variable fold geometry and style of deformation are analysed along length of thrust splays for 5 km. It is revealed that the lobe is bounded by transverse thrust faults along its NW and SE margins. The geometry of salient and oblique ramp suggests that the transverse thrust faults and associated transverse folds formed by right-lateral displacement along the NW limb of the salient. Marking the northern margin of the intermontane piggyback basin of Pinjaur dun, the MBF is interpreted to be an out-of-sequence thrust that has brought up the Lower Tertiary Dharmsala rocks over the Late Pleistocene fan deposit. The geometry of lobe and its bounding transverse faults suggest that faults are intimately associated with the kinematics of the transition between the Nahan salient and Kangra recess. The transition is a transfer zone forming a long pre-Himalayan lineament across which the stratigraphic set of the Tethys and Lesser Himalaya is different. The study suggests that the lateral ramp on the Main Himalayan Thrust does not exist beneath the apex and also beneath the SE limb of the salient in the Sub-Himalayan region. This ramp should be present only beneath near end point of SW limb of the Nahan salient.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philippov, Alexander A.; Cerutti, Benoit; Spitkovsky, Anatoly

    It has recently been demonstrated that self-consistent particle-in-cell simulations of low-obliquity pulsar magnetospheres in flat spacetime show weak particle acceleration and no pair production near the poles. We investigate the validity of this conclusion in a more realistic spacetime geometry via general-relativistic particle-in-cell simulations of the aligned pulsar magnetosphere with pair formation. We find that the addition of the frame-dragging effect makes the local current density along the magnetic field larger than the Goldreich–Julian value, which leads to unscreened parallel electric fields and the ignition of a pair cascade. When pair production is active, we observe field oscillations in themore » open field bundle, which could be related to pulsar radio emission. We conclude that general-relativistic effects are essential for the existence of the pulsar mechanism in low-obliquity rotators.« less

  4. Conformal mapping and bound states in bent waveguides

    NASA Astrophysics Data System (ADS)

    Sadurní, E.; Schleich, W. P.

    2010-12-01

    Is it possible to trap a quantum particle in an open geometry? In this work we deal with the boundary value problem of the stationary Schroedinger (or Helmholtz) equation within a waveguide with straight segments and a rectangular bending. The problem can be reduced to a one-dimensional matrix Schroedinger equation using two descriptions: oblique modes and conformal coordinates. We use a corner-corrected WKB formalism to find the energies of the one-dimensional problem. It is shown that the presence of bound states is an effect due to the boundary alone, with no classical counterpart for this geometry. The conformal description proves to be simpler, as the coupling of transversal modes is not essential in this case.

  5. Possible Strain Partitioning Between the Kumano Forearc Basin and the Slope of the Nankai Trough Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Martin, K. M.; Gulick, S. P.; Bangs, N. L.; Ashi, J.; Moore, G. F.; Nakamura, Y.; Tobin, H. J.

    2008-12-01

    A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan images the Nankai accretionary prism, forearc basin and the subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel ~1200 m deep depression (a "notch") along the seaward edge of the Kumano forearc basin, just landward of the shallowest branch of the previously- mapped splay-fault system. The shape of this feature varies along strike, from a single, steep-walled, ~3.5 km wide notch in the northeast, to a broader, ~6 km wide zone with several shallower linear bathymetric lows in the southwest. We have mapped the area below the notch and found both vertical faults and faults which dip toward the central axis of the depression. Some dipping faults appear to have normal offset, consistent with the formation of a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is more difficult to determine, but the dip and along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. Possible causes for such a system in the forearc include variations in splay fault geometry and strain partitioning. By considering only the along-strike variability of the mapped splay fault, we were unable to explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of forearc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollment strength variations which control the location of the forearc basins may therefore play a role in the position where the along-strike component of deformation is localized. While the obliquity of convergence in the Nankai trough is comparatively small (13-30 degrees), we believe it is still significant enough to account for the formation of the observed notch.

  6. Oblique wing transonic transport configuration development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Studies of transport aircraft designed for boom-free supersonic flight show the variable sweep oblique wing to be the most efficient configuration for flight at low supersonic speeds. Use of this concept leads to a configuration that is lighter, quieter, and more fuel efficient than symmetric aircraft designed for the same mission. Aerodynamic structural, weight, aeroelastic and flight control studies show the oblique wing concept to be technically feasible. Investigations are reported for wing planform and thickness, pivot design and weight estimation, engine cycle (bypass ratio), and climb, descent and reserve fuel. Results are incorporated into a final configuration. Performance, weight, and balance characteristics are evaluated. Flight control requirements are reviewed, and areas in which further research is needed are identified.

  7. Design Automation Using Script Languages. High-Level CAD Templates in Non-Parametric Programs

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Bazán, A. M.

    2017-10-01

    The main purpose of this work is to study the advantages offered by the application of traditional techniques of technical drawing in processes for automation of the design, with non-parametric CAD programs, provided with scripting languages. Given that an example drawing can be solved with traditional step-by-step detailed procedures, is possible to do the same with CAD applications and to generalize it later, incorporating references. In today’s modern CAD applications, there are striking absences of solutions for building engineering: oblique projections (military and cavalier), 3D modelling of complex stairs, roofs, furniture, and so on. The use of geometric references (using variables in script languages) and their incorporation into high-level CAD templates allows the automation of processes. Instead of repeatedly creating similar designs or modifying their data, users should be able to use these templates to generate future variations of the same design. This paper presents the automation process of several complex drawing examples based on CAD script files aided with parametric geometry calculation tools. The proposed method allows us to solve complex geometry designs not currently incorporated in the current CAD applications and to subsequently create other new derivatives without user intervention. Automation in the generation of complex designs not only saves time but also increases the quality of the presentations and reduces the possibility of human errors.

  8. Comments on the Parameters and Processes that Affect the Preservation Potential and Style of Oblique-Divergent Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Umhoefer, P. J.

    2014-12-01

    Oblique-divergent or transtensional zones present particular challenges in ancient belts because of the poor preservation potential of the thinned continental crust and young oceanic crust. Many oblique belts will preferentially preserve their boundary zones that lie within continents rather than the main plate boundary zone, which will be at a much lower elevation and composed of denser crust. Zones of tectonic escape or strike-slip overprinting of arcs or plateaus deform continental crust and may be better preserved. Here I highlight parameters and processes that have major effects on oblique divergent belts. Strain partitioning is common, but not ubiquitous, along and across oblique boundaries; the causes of partitioning are not always clear and make this especially vexing for work in ancient belts. Partitioning causes complexity in the patterns of structures at all scales. Inherited structures commonly determine the orientation and style of structures along oblique boundaries and can control the pattern of faults across transtensional belts. Regionally, inherited trends of arcs or other 1000-km-scale features can control boundary structures. Experiments and natural examples suggest that oblique boundary zones contain less of a record of strike-slip faulting and more extensional structures. The obliquity of divergence produces predictable families of structures that typify (i) strike-slip dominated zones (obliquity <~20°), (ii) mixed zones (~20° - ~35°), and (iii) extension dominated zones (>~35°). The combination of partitioning and mixed structures in oblique zones means that the boundaries of belts with large-magnitude strike-slip faulting will commonly preserve little of no record of that faulting history. Plate boundaries localize strain onto the main plate boundary structures from the broader plate boundary and therefore the boundary zones commonly preserve the earlier structures more than later structures, a major problem in interpreting ancient belts. Sediment input is critical in some oblique plate boundaries because these belts become more pronounced sediment sinks over time. The evolving topography of oblique boundaries means that they have great variability of sediment flux into differing parts of the system; large rivers enter these belts only in special circumstances.

  9. Tailored Fano resonance and localized electromagnetic field enhancement in Ag gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaozhu; Klopf, J. Michael; Wang, Lei

    Metallic gratings can support Fano resonances when illuminated with EM radiation, and their characteristic reflectivity versus incident angle lineshape can be greatly affected by the surrounding dielectric environment and the grating geometry. By using conformal oblique incidence thin film deposition onto an optical grating substrate, it is possible to increase the grating amplitude due to shadowing effects, thereby enabling tailoring of the damping processes and electromagnetic field couplings of the Fano resonances, hence optimizing the associated localized electric field intensity. To investigate these effects we compare the optical reflectivity under resonance excitation in samples prepared by oblique angle deposition (OAD)more » and under normal deposition (ND) onto the same patterned surfaces. We observe that by applying OAD method, the sample exhibits a deeper and narrower reflectivity dip at resonance than that obtained under ND. This can be explained in terms of a lower damping of Fano resonance on obliquely deposited sample and leads to a stronger localized electric field. This approach opens a fabrication path for applications where tailoring the electromagnetic field induced by Fano resonance can improve the figure of merit of specific device characteristics, e.g. quantum efficiency (QE) in grating-based metallic photocathodes.« less

  10. Tailored Fano resonance and localized electromagnetic field enhancement in Ag gratings

    DOE PAGES

    Li, Zhaozhu; Klopf, J. Michael; Wang, Lei; ...

    2017-03-14

    Metallic gratings can support Fano resonances when illuminated with EM radiation, and their characteristic reflectivity versus incident angle lineshape can be greatly affected by the surrounding dielectric environment and the grating geometry. By using conformal oblique incidence thin film deposition onto an optical grating substrate, it is possible to increase the grating amplitude due to shadowing effects, thereby enabling tailoring of the damping processes and electromagnetic field couplings of the Fano resonances, hence optimizing the associated localized electric field intensity. To investigate these effects we compare the optical reflectivity under resonance excitation in samples prepared by oblique angle deposition (OAD)more » and under normal deposition (ND) onto the same patterned surfaces. We observe that by applying OAD method, the sample exhibits a deeper and narrower reflectivity dip at resonance than that obtained under ND. This can be explained in terms of a lower damping of Fano resonance on obliquely deposited sample and leads to a stronger localized electric field. This approach opens a fabrication path for applications where tailoring the electromagnetic field induced by Fano resonance can improve the figure of merit of specific device characteristics, e.g. quantum efficiency (QE) in grating-based metallic photocathodes.« less

  11. Precessional quantities for the Earth over 10 Myr

    NASA Technical Reports Server (NTRS)

    Laskar, Jacques

    1992-01-01

    The insolation parameters of the Earth depend on its orbital parameters and on the precession and obliquity. Until 1988, the usually adopted solution for paleoclimate computation consisted in (Bretagnon, 1974) for the orbital elements of the Earth, which was completed by (Berger, 1976) for the computation of the precession and obliquity of the Earth. In 1988, I issued a solution for the orbital elements of the Earth, which was obtained in a new manner, gathering huge analytical computations and numerical integration (Laskar, 1988). In this solution, which will be denoted La88, the precession and obliquity quantities necessary for paleoclimate computations were integrated at the same time, which insure good consistency of the solutions. Unfortunately, due to various factors, this latter solution for the precession and obliquity was not widely distributed (Berger, Loutre, Laskar, 1988). On the other side, the orbital part of the solution La88 for the Earth, was used in (Berger and Loutre, 1991) to derive another solution for precession and obliquity, aimed to climate computations. I also issued a new solution (La90) which presents some slight improvements with respect to the previous one (Laskar, 1990). As previously, this solution contains orbital, precessional, and obliquity variables. The main features of this new solution are discussed.

  12. On the three-quarter view advantage of familiar object recognition.

    PubMed

    Nonose, Kohei; Niimi, Ryosuke; Yokosawa, Kazuhiko

    2016-11-01

    A three-quarter view, i.e., an oblique view, of familiar objects often leads to a higher subjective goodness rating when compared with other orientations. What is the source of the high goodness for oblique views? First, we confirmed that object recognition performance was also best for oblique views around 30° view, even when the foreshortening disadvantage of front- and side-views was minimized (Experiments 1 and 2). In Experiment 3, we measured subjective ratings of view goodness and two possible determinants of view goodness: familiarity of view, and subjective impression of three-dimensionality. Three-dimensionality was measured as the subjective saliency of visual depth information. The oblique views were rated best, most familiar, and as approximating greatest three-dimensionality on average; however, the cluster analyses showed that the "best" orientation systematically varied among objects. We found three clusters of objects: front-preferred objects, oblique-preferred objects, and side-preferred objects. Interestingly, recognition performance and the three-dimensionality rating were higher for oblique views irrespective of the clusters. It appears that recognition efficiency is not the major source of the three-quarter view advantage. There are multiple determinants and variability among objects. This study suggests that the classical idea that a canonical view has a unique advantage in object perception requires further discussion.

  13. Analyzing RCD30 Oblique Performance in a Production Environment

    NASA Astrophysics Data System (ADS)

    Soler, M. E.; Kornus, W.; Magariños, A.; Pla, M.

    2016-06-01

    In 2014 the Institut Cartogràfic i Geològic de Catalunya (ICGC) decided to incorporate digital oblique imagery in its portfolio in response to the growing demand for this product. The reason can be attributed to its useful applications in a wide variety of fields and, most recently, to an increasing interest in 3d modeling. The selection phase for a digital oblique camera led to the purchase of the Leica RCD30 Oblique system, an 80MPixel multispectral medium-format camera which consists of one Nadir camera and four oblique viewing cameras acquiring images at an off-Nadir angle of 35º. The system also has a multi-directional motion compensation on-board system to deliver the highest image quality. The emergence of airborne oblique cameras has run in parallel to the inclusion of computer vision algorithms into the traditional photogrammetric workflows. Such algorithms rely on having multiple views of the same area of interest and take advantage of the image redundancy for automatic feature extraction. The multiview capability is highly fostered by the use of oblique systems which capture simultaneously different points of view for each camera shot. Different companies and NMAs have started pilot projects to assess the capabilities of the 3D mesh that can be obtained using correlation techniques. Beyond a software prototyping phase, and taking into account the currently immature state of several components of the oblique imagery workflow, the ICGC has focused on deploying a real production environment with special interest on matching the performance and quality of the existing production lines based on classical Nadir images. This paper introduces different test scenarios and layouts to analyze the impact of different variables on the geometric and radiometric performance. Different variables such as flight altitude, side and forward overlap and ground control point measurements and location have been considered for the evaluation of aerial triangulation and stereo plotting. Furthermore, two different flight configurations have been designed to measure the quality of the absolute radiometric calibration and the resolving power of the system. To quantify the effective resolution power of RCD30 Oblique images, a tool based on the computation of the Line Spread Function has been developed. The tool processes a region of interest that contains a single contour in order to extract a numerical measure of edge smoothness for a same flight session. The ICGC is highly devoted to derive information from satellite and airborne multispectral remote sensing imagery. A seamless Normalized Difference Vegetation Index (NDVI) retrieved from Digital Metric Camera (DMC) reflectance imagery is one of the products of ICGC's portfolio. As an evolution of this well-defined product, this paper presents an evaluation of the absolute radiometric calibration of the RCD30 Oblique sensor. To assess the quality of the measure, the ICGC has developed a procedure based on simultaneous acquisition of RCD30 Oblique imagery and radiometric calibrated AISA (Airborne Hyperspectral Imaging System) imagery.

  14. Titan impacts and escape

    NASA Astrophysics Data System (ADS)

    Korycansky, D. G.; Zahnle, Kevin J.

    2011-01-01

    We report on hydrodynamic calculations of impacts of large (multi-kilometer) objects on Saturn's moon Titan. We assess escape from Titan, and evaluate the hypothesis that escaping ejecta blackened the leading hemisphere of Iapetus and peppered the surface of Hyperion. We carried out two- and three-dimensional simulations of impactors ranging in size from 4 to 100 km diameter, impact velocities between 7 and 15 km s -1, and impact angles from 0° to 75° from the vertical. We used the ZEUSMP2 hydrocode for the calculations. Simulations were made using three different geometries: three-dimensional Cartesian, two-dimensional axisymmetric spherical polar, and two-dimensional plane polar. Three-dimensional Cartesian geometry calculations were carried out over a limited domain (e.g. 240 km on a side for an impactor of size di = 10 km), and the results compared to ones with the same parameters done by Artemieva and Lunine (2005); in general the comparison was good. Being computationally less demanding, two-dimensional calculations were possible for much larger domains, covering global regions of the satellite (from 800 km below Titan's surface to the exobase altitude 1700 km above the surface). Axisymmetric spherical polar calculations were carried out for vertical impacts. Two-dimensional plane-polar geometry calculations were made for both vertical and oblique impacts. In general, calculations among all three geometries gave consistent results. Our basic result is that the amount of escaping material is less than or approximately equal to the impactor mass even for the most favorable cases. Amounts of escaping material scaled most strongly as a function of velocity, with high-velocity impacts generating the largest amount, as expected. Dependence of the relative amount of escaping mass fesc = mesc/ Mi on impactor diameter di was weak. Oblique impacts (impact angle θi > 45°) were more effective than vertical or near-vertical impacts; ratios of mesc/ Mi ˜ 1-2 were found in the simulations.

  15. Geometric Effects on the Amplification of First Mode Instability Waves

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.; Candler, Graham V.

    2013-01-01

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.

  16. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Reich, David B.; O'Connor, Michael B.

    2010-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  17. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.

    2012-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  18. The architectonic encoding of the minor lunar standstills in the horizon of the Giza pyramids.

    NASA Astrophysics Data System (ADS)

    Hossam, M. K. Aboulfotouh

    The paper is an attempt to show the architectonic method of the ancient Egyptian designers for encoding the horizontal-projections of the moon's declinations during two events of the minor lunar standstills, in the design of the site-plan of the horizon of the Giza pyramids, using the methods of descriptive geometry. It shows that the distance of the eastern side of the second Giza pyramid from the north-south axis of the great pyramid encodes a projection of a lunar declination, when earth's obliquity-angle was ~24.10°. Besides, it shows that the angle of inclination of the causeway of the second Giza pyramid, of ~13.54° south of the cardinal east, encodes the projection of another lunar declination when earth's obliquity-angle reaches ~22.986°. In addition, it shows the encoded coordinate system in the site-plan of the horizon of the Giza pyramids.

  19. Wafer scale oblique angle plasma etching

    DOEpatents

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  20. Dilution jet mixing program, supplementary report

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; White, C.

    1986-01-01

    The velocity and temperature distributions predicted by a 3-D numerical model and experimental measurements are compared. Empirical correlations for the jet velocity trajectory developed are presented. The measured velocity distributions for all test cases of phase through phase 3 are presented in the form of contour and oblique plots. quantification of the effects of the following on the jet mixing characteristics with a confined crossflow are: (1) orifice geometry momentum flux ratio and density ratio; (2) nonuniform mainstream temperature and velocity profiles upstream of dilution orifices; (3) cold versus hot jet injection; (4) cross-stream flow are a convergence as encountered in practical dilution zone geometries; (5) 2-D slot versus circular orifices; (6) discrete noncirculcer orifices; (7) single-sided versus opposed jets; (8) single row of jets.

  1. Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations

    NASA Astrophysics Data System (ADS)

    Nowajewski, Priscilla; Rojas, M.; Rojo, P.; Kimeswenger, S.

    2018-05-01

    We present the evolution of the atmospheric variables that affect planetary climate by increasing the obliquity by using a general circulation model (PlaSim) coupled to a slab ocean with mixed layer flux correction. We increase the obliquity between 30° and 90° in 16 aquaplanets with liquid sea surface and perform the simulation allowing the sea ice cover formation to be a consequence of its atmospheric dynamics. Insolation is maintained constant in each experiment, but changing the obliquity affects the radiation budget and the large scale circulation. Earth-like atmospheric dynamics is observed for planets with obliquity under 54°. Above this value, the latitudinal temperature gradient is reversed giving place to a new regime of jet streams, affecting the shape of Hadley and Ferrel cells and changing the position of the InterTropical Convergence Zone. As humidity and high temperatures determine Earth's habitability, we introduce the wet bulb temperature as an atmospheric index of habitability for Earth-like aquaplanets with above freezing temperatures. The aquaplanets are habitable all year round at all latitudes for values under 54°; above this value habitability decreases toward the poles due to high temperatures.

  2. Fast widefield techniques for fluorescence and phase endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.

    Endomicroscopy is a recent development in biomedical optics which gives researchers and physicians microscope-resolution views of intact tissue to complement macroscopic visualization during endoscopy screening. This thesis presents HiLo endomicroscopy and oblique back-illumination endomicroscopy, fast wide-field imaging techniques with fluorescence and phase contrast, respectively. Fluorescence imaging in thick tissue is often hampered by strong out-of-focus background signal. Laser scanning confocal endomicroscopy has been developed for optically-sectioned imaging free from background, but reliance on mechanical scanning fundamentally limits the frame rate and represents significant complexity and expense. HiLo is a fast, simple, widefield fluorescence imaging technique which rejects out-of-focus background signal without the need for scanning. It works by acquiring two images of the sample under uniform and structured illumination and synthesizing an optically sectioned result with real-time image processing. Oblique back-illumination microscopy (OBM) is a label-free technique which allows, for the first time, phase gradient imaging of sub-surface morphology in thick scattering tissue with a reflection geometry. OBM works by back-illuminating the sample with the oblique diffuse reflectance from light delivered via off-axis optical fibers. The use of two diametrically opposed illumination fibers allows simultaneous and independent measurement of phase gradients and absorption contrast. Video-rate single-exposure operation using wavelength multiplexing is demonstrated.

  3. Regional Changes in Earths Color and Texture as Observed From Space Over a 15-Year Period

    NASA Technical Reports Server (NTRS)

    Zhao, Guangyu; Di Girolamo, Larry; Diner, David J.; Bruegge, Carol J.; Mueller, Kevin J.; Wu, Dong L.

    2016-01-01

    Earth-observing satellites provide global observations of many geophysical variables. As these variables are derived from measured radiances, the underlying radiance data are the most reliable sources of information for change detection. Here, we identify statistically significant trends in the color and spatial texture of the Earth as viewed from multiple directions from the Multi-angle Imaging SpectroRadiometer (MISR), which has been sampling the angular distribution of scattered sunlight since 2000. Globally, our results show that the Earth has been appearing relatively bluer (up to 1.6 % per decade from both nadir and oblique views) and smoother (up to 1.5 % per decade only from oblique views) over the past 15 years. The magnitude of the global blueing trends is comparable to that of uncertainties in radiometric calibration stability. Regional shifts in color and texture, which are significantly larger than global means, are observed, particularly over polar regions, along the boundaries of the subtropical highs, the tropical western Pacific, Southwestern Asia, and Australia. We demonstrate that the large regional trends cannot be explained either by uncertainties in radiometric calibration or variability in total or spectral solar irradiance; hence, they reflect changes internal to the Earths climate system. The 15-year-mean true color composites and texture images of the Earth at both nadir and oblique views are also presented for the first time.

  4. Diophantine Approach to the Classification of Two-Dimensional Lattices: Surfaces of Face-Centered Cubic Materials.

    PubMed

    Jenkins, Stephen J

    2018-04-03

    The long-range periodic order of a crystalline surface is generally represented by means of a two-dimensional Bravais lattice, of which only five symmetrically distinct types are possible. Here, we explore the circumstances under which each type may or may not be found at the surfaces of face-centered cubic materials and provide means by which the type of lattice may be determined with reference only to the Miller indices of the surface; the approach achieves formal rigor by focusing on the number theory of integer variables rather than directly upon real geometry. We prove that the {100} and {111} surfaces are, respectively, the only exemplars of square and triangular lattices. For surfaces exhibiting a single mirror plane, we not only show that rectangular and rhombic lattices are the only two possibilities, but also capture their alternation in terms of the parity of the indices. In the case of chiral surfaces, oblique lattices predominate, but rectangular and rhombic cases are also possible and arise according to well-defined rules, here partially recounted.

  5. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    USGS Publications Warehouse

    Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin

    2015-01-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  6. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    NASA Astrophysics Data System (ADS)

    Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.

    2015-06-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  7. Effects of Oblique Extension and Inherited Structure Geometry on Transfer Zone Development in Continental Rifts: A 4D Analogue Modeling Approach

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2015-04-01

    INTRODUCTION Inherited structures in the crust form weak zones along which deformation will focus during rifting. Along-strike connection of rift segments may occur along transfer zones, as observed in East Africa. Previous studies have focused on numerical and analog modeling of transfer zones (e.g. Acocella et al., 1999, Allken et al., 2012). We elaborate upon those by investigating the effects of 1) oblique extension and 2) the geometry of linked and non-linked inherited structures on the development of transfer zones. A further improvement is the use of X-ray Computer Tomography (CT) for detailed internal analysis. METHODS The experimental set-up (see Schreurs & Colleta, 1998) contains two sidewalls with a base of compressed foam and plexiglass bars stacked in between. Decompressing this base results in distributed deformation of the overlying model materials. Deforming the model laterally with a mobile base plate produces the strike-slip components for oblique extension. Divergence velocities are in the order of 5 mm/h, translating to ca. 5 mm/Ma in nature, and 1 cm represents 10 km. A 2 cm thick layer of viscous silicone represents the ductile lower crust and a 2 cm quartz sand layer the brittle upper crust. Inherited structures are created with thin lines of silicon laid down on top of the basal silicone layer. Several models were run in a CT-scanner to reveal the 3D evolution of internal structures with time, hence 4D. RESULTS Localization of deformation along the pre-defined structures works well. The models show that the structural style changes with extension obliquity, from wide rift structures to narrower rifts with internal oblique-slip and finally strike-slip structures. Furthermore, rift offset is an important parameter influencing the occurrence of linkage: increasing rift offset decreases linkage as previously observed by Allken et al. (2012). However, increasing divergence obliquity promotes transfer zone formation, as does the presence of rift-connecting inherited zones, whose strike is at an angle of >15° with respect to the divergence direction. CT-analysis indicates that faulting initiated shortly after the start of the experiments, while structures become only clearly visible at the surface only after 1:30h (4% extension). Rift boundary fault angles tend to decrease from an initial 70° to ca. 55° after 4:00h (10% extension). Further CT-analysis will reveal the 3D evolution of the transform zones in more detail. REFERENCES Acocella, V., Faccenna, C., Funiciello, R., Rossetti, F., 1999. Sand-box modelling of basement-controlled transfer zones in extensional domains. Terra Nova, Vol. 11, No. 4, pp 149-156 Allken, V., Huismans, R. S., Thieulot, C., 2012. Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study, Geochem. Geophys. Geosyst. Vol. 13, Q05010 Schreurs, G., Colletta, B. (1998) Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth, R. E., Strachan R. A., Dewey, J. F., (eds.) 1998. Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications. No. 135, pp 59-79

  8. Statistics of bow shock nonuniformity.

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.

    1973-01-01

    The statistical occurrence of pulsation or oblique structure about the earth's generally nonuniform bow shock is estimated at selected points by combining a three-dimensional distribution of interplanetary field directions obtained for a six-day solar wind sector with an index of local pulsation geometry. The result, obtained with a pulsation index of 1.6, is a set of distribution patterns showing the dependence of the pulsation index on the field orientation at the selected shock loci for this value of the index.

  9. Modeling crater topography and albedo from monoscopic Viking orbiter images 1. Methodology.

    USGS Publications Warehouse

    Davis, P.A.; Soderblom, L.A.

    1984-01-01

    A new photoclinometric technique for extraction of topographic data from single planetary images is presented that overcomes many previous limitations. The procedure fully compensates for oblique viewing geometry prevalent in spacecraft images. Albedo variations have been overcome in the topographic solution by simultaneously utilizing brightness data from a pair of profiles. Test results indicate an accuracy and precision of approximately 2o for slopes of typical bowl-shaped craters, which translates to approximately 5% for depths.-from Authors

  10. Digital image transformation and rectification of spacecraft and radar images

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.

  11. Nearshore shore-oblique bars, gravel outcrops, and their correlation to shoreline change

    USGS Publications Warehouse

    Schupp, C.A.; McNinch, J.E.; List, J.H.

    2006-01-01

    This study demonstrates the physical concurrence of shore-oblique bars and gravel outcrops in the surf zone along the northern Outer Banks of North Carolina. These subaqueous features are spatially correlated with shoreline change at a range of temporal and spatial scales. Previous studies have noted the existence of beach-surf zone interactions, but in general, relationships between nearshore geological features and coastal change are poorly understood. These new findings should be considered when exploring coastal zone dynamics and developing predictive engineering models.The surf zone and nearshore region of the Outer Banks is predominantly planar and sandy, but there are several discrete regions with shore-oblique bars and interspersed gravel outcrops. These bar fields have relief up to 3 m, are several kilometers wide, and were relatively stationary over a 1.5 year survey period; however, the shoreward component of the bar field does exhibit change during this time frame. All gravel outcrops observed in the study region, a 40 km longshore length, were located adjacent to a shore-oblique bar, in a trough that had width and length similar to that of the associated bar. Seismic surveys show that the outcrops are part of a gravel stratum underlying the active surface sand layer.Cross-correlation analyses demonstrate high correlation of monthly and multi-decadal shoreline change rates with the adjacent surf-zone bathymetry and sediment distribution. Regionally, areas with shore-oblique bars and gravel outcrops are correlated with on-shore areas of high short-term shoreline variability and high long-term shoreline change rates. The major peaks in long-term shoreline erosion are onshore of shore-oblique bars, but not all areas with high rates of long-term shoreline change are associated with shore-oblique bars and troughs.

  12. Obliquity variation in a Mars climate evolution model

    NASA Technical Reports Server (NTRS)

    Tyler, D.; Haberle, Robert M.

    1993-01-01

    The existence of layered terrain in both polar regions of Mars is strong evidence supporting a cyclic variation in climate. It has been suggested that periods of net deposition have alternated with periods of net erosion in creating the layered structure that is seen today. The cause for this cyclic climatic behavior is variation in the annually averaged latitudinal distribution of solar insolation in response to obliquity cycles. For Mars, obliquity variation leads to major climatological excursion due to the condensation and sublimation of the major atmospheric constituent, CO2. The atmosphere will collapse into the polar caps, or existing caps will rapidly sublimate into the atmosphere, dependent upon the polar surface heat balance and the direction of the change in obliquity. It has been argued that variations in the obliquity of Mars cause substantial departures from the current climatological values of the surface pressure and the amount of CO2 stored in both the planetary regolith and polar caps. In this new work we have modified the Haberle et al. model to incorporate variable obliquity by allowing the polar and equatorial insolation to become functions of obliquity, which we assume to vary sinusoidally in time. As obliquity varies in the model, there can be discontinuities in the time evolution of the model equilibrium values for surface pressure, regolith, and polar cap storage. The time constant, tau r, for the regolith to find equilibrium with the climate is estimated--depending on the depth, thermal conductivity, and porosity of the regolith--between 10(exp 4) and 10(exp 6) yr. Thus, using 2000-yr timesteps to move smoothly through the 0.1250 m.y. obliquity cycles, we have an atmosphere/regolith system that cannot be assumed in equilibrium. We have dealt with this problem by limiting the rate at which CO2, can move between the atmosphere and regolith, mimicking the diffusive nature and effects of the temperature and pressure waves, by setting the time rate of change of regolith storage proportional to the difference between equilibrium storage and current storage.

  13. Biomechanical assessment and clinical analysis of different intramedullary nailing systems for oblique fractures.

    PubMed

    Alierta, J A; Pérez, M A; Seral, B; García-Aznar, J M

    2016-09-01

    The aim of this study is to evaluate the fracture union or non-union for a specific patient that presented oblique fractures in tibia and fibula, using a mechanistic-based bone healing model. Normally, this kind of fractures can be treated through an intramedullary nail using two possible configurations that depends on the mechanical stabilisation: static and dynamic. Both cases are simulated under different fracture geometries in order to understand the effect of the mechanical stabilisation on the fracture healing outcome. The results of both simulations are in good agreement with previous clinical experience. From the results, it is demonstrated that the dynamization of the fracture improves healing in comparison with a static or rigid fixation of the fracture. This work shows the versatility and potential of a mechanistic-based bone healing model to predict the final outcome (union, non-union, delayed union) of realistic 3D fractures where even more than one bone is involved.

  14. Evolution of angular velocity for defunct satellites as a result of YORP: An initial study

    NASA Astrophysics Data System (ADS)

    Albuja, Antonella A.; Scheeres, Daniel J.; McMahon, Jay W.

    2015-07-01

    Observations of defunct satellites show that these objects are generally rotating, with some having very fast rotation rates, yet the cause of these rapid rates is unknown. The observed secular change in the spin rate and spin axis orientation of asteroids is known to be caused by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, however, its effect on inactive satellites in Earth orbit remains unexplored. This paper applies the YORP effect to defunct satellites and analyzes its effect on the spin rate and obliquity of these objects. This work uses two different satellite geometries to explore the secular change of the spin rate and obliquity caused by the YORP effect for inactive Geostationary Earth Orbit (GEO) satellites. One of the model satellites has an asymmetric geometry, which leads to the classical YORP effect as originally formulated for asteroids. The other model satellite is geometrically symmetric, but relies on mass distribution asymmetry to generate the YORP effect. For both models the secular change is explored with averaged dynamics, and the solutions of the averaged theory are compared with numerical integrations of the non-averaged equations of motion. Additionally, previously published observations of inactive GEO satellites are used to estimate the YORP torque acting on those bodies. A comparison between this torque and the expected torque on a defunct satellite shows that the two are of the same order of magnitude. These results motivate further study on the YORP effect in the realm of inactive satellites.

  15. Solid-solid collapse transition in a two dimensional model molecular system.

    PubMed

    Singh, Rakesh S; Bagchi, Biman

    2013-11-21

    Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.

  16. Influence of implant collar design on stress and strain distribution in the crestal compact bone: a three-dimensional finite element analysis.

    PubMed

    Shen, Wan-Ling; Chen, Chen-Sheng; Hsu, Ming-Lun

    2010-01-01

    To evaluate the influence of implant collar geometry on the distribution of stress and strain in the crestal compact bone contiguous to an implant collar for four types of bone under axial and oblique loads. Finite element models of threaded implants with three kinds of implant collar designs (divergent, straight, and convergent) with their corresponding suprastructures embedded in the posterior mandible were created with ANSYS software. Eight different test conditions incorporating four types of bone (orthotropic and effectively isotropic in part 1 and high and low densities in part 2) under separate 100-N axial and 35.6-degree oblique forces were created to investigate the stress and strain distributions in the crestal compact bone around the implant collars. In all eight conditions, the divergent collar demonstrated the lowest maximum von Mises and principal stresses and strains in the crestal compact bone contiguous to the implant collar, followed by the straight and convergent collars. The oblique load induced higher peak values than the axial load. The orthotropic design amplified and increased the pathologic microstrains and tensile stresses in the crestal compact bone compared to the effectively isotropic design, especially in models with a convergent collar design. In part 2 of the study, the maximum von Mises stresses and strains increased with a decrease in the cancellous bone density. Under oblique loading, the convergent and straight collars showed pathologic microstrain values as well as excessive ultimate tensile stresses in the orthotropic bone model with low-density cancellous bone. Within the limitations, it was concluded that stress and strain distributions in the adjacent compact bone are influenced by the implant collar design. The divergent implant collar design was associated with the lowest stress and strain concentrations in the crestal compact bone.

  17. Solid-solid collapse transition in a two dimensional model molecular system

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh S.; Bagchi, Biman

    2013-11-01

    Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.

  18. Injury risk functions for frontal oblique collisions.

    PubMed

    Andricevic, Nino; Junge, Mirko; Krampe, Jonas

    2018-03-09

    The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set. Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes-a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured). IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18-64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes. The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.

  19. Valemount strain zone: A dextral oblique-slip thrust system linking the Rocky Mountain and Omineca belts of the southeastern Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    McDonough, Michael R.; Simony, Philip S.

    1989-03-01

    The Valemount strain zone (VSZ), a narrow zone of high orogen-parallel (OP) strain in pebble conglomerate of the Late Proterozoic Miette Group, is the footwall expression of a thrust fault on the western edge of the Rocky Mountain belt, marking the eastern limit of a wide zone of OP fabrics distributed through the Omineca crystalline and western Rocky Mountain belts of the southeastern Canadian Cordillera. Kinematic indicators from the VSZ and the adjacent Bear Foot thrust zone show that both thrust and dextral displacement are associated with folding and thrust motion in the Rocky Mountains, thereby linking the southern Rocky Mountain belt to the Omineca belt by an oblique-slip thrust regime that is tectonically unrelated to the Southern Rocky Mountain Trench. Transverse shortening of thrust sheets and subsequent distribution of OP shear are invoked to explain the parallelism of stretching lineations and fold axes. Strain and kinematic data and the thrust-belt geometry of the VSZ suggest that OP lineations are a product of a large amount of transverse shortening during slightly oblique A-type subduction. Thus, OP lineations are not representative of relative plate motions between North America and accreted terranes, but probably are a function of footwall buttressing of thrust sheets, a mechanism that may be widely applicable to the internal zones of collisional orogens.

  20. Biomechanical effects of two different collar implant structures on stress distribution under cantilever fixed partial dentures.

    PubMed

    Merıç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; özden, Ahmet Utku

    2011-11-01

    The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone around the implants supporting cantilever fixed partial dentures (CFPDs) as well as in the implant-abutment complex and superstructures. The three-dimensional finite element method was selected to evaluate the stress distribution. CFPDs which was supported by microthread collar structured (MCS) and non-microthread collar structured (NMCS) implants was modeled; 300 N vertical, 150 N oblique and 60 N horizontal forces were applied to the models separately. The stress values in the bone, implant-abutment complex and superstructures were calculated. In the MCS model, higher stresses were located in the cortical bone and implant-abutment complex in the case of vertical load while decreased stresses in cortical bone and implant-abutment complex were noted within horizontal and oblique loading. In the case of vertical load, decreased stresses have been noted in cancellous bone and framework. Upon horizontal and oblique loading, a MCS model had higher stress in cancellous bone and framework than the NMCS model. Higher von Mises stresses have been noted in veneering material for NMCS models. It has been concluded that stress distribution in implant-supported CFPDs correlated with the macro design of the implant collar and the direction of applied force.

  1. The Role of Rift Obliquity in Formation of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Bennett, Scott Edmund Kelsey

    The Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to large-offset normal faults in adjacent pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic basins. The Gulf of California rift has accommodated oblique divergence of the Pacific and North America tectonic plates in northwestern Mexico since Miocene time. Due to its infancy, the rifted margins of the Gulf of California preserve a rare onshore record of early continental break-up processes from which to investigate the role of rift obliquity in strain localization. Using new high-precision paleomagnetic vectors from tectonically stable sites in north-central Baja California, I compile a paleomagnetic transect of Miocene ignimbrites across northern Baja California and Sonora that reveals the timing and distribution of dextral shear associated with inception of this oblique rift. I integrate detailed geologic mapping, basin analysis, and geochronology of pre-rift and syn-rift volcanic units to determine the timing of fault activity on Isla Tiburon, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. The onset of strike-slip faulting on Isla Tiburon, ca. 8 - 7 Ma, was synchronous with the onset of transform faulting along a significant length of the nascent plate boundary within the rift. This tectonic transition coincides with a clockwise azimuthal shift in Pacific-North America relative motion that increased rift obliquity. I constrain the earliest marine conditions on southwest Isla Tiburon to ca. 6.4 - 6.0 Ma, coincident with a regional latest Miocene marine incursion in the northern proto-Gulf of California. This event likely flooded a narrow, incipient topographic depression along a ˜650 km-long portion of the latest Miocene plate boundary and corresponds in time and space with formation of a newly-constrained ˜50-100 kilometer-wide transtensional belt of focused strike-slip faulting, basin formation, and rotating crustal blocks. This proto-Gulf of California shear zone, embedded within the wider Mexican Basin and Range extensional province and connected to the San Andreas fault in southern California, hosted subsequent localization of the plate boundary and rupture of the continental lithosphere.

  2. Oblique reconstructions in tomosynthesis. II. Super-resolution

    PubMed Central

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest detectable frequency on pitch followed the same trend as the analytical model. It was demonstrated that super-resolution is not achievable if the pitch of the object approaches 90°, corresponding to the case in which the test frequency is perpendicular to the breast support. Only low frequency objects are detectable at pitches close to 90°. Conclusions: This work provides a platform for investigating super-resolution in oblique reconstructions for tomosynthesis. In breast imaging, this study should have applications in visualizing microcalcifications and other subtle signs of cancer. PMID:24320445

  3. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China

    NASA Astrophysics Data System (ADS)

    Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning

    2017-11-01

    The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.

  4. The effect of glycerin solution density and viscosity on vibration amplitude of oblique different piezoelectric MC near the surface in 3D modeling

    NASA Astrophysics Data System (ADS)

    Korayem, A. H.; Abdi, M.; Korayem, M. H.

    2018-06-01

    The surface topography in nanoscale is one of the most important applications of AFM. The analysis of piezoelectric microcantilevers vibration behavior is essential to improve the AFM performance. To this end, one of the appropriate methods to simulate the dynamic behavior of microcantilever (MC) is a numerical solution with FEM in the 3D modeling using COMSOL software. The present study aims to simulate different geometries of the four-layered AFM piezoelectric MCs in 2D and 3D modeling in a liquid medium using COMSOL software. The 3D simulation was done in a spherical container using FSI domain in COMSOL. In 2D modeling by applying Hamilton's Principle based on Euler-Bernoulli Beam theory, the governing motion equation was derived and discretized with FEM. In this mode, the hydrodynamic force was assumed with a string of spheres. The effect of this force along with the squeezed-film force was considered on MC equations. The effect of fluid density and viscosity on the MC vibrations that immersed in different glycerin solutions was investigated in 2D and 3D modes and the results were compared with the experimental results. The frequencies and time responses of MC close to the surface were obtained considering tip-sample forces. The surface topography of MCs different geometries were compared in the liquid medium and the comparison was done in both tapping and non-contact mode. Various types of surface roughness were considered in the topography for MC different geometries. Also, the effect of geometric dimensions on the surface topography was investigated. In liquid medium, MC is installed at an oblique position to avoid damaging the MC due to the squeezed-film force in the vicinity of MC surface. Finally, the effect of MC's angle on surface topography and time response of the system was investigated.

  5. Archive of post-Hurricane Charley coastal oblique aerial photographs collected during U.S. Geological Survey field activity 04CCH01 from Marco Island to Fort DeSoto, Florida, August 15, 2004

    USGS Publications Warehouse

    Subino, Janice A.; Morgan, Karen L.M.; Krohn, M. Dennis; Miller, Gregory K.; Dadisman, Shawn V.; Forde, Arnell S.

    2012-01-01

    To view the survey maps and navigation files, and for more information about these items, see the Navigation page. Figure 1 displays the acquisition geometry. The tables provide detailed information about the assigned location, name, data, and time the photograph was taken along with links to the photo and corresponding 5-min contact sheet. Refer to table 1 and table 2 for details of the northern and southern county photographs, respectively.

  6. Research related to variable sweep aircraft development

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Toll, T. A.

    1981-01-01

    Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.

  7. Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens

    NASA Astrophysics Data System (ADS)

    Upton, Phaedra; Craw, Dave

    2016-12-01

    Varying amounts of gold mineralisation is occurring in all young and active collisional mountain belts. Concurrently, these syn-orogenic hydrothermal deposits are being eroded and transported to form placer deposits. Local extension occurs in convergent orogens, especially oblique orogens, and facilitates emplacement of syn-orogenic gold-bearing deposits with or without associated magmatism. Numerical modelling has shown that extension results from directional variations in movement rates along the rock transport trajectory during convergence, and is most pronounced for highly oblique convergence with strong crustal rheology. On-going uplift during orogenesis exposes gold deposits to erosion, transport, and localised placer concentration. Drainage patterns in variably oblique convergent orogenic belts typically have an orogen-parallel or sub-parallel component; the details of which varies with convergence obliquity and the vagaries of underlying geological controls. This leads to lateral transport of eroded syn-orogenic gold on a range of scales, up to > 100 km. The presence of inherited crustal blocks with contrasting rheology in oblique orogenic collision zones can cause perturbations in drainage patterns, but numerical modelling suggests that orogen-parallel drainage is still a persistent and robust feature. The presence of an inherited block of weak crust enhances the orogen-parallel drainage by imposition of localised subsidence zones elongated along a plate boundary. Evolution and reorientation of orogen-parallel drainage can sever links between gold placer deposits and their syn-orogenic sources. Many of these modelled features of syn-orogenic gold emplacement and varying amounts of orogen-parallel detrital gold transport can be recognised in the Miocene to Recent New Zealand oblique convergent orogen. These processes contribute little gold to major placer goldfields, which require more long-term recycling and placer gold concentration. Most eroded syn-orogenic gold becomes diluted by abundant lithic debris in rivers and sedimentary basins except where localised concentration occurs, especially on beaches.

  8. Integrated Aerodynamic and Control System Design of Oblique Wing Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Morris, Stephen James

    1990-01-01

    An efficient high speed aircraft design must achieve a high lift to drag ratio at transonic and supersonic speeds. In 1952 Dr. R. T. Jones proved that for any flight Mach number minimum drag at a fixed lift is achieved by an elliptic wing planform with an appropriate oblique sweep angle. Since then, wind tunnel tests and numerical flow models have confirmed that the compressibility drag of oblique wing aircraft is lower than similar symmetrical sweep designs. At oblique sweep angles above thirty degrees the highly asymmetric planform gives rise to aerodynamic and inertia couplings which affect stability and degrade the aircraft's handling qualities. In the case of the NASA-Rockwell Oblique Wing Research Aircraft, attempts to improve the handling qualities by implementing a stability augmentation system have produced unsatisfactory results because of an inherent lack of controllability in the proposed design. The present work focuses on improving the handling qualities of oblique wing aircraft by including aerodynamic configuration parameters as variables in the control system synthesis to provide additional degrees of freedom with which to further decouple the aircraft's response. Handling qualities are measured using a quadratic cost function identical to that considered in optimal control problems, but the controller architecture is not restricted to full state feedback. An optimization procedure is used to simultaneously solve for the aircraft configuration and control gains which maximize a handling qualities measure, while meeting imposed constraints on trim. In some designs wing flexibility is also modeled and reduced order controllers are implemented. Oblique wing aircraft synthesized by this integrated design method show significant improvement in handling qualities when compared to the originally proposed closed loop aircraft. The integrated design synthesis method is then extended to show how handling qualities may be traded for other types of mission performance (drag, weight, etc.). Examples are presented which show how performance can be maximized while maintaining a desired level of handling quality.

  9. Measurement of superficial and deep abdominal muscle thickness: an ultrasonography study.

    PubMed

    Tahan, Nahid; Khademi-Kalantari, Khosro; Mohseni-Bandpei, Mohammad Ali; Mikaili, Saeed; Baghban, Alireza Akbarzadeh; Jaberzadeh, Shapour

    2016-08-23

    Real-time ultrasound imaging is a valid method in the field of rehabilitation. The ultrasound imaging allows direct visualization for real-time study of the muscles as they contract over the time. Measuring of the size of each abdominal muscle in relation to the others provides useful information about the differences in structure, as well as data on trunk muscle activation patterns. The purpose of this study was to assess the size and symmetry of the abdominal muscles at rest in healthy adults and to provide a reference range of absolute abdominal muscle size in a relatively large population. A total 156 healthy subjects with the age range of 18-44 years were randomly recruited. The thickness of internal oblique, external oblique, transverse abdominis, and rectus abdominis muscles was measured at rest on both right and left sides using ultrasound. Independent t test was used to compare the mean thickness of each abdominal muscle between males and females. Differences on side-to-side thicknesses were assessed using paired t test. The association between abdominal muscle thicknesses with gender and anthropometric variables was examined using the Pearson correlation coefficient. A normal pattern of increasing order of mean abdominal muscle thickness was found in both genders at both right and left sides: transverse abdominis < external oblique < internal oblique < rectus abdominis. There was a significant difference on the size of transverse abdominis, internal oblique, and external oblique muscles between right and left sides in both genders. Males had significantly thicker abdominal muscles than females. Age was significantly correlated with the thickness of internal oblique, external oblique, and rectus abdominis muscles. Body mass index was also positively correlated with muscle thickness of rectus abdominis and external oblique. The results provide a normal reference range for the abdominal muscles in healthy subjects and may be used as an index to find out abnormalities and also to evaluate the effectiveness of different interventions.

  10. Application of an inverse method for calculating three-dimensional fault geometries and clip vectors, Nun River Field, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, H.G.; White, N.

    A general, automatic method for determining the three-dimensional geometry of a normal fault of any shape and size is applied to a three-dimensional seismic reflection data set from the Nun River field, Nigeria. In addition to calculating fault geometry, the method also automatically retrieves the extension direction without requiring any previous information about either the fault shape or the extension direction. Solutions are found by minimizing the misfit between sets of faults that are calculated from the observed geometries of two or more hanging-wall beds. In the example discussed here, the predicted fault surface is in excellent agreement with themore » shape of the seismically imaged fault. Although the calculated extension direction is oblique to the average strike of the fault, the value of this parameter is not well resolved. Our approach differs markedly from standard section-balancing models in two important ways. First, we do not assume that the extension direction is known, and second, the use of inverse theory ensures that formal confidence bounds can be determined for calculated fault geometries. This ability has important implications for a range of geological problems encountered at both exploration and production scales. In particular, once the three-dimensional displacement field has been constrained, the difficult but important problem of three-dimensional palinspastic restoration of hanging-wall structures becomes tractable.« less

  11. Preliminary design of nine high speed civil transports

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral; Vantriet, Robert; Soban, Dani; Hoang, TY

    1992-01-01

    Sixty senior design students at Cal Poly, SLO have completed a year-long project to design the next generation of High Speed Civil Transports (HSCT). The design process was divided up into three distinct phases. The first third of the project was devoted entirely to research into the special problems associated with an HSCT. These included economic viability, airport compatibility, high speed aerodynamics, sonic boom minimization, environmental impact, and structures and materials. The result of this research was the development of nine separate Requests for Proposal (RFP) that outlined reasonable yet challenging design criteria for the aircraft. All were designed to be technically feasible in the year 2015. The next phase of the project divided the sixty students into nine design groups. Each group, with its own RFP, completed a Class 1 preliminary design of an HSCT. The nine configurations varied from conventional double deltas to variable geometry wings to a pivoting oblique wing design. The final phase of the project included a more detailed Class 2 sizing as well as performance and stability and control analysis. Cal Poly, San Luis Obispo presents nine unique solutions to the same problem: that of designing an economically viable, environmentally acceptable, safe and comfortable supersonic transport.

  12. Soliton interactions and Bäcklund transformation for a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili equation in fluid dynamics

    NASA Astrophysics Data System (ADS)

    Xiao, Zi-Jian; Tian, Bo; Sun, Yan

    2018-01-01

    In this paper, we investigate a (2+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili (mKP) equation in fluid dynamics. With the binary Bell-polynomial and an auxiliary function, bilinear forms for the equation are constructed. Based on the bilinear forms, multi-soliton solutions and Bell-polynomial-type Bäcklund transformation for such an equation are obtained through the symbolic computation. Soliton interactions are presented. Based on the graphic analysis, Parametric conditions for the existence of the shock waves, elevation solitons and depression solitons are given, and it is shown that under the condition of keeping the wave vectors invariable, the change of α(t) and β(t) can lead to the change of the solitonic velocities, but the shape of each soliton remains unchanged, where α(t) and β(t) are the variable coefficients in the equation. Oblique elastic interactions can exist between the (i) two shock waves, (ii) two elevation solitons, and (iii) elevation and depression solitons. However, oblique interactions between (i) shock waves and elevation solitons, (ii) shock waves and depression solitons are inelastic.

  13. Impact of Turbine Modulation on Variable-Cycle Engine Performance. Phase 4. Additional Hardware Design and Fabrication, Engine Modification, and Altitude Test. Part 3 B

    DTIC Science & Technology

    1974-12-01

    urbofan engine performance. An AiKesearch Model TFE731 -2 Turbofan Engine was modified to incorporate production-type variable-geometry hardware...reliability was shown for the variable- geometry components. The TFE731 , modified to include variable geometry, proved to be an inexpensive...Atm at a Met Thrust of 3300 LBF 929 85 Variable-Cycle Engine TFE731 Exhaust-Nozzle Performance 948 86 Analytical Model Comparisons, Aerodynamic

  14. Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Lebedev, S. V.; Niasse, N.

    A series of experiments has been conducted in order to investigate the azimuthal structures formed by the interactions of cylindrically converging plasma flows during the ablation phase of aluminium wire array Z pinch implosions. These experiments were carried out using the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. The main diagnostic used in this study was a two-colour, end-on, Mach-Zehnder imaging interferometer, sensitive to the axially integrated electron density of the plasma. The data collected in these experiments reveal the strongly collisional dynamics of the aluminium ablation streams. The structure of the flows is dominated by amore » dense network of oblique shock fronts, formed by supersonic collisions between adjacent ablation streams. An estimate for the range of the flow Mach number (M = 6.2-9.2) has been made based on an analysis of the observed shock geometry. Combining this measurement with previously published Thomson Scattering measurements of the plasma flow velocity by Harvey-Thompson et al.[Physics of Plasmas 19, 056303 (2012)] allowed us to place limits on the range of the ZT{sub e} of the plasma. The detailed and quantitative nature of the dataset lends itself well as a source for model validation and code verification exercises, as the exact shock geometry is sensitive to many of the plasma parameters. Comparison of electron density data produced through numerical modelling with the Gorgon 3D MHD code demonstrates that the code is able to reproduce the collisional dynamics observed in aluminium arrays reasonably well.« less

  15. Orbital Forcing driving climate variability on Tropical South Atlantic

    NASA Astrophysics Data System (ADS)

    Oliveira, A. S.; Baker, P. A.; Silva, C. G.; Dwyer, G. S.; Chiessi, C. M.; Rigsby, C. A.; Ferreira, F.

    2017-12-01

    Past research on climate response to orbital forcing in tropical South America has emphasized on high precession cycles influencing low latitude hydrologic cycles, and driving the meridional migration of Intertropical Convergence Zone (ITCZ).However, marine proxy records from the tropical Pacific Ocean showed a strong 41-ka periodicities in Pleistocene seawater temperature and productivity related to fluctuations in Earth's obliquity. It Indicates that the western Pacific ITCZ migration was influenced by combined precession and obliquity changes. To reconstruct different climate regimes over the continent and understand the orbital cycle forcing over Tropical South America climate, hydrological reconstruction have been undertaken on sediment cores located on the Brazilian continental slope, representing the past 1.6 million years. Core CDH 79 site is located on a 2345 m deep seamount on the northern Brazilian continental slope (00° 39.6853' N, 44° 20.7723' W), 320 km from modern coastline of the Maranhão Gulf. High-resolution XRF analyses of Fe, Ti, K and Ca are used to define the changes in precipitation and sedimentary input history of Tropical South America. The response of the hydrology cycle to orbital forcing was studied using spectral analysis.The 1600 ka records of dry/wet conditions presented here indicates that orbital time-scale climate change has been a dominant feature of tropical climate. We conclude that the observed oscillation reflects variability in the ITCZ activity associated with the Earth's tilt. The prevalence of the eccentricity and obliquity signals in continental hydrology proxies (Ti/Ca and Fe/K) as implicated in our precipitation records, highlights that these orbital forcings play an important role in tropics hydrologic cycles. Throughout the Quaternary abrupt shifts of tropical variability are temporally correlated with abrupt climate changes and atmospheric reorganization during Mid-Pleistocene Transition and Mid-Brunhes Events. Our findings suggets that over Late Quaternary, the N-S ITCZ movement is not only exclusively related to precessional forcing. The prevalence of the obliquity signal in both precipitation and weathering as implicated in our records, highlights that this orbital forcing exerts a significant control on global hydrological cycle.

  16. Robustness of the filamentation instability in arbitrarily oriented magnetic field: Full three dimensional calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A., E-mail: antoineclaude.bret@uclm.es

    2014-02-15

    The filamentation (Weibel) instability plays a key role in the formation of collisionless shocks which are thought to produce Gamma-Ray-Bursts and High-Energy-Cosmic-Rays in astrophysical environments. While it has been known for long that a flow-aligned magnetic field can completely quench the instability, it was recently proved in 2D that in the cold regime, such cancelation is possible if and only if the field is perfectly aligned. Here, this result is finally extended to a 3D geometry. Calculations are conducted for symmetric and asymmetric counter-streaming relativistic plasma shells. 2D results are retrieved in 3D: the instability can never be completely canceledmore » for an oblique magnetic field. In addition, the maximum growth-rate is always larger for wave vectors lying in the plan defined by the flow and the oblique field. On the one hand, this bears consequences on the orientation of the generated filaments. On the other hand, it certifies 2D simulations of the problem can be performed without missing the most unstable filamentation modes.« less

  17. Obliquity-paced climate change recorded in Antarctic debris-covered glaciers

    PubMed Central

    Mackay, Sean L.; Marchant, David R.

    2017-01-01

    The degree to which debris-covered glaciers record past environmental conditions is debated. Here we describe a novel palaeoclimate archive derived from the surface morphology and internal debris within cold-based debris-covered glaciers in Antarctica. Results show that subtle changes in mass balance impart major changes in the concentration of englacial debris and corresponding surface topography, and that over the past ∼220 ka, at least, the changes are related to obliquity-paced solar radiation, manifest as variations in total summer energy. Our findings emphasize solar radiation as a significant driver of mass balance changes in high-latitude mountain systems, and demonstrate that debris-covered glaciers are among the most sensitive recorders of obliquity-paced climate variability in interior Antarctica, in contrast to most other Antarctic archives that favour eccentricity-paced forcing over the same time period. Furthermore, our results open the possibility that similar-appearing debris-covered glaciers on Mars may likewise hold clues to environmental change. PMID:28186094

  18. Triassic–Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China)

    PubMed Central

    Sha, Jingeng; Olsen, Paul E.; Pan, Yanhong; Xu, Daoyi; Wang, Yaqiang; Zhang, Xiaolin; Yao, Xiaogang; Vajda, Vivi

    2015-01-01

    Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth’s geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic–Early Jurassic (∼198–202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth–Mars orbital resonance was in today’s 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data. PMID:25759439

  19. Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China).

    PubMed

    Sha, Jingeng; Olsen, Paul E; Pan, Yanhong; Xu, Daoyi; Wang, Yaqiang; Zhang, Xiaolin; Yao, Xiaogang; Vajda, Vivi

    2015-03-24

    Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth's geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic-Early Jurassic (∼198-202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth-Mars orbital resonance was in today's 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data.

  20. Geometry of an outcrop-scale duplex in Devonian flysch, Maine

    USGS Publications Warehouse

    Bradley, D.C.; Bradley, L.M.

    1994-01-01

    We describe an outcrop-scale duplex consisting of 211 exposed repetitions of a single bed. The duplex marks an early Acadian (Middle Devonian) oblique thrust zone in the Lower Devonian flysch of northern Maine. Detailed mapping at a scale of 1:8 has enabled us to measure accurately parameters such as horse length and thickness, ramp angles and displacements; we compare these and derivative values with those of published descriptions of duplexes, and with theoretical models. Shortening estimates based on line balancing are consistently smaller than two methods of area balancing, suggesting that layer-parallel shortening preceded thrusting. ?? 1994.

  1. Seafloor spreading on the Amsterdam-St. Paul hotspot plateau

    NASA Astrophysics Data System (ADS)

    Conder, James A.; Scheirer, Daniel S.; Forsyth, Donald W.

    2000-04-01

    The Amsterdam-St. Paul (ASP) platform on the intermediate rate Southeast Indian Ridge (SEIR) is the only oceanic hotspot plateau outside the Atlantic Ocean containing an active, mid-ocean ridge spreading axis. Because the ASP hotspot is small and remotely located, it has been relatively unstudied, and the ridge axis location in many places near the ASP plateau was previously unknown or ambiguous. We mapped the SEIR out to 1 Ma crust (Jaramillo anomaly) both on and near the ASP platform. We located the spreading center to within a few kilometers, based on side-scan sonar reflectivity. Recent off-platform magnetic anomalies and lineated abyssal hill topography are consistent with a simple spreading history. Off-platform full spreading rates increase from ˜63 km/Myr on segment H to the north of the platform to ˜65.5 km/Myr on segment K to the south. In contrast, inversions of seafloor magnetization based on uniform and variable thickness magnetic source layers reflect a complex on-platform tectonic history with ridge jumps, off-axis volcanism, and propagating rifts. On one section of the ASP plateau the spreading location has stabilized and is beginning to rift the plateau apart, generating symmetric magnetic anomalies and lineated topography for the last several hundred thousand years. The larger, more stable, spreading segments of the ASP platform are aligned with major volcanic edifices, suggesting that along-axis magma flow away from plume-fed centers is an important influence on spreading geometry. Many complex tectonic features observed on the ASP plateau, such as ridge jumps, en echelon, oblique spreading centers, and transforms oblique to the spreading direction, are comparable to features observed on Iceland. The similarities suggest that moderate crustal thickening at an intermediate rate spreading center may have similar effects to pronounced thickening at a slow rate spreading center.

  2. Himalayan Strain Accumulation 100 ka Timescales

    NASA Astrophysics Data System (ADS)

    Cannon, J. M.; Murphy, M. A.; Liu, Y.

