Sample records for variable geometry truss

  1. Kinematic modeling of a double octahedral Variable Geometry Truss (VGT) as an extensible gimbal

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1994-01-01

    This paper presents the complete forward and inverse kinematics solutions for control of the three degree-of-freedom (DOF) double octahedral variable geometry truss (VGT) module as an extensible gimbal. A VGT is a truss structure partially comprised of linearly actuated members. A VGT can be used as joints in a large, lightweight, high load-bearing manipulator for earth- and space-based remote operations, plus industrial applications. The results have been used to control the NASA VGT hardware as an extensible gimbal, demonstrating the capability of this device to be a joint in a VGT-based manipulator. This work is an integral part of a VGT-based manipulator design, simulation, and control tool.

  2. A planar comparison of actuators for vibration control of flexible structures

    NASA Technical Reports Server (NTRS)

    Clark, William W.; Robertshaw, Harry H.; Warrington, Thomas J.

    1989-01-01

    The methods and results of an analytical study comparing the effectiveness of four actuators in damping the vibrations of a planar clamped-free beam are presented. The actuators studied are two inertia-type actuators, the proof mass and reaction wheel, and two variable geometry trusses, the planar truss and the planar truss proof mass (a combination variable geometry truss/inertia-type actuator). Actuator parameters used in the models were chosen based on the results of a parametric study. A full-state, LQR optimal feedback control law was used for control in each system. Numerical simulations of each beam/actuator system were performed in response to initial condition inputs. These simulations provided information such as time response of the closed-loop system and damping provided to the beam. This information can be used to determine the 'best' actuator for a given purpose.

  3. Kinematics and design of a class of parallel manipulators

    NASA Astrophysics Data System (ADS)

    Hertz, Roger Barry

    1998-12-01

    This dissertation is concerned with the kinematic analysis and design of a class of three degree-of-freedom, spatial parallel manipulators. The class of manipulators is characterized by two platforms, between which are three legs, each possessing a succession of revolute, spherical, and revolute joints. The class is termed the "revolute-spherical-revolute" class of parallel manipulators. Two members of this class are examined. The first mechanism is a double-octahedral variable-geometry truss, and the second is termed a double tripod. The history the mechanisms is explored---the variable-geometry truss dates back to 1984, while predecessors of the double tripod mechanism date back to 1869. This work centers on the displacement analysis of these three-degree-of-freedom mechanisms. Two types of problem are solved: the forward displacement analysis (forward kinematics) and the inverse displacement analysis (inverse kinematics). The kinematic model of the class of mechanism is general in nature. A classification scheme for the revolute-spherical-revolute class of mechanism is introduced, which uses dominant geometric features to group designs into 8 different sub-classes. The forward kinematics problem is discussed: given a set of independently controllable input variables, solve for the relative position and orientation between the two platforms. For the variable-geometry truss, the controllable input variables are assumed to be the linear (prismatic) joints. For the double tripod, the controllable input variables are the three revolute joints adjacent to the base (proximal) platform. Multiple solutions are presented to the forward kinematics problem, indicating that there are many different positions (assemblies) that the manipulator can assume with equivalent inputs. For the double tripod these solutions can be expressed as a 16th degree polynomial in one unknown, while for the variable-geometry truss there exist two 16th degree polynomials, giving rise to 256 solutions. For special cases of the double tripod, the forward kinematics problem is shown to have a closed-form solution. Numerical examples are presented for the solution to the forward kinematics. A double tripod is presented that admits 16 unique and real forward kinematics solutions. Another example for a variable geometry truss is given that possesses 64 real solutions: 8 for each 16th order polynomial. The inverse kinematics problem is also discussed: given the relative position of the hand (end-effector), which is rigidly attached to one platform, solve for the independently controlled joint variables. Iterative solutions are proposed for both the variable-geometry truss and the double tripod. For special cases of both mechanisms, closed-form solutions are given. The practical problems of designing, building, and controlling a double-tripod manipulator are addressed. The resulting manipulator is a first-of-its kind prototype of a tapered (asymmetric) double-tripod manipulator. Real-time forward and inverse kinematics algorithms on an industrial robot controller is presented. The resulting performance of the prototype is impressive, since it was to achieve a maximum tool-tip speed of 4064 mm/s, maximum acceleration of 5 g, and a cycle time of 1.2 seconds for a typical pick-and-place pattern.

  4. Vibration characteristics of a deployable controllable-geometry truss boom

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.

    1983-01-01

    An analytical study was made to evaluate changes in the fundamental frequency of a two dimensional cantilevered truss boom at various stages of deployment. The truss could be axially deployed or retracted and undergo a variety of controlled geometry changes by shortening or lengthening the telescoping diagonal members in each bay. Both untapered and tapered versions of the truss boom were modeled and analyzed by using the finite element method. Large reductions in fundamental frequency occurred for both the untapered and tapered trusses when they were uniformly retracted or maneuvered laterally from their fully deployed position. These frequency reductions can be minimized, however, if truss geometries are selected which maintain cantilever root stiffness during truss maneuvers.

  5. Self-Deploying Trusses Containing Shape-Memory Polymers

    NASA Technical Reports Server (NTRS)

    Schueler, Robert M.

    2008-01-01

    Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).

  6. Trajectory Tracking of a Planer Parallel Manipulator by Using Computed Force Control Method

    NASA Astrophysics Data System (ADS)

    Bayram, Atilla

    2017-03-01

    Despite small workspace, parallel manipulators have some advantages over their serial counterparts in terms of higher speed, acceleration, rigidity, accuracy, manufacturing cost and payload. Accordingly, this type of manipulators can be used in many applications such as in high-speed machine tools, tuning machine for feeding, sensitive cutting, assembly and packaging. This paper presents a special type of planar parallel manipulator with three degrees of freedom. It is constructed as a variable geometry truss generally known planar Stewart platform. The reachable and orientation workspaces are obtained for this manipulator. The inverse kinematic analysis is solved for the trajectory tracking according to the redundancy and joint limit avoidance. Then, the dynamics model of the manipulator is established by using Virtual Work method. The simulations are performed to follow the given planar trajectories by using the dynamic equations of the variable geometry truss manipulator and computed force control method. In computed force control method, the feedback gain matrices for PD control are tuned with fixed matrices by trail end error and variable ones by means of optimization with genetic algorithm.

  7. Design, analysis, and testing of the Phase 1 CSI Evolutionary Model erectable truss

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Davis, D. A.; Kintis, D. H.; Brillhart, R. D.; Atkins, E. M.

    1992-01-01

    This report addressed the design, analysis, and testing of the erectable truss structure for the Phase 1 CSI Evolutionary Model (CEM) testbed. The Phase 1 CEM testbed is the second testbed to form part of an ongoing program of focused research at NASA/LaRC in the development of Controls-Structures Integration (CSI) technology. The Phase 1 CEM contains the same overall geometry, weight, and sensor locations as the Phase 0 CEM, but is based in an integrated controller and structure design, whereby both structure and controller design variables are sized simultaneously. The Phase 1 CEM design features seven truss sections composed of struts with tailored mass and stiffness properties. A common erectable joint is used and the strut stiffness is tailored by varying the cross-sectional area. To characterize the structure, static tests were conducted on individual struts and 10-bay truss assemblies. Dynamic tests were conducted on 10-bay truss assemblies as well as the fully-assembled CEM truss. The results indicate that the static and dynamic properties of the structure are predictable, well-characterized, and within the performance requirements established during the Phase 1 CEM integrated controller/structure design analysis.

  8. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    NASA Technical Reports Server (NTRS)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  9. Real-time control of geometry and stiffness in adaptive structures

    NASA Technical Reports Server (NTRS)

    Ramesh, A. V.; Utku, S.; Wada, B. K.

    1991-01-01

    The basic theory is presented for the geometry, stiffness, and damping control of adaptive structures, with emphasis on adaptive truss structures. Necessary and sufficient conditions are given for stress-free geometry control in statically determinate and indeterminate adaptive discrete structures. Two criteria for selecting the controls are proposed, and their use in real-time control is illustrated by numerical simulation results. It is shown that the stiffness and damping control of adaptive truss structures for vibration suppression is possible by elongation and elongation rate dependent feedback forces from the active elements.

  10. Structural performance of light-frame roof assemblies. I, Truss assemblies designed for high variability and wood failure

    Treesearch

    R.W. Wolfe; Monica McCarthy

    1989-01-01

    The first report of a three-part series that covers results of a full-scale roof assemblies research program. The focus of this report is the structural performance of truss assemblies comprising trusses with abnormally high stiffness variability and critical joint strength. Results discussed include properties of truss members and connections. individual truss...

  11. A structurally adaptive space crane concept for assembling space systems on orbit

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Sutter, Thomas R.; Wu, K. C.

    1992-01-01

    A space crane concept is presented which is based on erectable truss hardware to achieve high stiffness and low mass booms and articulating-truss joints which can be assembled on orbit. The hardware is characterized by linear load-deflection response and is structurally predictable. The crane can be reconfigured into different geometries to meet future assembly requirements. Articulating-truss joint concepts with significantly different geometries are analyzed and found to have similar static and dynamic performance, which indicates that criteria other than structural and kinematic performance can be used to select a joint. Passive damping and an open-loop preshaped command input technique greatly enhance the structural damping in the space crane and may preclude the need for an active vibrations suppression system.

  12. The development of optimal lightweight truss-core sandwich panels

    NASA Astrophysics Data System (ADS)

    Langhorst, Benjamin Robert

    Sandwich structures effectively provide lightweight stiffness and strength by sandwiching a low-density core between stiff face sheets. The performance of lightweight truss-core sandwich panels is enhanced through the design of novel truss arrangements and the development of methods by which the panels may be optimized. An introduction to sandwich panels is presented along with an overview of previous research of truss-core sandwich panels. Three alternative truss arrangements are developed and their corresponding advantages, disadvantages, and optimization routines are discussed. Finally, performance is investigated by theoretical and numerical methods, and it is shown that the relative structural efficiency of alternative truss cores varies with panel weight and load-carrying capacity. Discrete truss core sandwich panels can be designed to serve bending applications more efficiently than traditional pyramidal truss arrangements at low panel weights and load capacities. Additionally, discrete-truss cores permit the design of heterogeneous cores, which feature unit cells that vary in geometry throughout the panel according to the internal loads present at each unit cell's location. A discrete-truss core panel may be selectively strengthened to more efficiently support bending loads. Future research is proposed and additional areas for lightweight sandwich panel development are explained.

  13. Concepts and analysis for precision segmented reflector and feed support structures

    NASA Technical Reports Server (NTRS)

    Miller, Richard K.; Thomson, Mark W.; Hedgepeth, John M.

    1990-01-01

    Several issues surrounding the design of a large (20-meter diameter) Precision Segmented Reflector are investigated. The concerns include development of a reflector support truss geometry that will permit deployment into the required doubly-curved shape without significant member strains. For deployable and erectable reflector support trusses, the reduction of structural redundancy was analyzed to achieve reduced weight and complexity for the designs. The stiffness and accuracy of such reduced member trusses, however, were found to be affected to a degree that is unexpected. The Precision Segmented Reflector designs were developed with performance requirements that represent the Reflector application. A novel deployable sunshade concept was developed, and a detailed parametric study of various feed support structural concepts was performed. The results of the detailed study reveal what may be the most desirable feed support structure geometry for Precision Segmented Reflector/Large Deployable Reflector applications.

  14. Dynamic and structural control utilizing smart materials and structures

    NASA Technical Reports Server (NTRS)

    Rogers, C. A.; Robertshaw, H. H.

    1989-01-01

    An account is given of several novel 'smart material' structural control concepts that are currently under development. The thrust of these investigations is the evolution of intelligent materials and structures superceding the recently defined variable-geometry trusses and shape memory alloy-reinforced composites; the substances envisioned will be able to autonomously evaluate emergent environmental conditions and adapt to them, and even change their operational objectives. While until now the primary objective of the developmental efforts presently discussed has been materials that mimic biological functions, entirely novel concepts may be formulated in due course.

  15. Inflatable Space Structures Technology Development for Large Radar Antennas

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith

    2004-01-01

    There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both programs (LRA and ISAT) in two sections, Parts 1 and 2 respectively. Please note that the terms strut, tube, and column are all used interchangeably and refer to the basic strut element of a truss. Also, the paper contains a mix of English and metric dimensional descriptions that reflect prevailing technical discipline conventions and common usage.

  16. Structural design and static analysis of a double-ring deployable truss for mesh antennas

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Guan, Fuling; Chen, Jianjun; Zheng, Yao

    2012-12-01

    This paper addresses the structural design, the deployment control design, the static analysis and the model testing of a new double-ring deployable truss that is intended for large mesh antennas. This deployable truss is a multi-DOF (degree-of-freedom), over-constrained mechanism. Two kinds of deployable basic elements were introduced, as well as a process to synthesise the structure of the deployable truss. The geometric equations were formulated to determine the length of each strut, including the effects of the joint size. A DOF evaluation showed that the mechanism requires two active cables and requires deployment control. An open-loop control system was designed to control the rotational velocities of two motors. The structural stiffness of the truss was assessed by static analysis that considered the effects of the constraint condition and the pre-stress of the passive cables. A 4.2-metre demonstration model of an antenna was designed and fabricated. The geometry and the deployment behaviour of the double-ring truss were validated by the experiments using this model.

  17. Probabilistic structural analysis of a truss typical for space station

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.

    1990-01-01

    A three-bay, space, cantilever truss is probabilistically evaluated using the computer code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) to identify and quantify the uncertainties and respective sensitivities associated with corresponding uncertainties in the primitive variables (structural, material, and loads parameters) that defines the truss. The distribution of each of these primitive variables is described in terms of one of several available distributions such as the Weibull, exponential, normal, log-normal, etc. The cumulative distribution function (CDF's) for the response functions considered and sensitivities associated with the primitive variables for given response are investigated. These sensitivities help in determining the dominating primitive variables for that response.

  18. Control of resonant frequencies in adaptive structures by prestressing

    NASA Technical Reports Server (NTRS)

    Baycan, Can M.; Utku, Senol; Wada, Ben K.

    1992-01-01

    The natural vibration frequencies of a structure can be affected by inducing stress in the structure. The success of this kind of control of the resonant frequencies of a truss structure depends on the geometry of the structure. It is shown that in adaptive truss structures the method is effective for vibrations in less stiff directions, such as the normal direction of the plane containing all of the bars of a node, suggesting its applicability for cable, membrane, and thin plate and shell structures.

  19. Multi-Criterion Preliminary Design of a Tetrahedral Truss Platform

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1995-01-01

    An efficient method is presented for multi-criterion preliminary design and demonstrated for a tetrahedral truss platform. The present method requires minimal analysis effort and permits rapid estimation of optimized truss behavior for preliminary design. A 14-m-diameter, 3-ring truss platform represents a candidate reflector support structure for space-based science spacecraft. The truss members are divided into 9 groups by truss ring and position. Design variables are the cross-sectional area of all members in a group, and are either 1, 3 or 5 times the minimum member area. Non-structural mass represents the node and joint hardware used to assemble the truss structure. Taguchi methods are used to efficiently identify key points in the set of Pareto-optimal truss designs. Key points identified using Taguchi methods are the maximum frequency, minimum mass, and maximum frequency-to-mass ratio truss designs. Low-order polynomial curve fits through these points are used to approximate the behavior of the full set of Pareto-optimal designs. The resulting Pareto-optimal design curve is used to predict frequency and mass for optimized trusses. Performance improvements are plotted in frequency-mass (criterion) space and compared to results for uniform trusses. Application of constraints to frequency and mass and sensitivity to constraint variation are demonstrated.

  20. Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)

    1991-01-01

    The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.

  1. Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    Wada, Ben K.; Fanson, James L.; Miura, Koryo

    1991-11-01

    The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.

  2. Topology and layout optimization of discrete and continuum structures

    NASA Technical Reports Server (NTRS)

    Bendsoe, Martin P.; Kikuchi, Noboru

    1993-01-01

    The basic features of the ground structure method for truss structure an continuum problems are described. Problems with a large number of potential structural elements are considered using the compliance of the structure as the objective function. The design problem is the minimization of compliance for a given structural weight, and the design variables for truss problems are the cross-sectional areas of the individual truss members, while for continuum problems they are the variable densities of material in each of the elements of the FEM discretization. It is shown how homogenization theory can be applied to provide a relation between material density and the effective material properties of a periodic medium with a known microstructure of material and voids.

  3. Optimization of NTP System Truss to Reduce Radiation Shield Mass

    NASA Technical Reports Server (NTRS)

    Scharber, Luke L.; Kharofa, Adam; Caffrey, Jarvis A.

    2016-01-01

    The benefits of nuclear thermal propulsion are numerous and relevant to the current NASA mission goals involving but not limited to the crewed missions to mars and the moon. They do however also present new and unique challenges to the design and logistics of launching/operating spacecraft. One of these challenges, relevant to this discussion, is the significant mass of the shielding which is required to ensure an acceptable radiation environment for the spacecraft and crew. Efforts to reduce shielding mass are difficult to accomplish from material and geometric design points of the shield itself, however by increasing the distance between the nuclear engines and the main body of the spacecraft the required mass of the shielding is lessened considerably. The mass can be reduced significantly per unit length, though any additional mass added by the structure to create this distance serves to offset those savings, thus the design of a lightweight structure is ideal. The challenges of designing the truss are bounded by several limiting factors including; the loading conditions, the capabilities of the launch vehicle, and achieving the ideal truss length when factoring for the overall mass reduced. Determining the overall set of mass values for a truss of varying length is difficult since to maintain an optimally designed truss the geometry of the truss or its members must change. Thus the relation between truss mass and length for these loading scenarios is not linear, and instead has relation determined by the truss design. In order to establish a mass versus length trend for various truss designs to compare with the mass saved from the shield versus length, optimization software was used to find optimal geometric properties that still met the design requirements at established lengths. By solving for optimal designs at various lengths, mass trends could be determined. The initial design findings show a clear benefit to extending the engines as far from the main structure of the spacecraft as the launch vehicle's payload volume would allow when comparing mass savings verse the additional structure.

  4. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    NASA Astrophysics Data System (ADS)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple design can be manufactured using origami-like sheet folding and bonding methods.

  5. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness.

    PubMed

    Berger, J B; Wadley, H N G; McMeeking, R M

    2017-03-23

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple design can be manufactured using origami-like sheet folding and bonding methods.

  6. Structurally adaptive space crane concept for assembling space systems on orbit

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Sutter, Thomas R.; Wu, K. Chauncey

    1992-01-01

    Many future human space exploration missions will probably require large vehicles that must be assembled on orbit. Thus, a device that can move, position, and assemble large and massive spacecraft components on orbit becomes essential for these missions. A concept is described for such a device: a space crane concept that uses erectable truss hardware to achieve high-stiffness and low-mass booms and uses articulating truss joints that can be assembled on orbit. The hardware has been tested and shown to have linear load-deflection response and to be structurally predictable. The hardware also permits the crane to be reconfigured into different geometries to satisfy future assembly requirements. A number of articulating and rotary joint concepts have been sized and analyzed, and the results are discussed. Two strategies were proposed to suppress motion-induced vibration: placing viscous dampers in selected truss struts and preshaping motion commands. Preliminary analyses indicate that these techniques have the potential to greatly enhance structural damping.

  7. Dual resin bonded joints in polyetheretherketone (PEEK) matrix composites

    NASA Astrophysics Data System (ADS)

    Zelenak, Steve; Radford, Donald W.; Dean, Michael W.

    1993-04-01

    The paper describes applications of the dual resin (miscible polymer) bonding technique (Smiley, 1989) developed as an alternative to traditional bonding approaches to joining thermoplastic matrix composite subassemblies into structures. In the experiments, the performance of joint geometries, such as those that could be used to assemble large truss structures in space, are investigated using truss joint models consisting of woven carbon fiber/PEEK tubes of about 1 mm wall thickness. Specific process conditions and hand-held hardware used to apply heat and pressure were chosen to simulate a field asembly technique. Results are presented on tube/cruciform double lap shear tests, pinned-pinned tube compression tests, and single lap shear bond tests of joints obtained using the dual resin bonding technique.

  8. The Sizing and Optimization Language (SOL): A computer language to improve the user/optimizer interface

    NASA Technical Reports Server (NTRS)

    Lucas, S. H.; Scotti, S. J.

    1989-01-01

    The nonlinear mathematical programming method (formal optimization) has had many applications in engineering design. A figure illustrates the use of optimization techniques in the design process. The design process begins with the design problem, such as the classic example of the two-bar truss designed for minimum weight as seen in the leftmost part of the figure. If formal optimization is to be applied, the design problem must be recast in the form of an optimization problem consisting of an objective function, design variables, and constraint function relations. The middle part of the figure shows the two-bar truss design posed as an optimization problem. The total truss weight is the objective function, the tube diameter and truss height are design variables, with stress and Euler buckling considered as constraint function relations. Lastly, the designer develops or obtains analysis software containing a mathematical model of the object being optimized, and then interfaces the analysis routine with existing optimization software such as CONMIN, ADS, or NPSOL. This final state of software development can be both tedious and error-prone. The Sizing and Optimization Language (SOL), a special-purpose computer language whose goal is to make the software implementation phase of optimum design easier and less error-prone, is presented.

  9. Shape Optimization and Modular Discretization for the Development of a Morphing Wingtip

    NASA Astrophysics Data System (ADS)

    Morley, Joshua

    Better knowledge in the areas of aerodynamics and optimization has allowed designers to develop efficient wingtip structures in recent years. However, the requirements faced by wingtip devices can be considerably different amongst an aircraft's flight regimes. Traditional static wingtip devices are then a compromise between conflicting requirements, resulting in less than optimal performance within each regime. Alternatively, a morphing wingtip can reconfigure leading to improved performance over a range of dissimilar flight conditions. Developed within this thesis, is a modular morphing wingtip concept that centers on the use of variable geometry truss mechanisms to permit morphing. A conceptual design framework is established to aid in the development of the concept. The framework uses a metaheuristic optimization procedure to determine optimal continuous wingtip configurations. The configurations are then discretized for the modular concept. The functionality of the framework is demonstrated through a design study on a hypothetical wing/winglet within the thesis.

  10. Tubular space truss structure for SKITTER 2 robot

    NASA Technical Reports Server (NTRS)

    Beecham, Richard; Dejulio, Linda; Delorme, Paul; Eck, Eric; Levy, Avi; Lowery, Joel; Radack, Joe; Sheffield, Randy; Stevens, Scott

    1988-01-01

    The Skitter 2 is a three legged transport vehicle designed to demonstrate the principle of a tripod walker in a multitude of environments. The tubular truss model of Skitter 2 is a proof of principal design. The model will replicate the operational capabilities of Skitter 2 including its ability to self-right itself. The project's focus was on the use of light weight tubular members in the final structural design. A strong design for the body was required as it will undergo the most intense loading. Triangular geometry was used extensively in the body, providing the required structural integrity and eliminating the need for cumbersome shear panels. Both the basic femur and tibia designs also relied on the strong geometry of the triangle. An intense literature search aided in the development of the most suitable weld techniques, joints, linkages, and materials required for a durable design. The hinge design features the use of spherical rod end bearings. In order to obtain a greater range of mobility in the tibia, a four-bar linkage was designed which attaches both to the femur and the tibia. All component designs, specifically the body, femur, and the tibia were optimized using the software package IDEAS 3.8A Supertab. The package provided essential deformation and stress analysis information on each component's design. The final structure incurred only a 0.0544 inch deflection in a maximum (worst case) loading situation. The highest stress experienced by any AL6061-T6 tubular member was 1920 psi. The structural integrity of the final design facilitated the use of Aluminum 6061-T6 tubing. The tubular truss structure of Skitter 2 is an effective and highly durable design. All facets of the design are structurally sound and cost effective.

  11. Application of Carbon Fibre Truss Technology to the Fuselage Structure of the SKYLON Spaceplane

    NASA Astrophysics Data System (ADS)

    Varvill, R.; Bond, A.

    A reusable SSTO spaceplane employing dual mode airbreathing/rocket engines, such as SKYLON, has a voluminous fuselage in order to accommodate the considerable quantities of hydrogen fuel needed for the ascent. The loading intensity which this fuselage has to withstand is relatively low due to the modest in-flight inertial accelerations coupled with the very low density of liquid hydrogen. Also the requirement to accommo- date considerable temperature differentials between the internal cryogenic tankage and the aerodynamically heated outer skin of the vehicle imposes an additional design constraint that results in an optimum fuselage structural concept very different to conventional aircraft or rocket practice. Several different structural con- cepts exist for the primary loadbearing structure. This paper explores the design possibilities of the various types and explains why an independent near ambient temperature CFRP truss structure was selected for the SKYLON vehicle. The construction of such a truss structure, at a scale not witnessed since the days of the airship, poses a number of manufacturing and design difficulties. In particular the construction of the nodes and their attachment to the struts is considered to be a key issue. This paper describes the current design status of the overall truss geometry, strut construction and manufacturing route, and the final method of assembly. The results of a preliminary strut and node test programme are presented which give confidence that the design targets will eventually be met.