    2015-12-01

    Crustal scale fault systems and tectonostratigraphic units in the Himalaya can be traced for 2500 km along strike. However regional studies have shown that there is variability in the location and rate of strain accumulation which appears to be driven by Main Himalayan Thrust (MHT) geometry and convergence obliquity. GPS illuminates the modern interseismic strain rate and the historical record of great earthquakes elucidates variations in strain accumulation over 103 years. To connect these patterns with the 106 year structural and thermochronometric geologic record we examine normalized river channel steepness (ksn), a proxy for rock uplift rate, which develops over 104 - 105 years. Here we present a ksn map of the Himalaya and compare it with bedrock geology, precipitation, the historic earthquake record, GPS, seismicity, and seismotectonic models. Our map shows significant along strike changes in the magnitude of channel steepness, the areal extent of swaths of high ksn channels, and their location with respect to the range front. Differences include the juxtaposition of two narrow (30 - 40 km) range parallel belts of high ksn in west Nepal and Bhutan coincident with MHT duplexes and belts of microseismcity, with a single broad (70 km) swath of high ksn and microseismicity in central and eastern Nepal. Separating west and central Nepal a band of low ksn crosses the range coincident with the West Nepal Fault (WNF) and the lowest rate of microseismicity in Nepal. To the west the orogen is obliquely convergent and has less high ksn channels, while the orthogonally convergent region to the east contains the highest concentration of oversteepened channels in the Himalaya supporting the idea that the WNF is a strain partitioning boundary. The syntaxes are characterized by locally high channel steepness surrounded by low to moderate ksn channels consistent with the hypothesis that rapid exhumation within the syntaxes is sustained by an influx of lower crust.

  3. Possible strain partitioning structure between the Kumano fore-arc basin and the slope of the Nankai Trough accretionary prism

    NASA Astrophysics Data System (ADS)

    Martin, Kylara M.; Gulick, Sean P. S.; Bangs, Nathan L. B.; Moore, Gregory F.; Ashi, Juichiro; Park, Jin-Oh; Kuramoto, Shin'ichi; Taira, Asahiko

    2010-05-01

    A 12 km wide, 56 km long, three-dimensional (3-D) seismic volume acquired over the Nankai Trough offshore the Kii Peninsula, Japan, images the accretionary prism, fore-arc basin, and subducting Philippine Sea Plate. We have analyzed an unusual, trench-parallel depression (a "notch") along the seaward edge of the fore-arc Kumano Basin, just landward of the megasplay fault system. This bathymetric feature varies along strike, from a single, steep-walled, ˜3.5 km wide notch in the northeast to a broader, ˜5 km wide zone with several shallower linear depressions in the southwest. Below the notch we found both vertical faults and faults which dip toward the central axis of the depression. Dipping faults appear to have normal offset, consistent with the extension required to form a bathymetric low. Some of these dipping faults may join the central vertical fault(s) at depth, creating apparent flower structures. Offset on the vertical faults is difficult to determine, but the along-strike geometry of these faults makes predominantly normal or thrust motion unlikely. We conclude, therefore, that the notch feature is the bathymetric expression of a transtensional fault system. By considering only the along-strike variability of the megasplay fault, we could not explain a transform feature at the scale of the notch. Strike-slip faulting at the seaward edge of fore-arc basins is also observed in Sumatra and is there attributed to strain partitioning due to oblique convergence. The wedge and décollement strength variations which control the location of the fore-arc basins may therefore play a role in the position where an along-strike component of strain is localized. While the obliquity of convergence in the Nankai Trough is comparatively small (˜15°), we believe it generated the Kumano Basin Edge Fault Zone, which has implications for interpreting local measured stress orientations and suggests potential locations for strain-partitioning-related deformation in other subduction zones.

  4. Kinematic Evolution of the North-Tehran Fault (NTF), Alborz Mountains, Iran

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Ballato, P.; Strecker, M. R.; Shahpasandzadeh, M.; Friedrich, A.; Tabatabaei, S. H.

    2007-12-01

    The ENE-to NW-striking NTF is an active frontal thrust that delimits the Alborz Mountain range to the south with an up to 2000 m topographic break with respect to the adjacent Tehran plain. Eocene rocks of the Alborz range are thrusted over Neogene and Quaternary sediments of the alluvial Tehran embayment. The fault consists of right- stepping segments and merges to the east with the active Mosha-Fasham strike-slip fault (MFF). The complex tectonic history, involving changes in the direction of SHmax, has resulted in a composite tectonic landscape with inherited topographic and fault-kinematic fingerprints along the NTF. We therefore used a combination of fault-kinematic measurements and geomorphic observations to unravel the temporal tectonic evolution of this fault. Presently, the NTF is virtually inactive, although the tectonically overprinted landforms reflect tectonic activity on longer time scales during the Quaternary. Being located adjacent north of the Tehran megacity, there is thus considerable interest to decipher its youngest tectonic evolution and to better understand the relation with other fault systems. Our fault kinematic study has revealed an early dextral kinematic history for the NTF. Dextral strike-slip and oblique reverse faulting took place during NW-oriented shortening. The overall fault-geometry of the NTF suggests that it has evolved in relation to dextral transpression along the MFF. This early kinematic regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the fault segments. Fault linkage between the semi-independent ENE-striking NTF-segments and NW-striking thrusts (Emamzadeh Davud Fault [EDF], Purkan Vardij Thrust [PVT], NTF-prolongation) point towards an evolution into a nascent transpressional duplex. In this scenario the NTF segments constitute lateral ramps and the NW-striking faults act as frontal ramps. Topographic residuals, as an expression of high-uplift zones, indicate that the central segment of the NTF, incorporating the EDF was most effective in accommodating oblique convergence during this time. However, subtle knickpoints in the longitudinal river profiles crossing the PVT may indicate a relatively recent transfer of deformation onto this block. The youngest manifestations of deformation along the NTF, however, are left-lateral and normal faulting. This youngest phase of activity is documented by numerous striated and rotated conglomeratic clasts, meter-scale fault gouge zones with shear-sense indicators of oblique normal faulting, and multiple colluvial wedges with drag phenomena. Rupture traces and filled extensional cracks reaching the surface also document the seismogenic nature of these features. Since recent left-lateral transtension is also known from neighboring faults, e.g., the eastern MFF, our observations suggest that this youngest phase of tectonic activity of the NTF is a regional phenomenon, rather than the result of locally-determined geometries.

  5. Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory

    PubMed Central

    Pratte, Michael S.; Park, Young Eun; Rademaker, Rosanne L.; Tong, Frank

    2016-01-01

    If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced “oblique effect”, with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. PMID:28004957

  6. Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory.

    PubMed

    Pratte, Michael S; Park, Young Eun; Rademaker, Rosanne L; Tong, Frank

    2017-01-01

    If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced "oblique effect," with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Studies Related to Computer-Assisted Instruction. Semi-Annual Progress Report on Contract Nonr-624(18) October 1, 1968 through March 31, 1969.

    ERIC Educational Resources Information Center

    Glaser, Robert

    A study of response latency in a drill-and-practice task showed that variability in latency measures could be reduced by the use of self-pacing procedures, but not by the detailed analysis of latency into separate components. Experiments carried out on instructional history variables in teaching a mirror image, oblique line discrimination, showed…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, D; Adams, J; MacDonald, S

    Purpose: In proton radiation therapy of posterior fossa tumors, to spare other sensitive structures, the preferred beam geometry results in placing the treatment field distal edge within or just beyond the brainstem, including in at least partially in the treatment volume. Concerns for brainstem toxicity are increased and a controversy exists as to weather the beam’s distal edge should be placed within the brainstem or beyond it, to avoid elevated linear energy transfer (LET) and relative biological effectiveness (RBE) within the brainstem. The dosimetric efficacy of these techniques was examined, accounting for LET- and dose-dependent variable RBE distributions. Methods: Threemore » treatment planning techniques were applied in six ependymoma cases: (a) three-field dose-sparing, with beams’ distal edge within the brainstem; (b) three-field LET-sparing, using same beam directions as (a) but extended field ranges beyond the brainstem; (c) two-posterior-oblique LET-sparing, with extended ranges as (b). Monte Carlo calculated dose, LET and RBE-weighted dose distributions were compared. Results: Lower LET values in the brainstem were accompanied by higher median dose: 53.7 Gy[RBE] and 54.3 Gy[RBE] for techniques (b) and (c) versus 52.1 Gy[RBE] for (a). Accounting for variable RBE, a 15% increase of the brainstem volume receiving at least 60 Gy[RBE] was observed for technique (c) versus (a). Maximum variable-RBE-weighted brainstem dose was comparable for all techniques. Conclusion: Extending the treatment beam range beyond the brainstem, significantly increased its volume receiving high dose radiation, even when accounting for the decreased LET values. The dosimetric benefits of techniques limiting the brainstem dose may outweigh the impact of LET reduction achieved through this technique, especially since clinical consequences of increased LET at the end of range have not been proven yet.« less

  9. On the Timing and Forcing Mechanisms of Late Pleistocene Glacial Terminations: Insights from a New High-Resolution Benthic Stable Oxygen Isotope Record of the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Lourens, L. J.; Konijnendijk, T.; Ziegler, M.

    2015-12-01

    We present the first long (~1.2 Ma) benthic oxygen isotope record from the eastern Mediterranean, based on ODP Sites 967 and 968, which clearly reflects the behavior of global climate on a glacial-interglacial scale. The age model for our record is based on tuning the elemental ratio of titanium versus aluminum (Ti/Al) against insolation. The Ti/Al record is dominated by the precession-related changes in northern African climate, i.e. monsoonal forcing, and hence largely independent of glacial-interglacial variability. We found the largest offset between our chronology and that of the widely applied, open ocean stacked record LR04 (Lisiecki and Raymo, 2005) for TVII (~624 ka), which occurred ~9 kyr earlier according to our estimates, though in agreement with the AICC2012 δDice chronology of EPICA Dome C (Bazin et al., 2013). Spectral cross-correlation analysis between our benthic δ18O record and 65°N summer insolation reveals significant amounts of power in the obliquity and precession range, with an average lag of 5.5±0.8 kyr for obliquity, and 6.0±1.0 kyr for precession. In addition, our results show that the obliquity-related time lag was smaller (3.0±3.3 kyr) prior to ~900 ka than after (5.7±1.1 kyr), suggesting that on average the glacial response time to obliquity forcing increased during the mid-Pleistocene transition, much later than assumed by Lisiecki and Raymo (2005). Finally, we found that almost all glacial terminations have a consistent phase relationship of ~45±45 degrees with respect to the precession and obliquity-driven increases in 65°N summer insolation, consistent with the general consensus that both obliquity and precession are important for deglaciation during the Late Pleistocene. Exceptions are glacial terminations TIIIb, T36 and potentially T32 (and TVII T24 and T34), which show this consistent phase relationship only with precession (only with obliquity). Our findings point towards an early (>1200 ka) onset of the Mid Pleistocene Transition. Vice versa, the timing of TVII, which can only be explained as a response to obliquity forcing, indicates that the transition lasted until at least after MIS 15.

  10. Analysis of Head Response to Torso Acceleration. Vol. I - Development of Performance Requirements.

    DOT National Transportation Integrated Search

    1987-11-01

    Performance requirements are developed which define the kinematic and kinetic response of the head for a seated subject exposed to frontal, lateral or oblique impact. Response is expressed in terms of variables which are readily measured in an anthro...

  11. A Multivariate Model of Achievement in Geometry

    ERIC Educational Resources Information Center

    Bailey, MarLynn; Taasoobshirazi, Gita; Carr, Martha

    2014-01-01

    Previous studies have shown that several key variables influence student achievement in geometry, but no research has been conducted to determine how these variables interact. A model of achievement in geometry was tested on a sample of 102 high school students. Structural equation modeling was used to test hypothesized relationships among…

  12. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a simplified, generic subduction zone similar to the northern Andes. The upper surface is initially defined to resemble the Andes, but is free to deform during the experiments. We consider two main model designs, one with and one without a volcanic arc (weak continental zone). A relatively high angle of convergence obliquity is predicted to favor strain partitioning, but preliminary model results show no strain partitioning for a uniform continental crustal strength with a friction angle of Φ = 15° . However, strain partitioning does occur when including a weak zone in the continental crust resulting from arc volcanic activity with Φ = 5° . This results in margin-parallel northeastward translation of a continental sliver at 3.2 cm/year. The presence of the sliver agrees well with observations of a continental sliver identified by GPS measurements in the Northern Volcanic Zone with a translation velocity of about 1 cm/year, though the GPS-derived velocity may not be representative of the long-term rate of translation depending on whether the observation period includes one or more seismic cycles. Regardless, the observed behavior is consistent with the observed earthquake focal mechanisms and GPS measurements, suggesting significant northeastward transport of Andean crust along the margin of the northern Andes.

  13. Specific loss power in superparamagnetic hyperthermia: nanofluid versus composite

    NASA Astrophysics Data System (ADS)

    Osaci, M.; Cacciola, M.

    2017-01-01

    Currently, the magnetic hyperthermia induced by nanoparticles is of great interest in biomedical applications. In the literature, we can find a lot of models for magnetic hyperthermia, but many of them do not give importance to a significant detail, such as the geometry of nanoparticle positions in the system. Usually, a nanofluid is treated by considering random positions of the nanoparticles, geometry that is actually characteristic to the composite nanoparticles. To assess the error which is frequently made, in this paper we propose a comparative analysis between the specific loss power (SLP) in case of a nanofluid and the SLP in case of a composite with magnetic nanoparticles. We are going to use a superparamagnetic hyperthermia model based on the improved model for calculating the Néel relaxation time in a magnetic field oblique to the nanoparticle magnetic anisotropy axes, and on the improved theoretical model LRT (linear response theory) for SLP. To generate the nanoparticle geometry in the system, we are going to apply a Monte Carlo method to a nanofluid, by minimising the interaction potentials in liquid medium and, for a composite environment, a method for generating random positions of the nanoparticles in a given volume.

  14. An Assemblable, Multi-Angle Fluorescence and Ellipsometric Microscope

    PubMed Central

    Nguyen, Victoria; Rizzo, John

    2016-01-01

    We introduce a multi-functional microscope for research laboratories that have significant cost and space limitations. The microscope pivots around the sample, operating in upright, inverted, side-on and oblique geometries. At these geometries it is able to perform bright-field, fluorescence and qualitative ellipsometric imaging. It is the first single instrument in the literature to be able to perform all of these functionalities. The system can be assembled by two undergraduate students from a provided manual in less than a day, from off-the-shelf and 3D printed components, which together cost approximately $16k at 2016 market prices. We include a highly specified assembly manual, a summary of design methodologies, and all associated 3D-printing files in hopes that the utility of the design outlives the current component market. This open design approach prepares readers to customize the instrument to specific needs and applications. We also discuss how to select household LEDs as low-cost light sources for fluorescence microscopy. We demonstrate the utility of the microscope in varied geometries and functionalities, with particular emphasis on studying hydrated, solid-supported lipid films and wet biological samples. PMID:27907008

  15. Three-Dimensional Mantle Flow Near an Oceanic Paleotransform Fault System: Geological Constraints From the Bogota Peninsula, New Caledonia

    NASA Astrophysics Data System (ADS)

    Chatzaras, V.; Kruckenberg, S. C.; Titus, S.; Tikoff, B.; Teyssier, C. P.; Drury, M. R.

    2016-12-01

    We provide geological constraints on mantle deformation across a system of two oceanic paleotransform faults exposed in the Bogota Peninsula area, New Caledonia. Mantle deformation occurred at depths corresponding to temperatures of 900 oC and is highly heterogeneous. The paleotransform faults consist of mylonitic shear zones ( 1 km wide), and are surrounded by broader areas in which rotation of both the shape fabric (foliation and lineation) and olivine crystallographic preferred orientation (CPO) takes place. Outside the plaeotransform faults, mantle flows oblique to the strike of the mylonitic zones and is characterized by lateral variations in the flow direction. To further constrain the kinematics and type of deformation, we determine the orientation of the crystallographic vorticity axes as an independent tool for constraining deformation geometry (e.g., simple shear, transpression, transtension). The observed mantle flow is associated to lateral variations in: 1) the geometry and degree of anisotropy of spinel shape fabric; 2) olivine CPO type; 3) amount of stretching; and 4) the orientation of the crystallographic vorticity axes. Upper mantle in the vicinity of oceanic transform faults may be characterized by complex, three-dimensional flow patterns and deformation geometries deviating from simple shear.

  16. Modelling the Deformation Front of a Fold-Thrust Belt: the Effect of an Upper Detachment Horizon

    NASA Astrophysics Data System (ADS)

    Burberry, C. M.; Koyi, H.; Nilfouroushan, F.; Cosgrove, J. W.

    2008-12-01

    Structures found at the deformation fronts of fold-thrust belts are variable in type, geometry and spatial organisation, as can be demonstrated from comparisons between structures in the Zagros Fold-Thrust Belt, Iran and the Sawtooth Range, Montana. A range of influencing factors has been suggested to account for this variation, including the mechanical properties and distribution of any detachment horizons within the cover rock succession. A series of analogue models was designed to test this hypothesis, under conditions scaled to represent the Sawtooth Range, Montana. A brittle sand pack, containing an upper ductile layer with variable geometry, was shortened above a ductile base and the evolution of the deformation front was monitored throughout the deformation using a high-accuracy laser scanner. In none of the experiments did the upper detachment horizon cover the entire model. In experiments where it pinched out perpendicular to the shortening direction, a triangle zone was formed when the deformation front reached the pinch out. This situation is analogous to the Teton Canyon region structures in the Sawtooth Range, Montana, where the Cretaceous Colorado Shale unit pinches out at the deformation front, favouring the development of a triangle zone in this region. When the pinch out was oblique to the shortening direction, a more complex series of structures was formed. However, when shortening stopped before the detachment pinch out was reached, the deformation front structures were foreland-propagating and no triangle zone was observed. This situation is analogous to foreland-propagating thrust structures developed at the deformation front in the Swift Dam region of the Sawtooth Range, Montana and to the development of fault-bend folds at the deformation front of the Zagros Fold-Thrust Belt, Iran. We suggest that the presence of a suitable intermediate detachment horizon within a sediment pile can be invoked as a valid explanation for the development of varied deformation front structures in fold-thrust belts. Specifically, the spatial extent of the upper detachment horizon with respect to the spatial extent of the deformed region is a key influence on the development of deformation front structures. However, we acknowledge that factors such as basement structure and variable sedimentation within the foreland basin may also be key influences on deformation front structures in other fold-thrust belts.

  17. Surface anatomy of the pulmonary fissures determined by high-resolution computed tomography.

    PubMed

    Heřmanová, Zuzana; Ctvrtlík, Filip; Heřman, Miroslav

    2012-10-01

    The aim of our study was to describe the surface anatomy of the interlobar fissures using volumetric thin-section high-resolution computed tomography (HRCT). Retrospective assessment of HRCT examinations of 250 patients was performed. The localization of the oblique fissures was marked at three sites: posteriorly at its most superior medial limit, laterally in the midaxillary line, and inferiorly at the junction of the middle and lateral thirds of the hemithorax; posteriorly and laterally, this was to the nearest rib whilst inferiorly the position was described in relation to the diaphragm or chest wall. The localization of the horizontal fissure was marked anteriorly in relation to the nearest rib (or costal cartilage) and posteriorly where it intersected with the oblique fissure (superior, middle, or inferior third). Shapes of the fissures and differences between inspiration and expiration were also documented. Descriptive statistics were used to report the most frequent positions. The most frequent localization of the oblique fissure on the left side was posteriorly at the fourth rib (45%), laterally at the sixth rib (52%), and inferiorly in the anterior third of the hemidiaphragm (60%). The right oblique fissure was located posteriorly at the fifth rib (50%), laterally at the sixth rib (50%), and inferiorly in the anterior third of the hemidiaphragm (71%). The horizontal fissure most commonly originated in the middle third of the oblique fissure (61%) and met the anterior thoracic wall at the level of the fourth rib (51%). The most frequent shape of the left oblique fissure was linear (78%), whereas S-shaped and linear configurations (28% each) were most frequent on the right. No difference was found in the surface markings of the fissures between inspiration and expiration in 90% of cases. The considerable individual variation in the position and shape of the interlobar fissures helps to explain the variable descriptions of their surface anatomy in the literature. Copyright © 2012 Wiley Periodicals, Inc.

  18. Usefulness of high-speed rotational coronary venous angiography during cardiac resynchronization therapy.

    PubMed

    Blendea, Dan; Mansour, Moussa; Shah, Ravi V; Chung, Jeffrey; Nandigam, Veena; Heist, E Kevin; Mela, Theofanie; Reddy, Vivek Y; Manzke, Robert; McPherson, Craig A; Ruskin, Jeremy N; Singh, Jagmeet P

    2007-11-15

    Standard coronary venous angiography (SCVA) provides a static, fixed projection of the coronary venous (CV) tree. High-speed rotational coronary venous angiography (RCVA) is a novel method of mapping CV anatomy using dynamic, multiangle visualization. The purpose of this study was to assess the value of RCVA during cardiac resynchronization therapy. Digitally acquired rotational CV angiograms from 49 patients (mean age 69 +/- 11 years) who underwent left ventricular lead implantation were analyzed. RCVA, which uses rapid isocentric rotation over a 110 degrees arc, acquiring 120 frames/angiogram, was compared with SCVA, defined as 2 static orthogonal views: right anterior oblique 45 degrees and left anterior oblique 45 degrees . RCVA demonstrated that the posterior vein-to-coronary sinus (CS) angle and the left marginal vein-to-CS angle were misclassified in 5 and 11 patients, respectively, using SCVA. RCVA identified a greater number of second-order tributaries with diameters >1.5 mm than SCVA. The CV branch selected for lead placement was initially identified in 100% of patients using RCVA but in only 74% of patients using SCVA. RCVA showed that the best angiographic view for visualizing the CS and its tributaries differed significantly among different areas of the CV tree and among patients. The area of the CV tree that showed less variability was the CS ostium, which had a fairly constant relation with the spine in shallow right anterior oblique and left anterior oblique projections. In conclusion, RCVA provided a more precise map of CV anatomy and the spatial relation of venous branches. It allowed the identification of fluoroscopic views that could facilitate cannulation of the CS. The final x-ray view displaying the appropriate CV branch for left ventricular lead implantation was often different from the conventional left anterior oblique and right anterior oblique views. RCVA identified the target branch for lead implantation more often than SCVA.

  19. Light refraction in sapphire plates with a variable angle of crystal optical axis to the surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetrov, V. N., E-mail: vasvetrov@mail.ru; Ignatenkov, B. A.

    2013-05-15

    The modification of sapphire by inhomogeneous plastic deformation makes it possible to obtain plates with a variable angle of inclination of the crystal optical axis to the plate surface. The refraction of light in this plate at perpendicular and oblique incidence of a parallel beam of rays is considered. The algorithm of calculating the refractive index of extraordinary ray and the birefringence is proposed.

  20. Distributed and localized horizontal tectonic deformation as inferred from drainage network geometry and topology: A case study from Lebanon

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Castelltort, Sébastien; Klinger, Yann

    2016-04-01

    Partitioning of horizontal deformation between localized and distributed modes in regions of oblique tectonic convergence is, in many cases, hard to quantify. As a case study, we consider the Dead Sea Fault System that changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh fault, is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates along the Yammouneh fault and strain partitioning in Lebanon still prevail. In the current work we use the geometry and topology of river basins together with numerical modeling to evaluate modes and rates of the horizontal deformation in Mount Lebanon that is associated with the Arabia-Sinai relative plate motion. We focus on river basins that drain Mount Lebanon to the Mediterranean and originate close to the Yammouneh fault. We quantify a systematic counterclockwise rotation of these basins and evaluate drainage area disequilibrium using an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. The analysis indicates a systematic spatial pattern whereby tributaries of the rotated basins appear to experience drainage area loss or gain with respect to channel length. A kinematic model that is informed by river basin geometry reveals that since the late Miocene, about a quarter of the relative plate motion parallel to the plate boundary has been distributed along a wide band of deformation to the west of the Yammouneh fault. Taken together with previous, shorter-term estimates, the model indicates little variation of slip rate along the Yammouneh fault since the late Miocene. Kinematic model results are compatible with late Miocene paleomagnetic rotations in western Mount Lebanon. A numerical landscape evolution experiment demonstrates the emergence of a similar χ pattern of drainage area disequilibrium in response to progressive distributed shear deformation of river basins with relatively minor drainage network reorganization.

  1. Interseismic Deformation due to Oblique India-Sunda Collision: Implications for the Arakan Sleeping Giant

    NASA Astrophysics Data System (ADS)

    Mallick, R.; Lindsey, E. O.; Feng, L.; Hubbard, J.; Hill, E.

    2017-12-01

    The northern extent of the collision of the Indian and Sunda plates occurs along the Arakan megathrust. This collision is oblique, and at least two large strike-slip faults, the Sagaing Fault and the Churachandpur-Mao Fault (CMF) accommodate part of this obliquity. The megathrust is conspicuous in its lack of notable interplate earthquakes in the instrumental catalogue; it has even been called aseismic by some authors and suggested not to accumulate any elastic strain. Nevertheless, geological evidence from the great 1762 Arakan earthquake suggests that the megathrust is capable of producing M 8 and possibly tsunamigenic events that can adversely affect the lives of many millions of people living in the region. We present for the first time a new dataset of GPS rates from the MIBB (Myanmar-India-Bangladesh-Bhutan) cGPS network (2011-present), which consists of region-wide east-west and north-south profiles. We use a Bayesian framework to explore the fault geometry (locking depth and fault dip) and relative plate motion that can reproduce the pattern of east-west convergence in both previously published and our own GPS data. We explore the individual contributions of the megathrust, CMF, Sagaing Fault, and block rotation to dextral shearing across the Indo-Burman ranges and further east. Our results suggest that the total convergence rate across the foldbelt is 14-18 mm/yr, while the total dextral shearing rate is 40 mm/yr. Rotation of the crustal sliver between the two major plates may explain some of this dextral motion, while reducing the strike-slip rates on the intervening faults. We show that given the current network geometry we are most sensitive to the location of maximum strain, i.e., the depth and distance from the trench below which the megathrust slides freely. Our results show that the megathrust is stably sliding below a depth of 30 km, but the seismogenic potential of the shallow megathrust and splay faults that possibly sole into the same system remain unresolved from purely geodetic data. Planned additional geodetic stations will help resolve the relative contribution of rotation and strike-slip faulting. Meanwhile, other forms of data such as paleoseismic observations may be necessary to determine how slip reaches the surface and better understand the seismic hazard.

  2. Imaging Basal Crevasses at the Grounding Line of Whillans Ice Stream, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jacobel, R. W.; Dawson, E. C.; Christianson, K.

    2015-12-01

    We acquired gridded ground-based radar data at the WIS grounding zone where the transition from limited- or no-slip conditions at the base of grounded ice to free-slip conditions beneath floating ice occurs across a region only a few kilometers wide. This transition is either an elastic-flexural transition from bedrock to hydrostatically-supported elevations (often tidally influenced), a transition from thicker to thinner ice over a flat bed, or some combination of these. In either case, the stress field of the ice changes as it flows across the grounding zone, often resulting in brittle deformation, which is manifested as basal crevassing at the ice-sheet base and sometimes as strand cracks at the surface. The position and morphology of these features reveal important information about the stress state across this transition where ice and ocean interact. Our surveys indicate a complex pattern of basal crevassing with many imaged in two or more profile segments as a linear feature at the bed, usually trending oblique to flow and often extending for several kilometers. Due to the wide beam pattern of our antennas, we image many of the crevasses from off-nadir reflections. Thus their arrival times are later than the primary basal reflection and segments of the crevasse appear "below" the bed, when in fact they are merely trending oblique to the profile. Often these returns have a reversed phase relative to the bed echo because the high dielectric contrast of seawater and a favorable geometry enable reflections with little loss (but a second phase reversal) from the ice-water interface near the crevasse base. In a few cases, these crevasse echoes from targets trending oblique to the profile appear to mimic the geometry of a sub-ice sediment "wedge", while in reality the radar never penetrates below the basal interface. Only about 25% of the crevasses appear to extend any significant distance upward into the basal ice, typically at low angles. A subset of these are doubly imaged by direct returns as well as by delayed reflections from the bright planar basal interface, giving curious mirror-like signatures. Our results indicate that basal crevasses offer a rich dataset for diagnosing basal stress state across ice-sheet grounding zones and that special care is needed when interpreting subglacial returns in radar data.

  3. Variable geometry Darrieus wind machine

    NASA Astrophysics Data System (ADS)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  4. Analysis of Head Response to Torso Acceleration. Vol. II - Description of Data Retrieval, Analysis and Display Software.

    DOT National Transportation Integrated Search

    1987-11-01

    Performance requirements are developed which define the kinematic and kinetic response of the head for a seated subject exposed to frontal, lateral or oblique impact. Response is expressed in terms of variables which are readily measured in an anthro...

  5. Newton Algorithms for Analytic Rotation: An Implicit Function Approach

    ERIC Educational Resources Information Center

    Boik, Robert J.

    2008-01-01

    In this paper implicit function-based parameterizations for orthogonal and oblique rotation matrices are proposed. The parameterizations are used to construct Newton algorithms for minimizing differentiable rotation criteria applied to "m" factors and "p" variables. The speed of the new algorithms is compared to that of existing algorithms and to…

  6. Approximating lens power.

    PubMed

    Kaye, Stephen B

    2009-04-01

    To provide a scalar measure of refractive error, based on geometric lens power through principal, orthogonal and oblique meridians, that is not limited to the paraxial and sag height approximations. A function is derived to model sections through the principal meridian of a lens, followed by rotation of the section through orthogonal and oblique meridians. Average focal length is determined using the definition for the average of a function. Average univariate power in the principal meridian (including spherical aberration), can be computed from the average of a function over the angle of incidence as determined by the parameters of the given lens, or adequately computed from an integrated series function. Average power through orthogonal and oblique meridians, can be similarly determined using the derived formulae. The widely used computation for measuring refractive error, the spherical equivalent, introduces non-constant approximations, leading to a systematic bias. The equations proposed provide a good univariate representation of average lens power and are not subject to a systematic bias. They are particularly useful for the analysis of aggregate data, correlating with biological treatment variables and for developing analyses, which require a scalar equivalent representation of refractive power.

  7. Preliminary Design of the Low Speed Propulsion Air Intake of the LAPCAT-MR2 Aircraft

    NASA Astrophysics Data System (ADS)

    Meerts, C.; Steelant, J.; Hendrick, P.

    2011-08-01

    A supersonic air intake has been designed for the low speed propulsion system of the LAPCAT-MR2 aircraft. Development has been based on the XB-70 aircraft air intake which achieves extremely high performances over a wide operation range through the combined use of variable geometry and porous wall suction for boundary layer control. Design of the LAPCAT-MR2 intake has been operated through CFD simulations using DLR TAU-Code (perfect gas model - Menter SST turbulence model). First, a new boundary condition has been validated into the DLR TAU-Code (perfect gas model) for porous wall suction modelling. Standard test cases have shown surprisingly good agreement with both theoretical predictions and experimental results. Based upon this validation, XB-70 air intake performances have been assessed through CFD simulations over the subsonic, transonic and supersonic operation regions and compared to available flight data. A new simulation strategy was deployed avoiding numerical instabilities when initiating the flow in both transonic and supersonic operation modes. First, the flow must be initiated with a far field Mach number higher than the target flight Mach number. Additionally, the inlet backpressure may only be increased to its target value once the oblique shock pattern downstream the intake compression ramps is converged. Simulations using that strategy have shown excellent agreement with in-flight measurements for both total pressure recovery ratio and variable geometry schedule prediction. The demarcation between stable and unstable operation could be well reproduced. Finally, a modified version of the XB-70 air intake has been integrated in the elliptical intake on the LAPCAT vehicle. Operation of this intake in the LAPCAT-MR2 environment is under evaluation using the same simulation strategy as the one developed for the XB-70. Performances are assessed at several key operation points to assess viability of this design. This information will allow in a next phase to better quantify the operation of the aerojet engines from take-off till the switch-over flight Mach number for the dual mode ramjet.

  8. P-wave velocity structure offshore central Sumatra: implications for compressional and strike-slip faulting

    NASA Astrophysics Data System (ADS)

    Karplus, M.; Henstock, T.; McNeill, L. C.; Vermeesch, P. M. T.; Barton, P. J.

    2014-12-01

    The Sunda subduction zone features significant along-strike structural variability including changes in accretionary prism and forearc morphology. Some of these changes have been linked to changes in megathrust faulting styles, and some have been linked to other thrust and strike-slip fault systems across this obliquely convergent margin (~54-58 mm/yr convergence rate, 40-45 mm/yr subduction rate). We examine these structural changes in detail across central Sumatra, from Siberut to Nias Island, offshore Indonesia. In this area the Investigator Fracture Zone and the Wharton Fossil Ridge, features with significant topography, are being subducted, which may affect sediment thickness variation and margin morphology. We present new seismic refraction P-wave velocity models using marine seismic data collected during Sonne cruise SO198 in 2008. The experiment geometry consisted of 57 ocean bottom seismometers, 23 land seismometers, and over 10,000 air gun shots recorded along ~1750 km of profiles. About 130,000 P-wave first arrival refractions were picked, and the picks were inverted using FAST (First Arrivals Refraction Tomography) 3-D to give a velocity model, best-resolved in the top 25 km. Moho depths, crustal composition, prism geometry, slab dip, and upper and lower plate structures provide insight into the past and present tectonic processes at this plate boundary. We specifically examine the relationships between velocity structure and faulting locations/ styles. These observations have implications for strain-partitioning along the boundary. The Mentawai Fault, located west of the forearc basin in parts of Central Sumatra, has been interpreted variably as a backthrust, strike-slip, and normal fault. We integrate existing data to evaluate these hypotheses. Regional megathrust earthquake ruptures indicate plate boundary segmentation in our study area. The offshore forearc west of Siberut is almost aseismic, reflecting the locked state of the plate interface, which last ruptured in 1797. The weakly-coupled Batu segment experiences sporadic clusters of events near the forearc slope break. The Nias segment in the north ruptured in the 2005 M8.7 earthquake. We compare P-wave velocity structure to the earthquake data to examine potential links between lithospheric structure and seismogenesis.

  9. A Spreadsheet for the Mixing of a Row of Jets with a Confined Crossflow

    NASA Technical Reports Server (NTRS)

    Holderman, J. D.; Smith, T. D.; Clisset, J. R.; Lear, W. E.

    2005-01-01

    An interactive computer code, written with a readily available software program, Microsoft Excel (Microsoft Corporation, Redmond, WA) is presented which displays 3 D oblique plots of a conserved scalar distribution downstream of jets mixing with a confined crossflow, for a single row, double rows, or opposed rows of jets with or without flow area convergence and/or a non-uniform crossflow scalar distribution. This project used a previously developed empirical model of jets mixing in a confined crossflow to create an Microsoft Excel spreadsheet that can output the profiles of a conserved scalar for jets injected into a confined crossflow given several input variables. The program uses multiple spreadsheets in a single Microsoft Excel notebook to carry out the modeling. The first sheet contains the main program, controls for the type of problem to be solved, and convergence criteria. The first sheet also provides for input of the specific geometry and flow conditions. The second sheet presents the results calculated with this routine to show the effects on the mixing of varying flow and geometric parameters. Comparisons are also made between results from the version of the empirical correlations implemented in the spreadsheet and the versions originally written in Applesoft BASIC (Apple Computer, Cupertino, CA) in the 1980's.

  10. A Spreadsheet for the Mixing of a Row of Jets with a Confined Crossflow. Supplement

    NASA Technical Reports Server (NTRS)

    Holderman, J. D.; Smith, T. D.; Clisset, J. R.; Lear, W. E.

    2005-01-01

    An interactive computer code, written with a readily available software program, Microsoft Excel (Microsoft Corporation, Redmond, WA) is presented which displays 3 D oblique plots of a conserved scalar distribution downstream of jets mixing with a confined crossflow, for a single row, double rows, or opposed rows of jets with or without flow area convergence and/or a non-uniform crossflow scalar distribution. This project used a previously developed empirical model of jets mixing in a confined crossflow to create an Microsoft Excel spreadsheet that can output the profiles of a conserved scalar for jets injected into a confined crossflow given several input variables. The program uses multiple spreadsheets in a single Microsoft Excel notebook to carry out the modeling. The first sheet contains the main program, controls for the type of problem to be solved, and convergence criteria. The first sheet also provides for input of the specific geometry and flow conditions. The second sheet presents the results calculated with this routine to show the effects on the mixing of varying flow and geometric parameters. Comparisons are also made between results from the version of the empirical correlations implemented in the spreadsheet and the versions originally written in Applesoft BASIC (Apple Computer, Cupertino, CA) in the 1980's.

  11. Aerodynamic analysis of three advanced configurations using the TranAir full-potential code

    NASA Technical Reports Server (NTRS)

    Madson, M. D.; Carmichael, R. L.; Mendoza, J. P.

    1989-01-01

    Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.

  12. Digital modeling of end-mill cutting tools for FEM applications from the active cutting contour

    NASA Astrophysics Data System (ADS)

    Salguero, Jorge; Marcos, M.; Batista, M.; Gómez, A.; Mayuet, P.; Bienvenido, R.

    2012-04-01

    A very current technique in the research field of machining by material removal is the use of simulations using the Finite Element Method (FEM). Nevertheless, and although is widely used in processes that allows approximations to orthogonal cutting, such as shaping, is scarcely used in more complexes processes, such as milling. This fact is due principally to the complex geometry of the cutting tools in these processes, and the need to realize the studi es in an oblique cutting configuration. This paper shows a methodology for the geometrical characterization of commercial endmill cutting tools, by the extraction of the cutting tool contour, making use of optical metrology, and using this geometry to model the active cutting zone with a 3D CAD software. This model is easily exportable to different CAD formats, such as IGES or STEP, and importable from FEM software, where is possible to study the behavior in service of the same ones.

  13. Basic Research Investigations into Multimode Laser and EM Launchers for Affordable Rapid Access to Space (Volumes 1 and 2)

    DTIC Science & Technology

    2010-08-31

    not defined. Figure 5.9: Run 10-Schlieren image with only the laser-induced air-breakdown glow visible. (M=8.77, T∞=68.7 K , P∞=0.15 kPa...Run #13-Laser induced blast wave interaction with oblique shock. (M-5.95, T∞=263.7 K , P∞=5.62 kPa, Ep=196±20 J) ................ Error! Bookmark not...the air-breakdown geometry. (M-5.95, T∞=262.3 K , P∞=5.16 kPa, Ep=176±18 J)Error! Bookmark not defined. Figure 5.13: Run#16 - Laser induced blast

  14. Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models.

    PubMed

    Keyvanloo, A; Burke, B; Warkentin, B; Tadic, T; Rathee, S; Kirkby, C; Santos, D M; Fallone, B G

    2012-10-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient skin dose. To accurately quantify the magnitude of changes in skin dose, the authors use Monte Carlo calculations that incorporate realistic 3D magnetic field models of longitudinal and transverse linac-MR systems. Finite element method (FEM) is used to generate complete 3D magnetic field maps for 0.56 T longitudinal and transverse linac-MR magnet assemblies, as well as for representative 0.5 and 1.0 T Helmholtz MRI systems. EGSnrc simulations implementing these 3D magnetic fields are performed. The geometry for the BEAMnrc simulations incorporates the Varian 600C 6 MV linac, magnet poles, the yoke, and the magnetic shields of the linac-MRIs. Resulting phase-space files are used to calculate the central axis percent depth-doses in a water phantom and 2D skin dose distributions for 70 μm entrance and exit layers using DOSXYZnrc. For comparison, skin doses are also calculated in the absence of magnetic field, and using a 1D magnetic field with an unrealistically large fringe field. The effects of photon field size, air gap (longitudinal configuration), and angle of obliquity (transverse configuration) are also investigated. Realistic modeling of the 3D magnetic fields shows that fringe fields decay rapidly and have a very small magnitude at the linac head. As a result, longitudinal linac-MR systems mostly confine contaminant electrons that are generated in the air gap and have an insignificant effect on electrons produced further upstream. The increase in the skin dose for the longitudinal configuration compared to the zero B-field case varies from ∼1% to ∼14% for air gaps of 5-31 cm, respectively. (All dose changes are reported as a % of D(max).) The increase is also field-size dependent, ranging from ∼3% at 20 × 20 cm(2) to ∼11% at 5 × 5 cm(2). The small changes in skin dose are in contrast to significant increases that are calculated for the unrealistic 1D magnetic field. For the transverse configuration, the entrance skin dose is equal or smaller than that of the zero B-field case for perpendicular beams. For a 10 × 10 cm(2) oblique beam the transverse magnetic field decreases the entry skin dose for oblique angles less than ±20° and increases it by no more than 10% for larger angles up to ±45°. The exit skin dose is increased by 42% for a 10 × 10 cm(2) perpendicular beam, but appreciably drops and approaches the zero B-field case for large oblique angles of incidence. For longitudinal linac-MR systems only a small increase in the entrance skin dose is predicted, due to the rapid decay of the realistic magnetic fringe fields. For transverse linac-MR systems, changes to the entrance skin dose are small for most scenarios. For the same geometry, on the exit side a fairly large increase is observed for perpendicular beams, but significantly drops for large oblique angles of incidence. The observed effects on skin dose are not expected to limit the application of linac-MR systems in either the longitudinal or transverse configuration.

  15. The BANANA project. V. Misaligned and precessing stellar rotation axes in CV Velorum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Simon; Winn, Joshua N.; Triaud, Amaury

    As part of the Binaries Are Not Always Neatly Aligned project (BANANA), we have found that the eclipsing binary CV Velorum has misaligned rotation axes. Based on our analysis of the Rossiter-McLaughlin effect, we find sky-projected spin-orbit angles of β{sub p} = –52° ± 6° and β{sub s} = 3° ± 7° for the primary and secondary stars (B2.5V + B2.5V, P = 6.9 days). We combine this information with several measurements of changing projected stellar rotation speeds (vsin i {sub *}) over the last 30 yr, leading to a model in which the primary star's obliquity is ≈65°, andmore » its spin axis precesses around the total angular momentum vector with a period of about 140 yr. The geometry of the secondary star is less clear, although a significant obliquity is also implicated by the observed time variations in the vsin i {sub *}. By integrating the secular tidal evolution equations backward in time, we find that the system could have evolved from a state of even stronger misalignment similar to DI Herculis, a younger but otherwise comparable binary.« less

  16. Static Thrust and Vectoring Performance of a Spherical Convergent Flap Nozzle with a Nonrectangular Divergent Duct

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1998-01-01

    The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.

  17. In-Street Wind Direction Variability in the Vicinity of a Busy Intersection in Central London

    NASA Astrophysics Data System (ADS)

    Balogun, Ahmed A.; Tomlin, Alison S.; Wood, Curtis R.; Barlow, Janet F.; Belcher, Stephen E.; Smalley, Robert J.; Lingard, Justin J. N.; Arnold, Sam J.; Dobre, Adrian; Robins, Alan G.; Martin, Damien; Shallcross, Dudley E.

    2010-09-01

    We present results from fast-response wind measurements within and above a busy intersection between two street canyons (Marylebone Road and Gloucester Place) in Westminster, London taken as part of the DAPPLE (Dispersion of Air Pollution and Penetration into the Local Environment; www.dapple.org.uk ) 2007 field campaign. The data reported here were collected using ultrasonic anemometers on the roof-top of a building adjacent to the intersection and at two heights on a pair of lamp-posts on opposite sides of the intersection. Site characteristics, data analysis and the variation of intersection flow with the above-roof wind direction ( θ ref ) are discussed. Evidence of both flow channelling and recirculation was identified within the canyon, only a few metres from the intersection for along-street and across-street roof-top winds respectively. Results also indicate that for oblique roof-top flows, the intersection flow is a complex combination of bifurcated channelled flows, recirculation and corner vortices. Asymmetries in local building geometry around the intersection and small changes in the background wind direction (changes in 15- min mean θ ref of 5°-10°) were also observed to have profound influences on the behaviour of intersection flow patterns. Consequently, short time-scale variability in the background flow direction can lead to highly scattered in-street mean flow angles masking the true multi-modal features of the flow and thus further complicating modelling challenges.

  18. Do BRDF effects dominate seasonal changes in tower-based remote sensing imagery?

    NASA Astrophysics Data System (ADS)

    Nagol, J. R.; Morton, D. C.; Rubio, J.; Cook, B. D.; Rishmawi, K.

    2014-12-01

    In situ remote sensing complements data from airborne and space-based sensors, in particular for intensive study sites where optical imagery can be paired with detailed ground and tower measurements. The characteristics of tower-mounted imaging systems are quite different from the nadir viewing geometry of other remote sensing platforms. In particular, tower-mounted systems are quite sensitive to artifacts of seasonal and diurnal sun angle variations. Most systems are oriented in a fixed north or south direction (depending on latitude), placing them in the principal plane at solar noon. The strength of the BRDF (Bidirectional Reflectance Distribution Function) effect is strongest for images acquired at that time. Phenological metrics derived from tower based oblique angle imaging systems are particularly prone to BRDF effects, as shadowing within and between tree crowns varies seasonally. For sites in the northern hemisphere, the fraction of sunlit and shaded vegetation declines following the June solstice to leaf senescence in September. Correcting tower-based remote sensing imagery for artifacts of BRDF is critical to isolate real changes in canopy phenology and reflectance. Here, we used airborne lidar data from NASA Goddard's Lidar, Hyperspectral, and Thermal Airborne Imager (G-LiHT) to develop a 3D forest scene for Harvard Forest in the Discrete Anisotrophic Radiative Transfer (DART) model. Our objective was to model the contribution of changes in shadowing and illumination to observations of changes in greenness from the Phenocam image time series at the Harvard Forest site. Diurnal variability in canopy greenness from the Phenocam time series provides an independent evaluation of BRDF effects from changes in illumination and sun-sensor geometries. The overall goal of this work is to develop a look-up table solution to correct major components of BRDF for tower-mounted imaging systems such as Phenocam, based on characteristics of the forest structure (forest height, canopy rugosity, fractional cover, and composition) and viewing geometry of the sensor. Given the sensitivity of tower-based systems to BRDF effects, efforts to correct artifacts of BRDF in phenology time series is critical to isolate seasonal changes in vegetation reflectance.

  19. Insights into the Fault Geometry and Rupture History of the 2016 MW 7.8 Kaikoura, New Zealand, Earthquake

    NASA Astrophysics Data System (ADS)

    Adams, M.; Ji, C.

    2017-12-01

    The November 14th 2016 MW 7.8 Kaikoura, New Zealand earthquake occurred along the east coast of the northern part of the South Island. The local tectonic setting is complicated. The central South Island is dominated by oblique continental convergence, whereas the southern part of this island experiences eastward subduction of the Australian plate. Available information (e.g., Hamling et al., 2017; Bradley et al., 2017) indicate that this earthquake involved multiple fault segments of the Marlborough fault system (MFS) as the rupture propagated northwards for more than 150 km. Additional slip might also occur on the subduction interface of the Pacific plate under the Australian plate, beneath the MFS. However, the exact number of involved fault segments as well as the temporal co-seismic rupture sequence has not been fully determined with geodetic and geological observations. Knowledge of the kinematics of complex fault interactions has important implications for our understanding of global seismic hazards, particularly to relatively unmodeled multisegment ruptures. Understanding the Kaikoura earthquake will provide insight into how one incorporates multi-fault ruptures in seismic-hazard models. We propose to apply a multiple double-couple inversion to determine the fault geometry and spatiotemporal rupture history using teleseismic and strong motion waveforms, before constraining the detailed slip history using both seismic and geodetic data. The Kaikoura earthquake will be approximated as the summation of multiple subevents—each represented as a double-couple point source, characterized by i) fault geometry (strike, dip and rake), ii) seismic moment, iii) centroid time, iv) half-duration and v) location (latitude, longitude and depth), a total of nine variables. We progressively increase the number of point sources until the additional source cannot produce significant improvement to the observations. Our preliminary results using only teleseismic data indicate that, broadly speaking, the sequence of fault planes dips towards the northwest and the motion of slip is largely to the northeast. Sequence and timing of the rupturing faults is still to be determined.

  20. A comparison of transient vehicle performance using a fixed geometry, wastegated turbocharger and a variable geometry turbocharger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, R.R.; Gall, J.M.

    1986-01-01

    The use of an exhaust-driven boosting device can significantly improve the performance of a vehicle using a small displacement engine. One of the concerns relative to the performance of vehicles using these devices is ''turbo lag,'' or the period of time during which no boost is generated. This paper presents the results of designed experiments comparing the performance of a fixed geometry, wastegated turbocharger to a variable geometry turbocharger incorporating a low-loss bearing system. In addition, experimental tests are presented for the naturally aspirated engine in the same vehicle. The results of the experiments show improvements with the use ofmore » pressure boosting and that there are signifcant differences in the boosting devices tested; specifically, the use of a variable geometry turbocharger demonstrates significant reduction in the length of time required to reach boost and reduced acceleration times for the tests conducted.« less

  1. Effects of volitional spine stabilization on lifting task in recurrent low back pain population.

    PubMed

    Haddas, Ram; Yang, James; Lieberman, Isador

    2016-09-01

    To examine the influence of volitional preemptive abdominal contraction (VPAC) and recurrent low back pain (rLBP) on trunk mechanics and neuromuscular control during a symmetric lifting task. A 2 × 2 crossover mixed design was used to examine the effects of VPAC and group. Thirty-seven healthy individuals and 32 rLBP individuals performed symmetric box lifting trials with and without VPAC to a 1-m height table 3D trunk, pelvis, and hip joint angle and electromyographic magnitude variables were obtained. Selected variables were analyzed using ANOVA. The VPAC induced differences in joint kinematics and muscle activity in rLBP and healthy subjects during symmetric lifting. A significant two-way interaction effect was observed for the semitendinosus activity. The VPAC increased external oblique muscle activity, reduced erector spinae and multifidus muscles activity, and induced greater trunk flexion angle, greater trunk side flexion angle, and greater hip flexion angle, and decreased pelvis obliquity angle in both groups. In addition, the rLBP subjects presented with a reduced external oblique and gluteus maximus muscle activity, greater erector spinae and multifidus muscles activity, and greater pelvis posterior tilt angle. Our results provide evidence that a VPAC strategy performed during symmetric lifting may potentially reduce exposure to biomechanical factors that can contribute to lumbar spine injury. The hamstring muscles may play an important role in achieving pelvic balance during the lifting maneuver. Incorporating the VPAC during dynamic stressful activities appears to help improve sensorimotor control and facilitate positioning of the lower extremities and the pelvis, while protecting the lumbar spine.

  2. Cenozoic oblique collision of South American and Caribbean plates: New evidence in the Coastal Cordillera of Venezuela and Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speed, R.C.; Russo, R.M.; Foland, K.A.

    The hinterland of the Caribbean Mts. orogen in Trinidad and Venezuela contains schist and gneiss whole protoliths are wholly or partly of continental provenance. The hinterland lies between the foreland thrust belt and terranes. The terranes are alien to continental South America (SA) and may have proto-Caribbean or Caribbean plate origins. The hinterland rocks were widely thought to come from sediments and granitoids of Mesozoic protolithic ages and to be of Cretaceous metamorphic age. Such rocks are now know to be of at least two or more types, as follows: (1) low grade, protoliths of pre-Mesozoic basement and shelfal covermore » of uncertain age range, inboard locus, Oligocene to mid-Miocene metamorphic ages younging eastward (Caracas, Paria, and Northern Range belts), and (2) higher grade including high P/T, varies protoliths of uncertain age range, Cretaceous and ( )early Paleogene metamorphic ages (Tacagua, Araya, Margarita). The geometry, protoliths, structures, and metamorphic ages of type 1 parautochthoneity and an origin as a thickened wedge of crust-cored passive margin cover. The wedge grew by accretion between about 35 and 20 Ma during oblique transport toward the foreland. The diachroneity of metamorphism implies, as does the timing of foreland deformation, that the wedge evolved in a right-oblique collision between northern SA and terranes moving wholly or partly with the Caribbean plate since the Eocene. Type 2 rocks probably came with the terranes and are products of convergent zone tectonics, either in the proto-Caribbean plate. The hinterland boundaries are brittle thrusts that are out of sequence and imply progressive contraction from mid-Cenozoic to the present.« less

  3. Fault geometries in basement-induced wrench faulting under different initial stress states

    NASA Astrophysics Data System (ADS)

    Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.

    Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.

  4. Femoral articular shape and geometry. A three-dimensional computerized analysis of the knee.

    PubMed

    Siu, D; Rudan, J; Wevers, H W; Griffiths, P

    1996-02-01

    An average, three-dimensional anatomic shape and geometry of the distal femur were generated from x-ray computed tomography data of five fresh asymptomatic cadaver knees using AutoCAD (AutoDesk, Sausalito, CA), a computer-aided design and drafting software. Each femur model was graphically repositioned to a standardized orientation using a series of alignment templates and scaled to a nominal size of 85 mm in mediolateral and 73 mm in anteroposterior dimensions. An average generic shape of the distal femur was synthesized by combining these pseudosolid models and reslicing the composite structure at different elevations using clipping and smoothing techniques in interactive computer graphics. The resulting distal femoral geometry was imported into a computer-aided manufacturing system, and anatomic prototypes of the distal femur were produced. Quantitative geometric analyses of the generic femur in the coronal and transverse planes revealed definite condylar camber (3 degrees-6 degrees) and toe-in (8 degrees-10 degrees) with an oblique patellofemoral groove (15 degrees) with respect to the mechanical axis of the femur. In the sagittal plane, each condyle could be approximated by three concatenated circular arcs (anterior, distal, and posterior) with slope continuity and a single arc for the patellofemoral groove. The results of this study may have important implications in future femoral prosthesis design and clinical applications.

  5. Conceptual/preliminary design study of subsonic v/stol and stovl aircraft derivatives of the S-3A

    NASA Technical Reports Server (NTRS)

    Kidwell, G. H., Jr.

    1981-01-01

    A computerized aircraft synthesis program was used to examine the feasibility and capability of a V/STOL aircraft based on the Navy S-3A aircraft. Two major airframe modifications are considered: replacement of the wing, and substitution of deflected thrust turbofan engines similar to the Pegasus engine. Three planform configurations for the all composite wing were investigated: an unconstrained span design, a design with the span constrained to 64 feet, and an unconstrained span oblique wing design. Each design was optimized using the same design variables, and performance and control analyses were performed. The oblique wing configuration was found to have the greatest potential in this application. The mission performance of these V/STOL aircraft compares favorably with that of the CTOL S-3A.

  6. Obliquity Variability of a Rapidly Rotating Early Venus and of the Potentially Habitable Exoplanets Kepler-62e and Kepler-62f

    NASA Astrophysics Data System (ADS)

    Lissauer, J. J.; Barnes, J. W.; Quarles, B.; Chambers, J.

    2017-12-01

    Venus currently rotates slowly, with its spin controlled by solid-body and atmospheric thermal tides. However, conditions may have been far different and more amenable to life 4 billion years ago, when the Sun was fainter and most of the carbon within Venus could have been in solid form, allowing for a low-mass atmosphere. Among the best candidates for habitability among known exoplanets are two planets within the optimistic habitable zone of their host star, Kepler-62 that are about 1.5 times the radius of Earth. We use numerical integrations to investigate how the obliquity would have varied on timescales as large as 1 Gyr for a hypothetical rapidly rotating Early Venus and for these two super-Earth size exoplanets.

  7. Orbitally-paced variations of water availability in the SE Asian Monsoon region following the Miocene Climate Transition

    NASA Astrophysics Data System (ADS)

    Heitmann, Emma O.; Ji, Shunchuan; Nie, Junsheng; Breecker, Daniel O.

    2017-09-01

    Middle Miocene Earth had several boundary conditions similar to those predicted for future Earth including similar atmospheric pCO2 and substantial Antarctic ice cover but no northern hemisphere ice sheets. We describe a 12 m outcrop of the terrestrial Yanwan Section in the Tianshui Basin, Gansu, China, following the Miocene Climate Transition (13.9-13.7 Ma). It consists of ∼25 cm thick CaCO3-cemented horizons that overprint siltstones every ∼1 m. We suggest that stacked soils developed in siltstones under a seasonal climate with a fluctuating water table, evidenced by roots, clay films, mottling, presence of CaCO3 nodules, and stacked carbonate nodule δ13 C and δ18 O profiles that mimic modern soils. We suggest that the CaCO3-cemented horizons are capillary-fringe carbonates that formed in an arid climate with a steady water table and high potential evapotranspiration rates (PET), evidenced by sharp upper and basal contacts, micrite, sparite, and root-pore cements. The CaCO3 of the cemented horizons and the carbonate nodules have similar mean δ18 O and δ13 C values but the cements have significantly smaller variance in δ13 C and δ18 O values and a different δ18 O versus δ13 C slope, supporting the conclusion that these carbonates are from different populations. The magneto-stratigraphic age model indicates obliquity pacing of the arid conditions required to form the CaCO3-cemented horizons suggesting an orbital control on water availability. We suggest two possible drivers for the obliquity pacing of arid conditions: 1) variability in the cross-equatorial pressure gradient that controls summer monsoon (ASM) strength and is influenced by obliquity-paced variations of Antarctic ice volume and 2) variability in Western Pacific Ocean-East Asian continent pressure gradient controlled by the 25-45°N meridional insolation gradient. We also suggest that variations in aridity were influenced by variations in PET and sensible heating of the regional land surface which are both influenced by precession-controlled 35°N summer insolation. We then use orbital configurations to predict lithology. Coincidence of obliquity minima (strong ASM) and 35°N summer insolation maxima (strong ASM) drives strong ASM and high PET, resulting in soil formation in an environment with relatively large seasonal changes in water availability. Coincidence of obliquity maxima (weak ASM) and 35°N summer insolation maxima (strong ASM) moderates the ASM, results in high PET, and thus drives overprinting of soils by capillary fringe carbonates above a deepened and relatively stable water table. Coincidence of obliquity and insolation minima also moderates the ASM but results in low PET and thus a high water table, which explains the previously documented occurrence of aquatic plants in this section. This context allows us to assign an orbital configuration to atmospheric pCO2 determined from the paleosols. Our best estimate of pCO2 during the times of intermediate ice volume is 475 + 650 / - 230 ppmV (median value with error reported as 84th-16th percentile values). Southern hemisphere control of ASM variability during the Middle Miocene may have resulted in larger orbital scale water availability variations compared with the Pleistocene.

  8. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring.

    PubMed

    Caicedo, Alexander; Varon, Carolina; Hunyadi, Borbala; Papademetriou, Maria; Tachtsidis, Ilias; Van Huffel, Sabine

    2016-01-01

    Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + ϵ . SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP) with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen saturation from the NIRS measurements, facilitating the use of NIRS as a surrogate measure for cerebral blood flow (CBF). The second case study used data from a 3-years old infant under Extra Corporeal Membrane Oxygenation (ECMO), here SIDE-ObSP decomposed cerebral/peripheral tissue oxygenation, as a sum of the partial contributions from different systemic variables, facilitating the comparison between the effects of each systemic variable on the cerebral/peripheral hemodynamics.

  9. The scaling and dynamics of a projectile obliquely impacting a granular medium.

    PubMed

    Wang, Dengming; Ye, Xiaoyan; Zheng, Xiaojing

    2012-01-01

    In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.

  10. Fault-scale controls on rift geometry: the Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, A.; Biggs, J.; Mdala, H. S.

    2017-12-01

    Border faults that develop during initial stages of rifting determine the geometry of rifts and passive margins. At outcrop and regional scales, it has been suggested that border fault orientation may be controlled by reactivation of pre-existing weaknesses. Here, we perform a multi-scale investigation on the influence of anisotropic fabrics along a major developing border fault in the southern East African Rift, Malawi. The 130 km long Bilila-Mtakataka fault has been proposed to have slipped in a single MW 8 earthquake with 10 m of normal displacement. The fault is marked by an 11±7 m high scarp with an average trend that is oblique to the current plate motion. Variations in scarp height are greatest at lithological boundaries and where the scarp switches between following and cross-cutting high-grade metamorphic foliation. Based on the scarp's geometry and morphology, we define 6 geometrically distinct segments. We suggest that the segments link to at least one deeper structure that strikes parallel to the average scarp trend, an orientation consistent with the kinematics of an early phase of rift initiation. The slip required on a deep fault(s) to match the height of the current scarp suggests multiple earthquakes along the fault. We test this hypothesis by studying the scarp morphology using high-resolution satellite data. Our results suggest that during the earthquake(s) that formed the current scarp, the propagation of the fault toward the surface locally followed moderately-dipping foliation well oriented for reactivation. In conclusion, although well oriented pre-existing weaknesses locally influence shallow fault geometry, large-scale border fault geometry appears primarily controlled by the stress field at the time of fault initiation.

  11. Design and aerodynamic performance evaluation of a high-work mixed flow turbine stage

    NASA Technical Reports Server (NTRS)

    Neri, Remo N.; Elliott, Thomas J.; Marsh, David N.; Civinskas, Kestutis C.

    1994-01-01

    As axial and radial turbine designs have been pushed to their aerothermodynamic and mechanical limits, the mixed-flow turbine (MFT) concept has been projected to offer performance and durability improvements, especially when ceramic materials are considered. The objective of this NASA/U.S. Army sponsored mixed-flow turbine (AMFT) program was to determine the level of performance attainable with MFT technology within the mechanical constraints of 1997 projected ceramic material properties. The MFT geometry is similar to a radial turbine, exhibiting a large radius change from inlet to exit, but differing in that the inlet flowpath is not purely radial, nor axial, but mixed; it is the inlet geometry that gives rise to the name 'mixed-flow'. The 'mixed' orientation of the turbine inlet offers several advantages over radial designs by allowing a nonzero inlet blade angle yet maintaining radial-element blades. The oblique inlet not only improves the particle-impact survivability of the design, but improves the aerodynamic performance by reducing the incidence at the blade inlet. The difficulty, however, of using mixed-flow geometry lies in the scarcity of detailed data and documented design experience. This paper reports the design of a MFT stage designed with the intent to maximize aerodynamic performance by optimizing design parameters such as stage reaction, rotor incidence, flowpath shape, blade shape, vane geometry, and airfoil counts using 2-D, 3-D inviscid, and 3-D viscous computational fluid dynamics code. The aerodynamic optimization was accomplished while maintaining mechanical integrity with respect to vibration and stress levels in the rotor. A full-scale cold-flow rig test was performed with metallic hardware fabricated to the specifications of the hot ceramic geometry to evaluate the stage performance.