  12. Screening actuator locations for static shape control

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    1990-01-01

    Correction of shape distortion due to zero-mean normally distributed errors in structural sizes which are random variables is examined. A bound on the maximum improvement in the expected value of the root-mean-square shape error is obtained. The shape correction associated with the optimal actuators is also characterized. An actuator effectiveness index is developed and shown to be helpful in screening actuator locations in the structure. The results are specialized to a simple form for truss structures composed of nominally identical members. The bound and effectiveness index are tested on a 55-m radiometer antenna truss structure. It is found that previously obtained results for optimum actuators had a performance close to the bound obtained here. Furthermore, the actuators associated with the optimum design are shown to have high effectiveness indices. Since only a small fraction of truss elements tend to have high effectiveness indices, the proposed screening procedure can greatly reduce the number of truss members that need to be considered as actuator sites.

  13. Optical truss and retroreflector modeling for picometer laser metrology

    NASA Astrophysics Data System (ADS)

    Hines, Braden E.

    1993-09-01

    Space-based astrometric interferometer concepts typically have a requirement for the measurement of the internal dimensions of the instrument to accuracies in the picometer range. While this level of resolution has already been achieved for certain special types of laser gauges, techniques for picometer-level accuracy need to be developed to enable all the various kinds of laser gauges needed for space-based interferometers. Systematic errors due to retroreflector imperfections become important as soon as the retroreflector is allowed to either translate in position or articulate in angle away from its nominal zero-point. Also, when combining several laser interferometers to form a three-dimensional laser gauge (a laser optical truss), systematic errors due to imperfect knowledge of the truss geometry are important as the retroreflector translates away from its nominal zero-point. In order to assess the astrometric performance of a proposed instrument, it is necessary to determine how the effects of an imperfect laser metrology system impact the astrometric accuracy. This paper show the development of an error propagation model from errors in the 1-D metrology measurements through the impact on the overall astrometric accuracy for OSI. Simulations are then presented based on this development which were used to define a multiplier which determines the 1-D metrology accuracy required to produce a given amount of fringe position error.

  14. Optimization of Stability Constrained Geometrically Nonlinear Shallow Trusses Using an Arc Length Sparse Method with a Strain Energy Density Approach

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.; Nguyen, Duc T.

    2008-01-01

    A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.

  15. Exhibit D modular design attitude control system study

    NASA Technical Reports Server (NTRS)

    Chichester, F.

    1984-01-01

    A dynamically equivalent four body approximation of the NASTRAN finite element model supplied for hybrid deployable truss to support the digital computer simulation of the ten body model of the flexible space platform that incorporates the four body truss model were investigated. Coefficients for sensitivity of state variables of the linearized model of the three axes rotational dynamics of the prototype flexible spacecraft were generated with respect to the model's parameters. Software changes required to accommodate addition of another rigid body to the five body model of the rotational dynamics of the prototype flexible spacecraft were evaluated.

  16. The geometry of structural equilibrium

    PubMed Central

    2017-01-01

    Building on a long tradition from Maxwell, Rankine, Klein and others, this paper puts forward a geometrical description of structural equilibrium which contains a procedure for the graphic analysis of stress resultants within general three-dimensional frames. The method is a natural generalization of Rankine’s reciprocal diagrams for three-dimensional trusses. The vertices and edges of dual abstract 4-polytopes are embedded within dual four-dimensional vector spaces, wherein the oriented area of generalized polygons give all six components (axial and shear forces with torsion and bending moments) of the stress resultants. The relevant quantities may be readily calculated using four-dimensional Clifford algebra. As well as giving access to frame analysis and design, the description resolves a number of long-standing problems with the incompleteness of Rankine’s description of three-dimensional trusses. Examples are given of how the procedure may be applied to structures of engineering interest, including an outline of a two-stage procedure for addressing the equilibrium of loaded gridshell rooves. PMID:28405361

  17. Considerations in the design of large space structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.; Macneal, R. H.; Knapp, K.; Macgillivray, C. S.

    1981-01-01

    Several analytical studies of topics relevant to the design of large space structures are presented. Topics covered are: the types and quantitative evaluation of the disturbances to which large Earth-oriented microwave reflectors would be subjected and the resulting attitude errors of such spacecraft; the influence of errors in the structural geometry of the performance of radiofrequency antennas; the effect of creasing on the flatness of tensioned reflector membrane surface; and an analysis of the statistics of damage to truss-type structures due to meteoroids.

  18. Improved approximations for control augmented structural synthesis

    NASA Technical Reports Server (NTRS)

    Thomas, H. L.; Schmit, L. A.

    1990-01-01

    A methodology for control-augmented structural synthesis is presented for structure-control systems which can be modeled as an assemblage of beam, truss, and nonstructural mass elements augmented by a noncollocated direct output feedback control system. Truss areas, beam cross sectional dimensions, nonstructural masses and rotary inertias, and controller position and velocity gains are treated simultaneously as design variables. The structural mass and a control-system performance index can be minimized simultaneously, with design constraints placed on static stresses and displacements, dynamic harmonic displacements and forces, structural frequencies, and closed-loop eigenvalues and damping ratios. Intermediate design-variable and response-quantity concepts are used to generate new approximations for displacements and actuator forces under harmonic dynamic loads and for system complex eigenvalues. This improves the overall efficiency of the procedure by reducing the number of complete analyses required for convergence. Numerical results which illustrate the effectiveness of the method are given.

  19. A symmetry measure for damage detection with mode shapes

    NASA Astrophysics Data System (ADS)

    Chen, Justin G.; Büyüköztürk, Oral

    2017-11-01

    This paper introduces a feature for detecting damage or changes in structures, the continuous symmetry measure, which can quantify the amount of a particular rotational, mirror, or translational symmetry in a mode shape of a structure. Many structures in the built environment have geometries that are either symmetric or almost symmetric, however damage typically occurs in a local manner causing asymmetric changes in the structure's geometry or material properties, and alters its mode shapes. The continuous symmetry measure can quantify these changes in symmetry as a novel indicator of damage for data-based structural health monitoring approaches. This paper describes the concept as a basis for detecting changes in mode shapes and detecting structural damage. Application of the method is demonstrated in various structures with different symmetrical properties: a pipe cross-section with a finite element model and experimental study, the NASA 8-bay truss model, and the simulated IASC-ASCE structural health monitoring benchmark structure. The applicability and limitations of the feature in applying it to structures of varying geometries is discussed.

  20. Analytical and Photogrammetric Characterization of a Planar Tetrahedral Truss

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Adams, Richard R.; Rhodes, Marvin D.

    1990-01-01

    Future space science missions are likely to require near-optical quality reflectors which are supported by a stiff truss structure. This support truss should conform closely with its intended shape to minimize its contribution to the overall surface error of the reflector. The current investigation was conducted to evaluate the planar surface accuracy of a regular tetrahedral truss structure by comparing the results of predicted and measured node locations. The truss is a 2-ring hexagonal structure composed of 102 equal-length truss members. Each truss member is nominally 2 meters in length between node centers and is comprised of a graphite/epoxy tube with aluminum nodes and joints. The axial stiffness and the length variation of the truss components were determined experimentally and incorporated into a static finite element analysis of the truss. From this analysis, the root mean square (RMS) surface error of the truss was predicted to be 0.11 mm (0004 in). Photogrammetry tests were performed on the assembled truss to measure the normal displacements of the upper surface nodes and to determine if the truss would maintain its intended shape when subjected to repeated assembly. Considering the variation in the truss component lengths, the measures rms error of 0.14 mm (0.006 in) in the assembled truss is relatively small. The test results also indicate that a repeatable truss surface is achievable. Several potential sources of error were identified and discussed.

  1. Structural performance of space station trusses with missing members

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.

    1986-01-01

    Structural performance of orthogonal tetrahedral and Warren-type full truss beams and platforms are compared. In addition, degradation of truss structural performance is determined for beams, platforms and a space station when individual struts are removed from the trusses. The truss beam, space station, and truss platform analytical models used in the studies are described. Stiffness degradation of the trusses due to single strut failures is determined using flexible body vibration modes. Ease of strut replacement is assessed by removing a strut and examining the truss deflection at the resulting gap due to applied forces. Finally, the reduction in truss beam strength due to a missing longeron is determined for a space station transverse boom model.

  2. A modular approach to large-scale design optimization of aerospace systems

    NASA Astrophysics Data System (ADS)

    Hwang, John T.

    Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft components, providing differentiability. An unstructured quadrilateral mesh generation algorithm is also developed to automate the creation of detailed meshes for aircraft structures, and a mesh convergence study is performed to verify that the quality of the mesh is maintained as it is refined. As a demonstration, high-fidelity aerostructural analysis is performed for two unconventional configurations with detailed structures included, and aerodynamic shape optimization is applied to the truss-braced wing, which finds and eliminates a shock in the region bounded by the struts and the wing.

  3. Description of and preliminary tests results for the Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Bingham, Jeffrey G.; Folkman, Steven L.

    1995-01-01

    An effort is currently underway to develop an experiment titled joint Damping E_periment (JDX) to fly on the Space Shuttle as Get Away Special Payload G-726. This project is funded by NASA's IN-Space Technology Experiments Program and is scheduled to fly in July 1995 on STS-69. JDX will measure the influence of gravity on the structural damping of a three bay truss having clearance fit pinned joints. Structural damping is an important parameter in the dynamics of space structures. Future space structures will require more precise knowledge of structural damping than is currently available. The mission objectives are to develop a small-scale shuttle flight experiment that allows researchers to: (1) characterize the influence of gravity and joint gaps on structural damping and dynamic behavior of a small-scale truss model, and (2) evaluate the applicability of low-g aircraft test results for predicting on-orbit behavior. Completing the above objectives will allow a better understanding and/or prediction of structural damping occurring in a pin jointed truss. Predicting damping in joints is quite difficult. One of the important variables influencing joint damping is gravity. Previous work has shown that gravity loads can influence damping in a pin jointed truss structure. Flying this experiment as a GAS payload will allow testing in a microgravity environment. The on-orbit data (in micro-gravity) will be compared with ground test results. These data will be used to help develop improved models to predict damping due to pinned joints. Ground and low-g aircraft testing of this experiment has been completed. This paper describes the experiment and presents results of both ground and low-g aircraft tests which demonstrate that damping of the truss is dramatically influenced by gravity.

  4. A new hybrid meta-heuristic algorithm for optimal design of large-scale dome structures

    NASA Astrophysics Data System (ADS)

    Kaveh, A.; Ilchi Ghazaan, M.

    2018-02-01

    In this article a hybrid algorithm based on a vibrating particles system (VPS) algorithm, multi-design variable configuration (Multi-DVC) cascade optimization, and an upper bound strategy (UBS) is presented for global optimization of large-scale dome truss structures. The new algorithm is called MDVC-UVPS in which the VPS algorithm acts as the main engine of the algorithm. The VPS algorithm is one of the most recent multi-agent meta-heuristic algorithms mimicking the mechanisms of damped free vibration of single degree of freedom systems. In order to handle a large number of variables, cascade sizing optimization utilizing a series of DVCs is used. Moreover, the UBS is utilized to reduce the computational time. Various dome truss examples are studied to demonstrate the effectiveness and robustness of the proposed method, as compared to some existing structural optimization techniques. The results indicate that the MDVC-UVPS technique is a powerful search and optimization method for optimizing structural engineering problems.

  5. Genetic-evolution-based optimization methods for engineering design

    NASA Technical Reports Server (NTRS)

    Rao, S. S.; Pan, T. S.; Dhingra, A. K.; Venkayya, V. B.; Kumar, V.

    1990-01-01

    This paper presents the applicability of a biological model, based on genetic evolution, for engineering design optimization. Algorithms embodying the ideas of reproduction, crossover, and mutation are developed and applied to solve different types of structural optimization problems. Both continuous and discrete variable optimization problems are solved. A two-bay truss for maximum fundamental frequency is considered to demonstrate the continuous variable case. The selection of locations of actuators in an actively controlled structure, for minimum energy dissipation, is considered to illustrate the discrete variable case.

  6. The P4 truss is moved to a workstand in the SSPF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After its move across the Space Station Processing Facility, the International Space Station's P4 truss rests in its workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

  7. SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    NASA Technical Reports Server (NTRS)

    Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth

    2015-01-01

    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.

  8. The P4 truss is moved to a workstand in the SSPF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, workers get ready to lower the International Space Station's P4 truss onto a workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

  9. Seismic assessment of a multi-span steel railway bridge in Turkey based on nonlinear time history

    NASA Astrophysics Data System (ADS)

    Yılmaz, Mehmet F.; Çağlayan, Barlas Ö.

    2018-01-01

    Many research studies have shown that bridges are vulnerable to earthquakes, graphically confirmed by incidents such as the San Fernando (1971 USA), Northridge (1994 USA), Great Hanshin (1995 Japan), and Chi-Chi (1999 Taiwan) earthquakes, amongst many others. The studies show that fragility curves are useful tools for bridge seismic risk assessments, which can be generated empirically or analytically. Empirical fragility curves can be generated where damage reports from past earthquakes are available, but otherwise, analytical fragility curves can be generated from structural seismic response analysis. Earthquake damage data in Turkey are very limited, hence this study employed an analytical method to generate fragility curves for the Alasehir bridge. The Alasehir bridge is part of the Manisa-Uşak-Dumlupınar-Afyon railway line, which is very important for human and freight transportation, and since most of the country is seismically active, it is essential to assess the bridge's vulnerability. The bridge consists of six 30 m truss spans with a total span 189 m supported by 2 abutments and 5 truss piers, 12.5, 19, 26, 33, and 40 m. Sap2000 software was used to model the Alasehir bridge, which was refined using field measurements, and the effect of 60 selected real earthquake data analyzed using the refined model, considering material and geometry nonlinearity. Thus, the seismic behavior of Alasehir railway bridge was determined and truss pier reaction and displacements were used to determine its seismic performance. Different intensity measures were compared for efficiency, practicality, and sufficiency and their component and system fragility curves derived.

  10. Chapter 6:Engineered trusses from undervalued hardwoods

    Treesearch

    Robert J. Ross; Brian K. Brashaw

    2005-01-01

    A significant volume of softwood lumber is used in engineered truss assemblies. Metal plate connected (MPC) trusses are commonly used in residential construction for both roof and floor applications. Currently, there are no truss manufacturers producing MPC trusses with hardwood lumber, primarily as a consequence of a lack of technical data on the performance of...

  11. 24 CFR 3280.402 - Test procedures for roof trusses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... procedures are required for new truss designs in all three wind zones and for existing truss designs used in... design loads, and actual support points, and does not restrain horizontal movement. When tested singly or in groups of two or more trusses, trusses shall be mounted on supports and positioned as intended to...

  12. KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper talks to workers in the Space Station Processing Facility. She and other crew members are at KSC for hardware familiarization. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper talks to workers in the Space Station Processing Facility. She and other crew members are at KSC for hardware familiarization. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  13. Structural characterization of a first-generation articulated-truss joint for space crane application

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.

    1992-01-01

    A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.

  14. STS-113 Mission Specialist Michael Lopez-Alegria looks over the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist Michael Lopez-Alegria looks over the P1 Integrated Truss Structure, the primary payload for the mission. The P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002.

  15. STS-113 Mission Specialists review data on the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialists John Herrington (left) and Michael Lopez-Alegria (right) look over the P1 Integrated Truss Structure, the primary payload for the mission. The P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002

  16. STS-113 Mission Specialists review data on the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialists John Herrington (left) and Michael Lopez-Alegria (right) look over the P1 Integrated Truss Structure, the primary payload for the mission. The P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002.

  17. The P4 truss is moved to a workstand in the SSPF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, workers oversee the removal of the P4 truss from the truck that transported it from Tulsa, Okla. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field on the International Space Station, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

  18. 8. VIEW TO SOUTHEAST FROM NORTHWEST END OF BUILDING, ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW TO SOUTHEAST FROM NORTHWEST END OF BUILDING, ELEVATION OF CENTER BAY WOODEN PRATT ROOF TRUSSES. NOTE VARIABLE DIMENSIONS OF VERTICAL AND DIAGONAL MEMBERS: THICKER TOWARD ENDS AND THINNER TOWARD CENTER. - Rosie the Riveter National Historical Park, Auxiliary Plate Shop, 912 Harbour Way, Richmond, Contra Costa County, CA

  19. SPF/DB titanium concepts for structural efficiency foi HC

    NASA Technical Reports Server (NTRS)

    Wilson, V. E.

    1982-01-01

    Illustrations for a presentation on superplastic forming/diffusion bonding titanium design concepts are presented. Sandwich skin panels with hat section, semicircular corrugation, sine wave, and truss cores are shown. The fabrication of wing panels is illustrated, and applications to the design of advanced variable sweep bombers summarized.

  20. KSC-98pc1660

    NASA Image and Video Library

    1998-11-06

    Workers in the Space Station Processing Facility watch the Passive Common Berthing Mechanism (PCBM) lifted high to move it over to the Z1 integrated truss structure at right. It will be mated to the Z1 truss, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

  1. STS-113 Mission Specialists review data on the P1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialists Michael Lopez-Alegria (left) and John Herrington (center) review data on the P1 Integrated Truss Structure with a technician in the Space Station Processing Facility. During the mission, the P1 truss will be attached to the central truss segment, S0 Truss, during spacewalks. The payload also includes the Crew and Equipment Translation Aid (CETA) Cart B that can be used by spacewalkers to move along the truss with equipment. STS-113 is scheduled to launch Oct. 6, 2002.

  2. TRUSS, a Novel Tumor Necrosis Factor Receptor 1 Scaffolding Protein That Mediates Activation of the Transcription Factor NF-κB

    PubMed Central

    Soond, Surinder M.; Terry, Jennifer L.; Colbert, Jeff D.; Riches, David W. H.

    2003-01-01

    We describe the cloning and characterization of tumor necrosis factor receptor (TNF-R)-associated ubiquitous scaffolding and signaling protein (TRUSS), a novel TNF-R1-interacting protein of 90.7 kDa. TRUSS mRNA was ubiquitously expressed in mouse tissues but was enriched in heart, liver, and testis. Coimmunoprecipitation experiments showed that TRUSS was constitutively associated with unligated TNF-R1 and that the complex was relatively insensitive to stimulation with TNF-α. Deletion mutagenesis of TNF-R1 indicated that TRUSS interacts with both the membrane-proximal region and the death domain of TNF-R1. In addition, the N-terminal region of TRUSS (residues 1 to 440) contains sequences that permit association with the cytoplasmic domain of TNF-R1. Transient overexpression of TRUSS activated NF-κB and increased NF-κB activation in response to ligation of TNF-R1. In contrast, a COOH-terminal-deletion mutant of TRUSS (TRUSS1-723) was found to inhibit NF-κB activation by TNF-α. Coprecipitation and coimmunoprecipitation assays revealed that TRUSS can interact with TRADD, TRAF2, and components of the IKK complex. These findings suggest that TRUSS may serve as a scaffolding protein that interacts with TNF-R1 signaling proteins and may link TNF-R1 to the activation of IKK. PMID:14585990

  3. 5. Roof Truss Above Service Area, Roof Truss Above Ward, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Roof Truss Above Service Area, Roof Truss Above Ward, Roof Framing Axonometric - National Home for Disabled Volunteer Soldiers - Battle Mountain Sanitarium, Ward 4, 500 North Fifth Street, Hot Springs, Fall River County, SD

  4. Laser Truss Sensor for Segmented Telescope Phasing

    NASA Technical Reports Server (NTRS)

    Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng

    2011-01-01

    A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (<30 nm) LTS can be implemented with existing laser metrology gauges. The distance change between the reference plane and the target plane is measured as a function of the phase change between the reference and target beams. To ease the bandwidth requirements for phase detection electronics (or phase meter), homodyne or heterodyne detection techniques have been used. The phase of the target beam also changes with the refractive index of air, which changes with the air pressure, temperature, and humidity. This error can be minimized by enclosing the metrology beams in baffles. For longer-term (weeks) tracking at the micron level accuracy, the same gauge can be operated in the absolute metrology mode with an accuracy of microns; to implement absolute metrology, two laser frequencies will be used on the same gauge. Absolute metrology using heterodyne laser gauges is a demonstrated technology. Complexity of laser source fiber distribution can be optimized using the range-gated metrology (RGM) approach.

  5. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  6. Finite element analysis of a deployable space structure

    NASA Technical Reports Server (NTRS)

    Hutton, D. V.

    1982-01-01

    To assess the dynamic characteristics of a deployable space truss, a finite element model of the Scientific Applications Space Platform (SASP) truss has been formulated. The model incorporates all additional degrees of freedom associated with the pin-jointed members. Comparison of results with SPAR models of the truss show that the joints of the deployable truss significantly affect the vibrational modes of the structure only if the truss is relatively short.

  7. The P4 truss is moved to a workstand in the SSPF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Suspended by an overhead crane in the Space Station Processing Facility, the International Space Station's P4 truss moves toward a workstand. Below and behind it on the floor is the Multi- Purpose Logistics Module Raffaello, another segment of the Space Station. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.

  8. The analysis and large-angle control of a flexible beam using an adaptive truss

    NASA Technical Reports Server (NTRS)

    Warrington, Thomas J.; Clark, William W.; Robertshaw, Harry H.; Horner, C. Garnett

    1991-01-01

    This preliminary study of an adaptive truss slewing problem investigates the static positioning of an adaptive truss at slewed orientations and the dynamic vibrations of an attached flexible beam. A nonlinear model of an adaptive truss and flexible beam is derived. Linear control laws are developed and simulated for various truss configurations. Results show the linear control laws developed at a slewed configuration perform best at that configuration.

  9. 63. DETAIL OF TRAVELING CRANE TRUSS FROM NORTHEAST. TRUSS IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. DETAIL OF TRAVELING CRANE TRUSS FROM NORTHEAST. TRUSS IS IN FRONT OF CRUSHED OXIDIZED ORE BIN. THE BARREN SOLUTION TANK IS JUST VISIBLE IN RIGHT BACKGROUND. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  10. Numerical form-finding method for large mesh reflectors with elastic rim trusses

    NASA Astrophysics Data System (ADS)

    Yang, Dongwu; Zhang, Yiqun; Li, Peng; Du, Jingli

    2018-06-01

    Traditional methods for designing a mesh reflector usually treat the rim truss as rigid. Due to large aperture, light weight and high accuracy requirements on spaceborne reflectors, the rim truss deformation is indeed not negligible. In order to design a cable net with asymmetric boundaries for the front and rear nets, a cable-net form-finding method is firstly introduced. Then, the form-finding method is embedded into an iterative approach for designing a mesh reflector considering the elasticity of the supporting rim truss. By iterations on form-findings of the cable-net based on the updated boundary conditions due to the rim truss deformation, a mesh reflector with a fairly uniform tension distribution in its equilibrium state could be finally designed. Applications on offset mesh reflectors with both circular and elliptical rim trusses are illustrated. The numerical results show the effectiveness of the proposed approach and that a circular rim truss is more stable than an elliptical rim truss.

  11. KSC-99pd0679

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- The S0 truss segment is moved into the Operations and Checkout Bldg. (O&C) for processing. The truss arrived at the SLF aboard a "Super Guppy" aircraft from Boeing in Huntington, Calif. During processing in the O&C, the S0 truss will have installed the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  12. KSC-98pc1661

    NASA Image and Video Library

    1998-11-06

    Still suspended by a crane and cables in the Space Station Processing Facility, yet hidden by the top of the Z1 integrated truss structure, the Passive Common Berthing Mechanism (PCBM) is lowered onto the truss for attachment. Workers at the top of a workstand guide it into place. A component of the International Space Station (ISS), the Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

  13. The Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Folkman, Steven L.; Bingham, Jeff G.; Crookston, Jess R.; Dutson, Joseph D.; Ferney, Brook D.; Ferney, Greg D.; Rowsell, Edwin A.

    1997-01-01

    The Joint Damping Experiment (JDX), flown on the Shuttle STS-69 Mission, is designed to measure the influence of gravity on the structural damping of a high precision three bay truss. Principal objectives are: (1) Measure vibration damping of a small-scale, pinjointed truss to determine how pin gaps give rise to gravity-dependent damping rates; (2) Evaluate the applicability of ground and low-g aircraft tests for predicting on-orbit behavior; and (3) Evaluate the ability of current nonlinear finite element codes to model the dynamic behavior of the truss. Damping of the truss was inferred from 'Twang' tests that involve plucking the truss structure and recording the decay of the oscillations. Results are summarized as follows. (1) Damping, rates can change by a factor of 3 to 8 through changing the truss orientation; (2) The addition of a few pinned joints to a truss structure can increase the damping by a factor as high as 30; (3) Damping is amplitude dependent; (4) As gravity induced preloads become large (truss long axis perpendicular to gravity vector) the damping is similar to non-pinjointed truss; (5) Impacting in joints drives higher modes in structure; (6) The torsion mode disappears if gravity induced preloads are low.

  14. Easy Attachment Of Panels To A Truss

    NASA Technical Reports Server (NTRS)

    Thomson, Mark; Gralewski, Mark

    1992-01-01

    Conceptual antenna dish, solar collector, or similar structure consists of hexagonal panels supported by truss erected in field. Truss built in increments to maintain access to panel-attachment nodes. Each panel brought toward truss at angle and attached to two nodes. Panel rotated into attachment at third node.