  12. On the timing and forcing mechanisms of late Pleistocene glacial terminations: Insights from a new high-resolution benthic stable oxygen isotope record of the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Konijnendijk, T. Y. M.; Ziegler, M.; Lourens, L. J.

    2015-12-01

    Benthic oxygen isotope records of deep marine sedimentary archives have yielded a wealth of information regarding ice sheet dynamics and climate change during the Pleistocene. However, since they often lack independent age control, these records are generally bound by a fixed phase relationship between orbital forcing and the climate response, e.g. ice volume changes. We present the first long (∼1.2 Ma) benthic oxygen isotope record from the eastern Mediterranean, based on ODP Sites 967 and 968, which clearly reflects the behavior of global climate on a glacial-interglacial scale throughout the late Pleistocene time period. The age model for our record is based on tuning the elemental ratio of titanium versus aluminum (Ti/Al) against insolation. The Ti/Al record is dominated by the precession-related changes in northern African climate, i.e. monsoonal forcing, and hence largely independent of glacial-interglacial variability. We found the largest offset between our chronology and that of the widely applied, open ocean stacked record LR04 (Lisiecki and Raymo, 2005) for TVII (∼624 ka), which occurred ∼9 kyr earlier according to our estimates, though in agreement with the AICC2012 δDice chronology of EPICA Dome C (Bazin et al., 2013). Spectral cross-correlation analysis between our benthic δ18O record and 65°N summer insolation reveals significant amounts of power in the obliquity and precession range, with an average lag of 5.5 ± 0.8 kyr for obliquity, and 6.0 ± 1.0 kyr for precession. In addition, our results show that the obliquity-related time lag was smaller (3.0 ± 3.3 kyr) prior to ∼900 ka than after (5.7 ± 1.1 kyr), suggesting that on average the glacial response time to obliquity forcing increased during the mid-Pleistocene transition, much later than assumed by Lisiecki and Raymo (2005). Finally, we found that almost all glacial terminations have a consistent phase relationship of ∼45 ± 45° with respect to the precession and obliquity-driven increases in 65°N summer insolation, consistent with the general consensus that both obliquity and precession are important for deglaciation during the Late Pleistocene. Exceptions are glacial terminations TIIIb, T36 and potentially T32 (and TVII T24 and T34), which show this consistent phase relationship only with precession (only with obliquity). Our findings point towards an early (>1200 ka) onset of the Mid Pleistocene Transition. Vice versa, the timing of TVII, which can only be explained as a response to obliquity forcing, indicates that the transition lasted until at least after MIS 15.

  13. Active shortening of the Cascadia forearc and implications for seismic hazards of the Puget Lowland

    USGS Publications Warehouse

    Johnson, S.Y.; Blakely, R.J.; Stephenson, W.J.; Dadisman, S.V.; Fisher, M.A.

    2004-01-01

    Margin-parallel shortening of the Cascadia forearc is a consequence of oblique subduction of the Juan de Fuca plate beneath North America. Strike-slip, thrust, and oblique crustal faults beneath the densely populated Puget Lowland accommodate much of this north-south compression, resulting in large crustal earthquakes. To better understand this forearc deformation and improve earthquake hazard, assessment, we here use seismic reflection surveys, coastal exposures of Pleistocene strata, potential-field data, and airborne laser swath mapping to document and interpret a significant structural boundary near the City of Tacoma. This boundary is a complex structural zone characterized by two distinct segments. The northwest trending, eastern segment, extending from Tacoma to Carr Inlet, is formed by the broad (??? 11.5 km), southwest dipping (??? 11??-2??) Rosedale monocline. This monocline raises Crescent Formation basement about 2.5 km, resulting in a moderate gravity gradient. We interpret the Rosedale monocline as a fault-bend fold, forming above a deep thrust fault. Within the Rosedale monocline, inferred Quaternary strata thin northward and form a growth triangle that is 4.1 to 6.6 km wide at its base, suggesting ??? 2-3 mm/yr of slip on the underlying thrust. The western section of the >40-km-long, north dipping Tacoma fault, extending from Hood Canal to Carr Inlet, forms the western segment of the Tacoma basin margin. Structural relief on this portion of the basin margin may be several kilometers, resulting in steep gravity and aeromagnetic anomalies. Quaternary structural relief along the Tacoma fault is as much as 350-400 m, indicating a minimum slip rate of about 0.2 mm/yr. The inferred eastern section of the Tacoma fault (east of Carr Inlet) crosses the southern part of the Seattle uplift, has variable geometry along strike, and diminished structural relief. The Tacoma fault is regarded as a north dipping backthrust to the Seattle fault, so that slip on a master thrust fault at depth could result in movement on the Seattle fault, the Tacoma fault, or both.

  14. 3D Numerical Rift Modeling with Application to the East African Rift System

    NASA Astrophysics Data System (ADS)

    Glerum, A.; Brune, S.; Naliboff, J.

    2017-12-01

    As key components of plate tectonics, continental rifting and the formation of passive margins have been extensively studied with both analogue models and numerical techniques. Only recently however, technical advances have enabled numerical investigations into rift evolution in three dimensions, as is actually required for including those processes that cause rift-parallel variability, such as structural inheritance and oblique extension (Brune 2016). We use the massively parallel finite element code ASPECT (Kronbichler et al. 2012; Heister et al. 2017) to investigate rift evolution. ASPECT's adaptive mesh refinement enables us to focus resolution on the regions of interest (i.e. the rift center), while leaving other areas such as the asthenospheric mantle at coarse resolution, leading to kilometer-scale local mesh resolution in 3D. Furthermore, we implemented plastic and viscous strain weakening of the nonlinear viscoplastic rheology required to develop asymmetric rift geometries (e.g. Huismans and Beaumont 2003). Additionally created plugins to ASPECT allow us to specify initial temperature and composition conditions based on geophysical data (e.g. LITHO1.0, Pasyanos et al. 2014) or to prescribe more general along-strike variation in the initial strain seeding the rift. Employing the above functionality, we construct regional models of the East African Rift System (EARS), the world's largest currently active rift. As the EARS is characterized by both orthogonal and oblique rift sections, multi-phase extension histories as well as magmatic and a-magmatic branches (e.g. Chorowicz 2005; Ebinger and Scholz 2011), it constitutes an extensive natural laboratory for our research into the 3D nature of continental rifting. References:Brune, S. (2016), in Plate boundaries and natural hazards, AGU Geophysical Monograph 219, J. C. Duarte and W. P. Schellart (Eds.). Chorowicz, J. (2005). J. Afr. Earth Sci., 43, 379-410. Ebinger, C. and Scholz, C. A. (2011), in Tectonics of Sedimentary Basins: Recent Advances, Wiley, C. Busby and A. Azor (Eds.). Heister et al. (2017). Geophys. J. Int., 210, 833-851. Huismans, R. S. and Beaumont, C. (2003). J. Geophys. Res., 108, B10, 2496. Kronbichler et al. (2012). Geophys. J. Int., 191, 12-29. Pasyanos et al. (2014). J. of Geophys. Res., 119, 3, 2153-2173.

  15. Anisotropic imaging performance in breast tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badano, Aldo; Kyprianou, Iacovos S.; Jennings, Robert J.

    We describe the anisotropy in imaging performance caused by oblique x-ray incidence in indirect detectors for breast tomosynthesis based on columnar scintillator screens. We use MANTIS, a freely available combined x-ray, electron, and optical Monte Carlo transport package which models the indirect detection processes in columnar screens, interaction by interaction. The code has been previously validated against published optical distributions. In this article, initial validation results are provided concerning the blur for particular designs of phosphor screens for which some details with respect to the columnar geometry are available from scanning electron microscopy. The polyenergetic x-ray spectrum utilized comes frommore » a database of experimental data for three different anode/filter/kVp combinations: Mo/Mo at 28 kVp, Rh/Rh at 28 kVp, and W/Al at 42 kVp. The x-ray spectra were then filtered with breast tissue (3, 4, and 6 cm thickness), compression paddle, and support base, according to the oblique paths determined by the incidence angle. The composition of the breast tissue was 50%/50% adipose/glandular tissue mass ratio. Results are reported on the pulse-height statistics of the light output and on spatial blur, expressed as the response of the detector to a pencil beam with a certain incidence angle. Results suggest that the response is nonsymmetrical and that the resolution properties of a tomosynthesis system vary significantly with the angle of x-ray incidence. In contrast, it is found that the noise due to the variability in the number of light photons detected per primary x-ray interaction changes only a few percent. The anisotropy in the response is not less in screens with absorptive backings while the noise introduced by variations in the depth-dependent light output and optical transport is larger. The results suggest that anisotropic imaging performance across the detector area can be incorporated into reconstruction algorithms for improving the image quality of breast tomosynthesis. This study also demonstrates that the assessment of image quality of breast tomosynthesis systems requires a more complete description of the detector response beyond local, center measurements of resolution and noise that assume some degree of symmetry in the detector performance.« less

  16. Segmentation along the Queen Charlotte Fault: The long-lived influence of plate-motion rotation and Explorer Ridge fracture zones

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Walton, M. A. L.; Brothers, D. S.; Haeussler, P. J.; Ten Brink, U. S.; Conrad, J. E.; Kluesner, J.; Andrews, B. D.

    2017-12-01

    The Queen Charlotte Fault (QCF) generally tracks the flow line for Pacific/North America (Pa/NA) relative motion since 20 Ma, indicating that the plate boundary localized along an optimally oriented small circle geometry. Rotation in Pa/NA motion at 10—12 Ma caused the QCF south of 53 N to be oblique to plate motion by 10—20. This oblique convergence appears to be accommodated in part by underthrusting of the Pacific Plate beneath Haida Gwaii and in part by slip on faults west of the QCF. On the west side of the QCF, a series of ridges and small basins oriented subparallel to either the QCF or relative plate motion form a 40-km-wide terrace. New high-resolution seismic reflection data image the seaward edge of the ridges as a vertical contact between horizontal or sometimes downwarped deep-sea sediments and west-vergent anticlinal structures within the ridges, supporting earlier interpretations that these ridges have accommodated some component of oblique motion. We argue that the ridges originated as step overs from fracture zones on Explorer Ridge, analogous to the current fault geometry at the southernmost end of the QCF. There, the Revere-Dellwood Fracture Zone (RDFZ) overlaps the QCF for 120 km and connects to the QCF via a more-optimally oriented extensional right step. 3.9—6.4 Mw strike-slip earthquakes along the RDFZ and a lack of contractional seafloor morphologies along the QCF south of the RDFZ-QCF right step suggest that the step over and reactivation along the RDFZ accommodates a majority of plate motion in this region. Kinematic reconstruction of ridges from 54—56 N indicates that they also originated in a similar location, potentially as right steps from either the RDFZ or Sovanco Fracture Zone. Similarly, the RDFZ flow path is coincident with a truncation of seafloor magnetic anomalies and the outer edge of the ridge-bounded terrace, which both parallel the QCF since at least the onset of Explorer Ridge spreading at 8 Ma. The RDFZ-QCF right step marks the southern extent of rupture during the 2012 Mw 7.8 and 1949 M 8.1 Haida Gwaii earthquakes, suggesting that it forms a rupture barrier. Between 54—56 N, ridge-QCF intersections mark other major rupture boundaries, and, in some places, are associated with small pull-apart basins, suggesting that relic step overs continue to control segmentation along the QCF.

  17. New insights into the tectonic evolution of the Boconó Fault, Mérida Andes, Venezuela

    NASA Astrophysics Data System (ADS)

    Backé, G.

    2006-12-01

    The Boconó fault is a major right-lateral strike-slip fault that cuts along strike the Mérida Andes in Venezuela. The uplift of this mountain range started in the Miocene as a consequence of the relative oblique convergence between two lithospheric units named the Maracaibo block to the northwest and the Guyana shield to the southeast. Deformation in the Mérida Andes is partitioned between a strike-slip component along the Boconó fault and shortening perpendicular to the belt. Distinctive features define the Boconó fault: it is shifted southward relative to the chain axis and it does not have a continuous and linear trace but is composed of several fault segments of different orientations striking N35°E to N65°E. Quaternary fault strike-slip motion has been evidenced by various independent studies. However, onset of the strike-slip motion, fault offset and geometry at depth remains a matter of debate. Our work, based on morphostructural analyses of satellite and digital elevation model imagery, provides new data on both the geometry and the tectonic evolution of this major structure. We argue that the Boconó fault affects only the upper crust and connects at depth to a décollement. Consequently, it can not be considered as a plate boundary. The Boconó fault does however form the boundary between two different tectonic areas in the central part of the Mérida Andes as revealed by the earthquake focal mechanisms. South of the Boconó fault, the focal mechanisms are mainly compressional and reverse oblique-slip in agreement with NW SE shortening in the foothills. North of the Boconó fault, extensional and strike-slip deformation dominates. Microtectonic measurements collected in the central part of the Boconó fault are characterized by polyphased tectonics. The dextral shearing along the fault is superimposed to reverse oblique-slip to reverse motion, showing that initiation of transcurrent movement is more likely to have occurred after a certain amount of shortening. The present day strain partitioning along the Mérida Andes seems to be younger than the rise of the chain and coeval with the initiation of right-lateral shearing along the Boconó fault, which would have then initiated in the Pliocene. The Mérida Andes can be therefore considered as a case study of the kinematic evolution of a major strike-slip fault.

  18. Kinematic stratification in the hinterland of the central Scandinavian Caledonides

    USGS Publications Warehouse

    Gilotti, J.A.; Hull, J.M.

    1993-01-01

    A transect through west-central Norway illustrates the changing geometry and kinematics of collision in the hinterland of the central Scandinavian Caledonides. A depth section through the crust is exposed on Fosen Peninsula, comprising three tectonic units separated by two shear zones. The lowest unit, exposed in the Roan window, is a modestly deformed, Caledonian granulite complex framed by a subhorizontal de??collement, with NW-SE oriented lineations and kinematic indicators showing top-to-the-northwest transport. The middle unit, the Vestranden gneiss complex, contains relict granulites, but was penetratively deformed at amphibolite facies to produce an orogen-parallel family of structures during translation on the de??collement. Shallow plunging lineations on steep schistosities are subparallel to fold axes of the dominant, upright, non-cylindrical folds. A small component of sinistral strike slip is also recorded. In contrast, southernmost Fosen Peninsula contains an abundance of cover rocks infolded with Proterozoic basement in a fold nappe, with shallow, E-dipping schistosities, down-dip lineations, and orogen-oblique, top-to-the-west shear sense indicators. A NE-striking, sinistral shear zone separates the gneisses from southern Fosen. Deformation in the Scandian hinterland was partitioned both in space and time, with orogen-parallel extension and shear at middle structural levels and orogen-oblique transport at shallower levels. ?? 1993.

  19. Tapping the Brake for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Thompson, Kyle; Korzun, Ashley

    2016-01-01

    A matrix of simulations of hypersonic flow over blunt entry vehicles with steady and pulsing retropropulsion jets is presented. Retropropulsion in the supersonic domain is primarily designed to reduce vehicle velocity directly with thrust. Retropropulsion in the hypersonic domain may enable significant pressure recovery through unsteady, oblique shocks while providing a buffer of reactant gases with relatively low total temperature. Improved pressure recovery, a function of Mach number squared and oblique shock angle, could potentially serve to increase aerodynamic drag in this domain. Pulsing jets are studied to include an additional degree of freedom to search for resonances in an already unsteady flow domain with an objective to maximize the time-averaged drag coefficient. In this paradigm, small jets with minimal footprints of the nozzle exit on the vehicle forebody may be capable of delivering the requisite perturbations to the flow. Simulations are executed assuming inviscid, symmetric flow of a perfect gas to enable a rapid assessment of the parameter space (nozzle geometry, plenum conditions, jet pulse frequency). The pulsed-jet configuration produces moderately larger drag than the constant jet configuration but smaller drag than the jet-off case in this preliminary examination of a single design point. The fundamentals of a new algorithm for this challenging application with time dependent, interacting discontinuities using the feature detection capabilities of Walsh functions are introduced.

  20. The obturator oblique and iliac oblique/outlet views predict most accurately the adequate position of an anterior column acetabular screw.

    PubMed

    Guimarães, João Antonio Matheus; Martin, Murphy P; da Silva, Flávio Ribeiro; Duarte, Maria Eugenia Leite; Cavalcanti, Amanda Dos Santos; Machado, Jamila Alessandra Perini; Mauffrey, Cyril; Rojas, David

    2018-06-08

    Percutaneous fixation of the acetabulum is a treatment option for select acetabular fractures. Intra-operative fluoroscopy is required, and despite various described imaging strategies, it is debatable as to which combination of fluoroscopic views provides the most accurate and reliable assessment of screw position. Using five synthetic pelvic models, an experimental setup was created in which the anterior acetabular columns were instrumented with screws in five distinct trajectories. Five fluoroscopic images were obtained of each model (Pelvic Inlet, Obturator Oblique, Iliac Oblique, Obturator Oblique/Outlet, and Iliac Oblique/Outlet). The images were presented to 32 pelvic and acetabular orthopaedic surgeons, who were asked to draw two conclusions regarding screw position: (1) whether the screw was intra-articular and (2) whether the screw was intraosseous in its distal course through the bony corridor. In the assessment of screw position relative to the hip joint, accuracy of surgeon's response ranged from 52% (iliac oblique/outlet) to 88% (obturator oblique), with surgeon confidence in the interpretation ranging from 60% (pelvic inlet) to 93% (obturator oblique) (P < 0.0001). In the assessment of intraosseous position of the screw, accuracy of surgeon's response ranged from 40% (obturator oblique/outlet) to 79% (iliac oblique/outlet), with surgeon confidence in the interpretation ranging from 66% (iliac oblique) to 88% (pelvic inlet) (P < 0.0001). The obturator oblique and obturator oblique/outlet views afforded the most accurate and reliable assessment of penetration into the hip joint, and intraosseous position of the screw was most accurately assessed with pelvic inlet and iliac oblique/outlet views. Clinical Question.

  1. Optically controlled redshift switching effects in hybrid fishscale metamaterials

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhu, Jinwei; Zhang, Hao; Zhang, Wenxing; Dong, Guohua; Ye, Peng; Lv, Tingting; Zhu, Zheng; Li, Yuxiang; Guan, Chunying; Shi, Jinhui

    2018-05-01

    We numerically demonstrate optically controlled THz response in a hybrid fishscale metamaterial with embedded photoconductive silicon at oblique incidence of TE wave. The oblique incidence allows excitation of Fano-type trapped mode resonance in a 2-fold rotational symmetric metamaterial. The hybrid fishscale metamaterial exhibits an optically controlled redshift switching effect in the THz range. The switching effect is dominated by the conductivity of the silicon instead of mechanically adjusting angles of incidence. The tuning frequency range is up to 0.3THz with a large modulation depth and high transmission in the "ON" state. The fishscale metamaterial-based switching has been experimentally verified by its microwave counterpart integrated by variable resistors. Our work provides an alternative route to realize tunable Fano-type response in metamaterials and is of importance to active manipulation, sensing and switching of THz waves in practical applications.

  2. Impacts of Spatial Fidelity Violations in the Forward Signal Model on DOAS-based Greenhouse Gas Retrievals: a Preliminary Analysis for OCO-2 (and Other Missions)

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Frakenbert, Christian

    2012-01-01

    Success in three aspects of OCO-2 mission is threatened by unaccounted spa,al variability effects, all involving atmospheric scattering: 1. Low/moderately opaque clouds can escape the prescreening by mimicking a brighter surface. 2. Prescreening does not account for long-range radia,ve impact (adjacency effect) of nearby clouds. Need for extended cloud masking? 3. Oblique looks in target mode are highly exposed to surface adjacency and aerosol variability effects.We'll be covering all three bases!

  3. Modeling concentric crater fill in Utopia Planitia, Mars, with an ice flow line model

    NASA Astrophysics Data System (ADS)

    Weitz, N.; Zanetti, M.; Osinski, G. R.; Fastook, J. L.

    2018-07-01

    Impact craters in the mid-latitudes of Mars are commonly filled to variable degrees with some combination of ice, dust, and rocky debris. Concentric surface features visible in these craters have been linked to debris transportation and glacial and periglacial processes. Concentric crater fill (CCF) observed today are interpreted to be the remains of repeated periods of accumulation and sublimation during the last tens to hundreds of million years. Previous work suggests that during phases of high obliquity, ice accumulates in crater interiors and begins to flow down steep crater slopes, slowly filling the crater. During times of low obliquity ice is protected from sublimation through a surface debris layer consisting of dust and rocky material. Here, we use an ice flow line model to understand the development of concentric crater fill. In a regional study of Utopia Planitia craters, we address questions about the influence of crater size on the CCF formation process, the time scales needed to fill an impact crater with ice, and explore commonly described flow features of CCF. We show that observed surface debris deposits as well as asymmetric flow features can be reproduced with the model. Using surface mass balance data from global climate models and a credible obliquity scenario, we find that craters less than 80 km in diameter can be entirely filled in less than 8 My, beginning as recently as 40 Ma ago. Uncertainties in input variables related to ice viscosity do not change the overall behavior of ice flow and the filling process. We model CCF for the Utopia Planitia region and find subtle trends for crater size versus fill level, crater size versus sublimation reduction by the surface debris layer, and crater floor elevation versus fill level.

  4. Posture Alignment of Adolescent Idiopathic Scoliosis: Photogrammetry in Scoliosis School Screening.

    PubMed

    Penha, Patrícia Jundi; Penha, Nárima Lívia Jundi; De Carvalho, Bárbarah Kelly Gonçalves; Andrade, Rodrigo Mantelatto; Schmitt, Ana Carolina Basso; João, Sílvia Maria Amado

    The objective of this study was to describe the posture patterns of adolescents diagnosed with adolescent idiopathic scoliosis (AIS) in a scoliosis school screening (SSS). Two-dimensional photogrammetry was used to assess the posture of 37 adolescents diagnosed with scoliosis (scoliosis group, SG) (Cobb angle ≥10°) and 76 adolescents with a false positive diagnosis (false positive group, FPG) (Cobb angle <10°, angle of trunk rotation ≥7°). In total, 2562 10- to 14-year-old adolescents were enrolled in the SSS, which was performed in public schools in the cities of Amparo, Pedreira, and Mogi Mirim in the state of São Paulo, Brazil. Their posture was analyzed using Postural Analysis Software. Continuous variables were tested using Student t test, and categorical variables were tested using a χ2 test. The SG, FPG, simple curve group, and double curve group were all compared. Bivariate analysis was used to identify associations between postural deviations and scoliosis. The adopted significance level was α = .05. The SG (2.7 ± 1.9°) had greater shoulder obliquity than the FPG (1.9 ± 1.4°) (P = .010), and this deviation was associated with scoliosis (odds ratio [95% CI] P = 1.4 [1.1-1.8] 0.011). The SG had asymmetry between the right- and left-side lower limb frontal angle, shoulder sagittal alignment, and knee angle. The double curve group (3 ± 1.7°) presented a greater value of the vertical alignment of the torso than the simple curve group did (1.9 ± 1°; P = .032). Adolescents diagnosed with AIS in an SSS had greater shoulder obliquity and asymmetry between the right and left sides. Shoulder obliquity was the only postural deviation associated with AIS. Copyright © 2017. Published by Elsevier Inc.

  5. Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF

    NASA Technical Reports Server (NTRS)

    Hill, Peter; Thompson, Patrick

    2012-01-01

    A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes

  6. Interacting faults

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Nixon, C. W.; Rotevatn, A.; Sanderson, D. J.; Zuluaga, L. F.

    2017-04-01

    The way that faults interact with each other controls fault geometries, displacements and strains. Faults rarely occur individually but as sets or networks, with the arrangement of these faults producing a variety of different fault interactions. Fault interactions are characterised in terms of the following: 1) Geometry - the spatial arrangement of the faults. Interacting faults may or may not be geometrically linked (i.e. physically connected), when fault planes share an intersection line. 2) Kinematics - the displacement distributions of the interacting faults and whether the displacement directions are parallel, perpendicular or oblique to the intersection line. Interacting faults may or may not be kinematically linked, where the displacements, stresses and strains of one fault influences those of the other. 3) Displacement and strain in the interaction zone - whether the faults have the same or opposite displacement directions, and if extension or contraction dominates in the acute bisector between the faults. 4) Chronology - the relative ages of the faults. This characterisation scheme is used to suggest a classification for interacting faults. Different types of interaction are illustrated using metre-scale faults from the Mesozoic rocks of Somerset and examples from the literature.

  7. Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.

    1984-01-01

    The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip.

  8. Analytic Reflected Lightcurves for Exoplanets

    NASA Astrophysics Data System (ADS)

    Haggard, Hal M.; Cowan, Nicolas B.

    2018-04-01

    The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.

  9. Diverting lava flows in the lab

    USGS Publications Warehouse

    Dietterich, Hannah; Cashman, Katharine V.; Rust, Alison C.; Lev, Einat

    2015-01-01

    Recent volcanic eruptions in Hawai'i, Iceland and Cape Verde highlight the challenges of mitigating hazards when lava flows threaten infrastructure. Diversion barriers are the most common form of intervention, but historical attempts to divert lava flows have met with mixed success and there has been little systematic analysis of optimal barrier design. We examine the interaction of viscous flows of syrup and molten basalt with barriers in the laboratory. We find that flows thicken immediately upslope of an obstacle, forming a localized bow wave that can overtop barriers. Larger bow waves are generated by faster flows and by obstacles oriented at a high angle to the flow direction. The geometry of barriers also influences flow behaviour. Barriers designed to split or dam flows will slow flow advance, but cause the flow to widen, whereas oblique barriers can effectively divert flows, but may also accelerate flow advance. We argue that to be successful, mitigation of lava-flow hazards must incorporate the dynamics of lava flow–obstacle interactions into barrier design. The same generalizations apply to the effect of natural topographic features on flow geometry and advance rates.

  10. Modeling along-axis variations in fault architecture in the Main Ethiopian Rift: implications for Nubia-Somalia kinematics

    NASA Astrophysics Data System (ADS)

    Erbello, Asfaw; Corti, Giacomo; Sani, Federico; Kidane, Tesfaye

    2016-04-01

    The Main Ethiopian Rift (MER), at the northern termination of the East African Rift, is an ideal locale where to get insights into the long-term motion between Nubia and Somalia. The rift is indeed one of the few places along the plate boundary where the deformation is narrow: its evolution is thus strictly related to the kinematics of the two major plates, whereas south of the Turkana depression a two-plate model for the EARS is too simplistic as extension occurs both along the Western and Eastern branches and different microplates are present between the two major plates. Despite its importance, the kinematics responsible for development and evolution of the MER is still a matter of debate: indeed, whereas the Quaternary-present kinematics of rifting is rather well constrained, the plate kinematics driving the initial, Mio-Pliocene stages of extension is still not clear, and different hypothesis have been put forward, including: polyphase rifting, with a change in direction of extension from NW-SE extension to E-W extension; constant Miocene-recent NW-SE extension; constant Miocene-recent NE-SW extension; constant, post-11 Ma extension consistent with the GPS-derived kinematics (i.e., roughly E-W to ESE-WNW). To shed additional light on this controversy and to test these different hypothesis, in this contribution we use new crustal-scale analogue models to analyze the along-strike variations in fault architecture in the MER and their relations with the rift trend, plate motion and the resulting Miocene-recent kinematics of rifting. The extension direction is indeed one of the most important parameters controlling the architecture of continental rifts and the relative abundance and orientation of different fault sets that develop during oblique rifting is typically a function of the angle between the extension direction and the orthogonal to the rift trend (i.e., the obliquity angle). Since the trend of the MER varies along strike, and consequently it is characterized by a variable obliquity angle (i.e., kinematics) along its length, the analysis of fault architecture and its variations are able to provide significant insights into the plate kinematics responsible for rift development and evolution. Our models thus reproduce the overall geometry of the ~600km-long MER with its along-strike variation in orientation to test the above-described hypothesis of rift evolution. Analysis of model results in terms of statistics of fault length and orientation, and deformation architecture and its comparison with the MER suggests that rift has likely developed under a constant, post-11 Ma extension oriented roughly E-W (N97.5°E), consistent with recent plate kinematics models.

  11. Slab Geometry and Deformation in the Northern Nazca Subduction Zone Inferred From The Relocation and Focal mechanisms of Intermediate-Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Warren, L. M.; Prieto, G. A.

    2015-12-01

    In the northern Nazca subduction zone, the Nazca plate is subducting to the east beneath the South American Plate. At ~5.6ºN, the subducting plate has a 240-km east-west offset associated with a slab tear, called the Caldas tear, that separates the northern and southern segments. Our study seeks to better define the slab geometry and deformation in the southern segment, which has a high rate of intermediate-depth earthquakes (50-300 km) between 3.6ºN and 5.2ºN in the Cauca cluster. From Jan 2010 to Mar 2014, 228 intermediate-depth earthquakes in the Cauca cluster with local magnitude Ml 2.5-4.7 were recorded by 65 seismic stations of the Colombian National Seismic Network. We review and, if necessary, adjust the catalog P and S wave arrival picks. We use the travel times to relocate the earthquakes using a double difference relocation method. For earthquakes with Ml ≥3.8, we also use waveform modeling to compute moment tensors . The distribution of earthquake relocations shows an ~15-km-thick slab dipping to the SE. The dip angle increases from 20º at the northern edge of the cluster to 38º at the southern edge. Two concentrated groups of earthquakes extend ~40 km vertically above the general downdip trend, with a 20 km quiet gap between them at ~100 km depth. The earthquakes in the general downdip seismic zone have downdip compressional axes, while earthquakes close to the quiet gap and in the concentrated groups have an oblique component. The general decrease in slab dip angle to the north may be caused by mantle flow through the Caldas tear. The seismicity gap in the slab may be associated with an active deformation zone and the concentrated groups of earthquakes with oblique focal mechanisms could be due to a slab fold.

  12. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum, Rupturing Continental Lithosphere Part I: Introducing Seismic Interpretation and Isostasy Principles Using Gulf of California Examples

    NASA Astrophysics Data System (ADS)

    Lamb, M. A.; Cashman, S. M.; Dorsey, R. J.; Bennett, S. E. K.; Loveless, J. P.; Goodliffe, A. M.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum designed for an upper-division structural geology, tectonics or geophysics course. The curriculum includes lectures, labs, and in-class activities that can be used as a whole or individually. The first set of materials introduces the RCL initiative to students and has them analyze the bathymetry and oblique-rifting geometry of the GOC in an exercise using GeoMapApp. The second set of materials has two goals: (1) introduce students to fundamental concepts of interpreting seismic reflection data via lectures and in-class interpretation of strata, basement, and faults from recent GOC seismic data, and (2) encourage students to discover the structural geometry and rift evolution, including the east-to-west progression of faulting and transition from detachment to high-angle faulting in the northern GOC, and changes in deformation style from north to south. In the third set of materials, students investigate isostatic affects of sediment fill in GOC oblique rift basins. This activity consists of a problem set, introduced in a lecture, where students integrate their findings from the previous bathymetry- and seismic-interpretation exercises.

  13. WHEN SHOCK WAVES COLLIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartigan, P.; Liao, A. S.; Foster, J.

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. The experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less

  14. Comparison of three methods for registration of abdominal/pelvic volume data sets from functional-anatomic scans

    NASA Astrophysics Data System (ADS)

    Mahmoud, Faaiza; Ton, Anthony; Crafoord, Joakim; Kramer, Elissa L.; Maguire, Gerald Q., Jr.; Noz, Marilyn E.; Zeleznik, Michael P.

    2000-06-01

    The purpose of this work was to evaluate three volumetric registration methods in terms of technique, user-friendliness and time requirements. CT and SPECT data from 11 patients were interactively registered using: a 3D method involving only affine transformation; a mixed 3D - 2D non-affine (warping) method; and a 3D non-affine (warping) method. In the first method representative isosurfaces are generated from the anatomical images. Registration proceeds through translation, rotation, and scaling in all three space variables. Resulting isosurfaces are fused and quantitative measurements are possible. In the second method, the 3D volumes are rendered co-planar by performing an oblique projection. Corresponding landmark pairs are chosen on matching axial slice sets. A polynomial warp is then applied. This method has undergone extensive validation and was used to evaluate the results. The third method employs visualization tools. The data model allows images to be localized within two separate volumes. Landmarks are chosen on separate slices. Polynomial warping coefficients are generated and data points from one volume are moved to the corresponding new positions. The two landmark methods were the least time consuming (10 to 30 minutes from start to finish), but did demand a good knowledge of anatomy. The affine method was tedious and required a fair understanding of 3D geometry.

  15. When shock waves collide

    DOE PAGES

    Martinez, D.; Hartigan, P.; Frank, A.; ...

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. Furthermore, the experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less

  16. Mechanical properties of canine osteosarcoma-affected antebrachia.

    PubMed

    Steffey, Michele A; Garcia, Tanya C; Daniel, Leticia; Zwingenberger, Allison L; Stover, Susan M

    2017-05-01

    To determine the influence of neoplasia on the biomechanical properties of canine antebrachia. Ex vivo biomechanical study. Osteosarcoma (OSA)-affected canine antebrachia (n = 12) and unaffected canine antebrachia (n = 9). Antebrachia were compressed in axial loading until failure. A load-deformation curve was used to acquire the structural mechanical properties of neoplastic and unaffected specimens. Structural properties and properties normalized by body weight (BW) and radius length were compared using analysis of variance (ANOVA). Modes of failure were compared descriptively. Neoplastic antebrachia fractured at, or adjacent to, the OSA in the distal radial diaphysis. Unaffected antebrachia failed via mid-diaphyseal radial fractures with a transverse cranial component and an oblique caudal component. Structural mechanical properties were more variable in neoplastic antebrachia than unaffected antebrachia, which was partially attributable to differences in bone geometry related to dog size. When normalized by dog BW and radial length, strength, stiffness, and energy to yield and failure, were lower in neoplastic antebrachia than in unaffected antebrachia. OSA of the distal radial metaphysis in dogs presented for limb amputation markedly compromises the structural integrity of affected antebrachia. However, biomechanical properties of affected bones was sufficient for weight-bearing, as none of the neoplastic antebrachia fractured before amputation. The behavior of tumor invaded bone under cyclic loading warrants further investigations to evaluate the viability of in situ therapies for bone tumors in dogs. © 2017 The American College of Veterinary Surgeons.

  17. Oblique radiation lateral open boundary conditions for a regional climate atmospheric model

    NASA Astrophysics Data System (ADS)

    Cabos Narvaez, William; De Frutos Redondo, Jose Antonio; Perez Sanz, Juan Ignacio; Sein, Dmitry

    2013-04-01

    The prescription of lateral boundary conditions in regional atmospheric models represent a very important issue for limited area models. The ill-posed nature of the open boundary conditions makes it necessary to devise schemes in order to filter spurious wave reflections at boundaries, being desirable to have one boundary condition per variable. On the other side, due to the essentially hyperbolic nature of the equations solved in state of the art atmospheric models, external data is required only for inward boundary fluxes. These circumstances make radiation lateral boundary conditions a good choice for the filtering of spurious wave reflections. Here we apply the adaptive oblique radiation modification proposed by Mikoyada and Roseti to each of the prognostic variables of the REMO regional atmospheric model and compare it to the more common normal radiation condition used in REMO. In the proposed scheme, special attention is paid to the estimation of the radiation phase speed, essential to detecting the direction of boundary fluxes. One of the differences with the classical scheme is that in case of outward propagation, the adaptive nudging imposed in the boundaries allows to minimize under and over specifications problems, adequately incorporating the external information.

  18. Space and time distribution of foci and source mechanisms of West-Bohemia/Vogtland earthquake swarms - a tool for understanding of their origin

    NASA Astrophysics Data System (ADS)

    Horálek, Josef; Čermáková, Hana; Fischer, Tomáš

    2014-05-01

    The origin of earthquake swarms remains still an enigma. The swarms typically accompany volcanic activity at the plate margins but also occur in intracontinental areas. West Bohemia-Vogtland (border area between Czech Republic and Germany) represents one of the most active intraplate earthquake-swarm regions in Europe. Above, this area is characteristic by high activity of crustal fluids. Swarm earthquakes occur persistently in the area of about 3 000 km2. However, the Novö Kostel focal zone (NK), which shows a few tens of thousands events within the last twenty years, dominates the recent seismicity of the whole region. There were swarms in 1997, 2000, 2008 and 20011 followed by reactivation in 2013, and a few tens of microswarms which forming a focal belt of about 15 x 6 km. We analyse geometry of the NK focal zone applying the double-difference method to seismicity in the period 1997 - 2013. The swarms are located close to each other in at depths from 6 to 13 km. The 2000 (MLmax = 3.3) and 2008 (MLmax = 3.8) swarms are 'twins' i.e. their hypocenters fall precisely on the same portion of the NK fault; similarly the 1997 (MLmax = 2.9), 2011 (MLmax = 3.6) and 2013 (MLmax = 2.4) swarms also occurred on the same fault segment. However, the individual swarms differ considerably in their evolution, mainly in the rate of the seismic-moment release and foci migration. Source mechanisms (in the full moment-tensor description) and their time and space variations also show different patterns. All the 2000- and 2008-swarm events are pure shears, signifying both oblique-normal and oblique-thrust faulting but the former prevails. We found a several families of source mechanisms, which fit well geometry of respective fault segments being determined on the basis of the event location: The 2000 and 2008 swarms activated the same portion of the NK fault, hence the source mechanisms are similar. The 1997 and 2011 swarms took place on two differently oriented fault segments, thus two different source mechanisms occurred: the oblique-normal on the one segment and the oblique-thrust type on the other one. Furthermore, we disclose that all the ML ≥ 2.7 swarm events, which occurred in the given time span, are located in a few dense clusters. It implies that the most of seismic energy in the individual swarms has been released in step by step rupturing of one or a few asperities. The existing results do not allow us to explain properly an origin of earthquake swarms. Nevertheless, some results point to a connection between pressurized fluids in the crust and the earthquake swarm occurrence. Taking this into account, we may infer that earthquake swarms occur on short fault segments with heterogeneous stress and strength, which are affected by crustal fluids. Pressurized fluids reduced normal component of the tectonic stress and lower friction. Thus, critically loaded and favourably oriented faults are brought to failure and the swarm activity is driven by the differential local stress.

  19. Design study and performance analysis of a high-speed multistage variable-geometry fan for a variable cycle engine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.; Parker, D. E.

    1979-01-01

    A design technology study was performed to identify a high speed, multistage, variable geometry fan configuration capable of achieving wide flow modulation with near optimum efficiency at the important operating condition. A parametric screening study of the front and rear block fans was conducted in which the influence of major fan design features on weight and efficiency was determined. Key design parameters were varied systematically to determine the fan configuration most suited for a double bypass, variable cycle engine. Two and three stage fans were considered for the front block. A single stage, core driven fan was studied for the rear block. Variable geometry concepts were evaluated to provide near optimum off design performance. A detailed aerodynamic design and a preliminary mechanical design were carried out for the selected fan configuration. Performance predictions were made for the front and rear block fans.

  20. Cooled variable nozzle radial turbine for rotor craft applications

    NASA Technical Reports Server (NTRS)

    Rogo, C.

    1981-01-01

    An advanced, small 2.27 kb/sec (5 lbs/sec), high temperature, variable area radial turbine was studied for a rotor craft application. Variable capacity cycles including single-shaft and free-turbine engine configurations were analyzed to define an optimum engine design configuration. Parametric optimizations were made on cooled and uncooled rotor configurations. A detailed structural and heat transfer analysis was conducted to provide a 4000-hour life HP turbine with material properties of the 1988 time frame. A pivoted vane and a moveable sidewall geometry were analyzed. Cooling and variable geometry penalties were included in the cycle analysis. A variable geometry free-turbine engine configuration with a design 1477K (2200 F) inlet temperature and a compressor pressure ratio of 16:1 was selected. An uncooled HP radial turbine rotor with a moveable sidewall nozzle showed the highest performance potential for a time weighted duty cycle.

  1. From Extension to Transcurrence: Regime Transition as a new key to Interpret Seismogenesis in the Southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Fracassi, U.; Vannoli, P.; Burrato, P.; Basili, R.; Tiberti, M. M.; di Bucci, D.; Valensise, G.

    2006-12-01

    The backbone of the Southern Apennines is perhaps the largest seismic moment release area in Italy. The region is dominated by an extensional regime dating back to the Middle Pleistocene, with maximum extension striking SW-NE (i.e. orthogonal to the mountain belt). The full length (~ 200 km) of the mountain range has been the locus of several destructive earthquakes occurring in the uppermost 10-12 km of the crust. This seismicity is due to a well documented normal faulting mechanism. Instrumental earthquakes (e.g. 5 May 1990, 31 Oct 2002, 1 Nov 2002; all M 5.8) that have occurred in the foreland, east of the Southern Apennines, have posed new questions concerning seismogenic processes in southern Italy. Although of moderate magnitude, these events unveiled the presence of E-W striking, deeper (13-25 km) strike-slip faults. Recent studies suggest that these less known faults belong to inherited shear zones with a multi-phase tectonic history, the most recent phase being a right-lateral reactivation. The direction of the maximum horizontal extension of these faults (in a transcurrent regime) coincides with the maximum horizontal extension in the core of the Southern Apennines (in an extensional regime) and both are compatible with the general framework provided by the Africa-Europe convergence. However, the regional extent along strike of the E-W shear zones poses the issue of their continuity from the foreland towards the thrust-belt. The 1456 (M 6.9) and 1930 (M 6.7) earthquakes, that occurred just east of the main extensional axis, were caused by faults having a strike intermediate between the E-W, deeper strike-slip faults in the foreland and the NW-SE-trending, shallower normal faults in the extensional belt. Hence, the location and geometry of these seismogenic sources suggests that there could be a transition zone between the crustal volumes affected by the extensional and transcurrent regimes. To image such transition, we built a 3D model that incorporates data available from surface and subsurface geology (published and unpublished), seismogenic faults, seismicity, focal mechanisms, and gravity anomalies. We explored the mechanisms of fault interaction in the Southern Apennines between the extensional upper portion and the transcurrent deeper portion of the seismogenic layer. In particular, we studied (a) how the reactivation of regional shear zones interacts with an adjacent, although structurally independent, extensional belt; (b) at what depth range the interaction occurs; and (c1) whether oblique slip in earthquakes like the 1930 event is merely due to the geometry of the causative fault, or (c2) such geometry and kinematics are the result of oblique slip due to fault interaction. We propose that (a) the 1456 and 1930 earthquakes are the expression of the transition between the two tectonic regimes, and that (b) these events can be seen as templates of the seismogenic oblique-slip faulting that occurs at intermediate depths between the shallower extensional faults and the deeper strike-slip faults. These findings suggest that a transtensional faulting mechanism governs the release of major earthquakes in the transition zone between extensional and transcurrent domains.

  2. Surface-geophysical characterization of ground-water systems of the Caloosahatchee River basin, southern Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.; Locker, Stanley D.; Hine, Albert C.; Bukry, David; Barron, John A.; Guertin, Laura A.

    2001-01-01

    The Caloosahatchee River Basin, located in southwestern Florida, includes about 1,200 square miles of land. The Caloosahatchee River receives water from Lake Okeechobee, runoff from the watershed, and seepage from the underlying ground-water systems; the river loses water through drainage to the Gulf of Mexico and withdrawals for public-water supply and agricultural and natural needs. Water-use demands in the Caloosahatchee River Basin have increased dramatically, and the Caloosahatchee could be further stressed if river water is used to accommodate restoration of the Everglades. Water managers and planners need to know how much water will be used within the river basin and how much water is contributed by Lake Okeechobee, runoff, and ground water. In this study, marine seismic-reflection and ground-penetrating radar techniques were used as a means to evaluate the potential for flow between the river and ground-water systems. Seven test coreholes were drilled to calibrate lithostratigraphic units, their stratal geometries, and estimated hydraulic conductivities to surface-geophysical profiles. A continuous marine seismic-reflection survey was conducted over the entire length of the Caloosahatchee River and extending into San Carlos Bay. Lithostratigraphic units that intersect the river bottom and their characteristic stratal geometries were identified. Results show that subhorizontal reflections assigned to the Tamiami Formation intersect the river bottom between Moore Haven and about 9 miles westward. Oblique and sigmoidal progradational reflections assigned to the upper Peace River Formation probably crop out at the floor of the river in the Ortona area between the western side of Lake Hicpochee and La Belle. These reflections image a regional-scale progradational deltaic depositional system containing quartz sands with low to moderate estimated hydraulic conductivities. In an approximate 6-mile length of the river between La Belle and Franklin Lock, deeper karstic collapse structures are postulated. These structures influence the geometries of parallel reflections that intersect the river channel. Here, reflections assigned to the Buckingham Limestone Member of the Tamiami Formation (a confining unit) and reflections assigned to the clastic zone of the sandstone aquifer likely crop out at the river bottom. Beneath these shallow reflections, relatively higher amplitude parallel reflections of the carbonate zone of the sandstone aquifer are well displayed in the seismic-reflection profiles. In San Carlos Bay, oblique progradational reflections assigned to the upper Peace River Formation are shown beneath the bay. Almost everywhere beneath the river, a diffuse ground-water flow system is in contact with the channel bottom. Ground-penetrating radar profiles of an area about 2 miles north of the depositional axis of the deltaic depositional system in the Ortona area show that progradational clinoforms imaged on seismic reflection profiles in the Caloosahatchee River are present within about 17 feet of the ground surface. Ground-penetrating radar profiles show southward dipping, oblique progradational reflections assigned to the upper Peace River Formation that are terminated at their tops by a toplapping or erosional discontinuity. These clinoformal reflections image clean quartz sand that is probably characterized by moderate hydraulic conductivity. This sand could be mapped using ground-penetrating radar methods.

  3. An investigation of dynamic-analysis methods for variable-geometry structures

    NASA Technical Reports Server (NTRS)

    Austin, F.

    1980-01-01

    Selected space structure configurations were reviewed in order to define dynamic analysis problems associated with variable geometry. The dynamics of a beam being constructed from a flexible base and the relocation of the completed beam by rotating the remote manipulator system about the shoulder joint were selected. Equations of motion were formulated in physical coordinates for both of these problems, and FORTRAN programs were developed to generate solutions by numerically integrating the equations. These solutions served as a standard of comparison to gauge the accuracy of approximate solution techniques that were developed and studied. Good control was achieved in both problems. Unstable control system coupling with the system flexibility did not occur. An approximate method was developed for each problem to enable the analyst to investigate variable geometry effects during a short time span using standard fixed geometry programs such as NASTRAN. The average angle and average length techniques are discussed.

  4. Problem Solving in Calculus with Symbolic Geometry and CAS

    ERIC Educational Resources Information Center

    Todd, Philip; Wiechmann, James

    2008-01-01

    Computer algebra systems (CAS) have been around for a number of years, as has dynamic geometry. Symbolic geometry software is new. It bears a superficial similarity to dynamic geometry software, but differs in that problems may be set up involving symbolic variables and constants, and measurements are given as symbolic expressions. Mathematical…

  5. Surface electromyography activity of the rectus abdominis, internal oblique, and external oblique muscles during forced expiration in healthy adults.

    PubMed

    Ito, Kenichi; Nonaka, Koji; Ogaya, Shinya; Ogi, Atsushi; Matsunaka, Chiaki; Horie, Jun

    2016-06-01

    We aimed to characterize rectus abdominis, internal oblique, and external oblique muscle activity in healthy adults under expiratory resistance using surface electromyography. We randomly assigned 42 healthy adult subjects to 3 groups: 30%, 20%, and 10% maximal expiratory intraoral pressure (PEmax). After measuring 100% PEmax and muscle activity during 100% PEmax, the activity and maximum voluntary contraction of each muscle during the assigned experimental condition were measured. At 100% PEmax, the external oblique (p<0.01) and internal oblique (p<0.01) showed significantly elevated activity compared with the rectus abdominis muscle. Furthermore, at 20% and 30% PEmax, the external oblique (p<0.05 and<0.01, respectively) and the internal oblique (p<0.05 and<0.01, respectively) showed significantly elevated activity compared with the rectus abdominis muscle. At 10% PEmax, no significant differences were observed in muscle activity. Although we observed no significant difference between 10% and 20% PEmax, activity during 30% PEmax was significantly greater than during 20% PEmax (external oblique: p<0.05; internal oblique: p<0.01). The abdominal oblique muscles are the most active during forced expiration. Moreover, 30% PEmax is the minimum intensity required to achieve significant, albeit very slight, muscle activity during expiratory resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Comparative anatomy of the extraocular muscles in four Myliobatoidei rays (Batoidea, Myliobatiformes).

    PubMed

    Cunha, Carlo M; Oliveira, Luciano E; Kfoury, José R

    2016-05-01

    Extraocular muscles are classically grouped as four rectus and two oblique muscles. However, their description and potential associations with species behavior are limited. The objective was to characterize extraocular muscles in four Myliobatoidei rays from diverse habitats with divergent behaviors. Heads (10 per species) of Dasyatis hypostigma, Gymnura altavela, Mobula thurstoni and Pteroplatytrygon violacea were decalcified and dissected to characterize and describe extraocular muscles. Principal component analysis (PCA) was used to evaluate relationships between muscle length and species; for P. violacea, D. hypostigma and G. altavela, these were qualitatively and quantitatively consistent with the general pattern of extraocular muscles in vertebrates. In contrast, for M. thurstoni, the two oblique muscles were completely fused and there was a seventh extraocular muscle, named m. lateral rectus β (both were apparently novel findings in this species). There were also significant differences in eye disposition in the chondrocranium. The PCA axis 1 (rectus muscles) and PCA axis 2 (oblique muscles) accounted for 98.47% of data variability. Extraocular muscles had significant differences in length and important anatomical differences among sampled species that facilitated grouping species according to their life history. In conclusion, extraocular muscles are not uniform in all vertebrate species, thereby providing another basis for comparative studies. © 2016 Anatomical Society.

  7. Integral imaging with Fourier-plane recording

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, M.; Barreiro, J. C.; Llavador, A.; Sánchez-Ortiga, E.; Sola-Pikabea, J.; Scrofani, G.; Saavedra, G.

    2017-05-01

    Integral Imaging is well known for its capability of recording both the spatial and the angular information of threedimensional (3D) scenes. Based on such an idea, the plenoptic concept has been developed in the past two decades, and therefore a new camera has been designed with the capacity of capturing the spatial-angular information with a single sensor and after a single shot. However, the classical plenoptic design presents two drawbacks, one is the oblique recording made by external microlenses. Other is loss of information due to diffraction effects. In this contribution report a change in the paradigm and propose the combination of telecentric architecture and Fourier-plane recording. This new capture geometry permits substantial improvements in resolution, depth of field and computation time

  8. Motor mechanisms of vertical fusion in individuals with superior oblique paresis.

    PubMed

    Mudgil, Ananth V; Walker, Mark; Steffen, Heimo; Guyton, David L; Zee, David S

    2002-06-01

    We wanted to determine the mechanisms of motor vertical fusion in patients with superior oblique paresis and to correlate these mechanisms with surgical outcomes. Ten patients with superior oblique paresis underwent 3-axis, bilateral, scleral search coil eye movement recordings. Eye movements associated with fusion were analyzed. Six patients had decompensated congenital superior oblique paresis and 4 had acquired superior oblique paresis. All patients with acquired superior oblique paresis relied predominantly on the vertical rectus muscles for motor fusion. Patients with congenital superior oblique paresis were less uniform in their mechanisms for motor fusion: 2 patients used predominantly the oblique muscles, 2 patients used predominantly the vertical recti, and 2 patients used predominantly the superior oblique in the hyperdeviated eye and the superior rectus in the hypodeviated eye. The last 2 patients developed the largest changes in torsional eye alignment relative to changes in vertical eye alignment and were the only patients to develop symptomatic surgical overcorrections. There are 3 different mechanisms for vertical fusion in individuals with superior oblique paresis, with the predominant mechanism being the vertical recti. A subset of patients with superior oblique paresis uses predominantly the superior oblique muscle in the hyperdeviated paretic eye and the superior rectus muscle in the fellow eye for fusion. This results in intorsion of both eyes, causing a large change in torsional alignment. The consequent cyclodisparity, in addition to the existing vertical deviation, may make fusion difficult. The differing patterns of vertical fusional vergence may have implications for surgical treatment.

  9. Pearson's Correlation between Three Variables; Using Students' Basic Knowledge of Geometry for an Exercise in Mathematical Statistics

    ERIC Educational Resources Information Center

    Vos, Pauline

    2009-01-01

    When studying correlations, how do the three bivariate correlation coefficients between three variables relate? After transforming Pearson's correlation coefficient r into a Euclidean distance, undergraduate students can tackle this problem using their secondary school knowledge of geometry (Pythagoras' theorem and similarity of triangles).…

  10. Variable stator radial turbine

    NASA Technical Reports Server (NTRS)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  11. Electron acceleration by an obliquely propagating electromagnetic wave in the regime of validity of the Fokker-Planck-Kolmogorov approach

    NASA Technical Reports Server (NTRS)

    Hizanidis, Kyriakos; Vlahos, L.; Polymilis, C.

    1989-01-01

    The relativistic motion of an ensemble of electrons in an intense monochromatic electromagnetic wave propagating obliquely in a uniform external magnetic field is studied. The problem is formulated from the viewpoint of Hamiltonian theory and the Fokker-Planck-Kolmogorov approach analyzed by Hizanidis (1989), leading to a one-dimensional diffusive acceleration along paths of constant zeroth-order generalized Hamiltonian. For values of the wave amplitude and the propagating angle inside the analytically predicted stochastic region, the numerical results suggest that the diffusion probes proceeds in stages. In the first stage, the electrons are accelerated to relatively high energies by sampling the first few overlapping resonances one by one. During that stage, the ensemble-average square deviation of the variable involved scales quadratically with time. During the second stage, they scale linearly with time. For much longer times, deviation from linear scaling slowly sets in.

  12. [Power in the periphery of several aspheric eyeglasses for aphakic patients].

    PubMed

    Simonet, P

    1984-01-01

    A special device adapted to a Nikon projection vertexometer permits the power to be measured in the periphery of recent aspheric aphakic lenses. The peripheral power is measured with respect to the vertex sphere. A blended lenticular aspheric lens and three types of zonal aspheric full field lenses are studied, with various base curves on three samples. Four meridians of each lens are evaluated with ocular rotations varying by 5 degrees step up to 35 degrees at least. The results show a variable oblique astigmatism and a high under-correction of the mean oblique power for the Welsh 4 drop. The other zonal aspheric lenses give only a slight improvement of the peripheral powers compared with some conventional aspheric lenses. The Omega lens shows a reasonable correction of off-axis power errors up to 30 degrees. Beyond, the powers variation follows the general characteristics of blended lenticular aspheric lenses.

  13. ON THE TIDAL DISSIPATION OF OBLIQUITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; Lin, D. N. C., E-mail: tami@lpl.arizona.edu, E-mail: lin@ucolick.org

    2013-05-20

    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde, or 90 Degree-Sign orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot Jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.

  14. Reaching to virtual targets: The oblique effect reloaded in 3-D.

    PubMed

    Kaspiris-Rousellis, Christos; Siettos, Constantinos I; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2017-02-20

    Perceiving and reproducing direction of visual stimuli in 2-D space produces the visual oblique effect, which manifests as increased precision in the reproduction of cardinal compared to oblique directions. A second cognitive oblique effect emerges when stimulus information is degraded (such as when reproducing stimuli from memory) and manifests as a systematic distortion where reproduced directions close to the cardinal axes deviate toward the oblique, leading to space expansion at cardinal and contraction at oblique axes. We studied the oblique effect in 3-D using a virtual reality system to present a large number of stimuli, covering the surface of an imaginary half sphere, to which subjects had to reach. We used two conditions, one with no delay (no-memory condition) and one where a three-second delay intervened between stimulus presentation and movement initiation (memory condition). A visual oblique effect was observed for the reproduction of cardinal directions compared to oblique, which did not differ with memory condition. A cognitive oblique effect also emerged, which was significantly larger in the memory compared to the no-memory condition, leading to distortion of directional space with expansion near the cardinal axes and compression near the oblique axes on the hemispherical surface. This effect provides evidence that existing models of 2-D directional space categorization could be extended in the natural 3-D space. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Replicating the Ice-Volume Signal of the Early Pleistocene with a Complex Earth System Model

    NASA Astrophysics Data System (ADS)

    Tabor, C. R.; Poulsen, C. J.; Pollard, D.

    2013-12-01

    Milankovitch theory proposes high-latitude summer insolation intensity paces the ice ages by controlling perennial snow cover amounts (Milankovitch, 1941). According to theory, the ~21 kyr cycle of precession should dominate the ice-volume records since it has the greatest influence on high-latitude summer insolation. Modeling experiments frequently support Milankovitch theory by attributing the majority of Northern Hemisphere high-latitude summer snowmelt to changes in the cycle of precession (e.g. Jackson and Broccoli, 2003). However, ice-volume proxy records, especially those of the Early Pleistocene (2.6-0.8 Ma), display variability with a period of ~41 kyr (Raymo and Lisiecki, 2005), indicative of insolation forcing from obliquity, which has a much smaller influence on summer insolation intensity than precession. Several hypotheses attempt to explain the discrepancies between Milkankovitch theory and the proxy records by invoking phenomena such as insolation gradients (Raymo and Nisancioglu, 2003), hemispheric offset (Raymo et al., 2006; Lee and Poulsen, 2009), and integrated summer energy (Huybers, 2006); however, all of these hypotheses contain caveats (Ruddiman, 2006) and have yet to be supported by modeling studies that use a complex GCM. To explore potential solutions to this '41 kyr problem,' we use an Earth system model composed of the GENESIS GCM and Land Surface model, the BIOME4 vegetation model, and the Pennsylvania State ice-sheet model. Using an asynchronous coupling technique, we run four idealized transient combinations of obliquity and precession, representing the orbital extremes of the Pleistocene (Berger and Loutre, 1991). Each experiment is run through several complete orbital cycles with a dynamic ice domain spanning North America and Greenland, and fixed preindustrial greenhouse-gas concentrations. For all orbital configurations, model results produce greater ice-volume spectral power at the frequency of obliquity despite significantly greater summer insolation variability from the cycle of precession. We find obliquity enhances the climate sensitivity to direct insolation forcing through positive high-latitude surface feedbacks between vegetation, sea-ice, and mean-annual insolation while the seasonal dichotomy of precessional forcing leads to climate counterbalancing that dampens the annual ice-volume response. Longer cycle duration further amplifies the ice-volume response to obliquity. Our results help remedy the discrepancies between Milankovitch theory and the ice-volume proxy records. However, summer insolation intensity remains the most important factor for determining ice-volume rate-of-change in our experiments. Consequently, we still find a significant ice-volume response to precession, which is inconsistent with the Early Pleistocene records. The disconnect is likely attributable to climate phenomena not accounted for in the model or our choice of initial conditions, which are poorly constrained for the Early Pleistocene and ice-sheet modeling in general. Future work will examine the importance of initial climate conditions on ice-volume response.

  16. Digital Oblique Remote Ionospheric Sensing (DORIS) Program Development

    DTIC Science & Technology

    1992-04-01

    waveforms. A new with the ARTIST software (Reinisch and Iluang. autoscaling technique for oblique ionograms 1983, Gamache et al., 1985) which is...development and performance of a complete oblique ionogram autoscaling and inversion algorithm is presented. The inver.i-,n algorithm uses a three...OTIH radar. 14. SUBJECT TERMS 15. NUMBER OF PAGES Oblique Propagation; Oblique lonogram Autoscaling ; i Electron Density Profile Inversion; Simulated 16

  17. Variable Geometry Aircraft Pylon Structure and Related Operation Techniques

    NASA Technical Reports Server (NTRS)

    Shah, Parthiv N. (Inventor)

    2014-01-01

    An aircraft control structure can be utilized for purposes of drag management, noise control, or aircraft flight maneuvering. The control structure includes a high pressure engine nozzle, such as a bypass nozzle or a core nozzle of a turbofan engine. The nozzle exhausts a high pressure fluid stream, which can be swirled using a deployable swirl vane architecture. The control structure also includes a variable geometry pylon configured to be coupled between the nozzle and the aircraft. The variable geometry pylon has a moveable pylon section that can be deployed into a deflected state to maintain or alter a swirling fluid stream (when the swirl vane architecture is deployed) for drag management purposes, or to assist in the performance of aircraft flight maneuvers.