  15. In the O&C Building, the P3 truss, an ISS segment, is revealed inside its shipping container

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Operations and Checkout Building, cranes lift the top of the shipping container containing the port-side P3 truss, a segment of the International Space Station (ISS). The truss is scheduled to be added to the ISS on mission STS-115 in 2002 aboard Space Shuttle Atlantis. The second port truss segment, P3 will be attached to the first port truss segment (P1).

  16. 48. REMOVAL OF FIRST TRUSS. The first truss removed here ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. REMOVAL OF FIRST TRUSS. The first truss removed here rests on ground plates and awaits the similar placement of all the trusses for temporary storage. In the foreground are cut out sections of roofing also removed by crane. Note the 1873-74 standing seam sheet metal roof above the 1851 shingling. The roof pole gutters were in part made up of bench back rails. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  17. Deployable-erectable trade study for space station truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Wright, A. S., Jr.; Bush, H. G.; Watson, J. J.; Dean, E. B.; Twigg, L. T.; Rhodes, M. D.; Cooper, P. A.; Dorsey, J. T.; Lake, M. S.

    1985-01-01

    The results of a trade study on truss structures for constructing the space station are presented. Although this study was conducted for the reference gravity gradient space station, the results are generally applicable to other configurations. The four truss approaches for constructing the space station considered in this paper were the 9 foot single fold deployable, the 15 foot erectable, the 10 foot double fold tetrahedral, and the 15 foot PACTRUSS. The primary rational for considering a 9 foot single-fold deployable truss (9 foot is the largest uncollapsed cross-section that will fit in the Shuttle cargo bay) is that of ease of initial on-orbit construction and preintegration of utility lines and subsystems. The primary rational for considering the 15 foot erectable truss is that the truss bay size will accommodate Shuttle size payloads and growth of the initial station in any dimension is a simple extension of the initial construction process. The primary rational for considering the double-fold 10 foot tetrahedral truss is that a relatively large amount of truss structure can be deployed from a single Shuttle flight to provide a large number of nodal attachments which present a pegboard for attaching a wide variety of payloads. The 15 foot double-fold PACTRUSS was developed to incorporate the best features of the erectable truss and the tetrahedral truss.

  18. Structural stiffness, strength and dynamic characteristics of large tetrahedral space truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.; Card, M. F.

    1977-01-01

    Physical characteristics of large skeletal frameworks for space applications are investigated by analyzing one concept: the tetrahedral truss, which is idealized as a sandwich plate with isotropic faces. Appropriate analytical relations are presented in terms of the truss column element properties which for calculations were taken as slender graphite/epoxy tubes. Column loads, resulting from gravity gradient control and orbital transfer, are found to be small for the class structure investigated. Fundamental frequencies of large truss structures are shown to be an order of magnitude lower than large earth based structures. Permissible loads are shown to result in small lateral deflections of the truss due to low-strain at Euler buckling of the slender graphite/epoxy truss column elements. Lateral thermal deflections are found to be a fraction of the truss depth using graphite/epoxy columns.

  19. Structural Truss Elements and Forces

    ERIC Educational Resources Information Center

    Troyer, Steve; Griffis, Kurt; Shackelford, Ray

    2005-01-01

    In the field of construction, most structures are supported by several groups of truss systems working together synergistically. A "truss" is a group of centered and balanced elements combined to carry a common load (Warner, 2003). Trusses provide strength against loads and forces within a structure. Though a complex field of study, structural…

  20. 14 CFR 23.369 - Rear lift truss.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rear lift truss. 23.369 Section 23.369 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... lift truss. (a) If a rear lift truss is used, it must be designed to withstand conditions of reversed...

  1. 14 CFR 23.369 - Rear lift truss.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rear lift truss. 23.369 Section 23.369 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... lift truss. (a) If a rear lift truss is used, it must be designed to withstand conditions of reversed...

  2. KSC-98pc1659

    NASA Image and Video Library

    1998-11-06

    Workers in the Space Station Processing Facility watch as cables and a crane lift the Passive Common Berthing Mechanism (PCBM) before mating it to the Z1 integrated truss structure, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

  3. KSC-98pc1662

    NASA Image and Video Library

    1998-11-06

    Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

  4. STS-117 Media Showcase

    NASA Image and Video Library

    2007-02-06

    In the Space Station Processing Facility, the S3/S4 integrated truss segment is on display for the media. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station.

  5. KSC-98pc1658

    NASA Image and Video Library

    1998-11-06

    Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999

  6. Process development and fabrication of space station type aluminum-clad graphite epoxy struts

    NASA Technical Reports Server (NTRS)

    Ring, L. R.

    1990-01-01

    The manufacture of aluminum-clad graphite epoxy struts, designed for application to the Space Station truss structure, is described. The strut requirements are identified, and the strut material selection rationale is discussed. The manufacturing procedure is described, and shop documents describing the details are included. Dry graphite fiber, Pitch-75, is pulled between two concentric aluminum tubes. Epoxy resin is then injected and cured. After reduction of the aluminum wall thickness by chemical milling the end fittings are bonded on the tubes. A discussion of the characteristics of the manufactured struts, i.e., geometry, weight, and any anomalies of the individual struts is included.

  7. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Commander Jeffrey Ashby checks out the windshield on Atlantis, the designated orbiter for the mission. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  8. STS-110 payload S0 Truss is moved to payload canister in O&C

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, an overhead crane carries the Integrated Truss Structure S0 from its workstand toward the payload canister. The S0 truss will be transported to the launch pad for mission STS-110. Part of the payload, the S0 truss will become the backbone of the orbiting International Space Station (ISS), at the center of the 10-truss, girderlike structure that will ultimately extend the length of a football field on the ISS. The S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission. Launch is scheduled for April 4.

  9. KENNEDY SPACE CENTER, FLA. - In a brief ceremony in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, turns over the “key” for the starboard truss segment S3/S4 to Scott Gahring, ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117.

    NASA Image and Video Library

    2004-02-12

    KENNEDY SPACE CENTER, FLA. - In a brief ceremony in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, turns over the “key” for the starboard truss segment S3/S4 to Scott Gahring, ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117.

  10. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy checks out the windshield on Atlantis, the designated orbiter for the mission. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  11. International Space Station (ISS)

    NASA Image and Video Library

    1999-09-01

    This image shows the Integrated Truss Assembly S-1 (S-One), the Starboard Side Thermal Radiator Truss, for the International Space Station (ISS) undergoing final construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. Delivered and installed by the STS-112 mission, the S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing.

  12. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  13. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  14. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  15. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  16. 33 CFR 147.839 - Mad Dog Truss Spar Platform safety zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Mad Dog Truss Spar Platform... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.839 Mad Dog Truss Spar Platform safety zone. (a) Description. Mad Dog Truss Spar Platform, Green Canyon 782 (GC 782), located at position...

  17. A crane is lowered toward the S0 truss to transfer it to a workstand in the

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Operations and Checkout Bldg. (O&C), workers (at left) watch over the maneuvering of the overhead crane toward the S0 truss segment below it. The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44- by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, 'Destiny,' which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108.

  18. Installation of the S1 Truss to the International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronauts Piers J. Sellers (left ) and David A. Wolf work on the newly installed Starboard One (S1) truss to the International Space Station (ISS) during the STS-112 mission. The primary payloads of this mission, ISS Assembly Mission 9A, were the Integrated Truss Assembly S1 (S One), the starboard side thermal radiator truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  19. The S1 Truss Prior to Installation on the International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Being attached to the Canadarm2 on the International Space Station (ISS), the Remote Manipulator System arm built by the Canadian Space Agency, the Integrated Truss Assembly (S1) Truss is suspended over the Space Shuttle Orbiter Atlantis' cargo bay. Astronauts Sandra H. Magnus, STS-112 mission specialist, and Peggy A. Whitson, Expedition Five flight engineer, used the Canadarm2 from inside the Destiny laboratory on the ISS to lift the S1 truss out of the orbiter's cargo bay and move it into position prior to its installation on the ISS. The primary payloads of this mission, ISS Assembly Mission 9A, were the Integrated Truss Assembly S1 (S One), the starboard side thermal radiator truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  20. Structural reanalysis via a mixed method. [using Taylor series for accuracy improvement

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1975-01-01

    A study is made of the approximate structural reanalysis technique based on the use of Taylor series expansion of response variables in terms of design variables in conjunction with the mixed method. In addition, comparisons are made with two reanalysis techniques based on the displacement method. These techniques are the Taylor series expansion and the modified reduced basis. It is shown that the use of the reciprocals of the sizing variables as design variables (which is the natural choice in the mixed method) can result in a substantial improvement in the accuracy of the reanalysis technique. Numerical results are presented for a space truss structure.

  1. Structural response of existing spatial truss roof construction based on Cosserat rod theory

    NASA Astrophysics Data System (ADS)

    Miśkiewicz, Mikołaj

    2018-04-01

    Paper presents the application of the Cosserat rod theory and newly developed associated finite elements code as the tools that support in the expert-designing engineering practice. Mechanical principles of the 3D spatially curved rods, dynamics (statics) laws, principle of virtual work are discussed. Corresponding FEM approach with interpolation and accumulation techniques of state variables are shown that enable the formulation of the C0 Lagrangian rod elements with 6-degrees of freedom per node. Two test examples are shown proving the correctness and suitability of the proposed formulation. Next, the developed FEM code is applied to assess the structural response of the spatial truss roof of the "Olivia" Sports Arena Gdansk, Poland. The numerical results are compared with load test results. It is shown that the proposed FEM approach yields correct results.

  2. Effect of moisture cycling on truss-plate joint behavior

    Treesearch

    Leslie H. Groom

    1994-01-01

    The structural performance of wood trusses, which are now commonplace in light-frame construction, is dictated in part by the mechanical properties of the truss-plate joints. However, little information exists quantifying the effect of environmental conditions on truss-plate joint properties. The main objective of this paper was to quantify the effect of moisture...

  3. KSC-03PD-2132

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper talks to workers in the Space Station Processing Facility. She and other crew members are at KSC for hardware familiarization. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  4. Analysis of truss, beam, frame, and membrane components. [composite structures

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.; Robinson, E. Y.

    1975-01-01

    Truss components are considered, taking into account composite truss structures, truss analysis, column members, and truss joints. Beam components are discussed, giving attention to composite beams, laminated beams, and sandwich beams. Composite frame components and composite membrane components are examined. A description is given of examples of flat membrane components and examples of curved membrane elements. It is pointed out that composite structural design and analysis is a highly interactive, iterative procedure which does not lend itself readily to characterization by design or analysis function only.-

  5. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Fyodor Yurchikhin looks at Atlantis, the designated orbiter for the mission. Yurchikhin is with the Russian Space Agency. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  6. Actuator placement in prestressed adaptive trusses for vibration control

    NASA Technical Reports Server (NTRS)

    Jalihal, P.; Utku, Senol; Wada, Ben K.

    1993-01-01

    This paper describes the optimal location selection of actuators for vibration control in prestressed adaptive trusses. Since prestressed adaptive trusses are statically indeterminate, the actuators to be used for vibration control purposes must work against (1) existing static axial prestressing forces, (2) static axial forces caused by the actuation, and (3) dynamic axial forces caused by the motion of the mass. In statically determinate adaptive trusses (1) and (2) are non - existing. The actuator placement problem in statically indeterminate trusses is therefore governed by the actuation energy and the actuator strength requirements. Assuming output feedback type control of selected vibration modes in autonomous systems, a procedure is given for the placement of vibration controlling actuators in prestressed adaptive trusses.

  7. Optimization of Three Dimensional Combined Truss/Frame Structures.

    DTIC Science & Technology

    1982-10-01

    number associa:ed wi-h the element’s 1st charicteristic dimensicn 6 NDSG4-design variable number associated with the element’s 2nd chricter s tic ...California 85721 8. LT Jorge E. Felix Care of: Director de Educacion de la Armada Comandancia General de Marina Quito, Equador, SOUTH AMERICA 9. LT Gregory L

  8. The controlled growth method - A tool for structural optimization

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Sobieszczanski-Sobieski, J.

    1981-01-01

    An adaptive design variable linking scheme in a NLP based optimization algorithm is proposed and evaluated for feasibility of application. The present scheme, based on an intuitive effectiveness measure for each variable, differs from existing methodology in that a single dominant variable controls the growth of all others in a prescribed optimization cycle. The proposed method is implemented for truss assemblies and a wing box structure for stress, displacement and frequency constraints. Substantial reduction in computational time, even more so for structures under multiple load conditions, coupled with a minimal accompanying loss in accuracy, vindicates the algorithm.

  9. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane moves the S3/S4 integrated truss to a payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  10. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane settles the S3/S4 integrated truss into the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  11. Tests of an alternate mobile transporter and extravehicular activity assembly procedure for the Space Station Freedom truss

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Watson, Judith J.; Lake, Mark S.; Bush, Harold G.; Jensen, J. Kermit; Wallsom, Richard E.; Phelps, James E.

    1992-01-01

    Results are presented from a ground test program of an alternate mobile transporter (MT) concept and extravehicular activity (EVA) assembly procedure for the Space Station Freedom (SSF) truss keel. A three-bay orthogonal tetrahedral truss beam consisting of 44 2-in-diameter struts and 16 nodes was assembled repeatedly in neutral buoyancy by pairs of pressure-suited test subjects working from astronaut positioning devices (APD's) on the MT. The truss bays were cubic with edges 15 ft long. All the truss joint hardware was found to be EVA compatible. The average unit assembly time for a single pair of experienced test subjects was 27.6 sec/strut, which is about half the time derived from other SSF truss assembly tests. A concept for integration of utility trays during truss assembly is introduced and demonstrated in the assembly tests. The concept, which requires minimal EVA handling of the trays, is shown to have little impact on overall assembly time. The results of these tests indicate that by using an MT equipped with APD's, rapid EVA assembly of a space station-size truss structure can be expected.

  12. Calculation of load-bearing capacity of prestressed reinforced concrete trusses by the finite element method

    NASA Astrophysics Data System (ADS)

    Agapov, Vladimir; Golovanov, Roman; Aidemirov, Kurban

    2017-10-01

    The technique of calculation of prestressed reinforced concrete trusses with taking into account geometrical and physical nonlinearity is considered. As a tool for solving the problem, the finite element method has been chosen. Basic design equations and methods for their solution are given. It is assumed that there are both a prestressed and nonprestressed reinforcement in the bars of the trusses. The prestress is modeled by setting the temperature effect on the reinforcement. The ways of taking into account the physical and geometrical nonlinearity for bars of reinforced concrete trusses are considered. An example of the analysis of a flat truss is given and the behavior of the truss on various stages of its loading up to destruction is analyzed. A program for the analysis of flat and spatial concrete trusses taking into account the nonlinear deformation is developed. The program is adapted to the computational complex PRINS. As a part of this complex it is available to a wide range of engineering, scientific and technical workers

  13. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 astronaut team study the the Zenith-1 (Z-1) Truss during the Crew Equipment Interface Test. The Z-1 Truss was officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. The truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS- 92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  14. KSC-99pp0685

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- Workers in the O&C Bldg. watch as the S0 truss is lowered onto a workstand. The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  15. KSC-99pp0686

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- The S0 truss nears its resting place in the workstand in the O&C Bldg. (O&C). The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  16. KSC-99pd0684

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Bldg. (O&C), an overhead crane moves the S0 truss segment toward a workstand. The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  17. KSC-99pp0684

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Bldg. (O&C), an overhead crane moves the S0 truss segment toward a workstand. The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44- by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  18. KSC-99pp0681

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- Inside the Operations and Checkout Bldg. (O&C), an overhead crane removes the cover from the S0 truss segment beneath it. The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  19. KSC-99pp0683

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- Inside the Operations and Checkout Bldg. (O&C), workers (at left) watch over the maneuvering of the overhead crane toward the S0 truss segment below it. The S0 truss will undergo processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  20. Design, fabrication, and test of a graphite/epoxy metering truss. [as applied to the LST

    NASA Technical Reports Server (NTRS)

    Oken, S.; Skoumal, D. E.

    1975-01-01

    A graphite/epoxy metering truss as applied to the large space telescope was investigated. A full-scale truss was designed, fabricated and tested. Tests included static limit loadings, a modal survey and thermal-vacuum distortion evaluation. The most critical requirement was the demonstration of the dimensional stability provided by the graphite/epoxy truss concept. Crucial to the attainment of this objective was the ability to make very sophisticated thermal growth measurements which was provided by a seven beam laser interferometer. The design of the basic truss elements were tuned to provide the high degree of dimensional stability and stiffness required by the truss. The struts and spider assembly were fabricated with Fiberite's AS/934 and HMS/934 broadgoods. The rings utilized T300 graphite fabricate with the same materials. The predicted performance of the truss was developed using the NASTRAN program. These results showed conformance with the critical stiffness and thermal distortion requirements and correlated well with the test results.

  1. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Accompanied by a technician, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at the payload and equipment in the bay of Atlantis during a Crew Equipment Interface Test at KSC. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .

  2. P-1 truss arrival at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss, a component of the International Space Station, arrives inside the RLV hangar, located near the Shuttle Landing Facility at KSC. Approaching bad weather caused the detour as a precaution. The truss will eventually be transferred to the Operations and Checkout Building for processing. The P-1 truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by- 15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  3. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test, STS-112 Pilot Pamela Melroy (left) and Mission Specialist David Wolf (right) look at equipment pointed out by a technician in the payload bay of Atlantis. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002 .

  4. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During a Crew Equipment Interface Test, STS-112 Mission Specialist Piers Sellers (foreground) points to an engine line on Atlantis, the designated orbiter for the mission, while Commander Jeffrey Ashby (behind) looks on. STS-112 is the 15th assembly flight to the International Space Station and will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  5. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane lowers the S3/S4 integrated truss into the open bay of the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  6. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, an overhead crane lowers the S3/S4 integrated truss toward the open doors of the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  7. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  8. P-1 truss moved to O&C Building

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Cranes place the P-1 truss, a component of the International Space Station, on a transport vehicle that will move it to the Operations and Checkout Building for processing. The truss had been temporarily stored in the RLV hangar in the background as a precaution against approaching bad weather. The P-1 truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by- 15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  9. 21. 80 foot pony truss view is from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. 80 foot pony truss - view is from the deck, looking down to the junction of the two pony trusses, showing the top of the lower chord pin connection on top of the replacement pier. Also shown is some deck surface and an electrical conduit. This is typical of the junction of all the pony trusses. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  10. S3/S4 Integrated Truss being moved into the Space Shuttle Payloa

    NASA Image and Video Library

    2007-02-07

    In the Space Station Processing Facility, workers attach an overhead crane to the S3/S4 integrated truss in order to move it to the payload canister. After it is stowed in the canister, the S3/S4 truss will be transported to the launch pad. The truss is the payload on mission STS-117, targeted for launch on March 15.

  11. Structural Performance of a Hybrid FRP-Aluminum Modular Triangular Truss System Subjected to Various Loading Conditions

    PubMed Central

    Zhang, Dongdong; Huang, Yaxin; Zhao, Qilin; Li, Fei; Gao, Yifeng

    2014-01-01

    A novel hybrid FRP-aluminum truss system has been employed in a two-rut modular bridge superstructure composed of twin inverted triangular trusses. The actual flexural behavior of a one-rut truss has been previously investigated under the on-axis loading test; however, the structural performance of the one-rut truss subjected to an off-axis load is still not fully understood. In this paper, a geometrical linear finite element model is introduced and validated by the on-axis loading test; the structural performance of the one-rut truss subjected to off-axis load was numerically obtained; the dissimilarities of the structural performance between the two different loading cases are investigated in detail. The results indicated that (1) the structural behavior of the off-axis load differs from that of the on-axis load, and the off-axis load is the critical loading condition controlling the structural performance of the triangular truss; (2) under the off-axis load, the FRP trussed members and connectors bear certain out-of-plane bending moments and are subjected to a complicated stress state; and (3) the stress state of these members does not match that of the initial design, and optimization for the redesign of these members is needed, especially for the pretightened teeth connectors. PMID:25254254

  12. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-14

    Astronauts Piers J. Sellers (left ) and David A. Wolf work on the newly installed Starboard One (S1) truss to the International Space Station (ISS) during the STS-112 mission. The primary payloads of this mission, ISS Assembly Mission 9A, were the Integrated Truss Assembly S1 (S One), the starboard side thermal radiator truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  13. STS-110 payload S0 Truss is moved to payload canister in O&C

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, an overhead crane carries the Integrated Truss Structure S0 to the payload canister which will transport it to the launch pad for mission STS-110. Seen below the truss is the Multi-Purpose Logistics Module Donatello, currently not in use. The S0 truss will be part of the payload on Space Shuttle Atlantis. The S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission, becoming the backbone of the orbiting International Space Station (ISS). Launch is scheduled for April 4.

  14. 10. VIEW TO NORTHEAST FROM WITHIN SOUTHWEST BAY, LOOKING THROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW TO NORTHEAST FROM WITHIN SOUTHWEST BAY, LOOKING THROUGH CENTER BAY AND INTO NORTHEAST BAY. NOTE TRAVELING BRIDGE CRANE OVERHEAD AND SWINGING BOOM CRANES ATTACHED TO COLUMNS ON RIGHT AND LEFT. NOTE ALSO THE DIFFERENCE IN TRUSSES SUPPORTING CRANEWAY TRACKS FOR SIDE BAYS AND CENTER BAY. TRUSSES SUPPORTING CRANEWAY TRACKS IN SIDE BAYS (CENTER FOREGROUND AND FAR BACKGROUND) ARE HOWE TRUSSES WITH WOOD DIAGONALS AND STEEL VERTICALS. TRUSSES SUPPORTING CRANEWAY TRACKS IN CENTER BAY (MID BACKGROUND) ARE PRATT TRUSSES WITH WOOD VERTICALS AND DIAGONALS. - Rosie the Riveter National Historical Park, Auxiliary Plate Shop, 912 Harbour Way, Richmond, Contra Costa County, CA

  15. The integration of a mesh reflector to a 15-foot box truss structure. Task 3: Box truss analysis and technology development

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Thiemet, W. F.; Morosow, G.

    1987-01-01

    To demonstrate the design and integration of a reflective mesh surface to a deployable truss structure, a mesh reflector was installed on a 15 foot box truss cube. The specific features demonstrated include: (1) sewing seams in reflective mesh; (2) mesh stretching to desired preload; (3) installation of surface tie cords; (4) installation of reflective surface on truss; (5) setting of reflective surface; (6) verification of surface shape/accuracy; (7) storage and deployment; (8) repeatability of reflector surface; and (9) comparison of surface with predicted shape using analytical methods developed under a previous task.

  16. P-1 truss moves into O&C Building

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss, a component of the International Space Station, sits inside the Operations and Checkout Building where it will undergo processing. The truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by-15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  17. STS-110 payload S0 Truss is moved to payload canister in O&C

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the Integrated Truss Structure S0 is ready to be moved to the payload canister for transport to the launch pad for mission STS-110. Part of the payload, the S0 truss will become the backbone of the orbiting International Space Station (ISS), at the center of the 10-truss, girderlike structure that will ultimately extend the length of a football field on the ISS. The S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission. Launch is scheduled for April 4.

  18. A crane moves toward the S0 truss to transfer it to a workstand in the O&C Bldg.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Operations and Checkout Bldg. (O&C), an overhead crane is centered over the S0 truss segment before lowering. The crane will move it to a workstand in the O&C where it will undergo processing. In the foreground is the protective cover just removed. During the processing, the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44- by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, 'Destiny,' which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108.

  19. Structural Analysis and Testing of an Erectable Truss for Precision Segmented Reflector Application

    NASA Technical Reports Server (NTRS)

    Collins, Timothy J.; Fichter, W. B.; Adams, Richard R.; Javeed, Mehzad

    1995-01-01

    This paper describes analysis and test results obtained at Langley Research Center (LaRC) on a doubly curved testbed support truss for precision reflector applications. Descriptions of test procedures and experimental results that expand upon previous investigations are presented. A brief description of the truss is given, and finite-element-analysis models are described. Static-load and vibration test procedures are discussed, and experimental results are shown to be repeatable and in generally good agreement with linear finite-element predictions. Truss structural performance (as determined by static deflection and vibration testing) is shown to be predictable and very close to linear. Vibration test results presented herein confirm that an anomalous mode observed during initial testing was due to the flexibility of the truss support system. Photogrammetric surveys with two 131-in. reference scales show that the root-mean-square (rms) truss-surface accuracy is about 0.0025 in. Photogrammetric measurements also indicate that the truss coefficient of thermal expansion (CTE) is in good agreement with that predicted by analysis. A detailed description of the photogrammetric procedures is included as an appendix.

  20. Wind turbine generator application places unique demands on tower design and materials

    NASA Technical Reports Server (NTRS)

    Kita, J. P.