  18. Methods of Astrodynamics, a Computer Approach

    DTIC Science & Technology

    1991-02-14

    Number of days from 1 Jan 2000 I clpLong - Ecliptic longitude I Obliquity - mean Obliquity of the Ecliptic Iconstants I Pi I TwoPi - I Rad -Degrees per...days from 1 ian 2000 * EclpLong - Ecliptic longitude * Obliquity - Mean Obliquity of the Ecliptic * Constants * Pi 3.14159265358979 * TwoPi...3.14159265358979; TwoPi: Extended = 6.28318530717959; Rad :Extended =57.29577951308230; VAR MeanLong, MeanAnomaly, EcipLong, Obliquity , N :Extended; BEGIN

  19. Impact Of The Material Variability On The Stamping Process: Numerical And Analytical Analysis

    NASA Astrophysics Data System (ADS)

    Ledoux, Yann; Sergent, Alain; Arrieux, Robert

    2007-05-01

    The finite element simulation is a very useful tool in the deep drawing industry. It is used more particularly for the development and the validation of new stamping tools. It allows to decrease cost and time for the tooling design and set up. But one of the most important difficulties to have a good agreement between the simulation and the real process comes from the definition of the numerical conditions (mesh, punch travel speed, limit conditions,…) and the parameters which model the material behavior. Indeed, in press shop, when the sheet set changes, often a variation of the formed part geometry is observed according to the variability of the material properties between these different sets. This last parameter represents probably one of the main source of process deviation when the process is set up. That's why it is important to study the influence of material data variation on the geometry of a classical stamped part. The chosen geometry is an omega shaped part because of its simplicity and it is representative one in the automotive industry (car body reinforcement). Moreover, it shows important springback deviations. An isotropic behaviour law is assumed. The impact of the statistical deviation of the three law coefficients characterizing the material and the friction coefficient around their nominal values is tested. A Gaussian distribution is supposed and their impact on the geometry variation is studied by FE simulation. An other approach is envisaged consisting in modeling the process variability by a mathematical model and then, in function of the input parameters variability, it is proposed to define an analytical model which leads to find the part geometry variability around the nominal shape. These two approaches allow to predict the process capability as a function of the material parameter variability.

  20. Probabilistic Structural Analysis of SSME Turbopump Blades: Probabilistic Geometry Effects

    NASA Technical Reports Server (NTRS)

    Nagpal, V. K.

    1985-01-01

    A probabilistic study was initiated to evaluate the precisions of the geometric and material properties tolerances on the structural response of turbopump blades. To complete this study, a number of important probabilistic variables were identified which are conceived to affect the structural response of the blade. In addition, a methodology was developed to statistically quantify the influence of these probabilistic variables in an optimized way. The identified variables include random geometric and material properties perturbations, different loadings and a probabilistic combination of these loadings. Influences of these probabilistic variables are planned to be quantified by evaluating the blade structural response. Studies of the geometric perturbations were conducted for a flat plate geometry as well as for a space shuttle main engine blade geometry using a special purpose code which uses the finite element approach. Analyses indicate that the variances of the perturbations about given mean values have significant influence on the response.

  1. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging

    PubMed Central

    Hu, Yue-Houng; Zhao, Wei

    2014-01-01

    Purpose: Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (dSe) of the a-Se layer. Increasing the dSe will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. Methods: In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of dSe on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d′, which is used as a figure-of-merit to determine the total effect of increasing dSe for CE-DM and CE-DBT. Results: The results of the CLSM show that increasing dSe causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a-Se introduces additional image blur. The reduced MTF and DQE at high spatial frequencies lead to reduced two-dimensional d′. These losses in projection image resolution may subsequently result in a decrease in the 3D d′, but the degree of which is largely dependent on the DBT reconstruction algorithm. For a filtered backprojection (FBP) algorithm with spectral apodization and slice-thickness filters, which dominate the blur for reconstructed images at oblique angles, the effect of oblique entry of x-rays on 3D d′ is minimal. Thus, increasing dSe results in an improvement in d′ for both CE-DM and CE-DBT with typical FBP reconstruction parameters. Conclusions: Increased dSe improves CE breast imaging performance by increasing QDE of detectors at higher energies, e.g., 49 kVp. Although there is additional blur in the oblique angled projections of a DBT scan, the overall 3D d′ for DBT is not degraded because the dominant source blur at these angles results from the reconstruction filters of the employed FBP algorithm. PMID:25370637

  2. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging.

    PubMed

    Hu, Yue-Houng; Zhao, Wei

    2014-11-01

    Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (dSe) of the a-Se layer. Increasing the dSe will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of dSe on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d', which is used as a figure-of-merit to determine the total effect of increasing dSe for CE-DM and CE-DBT. The results of the CLSM show that increasing dSe causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a-Se introduces additional image blur. The reduced MTF and DQE at high spatial frequencies lead to reduced two-dimensional d'. These losses in projection image resolution may subsequently result in a decrease in the 3D d', but the degree of which is largely dependent on the DBT reconstruction algorithm. For a filtered backprojection (FBP) algorithm with spectral apodization and slice-thickness filters, which dominate the blur for reconstructed images at oblique angles, the effect of oblique entry of x-rays on 3D d' is minimal. Thus, increasing dSe results in an improvement in d' for both CE-DM and CE-DBT with typical FBP reconstruction parameters. Increased dSe improves CE breast imaging performance by increasing QDE of detectors at higher energies, e.g., 49 kVp. Although there is additional blur in the oblique angled projections of a DBT scan, the overall 3D d' for DBT is not degraded because the dominant source blur at these angles results from the reconstruction filters of the employed FBP algorithm.

  3. Micro-Ramps for External Compression Low-Boom Inlets

    NASA Technical Reports Server (NTRS)

    Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.

    2010-01-01

    The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.

  4. Microseismicity in Southern South Island, New Zealand: Implications for the Mechanism of Crustal Deformation Adjacent to a Major Continental Transform

    NASA Astrophysics Data System (ADS)

    Warren-Smith, Emily; Lamb, Simon; Stern, Tim A.; Smith, Euan

    2017-11-01

    Shallow (<25 km), diffuse crustal seismicity occurs in a zone up to 150 km wide adjacent to the southern Alpine Fault, New Zealand, as a consequence of distributed shear and thickening in the obliquely convergent Australian-Pacific plate boundary zone. It has recently been proposed that continental convergence here is accommodated by oblique slip on a low-angle detachment that underlies the region, and as such, forms a previously unrecognized mode of oblique continental convergence. We test this model using microseismicity, presenting a new, 15 month high-resolution microearthquake catalog for the Southern Lakes and northern Fiordland regions adjacent to the Alpine Fault. We determine the spatial distribution, moment release, and style of microearthquakes and show that seismicity in the continental lithosphere is predominantly shallower than 20 km, in a zone up to 150 km wide, but less frequent deeper microseismicity extending into the mantle, at depths of up to 100 km is also observed. The geometry of the subducted oceanic Australian plate is well imaged, with a well-defined Benioff zone to depths of 150 km. In detail, the depth of continental microseismicity shows considerable variation, with no clear link with major active surface faults, but rather represents diffuse cracking in response to the ambient stress release. The moment release rate is 0.1% of that required to accommodate relative plate convergence, and the azimuth of the principal horizontal axis of contraction accommodated by microseismicity is 120°, 15-20° clockwise of the horizontal axis of contractional strain rate observed geodetically. Thus, short-term microseismicity, independent of knowledge of intermittent large-magnitude earthquakes, may not be a good guide to the rate and orientation of long-term deformation but is an indicator of the instantaneous state of stress and potential distribution of finite deformation. We show that both the horizontal and vertical spatial distribution of microseismicity can be explained in terms of a low-angle detachment model.

  5. Obliquity-paced Pliocene West Antarctic ice sheet oscillations

    USGS Publications Warehouse

    Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; Carter, L.; DeConto, R.; Huybers, P.; McKay, R.; Pollard, D.; Ross, J.; Winter, D.; Barrett, P.; Browne, G.; Cody, R.; Cowan, E.; Crampton, J.; Dunbar, G.; Dunbar, N.; Florindo, F.; Gebhardt, C.; Graham, I.; Hannah, M.; Hansaraj, D.; Harwood, D.; Helling, D.; Henrys, S.; Hinnov, L.; Kuhn, G.; Kyle, P.; Laufer, A.; Maffioli, P.; Magens, D.; Mandernack, K.; McIntosh, W.; Millan, C.; Morin, R.; Ohneiser, C.; Paulsen, T.; Persico, D.; Raine, I.; Reed, J.; Riesselman, C.; Sagnotti, L.; Schmitt, D.; Sjunneskog, C.; Strong, P.; Taviani, M.; Vogel, S.; Wilch, T.; Williams, T.

    2009-01-01

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages1, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles2. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch (5–3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming3. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to 3 °C warmer than today4 and atmospheric CO2 concentration was as high as 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model7 that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt8 under conditions of elevated CO2.

  6. Analogue modelling of inclined, brittle-ductile transpression: Testing analytical models through natural shear zones (external Betics)

    NASA Astrophysics Data System (ADS)

    Barcos, L.; Díaz-Azpiroz, M.; Balanyá, J. C.; Expósito, I.; Jiménez-Bonilla, A.; Faccenna, C.

    2016-07-01

    The combination of analytical and analogue models gives new opportunities to better understand the kinematic parameters controlling the evolution of transpression zones. In this work, we carried out a set of analogue models using the kinematic parameters of transpressional deformation obtained by applying a general triclinic transpression analytical model to a tabular-shaped shear zone in the external Betic Chain (Torcal de Antequera massif). According to the results of the analytical model, we used two oblique convergence angles to reproduce the main structural and kinematic features of structural domains observed within the Torcal de Antequera massif (α = 15° for the outer domains and α = 30° for the inner domain). Two parallel inclined backstops (one fixed and the other mobile) reproduce the geometry of the shear zone walls of the natural case. Additionally, we applied digital particle image velocimetry (PIV) method to calculate the velocity field of the incremental deformation. Our results suggest that the spatial distribution of the main structures observed in the Torcal de Antequera massif reflects different modes of strain partitioning and strain localization between two domain types, which are related to the variation in the oblique convergence angle and the presence of steep planar velocity - and rheological - discontinuities (the shear zone walls in the natural case). In the 15° model, strain partitioning is simple and strain localization is high: a single narrow shear zone is developed close and parallel to the fixed backstop, bounded by strike-slip faults and internally deformed by R and P shears. In the 30° model, strain partitioning is strong, generating regularly spaced oblique-to-the backstops thrusts and strike-slip faults. At final stages of the 30° experiment, deformation affects the entire model box. Our results show that the application of analytical modelling to natural transpressive zones related to upper crustal deformation facilitates to constrain the geometrical parameters of analogue models.

  7. Obliquity-paced Pliocene West Antarctic ice sheet oscillations.

    PubMed

    Naish, T; Powell, R; Levy, R; Wilson, G; Scherer, R; Talarico, F; Krissek, L; Niessen, F; Pompilio, M; Wilson, T; Carter, L; DeConto, R; Huybers, P; McKay, R; Pollard, D; Ross, J; Winter, D; Barrett, P; Browne, G; Cody, R; Cowan, E; Crampton, J; Dunbar, G; Dunbar, N; Florindo, F; Gebhardt, C; Graham, I; Hannah, M; Hansaraj, D; Harwood, D; Helling, D; Henrys, S; Hinnov, L; Kuhn, G; Kyle, P; Läufer, A; Maffioli, P; Magens, D; Mandernack, K; McIntosh, W; Millan, C; Morin, R; Ohneiser, C; Paulsen, T; Persico, D; Raine, I; Reed, J; Riesselman, C; Sagnotti, L; Schmitt, D; Sjunneskog, C; Strong, P; Taviani, M; Vogel, S; Wilch, T; Williams, T

    2009-03-19

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch ( approximately 5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, approximately 40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to approximately 3 degrees C warmer than today and atmospheric CO(2) concentration was as high as approximately 400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO(2).

  8. Effect of squeeze film damper land geometry on damper performance

    NASA Astrophysics Data System (ADS)

    Wang, Y. H.; Hahn, E. J.

    1994-04-01

    Variable axial land geometry dampers can significantly alter the unbalance response, and in particular, the likelihood of undesirable jump behavior, or circular orbit-type squeeze film dampers. Assuming end feed, the pressure distribution, the fluid film forces, and the stiffness and damping coefficients are obtained for such variable axial and geometry dampers, as well as the jump-up propensity for vertical squeeze film damped rigid rotors. It is shown that variable land geometry dampers can reduce the variation of stiffness and damping coefficients, thereby reducing the degree of damper force non-linearity, and presumably reducing the likelihood of undesirable bistable operation. However, it is also found that regardless of unbalance and regardless of the depth, width or shape of the profile, parallel land dampers are least likely to experience jump-up to undesirable operation modes. These conflicting conclusions may be accounted for by the reduction in damping. They will need to be qualified for practical dampers which normally have oil hole feed rather than end feed.

  9. Macroscopic and microscopic analysis of the thumb carpometacarpal ligaments: a cadaveric study of ligament anatomy and histology.

    PubMed

    Ladd, Amy L; Lee, Julia; Hagert, Elisabet

    2012-08-15

    Stability and mobility represent the paradoxical demands of the human thumb carpometacarpal joint, yet the structural origin of each functional demand is poorly defined. As many as sixteen and as few as four ligaments have been described as primary stabilizers, but controversy exists as to which ligaments are most important. We hypothesized that a comparative macroscopic and microscopic analysis of the ligaments of the thumb carpometacarpal joint would further define their role in joint stability. Thirty cadaveric hands (ten fresh-frozen and twenty embalmed) from nineteen cadavers (eight female and eleven male; average age at the time of death, seventy-six years) were dissected, and the supporting ligaments of the thumb carpometacarpal joint were identified. Ligament width, length, and thickness were recorded for morphometric analysis and were compared with use of the Student t test. The dorsal and volar ligaments were excised from the fresh-frozen specimens and were stained with use of a triple-staining immunofluorescent technique and underwent semiquantitative analysis of sensory innervation; half of these specimens were additionally analyzed for histomorphometric data. Mixed-effects linear regression was used to estimate differences between ligaments. Seven principal ligaments of the thumb carpometacarpal joint were identified: three dorsal deltoid-shaped ligaments (dorsal radial, dorsal central, posterior oblique), two volar ligaments (anterior oblique and ulnar collateral), and two ulnar ligaments (dorsal trapeziometacarpal and intermetacarpal). The dorsal ligaments were significantly thicker (p < 0.001) than the volar ligaments, with a significantly greater cellularity and greater sensory innervation compared with the anterior oblique ligament (p < 0.001). The anterior oblique ligament was consistently a thin structure with a histologic appearance of capsular tissue with low cellularity. The dorsal deltoid ligament complex is uniformly stout and robust; this ligament complex is the thickest morphometrically, has the highest cellularity histologically, and shows the greatest degree of sensory nerve endings. The hypocellular anterior oblique ligament is thin, is variable in its location, and is more structurally consistent with a capsular structure than a proper ligament.

  10. EPICA Dome C deuterium record of orbital and millennial Antarctic climate variability over the last 800 000 years

    NASA Astrophysics Data System (ADS)

    Masson-Delmotte, V.

    2006-12-01

    The detailed deuterium record of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from East Antarctica has been measured at a 55 cm resolution down to a depth of 3260 m, covering ~800 000 years. Several lines of evidence support a reliable use of deuterium fluctuations in central Antarctic ice to reconstruct past temperature changes. The magnitude of the temperature fluctuations range between -9°C and +5°C compared to the late Holocene level. At the orbital scale, the imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and V published in 2004 corresponds to a phasing of the obliquity signals. A relationship is observed between an index of interglacial intensity and the cumulative annual mean insolation at high latitudes, mainly as a result of the modulation of amplitude of obliquity fluctuations. We suggest that this long term changes in obliquity may be involved in the change in magnitude of glacial-interglacial fluctuations between the first and second halves of the EPICA Dome C record. At the high frequency scale, the detailed EPICA Dome C deuterium record clearly shows a one-to-one correspondence between each Greenland ice core Dansgaard-Oeschger event and their smoothed Antarctic counterparts. A methodology to detect objectively rapid events from the EPICA Dome C records is developed and applied for the earlier glacial periods, suggesting a stable magnitude and pacing of Antarctic rapid events along the EPICA Dome C record.

  11. Improving Ms Estimates by Calibrating Variable-Period Magnitude Scales at Regional Distances

    DTIC Science & Technology

    2008-09-01

    TF), or oblique - slip variations of normal and thrust faults using the Zoback (1992) classification scheme. For normal faults , 2008 Monitoring...between the observed and Ms-predicted Mw have a definable faulting mechanism effect, especially when strike- slip events are compared to those with...between true and Ms-predicted Mw have a definable faulting mechanism effect, especially when strike- slip events are compared to those with other

  12. Fuel Tank Non-Nuclear Vulnerability Test Program

    DTIC Science & Technology

    1975-02-01

    configurations and structures , for all the threat velocities and obli~quities, alid for all the different fuel tank conditions. This is very unrealistic and can...of operational aircraft. It is, ot. course, imtpractical to simiul~ate all the potential conditions, threat variables, structural materials, and...simulate the structural members of the aircraft to which the aircraft skin and fuel tank walls are attached. The effect that paint, on the aircraft

  13. An Analysis of the Accessibility of Earth-Approaching Asteroids.

    DTIC Science & Technology

    1985-12-01

    coordinate system. Outputs are the X,Y,Z coordinates of the sun in the geocentric-equatorial coordinate system. The obliquity of the ecliptic is a variable...All positions and velocities are calculated in heliocentric- ecliptic coordinates thus requiring no transformations into unusual frames of reference...tion vectors of the departure and arrival planets in the heliocentric- ecliptic reference frame. ,\\. , V I(W() - / n (16) %: ~22% .b The angle between

  14. Oblique basin inversion and strain partitioning in back-arc context: example from the Moroccan Alboran Margin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Lafosse, Manfred; d'Acremont, Elia; Rabaute, Alain; Tomas Vazquez, Juan; Estrada, Ferran; Galindo-Zaldivar, Jesús; Ercilla, Gemma; Alonso, Belén; Gorini, Christian

    2017-04-01

    The Neogene and Quaternary directions of extension recorded in the Mediterranean back-arc basins are oblique to the Africa-Eurasia convergence direction (Jolivet and Faccenna, 2000). In those basins, particularly in the Alboran basin, strike-slip tectonics is favored by the obliquity of coeval extension and compressional deformations, first with a transtensive style that switches to a transpressive mode during the Quaternary. Northwards the Betic Cordillera and southward, the Rifian and the Atlas belts bound the Alboran domain. Transtensional and transpressional episodes deform the Alboran domain and create rotating micro-blocks delimited by a major left lateral NE-SW Miocene transtensional shear zone, a.k.a. the Trans Alboran Shear Zone (TASZ). We present new evidences of strain partitioning affecting the South Alboran Margin (Western Mediterranean) during the end of the Neogene and Quaternary. We use seismic data and high-resolution bathymetry (EM710 multibeam echo sounder) from the MARLBORO-1 (12-channel streamer and Air Gun source), SARAS (single channel Sparker and TOPAS systems) and MARLBORO-2 (single channel Sparker source) surveys. The pre-Messinian deformation and the geometry of the Messinian Erosional Surface (MES) and Plio-Quaternary deposits in the deep basin, developed during a regional extensional back-arc setting, evidence late Miocene to Quaternary folding and left-lateral shearing along the South Alboran Ridge. Around 2.58-1.81 My, the sedimentary shelves of volcanic edifices near the Boudinar and Nekor peripheral sub-basins highlight localized subsidence. At present-day, the NNE-SSW left-lateral Al-Idrissi shear zone delimits westwards the youngest micro-block boundary. Non-cylindrical hinge axes of Pliocene folds are interpreted as evidences of a wrench component of the deformation, which seems maximum to the northern flank of the South Alboran Ridge and decreases toward the Nekor Fault. The observed basin geometries and inversion process could then be controlled by slip boundary conditions and structural inheritance from the older transtensive stage. A gradual disorientation and rotation of the Miocene TASZ could explain the gradients in the wrench component of deformation and the switch from Miocene TASZ to NNE-SSW striking fault around the Gelasian. The present-day discontinuous strain partitioning supposes: (1) a mechanical coupling between Alboran and Rif-Atlasic units that favors a perpendicular shortening and onshore rock uplifting and (2) decoupling boundaries into the Alboran block characterized by the inherited TASZ. In summary, we propose that the style of the crustal deformation of the overriding Alboran domain can be better explained by micro-block deformation under continuous convergence than by a change in the convergence direction.

  15. Structural and Trajectory Control of Variable Geometry Planetary Entry Systems

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; Kwok, Kawai; Pellegrino, Sergio

    2009-01-01

    The results presented in this paper apply to a generic vehicle entering a planetary atmosphere which makes use of a variable geometry change to modulate the heat, drag, and acceleration loads. Two structural concepts for implementing the cone angle variation, namely a segmented shell and a corrugated shell, are presented. A structural analysis of these proposed structural configuration shows that the stress levels are tolerable during entry. The analytic expressions of the longitudinal aerodynamic coefficients are also derived, and guidance laws that track reference heat flux, drag, and aerodynamic acceleration loads are also proposed. These guidance laws have been tested in an integrated simulation environment, and the results indicate that use of variable geometry is feasible to track specific profiles of dynamic load conditions during reentry.

  16. Analytic reflected light curves for exoplanets

    NASA Astrophysics Data System (ADS)

    Haggard, Hal M.; Cowan, Nicolas B.

    2018-07-01

    The disc-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motions coupled with an inhomogeneous albedo map. We have previously derived analytic reflected light curves for spherical harmonic albedo maps in the special case of a synchronously rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard). In this paper, we present analytic reflected light curves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_ l^m-maps). In particular, we use Wigner D-matrices to express an harmonic light curve for an arbitrary viewing geometry as a non-linear combination of harmonic light curves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected light curves, as well as fast calculation of light curves for mapping exoplanets based on time-resolved photometry. To these ends, we make available Exoplanet Analytic Reflected Lightcurves, a simple open-source code that allows rapid computation of reflected light curves.

  17. Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Yang, Yue; Wang, Liping, E-mail: liping.wang@asu.edu

    2014-08-18

    We numerically demonstrate a switchable metamaterial absorber/emitter by thermally turning on or off the excitation of magnetic resonance upon the phase transition of vanadium dioxide (VO{sub 2}). Perfect absorption peak exists around the wavelength of 5 μm when the excitation of magnetic resonance is supported with the insulating VO{sub 2} spacer layer. The wavelength-selective absorption is switched off when the magnetic resonance is disabled with metallic VO{sub 2} that shorts the top and bottom metallic structures. The resonance wavelength can be tuned with different geometry, and the switchable metamaterial exhibits diffuse behaviors at oblique angles. The results would facilitate the designmore » of switchable metamaterials for active control in energy and sensing applications.« less

  18. The Astronomical Forcing of Climate Change: Forcings and Feedbacks

    NASA Astrophysics Data System (ADS)

    Erb, M. P.; Broccoli, A. J.; Clement, A. C.

    2010-12-01

    Understanding the role that orbital forcing played in driving climate change over the Pleistocene has been a matter of ongoing research. While it is undeniable that variations in Earth’s orbit result in changes in the seasonal and latitudinal distribution of insolation, the specifics of how this forcing leads to the climate changes seen in the paleo record are not fully understood. To research this further, climate simulations have been conducted with the GFDL CM2.1, a coupled atmosphere-ocean GCM. Two simulations represent the extremes of obliquity during the past 600 kyr and four others show key times in the precessional cycle. All non-orbital variables are set to preindustrial levels to isolate the effects of astronomical forcing alone. It is expected that feedbacks should play a large role in dictating climate change, so to investigate this, the so-called “kernel method” is used to calculate the lapse rate, water vapor, albedo, and cloud feedbacks. Preliminary results of these experiments confirm that feedbacks are important in explaining the nature and, in places, even the sign of climate response to orbital forcing. In the case of low obliquity, for instance, a combination of climate feedbacks lead to global cooling in spite of zero global-average top of atmosphere insolation change. Feedbacks will be analyzed in the obliquity and precession experiments so that the role of feedbacks in contributing to climate change may be better understood.

  19. Associations between orthopaedic disturbances and unilateral crossbite in children with asymmetry of the upper cervical spine.

    PubMed

    Korbmacher, Heike; Koch, L; Eggers-Stroeder, G; Kahl-Nieke, B

    2007-02-01

    The objective of the present study was to detect possible associations between unilateral crossbite and orthopaedic disturbances in children with asymmetry of the upper cervical spine. Fifty-five children aged 3-10 years (22 girls and 33 boys) with a unilateral crossbite and 55 gender- and age-matched children with a symmetric occlusion but no crossbite, who served as the control group, were selected from an orthopaedic cohort of 240 patients. In all children, asymmetry of the upper cervical region was confirmed by radiographs and palpation. The following orthopaedic aspects were investigated: oblique shoulder and pelvis, scoliosis, functional leg length difference, and laxity of ligaments of the foot. The differences between the groups were analysed by means of an unpaired t-test. An increased occurrence of orthopaedic parameters in the frontal plane was observed in children with a unilateral malocclusion. A unilateral crossbite was not necessarily combined with a pathological orthopaedic variable, but statistically, children with a unilateral malocclusion showed more often an oblique shoulder (P = 0.004), scoliosis (P = 0.04), an oblique pelvis (P = 0.007), and a functional leg length difference (P = 0.002) than children with symmetry. The results suggest that a unilateral crossbite in children with asymmetry of the upper cervical spine is associated with orthopaedic disturbances. There is no evidence of a causal link.

  20. Separation of O/X Polarization Modes on Oblique Ionospheric Soundings

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Cervera, M. A.; Pederick, L. H.; Quinn, A. D.

    2017-12-01

    The oblique-incidence sounder (OIS) is a well-established instrument for determining the state of the ionosphere, with several advantages over vertical-incidence sounders (VIS). However, the processing and interpretation of OIS ionograms is more complicated than that of VIS ionograms. Due to the Earth's magnetic field, the ionosphere is birefringent at radio frequencies and a VIS or OIS will typically see two distinct ionospheric returns, known as the O and X modes. The separation of these two modes on a VIS, using a polarimetric receive antenna, is a well-established technique. However, this process is more complicated on an OIS due to a variable separation in the phase difference between the two modes, as measured between the two arms of a polarimetric antenna. Using a polarimetric antenna that can be rotated and tilted, we show that this variation in phase separation within an ionogram is caused by the variation in incidence angle, with some configurations leading to greater variation in phase separation. We then develop an algorithm for separating O and X modes in oblique ionograms that can account for the variation in phase separation, and we demonstrate successful separation even in relatively difficult cases. The variation in phase separation can also be exploited to estimate the incident elevation, a technique which may be useful for other applications of HF radio.

  1. An analysis of penetration and ricochet phenomena in oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.

    1988-01-01

    An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.

  2. The Oblique Orbit of WASP-107b from K2 Photometry

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.

    2017-05-01

    Observations of nine transits of WASP-107 during the K2 mission reveal three separate occasions when the planet crossed in front of a starspot. The data confirm the stellar rotation period to be 17 days—approximately three times the planet’s orbital period—and suggest that large spots persist for at least one full rotation. If the star had a low obliquity, at least two additional spot crossings should have been observed. They were not observed, giving evidence for a high obliquity. We use a simple geometric model to show that the obliquity is likely in the range 40°-140°, I.e., both spin-orbit alignment and anti-alignment can be ruled out. WASP-107 thereby joins the small collection of relatively low-mass stars with a high obliquity. Most such stars have been observed to have low obliquities; all of the exceptions, including WASP-107, involve planets with relatively wide orbits (“warm Jupiters,” with {a}{{\\min }}/{R}\\star ≳ 8). This demonstrates a connection between stellar obliquity and planet properties, in contradiction to some theories for obliquity excitation.

  3. Flexibility and fatigue evaluation of oblique as compared with anterior lumbar interbody cages with integrated endplate fixation.

    PubMed

    Freeman, Andrew L; Camisa, William J; Buttermann, Glenn R; Malcolm, James R

    2016-01-01

    This study was undertaken to quantify the in vitro range of motion (ROM) of oblique as compared with anterior lumbar interbody devices, pullout resistance, and subsidence in fatigue. Anterior and oblique cages with integrated plate fixation (IPF) were tested using lumbar motion segments. Flexibility tests were conducted on the intact segments, cage, cage + IPF, and cage + IPF + pedicle screws (6 anterior, 7 oblique). Pullout tests were then performed on the cage + IPF. Fatigue testing was conducted on the cage + IPF specimens for 30,000 cycles. No ROM differences were observed in any test group between anterior and oblique cage constructs. The greatest reduction in ROM was with supplemental pedicle screw fixation. Peak pullout forces were 637 ± 192 N and 651 ± 127 N for the anterior and oblique implants, respectively. The median cage subsidence was 0.8 mm and 1.4 mm for the anterior and oblique cages, respectively. Anterior and oblique cages similarly reduced ROM in flexibility testing, and the integrated fixation prevented device displacement. Subsidence was minimal during fatigue testing, most of which occurred in the first 2500 cycles.

  4. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei

    2014-11-01

    In this study, we present a new method for simulating the 3-D dynamic rupture process occurring on a non-planar fault. The method is based on the curved-grid finite-difference method (CG-FDM) proposed by Zhang & Chen and Zhang et al. to simulate the propagation of seismic waves in media with arbitrary irregular surface topography. While keeping the advantages of conventional FDM, that is computational efficiency and easy implementation, the CG-FDM also is flexible in modelling the complex fault model by using general curvilinear grids, and thus is able to model the rupture dynamics of a fault with complex geometry, such as oblique dipping fault, non-planar fault, fault with step-over, fault branching, even if irregular topography exists. The accuracy and robustness of this new method have been validated by comparing with the previous results of Day et al., and benchmarks for rupture dynamics simulations. Finally, two simulations of rupture dynamics with complex fault geometry, that is a non-planar fault and a fault rupturing a free surface with topography, are presented. A very interesting phenomenon was observed that topography can weaken the tendency for supershear transition to occur when rupture breaks out at a free surface. Undoubtedly, this new method provides an effective, at least an alternative, tool to simulate the rupture dynamics of a complex non-planar fault, and can be applied to model the rupture dynamics of a real earthquake with complex geometry.

  5. Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Williams, G. Grant; Leonard, Douglas C.; Smith, Paul S.; Filippenko, Alexei V.; Smith, Nathan; Hoffman, Jennifer L.; Huk, Leah; Clubb, Kelsey I.; Silverman, Jeffrey M.; Cenko, S. Bradley; Milne, Peter; Gal-Yam, Avishay; Ben-Ami, Sagi

    2015-11-01

    We present seven epochs of spectropolarimetry of the Type IIb supernova (SN IIb) 2011dh in M51, spanning 86 d of its evolution. The first epoch was obtained 9 d after the explosion, when the photosphere was still in the depleted hydrogen layer of the stripped-envelope progenitor. Continuum polarization is securely detected at the level of P ≈ 0.5 per cent through day 14 and appears to diminish by day 30, which is different from the prevailing trends suggested by studies of other core-collapse SNe. Time-variable modulations in P and position angle are detected across P-Cygni line features. H α and He I polarization peak after 30 d and exhibit position angles roughly aligned with the earlier continuum, while O I and Ca II appear to be geometrically distinct. We discuss several possibilities to explain the evolution of the continuum and line polarization, including the potential effects of a tidally deformed progenitor star, aspherical radioactive heating by fast-rising plumes of 56Ni from the core, oblique shock breakout, or scattering by circumstellar material. While these possibilities are plausible and guided by theoretical expectations, they are not unique solutions to the data. The construction of more detailed hydrodynamic and radiative-transfer models that incorporate complex aspherical geometries will be required to further elucidate the nature of the polarized radiation from SN 2011dh and other SNe IIb.

  6. Rotation of a Moonless Earth

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  7. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    NASA Astrophysics Data System (ADS)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  8. Strike-Slip Fault Patterns on Europa: Obliquity or Polar Wander?

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Manga, Michael

    2011-01-01

    Variations in diurnal tidal stress due to Europa's eccentric orbit have been considered as the driver of strike-slip motion along pre-existing faults, but obliquity and physical libration have not been taken into account. The first objective of this work is to examine the effects of obliquity on the predicted global pattern of fault slip directions based on a tidal-tectonic formation model. Our second objective is to test the hypothesis that incorporating obliquity can reconcile theory and observations without requiring polar wander, which was previously invoked to explain the mismatch found between the slip directions of 192 faults on Europa and the global pattern predicted using the eccentricity-only model. We compute predictions for individual, observed faults at their current latitude, longitude, and azimuth with four different tidal models: eccentricity only, eccentricity plus obliquity, eccentricity plus physical libration, and a combination of all three effects. We then determine whether longitude migration, presumably due to non-synchronous rotation, is indicated in observed faults by repeating the comparisons with and without obliquity, this time also allowing longitude translation. We find that a tidal model including an obliquity of 1.2?, along with longitude migration, can predict the slip directions of all observed features in the survey. However, all but four faults can be fit with only 1? of obliquity so the value we find may represent the maximum departure from a lower time-averaged obliquity value. Adding physical libration to the obliquity model improves the accuracy of predictions at the current locations of the faults, but fails to predict the slip directions of six faults and requires additional degrees of freedom. The obliquity model with longitude migration is therefore our preferred model. Although the polar wander interpretation cannot be ruled out from these results alone, the obliquity model accounts for all observations with a value consistent with theoretical expectations and cycloid modeling.

  9. Oblique Sagittal Images Prevent Underestimation of the Neuroforaminal Stenosis Grade Caused by Disc Herniation in Cervical Spine MRI.

    PubMed

    Kintzelé, Laurent; Rehnitz, Christoph; Kauczor, Hans-Ulrich; Weber, Marc-André

    2018-06-06

     To identify whether standard sagittal MRI images result in underestimation of the neuroforaminal stenosis grade compared to oblique sagittal MRI images in patients with cervical spine disc herniation.  74 patients with a total of 104 cervical disc herniations compromising the corresponding nerve root were evaluated. Neuroforaminal stenosis grades were evaluated in standard and oblique sagittal images by one senior and one resident radiologist experienced in musculoskeletal imaging. Oblique images were angled 30° towards the standard sagittal plane. Neuroforaminal stenosis grades were classified from 0 (no stenosis) to 3 (high grade stenosis).  Average neuroforaminal stenosis grades of both readers were significantly lower in standard compared to oblique sagittal images (p < 0.001). For 47.1 % of the cases, one or both readers reported a stenosis grade, which was at least 1 grade lower in standard compared to oblique sagittal images. There was also a significant difference when looking at patients who had neurological symptoms (p = 0.002) or underwent cervical spine surgery subsequently (p = 0.004). Interreader reliability, as measured by kappa value, and accordance rates were better for oblique sagittal images (0.94 vs. 0.88 and 99 % vs. 93 %).  Standard sagittal images tend to underestimate neuroforaminal stenosis grades compared to oblique sagittal images and are less reliable in the evaluation of disc herniations within the cervical spine MRI. In order to assess the potential therapeutic consequence, oblique images should therefore be considered as a valuable adjunct to the standard MRI protocol for patients with a radiculopathy.   · Neuroforaminal stenosis grades are underestimated in standard compared to oblique sagittal images. · Interreader reliability is higher for oblique sagittal images. · Oblique sagittal images should be performed in patients with a cervical radiculopathy. · Kintzele L, Rehnitz C, Kauczor H et al. Oblique Sagittal Images Prevent Underestimation of the Neuroforaminal Stenosis Grade Caused by Disc Herniation in Cervical Spine MRI. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0612-8205. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Compensation of Corneal Oblique Astigmatism by Internal Optics: a Theoretical Analysis

    PubMed Central

    Liu, Tao; Thibos, Larry N.

    2017-01-01

    Purpose Oblique astigmatism is a prominent optical aberration of peripheral vision caused by oblique incidence of rays striking the refracting surfaces of the cornea and crystalline lens. We inquired whether oblique astigmatism from these two sources should be expected, theoretically, to have the same or opposite signs across the visual field at various states of accommodation. Methods Oblique astigmatism was computed across the central visual field for a rotationally-symmetric schematic-eye using optical design software. Accommodative state was varied by altering the apical radius of curvature and separation of the biconvex lens’s two aspheric surfaces in a manner consistent with published biometry. Oblique astigmatism was evaluated separately for the whole eye, the cornea, and the isolated lens over a wide range of surface curvatures and asphericity values associated with the accommodating lens. We also computed internal oblique astigmatism by subtracting corneal oblique astigmatism from whole-eye oblique astigmatism. Results A visual field map of oblique astigmatism for the cornea in the Navarro model follows the classic, textbook description of radially-oriented axes everywhere in the field. Despite large changes in surface properties during accommodation, intrinsic astigmatism of the isolated human lens for collimated light is also radially oriented and nearly independent of accommodation both in theory and in real eyes. However, the magnitude of ocular oblique astigmatism is smaller than that of the cornea alone, indicating partial compensation by the internal optics. This implies internal oblique astigmatism (which includes wavefront propagation from the posterior surface of the cornea to the anterior surface of the lens and intrinsic lens astigmatism) must have tangentially-oriented axes. This non-classical pattern of tangential axes for internal astigmatism was traced to the influence of corneal power on the angles of incidence of rays striking the internal lens. Conclusions Partial compensation of corneal astigmatism by internal optics is due mainly to the highly converging nature of wavefronts incident upon the lens resulting from corneal refraction. The degree of compensation is quadratically dependent on eccentricity but is expected to diminish as the eye accommodates. Neutralising the cornea by index-matching defeats internal compensation, revealing classical, radially-oriented oblique astigmatism in the isolated lens. PMID:28281302

  11. Hydraulic geometry and streamflow of channels in the Piceance Basin, Rio Blanco and Garfield counties, Colorado

    USGS Publications Warehouse

    Elliott, J.G.; Cartier, K.D.

    1986-01-01

    The influence of streamflow and basin characteristics on channel geometry was investigated at 18 perennial and ephemeral stream reaches in the Piceance basin of northwestern Colorado. Results of stepwise multiple regression analyses indicated that the variabilities of mean bankfull depth (D) and bankfull cross-sectional flow area (Af) were predominantly a function of bankfull discharge (QB), and that most of the variability in channel slopes (S) could be explained by drainage area (DA). None of the independent variables selected for the study could account for a large part of the variability in bankfull channel width (W). (USGS)

  12. Dimensional control of die castings

    NASA Astrophysics Data System (ADS)

    Karve, Aniruddha Ajit

    The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of this study will contribute to enhancement of dimensional quality and lead time compression in the die casting industry, thus making it competitive with other net shape manufacturing processes.

  13. Constraints on Subduction Zone Coupling along the Philippine and Manila Trenches based on GPS and Seismological Data

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Johnson, K. M.; Nowicki, M. A. E.; Bacolcol, T. C.; Solidum, R., Jr.; Galgana, G.; Hsu, Y. J.; Yu, S. B.; Rau, R. J.; McCaffrey, R.

    2014-12-01

    We present results of two techniques to estimate the degree of coupling along the two major subduction zone boundaries that bound the Philippine Mobile Belt, the Philippine Trench and the Manila Trench. Convergence along these plate margins accommodates about 100 mm/yr of oblique plate motion between the Philippine Sea and Sundaland plates. The coupling estimates are based on a recently acquired set of geodetic data from a dense nationwide network of continuous and campaign GPS sites in the Philippines. First, we use a kinematic, elastic block model (tdefnode; McCaffrey, 2009) that combines existing fault geometries, GPS velocities and focal mechanism solutions to solve for block rotations, fault coupling, and intra-block deformation. Secondly, we use a plate-block kinematic model described in Johnson (2013) to simultaneously estimate long-term fault slip rates, block motions and interseismic coupling on block-bounding faults. The best-fit model represents the Philippine Mobile Belt by 14 independently moving rigid tectonic blocks, separated by active faults and subduction zones. The model predicts rapid convergence along the Manila Trench, decreasing progressively southwards, from > 100 mm/yr in the north to less than 20 mm/yr in the south at the Mindoro Island collision zone. Persistent areas of high coupling, interpreted to be asperities, are observed along the Manila Trench slab interface, in central Luzon (16-18°N) and near its southern and northern terminations. Along the Philippine Trench, we observe ~50 mm/yr of oblique convergence, with high coupling observed at its central and southern segments. We identify the range of allowable coupling distributions and corresponding moment accumulation rates on the two subduction zones by conducting a suite of inversions in which the total moment accumulation rate on a selected fault is fixed. In these constrained moment inversions we test the range of possible solutions that meet criteria for minimum, best-fit, and maximum coupling that still fit the data, based on reduced chi-squared calculations. In spite of the variable coupling, the total potential moment accumulation rate along each of the two subduction zones is estimated to range from 3.98 x 1019 to 2.24 x 1020 N-m yr-1, equivalent to a magnitude Mw 8.4 to 8.9 earthquake per 100 years.

  14. Single shaft automotive gas turbine engine characterization test

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1979-01-01

    An automotive gas turbine incorporating a single stage centrifugal compressor and a single stage radial inflow turbine is described. Among the engine's features is the use of wide range variable geometry at the inlet guide vanes, the compressor diffuser vanes, and the turbine inlet vanes to achieve improved part load fuel economy. The engine was tested to determine its performance in both the variable geometry and equivalent fixed geometry modes. Testing was conducted without the originally designed recuperator. Test results were compared with the predicted performance of the nonrecuperative engine based on existing component rig test maps. Agreement between test results and the computer model was achieved.

  15. Spatial evolution of Zagros collision zone in Kurdistan, NW Iran: constraints on Arabia-Eurasia oblique convergence

    NASA Astrophysics Data System (ADS)

    Sadeghi, Shahriar; Yassaghi, Ali

    2016-04-01

    Stratigraphy, detailed structural mapping and a crustal-scale cross section across the NW Zagros collision zone provide constraints on the spatial evolution of oblique convergence of the Arabian and Eurasian plates since the Late Cretaceous. The Zagros collision zone in NW Iran consists of the internal Sanandaj-Sirjan, Gaveh Rud and Ophiolite zones and the external Bisotoun, Radiolarite and High Zagros zones. The Main Zagros Thrust is the major structure of the Zagros suture zone. Two stages of oblique deformation are recognized in the external part of the NW Zagros in Iran. In the early stage, coexisting dextral strike-slip and reverse dominated domains in the Radiolarite zone developed in response to deformation partitioning due to oblique convergence. Dextral-reverse faults in the Bisotoun zone are also compatible with oblique convergence. In the late stage, deformation partitioning occurred during southeastward propagation of the Zagros orogeny towards its foreland resulting in synchronous development of orogen-parallel strike-slip and thrust faults. It is proposed that the first stage was related to Late Cretaceous oblique obduction, while the second stage resulted from Cenozoic collision. The Cenozoic orogen-parallel strike-slip component of Zagros oblique convergence is not confined to the Zagros suture zone (Main Recent Fault) but also occurred in the external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabian and Eurasian plates in Zagros collision zone initiated with oblique obduction in the Late Cretaceous followed by oblique collision in the late Tertiary, consistent with global plate reconstructions.

  16. Change in trunk muscle activities with prone bridge exercise in patients with chronic low back pain.

    PubMed

    Kong, Yong-Soo; Park, Seol; Kweon, Mi-Gyong; Park, Ji-Won

    2016-01-01

    [Purpose] The aim of this study was to determine the effect of three different bridge exercises on internal oblique, external oblique, transverse abdominis, and erector spinae activities. [Subjects and Methods] Forty-five subjects with chronic low back pain participated in this study. The training outcome was evaluated with three different testing methods: supine bridge exercise, supine bridge on Swiss ball exercise, and prone bridge exercise. The activities of the transverse abdominis, internal oblique, external oblique, and erector spinae were measured using surface electromyography. [Results] There were significant differences in the internal oblique, external oblique, and erector spinae according to the three kinds of bridging exercises. The internal oblique, external oblique and transverse abdominis activities were highest in the prone bridge exercise, followed by those in the supine bridge on Swiss ball exercise, and supine bridge exercises. The activity of erector spine was highest in the supine bridge on Swiss ball exercise followed by the supine bridge exercise and prone bridge exercise. [Conclusion] These results suggest that prone bridge exercise is more effective than conventional supine bridge exercise and supine bridge on Swiss ball in increasing trunk muscle activity of chronic low back pain patients.

  17. Variable Geometry and Multicycle Engines

    DTIC Science & Technology

    1977-03-01

    Panels which are composed of experts appointed by the National Delegates, the Consultant and Exchange Program and the Aerospace Applications Studies ...concerned with the improving possibilities available fromt various variable geometry comlpo- nents both in service and under study and test now. Hi-gh...avanitages -t les expoSt .6 traitalit Lie cette Lquestioni onit suscitrý un vii’ int~r~t. ALL coors des discus’dons qui suivirent Ia presentationl Lie

  18. Emission response from extended length, variable geometry gas turbine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troth, D.L.; Verdouw, A.J.; Tomlinson, J.G.

    1974-01-01

    A program to analyze, select, and experimentally evaluate low emission combustors for aircraft gas turbine engines is conducted to demonstrate a final combustor concept having a 50 percent reduction in total mass emissions (carbon monoxide, unburnt hydrocarbons, oxides of nitrogen, and exhaust smoke) without an increase in any specific pollutant. Research conducted under an Army Contract established design concepts demonstrating significant reductions in CO and UHC emissions. Two of these concepts were an extended length intermediate zone to consume CO and UHC and variable geometry to control the primary zone fuel air ratio over varying power conditions. Emission reduction featuresmore » were identified by analytical methods employing both reaction kinetics and empirical correlations. Experimental results were obtained on a T63 component combustor rig operating at conditions simulating the engine over the complete power operating range with JP-4 fuel. A combustor incorporating both extended length and variable geometry was evaluated and the performance and emission results are reported. These results are compared on the basis of a helicopter duty cycle and the EPA 1979 turboprop regulation landing take off cycle. The 1979 EPA emission regulations for P2 class engines can be met with the extended length variable geometry combustor on the T63 turboprop engine.« less

  19. Acoustic plane waves incident on an oblique clamped panel in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1980-01-01

    The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.

  20. Study on Practical Technologies of Aerial Triangulation for Real Scene 3d Moeling with Oblique Photography

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Liu, W.; Luo, G.; Xiang, Z.

    2018-04-01

    The key technologies in the real scene 3D modeling of oblique photography mainly include the data acquisition of oblique photography, layout and surveying of photo control points, oblique camera calibration, aerial triangulation, dense matching of multi-angle image, building of triangulation irregular network (TIN) and TIN simplification and automatic texture mapping, among which aerial triangulation is the core and the results of aerial triangulation directly affect the later model effect and the corresponding data accuracy. Starting from this point of view, this paper aims to study the practical technologies of aerial triangulation for real scene 3D modeling with oblique photography and finally proposes a technical method of aerial triangulation with oblique photography which can be put into practice.

  1. Ceres' obliquity history: implications for permanently shadowed regions

    NASA Astrophysics Data System (ADS)

    Ermakov, A.; Mazarico, E.; Schroeder, S.; Carsenty, U.; Schorghofer, N.; Raymond, C. A.; Zuber, M. T.; Smith, D. E.; Russell, C. T.

    2016-12-01

    The Dawn spacecraft's Framing Camera (FC) images and radio-tracking data have allowed precise determination of Ceres' rotational pole and obliquity. Presently, the obliquity (ɛ) of Ceres is ≈4°. Because of the low obliquity, permanently shadowed regions (PSRs) can exist on Ceres, and have been identified using both images and shape models (Schorghofer et al., 2016). These observations make Ceres only the third body in the solar system with recognized PSRs after the Moon (Zuber et al., 1997) and Mercury (Chabot et al., 2012). Some craters in Ceres' polar regions possess bright crater floor deposits (BCFD). These crater floors are typically in shadow. However, they receive light scattered from the surrounding sunlit crater walls and therefore can be seen by FC. These bright deposits are hypothesized to be water ice accumulated in PSR cold traps, analogous to the Moon (Watson et al., 1961). The existence of the PSRs critically depends on the body's obliquity. The goal of this work is to study the history of Ceres' obliquity. Knowing past obliquity variations can shed light on the history of PSRs, and can help constrain the water-ice deposition time scales. We integrate the obliquity of Ceres over the last 3 My for the range of C/MR2vol constrained by the Dawn gravity measurements (Park et al., 2016, Ermakov et al., 2016) using methods described in Wisdom & Holman (1991) and Touma & Wisdom (1994). The obliquity history for C/MR2vol=0.392 is shown in Fig. 1. The integrations show that the obliquity of Ceres undergoes large oscillations with the main period of T=25 ky and a maximum of 19.7°. The obliquity oscillations are driven by the periodic change of Ceres' orbit inclination (T=22 ky) and the pole precession (T=210 ky). Ceres passed a local obliquity minimum 1327 years ago when (ɛmin=2.4°). The most recent maximum was 13895 years ago (ɛmax=18.5°). At such high obliquity, most of the present-day PSRs receive direct sunlight. We find a correlation between BCFDs and the most persistent PSRs. In the northern hemisphere, we find that only two PSRs remain at ɛmax. Interestingly, these PSRs contain BCFDs. In the southern hemisphere, we find that only one crater with a BCFD remains in shadow at ɛmax. Ongoing work includes computation of the irradiance of individual BCFDs given the orbital and obliquity history.

  2. Compensation of corneal oblique astigmatism by internal optics: a theoretical analysis.

    PubMed

    Liu, Tao; Thibos, Larry N

    2017-05-01

    Oblique astigmatism is a prominent optical aberration of peripheral vision caused by oblique incidence of rays striking the refracting surfaces of the cornea and crystalline lens. We inquired whether oblique astigmatism from these two sources should be expected, theoretically, to have the same or opposite signs across the visual field at various states of accommodation. Oblique astigmatism was computed across the central visual field for a rotationally-symmetric schematic-eye using optical design software. Accommodative state was varied by altering the apical radius of curvature and separation of the biconvex lens's two aspheric surfaces in a manner consistent with published biometry. Oblique astigmatism was evaluated separately for the whole eye, the cornea, and the isolated lens over a wide range of surface curvatures and asphericity values associated with the accommodating lens. We also computed internal oblique astigmatism by subtracting corneal oblique astigmatism from whole-eye oblique astigmatism. A visual field map of oblique astigmatism for the cornea in the Navarro model follows the classic, textbook description of radially-oriented axes everywhere in the field. Despite large changes in surface properties during accommodation, intrinsic astigmatism of the isolated human lens for collimated light is also radially oriented and nearly independent of accommodation both in theory and in real eyes. However, the magnitude of ocular oblique astigmatism is smaller than that of the cornea alone, indicating partial compensation by the internal optics. This implies internal oblique astigmatism (which includes wavefront propagation from the posterior surface of the cornea to the anterior surface of the lens and intrinsic lens astigmatism) must have tangentially-oriented axes. This non-classical pattern of tangential axes for internal astigmatism was traced to the influence of corneal power on the angles of incidence of rays striking the internal lens. Partial compensation of corneal astigmatism by internal optics is due mainly to the highly converging nature of wavefronts incident upon the lens resulting from corneal refraction. The degree of compensation is quadratically dependent on eccentricity but is expected to diminish as the eye accommodates. Neutralising the cornea by index-matching defeats internal compensation, revealing classical, radially-oriented oblique astigmatism in the isolated lens. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  3. Oblique transfer of extensional strain between basins of the middle Rio Grande rift, New Mexico: Fault kinematic and paleostress constraints

    USGS Publications Warehouse

    Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan S.; Thompson, Ren A.

    2013-01-01

    The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased bulk sinistral-normal oblique shear along the Santo Domingo rift segment in Pliocene and later time. Regional geologic evidence suggests that the width of active rift faulting became increasingly confined to the Santo Domingo Basin and axial parts of the adjoining basins beginning in the late Miocene. We infer that the Santo Domingo clockwise stress perturbations developed coevally with the oblique rift segment mainly due to mechanical interactions of large faults propagating toward each other from the adjoining basins as the rift narrowed. Our results suggest that negligible bulk strike-slip displacement has been accommodated along the north-trending rift during much of its development, but uncertainties in the maximum ages of fault slip do not allow us to fully evaluate and discriminate between earlier models that invoked northward or southward rotation and translation of the Colorado Plateau during early (Miocene) rifting.

  4. A Spine Loading Model of Women in the Military

    DTIC Science & Technology

    1996-10-01

    latissimuss dorsi, posterior abdominal internal obliques, rectus abdomini and the abdominal external obliques (5,19). MVC exertions consisting of...Women tend to possess greater hip breadth and narrower abdominal depth than men (9). The sacroiliac joint is positioned several centimeters anteriorly...internal obliques, external obliques, rectus abdomini, and psoas major. The sizes and area centriods are also quantified for the vertebral body and the

  5. The Applicability of the Army Physical Fitness Test in the Contemporary Operating Environment

    DTIC Science & Technology

    2008-06-13

    abdominis, external obliques, internal obliques, latissimus dorsi, lumbar paraspinals, and rectus femoris during performance of different abdominal ...by asserting the need to train soldiers in the most stressful, painful , realistic environment possible in order to prepare them for combat. Both of...In Medicine & Science in Sports & Exercise, researchers specifically identify usage of the rectus abdominis, external oblique, internal oblique

  6. Pleistocene Indian Monsoon rainfall variability dominated by obliquity

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Nuernberg, D.; Frank, M.

    2015-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea while Quaternary proxy records of Indian monsoon precipitation are still lacking. Here we utilize scanning x-ray fluorescence (XRF) data from a sediment core obtained by the IODP vessel JOIDES Resolution in the Andaman Sea (Site 17) to investigate changes in sediment supply from the peak monsoon precipitation regions to the core site. We use Ti/Ca and K/Rb ratios to trace changes in terrigenous flux and weathering regime, respectively, while Zr/Rb ratios suggest grain size variations. The age model of Site 17 is based on correlation of benthic C. wuellerstorfi/C. mundulus δ18O data to the LR04 global benthic δ18O stack at a resolution of ~3 kyr (Lisiecki and Raymo, 2005) for the last 2 Myrs. In its youngest part the age model is supported by five 14C ages on planktic foraminifera and the youngest Toba ash layer (Ali et al., 2015) resulting in a nearly constant sedimentation rate of ~6.5 cm/kyr. Frequency analysis of the 4 mm resolution Ti/Ca, K/Rb, and Zr/Rb time series using the REDFIT program (Schulz and Mudelsee, 2002), reveals the three main Milankovitch orbital cycles above the 90% confidence level. Depth domain spectral analysis reveals the presence of significant cyclicity at wavelengths of 28.5 and 2.8 m corresponding to the ~400 kyr and ~41 kyr cycles, respectively, during the last 2 Myr. These records suggest that Indian monsoon variability has varied in the obliquity and eccentricity bands, the latter in particular after the mid Pleistocene transition (MPT), while strong precession forcing is lacking in this super-high resolution record. Northern summer insolation and Southern Hemisphere latent heat export are out of phase during precessional cycles, but in phase in the obliquity band, which indicates that Indian monsoon precipitation has likely been more sensitive to both NH pull and SH push mechanisms (Clemens and Prell, 2003). References Ali, S., et al., 2015. Geochem., Geophy., Geosys., 16, 505-521. Clemens, S.C. and Prell, W.L., 2003. Marine Geology, 201(1): 35-51. Lisiecki, L. E. and M. E. Raymo ,2005. Paleoceanography, 20, PA1003. Schulz, M., and Mudelsee, M., 2002. Computers & Geosciences, v. 28, p. 421-426.

  7. Centrifuge models simulating magma emplacement during oblique rifting

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Bonini, Marco; Innocenti, Fabrizio; Manetti, Piero; Mulugeta, Genene

    2001-07-01

    A series of centrifuge analogue experiments have been performed to model the mechanics of continental oblique extension (in the range of 0° to 60°) in the presence of underplated magma at the base of the continental crust. The experiments reproduced the main characteristics of oblique rifting, such as (1) en-echelon arrangement of structures, (2) mean fault trends oblique to the extension vector, (3) strain partitioning between different sets of faults and (4) fault dips higher than in purely normal faults (e.g. Tron, V., Brun, J.-P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 71-84). The model results show that the pattern of deformation is strongly controlled by the angle of obliquity ( α), which determines the ratio between the shearing and stretching components of movement. For α⩽35°, the deformation is partitioned between oblique-slip and normal faults, whereas for α⩾45° a strain partitioning arises between oblique-slip and strike-slip faults. The experimental results show that for α⩽35°, there is a strong coupling between deformation and the underplated magma: the presence of magma determines a strain localisation and a reduced strain partitioning; deformation, in turn, focuses magma emplacement. Magmatic chambers form in the core of lower crust domes with an oblique trend to the initial magma reservoir and, in some cases, an en-echelon arrangement. Typically, intrusions show an elongated shape with a high length/width ratio. In nature, this pattern is expected to result in magmatic and volcanic belts oblique to the rift axis and arranged en-echelon, in agreement with some selected natural examples of continental rifts (i.e. Main Ethiopian Rift) and oceanic ridges (i.e. Mohns and Reykjanes Ridges).

  8. Oblique Wing Flights

    NASA Image and Video Library

    2018-05-09

    Flown in the mid 70's, this Oblique Wing was a large-scale R/C experimental aircraft to demonstrate the ability to pivot its wing to an oblique angle, allowing for a reduced drag penalty at transonic speeds.

  9. Bow and Oblique Shock Formation in Soap Film

    NASA Astrophysics Data System (ADS)

    Kim, Ildoo; Mandre, Shreyas; Sane, Aakash

    2015-11-01

    In recent years, soap films have been exploited primarily to approximate two-dimensional flows while their three-dimensional character is relatively unattended. An example of the three-dimensional character of the flow in a soap film is the observed Marangoni shock wave when the flow speed exceeds the wave speed. In this study, we investigated the formation of bow and oblique shocks in soap films generated by wedges with different deflection angles. When the wedge deflection angle is small and the film flows fast, oblique shocks are observed. When the oblique shock cannot exists, bow shock is formed upstream the wedge. We characterized the oblique shock angle as a function of the wedge deflection angle and the flow speed, and we also present the criteria for transition between bow and oblique Marangoni shocks in soap films.

  10. Reduced Oblique Effect in Children with Autism Spectrum Disorders (ASD)

    PubMed Central

    Sysoeva, Olga V.; Davletshina, Maria A.; Orekhova, Elena V.; Galuta, Ilia A.; Stroganova, Tatiana A.

    2016-01-01

    People are very precise in the discrimination of a line orientation relative to the cardinal (vertical and horizontal) axes, while their orientation discrimination sensitivity along the oblique axes is less refined. This difference in discrimination sensitivity along cardinal and oblique axes is called the “oblique effect.” Given that the oblique effect is a basic feature of visual processing with an early developmental origin, its investigation in children with Autism Spectrum Disorder (ASD) may shed light on the nature of visual sensory abnormalities frequently reported in this population. We examined line orientation sensitivity along oblique and vertical axes in a sample of 26 boys with ASD (IQ > 68) and 38 typically developing (TD) boys aged 7–15 years, as well as in a subsample of carefully IQ-matched ASD and TD participants. Children were asked to detect the direction of tilt of a high-contrast black-and-white grating relative to vertical (90°) or oblique (45°) templates. The oblique effect was reduced in children with ASD as compared to TD participants, irrespective of their IQ. This reduction was due to poor orientation sensitivity along the vertical axis in ASD children, while their ability to discriminate line orientation along the oblique axis was unaffected. We speculate that this deficit in sensitivity to vertical orientation may reflect disrupted mechanisms of early experience-dependent learning that takes place during the critical period for orientation selectivity. PMID:26834540

  11. Orientation perception in rhesus monkeys (Macaca mulatta).

    PubMed

    Wakita, Masumi

    2008-07-01

    It was previously demonstrated that monkeys divide the orientation continuum into cardinal and oblique categories. However, it is still unclear how monkeys perceive within-category orientations. To better understand monkeys' perception of orientation, two experiments were conducted using five monkeys. In experiment 1, they were trained to identify either one cardinal or one oblique target orientation out of six orientations. The results showed that they readily identified the cardinal target whether it was oriented horizontally or vertically. However, a longer training period was needed to identify the oblique target orientation regardless of its degree and direction of tilt. In experiment 2, the same monkeys were trained to identify two-oblique target orientations out of six orientations. These orientations were paired, either sharing the degree of tilt, direction of tilt, or neither property. The results showed that the monkeys readily identified oblique orientations when they had either the same degree or direction of tilt. However, when the target orientations had neither the same degree nor direction of tilt, the animals had difficulty in identifying them. In summary, horizontal and vertical orientations are individually processed, indicating that monkeys do not have a category for cardinal orientation, but they may recognize cardinal orientations as non-obliques. In addition, monkeys efficiently abstract either the degree or the direction of tilt from oblique orientations, but they have difficulty combining these features to identify an oblique orientation. Thus, not all orientations within the oblique category are equally perceived.

  12. A numerical study on the oblique focus in MR-guided transcranial focused ultrasound

    NASA Astrophysics Data System (ADS)

    Hughes, Alec; Huang, Yuexi; Pulkkinen, Aki; Schwartz, Michael L.; Lozano, Andres M.; Hynynen, Kullervo

    2016-11-01

    Recent clinical data showing thermal lesions from treatments of essential tremor using MR-guided transcranial focused ultrasound shows that in many cases the focus is oblique to the main axis of the phased array. The potential for this obliquity to extend the focus into lateral regions of the brain has led to speculation as to the cause of the oblique focus, and whether it is possible to realign the focus. Numerical simulations were performed on clinical export data to analyze the causes of the oblique focus and determine methods for its correction. It was found that the focal obliquity could be replicated with the numerical simulations to within 23.2+/- {{13.6}\\circ} of the clinical cases. It was then found that a major cause of the focal obliquity was the presence of sidelobes, caused by an unequal deposition of power from the different transducer elements in the array at the focus. In addition, it was found that a 65% reduction in focal obliquity was possible using phase and amplitude corrections. Potential drawbacks include the higher levels of skull heating required when modifying the distribution of power among the transducer elements, and the difficulty at present in obtaining ideal phase corrections from CT information alone. These techniques for the reduction of focal obliquity can be applied to other applications of transcranial focused ultrasound involving lower total energy deposition, such as blood-brain barrier opening, where the issue of skull heating is minimal.

  13. Comparative study of unilateral versus bilateral inferior oblique recession/anteriorization in unilateral inferior oblique overaction.