    1978-01-01

    The most relevant contractual tower design requirements and goal for the Mod-1 tower are related to steel truss tower construction, cost-effective state-of-the-art design, a design life of 30 years, and maximum wind conditions of 120 mph at 30 feet elevation. The Mod-1 tower design approach was an iterative process. Static design loads were calculated and member sizes and overall geometry chosen with the use of finite element computer techniques. Initial tower dynamic characteristics were then combined with the dynamic properties of the other wind turbine components, and a series of complex dynamic computer programs were run to establish a dynamic load set and then a second tower design.

  1. KSC-03PD-0187

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- During Crew Equipment Interface Test activities in the Space Station Processing Facility, STS-115 Mission Specialists Heidemarie Stefanyshyn-Piper and Joseph Tanner look at equipment. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.

  2. Vibration control by limiting the maximum axial forces in space trusses

    NASA Technical Reports Server (NTRS)

    Chawla, Vikas; Utku, Senol; Wada, Ben K.

    1993-01-01

    Proposed here is a method of vibration control based on limiting the maximum axial forces in the active members of an adaptive truss. The actuators simulate elastic rigid-plastic behavior and consume the vibrational energy as work. The method is applicable to both statically determinate as well as indeterminate truss structures. However, for energy efficient control of statistically indeterminate trusses extra actuators may be provided on the redundant bars. An energy formulation relating the various control parameters is derived to get an estimate of the control time. Since the simulation of elastic rigid-plastic behavior requires a piecewise linear control law, a general analytical solution is not possible. Numerical simulation by step-by-step integration is performed to simulate the control of an example truss structure. The problems of application to statically indeterminate trusses and optimal actuator placement are identified for future work.

  3. P-1 truss arrival at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss, a component of the International Space Station, is moved from the Shuttle Landing Facility toward the newly constructed RLV hangar (viewed here from inside the hangar) as precaution against bad weather approaching the Center (background). The truss will eventually be transferred to the Operations and Checkout Building for processing. In the background is the Super Guppy transport that brought it to KSC. The P-1 truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by-15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P- 1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  4. TRUSS exacerbates NAFLD development by promoting IκBα degradation.

    PubMed

    Yu, Chang-Jiang; Wang, Qiu-Shi; Wu, Ming-Ming; Song, Bin-Lin; Liang, Chen; Lou, Jie; Tang, Liang-Liang; Yu, Xiao-Di; Niu, Na; Yang, Xu; Zhang, Bao-Long; Qu, Yao; Liu, Yang; Dong, Zhi-Chao; Zhang, Zhi-Ren

    2018-04-27

    There is no effective treatment method for non-alcoholic fatty liver disease (NAFLD), the most common liver disease. The exact mechanism underlying the pathogenesis of NAFLD remains to be elucidated. Here, we report that tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein (TRUSS) acts as a positive regulator of NAFLD and in a variety of metabolic disorders. TRUSS expression was respectively increased in the human liver specimens with NAFLD or non-alcoholic steatohepatitis (NASH), and in the livers of high-fat diet (HFD)-induced and genetically obese (ob/ob) mice. Conditional knockout of TRUSS in hepatocytes significantly ameliorated hepatic steatosis, insulin resistance (IR), glucose intolerance, and inflammatory responses in mice after HFD challenge or in spontaneous obese mice with normal chow (NC) feeding. All these HFD-induced pathological phenotypes were exacerbated in mice overexpressing TRUSS in hepatocytes. We show that TRUSS physically interacts with IκBα and promotes the ubiquitination and degradation of IκBα, which leading to aberrant activation of NF-κB. Overexpressing IκBα S32A/S36A , a phosphorylation-resistant mutant of IκBα, in the hepatocyte-specific TRUSS overexpressing mice almost abolished HFD-induced NAFLD and metabolic disorders. Hepatocyte TRUSS promotes pathological stimuli-induced NAFLD and metabolic disorders, via activation of NF-κB by promoting ubiquitination and degradation of IκBα. Our findings may provide a novel strategy for prevention and treatment of NAFLD by targeting TRUSS. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  5. 5. DETAIL VIEW OF TWO PANEL POINTS OF TRUSS, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL VIEW OF TWO PANEL POINTS OF TRUSS, SHOWING OVAL, TUBULAR UPPER CHORD MEMBER, VERTICALS, DIAGONALS, AND LOWER CHORD. - White Bowstring Arch Truss Bridge, Spanning Yellow Creek at Cemetery Drive (Riverside Drive), Poland, Mahoning County, OH

  6. 52. LOOKING NORTHWEST FROM BETWEEN TRUSSES B AND C OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. LOOKING NORTHWEST FROM BETWEEN TRUSSES B AND C OF THEATER ATTIC. NOTE CURVE OF ELLIPTICAL CEILING BELOW, AIR SUPPLY DUCTS, AND LATERAL BRACING ADDED BETWEEN TRUSSES. - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  7. 23. 100 foot through truss looking west from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. 100 foot through truss - looking west from the downstream side, view of a single through truss showing its general arrangement on extended column piers. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  8. Triage evaluation of gusset plates in steel truss bridges.

    DOT National Transportation Integrated Search

    2010-12-01

    Following research into the collapse of the I-35W steel truss bridge in Minneapolis, Minnesota, FHWA released recommendations for load rating the gusset plates of steel truss bridges. The recommendations include evaluation of several limit states, on...

  9. 9. DETAIL OF PRATT DECK TRUSS, AND NORTH PORTAL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF PRATT DECK TRUSS, AND NORTH PORTAL OF PENNSYLVANIA PETIT TRUSS WITH CONCRETE SUPPORTING PIER, LOOKING SOUTHWEST - James Bethel Gresham Memorial Bridge, Spanning Green Pond River at Kentucky Route 81, Calhoun, McLean County, KY

  10. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, photographers focus on the Integrated Truss Structure Z1, an element of the International Space Station, suspended by a crane overhead. The truss is being moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  11. P-1 truss moved to work stand in O&C Building

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Operations and Checkout Building, an overhead crane lifts the top of the canister containing the P-1 truss, a component of the International Space Station. The truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by- 15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  12. P-1 truss arrival at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers oversee the placement of the P-1 truss, a component of the International Space Station, onto a flatbed truck that will move it to the Operations and Checkout Building for processing. The P-1 truss, scheduled to fly in spring of 2002, is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by-15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P- 1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  13. KSC-02pd1507

    NASA Image and Video Library

    2002-10-10

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39A, technicians in the Payload Changout Room supervise the opening of the payload canister doors for transfer of the P1 truss. The P1 truss is the primary payload for Mission STS-113 to the International Space Station. It is the first port truss segment which will be attached to the Station’s central truss segment, S0. Once delivered, the P1 truss will remain stowed until flight 12A.1. The mission will also deliver the Expedition 6 crew to the Station and return Expedition 5 to Earth. Space Shuttle Endeavour is scheduled to launch no earlier than Nov. 10 on the 11-day mission.

  14. KSC-99pp1191

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- A KSC transporter moves the Guppy cargo carrier encasing the S1 truss into the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the International Space Station is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001

  15. 35. SECOND FLOOR WEST ROOM LOOKING NORTH. The two trusses ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SECOND FLOOR WEST ROOM LOOKING NORTH. The two trusses above this room date from 1812. They differ from the 1755 salvaged trusses in that they are made of pine rather than poplar, their numbering system differs, and they do not have pockets for joists. These two trusses were added to extend the plan of the building when it was re-erected in 1812. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  16. The International Space Station Photographed During the STS-112 Mission

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The newly added S1 truss is visible in the center frame. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S-1 (S-One), the Starboard Side Thermal Radiator Truss,and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  17. Development of Bonded Joint Technology for a Rigidizable-Inflatable Deployable Truss

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III

    2006-01-01

    Microwave and Synthetic Aperture Radar antenna systems have been developed as instrument systems using truss structures as their primary support and deployment mechanism for over a decade. NASA Langley Research Center has been investigating fabrication, modular assembly, and deployment methods of lightweight rigidizable/inflatable linear truss structures during that time for large spacecraft systems. The primary goal of the research at Langley Research Center is to advance these existing state-of-the-art joining and deployment concepts to achieve prototype system performance in a relevant space environment. During 2005, the development, fabrication, and testing of a 6.7 meter multi-bay, deployable linear truss was conducted at Langley Research Center to demonstrate functional and precision metrics of a rigidizable/inflatable truss structure. The present paper is intended to summarize aspects of bonded joint technology developed for the 6.7 meter deployable linear truss structure while providing a brief overview of the entire truss fabrication, assembly, and deployment methodology. A description of the basic joint design, surface preparation investigations, and experimental joint testing of component joint test articles will be described. Specifically, the performance of two room temperature adhesives were investigated to obtain qualitative data related to tube folding testing and quantitative data related to tensile shear strength testing. It was determined from the testing that a polyurethane-based adhesive best met the rigidizable/inflatable truss project requirements.

  18. High cycle fatigue crack modeling and analysis for deck truss flooring connection details : appendices.

    DOT National Transportation Integrated Search

    1997-07-01

    The appendix belongs to "High cycle fatigue crack modeling and analysis for deck truss flooring connection details : final report". : The Oregon Department of Transportation is responsible for many steel deck truss bridges containing connection detai...

  19. Newly Installed S-1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. This is a view of the newly installed S1 Truss as photographed during the mission's first scheduled EVA. The Station's Canadarm2 is in the foreground. Visible are astronauts Piers J. Sellers (lower left) and David A. Wolf (upper right), both STS-112 mission specialists.

  20. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. At his side is Tip Talone, NASA director of International Space Station and Payload Processing at KSC. Talone and Col. Duffy received a symbolic key for the truss from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS- 92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  1. Hoop/column and tetrahedral truss electromagnetic tests

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1987-01-01

    The distortion of antennas was measured with a metric camera system at discrete target locations on the surface. Given are surface distortion for hoop column reflector antennas, for tetrahedral truss reflector antennas, and distortion contours for the tetrahedral truss reflector. Radiation patterns at 2.27-GHz, 4.26-GHz, 7.73-GHz and 11.6-GHz are given for the hoop column antenna. Also given are radiation patterns at 4.26-GHz and 7.73-GHz for the tetrahedral truss antenna.

  2. KSC-03PD-0186

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Joseph Tanner (center) works a piece of equipment during Crew Equipment Interface Test activities in the Space Station Processing Facility. On the right is Mission Specialist Heidemarie Stefanyshyn-Piper. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.

  3. Heavily loaded joints for assembling aerobrake support trusses

    NASA Technical Reports Server (NTRS)

    Bandel, Hannskarl; Olsson, Nils; Levintov, Boris

    1990-01-01

    The major emphasis was to develop erectable joints for large aerobrake support trusses. The truss joints must be able to withstand the large forces experienced by the truss during the aero-pass, as well as be easily assembled and disassembled on orbit by astronauts or robots. Other important design considerations include; strength, stiffness, and allowable error in strut length. Six mechanical joint designs, as well as a seventh joint design, where a high strength epoxy is injected to make the connection rigid, are presented.

  4. Aerodynamic Analysis of Variable Geometry Raked Wingtips for Mid-Range Transonic Transport Aircraft

    NASA Astrophysics Data System (ADS)

    Jingeleski, David J.

    Previous applications have shown that a wingtip treatment on a commercial airliner will reduce drag and increase fuel efficiency and the most common types of treatment are blended winglets and raked wingtips. With Boeing currently investigating novel designs for its next generation of airliners, a variable geometry raked wingtip novel control effector (VGRWT/NCE) was studied to determine the aerodynamic performance benefits over an untreated wingtip. The Boeing SUGAR design employing a truss-braced wing was selected as the baseline. Vortex lattice method (VLM) and computational fluid dynamics (CFD) software was implemented to analyze the aerodynamic performance of such a configuration applied to a next-generation, transonic, mid-range transport aircraft. Several models were created to simulate various sweep positions for the VGRWT/NCE tip, as well as a baseline model with an untreated wingtip. The majority of investigation was conducted using the VLM software, with CFD used largely as a validation of the VLM analysis. The VGRWT/NCE tip was shown to increase the lift of the wing while also decreasing the drag. As expected, the unswept VGRWT/NCE tip increases the amount of lift available over the untreated wingtip, which will be very beneficial for take-off and landing. Similarly, the swept VGRWT/NCE tip reduced the drag of the wing during cruise compared to the unmodified tip, which will favorably impact the fuel efficiency of the aircraft. Also, the swept VGRWT/NCE tip showed an increase in moment compared to the unmodified wingtip, implying an increase in stability, as well providing an avenue for roll control and gust alleviation for flexible wings. CFD analysis validated VLM as a useful low fidelity tool that yielded quite accurate results. The main results of this study are tabulated "deltas" in the forces and moments on the VGRWT/NCE tip as a function of sweep angle and aileron deflection compared to the baseline wing. A side study of the effects of the joint between the main wing and the movable tip showed that the drag impact can be kept small by careful design.

  5. solveTruss v1.0: Static, global buckling and frequency analysis of 2D and 3D trusses with Mathematica

    NASA Astrophysics Data System (ADS)

    Ozbasaran, Hakan

    Trusses have an important place amongst engineering structures due to many advantages such as high structural efficiency, fast assembly and easy maintenance. Iterative truss design procedures, which require analysis of a large number of candidate structural systems such as size, shape and topology optimization with stochastic methods, mostly lead the engineer to establish a link between the development platform and external structural analysis software. By increasing number of structural analyses, this (probably slow-response) link may climb to the top of the list of performance issues. This paper introduces a software for static, global member buckling and frequency analysis of 2D and 3D trusses to overcome this problem for Mathematica users.

  6. A design procedure for a tension-wire stiffened truss-column

    NASA Technical Reports Server (NTRS)

    Greene, W. H.

    1980-01-01

    A deployable, tension wire stiffened, truss column configuration was considered for space structure applications. An analytical procedure, developed for design of the truss column and exercised in numerical studies, was based on equivalent beam stiffness coefficients in the classical analysis for an initially imperfect beam column. Failure constraints were formulated to be used in a combined weight/strength and nonlinear mathematical programming automated design procedure to determine the minimum mass column for a particular combination of design load and length. Numerical studies gave the mass characteristics of the truss column for broad ranges of load and length. Comparisons of the truss column with a baseline tubular column used a special structural efficiency parameter for this class of columns.

  7. Control of flexible beams using a free-free active truss

    NASA Technical Reports Server (NTRS)

    Clark, W. W.; Kimiavi, B.; Robertshaw, H. H.

    1989-01-01

    An analytical and experimental study involving controlling flexible beams using a free-free active truss is presented. This work extends previous work in controlling flexible continua with active trusses which were configured with fixed-free boundary conditions. The following describes the Lagrangian approach used to derive the equations of motion for the active truss and the beams attached to it. A partial-state feedback control law is derived for this system based on a full-state feedback Linear Quadratic Regulator method. The analytical model is examined via numerical simulations and the results are compared to a similar experimental apparatus described herein. The results show that control of a flexible continua is possible with a free-free active truss.

  8. Application of Terrestrial Laser Scanning to Study the Geometry of Slender Objects

    NASA Astrophysics Data System (ADS)

    Muszynski, Zbigniew; Milczarek, Wojciech

    2017-12-01

    Slender objects are a special group among the many types of industrial structures. These objects are characterized by a considerable height which is at least several times bigger than the diameter of the base. Mainly various types of industrial chimneys, as well as truss masts, towers, radio and television towers and also windmill columns belong to this group. During their operation slender objects are exposed to a number of unfavourable factors. For this reason, these objects require regular inspection, including geodetic measurements. In the paper the results of geodetic control of geometry of industrial chimney with a height of 120 m has been presented. The measurements were made by means of terrestrial laser scanning technique under rather unfavourable conditions (at night, during snowfall, with low air temperature) which allowed to verify the real usefulness and accuracy of this technique in engineering practice. On the basis of point cloud, the values of deviations from the vertical for main axis of the chimney have been calculated. Using point cloud, the selected horizontal cross sections of chimney were analysed and were compared with the archival geodetic documentation. On this basis the final conclusions about the advantages and limitations of the using of terrestrial laser scanning technique for the control of geometry of high industrial chimneys have been formulated.

  9. 9. OBLIQUE VIEW, PARTIAL WEST SPAN, FROM SOUTHWEST, SHOWING TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. OBLIQUE VIEW, PARTIAL WEST SPAN, FROM SOUTHWEST, SHOWING TRUSS PANELS AND SOLID CONFIGURATION OF TRUSS MEMBERS, INCLUDING POLYGONAL TOP CHORD, VERTICAL AND DIAGONAL MEMBERS, AND CROSS-STRUTS - Glendale Road Bridge, Spanning Deep Creek Lake on Glendale Road, McHenry, Garrett County, MD

  10. DETAIL OF "FEET" OF MAIN TRUSS NORTH END. NOTE PLATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF "FEET" OF MAIN TRUSS NORTH END. NOTE PLATES ON WHICH FEET REST ALLOWING EXPANSION OF TRUSS AS IT EXPANDS AND SHRINKS UNDER THE SUN - Missouri & North Arkansas Railroad Bridge, Spanning Middle Fork Little Red River, Shirley, Van Buren County, AR

  11. Investigation of the Dayton IR 75 sign truss failure of 9/11/06.

    DOT National Transportation Integrated Search

    2007-03-01

    Based upon a combination of in-situ field monitoring of traffic-induced bridge : vibrations at the location of the failed sign support truss, finite element simulation of the : expected dynamic response of the original truss in such an environment, t...

  12. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. Pictured are The Boeing Co. processing team and STS-92 astronauts. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build- ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998.

  13. Space structures concepts and materials

    NASA Technical Reports Server (NTRS)

    Nowitzky, A. M.; Supan, E. C.

    1988-01-01

    An extension is preseted of the evaluation of graphite/aluminum metal matrix composites (MMC) for space structures application. A tubular DWG graphite/aluminum truss assembly was fabricated having the structural integrity and thermal stability needed for space application. DWG is a proprietary thin ply continuous graphite reinforced aluminum composite. The truss end fittings were constructed using the discontinuous ceramic particulate reinforced MMC DWAl 20 (trademark). Thermal stability was incorporated in the truss by utilizing high stiffness, negative coefficient of thermal expansion (CTE) P100 graphite fibers in a 6061 aluminum matrix, crossplied to provide minimized CTE in the assembled truss. Tube CTE was designed to be slightly negative to offset the effects of the end fitting and sleeve, CTE values of which are approx. 1/2 that of aluminum. In the design of the truss configuration, the CTE contribution of each component was evaluated to establish the component dimension and layup configuration required to provide a net zero CTE in the subassemblies which would then translate to a zero CTE for the entire truss bay produced.

  14. Truss beam having convex-curved rods, shear web panels, and self-aligning adapters

    NASA Technical Reports Server (NTRS)

    Fernandez, Ian M. (Inventor)

    2013-01-01

    A truss beam comprised of a plurality of joined convex-curved rods with self-aligning adapters (SAA) adhesively attached at each end of the truss beam is disclosed. Shear web panels are attached to adjacent pairs of rods, providing buckling resistance for the truss beam. The rods are disposed adjacent to each other, centered around a common longitudinal axis, and oriented so that adjacent rod ends converge to at least one virtual convergence point on the common longitudinal axis, with the rods' curvature designed to increase prevent buckling for the truss beam. Each SAA has longitudinal bores that provide self-aligning of the rods in the SAA, the self-aligning feature enabling creation of strong adhesive bonds between each SAA and the rods. In certain embodiments of the present invention, pultruded unidirectional carbon fiber rods are coupled with carbon fiber shear web panels and metal SAA(s), resulting in a lightweight, low-cost but strong truss beam that is highly resistant to buckling.

  15. KSC-00pp1060

    NASA Image and Video Library

    2000-07-31

    The STS-92 astronaut team study the the Zenith-1 (Z-1) Truss during the Crew Equipment Interface Test. The Z-1 Truss was officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. The truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  16. KSC-00pp1059

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy discusses the significance of the Z-1 Truss during a press conference after the presentation. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  17. STS-112 S1 Truss Payload arrives at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, rolls to a stop at KSC's Shuttle Landing Facility. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the I SS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communicatio ns systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique 'fold-away' nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an elec tric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building

  18. Advanced bridge safety initiative: phase 2, task 1 - rivet testing of rivets taken from Maine truss bridge.

    DOT National Transportation Integrated Search

    2016-03-01

    The Maine Department of Transportation (MaineDOT) has removed 25 rivets from an existing, older truss bridge. : Many such truss bridges have low rating factors as determined using Federal Highway Administration (FHWA) : and the American Association o...

  19. Experimental tests and numerical analyses of steel truss bridge gusset connections.

    DOT National Transportation Integrated Search

    2012-11-01

    Gusset plates connect individual steel truss bridge members together at a node. In 10% of the 200,000 steel bridges in US in 2008, failure of a : single truss or connection could lead to collapse. Regular inspection and load rating are essential for ...

  20. 29 CFR 1926.751 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... process of erection. Steel joist means an open web, secondary load-carrying member of 144 feet (43.9 m) or... structural steel trusses or cold-formed joists. Steel joist girder means an open web, primary load-carrying... structural steel trusses. Steel truss means an open web member designed of structural steel components by the...

  1. 29 CFR 1926.751 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process of erection. Steel joist means an open web, secondary load-carrying member of 144 feet (43.9 m) or... structural steel trusses or cold-formed joists. Steel joist girder means an open web, primary load-carrying... structural steel trusses. Steel truss means an open web member designed of structural steel components by the...

  2. A loading study of older highway bridges in Virginia. Pt. 1, Steel truss bridge in Allegheny County.

    DOT National Transportation Integrated Search

    1976-01-01

    A comprehensive field test was conducted on a highway truss bridge in Allegheny County, Virginia, in July 1974. All typical truss members as well as structural members of the bridge floor system were instrumented and unit strains measured when the st...

  3. The design and development of a two-dimensional adaptive truss structure

    NASA Technical Reports Server (NTRS)

    Kuwao, Fumihiro; Motohashi, Shoichi; Yoshihara, Makoto; Takahara, Kenichi; Natori, Michihiro

    1987-01-01

    The functional model of a two dimensional adaptive truss structure which can purposefully change its geometrical configuration is introduced. The details of design and fabrication such as kinematic analysis, dynamic characteristics analysis and some test results are presented for the demonstration of this two dimensional truss concept.

  4. Investigation of the Dayton IR 75 sign truss failure of 9/11/06 : executive summary.

    DOT National Transportation Integrated Search

    2007-03-01

    Based upon a combination of in-situ field monitoring of traffic-induced bridge vibrations at the location of the failed sign support truss, finite element simulation of the expected dynamic response of the original truss in such an environment, the l...

  5. Detail of tension bars at end posts western truss. Shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of tension bars at end posts western truss. Shows adjustable bars at top of structure; diagonal and vertical members on truss are not adjustable. Looking north from civilian land. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  6. Mir 21 cosmonauts assemble a truss during EVA

    NASA Image and Video Library

    1996-10-01

    NM21-382-010 (For Release October 1996) --- Mir 21 commander Yury I. Onufrienko (left), wearing a red stripe on his Russian Orlan spacesuit, and Mir 21 flight engineer Yury V. Usachev (blue stripe on Orlan)traverse an existing truss on the Kvant module with a folded truss in tow.

  7. STS-110 payload S0 Truss is moved to payload canister in O&C

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building watch as the Integrated Truss Structure S0 is lowered into the payload canister. The S0 truss will soon be on its way to the launch pad for mission STS-110. Part of the payload on Space Shuttle Atlantis, the S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission, becoming the backbone of the orbiting International Space Station (ISS). Launch is scheduled for April 4.

  8. Space station structures development

    NASA Technical Reports Server (NTRS)

    Teller, V. B.

    1986-01-01

    A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.

  9. STS-113 Mission Specialists during TCDT in SSPF

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. --STS-113 Mission Specialists John Herrington (left) and Michael Lopez-Alegria (center) look over equipment involved in their mission during Crew Equipment Interface Test activities in the Space Station Processing Facility. Part of the payload on mission STS-113 is the first port truss segment, P1 Truss, to be attached to the central truss segment, S0, on the International Space Station. Once delivered, the P1 truss will remain stowed until flight 12A.1. Launch date for STS-113 is under review.

  10. Section NN, showing steel roof trusses, mezzanine iron railing, first ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section NN, showing steel roof trusses, mezzanine iron railing, first floor doors, etc. San Bernardino Valley Union Junior College, Library Building. Also includes steel truss roof plan and a small stress diagram of the truss. Howard E. Jones, Architect, San Bernardino, California. Sheet 8, job no. 315. Scales 1/2 inch to the foot (section), and 1/8 and 1/16 inch to the foot. No date given on sheet (probably March or April, 1927). - San Bernardino Valley College, Library, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  11. STS-112 crew in front of S0 Truss Structure

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the STS-112 crew stands under the S0 Integrated Truss Structure, waiting to be transported to the launch pad for mission STS-110. From left are Mission Specialist David Wolf, Pilot Pam ela Melroy; Commander Jeffrey Ashby; and Mission Specialist Piers Sellers. Mission STS-112 will be ferrying the S1 ITS to the International Space Station on its scheduled Aug. 15 flight. The S1 truss will be attached to the S0 truss

  12. Constraint factor in optimization of truss structures via flower pollination algorithm

    NASA Astrophysics Data System (ADS)

    Bekdaş, Gebrail; Nigdeli, Sinan Melih; Sayin, Baris

    2017-07-01

    The aim of the paper is to investigate the optimum design of truss structures by considering different stress and displacement constraints. For that reason, the flower pollination algorithm based methodology was applied for sizing optimization of space truss structures. Flower pollination algorithm is a metaheuristic algorithm inspired by the pollination process of flowering plants. By the imitation of cross-pollination and self-pollination processes, the randomly generation of sizes of truss members are done in two ways and these two types of optimization are controlled with a switch probability. In the study, a 72 bar space truss structure was optimized by using five different cases of the constraint limits. According to the results, a linear relationship between the optimum structure weight and constraint limits was observed.

  13. Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm

    NASA Astrophysics Data System (ADS)

    Hasançebi, O.; Kazemzadeh Azad, S.

    2014-01-01

    This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.

  14. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, W. K.; Thomas, F. P.

    1992-10-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  15. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Thomas, F. P.

    1992-01-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  16. Efficient development and processing of thermal math models of very large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.

    1993-01-01

    As the spacecraft moves along the orbit, the truss members are subjected to direct and reflected solar, albedo and planetary infra-red (IR) heating rates, as well as IR heating and shadowing from other spacecraft components. This is a transient process with continuously changing heating loads and the shadowing effects. The resulting nonuniform temperature distribution may cause nonuniform thermal expansion, deflection and stress in the truss elements, truss warping and thermal distortions. There are three challenges in the thermal-structural analysis of the large truss structures. The first is the development of the thermal and structural math models, the second - model processing, and the third - the data transfer between the models. All three tasks require considerable time and computer resources to be done because of a very large number of components involved. To address these challenges a series of techniques of automated thermal math modeling and efficient processing of very large space truss structures were developed. In the process the finite element and finite difference methods are interfaced. A very substantial reduction of the quantity of computations was achieved while assuring a desired accuracy of the results. The techniques are illustrated on the thermal analysis of a segment of the Space Station main truss.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-16

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S1 (S-One), the Starboard Side Thermal Radiator Truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  18. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting

    PubMed Central

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-01-01

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique. PMID:27214495

  19. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.

    PubMed

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-05-14

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.

  20. [Technology Development for X-Ray Reflection for the Constellation-X Reflection Grating Spectrometer (RGS)

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2003-01-01

    This Grant covers MIT support for the technology development of x-ray reflection gratings for the Constellation-X Reflection Grating Spectrometer (RGS). Since the start of the Grant MIT has extended its previously-developed patterning and super-smooth, blazed grating fabrication technology to ten-times smaller grating periods and ten-times larger blaze angles to demonstrate feasibility and performance in the off-plane grating geometry. In the past year we successfully developed several nanoimprint grating replication methods that achieved very high fidelity replication of master silicon gratings. Grating geometry on the nano and macro scales were faithfully replicated, demonstrating the viability of the process for manufacturing the thousands of gratings required for the RGS. We also successfully developed an improved metrology truss for holding test grating substrates during metrology. The flatness goal of grating substrates is under 500 nm. In the past, grating holders would cause non-repeatable distortion of >> 500 nm to the substrates due to friction and gravity sag. The new holder has a repeatability of under 50 nm which is adequate for the proposed RGS grating substrates.

  1. 24 CFR 3280.402 - Test procedure for roof trusses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... trusses that are supported at the ends and support design loads. Where roof trusses act as support for... shall be spaced at the design spacing and shall be mounted on solid support accurately positioned to give the required clear span distance (L) as specified in the design. The top and bottom chords shall...

  2. Effects of local vibrations on the dynamics of space truss structures

    NASA Technical Reports Server (NTRS)

    Warnaar, Dirk B.; Mcgowan, Paul E.

    1987-01-01

    The paper discusses the influence of local member vibrations on the dynamics of repetitive space truss structures. Several focus problems wherein local member vibration modes are in the frequency range of the global truss modes are discussed. Special attention is given to defining methods that can be used to identify the global modes of a truss structure amidst many local modes. Significant interactions between the motions of local member vibrations and the global behavior are shown to occur in truss structures when: (1) the natural frequencies of the individual members for clamped-clamped boundary conditions are in the vicinity of the global truss frequency; and (2) the total mass of the individual members represents a large portion of the mass of the whole structure. The analysis is carried out with a structural analysis code which uses exact member theory. The modeling detail required using conventional finite element codes to adequately represent such a class of problems is examined. The paper concludes with some practical considerations for the design and dynamic testing of structures which might exhibit such behavior.

  3. International Space Station (ISS) S1 Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shown here is the International Space Station (ISS) S1 Truss in preparation for installation in the payload bay of the Space Shuttle Atlantis at NASA's Kennedy Space Center )KSC)in Florida. The truss launched October 7, 2002 on the STS-112 mission and will be attached during three spacewalks. Constructed primarily of aluminum, it measures 45 feet long, 15 feet wide, 10 feet tall, and weighs over 27,000 pounds. It is one of nine similar truss segments that, combined, will serve as the Station's main backbone, measuring 356 feet from end to end upon completion. Manufactured by the Boeing Company in Huntington Beach, California, the truss was flown to the Marshall Space Flight Center, in Huntsville, Alabama where brackets, cable trays, fluid tubing, and other secondary components and outfitting items were added. In Huntsville, it was screened for manufacturing flaws, including pressure and leak checking tubing, and electrical checks for cabling, before being shipped to KSC for final hardware installation and testing. The Space Station's labs, living modules, solar arrays, heat radiators, and other main components will be attached to the truss.

  4. KSC-99pd0682

    NASA Image and Video Library

    1999-06-12

    KENNEDY SPACE CENTER, FLA. -- Inside the Operations and Checkout Bldg. (O&C), an overhead crane is centered over the S0 truss segment before lowering. The crane will move it to a workstand in the O&C where it will undergo processing. In the foreground is the protective cover just removed. During the processing, the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes will be installed. Four Global Positioning System antennas are already installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will be at the center of the ISS 10-truss, girderlike structure that will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the first quarter of 2001 on mission STS-108

  5. Experimental characterization of deployable trusses and joints

    NASA Technical Reports Server (NTRS)

    Ikegami, R.; Church, S. M.; Keinholz, D. A.; Fowler, B. L.

    1987-01-01

    The structural dynamic properties of trusses are strongly affected by the characteristics of joints connecting the individual beam elements. Joints are particularly significant in that they are often the source of nonlinearities and energy dissipation. While the joints themselves may be physically simple, direct measurement is often necessary to obtain a mathematical description suitable for inclusion in a system model. Force state mapping is a flexible, practical test method for obtaining such a description, particularly when significant nonlinear effects are present. It involves measurement of the relationship, nonlinear or linear, between force transmitted through a joint and the relative displacement and velocity across it. An apparatus and procedure for force state mapping are described. Results are presented from tests of joints used in a lightweight, composite, deployable truss built by the Boeing Aerospace Company. The results from the joint tests are used to develop a model of a full 4-bay truss segment. The truss segment was statically and dynamically tested. The results of the truss tests are presented and compared with the analytical predictions from the model.

  6. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  7. Solar panel truss mounting systems and methods

    DOEpatents

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  8. KSC-99pp0773

    NASA Image and Video Library

    1999-06-18

    KENNEDY SPACE CENTER, FLA. -- Workers in the Operations & Checkout Bldg. (O&C) look over a central component of the International Space Station (ISS), the S0 (S zero) truss. It is undergoing processing in the O&C during which the Canadian Mobile Transporter, power distribution system modules, a heat pipe radiator for cooling, computers, and a pair of rate gyroscopes are being installed. A 44by 15-foot structure weighing 30,800 pounds when fully outfitted and ready for launch, the truss will ultimately extend the length of a football field. Eventually the S0 truss will be attached to the U.S. Lab, "Destiny," which is scheduled to be added to the ISS in April 2000. Later, other trusses will be attached to the S0 on-orbit. The S0 truss is scheduled to be launched in the spring of 2001

  9. The Z1 truss is placed in stand to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Integrated Truss Structure Z1 rests in the workstand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  10. The Z1 truss is lowered to stand to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, an overhead crane lowers the Integrated Truss Structure Z1 onto a workstand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  11. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  12. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is lifted for moving to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  13. Robotic space construction

    NASA Technical Reports Server (NTRS)

    Mixon, Randolph W.; Hankins, Walter W., III; Wise, Marion A.

    1988-01-01

    Research at Langley AFB concerning automated space assembly is reviewed, including a Space Shuttle experiment to test astronaut ability to assemble a repetitive truss structure, testing the use of teleoperated manipulators to construct the Assembly Concept for Construction of Erectable Space Structures I truss, and assessment of the basic characteristics of manipulator assembly operations. Other research topics include the simultaneous coordinated control of dual-arm manipulators and the automated assembly of candidate Space Station trusses. Consideration is given to the construction of an Automated Space Assembly Laboratory to study and develop the algorithms, procedures, special purpose hardware, and processes needed for automated truss assembly.

  14. An analytical study of a six degree-of-freedom active truss for use in vibration control

    NASA Technical Reports Server (NTRS)

    Wynn, Robert H., Jr.; Robertshaw, Harry H.; Horner, C. Garnett

    1990-01-01

    An analytical study of the vibration control capabilities of three configurations of an active truss is presented. The truss studied is composed of two bays of an octahedral-octahedral configuration. The three configurations of the active truss studies are: all six battens activated (6 DOF), the top three battens activated (3 DOF), and the bottom three battens activated (3 DOF). The closed-loop vibration control response of these three configurations are studied with respect to: vibration attenuation, energy utilized, and the effects of motor drive amplifier saturation non-linearities.

  15. Morphing hull implementation for unmanned underwater vehicles

    NASA Astrophysics Data System (ADS)

    Miller, Timothy F.; Gandhi, Farhan; Rufino, Russell J.

    2013-11-01

    There has been much interest and work in the area of morphing aircraft since the 1980s. Morphing could also potentially benefit unmanned underwater vehicles (UUVs). The current paper envisions a UUV with an interior pressure hull and a variable diameter outer flexible hull with fuel stored in the annulus between, and presents a mechanism to realize diameter change of the outer hull. The outer hull diameter of UUVs designed for very long endurance/range could be progressively reduced as fuel was consumed, thereby reducing drag and further increasing endurance and range capability. Diameter morphing could also be advantageous for compact storage of UUVs. A prototype is fabricated to represent an axial section of such a morphing diameter UUV. Diameter change is achieved using eight morphing trusses arranged equidistant around the circumference of the representative interior rigid hull. Each morphing truss has a lower rail (attached to the rigid hull) and an upper rail with V-linkages between, at either ends of the rail. Horizontal motion of the feet of the V-linkages (sliding in the lower rail) results in vertical motion of the upper rail which in turn produces diameter change of the outer hull. For the prototype built and tested, a 63% increase in outer diameter from 12.75″ to 20.75″ was achieved. The introduction of a stretched latex representative flexible skin around the outer rails increased actuation force requirement and led to a propensity for the wheel-in-track sliders in the morphing truss to bind. It is anticipated that this could be overcome with higher precision manufacturing. In addition to symmetric actuation of the morphing trusses resulting in diameter change, the paper also shows that with asymmetric actuation the hull cross-section shape can be changed (for example, from a circular section for underwater operation to a V-section for surface operations).

  16. The International Space Station Photographed During STS-112 Mission

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S1 (S-One), the Starboard Side Thermal Radiator Truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  17. KSC-99pp1181

    NASA Image and Video Library

    1999-10-06

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, rolls to a stop at KSC's Shuttle Landing Facility. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building

  18. KSC-99pp1180

    NASA Image and Video Library

    1999-10-06

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, arrives at KSC's Shuttle Landing Facility from Marshall Space Flight Center. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be moved to the Operations and Checkout Building

  19. KSC-99pp1182

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At KSC's Shuttle Landing Facility, NASA's Super Guppy opens to reveal its cargo, the International Space Station's (ISS) S1 truss. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building

  20. KSC-99pp1185

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, workers attach cranes to the S1 truss, a segment of the International Space Station, to lift the truss to a payload transporter for its transfer to the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The truss arrived at KSC aboard NASA's Super Guppy, with a 25-foot diameter fuselage designed to handle oversized loads. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight

  1. KSC-99pp1183

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the newly arrived S1 truss, a segment of the International Space Station (ISS), is offloaded from NASA's Super Guppy aircraft. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is being transferred to the Operations and Checkout Building

  2. 25. "CAST IRON HOWE TRUSS CARRYING PENNA STATE HIGHWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. "CAST IRON HOWE TRUSS - CARRYING PENNA STATE HIGHWAY ROUTE #83 OVER READING CO. TRACKS - SOUTH OF READING, PENNA, Dwg. #6 - Sht. #1", dated November 20, 1956, shows partial side elevation of bridge truss, beginning at end post - Reading-Halls Station Bridge, U.S. Route 220, spanning railroad near Halls Station, Muncy, Lycoming County, PA

  3. Description of the 3 MW SWT-3 wind turbine at San Gorgonio Pass, California

    NASA Technical Reports Server (NTRS)

    Rybak, S. C.

    1982-01-01

    The SWT-3 wind turbine, a microprocessor controlled three bladed variable speed upwind machine with a 3MW rating that is presently operational and undergoing system testing, is discussed. The tower, a rigid triangular truss configuration, is rotated about its vertical axis to position the wind turbine into the prevailing wind. The blades rotate at variable speed in order to maintain an optimum 6 to 1 tip speed ratio between cut in and fated wind velocity, thereby maximizing power extraction from the wind. Rotor variable speed is implemented by the use of a hydrostatic transmission consisting of fourteen fixed displacement pumps operating in conjunction with eighteen variable displacement motors. Full blade pitch with on-off hydraulic actuation is used to maintain 3MW of output power.

  4. Troika partnership model for licensing NASA-LaRC technologies

    NASA Technical Reports Server (NTRS)

    Maclin, Arlene P.

    1995-01-01

    The Technology Applications (TAG) Group at NASA Langley Research Center has currently more than 100 technologies that are ripe for commercialization. These technologies are categorized by various sectors including: Energy and the Environment; Materials and Structures; Manufacturing; Information and Communications; Transportation, and Medical/Sensor/ Instrumentation. A requirement that TAG has placed on all technologies ready for licensing is that there will be some university involvement in the technology transfer or knowledge transfer process. This model involves the troika of government (LaRC), industry and university. A number of variations on the Troika Partnership Model (TPM) were developed as a part of this ASEE Fellowship. Furthermore, five technologies were identified - three of which industrial interests have been matched: LaRC-SI, a thermoplastic that can be used as a coating; Variable Geometry Truss Manipulator Arm that can be used for nuclear waste clean -up and as scaffolding; and ADAPT (Approach to Data Management, Archive Protection, and Transmission) is a technology that could be used for a variety of multi-tasking operations over the Internet. The aim of this work was to initiate a Space Act Agreement (SAA) for at least one of these technologies using one of the options of the TPM. A preliminary partnership agreement using the SAA is currently being negotiated with NASA-LaRC, VPI and Virginia Power for the LaRC-SI thermoplastic that will be used as a coating.

  5. Analysis of Geometric Conception of the Historical Truss Church of All Saints in Vlčovice

    NASA Astrophysics Data System (ADS)

    Augustinková, Lucie; Krušinský, Peter; Korenková, Renáta; Holešová, Michaela

    2017-10-01

    Church of All Saints in Vlčovice was built likely in the second half of the XIV century and was consecrated in 1597 by catholic bishop Stanislav Pavlovsky from Olomouc. The vault and nave of the church was built in Baroque. The truss of the church was dendrochronological dating to 1767/68. Some elements of structure were dendrochronological dating to 1586 when it was constructed primary truss structure. Today’s appearance of the church is given by historicist modifications from the last quarter of the 19th century. Analysed truss has a rafter-collar tie structure with collar beams, pedestal struts. The roof structure has archaic form and we can include the structure into the earlier period by typology. These trusses were commonly used in this region and the wider cultural sphere at that time.

  6. Lifting system and apparatus for constructing wind turbine towers

    DOEpatents

    Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

    2011-02-01

    The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

  7. KSC-04pd1478

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (left) assists a technician check out the Pump Flow Control Subsystem (PFCS) before it is installed on the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  8. KSC-04pd1480

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (second from left) assists technicians position the Pump Flow Control Subsystem (PFCS) over the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  9. KSC-04pd1479

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician steadies the Pump Flow Control Subsystem (PFCS) as it is lifted and moved toward the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  10. KSC-04pd1481

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (second from left) assists technicians lower the Pump Flow Control Subsystem (PFCS) into position onto the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  11. KSC-04pd1482

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (left) assists technicians install the Pump Flow Control Subsystem (PFCS) onto the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  12. Vibration control in statically indeterminate adaptive truss structures

    NASA Technical Reports Server (NTRS)

    Baycan, C. M.; Utku, Senol; Wada, Ben K.

    1993-01-01

    In this work vibration control of statically indeterminate adaptive truss structures is investigated. Here, the actuators (i.e., length adjusting devices) that are used for vibration control, work against the axial forces caused by the inertial forces. In statically determinate adaptive trusses no axial force is induced by the actuation. The control problem in statically indeterminate trusses may be dominated by the actuation-induced axial element forces. The creation of actuation-induced axial forces puts the system to a higher energy state, thus aggravates the controls. It is shown that by the usage of sufficient number of slave actuators in addition to the actual control actuators, the actuation-induced axial element forces can be nullified, and the control problem of the statically indeterminate adaptive truss problem is reduced to that of a statically determinate one. It is also shown that the usage of slave actuators saves a great amount of control energy and provides robustness for the controls.

  13. KSC-00pp1054

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station, is shown on the floor of the Space Station Processing Facility. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  14. Solar panel truss mounting systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the basemore » rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.« less

  15. Preliminary design of a large tetrahedral truss/hexagonal heatshield panel aerobrake

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Mikulas, Martin M., Jr.

    1989-01-01

    An aerobrake structural concept is introduced which consists of two primary components: (1) a lightweight erectable tetrahedral support truss; and (2) sandwich hexagonal heatshield panels which, when attached to the truss, form a continuous impermeable aerobraking surface. Generic finite element models and a general analysis procedure to design tetrahedral truss/hexagonal heatshield panel aerobrakes is developed, and values of the aerobrake design parameters which minimize mass and packaging volume for a 120-foot-diameter aerobrake are determined. Sensitivity of the aerobrake design to variations in design parameters is also assessed. The results show that a 120-foot-diameter aerobrake is viable using the concept presented (i.e., the aerobrake mass is less than or equal to 15 percent of the payload spacecraft mass). Minimizing the aerobrake mass (by increasing the number of rings in the support truss) however, leads to aerobrakes with the highest part count.

  16. 11. 100 foot through truss north east bearing abutment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. 100 foot through truss - north east bearing abutment of the second through truss, showing that the bearing point is to the backmost position of the concrete pier. This bearing point is on a concrete extension of the original bearing point now covered by rock and soil. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  17. Multi-level optimization of a beam-like space truss utilizing a continuum model

    NASA Technical Reports Server (NTRS)

    Yates, K.; Gurdal, Z.; Thangjitham, S.

    1992-01-01

    A continuous beam model is developed for approximate analysis of a large, slender, beam-like truss. The model is incorporated in a multi-level optimization scheme for the weight minimization of such trusses. This scheme is tested against traditional optimization procedures for savings in computational cost. Results from both optimization methods are presented for comparison.

  18. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The completion of assembly of the beam builder and its first automatic production of truss is discussed. A four bay, hand assembled, roll formed members truss was built and tested to ultimate load. Detail design of the fabrication facility (beam builder) was completed and designs for subsystem debugging are discussed. Many one bay truss specimens were produced to demonstrate subsystem operation and to detect problem areas.

  19. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress in the development of a beam builder to be deployed by space shuttle for assembly of large structures in space is reported. The thermal coating for the structural truss was selected and the detail truss design and analysis completed. Data acquired during verification of the design of the basic 'building block' truss are included as well as design layouts for various fabrication facility subsystems.

  20. Nonlinear modeling of truss-plate joints

    Treesearch

    Leslie H. Groom; Anton Polensek

    1992-01-01

    A theoretical model is developed for predicting mechanisms of load transfer between a wood member and a metal die-punched truss plate. The model, which treats a truss-plate tooth as a beam on an inelastic foundation of wood and applies Runae-Kutta numerical analysis to solve the governing differentia1 equations, predicts the load-disp1acement trace and ultimate load of...

  1. Progress in composite structure and space construction systems technology

    NASA Technical Reports Server (NTRS)

    Bodle, J. B.; Jenkins, L. M.

    1981-01-01

    The development of deployable and fabricated composite trusses for large space structures by NASA and private industry is reviewed. Composite materials technology is discussed with a view toward fabrication processes and the characteristics of finished truss beams. Advances in roll-forming open section caps from graphite-composite strip material and new ultrasonic welding techniques are outlined. Vacuum- and gravity-effect test results show that the ultrasonic welding of graphite-thermoplastic materials in space is feasible. The structural characteristics of a prototype truss segment are presented. A new deployable graphite-composite truss with high packaging density for broad application to large space platforms is described.

  2. Deployable geodesic truss structure

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr. (Inventor); Rhodes, Marvin D. (Inventor); Simonton, J. Wayne (Inventor)

    1987-01-01

    A deployable geodesic truss structure which can be deployed from a stowed state to an erected state is described. The truss structure includes a series of bays, each bay having sets of battens connected by longitudinal cross members which give the bay its axial and torsional stiffness. The cross members are hinged at their mid point by a joint so that the cross members are foldable for deployment or collapsing. The bays are deployed and stabilized by actuator means connected between the mid point joints of the cross members. Hinged longerons may be provided to also connect the sets of battens and to collapse for stowing with the rest of the truss structure.

  3. 3. Photographic copy of roof truss construction details for Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photographic copy of roof truss construction details for Building 4505, Taylor & Barnes, Architects & Engineers, 803 W. Third Street, Los Angeles California, O.C.E. Office of Civil Engineer Job No. A(9-10), Military Construction: Materiel Command Flight Test Base, Muroc, California, Hangar and Auxiliary Buildings: Hangar Type P-A, Detail of Trusses T-2, T-3, T-4, T-5 & T6, Sheet No. 9, March 1944. A similar drawing for truss T-l is included in project field notes. Reproduced from the holdings of the National Archives, Pacific Southwest Region - Edwards Air Force Base, North Base, Hangar, End of North Base Road, Boron, Kern County, CA

  4. The P-1 truss in the O&C

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Part of the P-1 truss is seen as it rests in a workstand in the Operations and Checkout Building. Scheduled to fly in spring of 2002, the P-1 is part of a total 10-truss, girder-like structure that will ultimately extend the length of a football field. Astronauts will attach the 14- by 15-foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the International Space Station's radiators away from the sun to increase their maximum cooling efficiency.

  5. The Z1 truss is moved to check weight and balance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Space Station Processing Facility, workers watch as the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program.

  6. The Z1 truss is lifted up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  7. An approximation method for configuration optimization of trusses

    NASA Technical Reports Server (NTRS)

    Hansen, Scott R.; Vanderplaats, Garret N.

    1988-01-01

    Two- and three-dimensional elastic trusses are designed for minimum weight by varying the areas of the members and the location of the joints. Constraints on member stresses and Euler buckling are imposed and multiple static loading conditions are considered. The method presented here utilizes an approximate structural analysis based on first order Taylor series expansions of the member forces. A numerical optimizer minimizes the weight of the truss using information from the approximate structural analysis. Comparisons with results from other methods are made. It is shown that the method of forming an approximate structural analysis based on linearized member forces leads to a highly efficient method of truss configuration optimization.

  8. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  9. Adaptive Multi-Layer LMS Controller Design and Application to Active Vibration Suppression on a Truss and Proposed Impact Analysis Technique

    NASA Technical Reports Server (NTRS)

    Barney, Timothy A.; Shin, Y. S.; Agrawal, B. N.

    2001-01-01

    This research develops an adaptive controller that actively suppresses a single frequency disturbance source at a remote position and tests the system on the NPS Space Truss. The experimental results are then compared to those predicted by an ANSYS finite element model. The NPS space truss is a 3.7-meter long truss that simulates a space-borne appendage with sensitive equipment mounted at its extremities. One of two installed piezoelectric actuators and an Adaptive Multi-Layer LMS control law were used to effectively eliminate an axial component of the vibrations induced by a linear proof mass actuator mounted at one end of the truss. Experimental and analytical results both demonstrate reductions to the level of system noise. Vibration reductions in excess of 50dB were obtained through experimentation and over 100dB using ANSYS, demonstrating the ability to model this system with a finite element model. This report also proposes a method to use distributed quartz accelerometers to evaluate the location, direction, and energy of impacts on the NPS space truss using the dSPACE data acquisition and processing system to capture the structural response and compare it to known reference Signals.

  10. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks

    NASA Astrophysics Data System (ADS)

    Taylor, Shannon L.; Jakus, Adam E.; Koube, Katie D.; Ibeh, Amaka J.; Geisendorfer, Nicholas R.; Shah, Ramille N.; Dunand, David C.