    PubMed

    Mostafa, Attiat M; Kassem, Rehab R

    2018-05-01

    To compare the effect of, and the rate of subsequent development of iatrogenic antielevation syndrome after, unilateral versus bilateral inferior oblique graded recession-anteriorization to treat unilateral inferior oblique overaction. Thirty-four patients with unilateral inferior oblique overaction were included in a randomized prospective study. Patients were equally divided into 2 groups. Group UNI underwent unilateral, group BI bilateral, inferior oblique graded recession-anteriorization. A successful outcome was defined as orthotropia, or within 2 ∆ of a residual hypertropia, in the absence of signs of antielevation syndrome, residual inferior oblique overaction, V-pattern, dissociated vertical deviation, or ocular torticollis. A successful outcome was achieved in 11 (64.7%) and 13 (76.5%) patients in groups UNI and BI, respectively (p = 0.452). Antielevation syndrome was diagnosed as the cause of surgical failure in 6 (35.3%) and 2 (11.8%) patients, in groups UNI and BI, respectively (p = 0.106). The cause of surgical failure in the other 2 patients in group BI was due to persistence of ocular torticollis and hypertropia in a patient with superior oblique palsy and a residual V-pattern and hypertropia in the other patient. The differences between unilateral and bilateral inferior oblique graded recession-anteriorization are insignificant. Unilateral surgery has a higher tendency for the subsequent development of antielevation syndrome. Bilateral surgery may still become complicated by antielevation syndrome, although at a lower rate. In addition, bilateral surgery had a higher rate of undercorrection. Further studies on a larger sample are encouraged.

  14. Extension in Mona Passage, Northeast Caribbean

    USGS Publications Warehouse

    Chaytor, J.D.; ten Brink, Uri S.

    2010-01-01

    As shown by the recent Mw 7.0 Haiti earthquake, intra-arc deformation, which accompanies the subduction process, can present seismic and tsunami hazards to nearby islands. Spatially-limited diffuse tectonic deformation within the Northeast Caribbean Plate Boundary Zone likely led to the development of the submerged Mona Passage between Puerto Rico and the Dominican Republic. GPS geodetic data and a moderate to high level of seismicity indicate that extension within the region is ongoing. Newly-collected high-resolution multibeam bathymetry and multi-channel seismic reflection profiles and previously-collected samples are used here to determine the tectonic evolution of the Mona Passage intra-arc region. The passage is floored almost completely by Oligocene-Pliocene carbonate platform strata, which have undergone submarine and subaerial erosion. Structurally, the passage is characterized by W- to NNW-trending normal faults that offset the entire thickness of the Oligo-Pliocene carbonate platform rocks. The orientation of these faults is compatible with the NE-oriented extension vector observed in GPS data. Fault geometry best fits an oblique extension model rather than previously proposed single-phase, poly-phase, bending-moment, or rotation extension models. The intersection of these generally NW-trending faults in Mona Passage with the N-S oriented faults of Mona Canyon may reflect differing responses of the brittle upper-crust, along an arc-forearc rheological boundary, to oblique subduction along the Puerto Rico trench. Several faults within the passage, if ruptured completely, are long enough to generate earthquakes with magnitudes on the order of Mw 6.5-7. ?? 2010.

  15. The wavelength-tunable tapered surface plasmon resonance fiber sensor based on separated input-output channels

    NASA Astrophysics Data System (ADS)

    Chen, Shimeng; Liu, Yun; Gao, Xiaotong; Liu, Xiuxin; Peng, Wei

    2014-11-01

    We present a wavelength-tunable tapered optics fiber surface Plasmon resonance (SPR) sensor by polishing the end faces of multimode fibers(MMF).Two hard plastic clad optical fibers joint closely and are used as the light input and output channels. Their end faces are polished to produce two oblique planes, which are coated with gold film to be the sensing surface and the front mirror. The presence of the tapered geometry formed by the two oblique planes in the orthogonal directions makes it possible to adjust incident angle through changing the tilt angles of the two end faces, so as to achieve tuning the SPR coupling wavelength-angle pair. Compared with previous researches based a tapered optic fiber probe, we report the approach theoretically increase the signal noise ratio (SNR) by separating incident and emergent light propagating in the different coordinate fiber. Since fabricating the sensing surface and the front mirror on the two fibers to replace one single fiber tip, there is more incident light can reach the sensing surface and satisfy SPR effective. In addition, this improvement in structure has advantages of large grinding and sensing area, which can lead to high sensitivity and simple manufacture process of the sensor. Experimental measurement demonstrates the sensor has a favorable SPR resonanceabsorption and the ability of measuring refractive index (RI) of aqueous solution. This novel tapered SPR sensor has the potential to be applied to the biological sensing field.

  16. Obliquity evolution of the minor satellites of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Nichols-Fleming, Fiona; Chen, Yuan-Yuan; Noyelles, Benoît

    2017-09-01

    New Horizons mission observations show that the small satellites Styx, Nix, Kerberos and Hydra, of the Pluto-Charon system, have not tidally spun-down to near synchronous spin states and have high obliquities with respect to their orbit about the Pluto-Charon binary (Weaver, 2016). We use a damped mass-spring model within an N-body simulation to study spin and obliquity evolution for single spinning non-round bodies in circumbinary orbit. Simulations with tidal dissipation alone do not show strong obliquity variations from tidally induced spin-orbit resonance crossing and this we attribute to the high satellite spin rates and low orbital eccentricities. However, a tidally evolving Styx exhibits intermittent obliquity variations and episodes of tumbling. During a previous epoch where Charon migrated away from Pluto, the minor satellites could have been trapped in orbital mean motion inclination resonances. An outward migrating Charon induces large variations in Nix and Styx's obliquities. The cause is a commensurability between the mean motion resonance frequency and the spin precession rate of the spinning body. As the minor satellites are near mean motion resonances, this mechanism could have lifted the obliquities of all four minor satellites. The high obliquities need not be primordial if the minor satellites were at one time captured into mean motion resonances.

  17. Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.

  18. Moderate to heavy cold-weather precipitation occurrences in Tehran and the associated circulation types

    NASA Astrophysics Data System (ADS)

    Khansalari, Sakineh; Raziei, Tayeb; Mohebalhojeh, Ali Reza; Ahmadi-Givi, Farhang

    2018-02-01

    Large-scale atmospheric circulations associated with 133 moderate to heavy cold-weather precipitation events recorded at Mehrabad station in Tehran, Iran, during the period 1951-2013 are analysed. To this end, the performance of un-rotated, orthogonally rotated and obliquely rotated solutions of T-mode principal component analysis (PCA) is examined in classifying the atmospheric circulations into a few representative circulation types (CTs). The T-mode PCAs were applied to the 500-hPa geopotential height for the events in a domain from 10∘E to 70∘E and from 20∘N to 50∘N. The first six leading principal components were retained and then orthogonally and obliquely rotated using varimax and promax solutions, respectively. Statistical inter-comparison of the CTs obtained using the three solutions suggests that the obliquely rotated solution is the better choice for circulation classification in the present study. The six CTs obtained using the oblique rotation were then linked to the daily total precipitation and daily mean temperature variability at Tehran station as well as to the standardized anomalies of the daily total precipitation and mean daily temperature of a dense network of stations distributed across Iran. It is found that the CTs identified, though generally comparable in producing significant precipitation in Tehran, vary in their potential to bring cold weather and generate snowfall in Tehran specifically and in the country in general. While the first three CTs give rise to regional patterns of standardized precipitation anomalies centred in Tehran, the next three CTs leave a pronounced precipitation signature almost across the whole country. As regards the standardized temperature anomalies, with the exception of one CT that causes deep and widespread negative standardized anomalies over most parts of the country, the other CTs are characterized with a dipolar structure of a deep intrusion of cold weather to the west and prevailing warm weather to the east of the country.

  19. Characterization of MOSFET Dosimeter Angular Response Using a Spherical Phantom for Fluoroscopic Dosimetry.

    PubMed

    Wang, Chu; Hill, Kevin; Yoshizumi, Terry

    2016-01-01

    Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) dosimeters, placed in anthropomorphic phantoms, are a standard method for organ dosimetry in medical x-ray imaging applications. However, many x-ray applications, particularly fluoroscopy procedures, use variable projection angles. During dosimetry, the MOSFET detector active area may not always be perpendicular to the x-ray beam. The goal of this study was to characterize the dosimeter's angular response in the fluoroscopic irradiation involved in pediatric cardiac catheterization procedures, during which a considerable amount of fluoroscopic x-ray irradiation is often applied from various projection angles. A biological x-ray irradiator was used to simulate the beam quality of a biplane fluoroscopy imaging system. A custom-designed acrylic spherical scatter phantom was fabricated to measure dosimeter response (in mV) in two rotational axes, axial (ψ) and normal-to-axial (θ), in 30° increments, as well as four common oblique angles used in cardiac catheterization: a) 90° Left Anterior Oblique (LAO); b) 70° LAO/ 20° Cranial; c) 20° LAO/ 15° Cranial; and d) 30° Right Anterior Oblique (RAO). All results were normalized to the angle where the dosimeter epoxy is perpendicular to the beam or the Posterior-Anterior projection angle in the clinical setup. The relative response in the axial rotation was isotropic (within ± 10% deviation); that in the normal-to-axial rotation was isotropic in all angles except the ψ = 270° angle, where the relative response was 83 ± 9%. No significant deviation in detector response was observed in the four common oblique angles, with their relative responses being: a) 102 ± 3%; b) 90 ± 3%; c) 92 ± 3%; and d) 95 ± 3%, respectively. These angular correction factors will be used in future dosimetry studies for fluoroscopy. The spherical phantom may be useful for other applications, as it allows the measurement of dosimeter response in virtually all angles in the 3-dimensional spherical coordinates.

  20. Late Cenozoic structure and correlations to seismicity along the Olympic-Wallowa Lineament, northwest United States

    USGS Publications Warehouse

    Mann, G.M.; Meyer, C.E.

    1993-01-01

    Late Cenozoic fault geometry, structure, paleoseismicity, and patterns of recent seismicity at two seismic zones along the Olympic-Wallowa lineament (OWL) of western Idaho, northeast Oregon, and southeast Washington indicate limited right-oblique slip displacement along multiple northwest-striking faults that constitute the lineament. The southern end of the OWL originates in the Long Valley fault system and western Snake River Plain in western Idaho. The OWL in northeast Oregon consists of a wide zone of northwest-striking faults and is associated with several large, inferred, pull-apart basins. The OWL then emerges from the Blue Mountain uplift as a much narrower zone of faults in the Columbia Plateau known as the Wallula fault zone (WFZ). Stuctural relationships in the WFZ strongly suggest that it is a right-slip extensional duplex. -from Authors

  1. Determining orbital particle parameters of impacts into germanium using morphology analysis and calibration data from hypervelocity impact experiments in the laboratory

    NASA Technical Reports Server (NTRS)

    Paul, Klaus G.

    1995-01-01

    This paper describes the work that is done at the Lehrstuhl fur Raumfahrttechnik (lrt) at the Technische Universitat Munchen to examine particle impacts into germanium surfaces which were flown on board the LDEF satellite. Besides the description of the processing of the samples, a brief overview of the particle launchers at our institute is given together with descriptions of impact morphology of high- and hypervelocity particles into germanium. Since germanium is a brittle, almost glass-like material, the impact morphology may also be interesting for anyone dealing with materials such as optics and solar cells. The main focus of our investigations is to learn about the impacting particle's properties, for example mass, velocity and direction. This is done by examining the morphology, various geometry parameters, crater obliqueness and crater volume.

  2. Constraints on the diameter and albedo of 2060 Chiron

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Walker, Russell G.

    1991-01-01

    Asteroid 2060 Chiron is the largest known object exhibiting cometary activity. Radiometric observations made in 1983 from a ground-based telescope and the IRAS are used to examine the limits on Chiron's diameter and albedo. It is argued that Chiron's surface temperature distribution at that time is best described by an 'isothermal latitude' or 'rapid-rotator' model. Consequently, Chiron has a maximum diameter of 372 kilometers and a minimum geometric albedo of 2.7 percent. This is much bigger and darker than previous estimates, and suggests that gravity may play a significant role in the evolution of gas and dust emissions. It is also found that for large obliquities, surface temperatures can vary dramatically on time scales of a decade, and that such geometry may play a critical role in explaining Chiron's observed photometric behavior since its discovery in 1977.

  3. Constraints on the diameter and albedo of 2060 chiron.

    PubMed

    Sykes, M V; Walker, R G

    1991-02-15

    Asteroid 2060 Chiron is the largest known object exhibiting cometary activity. Radiometric observations made in 1983 from a ground-based telescope and the Infrared Astronomical Satellite are used to examine the limits on Chiron's diameter and albedo. It is argued that Chiron's surface temperature distribution at that time is best described by an "isothermal latitude" or "rapid-rotator" model. Consequently, Chiron has a maximum diameter of 372 kilometers and a minimum geometric albedo of 2.7%. This is much bigger and darker than previous estimates, and suggests that gravity may play a significant role in the evolution of gas and dust emissions. It is also found that for large obliquities, surface temperatures can vary dramatically on time scales of a decade, and that such geometry may play a critical role in explaining Chiron's observed photometric behavior since its discovery in 1977.

  4. Climate-Rotation Feedback on Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1999-01-01

    A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation, and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history? Additional information is contained in the original extended abstract.

  5. Analytical and Empirical Modeling of Wear and Forces of CBN Tool in Hard Turning - A Review

    NASA Astrophysics Data System (ADS)

    Patel, Vallabh Dahyabhai; Gandhi, Anishkumar Hasmukhlal

    2017-08-01

    Machining of steel material having hardness above 45 HRC (Hardness-Rockwell C) is referred as a hard turning. There are numerous models which should be scrutinized and implemented to gain optimum performance of hard turning. Various models in hard turning by cubic boron nitride tool have been reviewed, in attempt to utilize appropriate empirical and analytical models. Validation of steady state flank and crater wear model, Usui's wear model, forces due to oblique cutting theory, extended Lee and Shaffer's force model, chip formation and progressive flank wear have been depicted in this review paper. Effort has been made to understand the relationship between tool wear and tool force based on the different cutting conditions and tool geometries so that appropriate model can be used according to user requirement in hard turning.

  6. Vectorial point spread function and optical transfer function in oblique plane imaging.

    PubMed

    Kim, Jeongmin; Li, Tongcang; Wang, Yuan; Zhang, Xiang

    2014-05-05

    Oblique plane imaging, using remote focusing with a tilted mirror, enables direct two-dimensional (2D) imaging of any inclined plane of interest in three-dimensional (3D) specimens. It can image real-time dynamics of a living sample that changes rapidly or evolves its structure along arbitrary orientations. It also allows direct observations of any tilted target plane in an object of which orientational information is inaccessible during sample preparation. In this work, we study the optical resolution of this innovative wide-field imaging method. Using the vectorial diffraction theory, we formulate the vectorial point spread function (PSF) of direct oblique plane imaging. The anisotropic lateral resolving power caused by light clipping from the tilted mirror is theoretically analyzed for all oblique angles. We show that the 2D PSF in oblique plane imaging is conceptually different from the inclined 2D slice of the 3D PSF in conventional lateral imaging. Vectorial optical transfer function (OTF) of oblique plane imaging is also calculated by the fast Fourier transform (FFT) method to study effects of oblique angles on frequency responses.

  7. The effect of polar caps on obliquity

    NASA Technical Reports Server (NTRS)

    Lindner, B. L.

    1993-01-01

    Rubincam has shown that the Martian obliquity is dependent on the seasonal polar caps. In particular, Rubincam analytically derived this dependence and showed that the change in obliquity is directly proportional to the seasonal polar cap mass. Rubincam concludes that seasonal friction does not appear to have changed Mars' climate significantly. Using a computer model for the evolution of the Martian atmosphere, Haberle et al. have made a convincing case for the possibility of huge polar caps, about 10 times the mass of the current polar caps, that exist for a significant fraction of the planet's history. Since Rubincam showed that the effect of seasonal friction on obliquity is directly proportional to polar cap mass, a scenario with a ten-fold increase in polar cap mass over a significant fraction of the planet's history would result in a secular increase in Mars' obliquity of perhaps 10 degrees. Hence, the Rubincam conclusion of an insignificant contribution to Mars' climate by seasonal friction may be incorrect. Furthermore, if seasonal friction is an important consideration in the obliquity of Mars, this would significantly alter the predictions of past obliquity.

  8. Oblique effect in visual area 2 of macaque monkeys

    PubMed Central

    Shen, Guofu; Tao, Xiaofeng; Zhang, Bin; Smith, Earl L.; Chino, Yuzo M.

    2014-01-01

    The neural basis of an oblique effect, a reduced visual sensitivity for obliquely oriented stimuli, has been a matter of considerable debate. We have analyzed the orientation tuning of a relatively large number of neurons in the primary visual cortex (V1) and visual area 2 (V2) of anesthetized and paralyzed macaque monkeys. Neurons in V2 but not V1 of macaque monkeys showed clear oblique effects. This orientation anisotropy in V2 was more robust for those neurons that preferred higher spatial frequencies. We also determined whether V1 and V2 neurons exhibit a similar orientation anisotropy soon after birth. The oblique effect was absent in V1 of 4- and 8-week-old infant monkeys, but their V2 neurons showed a significant oblique effect. This orientation anisotropy in infant V2 was milder than that in adults. The results suggest that the oblique effect emerges in V2 based on the pattern of the connections that are established before birth and enhanced by the prolonged experience-dependent modifications of the neural circuitry in V2. PMID:24511142

  9. Influence of parafunctional loading and prosthetic connection on stress distribution: a 3D finite element analysis.

    PubMed

    Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto

    2015-11-01

    Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (P<.001). Oblique loads produced high tensile stress concentrations on the site opposite the load direction. Internal connection implants presented the most favorable biomechanical situation, whereas the least favorable situation was the biomechanical behavior of external connection implants. Parafunctional loading increased the magnitude of stress by 3 to 4 times. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Rotation, activity, and stellar obliquities in a large uniform sample of Kepler solar analogs

    NASA Astrophysics Data System (ADS)

    Buzasi, Derek; Lezcano, Andy; Preston, Heather L.

    2016-10-01

    In this study, we undertook a deep photometric examination of a narrowly-defined sample of solar analogs in the Kepler field, with the goals of producing a uniform and statistically meaningful sample of such stars, comparing the properties of planet hosts to those of the general stellar population, and examining the behavior of rotation and photometric activity among stars with similar overall physical parameters. We successfully derived photometric activity indicators and rotation periods for 95 planet hosts (Kepler objects of interest [KOIs]) and 954 solar analogs without detected planets; 573 of these rotation periods are reported here for the first time. Rotation periods average roughly 20 d, but the distribution has a wide dispersion, with a tail extending to P > 35 d which appears to be inconsistent with published gyrochronological relations. We observed a weak rotation-activity relation for stars with rotation periods less than about 12 d; for slower rotators, the relation is dominated by scatter. However, we are able to state that the solar activity level derived from Virgo data is consistent with the majority of stars with similar rotation periods in our sample. Finally, our KOI sample is consistently approximately 0.3 dex more variable than our non-KOIs; we ascribe the difference to a selection effect due to low orbital obliquity in the planet-hosting stars and derive a mean obliquity for our sample of χ = 6+5°-6, similar to that seen in the solar system.

  11. Orbitally-forced Azolla blooms and middle Eocene Arctic hydrology; clues from palynology

    NASA Astrophysics Data System (ADS)

    Barke, Judith; Abels, Hemmo A.; Sangiorgi, Francesca; Greenwood, David R.; Sweet, Arthur R.; Donders, Timme; Lotter, Andre F.; Reichart, Gert-Jan; Brinkhuis, Henk

    2010-05-01

    The presence of high abundances of the freshwater fern Azolla in the early Middle Eocene central Arctic Ocean sediments recovered from the Lomonosov Ridge during IODP Expedition 302, have been related to the presence of a substantial freshwater cap. Azolla massulae, belonging to the newly described Eocene species Azolla arctica Collinson et al., have been found over at least a ~4 m-thick interval. There are strong indications that Azolla has bloomed and reproduced in situ in the Arctic Ocean for several hundreds of thousands of years. Possible causes for the sudden demise of Azolla at ~48.1 Ma include salinity changes due to evolving oceanic connections or sea-level change. Distinct cyclic fluctuation in the Azolla massulae abundances have previously been related to orbitally forced climate changes. In this study, we evaluate the possible underlying forcing mechanisms for these freshwater cycles and for the eventual demise of Azolla in an integrated palynological and cyclostratigraphical approach. Our results show two clear periodicities of ~1.3 and ~0.7 m in all major aquatic and terrestrial palynomorph associations, which we can relate to obliquity (41 ka) and precession (~21 ka), respectively. Cycles in the abundances of Azolla, freshwater-tolerant dinoflagellate cysts, and swamp vegetation pollen show co-variability in the obliquity domain. Their strong correlation suggests periods of enhanced rainfall and runoff during Azolla blooms, possibly associated with increased summer season length and insolation during obliquity maxima. Cycles in the angiosperm pollen record are in anti-phase with the Azolla cycles. We interpret this pattern as edaphically drier conditions on land and reduced associated runoff during Azolla lows, possibly corresponding to obliquity minima. The precession signal is distinctly weaker than that for obliquity, and is mainly detectable in the cold-temperate Larix and bisaccate conifer pollen abundances, which is interpreted as a response to stronger seasonality with colder winters and warmer summers during precession minima. Together with the Azolla demise at 48.1 Ma, a concurrent decline of swamp vegetation suggests drier local conditions on land, saltwater intrusion, and possibly decreased runoff into the Arctic Ocean, causing salinity changes which could have been fatal for Azolla blooms. After the Azolla demise, the cyclic distribution of freshwater tolerant dinoflagellate cysts suggests that runoff cycles continued to influence the central Arctic although at decreased intensity.

  12. Long-Term Obliquity Variations of a Moonless Earth

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lissauer, J. J.; Chambers, J. E.

    2012-05-01

    Earth's present-day obliquity varies by +/-1.2 degrees over 100,000-year timescales. Without the Moon's gravity increasing the rotation axis precession rate, prior theory predicted that a moonless Earth's obliquity would be allowed to vary between 0 and 85 degrees -- moreso even than present-day Mars (0 - 60 degrees). We use a modified version of the symplectic orbital integrator `mercury' to numerically investigate the obliquity evolution of hypothetical moonless Earths. Contrary to the large theoretically allowed range, we find that moonless Earths more typically experience obliquity variations of just +/- 10 degrees over Gyr timescales. Some initial conditions for the moonless Earth's rotation rate and obliquity yield slightly greater variations, but the majority have smaller variations. In particular, retrograde rotators are quite stable and should constitute 50% of the population if initial terrestrial planet rotation is isotropic. Our results have important implications for the prospects of long-term habitability of moonless planets in extrasolar systems.

  13. A construction and validation of a Freshman Stress Questionnaire: an exploratory study.

    PubMed

    Boujut, Emilie; Bruchon-Schweitzer, Marilou

    2009-04-01

    A stress questionnaire for freshmen was developed and administered to 1,102 French students at the beginning of the term (T1). A Principal Component Analysis of responses, followed by varimax and oblique rotations, yielded four factors accounting for 58% of the total variance. Factors were identified as academic stress, university's dysfunctions, feelings of loneliness, and problems with close relations. Associations were observed between scores on these factors and on personal variables measured at the same time (T1), namely, neuroticism, self-esteem, and two coping strategies, as well as variables measured at the end of the term (T2), depressive symptoms, eating disorders, somatic symptoms, and life satisfaction.

  14. Along-strike variations of the partitioning of convergence across the Haiyuan fault system detected by InSAR

    NASA Astrophysics Data System (ADS)

    Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.-P.; Barbot, S.; Tapponnier, P.; Peltzer, G.; Socquet, A.; Sun, J.

    2016-04-01

    Oblique convergence across Tibet leads to slip partitioning with the coexistence of strike-slip, normal and thrust motion on major fault systems. A key point is to understand and model how faults interact and accumulate strain at depth. Here, we extract ground deformation across the Haiyuan Fault restraining bend, at the northeastern boundary of the Tibetan plateau, from Envisat radar data spanning the 2001-2011 period. We show that the complexity of the surface displacement field can be explained by the partitioning of a uniform deep-seated convergence. Mountains and sand dunes in the study area make the radar data processing challenging and require the latest developments in processing procedures for Synthetic Aperture Radar interferometry. The processing strategy is based on a small baseline approach. Before unwrapping, we correct for atmospheric phase delays from global atmospheric models and digital elevation model errors. A series of filtering steps is applied to improve the signal-to-noise ratio across high ranges of the Tibetan plateau and the phase unwrapping capability across the fault, required for reliable estimate of fault movement. We then jointly invert our InSAR time-series together with published GPS displacements to test a proposed long-term slip-partitioning model between the Haiyuan and Gulang left-lateral Faults and the Qilian Shan thrusts. We explore the geometry of the fault system at depth and associated slip rates using a Bayesian approach and test the consistency of present-day geodetic surface displacements with a long-term tectonic model. We determine a uniform convergence rate of 10 [8.6-11.5] mm yr-1 with an N89 [81-97]°E across the whole fault system, with a variable partitioning west and east of a major extensional fault-jog (the Tianzhu pull-apart basin). Our 2-D model of two profiles perpendicular to the fault system gives a quantitative understanding of how crustal deformation is accommodated by the various branches of this thrust/strike-slip fault system and demonstrates how the geometry of the Haiyuan fault system controls the partitioning of the deep secular motion.

  15. A synthetic high fidelity, high cadence spectral Earth database

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Meadows, Victoria; Robinson, Tyler D.; Lustig-Yaeger, Jacob; Sparks, William B.; Cracraft, Misty

    2016-10-01

    Earth is currently our only, and will always be our best, example of a living planet. While Earth data model comparisons have been effectively used in recent years to validate spectral models, observations by interplanetary spacecraft are limited to "snapshots" in terms of viewing geometry and Earth's dynamic surface and atmosphere state. We use the well-validated Virtual Planetary Laboratory 3D spectral Earth model to generate both simulated disk-averaged spectra and high resolution, spatially resolved spectral data cubes of Earth at a viewing geometry consistent with Lunar viewing angles at wavelengths from the far UV (0.1 μm) the to the far IR (200 μm). The database includes disk-averaged spectra from dates 03/19/2008 to 04/23/2008 at one-hour cadence and fully spectral data cubes for a subset of those times. These spectral products have a wide range of applications including calibration of spacecraft instrumentation (Robinson et al. 2014), modeling the radiation environment of permanently shadowed Lunar craters due to Earthshine (Glenar et al., in prep), and testing the detectability of atmospheric and surface features of an Earth-like planet orbiting a distant star with a large space-based telescope mission concepts such as LUVOIR. These data include the phase and time-dependent changes in spectral biosignatures (O2, O3, CH4, VRE) and habitability markers (N2, H2O, CO2, ocean glint). The advantages of the VPL Earth model data products over 1D spectra traditionally used for testing instrument architectures include accurate modeling of Earth's surface inhomogeneity (continental distribution and ice caps), cloud cover and variability, pole to equator temperature gradients, obliquity, phase-dependent scattering effects, and rotation. We present a subset of this spectral data including anticipated signal-to-noise calculations of an exoEarth twin at different phases using a coronagraph instrument model (Robinson et al. 2015). We also calculate time-dependent UBVRIJHK absolute magnitudes of Earth and binned intensities (W m-2 sr-1) in wavelength ranges (0.4-1 μm, 0.2-2 μm, 5-25 μm, and > 10 μm) relevant for planet detection with proposed space telescope missions.

  16. Worldwide estimates and uncertainty assessments of laser propagation for diverse geometries for paths in the altitude regime of 3 km and below at wavelengths 0.355 μm to 10.6 μm

    NASA Astrophysics Data System (ADS)

    Fiorino, Steven T.; Bartell, Richard J.; Perram, Glen P.; Krizo, Matthew J.; Fedyk, Daniel J.; Wisdom, Brett W.; Cusumano, Salvatore J.

    2007-04-01

    The directed energy modeling and simulation community can make important direct contributions to the joint warfighting community by establishing clear and fully integrated future program requirements. These requirements are best determined via analysis of the expected variability/uncertainty in system performance arising from spatial, spectral and temporal variations in operating conditions. In this study of atmospheric effects on HEL systems, the parameter space is explored using the Air Force Institute of Technology Center for Directed Energy's (AFIT/CDE) High Energy Laser End-to-End Operational Simulation (HELEEOS) parametric one-on-one engagement level model. HELEEOS is anchored to respected wave optics codes and all significant degradation effects-including optical turbulence and molecular, aerosol, and liquid water drop/droplet absorption and scattering-are represented in the model. Beam spread effects due to thermal blooming caused by the various absorbers are considered when appropriate. Power delivered in a 5 cm diameter circular area normalized by the total transmitted power is the primary performance metric used in the study, with results presented in the form of histograms. The expected performance of laser systems operating at both low and high powers is assessed at 24 wavelengths between 0.355 μm and 10.6 μm for a number of widely dispersed land and maritime locations worldwide. Scenarios evaluated include both up and down looking generally oblique engagement geometries over ranges up to 6000 meters in which anticipated clear air aerosols and thin layers of fog, and very light rain are simulated. Seasonal and boundary layer variations (summer and winter) for nighttime conditions for a range of relative humidity percentile conditions are considered to determine optimum employment techniques to exploit or defeat the environmental conditions. Each atmospheric particulate/obscurant is evaluated based on its wavelength-dependent forward and off-axis scattering characteristics and absorption effects on laser energy delivered. In addition to realistic vertical profiles of molecular and aerosol absorption and scattering, correlated optical turbulence profiles in probabilistic (percentile) format are used, a feature unique to HELEEOS.

  17. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  18. Paediatric lateral humeral condyle fractures: internal oblique radiographs alter the course of conservative treatment.

    PubMed

    Kurtulmuş, Tuhan; Sağlam, Necdet; Saka, Gursel; Avcı, Cem Coşkun; Uğurlar, Meriç; Türker, Mehmet

    2014-10-01

    At first presentation of paediatric humeral lateral condyle fractures, radiological methods such as computerised tomography, ultrasonography, magnetic resonance imaging, arthrography, and internal oblique radiography are used to determine stability. Very few studies show which radiological method should be used to evaluate displacement at follow-up for conservatively treated patients. This study aimed to show that internal oblique radiography is a simple, effective method to determine the subsequent development of fracture displacement in patients with an initially non-displaced or minimally displaced fracture. In this retrospective study, 27 paediatric patients with non-displaced or minimally displaced (<2 mm) humerus lateral condyle fracture were evaluated by elbow anteroposterior radiograph. The degree of fracture displacement was evaluated by anteroposterior then by internal oblique radiographs. The first follow-up was made between the 5th and 8th day and thereafter at intervals of 7-10 days. Of the 27 patients identified with non-displaced or minimally displaced (<2 mm) fracture from the initial anteroposterior radiograph, 16 were accepted as displacement >2 mm as a result of the evaluation of the internal oblique radiography and underwent surgery. At follow-up, 2 of 11 patients were defined with displacement from anteroposterior and internal oblique radiographs and 4 from the internal oblique radiographs and underwent surgery. Conservative treatment was applied to 5 patients. Internal oblique radiography is the best imaging showing subsequent fracture displacement in initially non-displaced or minimally displaced humerus lateral condyle fractures. At the first week follow-up, anteroposterior and particularly internal oblique radiographs should be taken of conservatively treated patients.

  19. Hidden (end-on) patent ductus arteriosus: recognition and device closure.

    PubMed

    Garg, Naveen; Madan, Bevunahalli Kantharaj

    2016-02-01

    Sometimes, it is difficult to visualize a patent ductus arteriosus and deploy a device in the standard lateral view because of an end-on orientation. The right anterior oblique view may be helpful by separating the ductus arteriosus from the aorta. This study was undertaken to evaluate the incidence of end-on patent ductus arteriosus and the utility of the right anterior oblique view during device closure. Aortography was performed in lateral and right anterior oblique views before, during, and after successful device deployment in 117 consecutive patients. When a ductus arteriosus was not clearly visible in the lateral view due to overlapping by the aorta, it was termed "right anterior oblique view useful". The types of patent ductus arteriosus were A, B, C, and E in 86 (73.5%), 20 (17.1%), 4 (3.4%), and 7 (6.0%) patients, respectively. An end-on ductus arteriosus was present in 24 (20.5%) patients (14 type B, 10 type A). The right anterior oblique view was useful during device closure in 15 (12.8%) cases (all end-on type). Among all cases of end-on patent ductus arteriosus, it was useful in 62.5% (most type B and a few type A). In all of these, the device appeared obliquely oriented and foreshortened in the lateral view but fully profiled in the right anterior oblique view. Recognizing an end-on patent ductus arteriosus and utilizing the right anterior oblique view simplified device closure. For ducts well-profiled in the lateral view, the right anterior oblique view is unnecessary and avoidable. © The Author(s) 2016.

  20. Effects of extreme obliquity variations on the habitability of exoplanets.

    PubMed

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  1. Large Engine Technology Program. Task 22: Variable Geometry Concepts for Rich-Quench-Lean Combustors

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R. (Technical Monitor); Cohen, J. M.; Padget, F. C.; Kwoka, D.; Wang, Q.; Lohmann, R. P.

    2005-01-01

    The objective of the task reported herein was to define, evaluate, and optimize variable geometry concepts suitable for use with a Rich-Quench-Lean (RQL) combustor. The specific intent was to identify approaches that would satisfy High Speed Civil Transport (HSCT) cycle operational requirements with regard to fuel-air ratio turndown capability, ignition, and stability margin without compromising the stringent emissions, performance, and reliability goals that this combustor would have to achieve. Four potential configurations were identified and three of these were refined and tested in a high-pressure modular RQL combustor rig. The tools used in the evolution of these concepts included models built with rapid fabrication techniques that were tested for airflow characteristics to confirm sizing and airflow management capability, spray patternation, and atomization characterization tests of these models and studies that were supported by Computational Fluid Dynamics analyses. Combustion tests were performed with each of the concepts at supersonic cruise conditions and at other critical conditions in the flight envelope, including the transition points of the variable geometry system, to identify performance, emissions, and operability impacts. Based upon the cold flow characterization, emissions results, acoustic behavior observed during the tests and consideration of mechanical, reliability, and implementation issues, the tri-swirler configuration was selected as the best variable geometry concept for incorporation in the RQL combustor evolution efforts for the HSCT.

  2. Component testing of a ground based gas turbine steam cooled rich-burn primary zone combustor for emissions control of nitrogeneous fuels

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1986-01-01

    This effort summarizes the work performed on a steam cooled, rich-burn primary zone, variable geometry combustor designed for combustion of nitrogeneous fuels such as heavy oils or synthetic crude oils. The steam cooling was employed to determine its feasibility and assess its usefulness as part of a ground based gas turbine bottoming cycle. Variable combustor geometry was employed to demonstrate its ability to control primary and secondary zone equivalence ratios and overall pressure drop. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This low temperature offers the potential of both long life and reduced use of strategic materials for liner fabrication. These degrees of variable geometry were successfully employed to control air flow distribution within the combustor. A variable blade angle axial flow air swirler was used to control primary zone air flow, while the secondary and tertiary zone air flows were controlled by rotating bands which regulated air flow to the secondary zone quench holes and the dilutions holes respectively.

  3. Geospatial Data Processing for 3d City Model Generation, Management and Visualization

    NASA Astrophysics Data System (ADS)

    Toschi, I.; Nocerino, E.; Remondino, F.; Revolti, A.; Soria, G.; Piffer, S.

    2017-05-01

    Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models) in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA) and national mapping agencies (NMA) involved in "smart city" applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above - http://seneca.fbk.eu). State-of-the-art processing solutions are investigated in order to (i) efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching), (ii) derive topologically and geometrically accurate 3D geo-objects (i.e. building models) at various levels of detail and (iii) link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy) and Graz (Austria). Both spatial (i.e. nadir and oblique imagery) and non-spatial (i.e. cadastral information and building energy consumptions) data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.

  4. Extracting leaf area index using viewing geometry effects-A new perspective on high-resolution unmanned aerial system photography

    NASA Astrophysics Data System (ADS)

    Roth, Lukas; Aasen, Helge; Walter, Achim; Liebisch, Frank

    2018-07-01

    Extraction of leaf area index (LAI) is an important prerequisite in numerous studies related to plant ecology, physiology and breeding. LAI is indicative for the performance of a plant canopy and of its potential for growth and yield. In this study, a novel method to estimate LAI based on RGB images taken by an unmanned aerial system (UAS) is introduced. Soybean was taken as the model crop of investigation. The method integrates viewing geometry information in an approach related to gap fraction theory. A 3-D simulation of virtual canopies helped developing and verifying the underlying model. In addition, the method includes techniques to extract plot based data from individual oblique images using image projection, as well as image segmentation applying an active learning approach. Data from a soybean field experiment were used to validate the method. The thereby measured LAI prediction accuracy was comparable with the one of a gap fraction-based handheld device (R2 of 0.92 , RMSE of 0.42 m 2m-2) and correlated well with destructive LAI measurements (R2 of 0.89 , RMSE of 0.41 m2 m-2). These results indicate that, if respecting the range (LAI ≤ 3) the method was tested for, extracting LAI from UAS derived RGB images using viewing geometry information represents a valid alternative to destructive and optical handheld device LAI measurements in soybean. Thereby, we open the door for automated, high-throughput assessment of LAI in plant and crop science.

  5. Multi-fidelity numerical simulations of shock/turbulent-boundary layer interaction with uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Bermejo-Moreno, Ivan; Campo, Laura; Larsson, Johan; Emory, Mike; Bodart, Julien; Palacios, Francisco; Iaccarino, Gianluca; Eaton, John

    2013-11-01

    We study the interaction between an oblique shock wave and the turbulent boundary layers inside a nearly-square duct by combining wall-modeled LES, 2D and 3D RANS simulations, targeting the experiment of Campo, Helmer & Eaton, 2012 (nominal conditions: M = 2 . 05 , Reθ = 6 , 500). A primary objective is to quantify the effect of aleatory and epistemic uncertainties on the STBLI. Aleatory uncertainties considered include the inflow conditions (Mach number of the incoming air stream and thickness of the boundary layers) and perturbations of the duct geometry upstream of the interaction. The epistemic uncertainty under consideration focuses on the RANS turbulence model form by injecting perturbations in the Reynolds stress anisotropy in regions of the flow where the model assumptions (in particular, the Boussinesq eddy-viscosity hypothesis) may be invalid. These perturbations are then propagated through the flow solver into the solution. The uncertainty quantification (UQ) analysis is done through 2D and 3D RANS simulations, assessing the importance of the three-dimensional effects imposed by the nearly-square duct geometry. Wall-modeled LES are used to verify elements of the UQ methodology and to explore the flow features and physics of the STBLI for multiple shock strengths. Financial support from the United States Department of Energy under the PSAAP program is gratefully acknowledged.

  6. Effects of Convoluted Divergent Flap Contouring on the Performance of a Fixed-Geometry Nonaxisymmetric Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Hunter, Craig A.

    1999-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the effects of convoluted divergent-flap contouring on the internal performance of a fixed-geometry, nonaxisymmetric, convergent-divergent exhaust nozzle. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and four convoluted configurations. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at overexpanded conditions. Convoluted configurations were found to significantly reduce, and in some cases totally alleviate separation at overexpanded conditions. This result was attributed to the ability of convoluted contouring to energize and improve the condition of the nozzle boundary layer. Separation alleviation offers potential for installed nozzle aeropropulsive (thrust-minus-drag) performance benefits by reducing drag at forward flight speeds, even though this may reduce nozzle thrust ratio as much as 6.4% at off-design conditions. At on-design conditions, nozzle thrust ratio for the convoluted configurations ranged from 1% to 2.9% below the baseline configuration; this was a result of increased skin friction and oblique shock losses inside the nozzle.

  7. A journal bearing with variable geometry for the suppression of vibrations in rotating shafts: Simulation, design, construction and experiment

    NASA Astrophysics Data System (ADS)

    Chasalevris, Athanasios; Dohnal, Fadi

    2015-02-01

    The idea for a journal bearing with variable geometry was formerly developed and investigated on its principles of operation giving very optimistic theoretical results for the vibration quenching of simple and more complicated rotor bearing systems during the passage through the first critical speed. The journal bearing with variable geometry is presented in this paper in its final form with the detailed design procedure. The current journal bearing was constructed in order to be applied in a simple real rotor bearing system that already exists as an experimental facility. The current paper presents details on the manufactured prototype bearing as an experimental continuation of previous works that presented the simulation of the operating principle of this journal bearing. The design parameters are discussed thoroughly under the numerical simulation for the fluid film pressure in dependency of the variable fluid film thickness during the operation conditions. The implementation of the variable geometry bearing in an experimental rotor bearing system is outlined. Various measurements highlight the efficiency of the proposed bearing element in vibration quenching during the passage through resonance. The inspiration for the current idea is based on the fact that the alteration of the fluid film characteristics of stiffness and damping during the passage through resonance results in vibration quenching. This alteration of the bearing characteristics is achieved by the introduction of an additional fluid film thickness using the passive displacement of the lower half-bearing part. • The contribution of the current journal bearing in vibration quenching. • Experimental evidence for the VGJB contribution.

  8. Three-dimensional frictional plastic strain partitioning during oblique rifting

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; Huismans, Ritske S.; May, Dave

    2017-04-01

    Throughout the Wilson cycle the obliquity between lithospheric plate motion direction and nascent or existing plate boundaries prompts the development of intricate three-dimensional tectonic systems. Where oblique divergence dominates, as in the vast majority of continental rift and incipient oceanic domains, deformation is typically transtensional and large stretching in the brittle upper crust is primarily achieved by the accumulation of displacement on fault networks of various complexity. In continental rift depressions such faults are initially distributed over tens to hundreds of kilometer-wide regions, which can ultimately stretch and evolve into passive margins. Here, we use high-resolution 3D thermo-mechanical finite element models to investigate the relative timing and distribution of localised frictional plastic deformation in the upper crust during oblique rift development in a simplified layered lithosphere. We vary the orientation of a wide oblique heterogeneous weak zone (representing a pre-existing geologic feature like a past orogenic domain), and test the sensitivity of the shear zones orientation to a range of noise distribution. These models allow us to assess the importance of material heterogeneities for controlling the spatio-temporal shear zones distribution in the upper crust during oblique rifting, and to discuss the underlying controls governing oblique continental breakup.

  9. Analogue modelling of thrust systems: Passive vs. active hanging wall strain accommodation and sharp vs. smooth fault-ramp geometries

    NASA Astrophysics Data System (ADS)

    Rosas, F. M.; Duarte, J. C.; Almeida, P.; Schellart, W. P.; Riel, N.; Terrinha, P.

    2017-06-01

    We present new analogue modelling results of crustal thrust-systems in which a deformable (brittle) hanging wall is assumed to endure passive internal deformation during thrusting, i.e. exclusively as a consequence of having to adapt its shape to the variable geometry of a rigid footwall. Building on previous experimental contributions, we specifically investigate the role of two so far overlooked critical variables: a) concave-convex (CC) vs. flat-ramp-flat (FRF) thrust ramp geometry; and b) presence vs. absence of a basal velocity discontinuity (VD). Regarding the first variable, we compare new results for considered (CC) smoother ramp types against classical experiments in which (FRF) sharp ramp geometries are always prescribed. Our results show that the considered sharp vs. smooth variation in the thrust-ramp geometry produces important differences in the distribution of the local stress field in the deformable hanging wall above both (lower and upper) fault bends, with corresponding styles of strain accommodation being expressed by marked differences in measured morpho-structural parameters. Regarding the second variable, we for the first time report analogue modelling results of this type of experiments in which basal VDs are experimentally prescribed to be absent. Our results critically show that true passive hanging wall deformation is only possible to simulate in the absence of any basal VD, since active shortening accommodation always necessarily occurs in the hanging wall above such a discontinuity (i.e. above the lower fault bend). In addition, we show that the morpho-structural configuration of model thrust-wedges formed for prescribed VD absence conditions complies well with natural examples of major overthrusts, wherein conditions must occur that approximate a frictionless state along the main basal thrust-plane.

  10. Alignment of nematic liquid crystals by inhomogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Ong, Hiap Liew; Hurd, Alan J.; Meyer, Robert B.

    1985-01-01

    Variable oblique alignment of nematic liquid crystals has been achieved on microscopically inhomogeneous surfaces. The surfaces consist of small patches favoring vertical (homeotropic) alignment surrounded by a matrix favoring a planar alignment. The construction of these surfaces employs randomly distributed microscopic metal islands formed by certain metals as vapor-deposited films. Larger scale periodic patterns were made as well to verify the techniques. The results are interpreted in terms of a continuum elasticity theory and azimuthal degeneracy is also discussed.

  11. Perspectives on dilution jet mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1986-01-01

    A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.

  12. Hydrological Cycle in the Western Equatorial Warm Pool over the Past 220 k years

    NASA Astrophysics Data System (ADS)

    Tachikawa, K.; Cartapanis, O.; Vidal, L.; Beaufort, L.; Bard, E.

    2008-12-01

    The Western Pacific Warm Pool is a major source of heat and moisture to extra-tropical regions, and its condition could have great impact on global climate response to various forcing factors. We reconstructed the rainfall pattern over Papua New Guinea (PNG) for the past 220 kyr using terrigenous elemental contents (Ti, Fe, K and Si) and calcareous productivity (Ca) recorded in a marine sediment core MD05-2920 (2°51.48S, 144°32.04E) from 100 km off the Sepik River mouth in Northern PNG. The core chronostratigraphy is established by 14C dating and benthic foraminiferal oxygen isotopes. The Sepik and Ramu river system forms one of the highest sediment discharge zones in the world because of high rainfall rates, warm and humid climate, steep topography and erodible volcanic rocks in the draining basin. At present, the rainfall over this area is under the influence of both Asia-Australian monsoon and El Niño Southern Oscillation (ENSO). The results obtained by an XRF core scanner indicate that for the whole record major sediment components are of terrigenous river-born nature and biogenic CaCO3. Spectral analysis reveals that dominant peaks for Ti are precession and obliquity periods whereas Ca variability is rather dominated by obliquity. The wet periods appear during maximum local insolation, which is in phase with minimum East Asian summer monsoon strength recorded by Chinese speleothems. Modeled past ENSO activity cannot explain the reconstructed rainfall and productivity patterns. Taken together, the fresh water cycle over New Guinea is better explained by latitudinal shifts of the Intertropical Convergence Zone rather than ENSO-type variability on orbital time scales. The variability of calcareous productivity is likely related to general changes in nutricline depth of the tropical Pacific band.

  13. Evaluation of the oblique detonation wave ramjet

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.

    1978-01-01

    The potential performance of oblique detonation wave ramjets is analyzed in terms of multishock diffusion, oblique detonation waves, and heat release. Results are presented in terms of thrust coefficients and specific impulses for a range of flight Mach numbers of 6 to 16.

  14. Simulation of an oblique collision of a locomotive and an intermodal container

    DOT National Transportation Integrated Search

    1999-11-01

    This paper presents an approach to modeling an oblique collision of a locomotive and an intermodal container. Previous studies of offset and oblique train collisions have used one and two-dimensional models to determine the trajectories of the equipm...

  15. Polar Wander on Triton and Pluto Due to Volatile Migration

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2002-01-01

    Polar wander may occur on Triton and Pluto because of volatile migration. Triton, with its low obliquity, can theoretically sublimate volatiles (mostly nitrogen) at the rate of approximately 10(exp 14) kilograms per year from the equatorial regions and deposit them at the poles. Assuming Triton to be rigid on the sublimation timescale, after approximately 10(exp 5) years the polar caps would become large enough to cancel the rotational flattening, with a total mass equivalent to a global layer approximately 120-250 m in depth. At this point the pole wanders about the tidal bulge axis, which is the line joining Triton and Neptune. Rotation about the bulge axis might be expected to disturb the leading side/trailing side cratering statistics. Because no such disturbance is observed, it may be that Triton's mantle viscosity is too high but its surface volatile inventory is too low to permit wander. On the other hand, its mantle viscosity might be low, so that any uncompensated cap load might be expected to wander toward the tidal bulge axis. In this case, the axis of wander passes through the equator from the leading side to the trailing side; rotation about this wander axis would not disturb the cratering statistics. Low-viscosity polar wander may explain the bright southern hemisphere: this is the pole which is wandering toward the equator. In any case the permanent polar caps may be geologically very young. Polar wander may possibly take place on Pluto, due to its obliquity oscillations and perihelion-pole geometry. However, Pluto is probably not experiencing any wander at present. The Sun has been shining strongly on the poles over the last half of the obliquity cycle, so that volatiles should migrate to the equator, stabilizing the planet against wander. Spacecraft missions to Triton and Pluto which measure the dynamical flattening could give information about the accumulation of volatiles at the poles. Such information is best obtained by measuring gravity and topography from orbiters, as was done for Mars with the highly successful Mars Global Surveyor.

  16. The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George T

    2010-12-14

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less

  17. Constraints on Lithospheric Rheology From Fault Displacement Rate Histories and Numerical Experiments

    NASA Astrophysics Data System (ADS)

    Lavier, L. L.; Bennett, R. A.; Anderson, M. L.; Matti, J. C.

    2005-05-01

    Recent displacement rate and geodetic data on the San Andreas, San Jacinto and eastern California shear zone suggest that changes in the geometry and/or the magnitude of the applied forces on the crust (e.g., a general or local change in fault strike relative to plate motion) can generate strain repartitioning within the crust on time scales of millions to thousands of years. The rates over which this repartitioning takes place in response to changing forces are controlled by the rheological evolution of the lithosphere. We investigate the implications of observed fault displacement histories for the rheology of the lithosphere using 2.5 D numerical experiments of deformation in an analogue system. The numerical technique used allows for the spontaneous formation of elastoplastic shear zones and flow in a Maxwell viscoelastic lower crust. The results show that when a strike slip fault is rotated to strike obliquely to the direction of relative plate motion it causes changes in bending and frictional stresses due to the formation of topography. To accommodate these changes, a conjugate system of oblique-striking strike slip faults develops. The total displacement is then slowly distributed over the new fault system on the time scale of mountain building (i.e. million of years). The rate of change is dependent on the strength of the lithosphere as well as the amount of obliquity applied on the initial strike-slip fault. In other numerical experiments we show that in a system of multiple strike-slip fault zones, displacement rate changes can occur over a time scale of about 100 kyr. This time scale corresponds to the Maxwell time at the brittle ductile transition (BDT). In such a system the lithospheric displacement is alternatively distributed (over 100 kyr) in clusters localized in lower crustal channels and over strike-slip fault zones. We show that the clustering time scale is controlled by the ratio of upper to lower crustal strength. This incomplete exercise shows how displacement rates data sets spanning thousands to millions of years can be used to constrain numerical experiments of lithospheric deformation and, in doing so, place new constraints on the rheology of the lithosphere.

  18. The scaling of oblique plasma double layers

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1983-01-01

    Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.

  19. The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2003-01-01

    Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three dimensional velocities and angles. These data are then used to constrain Maxwell's Z Model and follow the subsurface evolution of the excavation-stage flow-field center during oblique impacts.

  20. Where Are the Asteroids? The Design of ASTPT and ASTID.

    DTIC Science & Technology

    1980-04-15

    obliquity A = nutation in longitude = obliquity of ecliptic , of date e 0 obliquity of ecliptic , 1950.0 0O eutra rcsin uniy e q 1c 6 equatorial precession...need an additional rotation by the obliquity of the ecliptic , r- = R1(-Eo)o; Eo = 23*26󈧰蠔 (6) There is a very old trick in astronomy to simplify...execution speed. This is accomplished by using an approximate geocentric ecliptic position to eliminate, as quickly (in terms of CPU time) as possible

  1. Comparison of Chevron and Distal Oblique Osteotomy for Bunion Correction.

    PubMed

    Scharer, Brandon M; DeVries, J George

    2016-01-01

    The chevron osteotomy is a standard procedure by which bunions are corrected. One of us routinely performs a distal oblique osteotomy, which, to the best of our knowledge, has not been described for the correction of bunion deformities. The purpose of the present study was to compare the short- and medium-term results of the distal oblique and chevron osteotomies for bunion correction. We performed a retrospective clinical and radiographic comparison of patients who had undergone a distal oblique or chevron osteotomy for the correction of bunion deformity. In addition, a prospective patient satisfaction survey was undertaken. A total of 55 patients were included in the present study and were treated from January 2012 to November 2014. Of the 55 patients, 27 (49.2%) were in the chevron group and 28 (50.8%) in the distal oblique group. Radiographically, no statistically significant difference was found between the 2 groups with respect to postoperative first intermetatarsal angle (p < .0001) and hallux valgus angle (p < .0001), but a greater change was found in the intermetatarsal angle in the distal oblique group (p = .467). Prospective patient satisfaction scores were available for 33 patients (60%), 16 (29%) in the chevron group and 17 (31%) in the distal oblique group. When converting the satisfaction score to a numerical score, the chevron group scored 3.3 ± 1.1 and the distal oblique group scored 3.2 ± 0.8 (p = .812). We found that the distal oblique osteotomy used in the present study is simple and reliable and showed radiographic correction and patient satisfaction equivalent to those in the chevron osteotomy. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. The effect of astigmatism axis on visual acuity.

    PubMed

    Mimouni, Michael; Nemet, Achia; Pokroy, Russell; Sela, Tzahi; Munzer, Gur; Kaiserman, Igor

    2017-05-11

    To evaluate the effect of astigmatism axis on uncorrected distance visual acuity (UDVA) in emmetropic eyes that underwent laser refractive surgery. This retrospective study included patients who underwent laser in situ keratomileusis or photorefractive keratectomy between January 2000 and December 2015 at the Care-Vision Laser Centers, Tel Aviv, Israel. Eyes with a 3-month postoperative spherical equivalent between -0.5 D and 0.5 D were included in this study. Eyes with ocular comorbidities and planned ametropia were excluded. Study eyes were divided into 3 groups according to the steep astigmatic axis: with the rule (WTR) (60-120), oblique (31-59 or 121-149), and against the rule (ATR) (0-30 or 150-180). The UDVA of these 3 groups was compared. The oblique group was divided into oblique ATR and oblique WTR, which were compared with each other. A total of 17,416 consecutive eyes of 8,708 patients were studied. The WTR eyes (n = 10,651) had significantly better UDVA (logMAR 0.01 ± 0.08) than the oblique (n = 3,141, logMAR 0.02 ± 0.09) and ATR eyes (n = 3,624, logMAR 0.02 ± 0.10) (p<0.001). The oblique WTR group had significantly better UDVA than the oblique ATR group (p<0.001). The UDVA of the oblique and ATR groups was similar. Stepwise multiple regression analysis showed that the group accounted for 15% of the UDVA variance (p = 0.04). The astigmatic axis has a small but significant effect on UDVA in emmetropic eyes; WTR was better than oblique and ATR astigmatism. Therefore, when correcting astigmatism, it may be preferable to err towards WTR astigmatism.

  3. Do early neural correlates of visual consciousness show the oblique effect? A binocular rivalry and event-related potential study.

    PubMed

    Jack, Bradley N; Roeber, Urte; O'Shea, Robert P

    2017-01-01

    When dissimilar images are presented one to each eye, we do not see both images; rather, we see one at a time, alternating unpredictably. This is called binocular rivalry, and it has recently been used to study brain processes that correlate with visual consciousness, because perception changes without any change in the sensory input. Such studies have used various types of images, but the most popular have been gratings: sets of bright and dark lines of orthogonal orientations presented one to each eye. We studied whether using cardinal rival gratings (vertical, 0°, and horizontal, 90°) versus oblique rival gratings (left-oblique, -45°, and right-oblique, 45°) influences early neural correlates of visual consciousness, because of the oblique effect: the tendency for visual performance to be greater for cardinal gratings than for oblique gratings. Participants viewed rival gratings and pressed keys indicating which of the two gratings they perceived, was dominant. Next, we changed one of the gratings to match the grating shown to the other eye, yielding binocular fusion. Participants perceived the rivalry-to-fusion change to the dominant grating and not to the other, suppressed grating. Using event-related potentials (ERPs), we found neural correlates of visual consciousness at the P1 for both sets of gratings, as well as at the P1-N1 for oblique gratings, and we found a neural correlate of the oblique effect at the N1, but only for perceived changes. These results show that the P1 is the earliest neural activity associated with visual consciousness and that visual consciousness might be necessary to elicit the oblique effect.

  4. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    PubMed Central

    Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T.R.; Meadows, V.S.

    2014-01-01

    Abstract We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. Key Words: Exoplanets—Habitable zone—Energy balance models. Astrobiology 14, 277–291. PMID:24611714

  5. Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars

    NASA Astrophysics Data System (ADS)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-03-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed γ-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity α and of the line of sight angle ζ, yielding estimates of the radiation beaming factor and radiated luminosity. Using different γ-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit γ-ray light curves for 76 young or middle-aged pulsars and we jointly fit their γ-ray plus radio light curves when possible. We find that a joint radio plus γ-ray fit strategy is important to obtain (α,ζ) estimates that can explain simultaneously detectable radio and γ-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (α,ζ) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the γ-ray only fit leads to underestimated α or ζ when the solution is found to the left or to the right of the main α-ζ plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favoured in explaining the observations. We find no apparent evolution of α on a time scale of 106 years. For all emission geometries our derived γ-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For all models, the correlation between γ-ray luminosity and spin-down power is consistent with a square root dependence. The γ-ray luminosities obtained by using the beaming factors estimated in the framework of each model do not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap. The relation obtained in the case of the Slot Gap model is consistent with the theoretical prediction. Appendices are available in electronic form at http://www.aanda.org

  6. Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars

    DOE PAGES

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; ...

    2015-02-10

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed γ-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity α and of the line of sight angle ζ, yielding estimates of the radiation beaming factor and radiated luminosity. Using different γ-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit γ-ray light curves formore » 76 young or middle-aged pulsars and we jointly fit their γ-ray plus radio light curves when possible. We find that a joint radio plus γ-ray fit strategy is important to obtain (α,ζ) estimates that can explain simultaneously detectable radio and γ-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (α,ζ) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the γ-ray only fit leads to underestimated α or ζ when the solution is found to the left or to the right of the main α-ζ plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favoured in explaining the observations. We find no apparent evolution of α on a time scale of 106 years. For all emission geometries our derived γ-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For all models, the correlation between γ-ray luminosity and spin-down power is consistent with a square root dependence. The γ-ray luminosities obtained by using the beaming factors estimated in the framework of each model do not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap. Furthermore, the relation obtained in the case of the Slot Gap model is consistent with the theoretical prediction.« less

  7. Light-Curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi Pulsars

    NASA Technical Reports Server (NTRS)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-01-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of a on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from radio-quiet to radio-loud solutions. For all models, the correlation between gamma-ray luminosity and spin-down power is consistent with a square root dependence. The gamma-ray luminosities obtained by using the beaming factors estimated in the framework of each model do not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap. The relation obtained in the case of the Slot Gap model is consistent with the theoretical prediction.

  8. Activities of the Vastus Lateralis and Vastus Medialis Oblique Muscles during Squats on Different Surfaces.

    PubMed

    Hyong, In Hyouk; Kang, Jong Ho

    2013-08-01

    [Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected.

  9. An oblique muscle hematoma as a rare cause of severe abdominal pain: a case report.

    PubMed

    Shimodaira, Masanori; Kitano, Tomohiro; Kibata, Minoru; Shirahata, Kumiko

    2013-01-18

    Abdominal wall hematomas are an uncommon cause of acute abdominal pain and are often misdiagnosed. They are more common in elderly individuals, particularly in those under anticoagulant therapy. Most abdominal wall hematomas occur in the rectus sheath, and hematomas within the oblique muscle are very rare and are poorly described in the literature. Here we report the case of an oblique muscle hematoma in a middle-aged patient who was not under anticoagulant therapy. A 42-year-old Japanese man presented with a painful, enlarging, lateral abdominal wall mass, which appeared after playing baseball. Abdominal computed tomography and ultrasonography showed a large soft tissue mass located in the patient's left internal oblique muscle. A diagnosis of a lateral oblique muscle hematoma was made and the patient was treated conservatively. Physicians should consider an oblique muscle hematoma during the initial differential diagnosis of pain in the lateral abdominal wall even in the absence of anticoagulant therapy or trauma.

  10. Constraints on the near-Earth asteroid obliquity distribution from the Yarkovsky effect

    NASA Astrophysics Data System (ADS)

    Tardioli, C.; Farnocchia, D.; Rozitis, B.; Cotto-Figueroa, D.; Chesley, S. R.; Statler, T. S.; Vasile, M.

    2017-12-01

    Aims: From light curve and radar data we know the spin axis of only 43 near-Earth asteroids. In this paper we attempt to constrain the spin axis obliquity distribution of near-Earth asteroids by leveraging the Yarkovsky effect and its dependence on an asteroid's obliquity. Methods: By modeling the physical parameters driving the Yarkovsky effect, we solve an inverse problem where we test different simple parametric obliquity distributions. Each distribution results in a predicted Yarkovsky effect distribution that we compare with a χ2 test to a dataset of 125 Yarkovsky estimates. Results: We find different obliquity distributions that are statistically satisfactory. In particular, among the considered models, the best-fit solution is a quadratic function, which only depends on two parameters, favors extreme obliquities consistent with the expected outcomes from the YORP effect, has a 2:1 ratio between retrograde and direct rotators, which is in agreement with theoretical predictions, and is statistically consistent with the distribution of known spin axes of near-Earth asteroids.

  11. Numerical Modeling of a Vortex Stabilized Arcjet. Ph.D. Thesis, 1991 Final Report

    NASA Technical Reports Server (NTRS)

    Pawlas, Gary E.

    1992-01-01

    Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity, and swirling flow. Arcjet geometries are large area ratio converging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown that a swirl or circumferential velocity component stabilizes a constricted arc. This dissertation describes the equations governing flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is employed in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and radial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split, and Gauss-Seidel line relaxation is used to accelerate convergence. Converging-diverging nozzles with exit-to-throat area ratios up to 100:1 and annular nozzles were examined. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures. As the level of swirl and viscosity in the flowfield increased the mass flow rate and thrust decreased. The technique was used to predict the flow through a typical arcjet thruster geometry. Results indicate swirl and viscosity play an important role in the complex geometry of an arcjet.

  12. Numerical modeling of a vortex stabilized arcjet

    NASA Astrophysics Data System (ADS)

    Pawlas, Gary E.

    1992-11-01

    Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity, and swirling flow. Arcjet geometries are large area ratio converging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown that a swirl or circumferential velocity component stabilizes a constricted arc. This dissertation describes the equations governing flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is employed in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and radial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split, and Gauss-Seidel line relaxation is used to accelerate convergence. Converging-diverging nozzles with exit-to-throat area ratios up to 100:1 and annular nozzles were examined. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures. As the level of swirl and viscosity in the flowfield increased the mass flow rate and thrust decreased.

  13. Constraints on the Obliquities of Kepler Planet-hosting Stars

    NASA Astrophysics Data System (ADS)

    Winn, Joshua N.; Petigura, Erik A.; Morton, Timothy D.; Weiss, Lauren M.; Dai, Fei; Schlaufman, Kevin C.; Howard, Andrew W.; Isaacson, Howard; Marcy, Geoffrey W.; Justesen, Anders Bo; Albrecht, Simon

    2017-12-01

    Stars with hot Jupiters have obliquities ranging from 0° to 180°, but relatively little is known about the obliquities of stars with smaller planets. Using data from the California-Kepler Survey, we investigate the obliquities of stars with planets spanning a wide range of sizes, most of which are smaller than Neptune. First, we identify 156 planet hosts for which measurements of the projected rotation velocity (v\\sin i) and rotation period are both available. By combining estimates of v and v\\sin i, we find nearly all the stars to be compatible with high inclination, and hence, low obliquity (≲20°). Second, we focus on a sample of 159 hot stars ({T}{eff}> 6000 K) for which v\\sin i is available but not necessarily the rotation period. We find six stars for which v\\sin i is anomalously low, an indicator of high obliquity. Half of these have hot Jupiters, even though only 3% of the stars that were searched have hot Jupiters. We also compare the v\\sin i distribution of the hot stars with planets to that of 83 control stars selected without prior knowledge of planets. The mean v\\sin i of the control stars is lower than that of the planet hosts by a factor of approximately π /4, as one would expect if the planet hosts have low obliquities. All these findings suggest that the Kepler planet-hosting stars generally have low obliquities, with the exception of hot stars with hot Jupiters.

  14. Controls on the spacing and geometry of rill networks on hillslopes: Rainsplash detachment, initial hillslope roughness, and the competition between fluvial and colluvial transport

    USDA-ARS?s Scientific Manuscript database

    Rill networks have been a focus of study for many decades but we still lack a complete understanding of what variables control the spacing of rills and the geometry of rill networks (e.g. parallel or dendritic) on hillslopes. In this paper we investigate the controls on the spacing and geometry of ...

  15. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely. Bridges...

  16. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely. Bridges...

  17. Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties

    NASA Astrophysics Data System (ADS)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing; Walker, Paul D.

    2017-02-01

    This paper proposes an uncertain modelling and computational method to analyze dynamic responses of rigid-flexible multibody systems (or mechanisms) with random geometry and material properties. Firstly, the deterministic model for the rigid-flexible multibody system is built with the absolute node coordinate formula (ANCF), in which the flexible parts are modeled by using ANCF elements, while the rigid parts are described by ANCF reference nodes (ANCF-RNs). Secondly, uncertainty for the geometry of rigid parts is expressed as uniform random variables, while the uncertainty for the material properties of flexible parts is modeled as a continuous random field, which is further discretized to Gaussian random variables using a series expansion method. Finally, a non-intrusive numerical method is developed to solve the dynamic equations of systems involving both types of random variables, which systematically integrates the deterministic generalized-α solver with Latin Hypercube sampling (LHS) and Polynomial Chaos (PC) expansion. The benchmark slider-crank mechanism is used as a numerical example to demonstrate the characteristics of the proposed method.

  18. Experimental investigation of wall shock cancellation and reduction of wall interference in transonic testing

    NASA Technical Reports Server (NTRS)

    Ferri, A.; Roffe, G.

    1975-01-01

    A series of experiments were performed to evaluate the effectiveness of a three-dimensional land and groove wall geometry and a variable permeability distribution to reduce the interference produced by the porous walls of a supercritical transonic test section. The three-dimensional wall geometry was found to diffuse the pressure perturbations caused by small local mismatches in wall porosity permitting the use of a relatively coarse wall porosity control to reduce or eliminate wall interference effects. The wall porosity distribution required was found to be a sensitive function of Mach number requiring that the Mach number repeatability characteristics of the test apparatus be quite good. The effectiveness of a variable porosity wall is greatest in the upstream region of the test section where the pressure differences across the wall are largest. An effective variable porosity wall in the down stream region of the test section requires the use of a slightly convergent test section geometry.

  19. Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, R.; Rayos, E. M.; Campbell, C. H.; Rickman, S. L.

    2006-01-01

    Computational tools have been developed to estimate thermal and mechanical reentry loads experienced by the Space Shuttle Orbiter as the result of cavities in the Thermal Protection System (TPS). Such cavities can be caused by impact from ice or insulating foam debris shed from the External Tank (ET) on liftoff. The reentry loads depend on cavity geometry and certain Shuttle state variables, among other factors. Certain simplifying assumptions have been made in the tool development about the cavity geometry variables. For example, the cavities are all modeled as shoeboxes , with rectangular cross-sections and planar walls. So an actual cavity is typically approximated with an idealized cavity described in terms of its length, width, and depth, as well as its entry angle, exit angle, and side angles (assumed to be the same for both sides). As part of a comprehensive assessment of the uncertainty in reentry loads estimated by the debris impact assessment tools, an effort has been initiated to quantify the component of the uncertainty that is due to imperfect geometry specifications for the debris impact cavities. The approach is to compute predicted loads for a set of geometry factor combinations sufficient to develop polynomial approximations to the complex, nonparametric underlying computational models. Such polynomial models are continuous and feature estimable, continuous derivatives, conditions that facilitate the propagation of independent variable errors. As an additional benefit, once the polynomial models have been developed, they require fewer computational resources to execute than the underlying finite element and computational fluid dynamics codes, and can generate reentry loads estimates in significantly less time. This provides a practical screening capability, in which a large number of debris impact cavities can be quickly classified either as harmless, or subject to additional analysis with the more comprehensive underlying computational tools. The polynomial models also provide useful insights into the sensitivity of reentry loads to various cavity geometry variables, and reveal complex interactions among those variables that indicate how the sensitivity of one variable depends on the level of one or more other variables. For example, the effect of cavity length on certain reentry loads depends on the depth of the cavity. Such interactions are clearly displayed in the polynomial response models.

  20. Structural style and tectonic evolution of the easternmost Gulf of Aden conjugate margins (Socotra - Southern Oman)

    NASA Astrophysics Data System (ADS)

    Nonn, Chloe; Leroy, Sylvie; Castilla, Raymi; de Clarens, Philippe; Lescanne, Marc

    2016-04-01

    Observations from distal rifted margins in present day magma-poor rifted margins led to the discovery of hyperextended crust and exhumed sub-continental mantle. This finding allowed to better figure out how thinning process are accommodate by tectonic structures, forming various crustal domains, as the deformation localized towards the future area of breakup. However, some of the current challenges are about clarifying how factors as oblique kinematic, pre-existing structures and volcanism can control the 3D geometry and crustal architecture of the passive margins? A key to better understand the rifting evolution in its entirety is to study conjugate margins. The gulf of Aden is a young oceanic basin (with a global trend about N75°E) oblique to the divergence (about 30°N), separating Arabia from Somalia of less than 800 km. Thanks to its immerged margins and its thin post-rift sediment cover, the gulf of Aden basin is a natural laboratory to investigate conjugate margins and strain localisation throughout the rift history. In this contribution, we focus our interest on offshore Socotra Island (Yemen) and its conjugate in Southeastern Oman. This area extends from Socotra-Hadbeen (SHFZ) and the eastern Gulf of Aden fault zones (EGAFZ). In the easternmost part of the gulf of Aden, we provide new insights into crustal deformation and emplacement of the new oceanic crust thanks to bathymetric, magnetic, gravimetric data and single-, multi-channel, high speed seismic reflection data collected during Encens-Sheba (2000), Encens (2006) and the more recent Marges-Aden (2012) cruises respectively. The results obtained after compilation of these data, previous geological (field works) and geophysical (receiver functions, Pn-tomography, magnetic anomalies, heat flow) studies on the focused area, allowed us to provide new structural mapping and stratigraphic correlation between onshore and offshore parts of Socotra and Oman margins. We precisely defined and map crustal domains, syn-tectonic structures and oblique accommodation zones to highlighted asymmetrical margins, characterized by strong lateral variability of crustal domains along and across strike. From external to internal domains of the margins and in between SHFZ and EGAFZ (first-order segment), this study details sharp necking domain and complex transition from hyperextended to oceanic crust characterized by: (i) hyperextended crust affected by volcanic extrusions; (ii) detachment faulting in the distal part of the margins allowing exhumation; (iii) volcanic constructions in the exhumation domain; (iv) a complex proto-oceanic crust. We highlight a significant second-order segmentation characterized by six N20°E trending transfer zones, limiting seven 25 - 60 km length segments and affecting necking domain as well as the ocean-continent transition. Based on interpretative cross-sections and detailed stratigraphic analysis, we discuss the complex temporal and spatial evolution of conjugate margins: (i) the margins segmentation and the relationship with structural inheritance (ii) the set-up of a long-offset detachment fault and the nature of the exhumed basement (iv) the origin and timing of magmatic events and the onset of proto-oceanic crust.

  1. Increased Speed and Image Quality for Pelvic Single-Shot Fast Spin-Echo Imaging with Variable Refocusing Flip Angles and Full-Fourier Acquisition

    PubMed Central

    Litwiller, Daniel V.; Saranathan, Manojkumar; Vasanawala, Shreyas S.

    2017-01-01

    Purpose To assess image quality and speed improvements for single-shot fast spin-echo (SSFSE) with variable refocusing flip angles and full-Fourier acquisition (vrfSSFSE) pelvic imaging via a prospective trial performed in the context of uterine leiomyoma evaluation. Materials and Methods Institutional review board approval and informed consent were obtained. vrfSSFSE and conventional SSFSE sagittal and coronal oblique acquisitions were performed in 54 consecutive female patients referred for 3-T magnetic resonance (MR) evaluation of known or suspected uterine leiomyomas. Two radiologists who were blinded to the image acquisition technique semiquantitatively scored images on a scale from −2 to 2 for noise, image contrast, sharpness, artifacts, and perceived ability to evaluate uterine, ovarian, and musculoskeletal structures. The null hypothesis of no significant difference between pulse sequences was assessed with a Wilcoxon signed rank test by using a Holm-Bonferroni correction for multiple comparisons. Results Because of reductions in specific absorption rate, vrfSSFSE imaging demonstrated significantly increased speed (more than twofold, P < .0001), with mean repetition times compared with conventional SSFSE imaging decreasing from 1358 to 613 msec for sagittal acquisitions and from 1494 to 621 msec for coronal oblique acquisitions. Almost all assessed image quality and perceived diagnostic capability parameters were significantly improved with vrfSSFSE imaging. These improvements included noise, sharpness, and ability to evaluate the junctional zone, myometrium, and musculoskeletal structures for both sagittal acquisitions (mean values of 0.56, 0.63, 0.42, 0.56, and 0.80, respectively; all P values < .0001) and coronal oblique acquisitions (mean values of 0.81, 1.09, 0.65, 0.93, and 1.12, respectively; all P values < .0001). For evaluation of artifacts, there was an insufficient number of cases with differences to allow statistical testing. Conclusion Compared with conventional SSFSE acquisition, vrfSSFSE acquisition increases 3-T imaging speed via reduced specific absorption rate and leads to significant improvements in perceived image quality and perceived diagnostic capability when evaluating pelvic structures. © RSNA, 2016 Online supplemental material is available for this article. PMID:27564132

  2. FREQUENCY MODULATION OF DIRECTLY IMAGED EXOPLANETS: GEOMETRIC EFFECT AS A PROBE OF PLANETARY OBLIQUITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawahara, Hajime, E-mail: kawahara@eps.s.u-tokyo.ac.jp; Research Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033

    2016-05-10

    We consider the time–frequency analysis of a scattered light curve of a directly imaged exoplanet. We show that the geometric effect due to planetary obliquity and orbital inclination induce the frequency modulation of the apparent diurnal periodicity. We construct a model of the frequency modulation and compare it with the instantaneous frequency extracted from the pseudo-Wigner distribution of simulated light curves of a cloudless Earth. The model provides good agreement with the simulated modulation factor, even for the light curve with Gaussian noise comparable to the signal. Notably, the shape of the instantaneous frequency is sensitive to the difference betweenmore » the prograde, retrograde, and pole-on spin rotations. While our technique requires the albedo map to be static, it does not need to solve the albedo map of the planet. The time–frequency analysis is complementary to other methods which utilize the amplitude modulation. This paper demonstrates the importance of the frequency domain of the photometric variability for the characterization of directly imaged exoplanets in future research.« less

  3. Obliquely Incident Solitary Wave onto a Vertical Wall

    NASA Astrophysics Data System (ADS)

    Yeh, Harry

    2012-10-01

    When a solitary wave impinges obliquely onto a reflective vertical wall, it can take the formation of a Mach reflection (a geometrically similar reflection from acoustics). The mathematical theory predicts that the wave at the reflection can amplify not twice, but as high as four times the incident wave amplitude. Nevertheless, this theoretical four-fold amplification has not been verified by numerical or laboratory experiments. We discuss the discrepancies between the theory and the experiments; then, improve the theory with higher-order corrections. The modified theory results in substantial improvement and is now in good agreement with the numerical as well as our laboratory results. Our laboratory experiments indicate that the wave amplitude along the reflective wall can reach 0.91 times the quiescent water depth, which is higher than the maximum of a freely propagating solitary wave. Hence, this maximum runup 0.91 h would be possible even if the amplitude of the incident solitary wave were as small as 0.24 h. This wave behavior could provide an explanation for local variability of tsunami runup as well as for sneaker waves.

  4. The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2003-01-01

    Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three-dimensional velocities and angles. These data are then used to test the applicability and limitations of Maxwell's Z Model in representing the subsurface evolution of the excavation-stage flow-field center during vertical and oblique impacts.

  5. Climate Dynamics and Hysteresis at Low and High Obliquity

    NASA Astrophysics Data System (ADS)

    Colose, C.; Del Genio, A. D.; Way, M.

    2017-12-01

    We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.

  6. Obliquity dependence of the tangential YORP

    NASA Astrophysics Data System (ADS)

    Ševeček, P.; Golubov, O.; Scheeres, D. J.; Krugly, Yu. N.

    2016-08-01

    Context. The tangential Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a thermophysical effect that can alter the rotation rate of asteroids and is distinct from the so-called normal YORP effect, but to date has only been studied for asteroids with zero obliquity. Aims: We aim to study the tangential YORP force produced by spherical boulders on the surface of an asteroid with an arbitrary obliquity. Methods: A finite element method is used to simulate heat conductivity inside a boulder, to find the recoil force experienced by it. Then an ellipsoidal asteroid uniformly covered by these types of boulders is considered and the torque is numerically integrated over its surface. Results: Tangential YORP is found to operate on non-zero obliquities and decreases by a factor of two for increasing obliquity.

  7. Effects of squats accompanied by hip joint adduction on the selective activity of the vastus medialis oblique.

    PubMed

    Hyong, In Hyouk

    2015-06-01

    [Purpose] This study evaluated the effective selective activation method of the vastus medialis oblique for knee joint stabilization in patients with patellofemoral pain syndrome. [Subjects and Methods] Fifteen healthy college students (9 males, 6 females); mean age, height, and weight: 22.2 years, 167.8 cm, and 61.4 kg, respectively) participated. The knee angle was held at 60°. Muscle activities were measured once each during an ordinary squat and a squat accompanied by hip joint adduction. The muscle activities of the vastus medialis oblique and vastus lateralis were measured by electromyography for five seconds while maintaining 60° knee flexion. Electromyography signals were obtained at a sampling rate of 1,000 Hz and band pass filtering at 20-50 Hz. The obtained raw root mean square was divided by the maximal voluntary isometric contraction and expressed as a percentage. The selective activity of the vastus medialis oblique was assessed according to the muscle activity ratio of the vastus medialis oblique to the vastus lateralis. [Results] The activity ratio of the vastus medialis oblique was higher during a squat with hip joint adduction than without. [Conclusion] A squat accompanied by hip joint adduction is effective for the selective activation of the vastus medialis oblique.

  8. Stellar Obliquity and Magnetic Activity of Planet-hosting Stars and Eclipsing Binaries Based on Transit Chord Correlation

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.; Berta-Thompson, Zachory; Sanchis-Ojeda, Roberto; Albrecht, Simon

    2018-04-01

    The light curve of an eclipsing system shows anomalies whenever the eclipsing body passes in front of active regions on the eclipsed star. In some cases, the pattern of anomalies can be used to determine the obliquity Ψ of the eclipsed star. Here we present a method for detecting and analyzing these patterns, based on a statistical test for correlations between the anomalies observed in a sequence of eclipses. Compared to previous methods, ours makes fewer assumptions and is easier to automate. We apply it to a sample of 64 stars with transiting planets and 24 eclipsing binaries for which precise space-based data are available, and for which there was either some indication of flux anomalies or a previously reported obliquity measurement. We were able to determine obliquities for 10 stars with hot Jupiters. In particular we found Ψ ≲ 10° for Kepler-45, which is only the second M dwarf with a measured obliquity. The other eight cases are G and K stars with low obliquities. Among the eclipsing binaries, we were able to determine obliquities in eight cases, all of which are consistent with zero. Our results also reveal some common patterns of stellar activity for magnetically active G and K stars, including persistently active longitudes.

  9. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback

    NASA Astrophysics Data System (ADS)

    Williams, Darren M.; Kasting, James F.; Frakes, Lawrence A.

    1998-12-01

    Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic, (about 2.4-2.2Gyr ago) and Neoproterozoic (about 820-550Myr ago) eras, although some of the Neoproterozoic data are disputed,. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics - the `snowball Earth' hypothesis - or the present zonation of climate with respect to latitude must have been reversed. Williams has suggested that the Earth's obliquity may have been greater than 54° during most of its history, which would have made the Equator the coldest part of the planet. But this would require a mechanism to bring the obliquity down to its present value of 23.5°. Here we propose that obliquity-oblateness feedback could have reduced the Earth's obliquity by tens of degrees in less than 100Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5°), which is otherwise difficult to explain.

  10. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback.

    PubMed

    Williams, D M; Kasting, J F; Frakes, L A

    1998-12-03

    Palaeomagnetic data suggest that the Earth was glaciated at low latitudes during the Palaeoproterozoic (about 2.4-2.2 Gyr ago) and Neoproterozoic (about 820-550 Myr ago) eras, although some of the Neoproterozoic data are disputed. If the Earth's magnetic field was aligned more or less with its spin axis, as it is today, then either the polar ice caps must have extended well down into the tropics-the 'snowball Earth' hypothesis-or the present zonation of climate with respect to latitude must have been reversed. Williams has suggested that the Earth's obliquity may have been greater than 54 degrees during most of its history, which would have made the Equator the coldest part of the planet. But this would require a mechanism to bring the obliquity down to its present value of 23.5 degrees. Here we propose that obliquity-oblateness feedback could have reduced the Earth's obliquity by tens of degrees in less than 100 Myr if the continents were situated so as to promote the formation of large polar ice sheets. A high obliquity for the early Earth may also provide a natural explanation for the present inclination of the lunar orbit with respect to the ecliptic (5 degrees), which is otherwise difficult to explain.

  11. Use of Uas for the Conservation of Historical Buildings in Case of Emergencies

    NASA Astrophysics Data System (ADS)

    Gagliolo, S.; Fagandini, R.; Federici, B.; Ferrando, I.; Passoni, D.; Pagliari, D.; Pinto, L.; Sguerso, D.

    2017-05-01

    The task of conservation and management of cultural heritage is quite central in Italy, which lists a high number of beautiful architectures. A quick and precise survey may be requested in case of calamity. In the present paper, the most commonly used survey techniques are discussed, focusing on their applications for the conservation of the artistic heritage in case of emergency. Particular attention is given to Unmanned Aerial Systems (UAS) photogrammetry and its potentiality in obtaining good results in terms of speed, cheapness, precision and accuracy, assuring at the same time the safety of the operators in critical situations (e.g. natural disasters). A case study, realized at the Castle of Casalbagliano (Alessandria, Italy), is discussed. Different image block configurations and acquisition geometries (nadiral and oblique images) have been exploited, with the aim of defining useful guidelines for emergencies UAS survey of partially collapsed structures. An application to a significative case study is introduced.

  12. Monlithic nonplanar ring oscillator and method

    NASA Technical Reports Server (NTRS)

    Nilsson, Alan C. (Inventor); Byer, Robert L. (Inventor)

    1991-01-01

    A monolithic nonplanar ring oscillator having an optically isotropic solid-state laser body for propagating laser radiation about a nonplanar ring path internal to the laser body is disclosed. The monolithic laser body is configured to produce a 2N reflection nonplanar ring light path, where N is an integer greater than or equal to 2, comprising 2N-1 total internal reflections and one reflection at a coupler in a single round trip. Undirectional traveling wave oscillation of the laser is induced by the geometry of the nonplanar ring path together with the effect of an applied magnetic field and partial polarizer characteristics of the oblique reflection from the coupler. The 6-reflection nonplanar ring oscillator makes possible otpimal unidirectional oscillation (low loss for the oscillating direction of propagation and, simultaneously high loss for the nonoscillating direction of propagation) in monolithic NPROs using materials with index of refraction smaller than the square root of 3, for example, laser glass.

  13. Structural Damage Prediction and Analysis for Hypervelocity Impacts: Handbook

    NASA Technical Reports Server (NTRS)

    Elfer, N. C.

    1996-01-01

    This handbook reviews the analysis of structural damage on spacecraft due to hypervelocity impacts by meteoroid and space debris. These impacts can potentially cause structural damage to a Space Station module wall. This damage ranges from craters, bulges, minor penetrations, and spall to critical damage associated with a large hole, or even rupture. The analysis of damage depends on a variety of assumptions and the area of most concern is at a velocity beyond well controlled laboratory capability. In the analysis of critical damage, one of the key questions is how much momentum can actually be transfered to the pressure vessel wall. When penetration occurs without maximum bulging at high velocity and obliquities (if less momentum is deposited in the rear wall), then large tears and rupture may be avoided. In analysis of rupture effects of cylindrical geometry, biaxial loading, bending of the crack, a central hole strain rate and R-curve effects are discussed.

  14. On sound transmission into a stiffened cylindrical shell with rings and stringers treated as discrete elements

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1980-01-01

    In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the transmission of an oblique plane sound wave into a finite cylindrical shell stiffened by stringers and ring frames. The rings and stringers are modeled as discrete structural elements. The numerical case studied was typical of a narrow-bodied jet transport fuselage. The numerical results show that the ring-frequency dip in the transmission loss curve that is present for a monocoque shell is still present in the case of a stiffened shell. The ring frequency effect is a result of the cylindrical geometry of the shell. Below the ring frequency, stiffening does not appear to have any significant effect on transmission loss, but above the ring frequency, stiffeners can enhance the transmission loss of a cylindrical shell.

  15. Imaging shear strength along subduction faults

    USGS Publications Warehouse

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-01-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  16. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction

    PubMed Central

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-01-01

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking. PMID:26864084

  17. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    PubMed

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-11

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  18. Overview and recent progress of the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.; Hutchinson, T. M.; Boguski, J. C.; Sears, J. A.; Swan, H. O.; Gao, K. W.; Chapdelaine, L. J.; Winske, D.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) has been constructed to study the physics of super-Alfvènic, supercritical, magnetized shocks. Exhibiting transitional length and time scales much smaller than can be produced through collisional processes, these shocks are observed to create non-thermal distributions, amplify magnetic fields, and accelerate particles to relativistic velocities. Shocks are produced through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a high-flux magnetic mirror with a conducting boundary or a plasma target with embedded field. Adjustable shock velocity, density, and magnetic geometry (B parallel, perpendicular, or oblique to k) provide unique access to a wide range of dimensionless parameters relevant to astrophysical shocks. Information regarding the experimental configuration, diagnostics suite, recent simulations, experimental results, and physics goals will be presented. This work is supported by DOE OFES and NNSA under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-13-24859.

  19. Latitude Variation for Pluto's Crater Distribution

    NASA Astrophysics Data System (ADS)

    Dwivedi, A. K.; Binzel, R. P.; Earle, A. M.; Singer, K. N.; Stern, A.; Olkin, C.; Weaver, H. A., Jr.; Ennico Smith, K.; Young, L. A.

    2017-12-01

    The crater population distribution on Pluto and Charon have been studied to infer the size distribution of objects in the Kuiper belt (Singer et al. 2017; submitted). In this talk, we will look at the variation in crater distribution with latitude. To circumvent possible bias effects in the analysis, we focus our analysis on a region having the most consistent imaging resolution afforded by the flyby geometry. The longitudinal extent of our study region is 90E to 150E, and the latitudinal extent is 0°N to 90°N. Our preliminary analysis shows crater population peaks in the latitude range 30°N to 60°N and drops off sharply toward the north pole. Here we describe how we quantify the crater distribution in this region and explore a range of processes for volatile transport over both orbital timescales and perihelion precession timescales, including million year Milankovitch cycles for obliquity oscillations.

  20. A procedure for automating CFD simulations of an inlet-bleed problem

    NASA Technical Reports Server (NTRS)

    Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.

    1995-01-01

    A procedure was developed to improve the turn-around time for computational fluid dynamics (CFD) simulations of an inlet-bleed problem involving oblique shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through one or more circular holes. This procedure is embodied in a preprocessor called AUTOMAT. With AUTOMAT, once data for the geometry and flow conditions have been specified (either interactively or via a namelist), it will automatically generate all input files needed to perform a three-dimensional Navier-Stokes simulation of the prescribed inlet-bleed problem by using the PEGASUS and OVERFLOW codes. The input files automatically generated by AUTOMAT include those for the grid system and those for the initial and boundary conditions. The grid systems automatically generated by AUTOMAT are multi-block structured grids of the overlapping type. Results obtained by using AUTOMAT are presented to illustrate its capability.

  1. Geometry and kinematics of the eastern Lake Mead fault system in the Virgin Mountains, Nevada and Arizona

    USGS Publications Warehouse

    Beard, Sue; Campagna, David J.; Anderson, R. Ernest

    2010-01-01

    The Lake Mead fault system is a northeast-striking, 130-km-long zone of left-slip in the southeast Great Basin, active from before 16 Ma to Quaternary time. The northeast end of the Lake Mead fault system in the Virgin Mountains of southeast Nevada and northwest Arizona forms a partitioned strain field comprising kinematically linked northeast-striking left-lateral faults, north-striking normal faults, and northwest-striking right-lateral faults. Major faults bound large structural blocks whose internal strain reflects their position within a left step-over of the left-lateral faults. Two north-striking large-displacement normal faults, the Lakeside Mine segment of the South Virgin–White Hills detachment fault and the Piedmont fault, intersect the left step-over from the southwest and northeast, respectively. The left step-over in the Lake Mead fault system therefore corresponds to a right-step in the regional normal fault system.Within the left step-over, displacement transfer between the left-lateral faults and linked normal faults occurs near their junctions, where the left-lateral faults become oblique and normal fault displacement decreases away from the junction. Southward from the center of the step-over in the Virgin Mountains, down-to-the-west normal faults splay northward from left-lateral faults, whereas north and east of the center, down-to-the-east normal faults splay southward from left-lateral faults. Minimum slip is thus in the central part of the left step-over, between east-directed slip to the north and west-directed slip to the south. Attenuation faults parallel or subparallel to bedding cut Lower Paleozoic rocks and are inferred to be early structures that accommodated footwall uplift during the initial stages of extension.Fault-slip data indicate oblique extensional strain within the left step-over in the South Virgin Mountains, manifested as east-west extension; shortening is partitioned between vertical for extension-dominated structural blocks and south-directed for strike-slip faults. Strike-slip faults are oblique to the extension direction due to structural inheritance from NE-striking fabrics in Proterozoic crystalline basement rocks.We hypothesize that (1) during early phases of deformation oblique extension was partitioned to form east-west–extended domains bounded by left-lateral faults of the Lake Mead fault system, from ca. 16 to 14 Ma. (2) Beginning ca. 13 Ma, increased south-directed shortening impinged on the Virgin Mountains and forced uplift, faulting, and overturning along the north and west side of the Virgin Mountains. (3) By ca. 10 Ma, initiation of the younger Hen Spring to Hamblin Bay fault segment of the Lake Mead fault system accommodated westward tectonic escape, and the focus of south-directed shortening transferred to the western Lake Mead region. The shift from early partitioned oblique extension to south-directed shortening may have resulted from initiation of right-lateral shear of the eastern Walker Lane to the west coupled with left-lateral shear along the eastern margin of the Great Basin.

  2. Kinematics and design of a class of parallel manipulators

    NASA Astrophysics Data System (ADS)

    Hertz, Roger Barry

    1998-12-01

    This dissertation is concerned with the kinematic analysis and design of a class of three degree-of-freedom, spatial parallel manipulators. The class of manipulators is characterized by two platforms, between which are three legs, each possessing a succession of revolute, spherical, and revolute joints. The class is termed the "revolute-spherical-revolute" class of parallel manipulators. Two members of this class are examined. The first mechanism is a double-octahedral variable-geometry truss, and the second is termed a double tripod. The history the mechanisms is explored---the variable-geometry truss dates back to 1984, while predecessors of the double tripod mechanism date back to 1869. This work centers on the displacement analysis of these three-degree-of-freedom mechanisms. Two types of problem are solved: the forward displacement analysis (forward kinematics) and the inverse displacement analysis (inverse kinematics). The kinematic model of the class of mechanism is general in nature. A classification scheme for the revolute-spherical-revolute class of mechanism is introduced, which uses dominant geometric features to group designs into 8 different sub-classes. The forward kinematics problem is discussed: given a set of independently controllable input variables, solve for the relative position and orientation between the two platforms. For the variable-geometry truss, the controllable input variables are assumed to be the linear (prismatic) joints. For the double tripod, the controllable input variables are the three revolute joints adjacent to the base (proximal) platform. Multiple solutions are presented to the forward kinematics problem, indicating that there are many different positions (assemblies) that the manipulator can assume with equivalent inputs. For the double tripod these solutions can be expressed as a 16th degree polynomial in one unknown, while for the variable-geometry truss there exist two 16th degree polynomials, giving rise to 256 solutions. For special cases of the double tripod, the forward kinematics problem is shown to have a closed-form solution. Numerical examples are presented for the solution to the forward kinematics. A double tripod is presented that admits 16 unique and real forward kinematics solutions. Another example for a variable geometry truss is given that possesses 64 real solutions: 8 for each 16th order polynomial. The inverse kinematics problem is also discussed: given the relative position of the hand (end-effector), which is rigidly attached to one platform, solve for the independently controlled joint variables. Iterative solutions are proposed for both the variable-geometry truss and the double tripod. For special cases of both mechanisms, closed-form solutions are given. The practical problems of designing, building, and controlling a double-tripod manipulator are addressed. The resulting manipulator is a first-of-its kind prototype of a tapered (asymmetric) double-tripod manipulator. Real-time forward and inverse kinematics algorithms on an industrial robot controller is presented. The resulting performance of the prototype is impressive, since it was to achieve a maximum tool-tip speed of 4064 mm/s, maximum acceleration of 5 g, and a cycle time of 1.2 seconds for a typical pick-and-place pattern.

  3. Analysis of compensatory mechanisms in the pelvis and lower extremities in patients with pelvic incidence and lumbar lordosis mismatch.

    PubMed

    Cheng, Xiaofei; Zhang, Kai; Sun, Xiaojiang; Zhao, Changqing; Li, Hua; Zhao, Jie

    2017-07-01

    The objective was to analyze the compensatory effect of the pelvis and lower extremities on sagittal spinal malalignment in patients with pelvic incidence (PI) and lumbar lordosis (LL) mismatch. A series of parameters including PI, LL, PI-LL, thoracic kyphosis (TK), pelvic tilt (PT), sacral slope (SS), knee flexion angle (KFA), tibial obliquity angle (TOA), femoral obliquity angle (FOA), femur pelvis angle (FPA) and pelvic shift (PS) were measured. Patients with PI-LL mismatch were divided into pelvic retroversion group and pelvic retroposition group based on their PT and PS, and then the parameters were compared within the two groups and with the control group. All variables were significantly different when comparing the pelvic retroversion and retroposition group with the control group except for PI, FOA and PS in the pelvic retroversion group. The pelvic retroposition group had significantly greater value of PI-LL, PI, PT, KFA, FOA and PS and contribution ratio of FOA and PS, and smaller value of LL, TK and FPA and contribution ratio of PT, TOA and FPA compared with the pelvic retroversion group. Patients with lesser PI-LL mismatch rely more on hip extension to increase pelvic retroversion while those with greater PI-LL mismatch tend to add extra femoral obliquity. When compensating for larger PI-LL mismatch, the importance of hip extension is decreased and the effect of the knee and ankle joint becomes more important by providing greater femoral incline and relatively lesser ankle dorsiflexion respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A new reference frame for astronomically-tuned Plio-Pleistocene climate variability derived from a benthic oxygen isotope splice of the Mediterranean

    NASA Astrophysics Data System (ADS)

    Lourens, L. J.; Ziegler, M.; Konijnendijk, T. Y. M.; Hilgen, F. J.; Bos, R.; Beekvelt, B.; van Loevezijn, A.; Collin, S.

    2017-12-01

    The astronomical theory of climate has revolutionized our understanding of past climate change and the development of highly accurate geologic time scales for the entire Cenozoic. Most of this understanding has come from the construction of astronomically tuned global ocean benthic foraminiferal oxygen isotope (δ18O) stacked record, derived by the international drilling operations of DSDP, ODP and IODP. The tuning includes fixed phase relationships between the obliquity and precession cycles and the inferred high-latitude climate, i.e. glacial-interglacial, response, which hark back to SPECMAP, using simple ice sheet models and a limited number of radiometric dates. This approach was largely implemented in the widely applied LR04 stack, though LR04 assumed shorter response times for the smaller ice caps during the Pliocene. In the past decades, an astronomically calibrated time scale for the Pliocene and Pleistocene of the Mediterranean has been developed, which has become the reference for the standard Geologic Time Scale. Typical of the Mediterranean marine sediments are the cyclic lithological alternations, reflecting the interference between obliquity and precession-paced low latitude climate variability, such as the African monsoon. Here we present the first benthic foraminiferal based oxygen isotope record of the Mediterranean reference scale, which strikingly mirrors the LR04. We will use this record to discuss the assumed open ocean glacial-interglacial related phase relations over the past 5.3 million years.

  5. Accurate spin axes and solar system dynamics: Climatic variations for the Earth and Mars

    NASA Astrophysics Data System (ADS)

    Edvardsson, S.; Karlsson, K. G.; Engholm, M.

    2002-03-01

    Celestial mechanical simulations from a purely classical point of view of the solar system, including our Moon and the Mars moons - Phobos and Deimos - are carried out for 2 millions of years before present. Within the classical approximation, the results are derived at a very high level of accuracy. Effects from general relativity for a number of variables are investigated and found to be small. For climatic studies of about 1 Myr, general relativity can safely be ignored. Three different and independent integration schemes are used in order to exclude numerical anomalies. The converged results from all methods are found to be in complete agreement. For verification, a number of properties such as spin axis precession, nutation, and orbit inclination for Earth and Mars have been calculated. Times and positions of equinoxes and solstices are continously monitored. As also observed earlier, the obliquity of the Earth is stabilized by the Moon. On the other hand, the obliquity of Mars shows dramatic variations. Climatic influences due to celestial variables for the Earth and Mars are studied. Instead of using mean insolation as in the usual applications of Milankovitch theory, the present approach focuses on the instantaneous solar radiation power (insolation) at each summer solstice. Solar radiation power is compared to the derivative of the icevolume and these quantities are found to be in excellent agreement. Orbital precessions for the inner planets are studied as well. In the case of Mercury, it is investigated in detail.

  6. Method of controlling a variable geometry type turbocharger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Y.

    1988-08-23

    This patent describes a method of controlling the supercharging pressure of a variable geometry type turbocharger having a bypass, comprising the following steps which are carried out successively: receiving signals from an engine speed sensor and from an engine knocking sensor; receiving a signal from a throttle valve sensor; judging whether or not an engine is being accelerated, and proceeding to step below if the engine is being accelerated and to step below if the engine is not being accelerated, i.e., if the engine is in a constant speed operation; determining a first correction value and proceeding to step below;more » judging whether or not the engine is knocking, and proceeding to step (d) if knocking is occurring and to step (f) below if no knocking is occurring; determining a second correction value and proceeding to step; receiving signals from the engine speed sensor and from an airflow meter which measures the quantity of airflow to be supplied to the engine; calculating an airflow rate per engine revolution; determining a duty valve according to the calculated airflow rate; transmitting the corrected duty value to control means for controlling the geometry of the variable geometry type turbocharger and the opening of bypass of the turbocharger, thereby controlling the supercharging pressure of the turbocharger.« less

  7. A new view for the geodynamics of Ecuador: Implication in seismogenic source definition and seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Yepes, Hugo; Audin, Laurence; Alvarado, Alexandra; Beauval, Céline; Aguilar, Jorge; Font, Yvonne; Cotton, Fabrice

    2016-05-01

    A new view of Ecuador's complex geodynamics has been developed in the course of modeling seismic source zones for probabilistic seismic hazard analysis. This study focuses on two aspects of the plates' interaction at a continental scale: (a) age-related differences in rheology between Farallon and Nazca plates—marked by the Grijalva rifted margin and its inland projection—as they subduct underneath central Ecuador, and (b) the rapidly changing convergence obliquity resulting from the convex shape of the South American northwestern continental margin. Both conditions satisfactorily explain several characteristics of the observed seismicity and of the interseismic coupling. Intermediate-depth seismicity reveals a severe flexure in the Farallon slab as it dips and contorts at depth, originating the El Puyo seismic cluster. The two slabs position and geometry below continental Ecuador also correlate with surface expressions observable in the local and regional geology and tectonics. The interseismic coupling is weak and shallow south of the Grijalva rifted margin and increases northward, with a heterogeneous pattern locally associated to the Carnegie ridge subduction. High convergence obliquity is responsible for the North Andean Block northeastward movement along localized fault systems. The Cosanga and Pallatanga fault segments of the North Andean Block-South American boundary concentrate most of the seismic moment release in continental Ecuador. Other inner block faults located along the western border of the inter-Andean Depression also show a high rate of moderate-size earthquake production. Finally, a total of 19 seismic source zones were modeled in accordance with the proposed geodynamic and neotectonic scheme.

  8. Geometric and kinematic features of the dike complex at Mt. Somma, Vesuvio (Italy)

    NASA Astrophysics Data System (ADS)

    Porreca, M.; Acocella, V.; Massimi, E.; Mattei, M.; Funiciello, R.; De Benedetti, A. A.

    2006-05-01

    Dikes provide important information on the structure, state of stress and activity of a volcano. Mt. Somma borders part of the Vesuvio cone (Italy), displaying ˜ 100 dikes emplaced between ˜ 18 and 30 ka. Field, AMS (anisotropy of magnetic susceptibility) and thin section analyses are used to characterize their geometry and kinematics (direction and sense of flow). The dikes mostly have a NNW-SSE to NE-SW strike. Approximately 57% are radial to the older Somma edifice, ˜ 27% are oblique and ˜ 16% tangential. Among the latter two groups, ˜ 32% are outward dipping and ˜ 11% inward dipping. The dike thickness varies between 0.2 and 3 m, with a mean value of 1.17 m. The kinematics of 19 dikes is determined through a combination of field (8 dikes), AMS (16 dikes) and thin section analyses (15 dikes). Thirteen dikes have a vertical upward flow, whereas six have an oblique-subhorizontal flow, suggesting a lateral propagation from the summit or eccentric vents of the former Somma edifice. These propagation paths differ from those deducible from the recent activity, as all the seven major fissure eruptions between 1631 and 1944 were related to the lateral propagation of radial dikes. We propose that these different behaviours in dike propagation may be mainly related to the opening conditions of the summit conduit. The laterally propagating dikes in 1631-1944 formed with an open conduit. Conversely, the vertically propagating dikes may have formed, between 18 and 30 ka, with a closed conduit.

  9. Structure, paleogeographic inheritance, and deformation history of the southern Atlas foreland fold and thrust belt of Tunisia

    NASA Astrophysics Data System (ADS)

    SaïD, Aymen; Baby, Patrice; Chardon, Dominique; Ouali, Jamel

    2011-12-01

    Structural analysis of the southern Tunisian Atlas was carried out using field observation, seismic interpretation, and cross section balancing. It shows a mix of thick-skinned and thin-skinned tectonics with lateral variations in regional structural geometry and amounts of shortening controlled by NW-SE oblique ramps and tear faults. It confirms the role of the Late Triassic-Early Jurassic rifting inheritance in the structuring of the active foreland fold and thrust belt of the southern Tunisian Atlas, in particular in the development of NW-SE oblique structures such as the Gafsa fault. The Late Triassic-Early Jurassic structural pattern is characterized by a family of first-order NW-SE trending normal faults dipping to the east and by second-order E-W trending normal faults limiting a complex system of grabens and horsts. These faults have been inverted during two contractional tectonic events. The first event occurred between the middle Turonian and the late Maastrichtian and can be correlated with the onset of the convergence between Africa and Eurasia. The second event corresponding to the principal shortening tectonic event in the southern Atlas started in the Serravalian-Tortonian and is still active. During the Neogene, the southern Atlas foreland fold and thrust belt propagated on the evaporitic décollement level infilling the Late Triassic-Early Jurassic rift. The major Eocene "Atlas event," described in hinterland domains and in eastern Tunisia, did not deform significantly the southern Tunisian Atlas, which corresponded in this period to a backbulge broad depozone.

  10. Nanopatterning dynamics on Si(100) during oblique 40-keV Ar+ erosion with metal codeposition: Morphological and compositional correlation

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Gago, R.; Palomares, F. J.; Mücklich, A.; Vinnichenko, M.; Vázquez, L.

    2012-08-01

    The formation and dynamics of nanopatterns produced on Si(100) surfaces by 40-keV Ar+ oblique (α = 60°) bombardment with concurrent Fe codeposition have been studied. Morphological and chemical analysis has been performed by ex situ atomic force microscopy, Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, and scanning and transmission electron microscopies. During irradiation, Fe atoms incorporated into the target surface react with Si to form silicides, a process enhanced at this medium-ion energy range. The silicides segregate at the nanoscale from the early irradiation stages. As the irradiation proceeds, a ripple pattern is formed without any correlation with silicide segregation. From the comparison with the pattern dynamics reported previously for metal-free conditions, it is demonstrated that the metal incorporation alters both the pattern dynamics and the morphology. Although the pattern formation and dynamics are delayed for decreasing metal content, once ripples emerge, the same qualitative pattern of morphological evolution is observed for different metal content, resulting in an asymptotic saw-tooth-like facetted surface pattern. Despite the medium ion energy employed, the nanopatterning process with concurrent Fe deposition can be explained by those mechanisms proposed for low-ion energy irradiations such as shadowing, height fluctuations, silicide formation and segregation, ensuing composition dependent sputter rate, and ion sculpting effects. In particular, the interplay between the ion irradiation and metal flux geometries, differences in sputtering rates, and the surface pattern morphology produces a dynamic compositional patterning correlated with the evolving morphological one.

  11. Habitable planets with high obliquities

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  12. Quality Inspection and Analysis of Three-Dimensional Geographic Information Model Based on Oblique Photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, S.; Yan, Q.; Xu, Y.; Bai, J.

    2018-04-01

    In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.

  13. An "oblique effect" in the visual evoked potential of the cat.

    PubMed

    Bonds, A B

    1982-01-01

    An oblique effect was observed in the amplitude of the VEP recorded from area 17 of the cat. The ratio of the responses to oblique gratings compared with responses to horizontal and vertical gratings averaged 0.77. Orientation dependence was strongest at low spatial frequencies, unlike the effect found in primates.

  14. Activities of the Vastus Lateralis and Vastus Medialis Oblique Muscles during Squats on Different Surfaces

    PubMed Central

    Hyong, In Hyouk; Kang, Jong Ho

    2013-01-01

    [Purpose] The purpose of the present study was to examine the effects of squat exercises performed on different surfaces on the activity of the quadriceps femoris muscle in order to provide information on support surfaces for effective squat exercises. [Subjects and Method] Fourteen healthy subjects performed squat exercises for five seconds each on three different support surfaces: hard plates, foam, and rubber air discs. Their performance was measured using electromyography. As the subjects performed the squat exercises on each surface, data on the activity of the vastus medialis oblique and the vastus lateralis, and the vastus medials oblique/vastus lateralis ratio, were collected. [Results] The activity of the vastus medialis oblique and the vastus medialis oblique/vastus lateralis ratio were found to be statistically significantly higher on rubber air discs than when the squats were performed on hard plates or foam. [Conclusion] To activate the vastus medialis obilique, and to enhance the vastus medialis oblique/vastus lateralis ratio, unstable surfaces that are highly unstable should be selected. PMID:24259884

  15. Effect of Multiple Scattering on the Compton Recoil Current Generated in an EMP, Revisited

    DOE PAGES

    Farmer, William A.; Friedman, Alex

    2015-06-18

    Multiple scattering has historically been treated in EMP modeling through the obliquity factor. The validity of this approach is examined here. A simplified model problem, which correctly captures cyclotron motion, Doppler shifting due to the electron motion, and multiple scattering is first considered. The simplified problem is solved three ways: the obliquity factor, Monte-Carlo, and Fokker-Planck finite-difference. Because of the Doppler effect, skewness occurs in the distribution. It is demonstrated that the obliquity factor does not correctly capture this skewness, but the Monte-Carlo and Fokker-Planck finite-difference approaches do. Here, the obliquity factor and Fokker-Planck finite-difference approaches are then compared inmore » a fuller treatment, which includes the initial Klein-Nishina distribution of the electrons, and the momentum dependence of both drag and scattering. It is found that, in general, the obliquity factor is adequate for most situations. However, as the gamma energy increases and the Klein-Nishina becomes more peaked in the forward direction, skewness in the distribution causes greater disagreement between the obliquity factor and a more accurate model of multiple scattering.« less

  16. A quantitative analysis of transtensional margin width

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Buiter, Susanne J. H.

    2018-06-01

    Continental rifted margins show variations between a few hundred to almost a thousand kilometres in their conjugated widths from the relatively undisturbed continent to the oceanic crust. Analogue and numerical modelling results suggest that the conjugated width of rifted margins may have a relationship to their obliquity of divergence, with narrower margins occurring for higher obliquity. We here test this prediction by analysing the obliquity and rift width for 26 segments of transtensional conjugate rifted margins in the Atlantic and Indian Oceans. We use the plate reconstruction software GPlates (http://www.gplates.org) for different plate rotation models to estimate the direction and magnitude of rifting from the initial phases of continental rifting until breakup. Our rift width corresponds to the distance between the onshore maximum topography and the last identified continental crust. We find a weak positive correlation between the obliquity of rifting and rift width. Highly oblique margins are narrower than orthogonal margins, as expected from analogue and numerical models. We find no relationships between rift obliquities and rift duration nor the presence or absence of Large Igneous Provinces (LIPs).

  17. Linear and nonlinear interactions of an electron beam with oblique whistler and electrostatic waves in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Matsumoto, H.; Omura, Y.

    1993-12-01

    Both linear and nonlinear interactions between oblique whistler, electrostatic, quasi-upper hybrid mode waves and an electron beam are studied by linear analyses and electromagnetic particle simulations. In addition to a background cold plasma, we assumed a hot electron beam drifting along a static magnetic field. Growth rates of the oblique whistler, oblique electrostatic, and quasi-upper hybrid instabilities were first calculated. We found that there are four kinds of unstable mode waves for parallel and oblique propagations. They are the electromagnetic whistler mode wave (WW1), the electrostatic whistler mode wave (WW2), the electrostatic mode wave (ESW), and the quasi-upper hybrid mode wave (UHW). A possible mechanism is proposed to explain the satellite observations of whistler mode chorus and accompanied electrostatic waves, whose amplitudes are sometimes modulated at the chorus frequency.

  18. Oblique Wing Research Aircraft on ramp

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen. The Oblique Wing Research Aircraft was a small, remotely piloted, research craft designed and flight tested to look at the aerodynamic characteristics of an oblique wing and the control laws necessary to achieve acceptable handling qualities. NASA Dryden Flight Research Center and the NASA Ames Research Center conducted research with this aircraft in the mid-1970s to investigate the feasibility of flying an oblique wing aircraft.

  19. High-resolution rock-magnetic variability in shallow marine sediment: a sensitive paleoclimatic metronome

    NASA Astrophysics Data System (ADS)

    Arai, Kohsaku; Sakai, Hideo; Konishi, Kenji

    1997-05-01

    An outer shelf deposit in central Japan centered on the Olduvai normal polarity event in the reversed Matuyama chron reveals a close correlation of both the magnetic susceptibility and remanent intensity with the sedimentary cyclicities apparent in lithologies and molluscan assemblages. Two sedimentary cycles are characterized by distinctly similar, but double-peaked magnetic cyclicities. The rock-magnetic variability is primarily attributed to the relative abundance of terrigenous magnetic minerals, and the double peak of the variability is characterized by the concentration of finer-grained magnetic minerals. The concentration is suspected to be controlled by both climatic change and shifting proximity of the shoreline as a function of rise and fall of the sea level due to glacio-eustasy. Rock-magnetic study reveals the record of a 21 ka period of orbital precession cycles within the sedimentary cyclicity attributable to a 41 ka period of orbital obliquity forcing.

  20. Turbulent patterns in wall-bounded flows: A Turing instability?

    NASA Astrophysics Data System (ADS)

    Manneville, Paul

    2012-06-01

    In their way to/from turbulence, plane wall-bounded flows display an interesting transitional regime where laminar and turbulent oblique bands alternate, the origin of which is still mysterious. In line with Barkley's recent work about the pipe flow transition involving reaction-diffusion concepts, we consider plane Couette flow in the same perspective and transform Waleffe's classical four-variable model of self-sustaining process into a reaction-diffusion model. We show that, upon fulfillment of a condition on the relative diffusivities of its variables, the featureless turbulent regime becomes unstable against patterning as the result of a Turing instability. A reduced two-variable model helps us to delineate the appropriate region of parameter space. An intrinsic status is therefore given to the pattern's wavelength for the first time. Virtues and limitations of the model are discussed, calling for a microscopic support of the phenomenological approach.

  1. Decay of Solutions of the Wave Equation in the Kerr Geometry

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2006-06-01

    We consider the Cauchy problem for the massless scalar wave equation in the Kerr geometry for smooth initial data compactly supported outside the event horizon. We prove that the solutions decay in time in L ∞ loc. The proof is based on a representation of the solution as an infinite sum over the angular momentum modes, each of which is an integral of the energy variable ω on the real line. This integral representation involves solutions of the radial and angular ODEs which arise in the separation of variables.

  2. Teetering Stars: Resonant Excitation of Stellar Obliquities by Hot and Warm Jupiters with External Companions

    NASA Astrophysics Data System (ADS)

    Anderson, Kassandra; Lai, Dong

    2018-04-01

    Stellar spin-orbit misalignments (obliquities) in hot Jupiter systems have been extensively probed in recent years thanks to Rossiter-McLaughlin observations. Such obliquities may reveal clues about hot Jupiter dynamical and migration histories. Common explanations for generating stellar obliquities include high-eccentricity migration, or primordial disk misalignment. This talk investigates another mechanism for producing stellar spin-orbit misalignments in systems hosting a close-in giant planet with an external, inclined planetary companion. Spin-orbit misalignment may be excited due to a secular resonance, occurring when the precession rate of the stellar spin axis (due to the inner orbit) becomes comparable to the precession rate of the inner orbital axis (due to the outer companion). Due to the spin-down of the host star via magnetic braking, this resonance may be achieved at some point during the star's main sequence lifetime for a wide range of giant planet masses and orbital architectures. We focus on both hot Jupiters (with orbital periods less than ten days) and warm Jupiters (with orbital periods around tens of days), and identify the outer perburber properties needed to generate substantial obliquities via resonant excitation, in terms of mass, separation, and inclination. For hot Jupiters, the stellar spin axis is strongly coupled to the orbital axis, and resonant excitation of obliquity requires a close perturber, located within 1-2 AU. For warm Jupiters, the spin and orbital axes are more weakly coupled, and the resonance may be achieved for more distant perturbers (at several to tens of AU). Resonant excitation of the stellar obliquity is accompanied by a decrease in the planets' mutual orbital inclination, and can thus erase high mutual inclinations in two-planet systems. Since many warm Jupiters are known to have outer planetary companions at several AU or beyond, stellar obliquities in warm Jupiter systems may be common, regardless of the formation/migration mechanism. Future observations probing warm Jupiter obliquities may indicate the presence of a hitherto undetected outer companion.

  3. Tilting Uranus without a Collision

    NASA Astrophysics Data System (ADS)

    Rogoszinski, Zeeve; Hamilton, Douglas P.

    2016-10-01

    The most accepted hypothesis for the origin of Uranus' 98° obliquity is a giant collision during the late stages of planetary accretion. This model requires a single Earth mass object striking Uranus at high latitudes; such events occur with a probability of about 10%. Alternatively, Uranus' obliquity may have arisen from a sequence of smaller impactors which lead to a uniform distribution of obliquities. Here we explore a third model for tilting Uranus using secular spin-orbit resonance theory. We investigate early Solar System configurations in which a secular resonance between Uranus' axial precession frequency and another planet's orbital node precession frequency might occur.Thommes et al. (1999) hypothesized that Uranus and Neptune initially formed between Jupiter and Saturn, and were then kicked outward. In our scenario, Neptune leaves first while Uranus remains behind. As an exterior Neptune slowly migrates outward, it picks up both Uranus and Saturn in spin-orbit resonances (Ward and Hamilton 2004; Hamilton and Ward 2004). Only a distant Neptune has a nodal frequency slow enough to resonate with Uranus' axial precession.This scenario, with diverging orbits, results in resonance capture. As Neptune migrates outward its nodal precession slows. While in resonance, Uranus and Saturn each tilt a bit further, slowing their axial precession rates to continually match Neptune's nodal precession rate. Tilting Uranus to high obliquities takes a few 100 Myrs. This timescale may be too long to hold Uranus captive between Jupiter and Saturn, and we are investigating how to reduce it. We also find that resonance capture is rare if Uranus' initial obliquity is greater than about 10°, as the probability of capture decreases as the planet's initial obliquity increases. We will refine this estimate by quantifying capture statistics, and running accretion simulations to test the likelihood of a low early obliquity. Our preliminary findings show that most assumptions about planetary accretion lead to nearly isotropic obliquity distributions for early Uranus. Thus, the odds of Uranus having an initial low obliquity is also about 10%.

  4. Repeatability and oblique flow response characteristics of current meters

    USGS Publications Warehouse

    Fulford, Janice M.; Thibodeaux, Kirk G.; Kaehrle, William R.; ,

    1993-01-01

    Laboratory investigation into the precision and accuracy of various mechanical-current meters are presented. Horizontal-axis and vertical-axis meters that are used for the measurement of point velocities in streams and rivers were tested. Meters were tested for repeatability and response to oblique flows. Both horizontal- and vertical-axis meters were found to under- and over-register oblique flows with errors generally increasing as the velocity and angle of flow increased. For the oblique flow tests, magnitude of errors were smallest for horizontal-axis meters. Repeatability of all meters tested was good, with the horizontal- and vertical-axis meters performing similarly.

  5. Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: Principles and tests

    NASA Astrophysics Data System (ADS)

    Williams, George E.

    2008-03-01

    Sedimentological observations and palaeomagnetic data for Cryogenian glacial deposits present the climatic paradox of grounded glaciers and in situ cold climate near sea-level, glaciomarine deposition, and accompanying large (up to 40 °C) seasonal changes of temperature, all in low to near-equatorial (< 10°) palaeolatitudes (equated with geographic latitudes). Neither the "snowball Earth" nor the "slushball Earth" hypothesis can account for such strong seasonality near the palaeoequator, which together with findings from sedimentology, chemostratigraphy, biogeochemistry, micropalaeontology, geochronology and climate modelling argue against those scenarios. An alternative explanation of glaciation and strong seasonality in low palaeolatitudes is offered by a high (> 54°) obliquity of the ecliptic, which would render the equator cooler than the poles, on average, and amplify global seasonality. A high obliquity per se would not have been a primary trigger for glaciation, but would have strongly influenced the latitudinal distribution of glaciers. The principle of low-latitude glaciation on a terrestrial planet with high obliquity is validated by theoretical studies and observations of Mars. A high obliquity for the early Earth is a likely outcome of a single giant impact at 4.5 Ga, the widely favoured mechanism for lunar origin. This implies that a high obliquity could have prevailed during most of the Precambrian, controlling the low palaeolatitude of glaciations in the early and late Palaeoproterozoic and Cryogenian. It is postulated that the obliquity changed to < 54° between the termination of the last Cryogenian low-palaeolatitude glaciation at ≤ 635 Ma and the initiation of Late Ordovician-Early Silurian circum-polar glaciation at 445 Ma. The High Obliquity, Low-latitude Ice, STrong seasonality (HOLIST) hypothesis for pre-Ediacaran glaciation emerges favourably from numerous glacial and non-glacial tests. The hypothesis is in accord with such established or implied features of Cryogenian glaciogenic successions as extensive and long-lived open seas, an active hydrological cycle, aridity and palaeowesterly (reversed zonal) winds in low palaeolatitudes, and the apparent diachronism or non-correlation of some low-palaeolatitude glaciations. A pre-Ediacaran high obliquity also offers a viable solution of the faint young Sun paradox of a warm Archaean Earth. Furthermore, reduction of obliquity during the Ediacaran-early Palaeozoic would have yielded a more habitable globe with much reduced seasonal stresses and may have been an important factor influencing the unique evolutionary events of the Ediacaran and Cambrian. The palaeolatitudinal distribution of evaporites cannot discriminate unambiguously between high- and low-obliquity states for the pre-Ediacaran Earth. Intervals of true polar wander such as postulated by others for the Ediacaran and Early Cambrian imply major mass-redistributions within the Earth at those times, which may provide a potential mechanism for reducing the obliquity during the Ediacaran-early Palaeozoic.

  6. Structural evidence for slip partitioning and inclined dextral transpression along the SE Sanandaj-Sirjan zone, Iran

    NASA Astrophysics Data System (ADS)

    Shafiei Bafti, Shahram; Mohajjel, Mohammad

    2015-04-01

    The structural evolution of the Sanandaj-Sirjan zone is the result of the convergence of the Iranian microcontinent and the Afro-Arabian continent. The study area at Khabr in the SE Sanandaj-Sirjan zone, in the hinterland of the Zagros orogen, consists of Paleozoic, Mesozoic and Cenozoic rocks. In this area, deformation phases were distinguished in different rock units based on structural and stratigraphical evidence, and the deformational events are divided into two stages: (1) a Late Triassic event and (2) a Late Cretaceous to Miocene event. The Late Triassic deformation event caused regional metamorphism in the Paleozoic units. These units are overlain by unmetamorphosed Jurassic clastic sequences. Fabrics and structural evidence confirm that the F1 folding recumbent and refolded folds were synchronous with the metamorphism of the Paleozoic units and terminated in the Early Jurassic. The time table of the orogenic phases shows that this deformation event is related to the Cimmerian orogenic phase. From a geodynamic point of view, the early Cimmerian deformation in the southeastern Iranian margin suggests that the SE Sanandaj-Sirjan zone was an active margin at that time. The early Cimmerian discordance recorded the onset of a contractional component related to the oblique subduction of Neo-Tethys beneath the central Iranian microcontinent. Structures related to the Late Cretaceous to Miocene deformation phase are observed in Jurassic to Oligocene units, which contain moderately inclined and plunging folds. Comparing these folds with domains of deformation generated in models of transpression shows that the folding was caused by a combination of contractional and dip-slip components of movement, eventually resulting in the formation of a thrust system. The Khabr thrust systems consist of five sheets of oblique thrusts, duplex structures and shear zones. The shear zones generally strike E-W and dip moderately N (30°-40°). The occurrence of asymmetric folds with hinges that are either parallel to strike or plunge down dip demonstrates an oblique-slip component in these thrust shear zones. The stretching lineation in the mylonites within the shear zones is defined by the long axes of ellipsoidal grains of quartz, calcite, plagioclase and garnet. In general, stretching lineations trend from N40°W to N80°W with an intermediate (35°) plunge. The geometry of foliation and lineation within these shear zones shows the effect of dip- and oblique-slip shearing. Deformation continued with strike-slip faulting becoming important during the last stages of deformation from the Miocene to the present day. The results of this study demonstrate that the evolution of the SE Sanandaj-Sirjan zone, from Late Triassic to Miocene, is compatible with an inclined dextral transpression along this zone.