    2018-02-01

    The development of in situ fabrication methods for the infrastructure required to support human life on the Moon is necessary due to the prohibitive cost of transporting large quantities of materials from the Earth. Cellular structures, consisting of a regular network (truss) of micro-struts with ∼500 μm diameters, suitable for bricks, blocks, panels, and other load-bearing structural elements for habitats and other infrastructure are created by direct-extrusion 3D-printing of liquid inks containing JSC-1A lunar regolith simulant powders, followed by sintering. The effects of sintering time, temperature, and atmosphere (air or hydrogen) on the microstructures, mechanical properties, and magnetic properties of the sintered lunar regolith micro-trusses are investigated. The air-sintered micro-trusses have higher relative densities, linear shrinkages, and peak compressive strengths, due to the improved sintering of the struts within the micro-trusses achieved by a liquid or glassy phase. Whereas the hydrogen-sintered micro-trusses show no liquid-phase sintering or glassy phase, they contain metallic iron 0.1-2 μm particles from the reduction of ilmenite, which allows them to be lifted with magnets.

  11. Design of internal support structures for an inflatable lunar habitat

    NASA Technical Reports Server (NTRS)

    Cameron, Elizabeth A.; Duston, John A.; Lee, David D.

    1990-01-01

    NASA has a long range goal of constructing a fully equipped, manned lunar outpost on the near side of the moon by the year 2015. The proposed outpost includes an inflatable lunar habitat to support crews during missions longer that 12 months. A design for the internal support structures of the inflatable habitat is presented. The design solution includes material selection, substructure design, assembly plan development, and concept scale model construction. Alternate designs and design solutions for each component of the design are discussed. Alternate materials include aluminum, titanium, and reinforced polymers. Vertical support alternates include column systems, truss systems, suspension systems, and lunar lander supports. Horizontal alternates include beams, trusses, floor/truss systems, and expandable trusses. Feasibility studies on each alternate showed that truss systems and expandable trusses were the most feasible candidates for conceptual design. The team based the designs on the properties of 7075 T73 aluminum. The substructure assembly plan, minimizes assembly time and allows crews to construct the habitat without the use of EVA suits. In addition to the design solutions, the report gives conclusions and recommendations for further study of the inflatable habitat design.

  12. KSC-00pp1057

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. At his side is Tip Talone, NASA director of International Space Station and Payload Processing at KSC. Talone and Col. Duffy received a symbolic key for the truss from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  13. KSC00pp1057

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. At his side is Tip Talone, NASA director of International Space Station and Payload Processing at KSC. Talone and Col. Duffy received a symbolic key for the truss from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  14. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-10

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-10

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. This is a view of the newly installed S1 Truss as photographed during the mission's first scheduled EVA. The Station's Canadarm2 is in the foreground. Visible are astronauts Piers J. Sellers (lower left) and David A. Wolf (upper right), both STS-112 mission specialists.

  16. KSC-99pp1184

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the S1 truss, a segment of the International Space Station, is moved away from the Super Guppy that brought it to KSC from Marshall Space Flight Center. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is being transferred to the Operations and Checkout Building

  17. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000- pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  18. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  19. Loading mode dependent effective properties of octet-truss lattice structures using 3D-printing

    NASA Astrophysics Data System (ADS)

    Challapalli, Adithya

    Cellular materials, often called lattice materials, are increasingly receiving attention for their ultralight structures with high specific strength, excellent impact absorption, acoustic insulation, heat dissipation media and compact heat exchangers. In alignment with emerging additive manufacturing (AM) technology, realization of the structural applications of the lattice materials appears to be becoming faster. Considering the direction dependent material properties of the products with AM, by directionally dependent printing resolution, effective moduli of lattice structures appear to be directionally dependent. In this paper, a constitutive model of a lattice structure, which is an octet-truss with a base material having an orthotropic material property considering AM is developed. In a case study, polyjet based 3D printing material having an orthotropic property with a 9% difference in the principal direction provides difference in the axial and shear moduli in the octet-truss by 2.3 and 4.6%. Experimental validation for the effective properties of a 3D printed octet-truss is done for uniaxial tension and compression test. The theoretical value based on the micro-buckling of truss member are used to estimate the failure strength. Modulus value appears a little overestimate compared with the experiment. Finite element (FE) simulations for uniaxial compression and tension of octettruss lattice materials are conducted. New effective properties for the octet-truss lattice structure are developed considering the observed behavior of the octet-truss structure under macroscopic compression and tension trough simulations.

  20. Structural evaluation of concepts for a solar energy concentrator for Space Station advanced development program

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred S.; Rhodes, Marvin D.

    1994-01-01

    Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.

  1. Graphite composite truss welding and cap section forming subsystems. Volume 2: Program results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The technology required to develop a beam builder which automatically fabricates long, continuous, lightweight, triangular truss members in space from graphite/thermoplastics composite materials is described. Objectives are: (1) continue the development of forming and welding methods for graphite/thermoplastic (GR/TP) composite material; (2) continue GR/TP materials technology development; and (3) fabricate and structurally test a lightweight truss segment.

  2. 75 FR 34064 - Manufactured Home Construction and Safety Standards, Test Procedures for Roof Trusses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... dead load, or to 1.75 times the uplift load, minus the dead load in the upright position. [See Figure... 1/32-inch. Dead load must be applied to the top and bottom chord, and live load must be applied to... procedure. (i) Dead load. Measure and record initial elevation of the truss or trusses in the test position...

  3. 78 FR 4060 - Manufactured Home Construction and Safety Standards, Test Procedures for Roof Trusses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... of the truss or trusses in the test position at no load. Apply to the top and bottom chords of the... increments until dead load plus the live load is reached. Measure and record the deflections no sooner than... conditions are met: (A) The maximum deflection between no load and dead load must be L/ 480 or less for...

  4. KSC-02PD0336

    NASA Image and Video Library

    2002-03-19

    KENNEDY SPACE CENTER, FLA. - In the Operations and Checkout Building, the Integrated Truss Structure S0 is ready for transport to the launch pad on mission STS-110. Scheduled for launch April 4, the 11-day mission will feature Space Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet

  5. Impact of Turbine Modulation on Variable-Cycle Engine Performance. Phase 4. Additional Hardware Design and Fabrication, Engine Modification, and Altitude Test. Part 3 B

    DTIC Science & Technology

    1974-12-01

    urbofan engine performance. An AiKesearch Model TFE731 -2 Turbofan Engine was modified to incorporate production-type variable-geometry hardware...reliability was shown for the variable- geometry components. The TFE731 , modified to include variable geometry, proved to be an inexpensive...Atm at a Met Thrust of 3300 LBF 929 85 Variable-Cycle Engine TFE731 Exhaust-Nozzle Performance 948 86 Analytical Model Comparisons, Aerodynamic

  6. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  7. STS-112 Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Space Shuttle Orbiter Atlantis hurdles toward space from Launch Pad 39B at Kennedy Space Center in Florida for the STS-112 mission. Liftoff occurred at 3:46pm EDT, October 7, 2002. Atlantis carried the Starboard-1 (S1) Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The S1 was the second truss structure installed on the International Space Station (ISS). It was attached to the S0 truss which was previously installed by the STS-110 mission. The CETA is the first of two human-powered carts that ride along the ISS railway, providing mobile work platforms for future space walking astronauts. The 11 day mission performed three space walks to attach the S1 truss.

  8. Study on light weight design of truss structures of spacecrafts

    NASA Astrophysics Data System (ADS)

    Zeng, Fuming; Yang, Jianzhong; Wang, Jian

    2015-08-01

    Truss structure is usually adopted as the main structure form for spacecrafts due to its high efficiency in supporting concentrated loads. Light-weight design is now becoming the primary concern during conceptual design of spacecrafts. Implementation of light-weight design on truss structure always goes through three processes: topology optimization, size optimization and composites optimization. During each optimization process, appropriate algorithm such as the traditional optimality criterion method, mathematical programming method and the intelligent algorithms which simulate the growth and evolution processes in nature will be selected. According to the practical processes and algorithms, combined with engineering practice and commercial software, summary is made for the implementation of light-weight design on truss structure for spacecrafts.

  9. The Z1 truss begins its ride up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    With the onset of dawn, the payload canister (left) with the Integrated Truss Structure Z1 inside begins its journey up the side of the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  10. The Z1 truss begins its ride up the RSS on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As the sky grows lighter, , the payload canister (left) with the Integrated Truss Structure Z1 inside is slowly lifted up the side of the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  11. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, workers attach umbilical hoses onto the payload canister with the Integrated Truss Structure Z1 inside. The hoses will maintain the environmentally controlled environment while the canister is lifted up the Rotating Service Structure to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  12. P-1 truss moved to work stand in O&C Building

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss (top of photo), a component of the International Space Station, nears its work stand in the Operations and Checkout Building where it will undergo processing. Scheduled to fly in spring of 2002, the P-1 is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by- 15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  13. P-1 truss moved to work stand in O&C Building

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The P-1 truss, a component of the International Space Station, is lowered into a work stand in the Operations and Checkout Building where it will undergo processing. Scheduled to fly in spring of 2002, the P-1 is part of a total 10-truss, girder-like structure on the Station that will ultimately extend the length of a football field. Astronauts will attach the 14-by-15 foot structure to the port side of the center truss, S0, during the spring assembly flight. The 33,000-pound P-1 will house the thermal radiator rotating joint (TRRJ) that will rotate the Station's radiators away from the sun to increase their maximum cooling efficiency.

  14. Multidisciplinary optimization of a controlled space structure using 150 design variables

    NASA Technical Reports Server (NTRS)

    James, Benjamin B.

    1993-01-01

    A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.

  15. STS-112 Onboard Photograph of ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This view of the International Space Station (ISS) was photographed by an STS-112 crew member aboard the Space Shuttle Atlantis during rendezvous and docking operations. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss, installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the railway on the ISS providing a mobile work platform for future extravehicular activities by astronauts.

  16. Experimental Characterization of Hysteresis in a Revolute Joint for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Fung, Jimmy; Gloss, Kevin; Liechty, Derek S.

    1997-01-01

    Recent studies of the micro-dynamic behavior of a deployable telescope metering truss have identified instabilities in the equilibrium shape of the truss in response to low-energy dynamic loading. Analyses indicate that these micro-dynamic instabilities arise from stick-slip friction within the truss joints (e.g., hinges and latches). The present study characterizes the low-magnitude quasi-static load cycle response of the precision revolute joints incorporated in the deployable telescope metering truss, and specifically, the hysteretic response of these joints caused by stick-slip friction within the joint. Detailed descriptions are presented of the test setup and data reduction algorithms, including discussions of data-error sources and data-filtering techniques. Test results are presented from thirteen specimens, and the effects of joint preload and manufacturing tolerances are investigated. Using a simplified model of stick-slip friction, a relationship is made between joint load-cycle behavior and micro-dynamic dimensional instabilities in the deployable telescope metering truss.

  17. Application of the ADAMS program to deployable space truss structures

    NASA Technical Reports Server (NTRS)

    Calleson, R. E.

    1985-01-01

    The need for a computer program to perform kinematic and dynamic analyses of large truss structures while deploying from a packaged configuration in space led to the evaluation of several existing programs. ADAMS (automatic dynamic analysis of mechanical systems), a generalized program from performing the dynamic simulation of mechanical systems undergoing large displacements, is applied to two concepts of deployable space antenna units. One concept is a one cube folding unit of Martin Marietta's Box Truss Antenna and the other is a tetrahedral truss unit of a Tetrahedral Truss Antenna. Adequate evaluation of dynamic forces during member latch-up into the deployed configuration is not yet available from the present version of ADAMS since it is limited to the assembly of rigid bodies. Included is a method for estimating the maximum bending stress in a surface member at latch-up. Results include member displacement and velocity responses during extension and an example of member bending stresses at latch-up.

  18. KSC-03PD-2139

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (center) and Heidemarie Stefanyshyn-Piper (right) look at the inside of the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  19. KSC-03PD-2138

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (left) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  20. KSC-03PD-2141

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper (left) gets ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  1. KSC-03PD-2140

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Heidemarie Stefanyshyn- Piper (left) and Joseph Tanner (center) get ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  2. Minimum mass design of large-scale space trusses subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Agnes, Gregory S.

    2006-01-01

    Lightweight, deployable trusses are commonly used to support space-borne instruments including RF reflectors, radar panels, and telescope optics. While in orbit, these support structures are subjected to thermal gradients that vary with altitude, location in orbit, and self-shadowing. Since these instruments have tight dimensional-stability requirements, their truss members are often covered with multi-layer insulation (MLI) blankets to minimize thermal distortions. This paper develops a radiation heat transfer model to predict the thermal gradient experienced by a triangular truss supporting a long, linear radar panel in Medium Earth Orbit (MEO). The influence of self-shadowing effects of the radar panel are included in the analysis, and the influence of both MLI thickness and outer covers/coatings on the magnitude of the thermal gradient are formed into a simple, two-dimensional analysis. This thermal model is then used to size and estimate the structural mass of a triangular truss that meets a given set of structural requirements.

  3. Investigation of structural behavior of candidate Space Station structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, John M.; Miller, Richard K.

    1989-01-01

    Quantitative evaluations of the structural loads, stiffness and deflections of an example Space Station truss due to a variety of influences, including manufacturing tolerances, assembly operations, and operational loading are reported. The example truss is a dual-keel design composed of 5-meter-cube modules. The truss is 21 modules high and 9 modules wide, with a transverse beam 15 modules long. One problem of concern is the amount of mismatch which will be expected when the truss is being erected on orbit. Worst-case thermal loading results in less than 0.5 inch of mismatch. The stiffness of the interface is shown to be less than 100 pounds per inch. Thus, only moderate loads will be required to overcome the mismatch. The problem of manufacturing imperfections is analyzed by the Monte Carlo approach. Deformations and internal loads are obtained for ensembles of 100 example trusses. All analyses are performed on a personal computer. The necessary routines required to supplement commercially available programs are described.

  4. KSC-00pp1058

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. STS-92 Commander Col. Brian Duffy, comments on the presentation. Pictured are The Boeing Co. processing team and STS-92 astronauts. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  5. 10. 100 foot through truss north west bearing abutment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. 100 foot through truss - north west bearing abutment of the second through truss, showing the diagonal sway bracing to its alternate pier. This bearing point is on a concrete extension of the original bearing point now covered by rock and soil. Note that the bearing point is to the backmost position on the concrete pier. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA

  6. Hypervelocity impact testing of L-band truss cable meteoroid shielding on Skylab

    NASA Technical Reports Server (NTRS)

    Jex, D. W.

    1973-01-01

    A series of tests was performed to determine the protection provided by the L-band truss cable meteoroid shielding installed on Skylab space station at space environment temperatures of minus 180 F. The damage sustained when three test specimens were impacted by spherical projectiles at hypersonic speed was investigated. It is concluded that the L-band truss cable meteoroid shielding provides adequate protection at the indicated temperature.

  7. Research on the Mechanical Properties of a Glass Fiber Reinforced Polymer-Steel Combined Truss Structure

    PubMed Central

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status. PMID:25247203

  8. KSC-99pp1186

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- Escort vehicles prepare to leave the Shuttle Landing Facility with the S1 truss (at right) on its trek to the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The truss arrived at KSC aboard NASA's Super Guppy, seen in the background. The aircraft is uniquely built with a 25-foot diameter fuselage designed to handle oversized loads and a "fold-away" nose that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight

  9. Nonlinear damage identification of breathing cracks in Truss system

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; DeSmidt, Hans

    2014-03-01

    The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.

  10. Research on the mechanical properties of a glass fiber reinforced polymer-steel combined truss structure.

    PubMed

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status.

  11. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000-pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  12. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  13. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 upon its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  14. STS-112 Flight Day 4 Highlights

    NASA Astrophysics Data System (ADS)

    2002-10-01

    On the fourth day of STS-112, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) onboard Atlantis and the Expedition 5 crew (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) onboard the International Space Station (ISS) are seen preparing for the installation of the S1 truss structure. Inside the Destiny Laboratory Module, Korzun and other crewmembers are seen as they busily prepare for the work of the day. Sellers dons an oxygen mask and uses an exercise machine in order to purge the nitrogen from his bloodstream, in preparation for an extravehicular activity (EVA). Whitson uses the ISS's Canadarm 2 robotic arm to grapple the S1 truss and remove it from Atlantis' payload bay, with the assistance of Magnus. Using the robotic arm, Whitson slowly maneuvers the 15 ton truss structure into alignment with its attachment point on the starboard side of the S0 truss structure, where the carefully orchestrated mating procedures take place. There is video footage of the entire truss being rotated and positioned by the arm, and ammonia tank assembly on the structure is visible, with Earth in the background. Following the completion of the second stage capture, the robotic arm is ungrappled from truss. Sellers and Wolf are shown exiting the the Quest airlock hatch to begin their EVA. They are shown performing a variety of tasks on the now attached S1 truss structure, including work on the Crew Equipment Translation Cart (CETA), the S-band Antenna Assembly, and umbilical cables that provide power and remote operation capability to cameras. During their EVA, they are shown using a foot platform on the robotic arm. Significant portions of their activities are shown from the vantage of helmet mounted video cameras. The video closes with a final shot of the ISS and its new S1 truss.

  15. UNIDENTIFIED CATENARY SUSPENSION BRIDGE ON RIVETED METAL PIERS, SHOWING HOWE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UNIDENTIFIED CATENARY SUSPENSION BRIDGE ON RIVETED METAL PIERS, SHOWING HOWE PIPE TRUSS RAILING AND TRUSSED DECK BEAMS TYPICAL TO BRIDGES BUILT BY FLINN-MOYER COMPANY. TRIPODAL PIPE TOWERS RESEMBLE CLEAR FORK OF THE BRAZOS SUSPENSION BRIDGE’S TOWERS PRIOR TO ENCASEMENT IN CONCRETE. NOTE COLLAPSED TRUSS IN RIVER. ELEVATION VIEW. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX

  16. STS-112 M.S. Yurchikhin suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During suitup for launch, STS-112 Mission Specialist Fyodor Yurchikhin shows he is ready for his first Shuttle flight. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  17. The Z1 truss is transported to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, the payload canister with the Integrated Truss Structure Z1 inside arrives at the spot under the Rotating Service Structure where the canister can be lifted to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery's payload bay. Discovery is at right, sitting atop the Mobile Launcher Platform. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  18. NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering.

    PubMed

    Taylor, Shannon L; Ibeh, Amaka J; Jakus, Adam E; Shah, Ramille N; Dunand, David C

    2018-06-15

    We present a novel additive manufacturing method for NiTi-Nb micro-trusses combining (i) extrusion-based 3D-printing of liquid inks containing NiTi and Nb powders, solvents, and a polymer binder into micro-trusses with 0/90° ABAB layers of parallel, ∼600 µm struts spaced 1 mm apart and (ii) subsequent heat-treatment to remove the binder and solvents, and then bond the NiTi powders using liquid phase sintering via the formation of a transient NiTi-Nb eutectic phase. We investigate the effects of Nb concentration (0, 1.5, 3.1, 6.7 at.% Nb) on the porosity, microstructure, and phase transformations of the printed NiTi-Nb micro-trusses. Micro-trusses with the highest Nb content exhibit long channels (from 3D-printing) and struts with smaller interconnected porosity (from partial sintering), resulting in overall porosities of ∼75% and low compressive stiffnesses of 1-1.6 GPa, similar to those of trabecular bone and in agreement with analytical and finite element modeling predictions. Diffusion of Nb into the NiTi particles from the bond regions results in a Ni-rich composition as the Nb replaces Ti atoms, leading to decreased martensite/austenite transformation temperatures. Adult human mesenchymal stem cells seeded on these micro-trusses showed excellent viability, proliferation, and extracellular matrix deposition over 14 days in culture. Near-equiatomic NiTi micro-trusses are attractive for biomedical applications such as stents, actuators, and bone implants because of their combination of biocompatibility, low compressive stiffness, high surface area, and shape-memory or superelasticity. Extrusion-based 3D-printing of NiTi powder-based inks into micro-trusses is feasible, but the subsequent sintering of the powders into dense struts is unachievable due to low diffusivity, large particle size, and low packing density of the NiTi powders. We present a solution, whereby Nb powders are added to the NiTi inks, thus forming during sintering a eutectic NiTi-Nb liquid phase which bonds the solid NiTi powders and improves densification of the struts. This study investigates the microstructure, porosity, phase transformation behavior, compressive stiffness, and cytocompatibility of these printed NiTi-Nb micro-trusses. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. STS-110 S0 Truss Removed From Cargo Bay

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Backdropped against the blackness of space and the Earth's horizon, the S0 (S-zero) truss is removed from Atlantis' cargo bay and onto the Destiny laboratory of the International Space Station (ISS) by Astronauts Ellen Ochoa, STS-110 mission specialist, and Daniel W. Bursch, Expedition Four flight engineer, using the ISS' Canadarm2. Space Shuttle Orbiter Atlantis, STS-110 mission, prepared the International Space Station (ISS) for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000-pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first use of the Station's robotic arm to maneuver spacewalkers around the Station and it was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  20. STS-110 Astronaut Jerry Ross Performs Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting the 43-foot-long Starboard side S0 (S-zero) truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. In this photograph, Astronaut Jerry L. Ross, mission specialist, anchored on the end of the Canadarm2, moves near the newly installed S0 truss. Astronaut Lee M. E. Morin, mission specialist, (out of frame), worked in tandem with Ross during this fourth and final scheduled session of EVA for the STS-110 mission. The final major task of the space walk was the installation of a beam, the Airlock Spur, between the Quest Airlock and the S0. The spur will be used by space walkers in the future as a path from the airlock to the truss.

  1. STS-110 Astronaut Morin Totes S0 Keel Pins During EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hovering in space some 240 miles above the blue and white Earth, STS-110 astronaut M.E. Morin participates in his first ever and second of four scheduled space walks for the STS-110 mission. He is seen toting one of the S0 (S-Zero) keel pins which were removed from their functional position on the truss and attached on the truss' exterior for long term stowage. The 43-foot-long, 27,000 pound S0 truss was the first of 9 segments that will make up the International Space Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. The mission completed the installations and preparations of the S0 truss and the Mobile Transporter within four space walks. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver space walkers around the Station and was the first time all of a shuttle crew's space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission was launched April 8, 2002 and returned to Earth April 19, 2002.

  2. STS-110 payload S0 Truss is moved to payload canister in O&C

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Integrated Truss Structure S0 arrives at the payload canister in the Operations and Checkout Building for transfer to the launch pad for mission STS-110. Part of the payload on Space Shuttle Atlantis, the S0 truss will be attached to the U.S. Lab, 'Destiny,' on the 11-day mission, becoming the backbone of the orbiting International Space Station (ISS). Launch is scheduled for April 4.

  3. KSC-04pd0207

    NASA Image and Video Library

    2004-02-12

    KENNEDY SPACE CENTER, FLA. - Surrounded by workers in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, presents the “key” for the starboard truss segment S3/S4 to Scott Gahring (center), ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117. Holding the tip of the key at right is astronaut Patrick Forrester, who is a mission specialist on the flight.

  4. KSC-08pd0154

    NASA Image and Video Library

    2008-02-05

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, workers get ready to rotate the starboard integrated truss, known as S6. The truss is being rotated in order to remove and replace lower deck batteries. The final starboard truss in the assembly of the International Space Station, the S6 is scheduled to fly on the STS-119 space shuttle mission, whose launch date is not yet determined. Photo credit: NASA/Kim Shiflett

  5. KSC-04PD-0207

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Surrounded by workers in the Space Station Processing Facility, Chuck Hardison (left), Boeing senior truss manager, presents the key for the starboard truss segment S3/S4 to Scott Gahring (center), ISS Vehicle Office manager (acting), Johnson Space Center. The trusses are scheduled to be delivered to the International Space Station on mission STS-117. Holding the tip of the key at right is astronaut Patrick Forrester, who is a mission specialist on the flight.

  6. KSC-00pp1053

    NASA Image and Video Library

    2000-07-31

    A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At the bottom left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. The truss is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the center of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch)

  7. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At center left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the upper right hand corner of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch).

  8. STS-112 Astronaut Wolf Participates in EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  9. Structural analysis of three space crane articulated-truss joint concepts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Sutter, Thomas R.

    1992-01-01

    Three space crane articulated truss joint concepts are studied to evaluate their static structural performance over a range of geometric design parameters. Emphasis is placed on maintaining the four longeron reference truss performance across the joint while allowing large angle articulation. A maximum positive articulation angle and the actuator length ratio required to reach the angle are computed for each concept as the design parameters are varied. Configurations with a maximum articulation angle less than 120 degrees or actuators requiring a length ratio over two are not considered. Tip rotation and lateral deflection of a truss beam with an articulated truss joint at the midspan are used to select a point design for each concept. Deflections for one point design are up to 40 percent higher than for the other two designs. Dynamic performance of the three point design is computed as a function of joint articulation angle. The two lowest frequencies of each point design are relatively insensitive to large variations in joint articulation angle. One point design has a higher maximum tip velocity for the emergency stop than the other designs.

  10. Dynamic testing of a two-dimensional box truss beam

    NASA Technical Reports Server (NTRS)

    White, Charles W.