  7. Automatic correction of echo-planar imaging (EPI) ghosting artifacts in real-time interactive cardiac MRI using sensitivity encoding.

    PubMed

    Kim, Yoon-Chul; Nielsen, Jon-Fredrik; Nayak, Krishna S

    2008-01-01

    To develop a method that automatically corrects ghosting artifacts due to echo-misalignment in interleaved gradient-echo echo-planar imaging (EPI) in arbitrary oblique or double-oblique scan planes. An automatic ghosting correction technique was developed based on an alternating EPI acquisition and the phased-array ghost elimination (PAGE) reconstruction method. The direction of k-space traversal is alternated at every temporal frame, enabling lower temporal-resolution ghost-free coil sensitivity maps to be dynamically estimated. The proposed method was compared with conventional one-dimensional (1D) phase correction in axial, oblique, and double-oblique scan planes in phantom and cardiac in vivo studies. The proposed method was also used in conjunction with two-fold acceleration. The proposed method with nonaccelerated acquisition provided excellent suppression of ghosting artifacts in all scan planes, and was substantially more effective than conventional 1D phase correction in oblique and double-oblique scan planes. The feasibility of real-time reconstruction using the proposed technique was demonstrated in a scan protocol with 3.1-mm spatial and 60-msec temporal resolution. The proposed technique with nonaccelerated acquisition provides excellent ghost suppression in arbitrary scan orientations without a calibration scan, and can be useful for real-time interactive imaging, in which scan planes are frequently changed with arbitrary oblique orientations.

  8. Ureter Injury as a Complication of Oblique Lumbar Interbody Fusion.

    PubMed

    Lee, Hyeong-Jin; Kim, Jin-Sung; Ryu, Kyeong-Sik; Park, Choon Keun

    2017-06-01

    Oblique lumbar interbody fusion is a commonly used surgical method of achieving lumbar interbody fusion. There have been some reports about complications of oblique lumbar interbody fusion at the L2-L3 level. However, to our knowledge, there have been no reports about ureter injury during oblique lumbar interbody fusion. We report a case of ureter injury during oblique lumbar interbody fusion to share our experience. A 78-year-old male patient presented with a history of lower back pain and neurogenic intermittent claudication. He was diagnosed with spinal stenosis at L2-L3, L4-L5 level and spondylolisthesis at L4-L5 level. Symptoms were not improved after several months of medical treatments. Then, oblique lumbar interbody fusion was performed at L2-L3, L4-L5 level. During the surgery, anesthesiologist noticed hematuria. A retrourethrogram was performed immediately by urologist, and ureter injury was found. Ureteroureterostomy and double-J catheter insertion were performed. The patient was discharged 2 weeks after surgery without urologic or neurologic complications. At 2 months after surgery, an intravenous pyelogram was performed, which showed an intact ureter. Our study shows that a low threshold of suspicion of ureter injury and careful manipulation of retroperitoneal fat can be helpful to prevent ureter injury during oblique lumbar interbody fusion at the upper level. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Biomechanical comparison of two different collar structured implants supporting 3-unit fixed partial denture: a 3-D FEM study.

    PubMed

    Meriç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; Ozden, Ahmet Utku

    2012-01-01

    The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone as well as in the fixture-abutment complex, in the framework and in the veneering material of 3-unit fixed partial denture (FPD). The 3-dimensional finite element analysis method was selected to evaluate the stress distribution in the system composed of 3-unit FPD supported by two different dental implant systems with two distinct collar geometries; microthread collar structure (MCS) and non-microthread collar structure (NMCS). In separate load cases, 300 N vertical, 150 N oblique and 60 N horizontal, forces were utilized to simulate the multidirectional chewing forces. Tensile and compressive stress values in the cortical and cancellous bone and von Mises stresses in the fixture-abutment complex, in the framework and veneering material, were simulated as a body and investigated separately. In the cortical bone lower stress values were found in the MCS model, when compared with NMCS. In the cancellous bone, lower stress values were observed in the NMCS model when compared with MCS. In the implant-abutment complex, highest von Mises stress values were noted in the NMCS model; however, in the framework and veneering material, highest stress values were calculated in MCS model. MCS implants when compared with NMCS implants supporting 3-unit FPDs decrease the stress values in the cortical bone and implant-abutment complex. The results of the present study will be evaluated as a base for our ongoing FEA studies focused on stress distribution around the microthread and non-microthread collar geometries with various prosthesis design.

  10. Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments

    USGS Publications Warehouse

    Douilly, Roby; Haase, Jennifer S.; Ellsworth, William L.; Bouin, Marie‐Paule; Calais, Eric; Symithe, Steeve J.; Armbruster, John G.; Mercier de Lépinay, Bernard; Deschamps, Anne; Mildor, Saint‐Louis; Meremonte, Mark E.; Hough, Susan E.

    2013-01-01

    Haiti has been the locus of a number of large and damaging historical earthquakes. The recent 12 January 2010 Mw 7.0 earthquake affected cities that were largely unprepared, which resulted in tremendous losses. It was initially assumed that the earthquake ruptured the Enriquillo Plantain Garden fault (EPGF), a major active structure in southern Haiti, known from geodetic measurements and its geomorphic expression to be capable of producing M 7 or larger earthquakes. Global Positioning Systems (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data, however, showed that the event ruptured a previously unmapped fault, the Léogâne fault, a north‐dipping oblique transpressional fault located immediately north of the EPGF. Following the earthquake, several groups installed temporary seismic stations to record aftershocks, including ocean‐bottom seismometers on either side of the EPGF. We use data from the complete set of stations deployed after the event, on land and offshore, to relocate all aftershocks from 10 February to 24 June 2010, determine a 1D regional crustal velocity model, and calculate focal mechanisms. The aftershock locations from the combined dataset clearly delineate the Léogâne fault, with a geometry close to that inferred from geodetic data. Its strike and dip closely agree with the global centroid moment tensor solution of the mainshock but with a steeper dip than inferred from previous finite fault inversions. The aftershocks also delineate a structure with shallower southward dip offshore and to the west of the rupture zone, which could indicate triggered seismicity on the offshore Trois Baies reverse fault. We use first‐motion focal mechanisms to clarify the relationship of the fault geometry to the triggered aftershocks.

  11. Classical versus Computer Algebra Methods in Elementary Geometry

    ERIC Educational Resources Information Center

    Pech, Pavel

    2005-01-01

    Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…

  12. The Computation of Orthogonal Independent Cluster Solutions and Their Oblique Analogs in Factor Analysis.

    ERIC Educational Resources Information Center

    Hofmann, Richard J.

    A very general model for the computation of independent cluster solutions in factor analysis is presented. The model is discussed as being either orthogonal or oblique. Furthermore, it is demonstrated that for every orthogonal independent cluster solution there is an oblique analog. Using three illustrative examples, certain generalities are made…

  13. Development and application of CATIA-GDML geometry builder

    NASA Astrophysics Data System (ADS)

    Belogurov, S.; Berchun, Yu; Chernogorov, A.; Malzacher, P.; Ovcharenko, E.; Schetinin, V.

    2014-06-01

    Due to conceptual difference between geometry descriptions in Computer-Aided Design (CAD) systems and particle transport Monte Carlo (MC) codes direct conversion of detector geometry in either direction is not feasible. The paper presents an update on functionality and application practice of the CATIA-GDML geometry builder first introduced at CHEP2010. This set of CATIAv5 tools has been developed for building a MC optimized GEANT4/ROOT compatible geometry based on the existing CAD model. The model can be exported via Geometry Description Markup Language (GDML). The builder allows also import and visualization of GEANT4/ROOT geometries in CATIA. The structure of a GDML file, including replicated volumes, volume assemblies and variables, is mapped into a part specification tree. A dedicated file template, a wide range of primitives, tools for measurement and implicit calculation of parameters, different types of multiple volume instantiation, mirroring, positioning and quality check have been implemented. Several use cases are discussed.

  14. A bottom-driven mechanism for distributed faulting in the Gulf of California rift

    NASA Astrophysics Data System (ADS)

    Persaud, Patricia; Tan, Eh; Contreras, Juan; Lavier, Luc

    2017-11-01

    Observations of active faulting in the continent-ocean transition of the Northern Gulf of California show multiple oblique-slip faults distributed in a 200 × 70 km2 area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform Fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with the help of pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear abruptly increases in a step-function manner while oblique-slip on numerous faults dominates when basal shear is distributed. We further explore how the style of faulting varies with obliquity and demonstrate that the style of delocalized faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area.

  15. Comparison of AIS 1990 update 98 versus AIS 2005 for describing PMHS injuries in lateral and oblique sled tests

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.; Humm, John R.; Stadter, Gregory W.; Curry, William H.; Brasel, Karen J.

    2013-01-01

    This study analyzed skeletal and organ injuries in pure lateral and oblique impacts from 20 intact post mortem human surrogate (PMHS) sled tests at 6.7 m/s. Injuries to the shoulder, thorax, abdomen, pelvis and spine were scored using AIS 1990–1998 update and 2005. The Injury Severity Scores (ISS) were extracted for both loadings from both versions. Mean age, stature, total body mass and body mass index for pure lateral and oblique tests: 58 and 55 years, 1.7 and 1.8 m, 69 and 66 kg, and 24 and 21 kg/m2. Skeletal injuries (ribs, sternum) occurred in both impacts. However, oblique impacts resulted in more injuries. Pure lateral and oblique impacts ISS: 0 to 16 and 0 to 24, representing a greater potential for injury-related consequences in real-world situations in oblique impacts. Internal organs were more involved in oblique impacts. ISS decreased in AIS 2005, reflecting changes to scoring and drawing attention to potential effects for pre-hospital care/medical aspects. Mean AIS scores for the two load vectors and two AIS coding schemes are included. From automotive crashworthiness perspectives, decreases in injury severities might alter injury risk functions with a shift to lower metrics for the same risk level than current risk estimations. This finding influences dummy-based injury criteria and occupant safety as risk functions are used for countermeasure effectiveness and cost-benefit analyses by regulatory bodies. Increase in organ injuries in oblique loading indicate the importance of this vector as current dummies and injury criteria used in regulations are based on pure lateral impact data. PMID:24406958

  16. Complete annular and partial oblique pulley release for pediatric locked trigger thumb

    PubMed Central

    Kuo, Meiying

    2010-01-01

    Purpose To report the surgical treatment outcome of pediatric locked trigger thumb by sequential release of the annular pulley and partial release of the oblique pulley. Materials and Methods A retrospective review was undertaken on 28 operative thumbs in 24 patients with an average follow-up of 79 months. Intraoperative observations focused on the pathology of the pulley system. Surgical technique involved complete release of the annular pulley, which alone was insufficient in relieving the deformity, along with release of the proximal 50% of the oblique pulley in all patients. Postoperative parameters of bowstringing, resolution of Notta's node, thumb interphalangeal motion, and patient/parent satisfaction were assessed. Results The oblique pulley appeared stenotic, whereas the annular pulley was observed to be membranous and nearly indistinguishable from the tendon sheath. No patients had recurrence of thumb locking or triggering. No bowstringing was detected, and Notta’s node resolved fully in 19 of 20 thumbs. Five thumbs had an average of 12o less active IP joint motion without flexion contracture (i.e., less flexion). All patients or families expressed overall satisfaction with the procedure. Conclusion The annular pulley was attenuated in the majority of cases and the proximal half of the oblique pulley was stenotic in all patients. Releasing 50% of the oblique pulley after complete annular pulley release was necessary in all thumbs to achieve full FPL excursion. Mistaking the constricted proximal oblique pulley for an annular pulley may encourage releasing the entire oblique pulley, leading to an adverse result. Satisfactory outcome was achieved after surgical treatment of pediatric locked trigger thumbs. Type of Study/Level of Evidence Therapeutic IV. PMID:22131924

  17. Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability.

    PubMed

    Aboud, Damon G K; Kietzig, Anne-Marie

    2015-09-15

    Oblique drop impacts were performed at high speeds (up to 27 m/s, We > 9000) with millimetric water droplets, and a linear model was applied to define the oblique splashing threshold. Six different sample surfaces were tested: two substrate materials of different inherent surface wettability (PTFE and aluminum), each prepared with three different surface finishes (smooth, rough, and textured to support superhydrophobicity). Our choice of surfaces has allowed us to make several novel comparisons. Considering the inherent surface wettability, we discovered that PTFE, as the more hydrophobic surface, exhibits lower splashing thresholds than the hydrophilic surface of aluminum of comparable roughness. Furthermore, comparing oblique impacts on smooth and textured surfaces, we found that asymmetrical spreading and splashing behaviors occurred under a wide range of experimental conditions on our smooth surfaces; however, impacts occurring on textured surfaces were much more symmetrical, and one-sided splashing occurred only under very specific conditions. We attribute this difference to the air-trapping nature of textured superhydrophobic surfaces, which lowers the drag between the spreading lamella and the surface. The reduced drag affects oblique drop impacts by diminishing the effect of the tangential component of the impact velocity, causing the impact behavior to be governed almost exclusively by the normal velocity. Finally, by comparing oblique impacts on superhydrophobic surfaces at different impact angles, we discovered that although the pinning transition between rebounding and partial rebounding is governed primarily by the normal impact velocity, there is also a weak dependence on the tangential velocity. As a result, pinning is inhibited in oblique impacts. This led to the observation of a new behavior in highly oblique impacts on our superhydrophobic surfaces, which we named the stretched rebound, where the droplet is extended into an elongated pancake shape and rebounds while still outstretched, without exhibiting a recession phase.

  18. Linear polarimetry of AP stars. IV. The influence of deviations from a pure dipolar model.

    NASA Astrophysics Data System (ADS)

    Leroy, J. L.; Landolfi, M.; Landi Degl'Innocenti, M.; Landi Degl'Innocenti, E.; Bagnulo, S.; Laporte, P.

    1995-09-01

    In the previous papers of this series we have described a new observational program of broadband linear polarimetry aimed at Ap stars. At the same time, we have established a canonical model, based on the oblique rotator geometry, which describes successfully the main features of the observed polarization: in some cases the linear polarization data, combined with the classical circular polarization measurements, allow one to determine the characteristic parameters which define the oblique dipolar rotator. However, we have also observed polarization diagrams that depart clearly from those predicted by the canonical model, which means that it is not always possible to rely on a pure dipolar model (nor on a combination of a dipole plus a linear quadrupole parallel to the dipole). Although an interpretation of the polarization peculiarities in terms of magnetic `anomalies' (i.e. deviations from the dipolar configuration) is quite natural, one must also take into account the possible influence of local abundance inhomogeneities. Therefore, we have first studied the sensitivity of the polarized signal (which is known to be due to the differential saturation of Zeeman components in spectral lines) to a variation of the metallic absorption spectrum. Then we have examined how a local enhancement (or reduction) of the polarization produced by a dipolar magnetic field affects the Fourier spectrum of the observed polarization signal. Finally, we have designed an inversion program making possible the recovery - under certain restrictions - of the spatial modulations of the polarization generated by a dipole, which are necessary to explain `odd' polarimetric data. This program has been applied to the data gathered from three stars (49 Cam, β CrB, HD 71866). As far as the last star is concerned, none of the spatial modulations considered was able to reproduce the observations. On the contrary, good solutions are found for the other two. However, if one interprets the variations of the polarization as the result of abundance variations, which must correspond to a modulation of the absorption spectrum, a contradiction arises, especially for β CrB, because the observed spectral variability of these stars is too small to account for our computed maps. Therefore, non-canonical polarization diagrams must essentially be interpreted in terms of magnetic anomalies, not of abundance anomalies: in other words, the peculiarities of the polarization diagrams are likely to result mainly from departures of the magnetic configuration from the pure dipolar configuration.

  19. Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion

    NASA Technical Reports Server (NTRS)

    Baring, M. G.; Ellison, D. C.; Jones, F. C.

    1995-01-01

    The Monte Carlo technique of simulating diffusive particle acceleration at shocks has made spectral predictions that compare extremely well with particle distributions observed at the quasi-parallel region of the earth's bow shock. The current extension of this work to compare simulation predictions with particle spectra at oblique interplanetary shocks has required the inclusion of significant cross-field diffusion (strong scattering) in the simulation technique, since oblique shocks are intrinsically inefficient in the limit of weak scattering. In this paper, we present results from the method we have developed for the inclusion of cross-field diffusion in our simulations, namely model predictions of particle spectra downstream of oblique subluminal shocks. While the high-energy spectral index is independent of the shock obliquity and the strength of the scattering, the latter is observed to profoundly influence the efficiency of injection of cosmic rays into the acceleration process.

  20. Perspectives on dilution jet mixing. [in creating temperature patterns at combustor exits in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Srinivasan, R.

    1986-01-01

    A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets.

  1. In vivo observation of transient photoreceptor movement correlated with oblique light stimulation

    NASA Astrophysics Data System (ADS)

    Lu, Yiming; Liu, Changgeng; Yao, Xincheng

    2018-02-01

    Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for high resolution assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its fast time course and sub-cellular signal magnitude. By developing a line-scanning and virtually structured detection based super-resolution ophthalmoscope, we report here in vivo observation of TRP in frog retina. In vivo characterization of TRP time course and magnitude were implemented by using variable light stimulus intensities.

  2. Low Latitude Ionospheric Effects on Radiowave Propagation

    DTIC Science & Technology

    1998-06-01

    was used. Active earth-based observation equipment includes coherent and non-coherent scatter radars, and vertical and oblique incidence sounders...ionospheric monitoring during this experiment consisted of an oblique sounder, apparatus to measure time-of-flight of transionospheric signals, and an...is configured to monitor the ionosphere directly overhead in the vertical incidence configuration, or with an obliquely -launched antenna elevation

  3. Generation and Micro-scale Effects of Electrostatic Waves in an Oblique Shock

    NASA Astrophysics Data System (ADS)

    Goodrich, K.; Ergun, R.; Schwartz, S. J.; Newman, D.; Johlander, A.; Argall, M. R.; Wilder, F. D.; Torbert, R. B.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Gershman, D. J.; Burch, J. L.

    2017-12-01

    We present an analysis of large amplitude (>100 mV/m), high frequency (≤1 kHz), electrostatic waves observed by MMS during an oblique bow shock crossing event. The observed waves primarily consist of electrostatic solitary waves (ESWs) and oblique ion plasma waves (IPWs). ESWs typically include nonlinear structures such as double layers, ion phase-space holes, and electron phase-space holes. Oblique IPWs are observed to be similar to ion acoustic waves, but can propagate up to 70° from the ambient magnetic field direction. Both wave-modes, particularly IPWs, are observed to have very short wavelengths ( 100 m) and are highly localized. While such wave-modes have been previously observed in the terrestrial bow shock, instrumental constraints have limited detailed insight into their generation and their effect on their plasma shock environment. Analysis of this oblique shock event shows evidence that ESWs and oblique IPWs can be generated through field-aligned currents associated with magnetic turbulence and through a counterstreaming ion instability respectively. We also present evidence that this wave activity can facilitate momentum exchange between ion populations, resulting in deceleration of incoming solar wind, and localized electron heating.

  4. Redundancy reduction explains the expansion of visual direction space around the cardinal axes.

    PubMed

    Perrone, John A; Liston, Dorion B

    2015-06-01

    Motion direction discrimination in humans is worse for oblique directions than for the cardinal directions (the oblique effect). For some unknown reason, the human visual system makes systematic errors in the estimation of particular motion directions; a direction displacement near a cardinal axis appears larger than it really is whereas the same displacement near an oblique axis appears to be smaller. Although the perceptual effects are robust and are clearly measurable in smooth pursuit eye movements, all attempts to identify the neural underpinnings for the oblique effect have failed. Here we show that a model of image velocity estimation based on the known properties of neurons in primary visual cortex (V1) and the middle temporal (MT) visual area of the primate brain produces the oblique effect. We also provide an explanation for the unusual asymmetric patterns of inhibition that have been found surrounding MT neurons. These patterns are consistent with a mechanism within the visual system that prevents redundant velocity signals from being passed onto the next motion-integration stage, (dorsal Medial superior temporal, MSTd). We show that model redundancy-reduction mechanisms within the MT-MSTd pathway produce the oblique effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fault geometries illuminated from seismicity in central Taiwan: Implications for crustal scale structural boundaries in the northern Central Range

    NASA Astrophysics Data System (ADS)

    Gourley, Jonathan R.; Byrne, Timothy; Chan, Yu-Chang; Wu, Francis; Rau, Ruey-Juin

    2007-12-01

    Data sets of collapsed earthquake locations, earthquake focal mechanisms, GPS velocities and geologic data are integrated to constrain the geometry and kinematics of a crustal block within the accreted continental margin rocks of Taiwan's northeastern Central Range. This block is laterally extruding and exhuming towards the north-northeast. The block is bound on the west-southwest by the previously recognized Sanyi-Puli seismic zone and on the east by a vertical seismic structure that projects to the eastern mountain front of the Central Range. Focal mechanisms from the Broadband Array of Taiwan Seismicity (BATS) catalog consistently show west-side-up reverse displacements for this fault zone. A second vertical structure is recognized beneath the Slate Belt-Metamorphic Belt boundary as a post-Chi-Chi relaxation oblique normal fault. BATS focal mechanisms show east-side-up, normal displacements with a minor left-lateral component. The vertical and lateral extrusion of this crustal block may be driven by the current collision between the Philippine Sea Plate and the Puli basement high indenter on the Eurasian Plate and/or trench rollback along the Ryukyu subduction zone. In addition, the vertical extent of the two shear zones suggests that a basal décollement below the eastern Central Range is deeper than previously proposed and may extend below the brittle-ductile transition.

  6. Sound System Engineering & Optimization: The effects of multiple arrivals on the intelligibility of reinforced speech

    NASA Astrophysics Data System (ADS)

    Ryan, Timothy James

    The effects of multiple arrivals on the intelligibility of speech produced by live-sound reinforcement systems are examined. The intent is to determine if correlations exist between the manipulation of sound system optimization parameters and the subjective attribute speech intelligibility. Given the number, and wide range, of variables involved, this exploratory research project attempts to narrow the focus of further studies. Investigated variables are delay time between signals arriving from multiple elements of a loudspeaker array, array type and geometry and the two-way interactions of speech-to-noise ratio and array geometry with delay time. Intelligibility scores were obtained through subjective evaluation of binaural recordings, reproduced via headphone, using the Modified Rhyme Test. These word-score results are compared with objective measurements of Speech Transmission Index (STI). Results indicate that both variables, delay time and array geometry, have significant effects on intelligibility. Additionally, it is seen that all three of the possible two-way interactions have significant effects. Results further reveal that the STI measurement method overestimates the decrease in intelligibility due to short delay times between multiple arrivals.

  7. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall

    2016-04-14

    There is a great interest in RMI as source of ejecta from metal shells. Previous experiments have explored wavelength amplitude (kA) variation but they have a small range of drive pressures and are in planer geometry. Simulations, both MD and hydro, have explored RMI in planer geometry. The ejecta source model from RMI is an area of active algorithm and code development in ASCI-IC Lagrangian Applications Project. PHELIX offers precise, reproducible variable driver for Hydro and material physics diagnoses with proton radiography.

  8. Magnetic zero-modes, vortices and Cartan geometry

    NASA Astrophysics Data System (ADS)

    Ross, Calum; Schroers, Bernd J.

    2018-04-01

    We exhibit a close relation between vortex configurations on the 2-sphere and magnetic zero-modes of the Dirac operator on R^3 which obey an additional nonlinear equation. We show that both are best understood in terms of the geometry induced on the 3-sphere via pull-back of the round geometry with bundle maps of the Hopf fibration. We use this viewpoint to deduce a manifestly smooth formula for square-integrable magnetic zero-modes in terms of two homogeneous polynomials in two complex variables.

  9. Can activity within the external abdominal oblique be measured using real-time ultrasound imaging?

    PubMed

    John, E K; Beith, I D

    2007-11-01

    Differences in the function of the anterolateral abdominal muscles have been the subject of much investigation, but primarily using electromyography. Recently changes in thickness of transversus abdominis and internal oblique measured from real-time ultrasound images have been shown to represent activity within these muscles. However it is still unclear if such a change in thickness in external oblique similarly represents activity within that muscle. The purpose of this study was to investigate the relationship between change in thickness and muscle activity in the external oblique using real-time ultrasound and surface electromyography. Simultaneous measurements of electromyography and real-time ultrasound images of external oblique were studied in up to 24 subjects during two tasks compared to the muscle at rest (1) isometric trunk rotation and (2) drawing in the lower abdomen. Changes in muscle thickness correlated significantly with electromyography during isometric trunk rotation in the majority of subjects but with a significant difference between subjects. In contrast, the relationship between change in thickness and electrical activity in the muscle when drawing in the lower abdomen was significant in less than 50% of subjects and the muscle often got thinner. Thickness changes of external oblique can be used as a valid indicator of electromyography activity during isometric trunk rotation, though the relationship is not as good as previously published data for transversus abdominis. Thickness changes of external oblique measured during lower abdominal drawing in cannot be used to detect activity within this muscle.

  10. Infra Patellar Branch of Saphenous Nerve Injury during Hamstring Graft Harvest: Vertical versus Oblique Incisions.

    PubMed

    Joshi, A; Kayasth, N; Shrestha, S; Kc, B R

    2016-09-01

    Autologous hamstring grafts are commonly used for anterior cruciate ligament reconstruction. The injury of infrapatellar branch of saphenous nerve is one of the concerns leading to various pattern of sensory loss in the operated leg. An oblique incision to harvest the graft has been reported to be better than the vertical one.The aim of this study was to compare the incidence, recovery of nerve injury and final outcome in patients with hamstring harvest of vertical or oblique incision. A total of 146 patients who underwent hamstring graft harvest for anterior cruciate ligament reconstruction, were included in the study. They were randomized into two (Vertical and Oblique) groups as per the incisions used. The sensory loss along the Infra Patellar Branch of Saphenous Nerve was documented on 3rd day. Recovery of the nerve injury was monitoredat three, six and 12 months follow-ups. At final follow up Tegner Lysholm score and scale was recorded to compare between two groups. The incidence of infrapatellar branch of saphenous nerve injury was 25% in vertical group and 16.36% in oblique group. Recovery of nerve injury started earlier in oblique group compared to vertical group. The mean TegnerLyshom score was not significantly different in both the groups. Oblique incision to harvest hamstring graft has lesser incidence of infrapatellar branch of saphenous nerve injury, recovers earlier and does not have any adverse effect on final outcome compared to the vertical incision.

  11. Inferring planetary obliquity using rotational and orbital photometry

    NASA Astrophysics Data System (ADS)

    Schwartz, J. C.; Sekowski, C.; Haggard, H. M.; Pallé, E.; Cowan, N. B.

    2016-03-01

    The obliquity of a terrestrial planet is an important clue about its formation and critical to its climate. Previous studies using simulated photometry of Earth show that continuous observations over most of a planet's orbit can be inverted to infer obliquity. However, few studies of more general planets with arbitrary albedo markings have been made and, in particular, a simple theoretical understanding of why it is possible to extract obliquity from light curves is missing. Reflected light seen by a distant observer is the product of a planet's albedo map, its host star's illumination, and the visibility of different regions. It is useful to treat the product of illumination and visibility as the kernel of a convolution. Time-resolved photometry constrains both the albedo map and the kernel, the latter of which sweeps over the planet due to rotational and orbital motion. The kernel's movement distinguishes prograde from retrograde rotation for planets with non-zero obliquity on inclined orbits. We demonstrate that the kernel's longitudinal width and mean latitude are distinct functions of obliquity and axial orientation. Notably, we find that a planet's spin axis affects the kernel - and hence time-resolved photometry - even if this planet is east-west uniform or spinning rapidly, or if it is north-south uniform. We find that perfect knowledge of the kernel at 2-4 orbital phases is usually sufficient to uniquely determine a planet's spin axis. Surprisingly, we predict that east-west albedo contrast is more useful for constraining obliquity than north-south contrast.

  12. Broad Specification Fuels Combustion Technology Program. Phase 2

    DTIC Science & Technology

    1990-10-01

    4 4C Where: M is the molecular weight of th hxth specie Nt is the mole fraction of the x specie a is the hydrogen to carbon ratio of the fuel...RATIO F’gure 7-15 Idle Emisions Characteristics of Variable Geometry Cornbusuom geometry combustor configurations as well. The remaining performance

  13. Quantitative detection of cartilage surfaces and ligament geometry of the wrist using an imaging cryomicrotome system.

    PubMed

    Dvinskikh, N A; Blankevoort, L; Foumani, M; Spaan, J A E; Streekstra, G J

    2010-03-22

    Biomechanical models may aid in improving diagnosis and treatment of wrist joint disorders. As input, geometrical information is required for model development. Previous studies acquired some elements of the average wrist joint geometry. However, there is a close geometric functional match between articulating surfaces and ligament geometry. Therefore, biomechanical models need to be fed with the geometric data of individual joints. This study is aimed at acquiring geometric data of cartilage surfaces and ligaments from individual wrist joints by using a cryomicrotome imaging system and the evaluation of inter- and intra-observer variability of the data. The 3D geometry of 30 cartilage surfaces and 15 ligaments in three cadaver wrists was manually detected and quantitatively reconstructed. The inter- and intra-observer variability of the cartilage surface detection was 0.14 and 0.19 mm, respectively. For the position of the radius attachment of the dorsal radiocarpal ligament (DRC), the observer variations were 0.12 and 0.65 mm, for intra-/inter-observer, respectively. For the DRC attachment on the triquetrum, the observer variations were 0.22 and 1.19 mm. Anatomic reconstruction from 3D cryomicrotome images offer a method to obtain unique geometry data of the entire wrist joint for modeling purposes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  15. Oblique Chest Views as a Routine Part of Skeletal Surveys Performed for Possible Physical Abuse--Is This Practice Worthwhile?

    ERIC Educational Resources Information Center

    Hansen, Karen Kirhofer; Prince, Jeffrey S.; Nixon, G. William

    2008-01-01

    Objective: To evaluate the utility of oblique chest views in the diagnosis of rib fractures when used as a routine part of the skeletal survey performed for possible physical abuse. Methods: Oblique chest views have been part of the routine skeletal survey protocol at Primary Children's Medical Center since October 2002. Dictated radiology reports…

  16. Slip re-orientation in the oblique Abiquiu embayment, northern Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Murphy, M. A.; Andrea, R. A.

    2015-12-01

    Traditional models of oblique rifting predict that an oblique fault accommodates both dip-slip and strike-slip kinematics. However, recent analog experiments suggest that slip can be re-oriented to almost pure dip-slip on oblique faults if a preexisting weak zone is present at the onset of oblique extension. In this study, we use fault slip data from the Abiquiu embayment in northern Rio Grande rift to test the new model. The Rio Grande rift is a Cenozoic oblique rift extending from southern Colorado to New Mexico. From north to south, it comprises three major half grabens (San Luis, Española, and Albuquerque). The Abiquiu embayment is a sub-basin of the San Luis basin in northern New Mexico. Rift-border faults are generally older and oblique to the trend of the rift, whereas internal faults are younger and approximately N-S striking, i.e. orthogonal to the regional extension direction. Rift-border faults are deep-seated in the basement rocks while the internal faults only cut shallow stratigraphic sections. It has been suggested by many that inherited structures may influence the Rio Grande rifting. Particularly, Laramide structures (and possibly the Ancestral Rockies as well) that bound the Abiquiu embayment strike N- to NW. Our data show that internal faults in the Abiquiu embayment exhibit almost pure dip-slip (rake of slickenlines = 90º ± 15º), independent of their orientations with respect to the regional extension direction. On the contrary, border faults show two sets of rakes: almost pure dip-slip (rake = 90º ± 15º) where the fault is sub-parallel to the foliation, and moderately-oblique (rake = 30º ± 15º) where the fault is high angle to the foliation. We conclude that slip re-orientation occurs on most internal faults and some oblique border faults under the influence of inherited structures. Regarding those border faults on which slip is not re-oriented, we hypothesize that it may be caused by the Jemez volcanism or small-scale mantle convection.

  17. Rapid variability as a probe of warped space-time around accreting black holes

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    2016-07-01

    The geometry of the inner accretion flow of X-ray binaries is complex, with multiple regions contributing to the observed emission. Frequency-resolved spectroscopy is a powerful tool in breaking this spectral degeneracy. We have extracted the spectra of the strong low-frequency quasi-periodic oscillation (QPO) and its harmonic in GX339-4 and XTE J1550-564, and compare these to the time-averaged spectrum and the spectrum of the rapid (<0.1 s) variability. Our results support the picture where the QPO arises from vertical (Lense-Thirring) precession of an inhomogeneous hot flow, softer at larger radii closer to the truncated disc and harder in the innermost parts where the rapid variability is produced. This coupling between variability and spectra allows us to constrain the soft Comptonization component, breaking the degeneracy plaguing the time-averaged spectrum and revealing the geometry of the accretion flow close to the black hole.

  18. Comparison of Surgically Induced Astigmatism and Morphologic Features Resulting From Femtosecond Laser and Manual Clear Corneal Incisions for Cataract Surgery.

    PubMed

    Ferreira, Tiago B; Ribeiro, Filomena J; Pinheiro, João; Ribeiro, Paulo; O'Neill, João G

    2018-05-01

    To compare the surgically induced astigmatism (SIA) vector, flattening effect, torque, and wound architecture following femtosecond laser and manual clear corneal incisions (CCIs). In a double-armed, randomized, prospective case series, cataract surgery was performed for 600 eyes using femtosecond laser (300 eyes) or manual (300 eyes) 2.4-mm CCIs in temporal or superior oblique locations. SIA, flattening effect, torque, and the summated vector mean for SIA were calculated. Correlation with individual features was established and incision morphology was investigated by anterior segment optical coherence tomography at 3 months of follow-up. The SIA, flattening effect, and torque were lower in the femtosecond laser group for both incision locations, although the differences were not significant (all P > .05). The femtosecond laser group showed less dispersion of SIA magnitude and flattening effect. Temporal and superior oblique incisions resulted in flattening effect values of -0.11 and -0.21 diopters (D), respectively, in the femtosecond laser group and -0.13 and -0.34 D, respectively, in the manual group. Significant correlations with individual features were only found in the femtosecond laser group, with preoperative astigmatism being the only significant SIA predictor by multiple regression analysis (P = .003). Femtosecond laser CCIs showed less deviation from the intended length, wound enlargement, endothelial misalignment, and Descemet membrane detachments (all P < .037). Femtosecond laser CCIs were more reproducible. Although SIAs were smaller in femtosecond laser CCIs than in manual CCIs for both temporal and superior oblique incisions, the difference was not statistically significant. Association with individual features is highly variable. [J Refract Surg. 2018;34(5):322-329.]. Copyright 2018, SLACK Incorporated.

  19. Dune growth under multidirectional wind regimes

    NASA Astrophysics Data System (ADS)

    Gadal, C.; Rozier, O.; Claudin, P.; Courrech Du Pont, S.; Narteau, C.

    2017-12-01

    Under unidirectional wind regimes, flat sand beds become unstable to produce periodic linear dunes, commonly called transverse dunes because their main ridges are oriented perpendicular to the air flow. In areas of low sediment availability, the same interactions between flow, transport and topography produce barchan dunes, isolated sand-pile migrating over long distances with a characteristic crescentic shape. For the last fifteen years, barchan dunes and the instability at the origin of transverse dunes have been the subject of numerous studies that have identified a set of characteristic length and time scales with respect to the physical properties of both grains and fluid. This is not the case for dunes developing under multidirectional wind regimes. Under these conditions, dune orientation is measured with respect to the direction of the resultant sand flux. Depending on the wind regime, dunes do not always line up perpendicularly to the resultant sand flux, but can also be at an oblique angle or even parallel to it. These oblique and longitudinal dunes are ubiquitous in all deserts on Earth and planetary bodies because of the seasonal variability of wind orientation. They are however poorly constrained by observations and there is still no complete theoretical framework providing a description of their orientation and initial wavelength. Here, we extend the linear stability analysis of a flat sand of bed done in two dimensions for a unidirectional flow to three dimensions and multidirectional flow regimes. We are able to recover transitions from transverse to oblique or longitudinal dune patterns according to changes in wind regimes. We besides give a prediction for the initial dune wavelength. Our results compare well to previous theory of dune orientation and to field, experimental and numerical data.

  20. Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boruah, A.; Sharma, S. K., E-mail: sumita-sharma82@yahoo.com; Bailung, H.

    2015-09-15

    The oblique collision between two equal amplitude dust acoustic solitons is observed in a strongly coupled dusty plasma. The solitons are subjected to oblique interaction at different colliding angles. We observe a resonance structure during oblique collision at a critical colliding angle which is described by the idea of three wave resonance interaction modeled by Kadomtsev-Petviashvili equation. After collision, the solitons preserve their identity. The amplitude of the resultant wave formed during interaction is measured for different collision angles as well as for different colliding soliton amplitudes. At resonance, the maximum amplitude of the new soliton formed is nearly 3.7more » times the initial soliton amplitude.« less

  1. Improved performance of organic light-emitting diodes with MoO3 interlayer by oblique angle deposition.

    PubMed

    Liu, S W; Divayana, Y; Sun, X W; Wang, Y; Leck, K S; Demir, H V

    2011-02-28

    We fabricated and demonstrated improved organic light emitting diodes (OLEDs) in a thin film architecture of indium tin oxide (ITO)/ molybdenum trioxide (MoO3) (20 nm)/N,N'-Di(naphth-2-yl)-N,N'-diphenyl-benzidine (NPB) (50 nm)/ tris-(8-hydroxyquinoline) (Alq3) (70 nm)/Mg:Ag (200 nm) using an oblique angle deposition technique by which MoO3 was deposited at oblique angles (θ) with respect to the surface normal. It was found that, without sacrificing the power efficiency of the device, the device current efficiency and external quantum efficiency were significantly enhanced at an oblique deposition angle of θ=60° for MoO3.

  2. Electric-regulated enhanced in-plane uniaxial anisotropy in FeGa/PMN-PT composite using oblique pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Huang, Chaojuan; Turghun, Mutellip; Duan, Zhihua; Wang, Feifei; Shi, Wangzhou

    2018-04-01

    The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate-lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN-PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.

  3. Experimental study on mean overtopping of sloping seawall under oblique irregular waves

    NASA Astrophysics Data System (ADS)

    Wang, Deng-ting; Ju, Lie-hong; Zhu, Jia-ling; Wang, Zhen; Sun, Tian-ting; Chen, Wei-qiu

    2017-06-01

    In this paper, domestic and abroad research progresses and related calculation formulae of the mean overtopping discharge are summarized. Through integral physical model experiments, the relation between the wave direction and the overtopping discharge on the top of the sloping dike is focused on and put into analysis and discussion; and a modified formula for mean overtopping discharges under oblique irregular waves is proposed. The study shows that the mean overtopping discharge generally goes down as the relative wave obliquity β increases for a fixed measurement point and the mean overtopping discharge generally increases as the wave steepness H/L decreases (the cycle increases) for a fixed relative wave obliquity.

  4. Cenozoic Source-to-Sink of the African margin of the Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Rouby, Delphine; Chardon, Dominique; Huyghe, Damien; Guillocheau, François; Robin, Cecile; Loparev, Artiom; Ye, Jing; Dall'Asta, Massimo; Grimaud, Jean-Louis

    2016-04-01

    The objective of the Transform Source to Sink Project (TS2P) is to link the dynamics of the erosion of the West African Craton to the offshore sedimentary basins of the African margin of the Equatorial Atlantic at geological time scales. This margin, alternating transform and oblique segments from Guinea to Nigeria, shows a strong structural variability in the margin width, continental geology and relief, drainage networks and subsidence/accumulation patterns. We analyzed this system combining onshore geology and geomorphology as well as offshore sub-surface data. Mapping and regional correlation of dated lateritic paleo-landscape remnants allows us to reconstruct two physiographic configurations of West Africa during the Cenozoic. We corrected those reconstitutions from flexural isostasy related to the subsequent erosion. These geometries show that the present-day drainage organization stabilized by at least 29 Myrs ago (probably by 34 Myr) revealing the antiquity of the Senegambia, Niger and Volta catchments toward the Atlantic as well as of the marginal upwarp currently forming a continental divide. The drainage rearrangement that lead to this drainage organization was primarily enhanced by the topographic growth of the Hoggar swell and caused a major stratigraphic turnover along the Equatorial margin of West Africa. Elevation differences between paleo-landscape remnants give access to the spatial and temporal distribution of denudation for 3 time-increments since 45 Myrs. From this, we estimate the volumes of sediments and associated lithologies exported by the West African Craton toward different segments of the margin, taking into account the type of eroded bedrock and the successive drainage reorganizations. We compare these data to Cenozoic accumulation histories in the basins and discuss their stratigraphic expression according to the type of margin segment they are preserved in.

  5. Multiscale fracture network characterization and impact on flow: A case study on the Latemar carbonate platform

    NASA Astrophysics Data System (ADS)

    Hardebol, N. J.; Maier, C.; Nick, H.; Geiger, S.; Bertotti, G.; Boro, H.

    2015-12-01

    A fracture network arrangement is quantified across an isolated carbonate platform from outcrop and aerial imagery to address its impact on fluid flow. The network is described in terms of fracture density, orientation, and length distribution parameters. Of particular interest is the role of fracture cross connections and abutments on the effective permeability. Hence, the flow simulations explicitly account for network topology by adopting Discrete-Fracture-and-Matrix description. The interior of the Latemar carbonate platform (Dolomites, Italy) is taken as outcrop analogue for subsurface reservoirs of isolated carbonate build-ups that exhibit a fracture-dominated permeability. New is our dual strategy to describe the fracture network both as deterministic- and stochastic-based inputs for flow simulations. The fracture geometries are captured explicitly and form a multiscale data set by integration of interpretations from outcrops, airborne imagery, and lidar. The deterministic network descriptions form the basis for descriptive rules that are diagnostic of the complex natural fracture arrangement. The fracture networks exhibit a variable degree of multitier hierarchies with smaller-sized fractures abutting against larger fractures under both right and oblique angles. The influence of network topology on connectivity is quantified using Discrete-Fracture-Single phase fluid flow simulations. The simulation results show that the effective permeability for the fracture and matrix ensemble can be 50 to 400 times higher than the matrix permeability of 1.0 · 10-14 m2. The permeability enhancement is strongly controlled by the connectivity of the fracture network. Therefore, the degree of intersecting and abutting fractures should be captured from outcrops with accuracy to be of value as analogue.

  6. Quasi 1D Modeling of Mixed Compression Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.

    2012-01-01

    The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.

  7. Crevasse splay processes and deposits in an ancient distributive fluvial system: The lower Beaufort Group, South Africa

    NASA Astrophysics Data System (ADS)

    Gulliford, Alice R.; Flint, Stephen S.; Hodgson, David M.

    2017-08-01

    Up to 12% of the mud-prone, ephemeral distributive fluvial system stratigraphy in the Permo-Triassic lower Beaufort Group, South Africa, comprises tabular fine-grained sandstone to coarse-grained siltstone bodies, which are interpreted as proximal to distal crevasse splay deposits. Crevasse splay sandstones predominantly exhibit ripple to climbing ripple cross-lamination, with some structureless and planar laminated beds. A hierarchical architectural scheme is adopted, in which 1 m thick crevasse splay elements extend for tens to several hundreds of meters laterally, and stack with other splay elements to form crevasse splay sets up to 4 m thick and several kilometers in width and length. Paleosols and nodular horizons developed during periods, or in areas, of reduced overbank flooding are used to subdivide the stratigraphy, separating crevasse splay sets. Deposits from crevasse splays differ from frontal splays as their proximal deposits are much thinner and narrower, with paleocurrents oblique to the main paleochannel. In order for crevasse splay sets to develop, the parent channel belt and the location where crevasse splays form must stay relatively fixed during a period of multiple flood events. Beaufort Group splays have similar geometries to those of contemporary perennial rivers but exhibit more lateral variability in facies, which is interpreted to be the result of more extreme fluctuations in discharge regime. Sharp-based crevasse splay packages are associated with channel avulsion, but most are characterized by a gradual coarsening upward, interpreted to represent progradation. The dominance of progradational splays beneath channel belt deposits may be more characteristic of progradational stratigraphy in a distributive fluvial system rather than dominated by avulsion processes in a trunk river system. This stratigraphic motif may therefore be an additional criterion for recognition of distributive fluvial systems in the ancient record.

  8. TU-CD-304-04: Scanning Field Total Body Irradiation Using Dynamic Arc with Variable Dose Rate and Gantry Speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, B; Xu, H; Mutaf, Y

    2015-06-15

    Purpose: Enable a scanning field total body irradiation (TBI) technique, using dynamic arcs, which is biologically equivalent to a moving couch TBI. Methods: Patient is treated slightly above the floor and the treatment field scans across the patient by a moving gantry. MLC positions change during gantry motion to keep same field opening at the level of the treatment plane (170 cm). This is done to mimic the same geometry as the moving couch TBI technique which has been used in our institution for over 10 years. The dose rate and the gantry speed are determined considering a constant speedmore » of the moving field, variations in SSD and slanted depths resulting from oblique gantry angles. An Eclipse (Varian) planning system is commissioned to accommodate the extended SSD. The dosimetric foundations of the technique have been thoroughly investigated using phantom measurements. Results: Dose uniformity better than 2% across 180 cm length at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Treatment range can be extended by increasing gantry range. No device such as a gravity-oriented compensator is needed to achieve a uniform dose. It is feasible to modify the dose distribution by adjusting the dose rate at each gantry angle to compensate for body thickness differences. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 100 MU/min. Conclusion: This novel yet transportable moving field technique enables TBI treatment in a small treatment room with less program development preparation than other techniques. Treatment length can be extended per need, and. MLC-based thickness compensation and partial lung blocking are also possible.« less

  9. Variable bright-darkfield-contrast, a new illumination technique for improved visualizations of complex structured transparent specimens.

    PubMed

    Piper, Timm; Piper, Jörg

    2012-04-01

    Variable bright-darkfield contrast (VBDC) is a new technique in light microscopy which promises significant improvements in imaging of transparent colorless specimens especially when characterized by a high regional thickness and a complex three-dimensional architecture. By a particular light pathway, two brightfield- and darkfield-like partial images are simultaneously superimposed so that the brightfield-like absorption image based on the principal zeroth order maximum interferes with the darkfield-like reflection image which is based on the secondary maxima. The background brightness and character of the resulting image can be continuously modulated from a brightfield-dominated to a darkfield-dominated appearance. When the weighting of the dark- and brightfield components is balanced, medium background brightness will result showing the specimen in a phase- or interference contrast-like manner. Specimens can either be illuminated axially/concentrically or obliquely/eccentrically. In oblique illumination, the angle of incidence and grade of eccentricity can be continuously changed. The condenser aperture diaphragm can be used for improvements of the image quality in the same manner as usual in standard brightfield illumination. By this means, the illumination can be optimally adjusted to the specific properties of the specimen. In VBDC, the image contrast is higher than in normal brightfield illumination, blooming and scattering are lower than in standard darkfield examinations, and any haloing is significantly reduced or absent. Although axial resolution and depth of field are higher than in concurrent standard techniques, the lateral resolution is not visibly reduced. Three dimensional structures, reliefs and fine textures can be perceived in superior clarity. Copyright © 2011 Wiley-Liss, Inc.

  10. Variable-geometry turbocharger with asymmetric divided volute for engine exhaust gas pulse optimization

    DOEpatents

    Serres, Nicolas

    2010-11-09

    A turbine assembly for a variable-geometry turbocharger includes a turbine housing defining a divided volute having first and second scrolls, wherein the first scroll has a substantially smaller volume than the second scroll. The first scroll feeds exhaust gas to a first portion of a turbine wheel upstream of the throat of the wheel, while the second scroll feeds gas to a second portion of the wheel at least part of which is downstream of the throat. Flow from the second scroll is regulated by a sliding piston. The first scroll can be optimized for low-flow conditions such that the turbocharger can operate effectively like a small fixed-geometry turbocharger when the piston is closed. The turbine housing defines an inlet that is divided by a dividing wall into two portions respectively feeding gas to the two scrolls, a leading edge of the dividing wall being downstream of the inlet mouth.

  11. Improved prediction of disturbed flow via hemodynamically-inspired geometric variables.

    PubMed

    Bijari, Payam B; Antiga, Luca; Gallo, Diego; Wasserman, Bruce A; Steinman, David A

    2012-06-01

    Arterial geometry has long been considered as a pragmatic alternative for inferring arterial flow disturbances, and their impact on the natural history and treatment of vascular diseases. Traditionally, definition of geometric variables is based on convenient shape descriptors, with only superficial consideration of their influence on flow and wall shear stress patterns. In the present study we demonstrate that a more studied consideration of the actual (cf. nominal) local hemodynamics can lead to substantial improvements in the prediction of disturbed flow by geometry. Starting from a well-characterized computational fluid dynamics (CFD) dataset of 50 normal carotid bifurcations, we observed that disturbed flow tended to be confined proximal to the flow divider, whereas geometric variables previously shown to be significant predictors of disturbed flow included features distal to the flow divider in their definitions. Flaring of the bifurcation leading to flow separation was redefined as the maximum relative expansion of the common carotid artery (CCA), proximal to the flow divider. The beneficial effect of primary curvature on flow inertia, via suppression of flow separation, was characterized by the in-plane tortuosity of CCA as it enters the flare region. Multiple linear regressions of these redefined geometric variables against various metrics of disturbed flow revealed R(2) values approaching 0.6, better than the roughly 0.3 achieved using the conventional shape-based variables, while maintaining their demonstrated real-world reproducibility. Such a hemodynamically-inspired approach to the definition of geometric variables may reap benefits for other applications where geometry is used as a surrogate marker of local hemodynamics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Regional deposition of nasal sprays in adults: A wide ranging computational study.

    PubMed

    Kiaee, Milad; Wachtel, Herbert; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H

    2018-05-01

    The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery. Copyright © 2018 John Wiley & Sons, Ltd.

  13. [Study of the appearance difference of lower complete denture between functional and anatomic impression techniques].

    PubMed

    Zhong, Qun; Wu, Xue-yin; Shen, Qing-yi; Shen, Qing-ping

    2012-04-01

    To compare the difference in oblique external ridge, oblique internal ridge and alveolar process crest of lower complete denture base made through functional impression and anatomic impression techniques. Fifteen patients were chosen to treat with two kinds of complete dentures through functional impression and anatomic impression technique respectively. 3D laser scanner was used to scan the three-dimensional model of the denture base and the differences of the surface structural between two techniques in alveolar process crest, external and internal oblique ridges were analyzed, using paired t test with SPSS 12.0 software package. Between the two techniques, there were significant differences in the areas of internal and external oblique ridge(P<0.01); there was no significant difference in the main support areas(P>0.05). The results explain why there is less tenderness when functional impression technique is applied. The differences measured also indicate that sufficient buffering should be made in external and internal oblique ridge areas in clinic.

  14. Exo-Milankovitch Cycles. I. Orbits and Rotation States

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Armstrong, John; Charnay, Benjamin; Wilhelm, Caitlyn

    2018-02-01

    The obliquity of the Earth, which controls our seasons, varies by only ∼2.°5 over ∼40,000 years, and its eccentricity varies by only ∼0.05 over 100,000 years. Nonetheless, these small variations influence Earth’s ice ages. For exoplanets, however, variations can be significantly larger. Previous studies of the habitability of moonless Earth-like exoplanets have found that high obliquities, high eccentricities, and dynamical variations can extend the outer edge of the habitable zone by preventing runaway glaciation (snowball states). We expand upon these studies by exploring the orbital dynamics with a semianalytic model that allows us to map broad regions of parameter space. We find that, in general, the largest drivers of obliquity variations are secular spin–orbit resonances. We show how the obliquity varies in several test cases, including Kepler-62 f, across a wide range of orbital and spin parameters. These obliquity variations, alongside orbital variations, will have a dramatic impact on the climates of such planets.

  15. Molecular cloud formation in high-shear, magnetized colliding flows

    NASA Astrophysics Data System (ADS)

    Fogerty, E.; Frank, A.; Heitsch, F.; Carroll-Nellenback, J.; Haig, C.; Adams, M.

    2016-08-01

    The colliding flows (CF) model is a well-supported mechanism for generating molecular clouds. However, to-date most CF simulations have focused on the formation of clouds in the normal-shock layer between head-on colliding flows. We performed simulations of magnetized colliding flows that instead meet at an oblique-shock layer. Oblique shocks generate shear in the post-shock environment, and this shear creates inhospitable environments for star formation. As the degree of shear increases (I.e. the obliquity of the shock increases), we find that it takes longer for sink particles to form, they form in lower numbers, and they tend to be less massive. With regard to magnetic fields, we find that even a weak field stalls gravitational collapse within forming clouds. Additionally, an initially oblique collision interface tends to reorient over time in the presence of a magnetic field, so that it becomes normal to the oncoming flows. This was demonstrated by our most oblique shock interface, which became fully normal by the end of the simulation.

  16. Oblique rotaton in canonical correlation analysis reformulated as maximizing the generalized coefficient of determination.

    PubMed

    Satomura, Hironori; Adachi, Kohei

    2013-07-01

    To facilitate the interpretation of canonical correlation analysis (CCA) solutions, procedures have been proposed in which CCA solutions are orthogonally rotated to a simple structure. In this paper, we consider oblique rotation for CCA to provide solutions that are much easier to interpret, though only orthogonal rotation is allowed in the existing formulations of CCA. Our task is thus to reformulate CCA so that its solutions have the freedom of oblique rotation. Such a task can be achieved using Yanai's (Jpn. J. Behaviormetrics 1:46-54, 1974; J. Jpn. Stat. Soc. 11:43-53, 1981) generalized coefficient of determination for the objective function to be maximized in CCA. The resulting solutions are proved to include the existing orthogonal ones as special cases and to be rotated obliquely without affecting the objective function value, where ten Berge's (Psychometrika 48:519-523, 1983) theorems on suborthonormal matrices are used. A real data example demonstrates that the proposed oblique rotation can provide simple, easily interpreted CCA solutions.

  17. Ceres Obliquity History and Its Implications for the Permanently Shadowed Regions

    NASA Technical Reports Server (NTRS)

    Ermakov, A. I.; Mazarico, E.; Schroder, S. E.; Carsenty, U.; Schorghofer, N.; Preusker, F.; Raymond, C. A.; Russell, C. T.; Zuber, Maria T.

    2017-01-01

    Due to the small current obliquity of Ceres ( epsilon approximately equal to 4), permanently shadowed regions (PSRs) exist on the dwarf planets surface. Since the existence and persistence of the PSRs depend on the obliquity, we compute the obliquity history over the last 3 My and find that it undergoes large oscillations with a period of 24.5 ky and a maximum of max 19:5. During periods of large obliquity, most of the present-day PSRs receive direct sunlight. Some craters in Ceres polar regions possess bright crater floor deposits (BCFDs).We find an apparent correlation between BCFDs and the most persistent PSRs. In the north, only two PSRs remain at max and they both contain BCFDs. In the south, one of the two only craters that remain in shadow at max contains a BCFD. The location of BCFDs within persistent PSRs strongly suggests BCFDs consist of volatiles accumulated in PSR cold traps: either water molecules trapped from the exosphere or exposed ground ice.

  18. Greater association of peak neuromuscular performance with cortical bone geometry, bone mass and bone strength than bone density: A study in 417 older women.

    PubMed

    Belavý, Daniel L; Armbrecht, Gabriele; Blenk, Tilo; Bock, Oliver; Börst, Hendrikje; Kocakaya, Emine; Luhn, Franziska; Rantalainen, Timo; Rawer, Rainer; Tomasius, Frederike; Willnecker, Johannes; Felsenberg, Dieter

    2016-02-01

    We evaluated which aspects of neuromuscular performance are associated with bone mass, density, strength and geometry. 417 women aged 60-94years were examined. Countermovement jump, sit-to-stand test, grip strength, forearm and calf muscle cross-sectional area, areal bone mineral content and density (aBMC and aBMD) at the hip and lumbar spine via dual X-ray absorptiometry, and measures of volumetric vBMC and vBMD, bone geometry and section modulus at 4% and 66% of radius length and 4%, 38% and 66% of tibia length via peripheral quantitative computed tomography were performed. The first principal component of the neuromuscular variables was calculated to generate a summary neuromuscular variable. Percentage of total variance in bone parameters explained by the neuromuscular parameters was calculated. Step-wise regression was also performed. At all pQCT bone sites (radius, ulna, tibia, fibula), a greater percentage of total variance in measures of bone mass, cortical geometry and/or bone strength was explained by peak neuromuscular performance than for vBMD. Sit-to-stand performance did not relate strongly to bone parameters. No obvious differential in the explanatory power of neuromuscular performance was seen for DXA aBMC versus aBMD. In step-wise regression, bone mass, cortical morphology, and/or strength remained significant in relation to the first principal component of the neuromuscular variables. In no case was vBMD positively related to neuromuscular performance in the final step-wise regression models. Peak neuromuscular performance has a stronger relationship with leg and forearm bone mass and cortical geometry as well as proximal forearm section modulus than with vBMD. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Statistical assessment of normal mitral annular geometry using automated three-dimensional echocardiographic analysis.

    PubMed

    Pouch, Alison M; Vergnat, Mathieu; McGarvey, Jeremy R; Ferrari, Giovanni; Jackson, Benjamin M; Sehgal, Chandra M; Yushkevich, Paul A; Gorman, Robert C; Gorman, Joseph H

    2014-01-01

    The basis of mitral annuloplasty ring design has progressed from qualitative surgical intuition to experimental and theoretical analysis of annular geometry with quantitative imaging techniques. In this work, we present an automated three-dimensional (3D) echocardiographic image analysis method that can be used to statistically assess variability in normal mitral annular geometry to support advancement in annuloplasty ring design. Three-dimensional patient-specific models of the mitral annulus were automatically generated from 3D echocardiographic images acquired from subjects with normal mitral valve structure and function. Geometric annular measurements including annular circumference, annular height, septolateral diameter, intercommissural width, and the annular height to intercommissural width ratio were automatically calculated. A mean 3D annular contour was computed, and principal component analysis was used to evaluate variability in normal annular shape. The following mean ± standard deviations were obtained from 3D echocardiographic image analysis: annular circumference, 107.0 ± 14.6 mm; annular height, 7.6 ± 2.8 mm; septolateral diameter, 28.5 ± 3.7 mm; intercommissural width, 33.0 ± 5.3 mm; and annular height to intercommissural width ratio, 22.7% ± 6.9%. Principal component analysis indicated that shape variability was primarily related to overall annular size, with more subtle variation in the skewness and height of the anterior annular peak, independent of annular diameter. Patient-specific 3D echocardiographic-based modeling of the human mitral valve enables statistical analysis of physiologically normal mitral annular geometry. The tool can potentially lead to the development of a new generation of annuloplasty rings that restore the diseased mitral valve annulus back to a truly normal geometry. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-06-30

    ISS013-E-44847 (30 June 2006) --- Ship traffic on the Suez Canal, Egypt is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. This oblique photograph captures a northbound convoy of cargo ships entering the Mediterranean Sea from the Suez Canal in Egypt (leftmost canal branch at image center). Oblique images are taken at an angle other than vertical, or nadir -- looking down a line connecting the station to the point on the Earth's surface directly below it -- and this provides a sense of perspective. In this case, the station was located above the eastern coast of Cyprus and the crewmember was looking at Egypt to the southwest. Regions of reduced clarity in the image are caused by thin variable cloud cover. The Suez Canal connects Port Said on the Mediterranean Sea with the port of Suez on the Red Sea, and provides an essentially direct route for transport of goods between Europe and Asia. The Canal is 163 kilometers long and 300 meters wide at its narrowest point -- sufficiently wide for ships as large as aircraft carriers to traverse it. Transit time from end to end is 14 hours on average.

  1. Analysis of Oblique Wave Interaction with a Comb-Type Caisson Breakwater

    NASA Astrophysics Data System (ADS)

    Wang, Xinyu; Liu, Yong; Liang, Bingchen

    2018-04-01

    This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the geometrical shape of breakwater. By using periodic boundary condition and separation of variables, series solutions of velocity potentials in inner and outer regions are developed. Unknown expansion coefficients in series solutions are determined by matching velocity and pressure of continuous conditions on the interface between two regions. Then, hydrodynamic quantities involving reflection coefficients and wave forces acting on breakwater are estimated. Analytical solution is validated by a multi-domain boundary element method solution for the present problem. Diffusion reflection due to periodic variations in breakwater shape and corresponding surface elevations around the breakwater are analyzed. Numerical examples are also presented to examine effects of caisson parameters on total wave forces acting on caissons and total wave forces acting on side plates. Compared with a traditional vertical wall breakwater, the wave force acting on a suitably designed comb-type caisson breakwater can be significantly reduced. This study can give a better understanding of the hydrodynamic performance of comb-type caisson breakwaters.