    1987-01-01

    Testing to determine the effects of joint freeplay and pretensioning of diagonal members on the dynamic characteristics of a two-dimensional box truss beam was conducted. The test article was ten bays of planar truss suspended by long wires at each joint. Each bay measured 2 meters per side. Pins of varying size were used to simulate various joint freeplay conditions. Single-point random excitation was the primary method of test. The rational fraction polynomial method was used to extract modal characteristics from test data. A finite element model of the test article was generated from which modal characteristics were predicted. These were compared with those obtained from tests. With the exception of the fundamental mode, correlation of theoretical and experimental results was poor, caused by the resonant coupling of local truss member bending modes with global truss beam modes. This coupling introduced many modes in the frequency range of interest whose frequencies were sensitive to joint boundary conditions. It was concluded that local/global coupling must be avoided in the frequency range where accurate modal characteristics are required.

  11. KSC00pp1056

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. Astronauts from the STS-92 crew look on while their commander, Col. Brian Duffy, and Tip Talone, NASA director of International Space Station and Payload Processing at KSC, receive a symbolic key from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  12. KSC-00pp1056

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss is officially presented to NASA by The Boeing Co. on the Space Station Processing Facility floor on July 31. Astronauts from the STS-92 crew look on while their commander, Col. Brian Duffy, and Tip Talone, NASA director of International Space Station and Payload Processing at KSC, receive a symbolic key from John Elbon, Boeing director of ISS ground operations. The Z-1 Truss is the cornerstone truss of the International Space Station and is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  13. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-12

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-09

    Back dropped against a blue and white Earth, the Space Shuttle Orbiter Atlantis was photographed by an Expedition 5 crew member onboard the International Space Station (ISS) during rendezvous and docking operations. Docking occurred at 10:17 am on October 9, 2002. The Starboard 1 (S1) Integrated Truss Structure, the primary payload of the STS-112 mission, can be seen in Atlantis' cargo bay. Installed and outfitted within 3 sessions of Extravehicular Activity (EVA) during the 11 day mission, the S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators.

  15. Stefanyshyn-Piper and Tanner perform first EVA during STS-115 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-09-12

    S115-E-05663 (12 Sept. 2006) --- Astronauts Joseph R. Tanner (left) and Heidemarie M. Stefanyshyn-Piper, both STS-115 mission specialists, work in tandem during the mission's first session of extravehicular activity (EVA) while the Space Shuttle Atlantis was docked with the International Space Station. During today's spacewalk, Tanner and Stefanyshyn-Piper worked to connect power cables on the P3/P4 truss, release restraints for the Solar Array Blanket Boxes that hold the solar arrays and the Beta Gimbal Assemblies that serve as the structural link between the truss' integrated electronics and the Solar Array Wings. Stefanyshyn-Piper and Tanner also installed the Solar Alpha Rotary Joint and completed the connection of electrical cables between the new P3 truss and the P1 truss.

  16. Chang-Diaz holds PDGF for installation on the ISS P6 truss during STS-111 UF-2 EVA 1

    NASA Image and Video Library

    2002-06-09

    STS111-E-5034 (8 June 2002) --- Astronaut Franklin R. Chang-Diaz works with a grapple fixture during extravehicular activity (EVA) to perform work on the International Space Station (ISS). The first spacewalk of the STS-111 mission began with the installation of a Power and Data Grapple Fixture (PDGF) for the station's robotic arm on the complex's P6 truss. The PDGF will allow the robotic arm to grip the P6 truss for future station assembly operations. Astronauts Chang-Diaz and Philippe Perrin (with French Space Agency, CNES) went on to install the new fixture about halfway up the P6 truss, the vertical structure that currently supports the station's set of large U.S. solar arrays.

  17. The damper placement problem for large flexible space structures

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1992-01-01

    The damper placement problem for large flexible space truss structures is formulated as a combinatorial optimization problem. The objective is to determine the p truss members of the structure to replace with active (or passive) dampers so that the modal damping ratio is as large as possible for all significant modes of vibration. Equivalently, given a strain energy matrix with rows indexed on the modes and the columns indexed on the truss members, we seek to find the set of p columns such that the smallest row sum, over the p columns, is maximized. We develop a tabu search heuristic for the damper placement problems on the Controls Structures Interaction (CSI) Phase 1 Evolutionary Model (10 modes and 1507 truss members). The resulting solutions are shown to be of high quality.

  18. Analysis of knitted fabric reinforced flexible composites and applications in thermoforming

    NASA Astrophysics Data System (ADS)

    Bekisli, Burak

    In this study, large deformation behavior of knitted fabric reinforced composites is investigated. In order to fully utilize the unique stretchability of knitted fabric reinforcements, elastomeric materials are used as the matrix material, resulting in "flexible composites" capable of reaching several hundred percent stretch before failing. These non-traditional composites are ideal candidates for many engineering applications where large deformation is desired, including energy/impact absorption and novel forming processes. A multi-level nonlinear finite element (FE) procedure is developed to analyze the deformation behavior of plain weft-knitted fabrics and the composites derived from these materials. The hierarchy of the model is composed of a 3D unit cell analysis (micro/meso-scale) and a 2D global analysis (macro scale). Using results from different numerical experiments performed in the micro/meso scale, a mechanical behavior database of knit fabric geometries is constructed, both for the uniaxial and biaxial stretch cases. Through an optimization procedure, these results are used to determine the mechanical properties of nonlinear truss elements needed for modeling in the macro scale. A hexagonal honeycomb structure, which closely resembles the knit fabric architecture, is formed using these nonlinear trusses. This truss structure is then used to efficiently model a large number of loops generally found in a fabric. Results from uniaxial experimental measurements are presented for knitted fabrics to validate the FE model. Appropriate hyperelastic material models are determined for the elastomeric matrix, using a curve fit to experimental data. Examples of raw fabric and composite deformation simulations in the global scale are presented in this study. Two types of composites are studied experimentally and numerically: (1) knitted fabric embedded in an elastomeric medium, and (2) the sandwich type composites with elastomeric skins and fabric core. The strain energy dissipation is found to be superior in the latter case, since yarns are not restricted by the elastomer. In addition, yarns used in this type of composite move to effectively align along the load direction, yielding a better utilization of the fibers' high axial stiffness. Fabrication methods, including novel techniques involving twin-sheet thermoforming, for both types of composites are discussed. Tensile test results for glassfiber reinforced, TPE/polyurea based specimens are also presented. Innovative concepts related to the thermoforming process are also investigated using the developed numerical model. It is shown that some of the most critical problems in this forming process, such as non-uniform thickness distribution in the final part and the sensitivity of part quality to minor thermal variations, can be beneficially addressed using carefully "tailored" knit fabrics. Common thermoformed part geometries, such as a 3D box corner and a long U-shaped channel, are studied in numerical simulations to illustrate the effects of knitted fabric reinforcements on the stabilization of the forming process.

  19. Optimal actuator placement in adaptive precision trusses

    NASA Technical Reports Server (NTRS)

    Baycan, C. M.; Utku, S.; Das, S. K.; Wada, B. K.

    1992-01-01

    Actuator placement in adaptive truss structures is to cater to two needs: displacement control of precision points and preloading the elements to overcome joint slackness. Due to technological and financial considerations, the number of actuators available is much less than the degrees of freedom of precision points to be controlled and the degree of redundancy of the structure. An approach for optimal actuator location is outlined. Test cases to demonstrate the effectiveness of the scheme are applied to the Precision Segmented Reflector Truss.

  20. Adaptive Control of Truss Structures for Gossamer Spacecraft

    NASA Technical Reports Server (NTRS)

    Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.

    2007-01-01

    Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances.

  1. KSC-02pd1285

    NASA Image and Video Library

    2002-09-05

    KENNEDY SPACE CENTER, FLA. -- After lifting to vertical, the orbiter Atlantis is moved toward the solid rocket booster and external tank below, on top of the Mobile Launcher Platform, for mating before rollout to the launch pad for mission STS-112. Launch is scheduled no earlier than Oct. 2 for the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  2. KSC-02pd1286

    NASA Image and Video Library

    2002-09-05

    KENNEDY SPACE CENTER, FLA. - Suspended from an overhead crane, the orbiter Atlantis is lowered toward the solid rocket booster and external tank below, on top of the Mobile Launcher Platform, for mating before rollout to the launch pad for mission STS-112. Launch is scheduled no earlier than Oct. 2 for the 15th assembly flight to the International Space Station. Atlantis will carry the S1 Integrated Truss Structure, which will be attached to the central truss segment, the S0 truss, during the mission.

  3. KSC-03pd1169

    NASA Image and Video Library

    2003-04-17

    KENNEDY SPACE CENTER, FLA. - The STS-116 crew take part in training in the SPACEHAB module. From left are Mission Specialist Christer Fuglesang; a trainer; Pilot Michael Oefelein; Mission Specialist Robert Curbeam; and Commander Terrence Wilcutt. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review

  4. KSC-03pd1173

    NASA Image and Video Library

    2003-04-17

    KENNEDY SPACE CENTER, FLA. - STS-116 Commander Terrence Wilcutt is in training at SPACEHAB, Port Canaveral, Fla., along with other crew members Pilot William Oefelein and Mission Specialists Robert Curbeam and Christer Fuglesang. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.

  5. KSC-03pd1174

    NASA Image and Video Library

    2003-04-17

    KENNEDY SPACE CENTER, FLA. - STS-116 Pilot William Oelefein is in training at SPACEHAB, Port Canaveral, Fla., along with other crew members Commander Terrence Wilcutt and Mission Specialists Robert Curbeam and Christer Fuglesang. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.

  6. KSC-03pd1175

    NASA Image and Video Library

    2003-04-17

    KENNEDY SPACE CENTER, FLA. - STS-116 Mission Specialist Robert Curbeam is in training at SPACEHAB, Port Canaveral, Fla., along with other crew members Commander Terrence Wilcutt, Pilot William Oelefein and Mission Specialist Christer Fuglesang. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.

  7. 45Degree view of one (1) arm of the swing span ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45-Degree view of one (1) arm of the swing span bridge in the open position. The view shows the continuous bottom chord of the truss. The vertical post and diagonal web members that frame into this bottom chord are connected with single steel pins at each panel point (or joint). The timber track ties, supporting the track, span from truss to truss bottom chords (16' -0') and are supported thereby. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  8. The control of flexible structure vibrations using a cantilevered adaptive truss

    NASA Technical Reports Server (NTRS)

    Wynn, Robert H., Jr.; Robertshaw, Harry H.

    1991-01-01

    Analytical and experimental procedures and design tools are presented for the control of flexible structure vibrations using a cantilevered adaptive truss. Simulated and experimental data are examined for three types of structures: a slender beam, a single curved beam, and two curved beams. The adaptive truss is shown to produce a 6,000-percent increase in damping, demonstrating its potential in vibration control. Good agreement is obtained between the simulated and experimental data, thus validating the modeling methods.

  9. A Multivariate Model of Achievement in Geometry

    ERIC Educational Resources Information Center

    Bailey, MarLynn; Taasoobshirazi, Gita; Carr, Martha

    2014-01-01

    Previous studies have shown that several key variables influence student achievement in geometry, but no research has been conducted to determine how these variables interact. A model of achievement in geometry was tested on a sample of 102 high school students. Structural equation modeling was used to test hypothesized relationships among…

  10. 52. PHOTOCOPY OF DRAWING AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. PHOTOCOPY OF DRAWING AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, SACKING SHED-FLOTATION UNIT - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  11. S1 Truss Segment

    NASA Image and Video Library

    2009-03-18

    S119-E-006616 (18 March 2009) --- The International Space Station’s starboard truss is featured in this image photographed by a STS-119 crewmember while Space Shuttle Discovery is docked with the station.

  12. 51. PHOTOCOPY OF DRAWING, AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. PHOTOCOPY OF DRAWING, AMMONIA LEACHING PLANT ROOF TRUSS DETAILS, SACKING SHED-FLOTATION UNIT - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  13. 32. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. VIEW TO NORTH. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  14. 31. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. LOWER CHORD / FLOOR STRUCTURE DETAIL OF THROUGH TRUSS. VIEW TO NORTH. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  15. View of deck truss span over creek and adjacent trestle, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of deck truss span over creek and adjacent trestle, looking due south. - Pennsylvania Railroad, Brandywine Valley Viaduct, Spanning Brandywine Creek & U.S. Route 322, Downingtown, Chester County, PA

  16. 19. DETAIL OF FIRST FLOOR WAREHOUSE, SHOWING ROOF TRUSS. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAIL OF FIRST FLOOR WAREHOUSE, SHOWING ROOF TRUSS. VIEW TO EAST. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA

  17. Elevation of deck truss span over creek, looking NW along ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of deck truss span over creek, looking NW along U.S. route 322. - Pennsylvania Railroad, Brandywine Valley Viaduct, Spanning Brandywine Creek & U.S. Route 322, Downingtown, Chester County, PA

  18. 6. Main span (parker through truss, detail of floor system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Main span (parker through truss, detail of floor system and bottom lateral bracing; looking northwest. - Bridge 4666, Minnesota Trunk Highway 19 spanning Minnesota River, North Redwood, Redwood County, MN

  19. 4. Main span (parker through truss), south end, detail of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Main span (parker through truss), south end, detail of web members and sway bracing; looking west. - Bridge 4666, Minnesota Trunk Highway 19 spanning Minnesota River, North Redwood, Redwood County, MN

  20. 11. Detail view of interior, showing heavy timber Howe truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail view of interior, showing heavy timber Howe truss configuration and steel beam retrofit - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR

  1. 10. Detail view of interior, showing heavy timber Howe truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail view of interior, showing heavy timber Howe truss configuration and steel beam retrofitting - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR

  2. 6. VIEW OF BRIDGE, LOOKING DIRECTLY EAST THROUGH TRUSS FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BRIDGE, LOOKING DIRECTLY EAST THROUGH TRUSS FROM SHOULDER OF ROAD - Shenandoah River Bridge, Spanning North fork of Shenandoah River on Virginia State Route 767, Quicksburg, Shenandoah County, VA

  3. 10. Detail of truss located on top the northeast pier, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail of truss located on top the northeast pier, looking southwest. - Bridge No. 4800, Spanning Minnesota River on Trunk Highway 4 between Brown & Nicollet Counties, Sleepy Eye, Brown County, MN

  4. 9. Detail of truss work on southwesternmost span, looking northnortheast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail of truss work on southwesternmost span, looking north-northeast - Bridge No. 4800, Spanning Minnesota River on Trunk Highway 4 between Brown & Nicollet Counties, Sleepy Eye, Brown County, MN

  5. P5 Truss installation

    NASA Image and Video Library

    2006-12-12

    S116-E-05764 (11 Dec. 2006) --- The International Space Station's Canadarm2 moves toward the station's new P5 truss section for a hand-off from Space Shuttle Discovery's Remote Manipulator System (RMS) robotic arm.

  6. P5 Truss installation

    NASA Image and Video Library

    2006-12-12

    S116-E-05765 (11 Dec. 2006) --- The International Space Station's Canadarm2 moves toward the station's new P5 truss section for a hand-off from Space Shuttle Discovery's Remote Manipulator System (RMS) robotic arm.

  7. 14. VIEW NORTHEAST OF UNDERSIDE OF PENNSYLVANIA PETIT TRUSS, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW NORTHEAST OF UNDERSIDE OF PENNSYLVANIA PETIT TRUSS, SHOWING SLEEPERS, TRANSVERSE BEAMS, AND CONCRETE PIERS - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA

  8. 13. TOP OF STATIC TEST TOWER VIEW OF STEEL TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TOP OF STATIC TEST TOWER VIEW OF STEEL TRUSS STRUCTURE AND OVERHEAD CRANE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  9. 15. SOUTH WEB AND WEST PORTAL OF MIDDLE THROUGH TRUSS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. SOUTH WEB AND WEST PORTAL OF MIDDLE THROUGH TRUSS. VIEW TO NORTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  10. Tracking Camera Captures Flames of Space Shuttle Engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A tracking camera on Launch Pad 39B of the Kennedy Space Center in Florida captures the flames of Space Shuttle Atlantis' three main engines as the Orbiter hurdles into space on mission STS-112. Liftoff occurred at 3:46 pm EDT, October 7, 2002. Atlantis carried the Starboard-1 (S1) Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The S1 was the second truss structure installed on the International Space Station (ISS). It was attached to the S0 truss which was previously installed by the STS-110 mission. The CETA is the first of two human-powered carts that ride along the ISS railway, providing mobile work platforms for future space walking astronauts. The 11 day mission performed three space walks to attach the S1 truss.

  11. KSC-04pd1476

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - Unpacking of the Pump Flow Control Subsystem (PFCS) begins in the Space Station Processing Facility. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  12. KSC-04pd1477

    NASA Image and Video Library

    2004-07-15

    KENNEDY SPACE CENTER, FLA. - Technicians attach a crane to the Pump Flow Control Subsystem (PFCS) in the Space Station Processing Facility. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.

  13. EVA 2 - Tani on S1 truss.

    NASA Image and Video Library

    2007-10-28

    S120-E-007003 (28 Oct. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later.

  14. EVA 2 - Tani on S1 truss

    NASA Image and Video Library

    2007-10-28

    S120-E-007119 (28 Oct. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later.

  15. Steering Concept of a 2-Blade Heliogyro Solar Sail Spacecraft

    NASA Technical Reports Server (NTRS)

    Wiwattananon, Peerawan; Bryant, Robert G.

    2017-01-01

    Solar sails can be classified into two groups based on their method of stabilization: 1) truss supported, and 2) centrifugally (spin) supported. The truss configuration requires masts or booms to deploy, support, and rigidize the sails whereas the spin type uses the spacecraft’s centrifugal force to deploy and stabilize the sails. The truss-supported type sail has a scaling limitation because as the sail area gets larger, the sail is increasingly more difficult to make and stow: the masts and booms get heavier, occupying more volume, and have increased risk during deployment. This major disadvantage limits the size of the sail area. The spin type comes in two configurations: 1) spinning square/disk sail and 2) heliogyro sail. This spinning square/disk sail architecture suffers the same sail area limitation as the truss-supported sail.

  16. PaR Tensile Truss for Nuclear Decontamination and Decommissioning - 12467

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebler, Gary R.

    2012-07-01

    Remote robotics and manipulators are commonly used in nuclear decontamination and decommissioning (D and D) processes. D and D robots are often deployed using rigid telescoping masts in order to apply and counteract side loads. However, for very long vertical reaches (15 meters or longer) and high lift capacities, a telescopic is usually not practical due to the large cross section and weight required to make the mast stiff and resist seismic forces. For those long vertical travel applications, PaR Systems has recently developed the Tensile Truss, a rigid, hoist-driven 'structure' that employs six independent wire rope hoists to achievemore » long vertical reaches. Like a mast, the Tensile Truss is typically attached to a bridge-mounted trolley and is used as a platform for robotic manipulators and other remotely operated tools. For suspended, rigid deployment of D and D tools with very long vertical reaches, the Tensile Truss can be a better alternative than a telescoping mast. Masts have length limitations that can make them impractical or unworkable as lengths increase. The Tensile Truss also has the added benefits of increased safety, ease of decontamination, superior stiffness and ability to withstand excessive side loading. A Tensile Truss system is currently being considered for D and D operations and spent fuel recovery at the Fukushima Daiichi Nuclear Power Plant in Japan. This system will deploy interchangeable tools such as underwater hydraulic manipulators, hydraulic shears and crushers, grippers and fuel grapples. (authors)« less

  17. Mobile remote manipulator vehicle system

    NASA Technical Reports Server (NTRS)

    Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor); Jensen, J. Kermit (Inventor)

    1987-01-01

    A mobile remote manipulator system is disclosed for assembly, repair and logistics transport on, around and about a space station square bay truss structure. The vehicle is supported by a square track arrangement supported by guide pins integral with the space station truss structure and located at each truss node. Propulsion is provided by a central push-pull drive mechanism that extends out from the vehicle one full structural bay over the truss and locks drive rods into the guide pins. The draw bar is now retracted and the mobile remote manipulator system is pulled onto the next adjacent structural bay. Thus, translation of the vehicle is inchworm style. The drive bar can be locked onto two guide pins while the extendable draw bar is within the vehicle and then push the vehicle away one bay providing bidirectional push-pull drive. The track switches allow the vehicle to travel in two orthogonal directions over the truss structure which coupled with the bidirectional drive, allow movement in four directions on one plane. The top layer of this trilayered vehicle is a logistics platform. This platform is capable of 369 degees of rotation and will have two astronaut foot restraint platforms and a space crane integral.

  18. A mobile work station concept for mechanically aided astronaut assembly of large space trusses

    NASA Technical Reports Server (NTRS)

    Heard, W. L., Jr.; Bush, H. G.; Wallson, R. E.; Jensen, J. K.

    1983-01-01

    This report presents results of a series of truss assembly tests conducted to evaluate a mobile work station concept intended to mechanically assist astronaut manual assembly of erectable space trusses. The tests involved assembly of a tetrahedral truss beam by a pair of test subjects with and without pressure (space) suits, both in Earth gravity and in simulated zero gravity (neutral buoyancy in water). The beam was assembled from 38 identical graphite-epoxy nestable struts, 5.4 m in length with aluminum quick-attachment structural joints. Struts and joints were designed to closely simulate flight hardware. The assembled beam was approximately 16.5 m long and 4.5 m on each of the four sides of its diamond-shaped cross section. The results show that average in-space assembly rates of approximately 38 seconds per strut can be expected for struts of comparable size. This result is virtually independent of the overall size of the structure being assembled. The mobile work station concept would improve astronaut efficiency for on-orbit manual assembly of truss structures, and also this assembly-line method is highly competitive with other construction methods being considered for large space structures.

  19. 8. DETAIL VIEW, LOOKING NORTHEAST, SHOWING OUTRIGGERS FOR LATERAL BRACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW, LOOKING NORTHEAST, SHOWING OUTRIGGERS FOR LATERAL BRACING FOR TRUSSES AND BOTTOM CHORD CONNECTIONS. - White Bowstring Arch Truss Bridge, Spanning Yellow Creek at Cemetery Drive (Riverside Drive), Poland, Mahoning County, OH

  20. 17. INTERIOR VIEW OF WEST TRUSS, SHOWING RAILING, SUSPENSION CABLE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTERIOR VIEW OF WEST TRUSS, SHOWING RAILING, SUSPENSION CABLE, CONNECTION BOLTS AND 'U'-COUPLINGS, LOOKING SOUTHWEST - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT

  1. 14. View to southwest. View through truss along centerline from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View to southwest. View through truss along centerline from below deck. (65mm lens) - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  2. 15. Stress Sheet, Truss number 2, span number 6, Superior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Stress Sheet, Truss number 2, span number 6, Superior Avenue viaduct. Drawing courtesy Engineering Dept., City of Cleveland. - Superior Avenue Viaduct, Cleveland East & West side, Cuyahoga Valley Vicinity, Cleveland, Cuyahoga County, OH

  3. Survey of metal truss bridges in Virginia.

    DOT National Transportation Integrated Search

    1997-01-01

    Bridges are among the cultural resources that must be considered for historical significance under the Historic Preservation Act of 1966. The Virginia Transportation Research Council conducted a pioneering study of Virginia's pre-1932 metal truss bri...

  4. Interior detail of trusses and high windows in north wing; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of trusses and high windows in north wing; camera facing southwest. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA

  5. Center pivot, showing substantial beams that support the trusses. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Center pivot, showing substantial beams that support the trusses. Looking north from civilian land. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  6. 12. October 1972. INTERIOR VIEW OF ROOF TRUSS SYSTEM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. October 1972. INTERIOR VIEW OF ROOF TRUSS SYSTEM. - Atlantic & Great Western Railroad, Meadville Repair Shops, Blacksmith Shop, East bank of French Creek, 800 feet South of Spring Street, Meadville, Crawford County, PA

  7. A hierarchical Bayesian method for vibration-based time domain force reconstruction problems

    NASA Astrophysics Data System (ADS)

    Li, Qiaofeng; Lu, Qiuhai

    2018-05-01

    Traditional force reconstruction techniques require prior knowledge on the force nature to determine the regularization term. When such information is unavailable, the inappropriate term is easily chosen and the reconstruction result becomes unsatisfactory. In this paper, we propose a novel method to automatically determine the appropriate q as in ℓq regularization and reconstruct the force history. The method incorporates all to-be-determined variables such as the force history, precision parameters and q into a hierarchical Bayesian formulation. The posterior distributions of variables are evaluated by a Metropolis-within-Gibbs sampler. The point estimates of variables and their uncertainties are given. Simulations of a cantilever beam and a space truss under various loading conditions validate the proposed method in providing adaptive determination of q and better reconstruction performance than existing Bayesian methods.

  8. KSC-08pd2048

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center, workers prepare to install the final solar array wing for the International Space Station onto the S6 truss element. Scheduled to launch on the STS-119 mission, space shuttle Discovery will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Launch is targeted for Feb. 12, 2009. Photo credit: NASA/Troy Cryder

  9. KSC-03pd1181

    NASA Image and Video Library

    2003-04-17

    KENNEDY SPACE CENTER, FLA. - The STS-116 crew poses outside the SPACEHAB module during training. In the rear are Commander Terrence Wilcutt and Mission Specialist Christer Fuglesang; in front are Pilot William Oefelein and Mission Specialist Robert Curbeam. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.