  2. Development and validation of the Patriarchal Beliefs Scale.

    PubMed

    Yoon, Eunju; Adams, Kristen; Hogge, Ingrid; Bruner, John P; Surya, Shruti; Bryant, Fred B

    2015-04-01

    The purpose of this research was to develop and validate a conceptually and psychometrically solid measure for patriarchal beliefs in samples of U.S. American adults from diverse demographic and geographic backgrounds. In Study 1, we identified 3 correlated factors of the Patriarchal Beliefs Scale (PBS) in data collected from the Internet (N = 279): Institutional Power of Men, Inferiority of Women, and Gendered Domestic Roles. In Study 2, data collected from the Internet (N = 284) supported both an oblique 3-factor structure and a bifactor structure of the PBS, through confirmatory factor analyses. Construct validity of the PBS was supported in relation to other gender-related measures. The PBS was correlated in expected directions with modern sexism, antifeminist attitudes, and egalitarian attitudes toward women. In Study 3, we examined measurement invariance across gender by using combined data from Study 1 and Study 2. All 3 factors of the oblique 3-factor model indicated measurement invariance, whereas the general factor represented in the bifactor model indicated nonequivalence. Mean differences in patriarchal beliefs were found for such demographic variables as gender, sexual orientation, education, and social class. Recommendations for using the PBS, as well as implications for research and practice, are discussed. (c) 2015 APA, all rights reserved).

  3. The Spin-Orbit Resonant Rotation of Mercury: A Two Degree of Freedom Hamiltonian Model

    NASA Astrophysics Data System (ADS)

    D'Hoedt, Sandrine; Lemaitre, Anne

    2004-04-01

    The paper develops a hamiltonian formulation describing the coupled orbital and spin motions of a rigid Mercury rotation about its axis of maximum moment of inertia in the frame of a 3:2 spin orbit resonance; the (ecliptic) obliquity is not constant, the gravitational potential of mercury is developed up to the second degree terms (the only ones for which an approximate numerical value can be given) and is reduced to a two degree of freedom model in the absence of planetary perturbations. Four equilibria can be calculated, corresponding to four different values of the (ecliptic) obliquity. The present situation of Mercury corresponds to one of them, which is proved to be stable. We introduce action-angle variables in the neighborhood of this stable equilibrium, by several successive canonical transformations, so to get two constant frequencies, the first one for the free spin-orbit libration, the other one for the 1:1 resonant precession of both nodes (orbital and rotational) on the ecliptic plane. The numerical values obtained by this simplified model are in perfect agreement with those obtained by Rambaux and Bois [Astron. Astrophys. 413, 381 393].

  4. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  5. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  6. Real-Time Speech/Music Classification With a Hierarchical Oblique Decision Tree

    DTIC Science & Technology

    2008-04-01

    REAL-TIME SPEECH/ MUSIC CLASSIFICATION WITH A HIERARCHICAL OBLIQUE DECISION TREE Jun Wang, Qiong Wu, Haojiang Deng, Qin Yan Institute of Acoustics...time speech/ music classification with a hierarchical oblique decision tree. A set of discrimination features in frequency domain are selected...handle signals without discrimination and can not work properly in the existence of multimedia signals. This paper proposes a real-time speech/ music

  7. Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2004-01-01

    Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.

  8. Variation of axial and oblique astigmatism with accommodation across the visual field

    PubMed Central

    Liu, Tao; Thibos, Larry N.

    2017-01-01

    In this study we investigated the impact of accommodation on axial and oblique astigmatism along 12 meridians of the central 30° of visual field and explored the compensation of corneal first-surface astigmatism by the remainder of the eye's optical system. Our experimental evidence revealed no systematic effect of accommodation on either axial or oblique astigmatism for two adult populations (myopic and emmetropic eyes). Although a few subjects exhibited systematic changes in axial astigmatism during accommodation, the dioptric value of these changes was much smaller than the amount of accommodation. For most subjects, axial and oblique astigmatism of the whole eye are both less than for the cornea alone, which indicates a compensatory role for internal optics at all accommodative states in both central and peripheral vision. A new method for determining the eye's optical axis based on visual field maps of oblique astigmatism revealed that, on average, the optical axis is 4.8° temporal and 0.39° superior to the foveal line-of-sight in object space, which agrees with previous results obtained by different methodologies and implies that foveal astigmatism includes a small amount of oblique astigmatism (0.06 D on average). Customized optical models of each eye revealed that oblique astigmatism of the corneal first surface is negligible along the pupillary axis for emmetropic and myopic eyes. Individual variation in the eye's optical axis is due in part to misalignment of the corneal and internal components that is consistent with tilting of the crystalline lens relative to the pupillary axis. PMID:28362902

  9. Induced and evoked neural correlates of orientation selectivity in human visual cortex.

    PubMed

    Koelewijn, Loes; Dumont, Julie R; Muthukumaraswamy, Suresh D; Rich, Anina N; Singh, Krish D

    2011-02-14

    Orientation discrimination is much better for patterns oriented along the horizontal or vertical (cardinal) axes than for patterns oriented obliquely, but the neural basis for this is not known. Previous animal neurophysiology and human neuroimaging studies have demonstrated only a moderate bias for cardinal versus oblique orientations, with fMRI showing a larger response to cardinals in primary visual cortex (V1) and EEG demonstrating both increased magnitudes and reduced latencies of transient evoked responses. Here, using MEG, we localised and characterised induced gamma and transient evoked responses to stationary circular grating patches of three orientations (0, 45, and 90° from vertical). Surprisingly, we found that the sustained gamma response was larger for oblique, compared to cardinal, stimuli. This "inverse oblique effect" was also observed in the earliest (80 ms) evoked response, whereas later responses (120 ms) showed a trend towards the reverse, "classic", oblique response. Source localisation demonstrated that the sustained gamma and early evoked responses were localised to medial visual cortex, whilst the later evoked responses came from both this early visual area and a source in a more inferolateral extrastriate region. These results suggest that (1) the early evoked and sustained gamma responses manifest the initial tuning of V1 neurons, with the stronger response to oblique stimuli possibly reflecting increased tuning widths for these orientations, and (2) the classic behavioural oblique effect is mediated by an extrastriate cortical area and may also implicate feedback from extrastriate to primary visual cortex. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Effect of water injection and off scheduling of variable inlet guide vanes, gas generator speed and power turbine nozzle angle on the performance of an automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Warren, E. L.

    1980-01-01

    The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.

  11. Modeling of weld bead geometry for rapid manufacturing by robotic GMAW

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Xiong, Jun; Chen, Hui; Chen, Yong

    2015-03-01

    Weld-based rapid prototyping (RP) has shown great promises for fabricating 3D complex parts. During the layered deposition of forming metallic parts with robotic gas metal arc welding, the geometry of a single weld bead has an important influence on surface finish quality, layer thickness and dimensional accuracy of the deposited layer. In order to obtain accurate, predictable and controllable bead geometry, it is essential to understand the relationships between the process variables with the bead geometry (bead width, bead height and ratio of bead width to bead height). This paper highlights an experimental study carried out to develop mathematical models to predict deposited bead geometry through the quadratic general rotary unitized design. The adequacy and significance of the models were verified via the analysis of variance. Complicated cause-effect relationships between the process parameters and the bead geometry were revealed. Results show that the developed models can be applied to predict the desired bead geometry with great accuracy in layered deposition with accordance to the slicing process of RP.

  12. Impact of wall thickness and saccular geometry on the computational wall stress of descending thoracic aortic aneurysms.

    PubMed

    Shang, Eric K; Nathan, Derek P; Sprinkle, Shanna R; Fairman, Ronald M; Bavaria, Joseph E; Gorman, Robert C; Gorman, Joseph H; Jackson, Benjamin M

    2013-09-10

    Wall stress calculated using finite element analysis has been used to predict rupture risk of aortic aneurysms. Prior models often assume uniform aortic wall thickness and fusiform geometry. We examined the effects of including local wall thickness, intraluminal thrombus, calcifications, and saccular geometry on peak wall stress (PWS) in finite element analysis of descending thoracic aortic aneurysms. Computed tomographic angiography of descending thoracic aortic aneurysms (n=10 total, 5 fusiform and 5 saccular) underwent 3-dimensional reconstruction with custom algorithms. For each aneurysm, an initial model was constructed with uniform wall thickness. Experimental models explored the addition of variable wall thickness, calcifications, and intraluminal thrombus. Each model was loaded with 120 mm Hg pressure, and von Mises PWS was computed. The mean PWS of uniform wall thickness models was 410 ± 111 kPa. The imposition of variable wall thickness increased PWS (481 ± 126 kPa, P<0.001). Although the addition of calcifications was not statistically significant (506 ± 126 kPa, P=0.07), the addition of intraluminal thrombus to variable wall thickness (359 ± 86 kPa, P ≤ 0.001) reduced PWS. A final model incorporating all features also reduced PWS (368 ± 88 kPa, P<0.001). Saccular geometry did not increase diameter-normalized stress in the final model (77 ± 7 versus 67 ± 12 kPa/cm, P=0.22). Incorporation of local wall thickness can significantly increase PWS in finite element analysis models of thoracic aortic aneurysms. Incorporating variable wall thickness, intraluminal thrombus, and calcifications significantly impacts computed PWS of thoracic aneurysms; sophisticated models may, therefore, be more accurate in assessing rupture risk. Saccular aneurysms did not demonstrate a significantly higher normalized PWS than fusiform aneurysms.

  13. Oblique Northeastward Lateral Extrusion of a Crustal Block in North-central Taiwan: a Mechanism for Syn-tectonic Extension

    NASA Astrophysics Data System (ADS)

    Gourley, J. R.; Byrne, T.

    2005-12-01

    An integrated data set of earthquake locations (Taiwan's Central Weather Bureau), focal mechanisms from the Broadband Array of Taiwan Seismicity (BATS), GPS velocities and geologic data are combined to constrain the geometry and kinematics of a crustal block within the metamorphic basement of Taiwan's northeastern Central Range. The active block is bounded by two parallel seismic zones that accommodate uplift and northeastward oblique lateral extrusion. The western shear zone is a region that dips vertically to steeply west and projects generally to the western boundary between the Slate Belt and pre-Tertiary metamorphic basement. BATS focal mechanisms consistently show east-side-up, left-lateral normal displacements. Late-stage geologic structures published previously show left-lateral faulting followed by east-west extension. The eastern shear zone dips vertically to steeply west and projects to the eastern boundary of the metamorphic basement, which correlates with the eastern mountain front in this area. BATS focal mechanisms show west-side-up reverse displacements. The kinematics of these two zones define a crustal scale block that is interpreted to be moving up and northeast towards the Okinawa Trough. The extrusion of this crustal block may be driven in part by the topographic difference between the Central Range and the Okinawa Trough, as well as by the active collision between the Philippine Sea Plate and the Eurasian basement high. This proposed northeastern lateral extrusion mirrors the active lateral extrusion in southwestern Taiwan which is observed on the southern side of the Eurasian basement high collision. The involvement of the basement high in the collision and adjacent regions appears to be an important factor in understanding local structural variations in the arc-continent collision and should be considered in both forward and reverse modeling of Taiwan deformation.

  14. Camera pose refinement by matching uncertain 3D building models with thermal infrared image sequences for high quality texture extraction

    NASA Astrophysics Data System (ADS)

    Iwaszczuk, Dorota; Stilla, Uwe

    2017-10-01

    Thermal infrared (TIR) images are often used to picture damaged and weak spots in the insulation of the building hull, which is widely used in thermal inspections of buildings. Such inspection in large-scale areas can be carried out by combining TIR imagery and 3D building models. This combination can be achieved via texture mapping. Automation of texture mapping avoids time consuming imaging and manually analyzing each face independently. It also provides a spatial reference for façade structures extracted in the thermal textures. In order to capture all faces, including the roofs, façades, and façades in the inner courtyard, an oblique looking camera mounted on a flying platform is used. Direct geo-referencing is usually not sufficient for precise texture extraction. In addition, 3D building models have also uncertain geometry. In this paper, therefore, methodology for co-registration of uncertain 3D building models with airborne oblique view images is presented. For this purpose, a line-based model-to-image matching is developed, in which the uncertainties of the 3D building model, as well as of the image features are considered. Matched linear features are used for the refinement of the exterior orientation parameters of the camera in order to ensure optimal co-registration. Moreover, this study investigates whether line tracking through the image sequence supports the matching. The accuracy of the extraction and the quality of the textures are assessed. For this purpose, appropriate quality measures are developed. The tests showed good results on co-registration, particularly in cases where tracking between the neighboring frames had been applied.

  15. Deformation and evolution of an experimental drainage network subjected to oblique deformation: Insight from chi-maps

    NASA Astrophysics Data System (ADS)

    Guerit, Laure; Goren, Liran; Dominguez, Stéphane; Malavieille, Jacques; Castelltort, Sébastien

    2017-04-01

    The morphology of a fluvial landscape reflects a balance between its own dynamics and external forcings, and therefore holds the potential to reveal local or large-scale tectonic patterns. Commonly, particular focus has been cast on the longitudinal profiles of rivers as they constitute sensitive recorders of vertical movements, that can be recovered based on models of bedrock incision. However, several recent studies have suggested that maps of rescaled distance along channel called chi (χ), derived from the commonly observed power law relation between the slope and the drainage area , could reveal transient landscapes in state of reorganization of basin geometry and location of water divides. If river networks deforms in response to large amount of distributed strain, then they might be used to reconstruct the mode and rate of horizontal deformation away from major active structures through the use of the parameter χ. To explore how streams respond to tectonic horizontal deformation, we develop an experimental model for studying river pattern evolution over a doubly-vergent orogenic wedge growing in a context of oblique convergence. We use a series of sprinklers located about the experimental table to activate erosion, sediment transport and river development on the surface of the experimental wedge. At the end of the experiment, the drainage network is statistically rotated clockwise, confirming that rivers can record the distribution of motion along the wedge. However, the amount of rotation does not match with the imposed deformation, and thus we infer that stream networks are not purely passive markers. Based on the comparison between the observed evolution of the fluvial system and the predictions made from χ maps, we show that the plan-view morphology of the streams results from the competition between the imposed deformation and fluvial processes of drainage reorganization.

  16. High Resolution Geophysical Characterization of Fractures within a Granitic Pluton

    NASA Astrophysics Data System (ADS)

    Pérez-Estaún, A.; Carbonell, R.

    2007-12-01

    The FEBEX underground gallery was excavated in the Aar Granite (Switzerland), a heterogeneous granite containing from very leucocratic facies to granodiorites. The geology of the gallery shows the existence of various sets of fractures with different attributes: geometry, kinematics, fracture infilling, etc. The study of the structural data, new observations on the FEBEX gallery itself and borehole televiewer data acquired in the newly drilled boreholes, have allowed to identify four sets of fractures. The first group of fractures has a typical distribution and characteristics of en echelon tension fractures and were formed in late magmatic stages, according with the paragenesis of the minerals that filled the craks. The main strike is around 300 (280-300). These fractures are deformed and displaced by the other group of faults. The second group corresponds to the lamprophyre dikes, of mantelic origin, with an orientation oblique to the tunnel, and slightly oblique to the first group of fractures (strike, 310-330). They were formed during an extension event well evidenced by their irregular margins and flame structures into the granite. The margins of these dikes show several reactivations as strike slip faults. Geophysical data has been acquired to characterized the fracture network of the surrounding volume within the FEBEX gallery. The geophysic data include new borehole logging such as Natural Gamma and Borehole Ground Penetrating radar. The processing and integration of these different data sets indicates that the GPR record can provide images of a third set of fractures, which are probably fluid filled. This set of fractures a subparallel to the tunnel axis and appear to intersect older boreholes which are nearly perpendicular to the axis of the FEBEX gallery.

  17. Multidimensional electron beam-plasma instabilities in the relativistic regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Gremillet, L.; Dieckmann, M. E.

    2010-12-15

    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, themore » basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell-Juettner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.« less

  18. High frequency acoustic reflections from an air-snow interface

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Albert, D. G.; Lieb-Lappen, R.; Fegyveresi, J. M.

    2016-12-01

    High frequency wave propagation methods can be used to determine in situ near surface micro-pore geometry parameters in real Earth materials including snow. To this end, we have been developing a portable ultrasonic transducer rig to make measurements of acoustic reflections from a variety of natural porous media. Fresh natural snow, in particular, is a difficult material to characterize, as any mechanical interaction is likely to damage the fragile pores and grain bonds. Because acoustic waves are sensitive to the porous material properties, they potentially can be used to measure snow properties in a non-destructive manner. Such methods have already been demonstrated on cohesive porous materials including manufactured foams, porous metals, and sintered glass beads. We conducted high frequency, oblique-angle and near vertical reflection measurements on snow samples in a cold room. We then compare the acoustically derived snow physical parameters, including porosity, with values determined from micro-computed tomography (μCT) and with standard (but destructive) laboratory measurements. Preliminary results using a manufactured open cell foam following previous work by Fellah et al., (2003) shows very good agreement between values of porosity determined from the acoustic measurements and the values determined from μCT image analysis and gravimetric determination. Similarly, preliminary results comparing acoustic measurements of natural, dry snow samples prepared in the laboratory show good agreement between acoustically-derived porosity values and porosity values derived through independent means. Fellah, Z.E.A., S. Berger, W. Lauriks, C. Depollier, C. Aristegui, and J.Y. Chapelon, (2003b), Measuring the porosity and tortuosity of porous materials via reflected waves at oblique incidence, J. Acous. Soc. Am., 113, 2424-2433.

  19. Injection of thermal and suprathermal seed particles into coronal shocks of varying obliquity

    NASA Astrophysics Data System (ADS)

    Battarbee, M.; Vainio, R.; Laitinen, T.; Hietala, H.

    2013-10-01

    Context. Diffusive shock acceleration in the solar corona can accelerate solar energetic particles to very high energies. Acceleration efficiency is increased by entrapment through self-generated waves, which is highly dependent on the amount of accelerated particles. This, in turn, is determined by the efficiency of particle injection into the acceleration process. Aims: We present an analysis of the injection efficiency at coronal shocks of varying obliquity. We assessed injection through reflection and downstream scattering, including the effect of a cross-shock potential. Both quasi-thermal and suprathermal seed populations were analysed. We present results on the effect of cross-field diffusion downstream of the shock on the injection efficiency. Methods: Using analytical methods, we present applicable injection speed thresholds that were compared with both semi-analytical flux integration and Monte Carlo simulations, which do not resort to binary thresholds. Shock-normal angle θBn and shock-normal velocity Vs were varied to assess the injection efficiency with respect to these parameters. Results: We present evidence of a significant bias of thermal seed particle injection at small shock-normal angles. We show that downstream isotropisation methods affect the θBn-dependence of this result. We show a non-negligible effect caused by the cross-shock potential, and that the effect of downstream cross-field diffusion is highly dependent on boundary definitions. Conclusions: Our results show that for Monte Carlo simulations of coronal shock acceleration a full distribution function assessment with downstream isotropisation through scatterings is necessary to realistically model particle injection. Based on our results, seed particle injection at quasi-parallel coronal shocks can result in significant acceleration efficiency, especially when combined with varying field-line geometry. Appendices are available in electronic form at http://www.aanda.org

  20. Crustal Structure and Seismicity along the Central Alpine Fault: Results from the WIZARD Array

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Roecker, S. W.; Townend, J.; Bannister, S. C.; Guo, B.; Rawles, C.; Feenstra, J. P.

    2015-12-01

    In 2012 and 2013, the University of Wisconsin-Madison (UW), Rensselaer Polytechnic Institute (RPI), and Victoria University of Wellington (VUW) operated a 20-station temporary seismic array along the obliquely slipping Alpine Fault on the South Island of New Zealand. The stations of the array, nicknamed WIZARD, were deployed mainly north and east of the Deep Fault Drilling Program (DFDP) borehole site in Whataroa Valley (DFPD-2). WIZARD complemented the station distribution of the Southern Alps Microearthquake Borehole Array (SAMBA) operated by VUW, situated south and west of DFDP-2. Three additional temporary stations were deployed to the north and east of WIZARD by GNS Science, and four GeoNet permanent stations fell within the footprint of our study area. The main goals of the WIZARD project are to image the crustal structure in the region surrounding the DFDP-2 site, relocate earthquakes as precisely and accurately as possible, and determine focal mechanisms for the larger earthquakes, in order to characterize the Alpine Fault and its geometry at depth. Some previous studies had identified the area covered by WIZARD to be largely aseismic, but we have in fact located roughly 500 earthquakes underneath WIZARD. A new automatic S-wave picker proved to be very effective for rapidly increasing the size of our S-wave arrival dataset. Our tomographic inversion results show that significant velocity contrasts in both Vp and Vs (hanging wall fast) appear to delineate the Alpine Fault at depth in most of our study region, dipping typically about 60 degrees SE, and some focal mechanisms show oblique slip. However, we are not able to identify earthquakes that are actually occurring on the Alpine Fault with certainty based only on our location results.

  1. D Modeling of Industrial Heritage Building Using COTSs System: Test, Limits and Performances

    NASA Astrophysics Data System (ADS)

    Piras, M.; Di Pietra, V.; Visintini, D.

    2017-08-01

    The role of UAV systems in applied geomatics is continuously increasing in several applications as inspection, surveying and geospatial data. This evolution is mainly due to two factors: new technologies and new algorithms for data processing. About technologies, from some years ago there is a very wide use of commercial UAV even COTSs (Commercial On-The-Shelf) systems. Moreover, these UAVs allow to easily acquire oblique images, giving the possibility to overcome the limitations of the nadir approach related to the field of view and occlusions. In order to test potential and issue of COTSs systems, the Italian Society of Photogrammetry and Topography (SIFET) has organised the SBM2017, which is a benchmark where all people can participate in a shared experience. This benchmark, called "Photogrammetry with oblique images from UAV: potentialities and challenges", permits to collect considerations from the users, highlight the potential of these systems, define the critical aspects and the technological challenges and compare distinct approaches and software. The case study is the "Fornace Penna" in Scicli (Ragusa, Italy), an inaccessible monument of industrial architecture from the early 1900s. The datasets (images and video) have been acquired from three different UAVs system: Parrot Bebop 2, DJI Phantom 4 and Flytop Flynovex. The aim of this benchmark is to generate the 3D model of the "Fornace Penna", making an analysis considering different software, imaging geometry and processing strategies. This paper describes the surveying strategies, the methodologies and five different photogrammetric obtained results (sensor calibration, external orientation, dense point cloud and two orthophotos), using separately - the single images and the frames extracted from the video - acquired with the DJI system.

  2. The role of post-collisional strike-slip tectonics in the geological evolution of the late Neoproterozoic volcano-sedimentary Guaratubinha Basin, southern Brazil

    NASA Astrophysics Data System (ADS)

    Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.

    2017-12-01

    The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.

  3. Transpressional Tectonics across the N. American-Caribbean Plate Boundary: Preliminary Results of a Multichannel Seismic Survey of Lake Azuei, Haiti.

    NASA Astrophysics Data System (ADS)

    Hearn, C. K.; Cormier, M. H.; Sloan, H.; Wattrus, N. J.; Boisson, D.; Brown, B.; Guerrier, K.; King, J. W.; Knotts, P.; Momplaisir, R.; Sorlien, C. C.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.

    2017-12-01

    On January 12, 2010, a Mw 7.0 earthquake struck Haiti, killing over 200,000 people and devastating the Capital city of Port-au-Prince and the surrounding regions. It ruptured a previously unknown blind-thrust fault that abuts the Enriquillo Plantain Garden Fault (EPGF), one of two transform faults that define the North American-Caribbean plate boundary. That earthquake highlighted how transpression across this complex boundary is accommodated by slip partitioning into strike-slip and compressional structures. Because the seismic hazard is higher for a rupture on a reverse or oblique-slip fault than on a vertical strike-slip fault, the need to characterize the geometry of that fault system is clear. Lake Azuei overlies this plate boundary 60 km east of the 2010 epicenter. The lake's 23 km long axis trends NW-SE, parallel to the Haitian fold-and-thrust belt and oblique to the EPGF. This tectonic context makes it an ideal target for investigating the partitioning of plate motion between strike-slip and compressional structures. In January 2017, we acquired 222 km of multichannel seismic (MCS) profiles in the lake, largely concurrent with subbottom seismic (CHIRP) profiles. The MCS data were acquired using a high-frequency BubbleGun source and a 75 m-long, 24-channel streamer, achieving a 24 seismic fold with a penetration of 200 m below lakebed. With the goal of resolving tectonic structures in 3-D, survey lines were laid out in a grid with profiles spaced 1.2 km apart. Additional profiles were acquired at the SE end of the lake where most of the tectonic activity is presumably occurring. The co-located CHIRP and MCS profiles document the continuity of tectonic deformation between the surficial sediments and the deeper strata. Preliminary processing suggests that a SW-dipping blind thrust fault, expressed updip as a large monocline fold, may control the western edge of the lake. Gentle, young folds that protrude from the flat lakebed are also imaged with the CHIRP data. No obvious strike-slip faults are revealed in the MCS or CHIRP imagery. This result is consistent with a published analysis of GPS measurements that suggests oblique convergence on a south-dipping reverse fault along the southern shore of the lake.

  4. Oblique collision and accretion of the Netherlands Leeward Antilles island arc: A structural analysis of the Caribbean-South American plate boundary zone

    NASA Astrophysics Data System (ADS)

    Beardsley, Amanda Gail

    2007-12-01

    The Netherlands Leeward Antilles volcanic island arc is an ideal natural laboratory to study the evolution of the Caribbean-South American plate boundary. The Leeward Antilles islands (Aruba, Curacao, and Bonaire) are located offshore western Venezuela, within the obliquely convergent diffuse plate boundary zone. Outcrop analysis, microthermometry, and 2D marine seismic reflection data provide evidence of three generations of regional deformation since the Late Cretaceous. Outcrop analysis of structural features, including faults, joints, and veins, characterizes the kinematic history of the islands. Fluid inclusion analysis of quartz and calcite veins coupled with apatite fission-track dating provides the island exhumation history. Finally, marine reflection seismic data processing and interpretation of newly acquired data elucidates offshore structures to integrate with our onshore results. The oldest regional deformation, resulting in both ductile (D1) and brittle (F 1) structures, is attributed to displacement partitioning along the arcuate Caribbean plate boundary. Associated crustal thinning initiated island exhumation, at a rate of 0.18 km/my, from a maximum burial depth of 6 km in the Late Cretaceous (˜89 Ma). Coeval with D1/F1 deformation and exhumation, stretching of the island arc resulted in extensive basin rifting that separated the island blocks. At ˜55 Ma, a change in the relative motion of the Caribbean plate altered plate boundary dynamics. Displacement along the right-lateral Caribbean transform fault and Oca - San Sebastian - El Pilar strike-slip fault system created a wrench tectonic regime within the diffuse plate boundary zone. A second generation of brittle structures (F2) developed while the islands were at a maximum burial depth of 2 km during the Paleocene/Eocene. Since ˜45 Ma, continued motion along the strike-slip fault systems and oblique plate convergence resulted in the youngest generation of structural features (F3). Regional tectonics control the ongoing steady-state exhumation of the islands at a rate of 0.04 km/my. Most recently, the northeast escape of the Maracaibo block also drives deformation within the diffuse plate boundary zone. Overall, the Caribbean-South American plate boundary geometry has evolved with diachronous deformation, from west to east, accompanied by 135° of clockwise block rotation during collision and accretion of the Leeward Antilles since the Late Cretaceous.

  5. Sliding vane geometry turbines

    DOEpatents

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  6. Achromatic recirculated chicane with fixed geometry and independently variable path length and momentum compaction

    DOEpatents

    Douglas, David R.; Neil, George R.

    2005-04-26

    A particle beam recirculated chicane geometry that, through the inducement of a pair of 180 degree bends directed by the poles of a pair of controllable magnetic fields allows for variation of dipole position, return loop radii and steering/focussing, thereby allowing the implementation of independent variation of path length and momentum compaction.

  7. Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacial

    NASA Astrophysics Data System (ADS)

    Oliveira, Dulce; Sánchez Goñi, Maria Fernanda; Naughton, Filipa; Polanco-Martínez, J. M.; Jimenez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje H. L.; Trigo, Ricardo; Hodell, David; Abrantes, Fátima; Desprat, Stéphanie

    2017-04-01

    Marine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the ;super interglacial; MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale-resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning Circulation (AMOC). In contrast, forest declines during MIS 31 are associated to neither SST cooling nor high-latitude freshwater forcing. Time-series analysis reveals a dominant cyclicity of about 6 ky in the temperate forest record, which points to a potential link with the fourth harmonic of precession and thus low-latitude insolation forcing.

  8. Double salt décollements: Effect of pinch-out overlapping in experimental thrust wedges

    NASA Astrophysics Data System (ADS)

    Santolaria, P.; Vendeville, B.; Graveleau, F.; Casas, A.; Soto, R.

    2013-12-01

    The presence of one or more evaporitic horizons acting as detachment levels in fold-and-thrust belts is common. Numerous works have dealt with the analysis of the role played by basal detachments on the deformation style of fold-and-thrust belts, but less attention has been paid to the interaction between two décollements and strain transfer between them. In this study, 10 sand-silicone analogue experiments with two detachment levels and different stratigraphic pinch-out configurations were carried out: the basal décollement was located hinterlandwards, and the upper one was located forelandwards, with or without geographic underlap or overlap. These geometrical arrangements simulate evaporites deposited in foreland basins progressively involved in shortening. To analyze their influence on the geometry and kinematics of thrust wedges, we tested successively the following parameters: i) the amount of vertical overlapping between the two décollement pinch-outs, ii) the total amount of shortening, and iii) the geometry of the intermediate décollement (pinch-out line parallel or oblique with respect to the pinch-out line of the basal décollement). All experiments were quantitatively monitored by carrying DEM (Digital Elevation Models) and PIV (Particle Image Velocimetry) measurements. All models had a similar style: (i) an inner domain, characterized by a thicker sand cover, with three forward verging thrusts rooted in the basal décollement, (ii) an outer domain with thinner sand cover, whose deformation pattern was characterized by 2 to 6 structures detaching on the upper décollement and (iii) a 'step zone' located between the inner and outer domains having varying geometry and kinematics. In longer-lived models, structures were reworked and salt migration deformed the early emplaced folds and thrusts. Our experimental results point out that the amount of vertical overlapping between the two décollement pinch outs is a first order parameter that conditions not only the geometry and deformation of the 'step zone', but also the geometry and kinematics of the entire thrust wedge. Comparison with the foreland fold-and-thrust belt from the Southeastern Pyrenees, where deformation is transferred from the Triassic evaporites to Eocene-Oligocene evaporitic horizons deposited in front of the advancing Pyrenean thrust sheets, supports the experimental results and validates their interpretation.

  9. Numerical modeling of a vortex stabilized arcjet

    NASA Astrophysics Data System (ADS)

    Pawlas, Gary Edward

    Arcjet thrusters are being actively considered for use in Earth orbit maneuvering applications. Satellite station-keeping is an example of a maneuvering application requiring the low thrust, high specific impulse of an arcjet. Experimental studies are currently the chief means of determining an optimal thruster configuration. Earlier numerical studies have failed to include all of the effects found in typical arcjets including complex geometries, viscosity and swirling flow. Arcjet geometries are large area ratio converging-diverging nozzles with centerbodies in the subsonic portion of the nozzle. The nozzle walls serve as the anode while the centerbody functions as the cathode. Viscous effects are important because the Reynolds number, based on the throat radius, is typically less than 1,000. Experimental studies have shown a swirl or circumferential velocity component stabilizes a constricted arc. The equations are described which governs the flow through a constricted arcjet thruster. An assumption that the flowfield is in local thermodynamic equilibrium leads to a single fluid plasma temperature model. An order of magnitude analysis reveals the governing fluid mechanics equations are uncoupled from the electromagnetic field equations. A numerical method is developed to solve the governing fluid mechanics equations, the Thin Layer Navier-Stokes equations. A coordinate transformation is used in deriving the governing equations to simplify the application of boundary conditions in complex geometries. An axisymmetric formulation is employed to include the swirl velocity component as well as the axial and redial velocity components. The numerical method is an implicit finite-volume technique and allows for large time steps to reach a converged steady-state solution. The inviscid fluxes are flux-split and Gauss-Seidel line relaxation is used to accelerate convergence. 'Converging diverging' nozzles with exit-to-throat area ratios up to 100:1 and annual nozzles were examined. Comparisons with experimental data and previous numerical results were in excellent agreement. Quantities examined included Mach number and static wall pressure distributions, and oblique shock structures.

  10. Initiation of Gaseous Detonation by Conical Projectiles

    NASA Astrophysics Data System (ADS)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed qualitatively well with the experimental results for relatively blunt projectiles (cone half-angle larger than 35°) and low mixture pressures (lower than 100 kPa). The trend of the critical Damköhler number calculated along the projectile cone surface was similar to that of the experimental results for slender cones (cone half-angles lower 35°) and high mixture pressures (higher than 100 kPa). Steady 2D simulations of reacting flows over finite wedges using the method of characteristics with a one-step Arrhenius chemical reaction model reproduced the three regimes observed for direct initiation of a detonation: the subcritical, critical and supercritical regimes. It is shown that in order for a 2D wedge to be equivalent to the problem of blast initiation of a detonation (which is the essence of the Lee-Vasiljev model), the Mach number normal to the oblique shock needs to be greater than 50 and the wedge angle has to be smaller than 30°. Simulations of reacting flows over semi-infinite wedges and cones were validated with CFD results. Excellent agreement was reached between the angle of overdriven oblique detonations obtained from the simulations and those from a polar analysis. For wedge or cone angles equal or lower than the minimum angle for which an oblique detonation is attached (according to the polar analysis), a Chapman-Jouguet oblique detonation was initiated. In the conical configuration, the curvature around the cone axis allowed an oblique detonation to be self-sustained at an angle less than without the curvature effect. At larger activation energies, the initiation process of an oblique detonation wave at the tip of a semi-infinite wedge or cone was identified. Unsteady 2D computational simulations were also conducted and showed the cellular structure of an oblique detonation wave. Instabilities in the form of transverse shock waves along the oblique detonation front arise for large activation energies.

  11. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    NASA Astrophysics Data System (ADS)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind speed, unsteadiness, approach angle, flow compression, boundary layer development). Moisture content is widely acknowledged as an important factor in controlling release of sediment from the beach surface. All other things being equal, the rate of sediment transport over a wet surface is lesser than over a dry surface. On this beach, the moisture effect has two important influences: (a) in a temporal sense, the rate of sediment transport typically decreases in association with rainfall and increases when surface drying takes place; and (b) in a spatio-temporal sense, shoreline excursions associated with nearshore processes (such as wave run-up, storm surge, and tidal excursions) have the effect of constraining the fetch geometry of the beach—i.e., narrowing the width of the beach. Because saturated sand surfaces, such as found in the swash zone, will only reluctantly yield sediments to aeolian entrainment, the available beach surface across which aeolian transport can occur becomes narrower as the sea progressively inundates the beach. Under these constrained conditions, the transport system begins to shut down unless wind angle becomes highly oblique (thereby increasing fetch distance). In this study, maximum sediment transport was usually measured on the mid-beach rather than the upper beach (i.e., closer to the foredunes). This unusual finding is likely because of internal boundary layer development across the beach, which yields a decrease in near-surface wind speed (and hence, transport capacity) in the landward direction. Although widely recognized in the fluid mechanics literature, this decrease in near-surface shear stress as a by-product of a developing boundary layer in the downwind direction has not been adequately investigated in the context of coastal aeolian geomorphology.

  12. Effect of Oblique-Angle Sputtered ITO Electrode in MAPbI3 Perovskite Solar Cell Structures.

    PubMed

    Lee, Kun-Yi; Chen, Lung-Chien; Wu, Yu-June

    2017-10-03

    This investigation reports on the characteristics of MAPbI 3 perovskite films on obliquely sputtered ITO/glass substrates that are fabricated with various sputtering times and sputtering angles. The grain size of a MAPbI 3 perovskite film increases with the oblique sputtering angle of ITO thin films from 0° to 80°, indicating that the surface properties of the ITO affect the wettability of the PEDOT:PSS thin film and thereby dominates the number of perovskite nucleation sites. The optimal power conversion efficiency (Eff) is achieved 11.3% in a cell with an oblique ITO layer that was prepared using a sputtering angle of 30° for a sputtering time of 15 min.

  13. Bankfull-channel geometry and discharge curves for the Rocky Mountains Hydrologic Region in Wyoming

    USGS Publications Warehouse

    Foster, Katharine

    2012-01-01

    Regional curves relate bankfull-channel geometry and bankfull discharge to drainage area in regions with similar runoff characteristics and are used to estimate the bankfull discharge and bankfull-channel geometry when the drainage area of a stream is known. One-variable, ordinary least-squares regressions relating bankfull discharge, cross-sectional area, bankfull width, and bankfull mean depth to drainage area were developed from data collected at 35 streamgages in or near Wyoming. Watersheds draining to these streamgages are within the Rocky Mountains Hydrologic Region of Wyoming and neighboring states.

  14. Analysis of a Channeled Centerbody Supersonic Inlet for F-15B Flight Research

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin A.

    2010-01-01

    The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on the NASA F-15B airplane, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. The first experiment that is to be flown on the test fixture is the Channeled Centerbody Inlet Experiment. The objectives of this project at Dryden are twofold: 1) flight evaluation of an innovative new approach to variable geometry for high-speed inlets, and 2) flight validation of channeled inlet performance prediction by complex computational fluid dynamics codes. The inlet itself is a fixed-geometry version of a mixed-compression, variable-geometry, supersonic in- let developed by TechLand Research, Inc. (North Olmsted, Ohio) to improve the efficiency of supersonic flight at off-nominal conditions. The concept utilizes variable channels in the centerbody section to vary the mass flow of the inlet, enabling efficient operation at a range of flight conditions. This study is particularly concerned with the starting characteristics of the inlet. Computational fluid dynamics studies were shown to align well with analytical predictions, showing the inlet to remain unstarted as designed at the primary test point of Mach 1.5 at an equivalent pressure altitude of 29,500 ft local conditions. Mass-flow-related concerns such as the inlet start problem, as well as inlet efficiency in terms of total pressure loss, are assessed using the flight test geometry.

  15. F100(3) parallel compressor computer code and user's manual

    NASA Technical Reports Server (NTRS)

    Mazzawy, R. S.; Fulkerson, D. A.; Haddad, D. E.; Clark, T. A.

    1978-01-01

    The Pratt & Whitney Aircraft multiple segment parallel compressor model has been modified to include the influence of variable compressor vane geometry on the sensitivity to circumferential flow distortion. Further, performance characteristics of the F100 (3) compression system have been incorporated into the model on a blade row basis. In this modified form, the distortion's circumferential location is referenced relative to the variable vane controlling sensors of the F100 (3) engine so that the proper solution can be obtained regardless of distortion orientation. This feature is particularly important for the analysis of inlet temperature distortion. Compatibility with fixed geometry compressor applications has been maintained in the model.

  16. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  17. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  18. Processing of CT sinograms acquired using a VRX detector

    NASA Astrophysics Data System (ADS)

    Jordan, Lawrence M.; DiBianca, Frank A.; Zou, Ping; Laughter, Joseph S.; Zeman, Herbert D.

    2000-04-01

    A 'variable resolution x-ray detector' (VRX) capable of resolving beyond 100 cycles/main a single dimension has been proposed by DiBianca, et al. The use of detectors of this design for computed-tomography (CT) imaging requires novel preprocessing of data to correct for the detector's non- uniform imaging characteristics over its range of view. This paper describes algorithms developed specifically to adjust VRX data for varying magnification, source-to-detector range and beam obliquity and to sharpen reconstructions by deconvolving the ray impulse function. The preprocessing also incorporates nonlinear interpolation of VRX raw data into canonical CT sinogram formats.

  19. A bottom-driven mechanism for distributed faulting: Insights from the Gulf of California Rift

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Tan, E.; Choi, E.; Contreras, J.; Lavier, L. L.

    2017-12-01

    The Gulf of California is a young oblique rift that displays a variation in rifting style along strike. Despite the rapid localization of strain in the Gulf at 6 Ma, the northern rift segment has the characteristics of a wide rift, with broadly distributed extensional strain and small gradients in topography and crustal thinning. Observations of active faulting in the continent-ocean transition of the Northern Gulf show multiple oblique-slip faults distributed in a 200 x 70 km2area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear is a step-function while oblique-slip on numerous faults dominates when basal shear is distributed. We further investigate how the style of faulting varies with obliquity and demonstrate that the style of faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area. Our findings motivate a suite of 3D models of the early plate boundary evolution in the Gulf, and highlight the importance of local stress field perturbations as a mechanism for broadening the deformation zone in other regions such as the Basin and Range, Rio Grande Rift and Malawi Rift.

  20. Relative influence of precession and obliquity in the early Holocene: Topographic modulation of subtropical seasonality during the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Hua; Lee, Shih-Yu; Chiang, John C. H.

    2018-07-01

    On orbital timescales, higher summer insolation is thought to strengthen the continental monsoon while weakening the maritime monsoon in the Northern hemisphere. Through simulations using the Community Earth System Model, we evaluated the relative influence of perihelion precession and high obliquity in the early Holocene during the Asian summer monsoon. The major finding was that precession dominates the atmospheric heating change over the Tibetan Plateau-Himalayas and Maritime Continent, whereas obliquity is responsible for the heating change over the equatorial Indian Ocean. Thus, precession and obliquity can play contrasting roles in driving the monsoons on orbital timescales. In late spring-early summer, interior Asian continental heating drives the South and East Asian monsoons. The broad-scale monsoonal circulation further expands zonally in July-August, corresponding to the development of summer monsoons in West Africa and the subtropical Western North Pacific (WNP) as well as a sizable increase in convection over the equatorial Indian Ocean. Tropical and oceanic heating becomes crucial in late summer. Over South Asia-Indian Ocean (50°E-110°E), the precession maximum intensifies the monsoonal Hadley cell (heating with an inland/highland origin), which is opposite to the meridional circulation change induced by high obliquity (heating with a tropical origin). The existence of the Tibetan Plateau-Himalayas intensifies the precessional impact. During the late-summer phase of the monsoon season, the effect of obliquity on tropical heating can be substantial. In addition to competing with Asian continental heating, obliquity-enhanced heating over the equatorial Indian Ocean also has a Walker-type circulation impact, resulting in suppression of precession-enhanced heating over the Maritime Continent.

  1. Surface dose measurements for highly oblique electron beams.

    PubMed

    Ostwald, P M; Kron, T

    1996-08-01

    Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.

  2. Secular obliquity variations for Ceres

    NASA Astrophysics Data System (ADS)

    Bills, Bruce; Scott, Bryan R.; Nimmo, Francis

    2016-10-01

    We have constructed secular variation models for the orbit and spin poles of the asteroid (1) Ceres, and used them to examine how the obliquity, or angular separation between spin and orbit poles, varies over a time span of several million years. The current obliquity is 4.3 degrees, which means that there are some regions near the poles which do not receive any direct Sunlight. The Dawn mission has provided an improved estimate of the spin pole orientation, and of the low degree gravity field. That allows us to estimate the rate at which the spin pole precesses about the instantaneous orbit pole.The orbit of Ceres is secularly perturbed by the planets, with Jupiter's influence dominating. The current inclination of the orbit plane, relative to the ecliptic, is 10.6 degrees. However, it varies between 7.27 and 11.78 degrees, with dominant periods of 22.1 and 39.6 kyr. The spin pole precession rate parameter has a period of 205 kyr, with current uncertainty of 3%, dominated by uncertainty in the mean moment of inertia of Ceres.The obliquity varies, with a dominant period of 24.5 kyr, with maximum values near 26 degrees, and minimum values somewhat less than the present value. Ceres is currently near to a minimum of its secular obliquity variations.The near-surface thermal environment thus has at least 3 important time scales: diurnal (9.07 hours), annual (4.60 years), and obliquity cycle (24.5 kyr). The annual thermal wave likely only penetrates a few meters, but the much long thermal wave associated with the obliquity cycle has a skin depth larger by a factor of 70 or so, depending upon thermal properties in the subsurface.

  3. Radiographic evaluation of perching-joint angles in cockatiels (Nymphicus hollandicus), Hispaniolan Amazon parrots (Amazona ventralis), and barred owls (Strix varia).

    PubMed

    Bonin, Glen; Lauer, Susanne K; Guzman, David Sanchez-Migallon; Nevarez, Javier; Tully, Thomas N; Hosgood, Giselle; Gaschen, Lorrie

    2009-06-01

    Information on perching-joint angles in birds is limited. Joint immobilization in a physiologic perching angle has the potential to result more often in complete restoration of limb function. We evaluated perching-joint angles in 10 healthy cockatiels (Nymphicus hollandicus), 10 Hispaniolan Amazons (Amazona ventralis), and 9 barred owls (Strix varia) and determined intra- and interobserver variability for goniometric measurements in 2 different radiographic projections. Intra- and interobserver variation was less than 7% for all stifle and intertarsal joint measurements but frequently exceeded 10% for the hip-joint measurements. Hip, stifle, and intertarsal perching angles differed significantly among cockatiels, Hispaniolan Amazon parrots, and barred owls. The accuracy of measurements performed on straight lateral radiographic projections with superimposed limbs was not consistently superior to measurements on oblique projections with a slightly rotated pelvis. Stifle and intertarsal joint angles can be measured on radiographs by different observers with acceptable variability, but intra- and interobserver variability for hip-joint-angle measurements is higher.

  4. Mars Secular Obliquity Change Due to Water Ice Caps

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    1998-01-01

    Mars may have substantially changed its average axial tilt over geologic time due to the waxing and waning of water ice caps. Depending upon Mars' climate and internal structure, the average obliquity could have increased or decreased through climate friction by tens of degrees. A decrease could account for the apparent youthfulness of the polar layered terrain. Alternatively, Mars' average obliquity may have changed until it became "stuck" at its present value of 24.4 deg.

  5. Inferior oblique muscle paresis as a sign of myasthenia gravis.

    PubMed

    Almog, Yehoshua; Ben-David, Merav; Nemet, Arie Y

    2016-03-01

    Myasthenia gravis may affect any of the six extra-ocular muscles, masquerading as any type of ocular motor pathology. The frequency of involvement of each muscle is not well established in the medical literature. This study was designed to determine whether a specific muscle or combination of muscles tends to be predominantly affected. This retrospective review included 30 patients with a clinical diagnosis of myasthenia gravis who had extra-ocular muscle involvement with diplopia at presentation. The diagnosis was confirmed by at least one of the following tests: Tensilon test, acetylcholine receptor antibodies, thymoma on chest CT scan, or suggestive electromyography. Frequency of involvement of each muscle in this cohort was inferior oblique 19 (63.3%), lateral rectus nine (30%), superior rectus four (13.3%), inferior rectus six (20%), medial rectus four (13.3%), and superior oblique three (10%). The inferior oblique was involved more often than any other muscle (p<0.01). Eighteen (60%) patients had ptosis, six (20%) of whom had bilateral ptosis. Diagnosing myasthenia gravis can be difficult, because the disease may mimic every pupil-sparing pattern of ocular misalignment. In addition diplopia caused by paresis of the inferior oblique muscle is rarely encountered (other than as a part of oculomotor nerve palsy). Hence, when a patient presents with vertical diplopia resulting from an isolated inferior oblique palsy, myasthenic etiology should be highly suspected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A Double Zone Dynamical Model For The Tidal Evolution Of The Obliquity

    NASA Astrophysics Data System (ADS)

    Damiani, Cilia

    2017-10-01

    It is debated wether close-in giants planets can form in-situ and if not, which mechanisms are responsible for their migration. One of the observable tests for migration theories is the current value of the obliquity. But after the main migration mechanism has ended, the combined effects of tidal dissipation and the magnetic braking of the star lead to the evolution of both the obliquity and the semi-major axis. The observed correlation between effective temperature and measured projected obliquity has been taken as evidence of such mechanisms being at play. Here I present an improved model for the tidal evolution of the obliquity. It includes all the components of the dynamical tide for circular misaligned systems. It uses an analytical formulation for the frequency-averaged dissipation for each mode, depending only on global stellar parameters, giving a measure of the dissipative properties of the convective zone of the host as it evolves in time. The model also includes the effect of magnetic braking in the framework of the double zone model. This results in the estimation of different tidal evolution timescales for the evolution of the planet's semi-major axis and obliquity depending on the properties of the stellar host. This model can be used to test migration theories, provided that a good determination of stellar radii, masses and ages can be obtained.

  7. Feasibility of tomotherapy to reduce normal lung and cardiac toxicity for distal esophageal cancer compared to three-dimensional radiotherapy.

    PubMed

    Nguyen, Nam P; Krafft, Shane P; Vinh-Hung, Vincent; Vos, Paul; Almeida, Fabio; Jang, Siyoung; Ceizyk, Misty; Desai, Anand; Davis, Rick; Hamilton, Russ; Modarresifar, Homayoun; Abraham, Dave; Smith-Raymond, Lexie

    2011-12-01

    To compare the effectiveness of tomotherapy and three-dimensional (3D) conformal radiotherapy to spare normal critical structures (spinal cord, lungs, and ventricles) from excessive radiation in patients with distal esophageal cancers. A retrospective dosimetric study of nine patients who had advanced gastro-esophageal (GE) junction cancer (7) or thoracic esophageal cancer (2) extending into the distal esophagus. Two plans were created for each of the patients. A three-dimensional plan was constructed with either three (anteroposterior, right posterior oblique, and left posterior oblique) or four (right anterior oblique, left anterior oblique, right posterior oblique, and left posterior oblique) fields. The second plan was for tomotherapy. Doses were 45 Gy to the PTV with an integrated boost of 5 Gy for tomotherapy. Mean lung dose was respectively 7.4 and 11.8 Gy (p=0.004) for tomotherapy and 3D plans. Corresponding values were 12.4 and 18.3 Gy (p=0.006) for cardiac ventricles. Maximum spinal cord dose was respectively 31.3 and 37.4 Gy (p < 0.007) for tomotherapy and 3D plans. Homogeneity index was two for both groups. Compared to 3D conformal radiotherapy, tomotherapy decreased significantly the amount of normal tissue irradiated and may reduce treatment toxicity for possible dose escalation in future prospective studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Orientation and Interaction of Oblique Cylindrical Inclusions Embedded in a Lipid Monolayer: A Theoretical Model for Viral Fusion Peptides

    PubMed Central

    Kozlovsky, Yonathan; Zimmerberg, Joshua; Kozlov, Michael M.

    2004-01-01

    We consider the elastic behavior of flat lipid monolayer embedding cylindrical inclusions oriented obliquely with respect to the monolayer plane. An oblique inclusion models a fusion peptide, a part of a specialized protein capable of inducing merger of biological membranes in the course of fundamental cellular processes. Although the crucial importance of the fusion peptides for membrane merger is well established, the molecular mechanism of their action remains unknown. This analysis is aimed at revealing mechanical deformations and stresses of lipid monolayers induced by the fusion peptides, which, potentially, can destabilize the monolayer structure and enhance membrane fusion. We calculate the deformation of a monolayer embedding a single oblique inclusion and subject to a lateral tension. We analyze the membrane-mediated interactions between two inclusions, taking into account bending of the monolayer and tilt of the hydrocarbon chains with respect to the surface normal. In contrast to a straightforward prediction that the oblique inclusions should induce tilt of the lipid chains, our analysis shows that the monolayer accommodates the oblique inclusion solely by bending. We find that the interaction between two inclusions varies nonmonotonically with the interinclusion distance and decays at large separations as square of the distance, similar to the electrostatic interaction between two electric dipoles in two dimensions. This long-range interaction is predicted to dominate the other interactions previously considered in the literature. PMID:15298906

  9. Automated Welding System

    NASA Technical Reports Server (NTRS)

    Bayless, E. O.; Lawless, K. G.; Kurgan, C.; Nunes, A. C.; Graham, B. F.; Hoffman, D.; Jones, C. S.; Shepard, R.

    1993-01-01

    Fully automated variable-polarity plasma arc VPPA welding system developed at Marshall Space Flight Center. System eliminates defects caused by human error. Integrates many sensors with mathematical model of the weld and computer-controlled welding equipment. Sensors provide real-time information on geometry of weld bead, location of weld joint, and wire-feed entry. Mathematical model relates geometry of weld to critical parameters of welding process.

  10. Pre-Service Elementary Teachers Make Connections between Geometry and Algebra through the Use of Technology

    ERIC Educational Resources Information Center

    Mohr, Doris J.

    2008-01-01

    In a geometry content course for pre-service elementary teachers, technology was utilized to assist students in making sense of shapes. They learned to write simple procedures in Logo that would program a turtle to draw various quadrilaterals. In the context of writing these procedures, the pre-service teachers used variables to represent the…

  11. Macro- and microscale variables regulate stent haemodynamics, fibrin deposition and thrombomodulin expression

    PubMed Central

    Jiménez, Juan M.; Prasad, Varesh; Yu, Michael D.; Kampmeyer, Christopher P.; Kaakour, Abdul-Hadi; Wang, Pei-Jiang; Maloney, Sean F.; Wright, Nathan; Johnston, Ian; Jiang, Yi-Zhou; Davies, Peter F.

    2014-01-01

    Drug eluting stents are associated with late stent thrombosis (LST), delayed healing and prolonged exposure of stent struts to blood flow. Using macroscale disturbed and undisturbed fluid flow waveforms, we numerically and experimentally determined the effects of microscale model strut geometries upon the generation of prothrombotic conditions that are mediated by flow perturbations. Rectangular cross-sectional stent strut geometries of varying heights and corresponding streamlined versions were studied in the presence of disturbed and undisturbed bulk fluid flow. Numerical simulations and particle flow visualization experiments demonstrated that the interaction of bulk fluid flow and stent struts regulated the generation, size and dynamics of the peristrut flow recirculation zones. In the absence of endothelial cells, deposition of thrombin-generated fibrin occurred primarily in the recirculation zones. When endothelium was present, peristrut expression of anticoagulant thrombomodulin (TM) was dependent on strut height and geometry. Thinner and streamlined strut geometries reduced peristrut flow recirculation zones decreasing prothrombotic fibrin deposition and increasing endothelial anticoagulant TM expression. The studies define physical and functional consequences of macro- and microscale variables that relate to thrombogenicity associated with the most current stent designs, and particularly to LST. PMID:24554575

  12. Shock wave interactions in hypervelocity flow

    NASA Astrophysics Data System (ADS)

    Sanderson, S. R.; Sturtevant, B.

    1994-08-01

    The impingement of shock waves on blunt bodies in steady supersonic flow is known to cause extremely high local heat transfer rates and surface pressures. Although these problems have been studied in cold hypersonic flow, the effects of dissociative relaxation processes are unknown. In this paper we report a model aimed at determining the boundaries of the possible interaction regimes for an ideal dissociating gas. Local analysis about shock wave intersection points in the pressure-flow deflection angle plane with continuation of singular solutions is the fundamental tool employed. Further, we discuss an experimental investigation of the nominally two-dimensional mean flow that results from the impingement of an oblique shock wave on the leading edge of a cylinder. The effects of variations in shock impingement geometry were visualized using differential interferometry. Generally, real gas effects are seen to increase the range of shock impingement points for which enhanced heating occurs. They also reduce the type 4 interaction supersonic jet width and influence the type 2-3 transition process.

  13. Angle-selective optical filter for highly sensitive reflection photoplethysmogram

    PubMed Central

    Hwang, Chan-Sol; Yang, Sung-Pyo; Jang, Kyung-Won; Park, Jung-Woo; Jeong, Ki-Hun

    2017-01-01

    We report an angle-selective optical filter (ASOF) for highly sensitive reflection photoplethysmography (PPG) sensors. The ASOF features slanted aluminum (Al) micromirror arrays embedded in transparent polymer resin, which effectively block scattered light under human tissue. The device microfabrication was done by using geometry-guided resist reflow of polymer micropatterns, polydimethylsiloxane replica molding, and oblique angle deposition of thin Al film. The angular transmittance through the ASOF is precisely controlled by the angle of micromirrors. For the mirror angle of 30 degrees, the ASOF accepts an incident light between - 90 to + 50 degrees and the maximum transmittance at - 55 degrees. The ASOF exhibits the substantial reduction of both the in-band noise of PPG signals over a factor of two and the low-frequency noise by three times. Consequently, this filter allows distinguishing the diastolic peak that allows miscellaneous parameters with diverse vascular information. This optical filter provides a new opportunity for highly sensitive PPG monitoring or miscellaneous optical tomography. PMID:29082070

  14. Identification of flow structures in fully developed canonical and wavy channels by means of modal decomposition techniques

    NASA Astrophysics Data System (ADS)

    Ghebali, Sacha; Garicano-Mena, Jesús; Ferrer, Esteban; Valero, Eusebio

    2018-04-01

    A Dynamic Mode Decomposition (DMD) of Direct Numerical Simulations (DNS) of fully developed channel flows is undertaken in order to study the main differences in flow features between a plane-channel flow and a passively “controlled” flow wherein the mean friction was reduced relative to the baseline by modifying the geometry in order to generate a streamwise-periodic spanwise pressure gradient, as is the case for an oblique wavy wall. The present analysis reports POD and DMD modes for the plane channel, jointly with the application of a sparsity-promoting method, as well as a reconstruction of the Reynolds shear stress with the dynamic modes. Additionally, a dynamic link between the streamwise velocity fluctuations and the friction on the wall is sought by means of a composite approach both in the plane and wavy cases. One of the DMD modes associated with the wavy-wall friction exhibits a meandering motion which was hardly identifiable on the instantaneous friction fluctuations.

  15. Mars observer radio science (MORS) observations in polar regions

    NASA Technical Reports Server (NTRS)

    Simpson, Richard A.

    1992-01-01

    MORS observations will focus on two major areas of study: (1) the gravity field of Mars and its interpretation in terms of internal structure and history and (2) the structure of the atmosphere, with emphasis on both temperature-pressure profiles of the background atmosphere and small scale inhomogeneities resulting from turbulence. Scattering of cm wavelength radio signals from Mars' surface at highly oblique angles will also be studied during the primary mission; nongrazing scattering experiments may be possible during an extended mission. During the MORS primary mission, measurements of the spacecraft distance and velocity with respect to Earth based tracking stations will be used to develop models of the global gravity field. The improvement in knowledge of the gravity field will be especially evident in polar regions. The spatial and temporal coverage of atmospheric radio occultation measurements are determined by the geometry of the spacecraft orbit and the direction to the Earth. Profiles of atmospheric temperature and pressure will extend from the surface to altitudes of 50 to 70 km.

  16. A two-fluid study of oblique tearing modes in a force-free current sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William; Lukin, Vyacheslav S.

    2016-01-15

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less

  17. Accuracy Analysis for Automatic Orientation of a Tumbling Oblique Viewing Sensor System

    NASA Astrophysics Data System (ADS)

    Stebner, K.; Wieden, A.

    2014-03-01

    Dynamic camera systems with moving parts are difficult to handle in photogrammetric workflow, because it is not ensured that the dynamics are constant over the recording period. Minimum changes of the camera's orientation greatly influence the projection of oblique images. In this publication these effects - originating from the kinematic chain of a dynamic camera system - are analysed and validated. A member of the Modular Airborne Camera System family - MACS-TumbleCam - consisting of a vertical viewing and a tumbling oblique camera was used for this investigation. Focus is on dynamic geometric modeling and the stability of the kinematic chain. To validate the experimental findings, the determined parameters are applied to the exterior orientation of an actual aerial image acquisition campaign using MACS-TumbleCam. The quality of the parameters is sufficient for direct georeferencing of oblique image data from the orientation information of a synchronously captured vertical image dataset. Relative accuracy for the oblique data set ranges from 1.5 pixels when using all images of the image block to 0.3 pixels when using only adjacent images.

  18. Exploratory Bi-factor Analysis: The Oblique Case.

    PubMed

    Jennrich, Robert I; Bentler, Peter M

    2012-07-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford (Psychometrika 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler (Psychometrika 76:537-549, 2011) introduced an exploratory form of bi-factor analysis that does not require one to provide an explicit bi-factor structure a priori. They use exploratory factor analysis and a bifactor rotation criterion designed to produce a rotated loading matrix that has an approximate bi-factor structure. Among other things this can be used as an aid in finding an explicit bi-factor structure for use in a confirmatory bi-factor analysis. They considered only orthogonal rotation. The purpose of this paper is to consider oblique rotation and to compare it to orthogonal rotation. Because there are many more oblique rotations of an initial loading matrix than orthogonal rotations, one expects the oblique results to approximate a bi-factor structure better than orthogonal rotations and this is indeed the case. A surprising result arises when oblique bi-factor rotation methods are applied to ideal data.

  19. Residual symptoms after surgery for unilateral congenital superior oblique palsy.

    PubMed

    Caca, Ihsan; Sahin, Alparslan; Cingu, Abdullah; Ari, Seyhmus; Akbas, Umut

    2012-01-01

    To establish the surgical results and residual symptoms in 48 cases with unilateral congenital superior oblique muscle palsy that had surgical intervention to the vertical muscles alone. Myectomy and concomitant disinsertion of the inferior oblique (IO) muscle was performed in 38 cases and myectomy and concomitant IO disinsertion and recession of the superior rectus muscle in the ipsilateral eye was performed in 10 cases. The preoperative and postoperative vertical deviation values and surgical results were compared. Of the patients who had myectomy and concomitant IO disinsertion, 74% achieved an "excellent" result, 21% a "good" result, and 5% a "poor" result postoperatively. The difference in deviation between preoperative and postoperative values was statistically significant (P < .001). Of the patients who had myectomy and concomitant inferior oblique disinsertion and ipsilateral superior rectus recession, 50% achieved an "excellent" result, 20% a "good" result, and 30% a "poor" result postoperatively. The difference in deviation between preoperative and postoperative values was statistically significant (P < .001). Both procedures are effective and successful in patients with superior oblique muscle palsy, but a secondary surgery may be required. Copyright 2012, SLACK Incorporated.

  20. A two-fluid study of oblique tearing modes in a force-free current sheet

    DOE PAGES

    Akçay, Cihan; Daughton, William; Lukin, Vyacheslav S.; ...

    2016-01-01

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Because kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. As a results this theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less

Top