  10. KSC-03pd1165

    NASA Image and Video Library

    2003-04-17

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-116 crew look over equipment at SPACEHAB in Port Canaveral, Fla. On the left are Mission Specialists Robert Curbeam and Christer Fuglesang; on the right are Commander Terrence Wilcutt and Pilot William Oefelein. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.

  11. KSC-03pd1166

    NASA Image and Video Library

    2003-04-17

    KENNEDY SPACE CENTER, FLA. -- Members of the STS-116 crew handle equipment at SPACEHAB in Port Canaveral, Fla. On the left are Mission Specialists Robert Curbeam and Christer Fuglesang; on the right are Pilot William Oefelein (front) and Commander Terrence Wilcutt. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.

  12. KSC-03pd1170

    NASA Image and Video Library

    2003-04-17

    KENNEDY SPACE CENTER, FLA. -- The STS-116 crew poses outside the SPACEHAB module during training. In the rear are Commander Terrence Wilcutt and Mission Specialist Christer Fuglesang;; in front are Pilot William Oefelein and Mission Specialist Robert Curbeam. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.

  13. KSC-02pd1913

    NASA Image and Video Library

    2002-12-11

    KENNEDY SPACE CENTER, FLA. -- KSC technicians supervise the offloading of the Integrated Equipment Assembly (IEA), one of two major components of the Starboard 6 (S6) truss segment for the International Space Station (ISS), onto a cargo transporter following its arrival at the Shuttle Landing Facility. The IEA will be joined to its companion piece, the Long Spacer, before launch early in 2004. The S6 truss segment will be the 11th and final piece of the Station's Integrated Truss Structure and will support the fourth and final set of solar arrays, batteries, and electronics.

  14. Space fabrication: Graphite composite truss welding and cap forming subsystems

    NASA Technical Reports Server (NTRS)

    Jenkins, L. M.; Browning, D. L.

    1980-01-01

    An automated beam builder for the fabrication of space structures is described. The beam builder forms a triangular truss 1.3 meters on a side. Flat strips of preconsolidated graphite fiber fabric in a polysulfone matrix are coiled in a storage canister. Heaters raise the material to forming temperature then the structural cap section is formed by a series of rollers. After cooling, cross members and diagonal tension cords are ultrasonically welded in place to complete the truss. The stability of fabricated structures and composite materials is also examined.

  15. The Z1 truss is ready to be moved into Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), a worker makes sure the Integrated Truss Structure Z1 is ready to be moved into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  16. KSC-03pd1180

    NASA Image and Video Library

    2003-04-17

    KENNEDY SPACE CENTER, FLA. - During a break in training at SPACEHAB, Port Canaveral, Fla., STS-116 Commander Terrence Wilcutt, Mission Specialist Christer Fuglesang and Pilot Michael Oelefein share a laugh. Not seen is Mission Specialist Robert Curbeam. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.

  17. 25. 'HANGAR SHEDS TRUSSES DETAILS; ARCHITECTURAL PLANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. 'HANGAR SHEDS - TRUSSES - DETAILS; ARCHITECTURAL PLANS - PLANT AREA; MODIFICATION CENTER NO. 1, DAGGETT, CALIFORNIA.' Sections and details of trusses, ironwork, and joints, as modified to show ridge joint detail. As built. This blueline also shows the fire suppression system, added in orange pencil for 'Project 13: Bldgs. T-30, T-50, T-70, T-90' at a later, unspecified date. Contract no. W509 Eng. 2743; File no. 555/84, revision B, dated August 24, 1942. No sheet number. - Barstow-Daggett Airport, Hangar Shed No. 4, 39500 National Trails Highway, Daggett, San Bernardino County, CA

  18. Truss Assembly and Welding by Intelligent Precision Jigging Robots

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2014-01-01

    This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with micron accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D.

  19. 31. Photocopy of line illustration; originally published in William N. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Photocopy of line illustration; originally published in William N. Carey, 'St. Paul Builds an Airport One Mile From Post Office,' Engineering News-Record, (August 21, 1930), figure 6, page 294; SHOWS CANTILEVERED ROOF-TRUSS SYSTEM OF MUNICIPAL HANGAR COMPLETED AT ST. PAUL MUNICIPAL AIRPORT IN 1930; THE STRUCTURAL DESIGN WAS BASED ON THAT OF THE NORTHWEST AIRWAYS HANGAR, EXCEPT FOR THE SUBSTITUTION OF BOWSTRING TRUSSES FOR TRAPEZOIDAL TRUSSES - Northwest Airways Hangar & Administration Building, 590 Bayfield Street, St. Paul Downtown Airport (Holman), Saint Paul, Ramsey County, MN

  20. KSC-02pd1914

    NASA Image and Video Library

    2002-12-11

    KENNEDY SPACE CENTER, FLA. -- KSC technicians supervise the transfer of the Integrated Equipment Assembly (IEA), one of two major components of the Starboard 6 (S6) truss segment for the International Space Station (ISS), onto a cargo transporter following its arrival at the Shuttle Landing Facility. The IEA will be joined to its companion piece, the Long Spacer, before launch early in 2004. The S6 truss segment will be the 11th and final piece of the Station's Integrated Truss Structure and will support the fourth and final set of solar arrays, batteries, and electronics.

  1. Efficiency Improvements to the Displacement Based Multilevel Structural Optimization Algorithm

    NASA Technical Reports Server (NTRS)

    Plunkett, C. L.; Striz, A. G.; Sobieszczanski-Sobieski, J.

    2001-01-01

    Multilevel Structural Optimization (MSO) continues to be an area of research interest in engineering optimization. In the present project, the weight optimization of beams and trusses using Displacement based Multilevel Structural Optimization (DMSO), a member of the MSO set of methodologies, is investigated. In the DMSO approach, the optimization task is subdivided into a single system and multiple subsystems level optimizations. The system level optimization minimizes the load unbalance resulting from the use of displacement functions to approximate the structural displacements. The function coefficients are then the design variables. Alternately, the system level optimization can be solved using the displacements themselves as design variables, as was shown in previous research. Both approaches ensure that the calculated loads match the applied loads. In the subsystems level, the weight of the structure is minimized using the element dimensions as design variables. The approach is expected to be very efficient for large structures, since parallel computing can be utilized in the different levels of the problem. In this paper, the method is applied to a one-dimensional beam and a large three-dimensional truss. The beam was tested to study possible simplifications to the system level optimization. In previous research, polynomials were used to approximate the global nodal displacements. The number of coefficients of the polynomials equally matched the number of degrees of freedom of the problem. Here it was desired to see if it is possible to only match a subset of the degrees of freedom in the system level. This would lead to a simplification of the system level, with a resulting increase in overall efficiency. However, the methods tested for this type of system level simplification did not yield positive results. The large truss was utilized to test further improvements in the efficiency of DMSO. In previous work, parallel processing was applied to the subsystems level, where the derivative verification feature of the optimizer NPSOL had been utilized in the optimizations. This resulted in large runtimes. In this paper, the optimizations were repeated without using the derivative verification, and the results are compared to those from the previous work. Also, the optimizations were run on both, a network of SUN workstations using the MPICH implementation of the Message Passing Interface (MPI) and on the faster Beowulf cluster at ICASE, NASA Langley Research Center, using the LAM implementation of UP]. The results on both systems were consistent and showed that it is not necessary to verify the derivatives and that this gives a large increase in efficiency of the DMSO algorithm.

  2. Variable geometry Darrieus wind machine

    NASA Astrophysics Data System (ADS)

    Pytlinski, J. T.; Serrano, D.

    1983-08-01

    A variable geometry Darrieus wind machine is proposed. The lower attachment of the blades to the rotor can move freely up and down the axle allowing the blades of change shape during rotation. Experimental data for a 17 m. diameter Darrieus rotor and a theoretical model for multiple streamtube performance prediction were used to develop a computer simulation program for studying parameters that affect the machine's performance. This new variable geometry concept is described and interrelated with multiple streamtube theory through aerodynamic parameters. The computer simulation study shows that governor behavior of a Darrieus turbine can not be attained by a standard turbine operating within normally occurring rotational velocity limits. A second generation variable geometry Darrieus wind turbine which uses a telescopic blade is proposed as a potential improvement on the studied concept.

  3. View of deck of pony truss approach span. Deck system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of deck of pony truss approach span. Deck system has failed at northwest corner. Looking south. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  4. 8. Approach spans (two warren pony trusses), west side, detail ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Approach spans (two warren pony trusses), west side, detail of lower chords and pier no. 2 (west pier); looking south. - Bridge 4666, Minnesota Trunk Highway 19 spanning Minnesota River, North Redwood, Redwood County, MN

  5. 25. VIEW OF EARTHQUAKEDAMAGED TRUSS MEMBER AT #070, SUPPORTED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF EARTHQUAKE-DAMAGED TRUSS MEMBER AT #070, SUPPORTED BY TEMPORARY BRACING, LOOKING NORTHEAST TO SOUTHWEST - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA

  6. 13. VIEW OF SUBSTRUCTURE CONNECTIONS WITH TRUSS MEMBERS, SUSPENSION CABLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF SUBSTRUCTURE CONNECTIONS WITH TRUSS MEMBERS, SUSPENSION CABLES AND 'I'-BEAMS, NORTHEAST SIDE OF BRIDGE, LOOKING WEST - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT

  7. 7. CLOSER OBLIQUE VIEW OF WEST TRUSS AND WEST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CLOSER OBLIQUE VIEW OF WEST TRUSS AND WEST SIDE OF SOUTH ABUTMENT; VIEW TO NORTHEAST. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  8. 8. Detail of north truss, showing connection with large round ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail of north truss, showing connection with large round nuts (correspond in location to hex nuts in MA-97-7) - North Chester Village Bridge, Spanning Westfield River on Smith Road, Chester, Hampden County, MA

  9. 7. Detail of south truss, showing connection with large hex ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail of south truss, showing connection with large hex nuts (correspond in location to round nuts in MA-97-8) - North Chester Village Bridge, Spanning Westfield River on Smith Road, Chester, Hampden County, MA

  10. Stability analysis of truss type highway sign support structures

    DOT National Transportation Integrated Search

    2000-12-01

    The design of truss type sign support structures is based on the guidelines provided by American Association of State Highway and Transportation Officials Standard Specifications for Highway Signs, Luminaires and Traffic Signals and the American Inst...

  11. 32. VIEW FROM CATWALK SHOWING ROOF TRUSSES, OVERHEAD CRANE, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW FROM CATWALK SHOWING ROOF TRUSSES, OVERHEAD CRANE, AND MISCELLANEOUS STOCK AND PATTERNS-LOOKING SOUTHWEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  12. 17. Truss suspended column, industrial loft building, looking at southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Truss suspended column, industrial loft building, looking at southeast corner. Note open floor plan as a result of the floor beams being suspended from above. - Dry Dock Engine Works, 1801 Atwater Street, Detroit, MI

  13. 28. Rear lot of the Adelman Block. The collapsed truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Rear lot of the Adelman Block. The collapsed truss roof (ca. 1932) originally sheltered an automobile sales garage - Lockport Historic District, Bounded by Eighth, Hamilton & Eleventh Streets & Illinois & Michigan Canal, Lockport, Will County, IL

  14. View of central lift span truss web of Tensaw River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of central lift span truss web of Tensaw River Bridge, showing support girders for life house, looking east - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  15. Detail of metal caisson and decking system on pony truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of metal caisson and decking system on pony truss span. From navy land. Looking southeast. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  16. View of one half of movable span, showing truss and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of one half of movable span, showing truss and tension bars, from navy land looking southwest. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  17. Investigation of Prefabricated Steel-Truss Bridge Deck System

    DOT National Transportation Integrated Search

    2017-11-01

    Steel truss bridges are an efficient and aesthetic option for highway crossings. Their relatively light weight compared with plate girder systems make them a desirable alternative for both material savings and constructability. A prototype of a welde...

  18. 6. BUILDER'S PLATE ON WEST TRUSS: 'MOSELEY IRON BUILDING WORKS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. BUILDER'S PLATE ON WEST TRUSS: 'MOSELEY IRON BUILDING WORKS, BOSTON 1888, PATENTED 1881 TO T.W.E. MOSELEY' - Upper Pacific Mills Bridge, Moved to Merrimack College, North Andover, MA, Lawrence, Essex County, MA

  19. 7. October 1972. INTERIOR VIEW, SHOWING THE ROOF TRUSS SYSTEM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. October 1972. INTERIOR VIEW, SHOWING THE ROOF TRUSS SYSTEM. - Atlantic & Great Western Railroad, Meadville Repair Shops, Blacksmith Shop, East bank of French Creek, 800 feet South of Spring Street, Meadville, Crawford County, PA

  20. 2nd EVA - Tani on P6 Truss

    NASA Image and Video Library

    2007-10-28

    S120-E-007038 (28 Oct. 2007) --- Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station. During the 6-hour, 33-minute spacewalk Tani and astronaut Scott Parazynski (out of frame), STS-120 mission specialist, worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of "shavings" he found under the joint's multi-layer insulation covers. Also the spacewalkers outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center.

  1. KSC-06pd1672

    NASA Image and Video Library

    2006-07-26

    KENNEDY SPACE CENTER, FLA. - After a several-hour trip from the Canister Rotation Facility, the payload canister arrives on Launch Pad 39B. Inside the canister is the payload for Atlantis and mission STS-115, the Port 3/4 truss segment with two large solar arrays. The canister will be positioned alongside the rotating service structure and beneath the payload changeout room (PCR) for transfer of the truss into the PCR. The payload changeout room provides an environmentally clean or "white room" condition in which to receive a payload transferred from a protective payload canister. After the shuttle arrives at the pad, the rotating service structure will close around it and the payload will then be transferred into Atlantis' payload bay. Atlantis' launch window begins Aug. 28. During its 11-day mission to the International Space Station, the STS-115 crew of six astronauts will install the truss, a 17-ton segment of the space station's truss backbone. Photo credit: NASA/George Shelton

  2. Comparison of structural performance of one- and two-bay rotary joints for truss applications

    NASA Technical Reports Server (NTRS)

    Vail, J. Douglas; Lake, Mark S.

    1991-01-01

    The structural performance of one- and two-bay large-diameter discrete-bearing rotary joints was addressed for application to truss-beam structures such as the Space Station Freedom. Finite element analyses are performed to determine values for rotary joint parameters that give the same bending vibration frequency as the parent truss beam. The structural masses and maximum internal loads of these joints are compared to determine their relative structural efficiency. Results indicate that no significant difference exists in the masse of one- and two-bay rotary joints. This conclusion is reinforced with closed-form calculations of rotary joint structural efficiency in extension. Also, transition truss-member loads are higher in the one-bay rotary joint. However, because of the increased buckling strength of these members, the external load-carrying capability of the one-bay concept is higher than that of the two-bay concept.

  3. STS-112 insignia

    NASA Image and Video Library

    2002-03-01

    STS112-S-001 (March 2002) --- The STS-112 emblem symbolizes the ninth assembly mission (9A) to the International Space Station (ISS), a flight which is designed to deliver the Starboard 1 (S1) truss segment. The 30,000 pound truss segment will be lifted to orbit in the payload bay of the space shuttle Atlantis and installed using the ISS robotic arm. Three spacewalks will then be carried out to complete connections between the truss and ISS. Future missions will extend the truss structure to a span of over 350 feet so that it can support the solar arrays and radiators which provide the electrical power and cooling for ISS. The STS-112 emblem depicts ISS from the viewpoint of a departing shuttle, with the installed S1 truss segment outlined in red. A gold trail represents a portion of the shuttle rendezvous trajectory. Where the trajectory meets ISS, a nine-pointed star represents the combined on-orbit team of six shuttle and three ISS crew members who together will complete the S1 truss installation. The trajectory continues beyond the ISS, ending in a six-pointed star representing the Atlantis and the STS-112 crew. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA

  4. KSC-02pp0487

    NASA Image and Video Library

    2002-03-01

    JOHNSON SPACE CENTER, HOUSTON, TEXAS - STS-112 CREW INSIGNIA --- The STS-112 emblem symbolizes the ninth assembly mission (9A) to the International Space Station (ISS), a flight which is designed to deliver the Starboard 1 (S1) truss segment. The 30,000 pound truss segment will be lifted to orbit in the payload bay of the Space Shuttle Atlantis and installed using the ISS robotic arm. Three space walks will then be carried out to complete connections between the truss and ISS. Future missions will extend the truss structure to a span of over 350 feet so that it can support the solar arrays and radiators which provide the electrical power and cooling for ISS. The STS-112 emblem depicts ISS from the viewpoint of a departing shuttle, with the installed S1 truss segment outlined in red. A gold trail represents a portion of the Shuttle rendezvous trajectory. Where the trajectory meets ISS, a nine-pointed star represents the combined on-orbit team of six shuttle and three ISS crew members who together will complete the S1 truss installation. The trajectory continues beyond the ISS, ending in a six-pointed star representing the Atlantis and the STS-112 crew. The NASA insignia design for Shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced

  5. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 Mission Specialists Jerry L. Ross and Lee M.E. Morin work in tandem on the fourth scheduled EVA session for the STS-110 mission aboard the Space Shuttle Orbiter Atlantis. Ross is anchored on the mobile foot restraint on the International Space Station's (ISS) Canadarm2, while Morin works inside the S0 (S-zero) truss. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting a 43-foot-long S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  6. 13. VIEW OF DECK TRUSS FROM BELOW. BRIGHT SUN IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF DECK TRUSS FROM BELOW. BRIGHT SUN IS PROJECTING SHADOWS FROM AUTO TRAFFIC ONTO WESTERN PIER. - Northampton Street Bridge, Spanning Delaware River at Northampton Street (U.S. Route 22 Alternate), Easton, Northampton County, PA

  7. Study of a trussed girder composed of a reinforced plastic.

    DOT National Transportation Integrated Search

    1974-01-01

    The structural behavior of a series of laboratory test specimens was investigated to determine the ultimate strength, the deformation characteristics, and the mode of failure of a trussed girder composed of glass fiber reinforced polyester resin. Com...

  8. Interior view of old rain shed (Building No. 43) showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of old rain shed (Building No. 43) showing truss type A in foreground and truss type B behind that. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  9. 258. Dennis Hill, Photographer April 1998 VIEW OF CANTILEVER TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    258. Dennis Hill, Photographer April 1998 VIEW OF CANTILEVER TRUSS ANCHOR ARM AT PIERS E- AND E-2, SOUTH SIDE, FACING NORTH. - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  10. Interior, building 1205, view to west showing roof truss system, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, building 1205, view to west showing roof truss system, 90 mm lens plus electronic flash fill lighting. - Travis Air Force Base, Readiness Maintenance Hangar, W Street, Air Defense Command Readiness Area, Fairfield, Solano County, CA

  11. Detail of "pin" or large bolt used to assemble the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of "pin" or large bolt used to assemble the truss pieces. This "pin" is on pony truss; similar pins were used on movable span. - Naval Supply Annex Stockton, Rough & Ready Island, Stockton, San Joaquin County, CA

  12. 31. DETAIL VIEW OF MOVABLE SPAN, UPPER TRUSS GUSSET PLATE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL VIEW OF MOVABLE SPAN, UPPER TRUSS GUSSET PLATE, CONNECTION OF VERTICAL AND HORIZONTAL MEMBERS AT BRIDGE TENDER'S MOUSE (taken in December 1983) - Sharptown Bridge, Spanning Nanticoke River, State Route 313, Sharptown, Wicomico County, MD

  13. Assembling Precise Truss Structures With Minimal Stresses

    NASA Technical Reports Server (NTRS)

    Sword, Lee F.

    1996-01-01

    Improved method of assembling precise truss structures involves use of simple devices. Tapered pins that fit in tapered holes indicate deviations from prescribed lengths. Method both helps to ensure precision of finished structures and minimizes residual stresses within structures.

  14. 31. DETAILMETAL ROOF TRUSS OF THE NORTH WING OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL--METAL ROOF TRUSS OF THE NORTH WING OF BUILDING 36 LOOKING WEST TO THE WALL PARTITIONING BUILDING 36 AND BUILDING 33. - Navy Yard, Ordnance Building, Intersection of Paulding & Kennon Streets, Washington, District of Columbia, DC

  15. Mir 21 cosmonauts assemble a truss during EVA

    NASA Image and Video Library

    1996-10-01

    NM21-382-019 (For Release October 1996) --- Darkened view of cosmonaut Yury I. Onufrienko, Mir 21 commander, wearing a red stripe on his Russian Orlan spacesuit, traversing the the Sofora Truss, with the Strehla transfer aid beside it.

  16. Application of physical parameter identification to finite-element models

    NASA Technical Reports Server (NTRS)

    Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.

    1987-01-01

    The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.

  17. Modelling of current loads on aquaculture net cages

    NASA Astrophysics Data System (ADS)

    Kristiansen, Trygve; Faltinsen, Odd M.

    2012-10-01

    In this paper we propose and discuss a screen type of force model for the viscous hydrodynamic load on nets. The screen model assumes that the net is divided into a number of flat net panels, or screens. It may thus be applied to any kind of net geometry. In this paper we focus on circular net cages for fish farms. The net structure itself is modelled by an existing truss model. The net shape is solved for in a time-stepping procedure that involves solving a linear system of equations for the unknown tensions at each time step. We present comparisons to experiments with circular net cages in steady current, and discuss the sensitivity of the numerical results to a set of chosen parameters. Satisfactory agreement between experimental and numerical prediction of drag and lift as function of the solidity ratio of the net and the current velocity is documented.

  18. View of West end of central lift span truss web ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of West end of central lift span truss web of Tensaw River Bridge, showing web brace of lift girder superstructure, looking west - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  19. 11. OBLIQUE VIEW OF EAST TRUSS AND EAST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. OBLIQUE VIEW OF EAST TRUSS AND EAST SIDE OF SOUTH ABUTMENT, SEEN FROM SOUTH BANK OF WINTER'S RUN. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  20. Monitoring vibrations on the Jefferson City Truss Bridge.

    DOT National Transportation Integrated Search

    2016-05-25

    The objective of the research was to determine the frequency and cause of resonant vibrations of truss verticals on bridge A4497 : over the Missouri River in Jefferson City, MO. Instrumentation to monitor the vibrations of four verticals was installe...

  1. Evaluation of Gusset Plate Safety in Steel Truss Bridges

    DOT National Transportation Integrated Search

    2011-10-01

    Failure of the I-35 truss bridge in Minneapolis has been attributed to failure of a gusset plate, necessitating : evaluation of gusset plate safety on bridges across the county. FHWA Publication IF-09-014 provides state : DOTs with important guidance...

  2. 11. DETAIL SHOWING ROLLING ENGINE DECK AND NORTHEAST TRUSS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL SHOWING ROLLING ENGINE DECK AND NORTHEAST TRUSS OF SUPERSTRUCTURE. Looking northeast. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  3. 3. DETAIL OF TRUSS PANELS AND INCLINED PORTAL MEMBER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF TRUSS PANELS AND INCLINED PORTAL MEMBER AT THE SOUTHEAST ENTRANCE TO THE BRIDGE, LOOKING WEST. - Chicago, Madison & Northern Railroad, Sanitary & Ship Canal Bridge, Spanning Sanitary & Ship Canal, east of Kedzie Avenue, Chicago, Cook County, IL

  4. International Space Station (ISS)

    NASA Image and Video Library

    2000-07-01

    The 45-foot, port-side (P1) truss segment flight article for the International Space Station is being transported to the Redstone Airfield, Marshall Space Flight Center. The truss will be loaded aboard NASA's Super Guppy cargo plane for shipment to the Kennedy Space Center.

  5. View of movable span and point truss (to right), from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of movable span and point truss (to right), from navy land, looking west, showing bridge in context of navigational channel. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  6. Low Vertical Clearance Truss Bridges : Risk Assessment and Retrofit Mitigation Study

    DOT National Transportation Integrated Search

    2017-11-10

    The Washington State Department of Transportation (WSDOT) has over 60 steel truss bridges in its inventory with vertical clearances less than the minimum 16-6 required for new bridges. This study evaluates the risks of oversized vehicle impacts...

  7. Analysis of Truss Frames by Method of the Stiffness Matrix

    DTIC Science & Technology

    1990-12-01

    of the web members of the truss. There also are variations in the truss frame given by the geometric shape of the frame, also referred to in some...at the elastic center, 0 (Figure .3.2), are: R AX = Wix - Hot RBX W2x -Ho, RAY =WIY + Vo, (1) RBy WLy - Vo, MAB =- Mo + CH. + aVo + CMA, MBA =M - CH...o Co Ce Substituting the results of Equation (7) into Equations (1), x c D x RAY = Wix + + -- (eA - GO - D (8)C x C x C cx x cx AY a D RAY

  8. KSC-08pd2049

    NASA Image and Video Library

    2008-07-21

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center, workers prepare to move the final solar array wing for the International Space Station for installation on the S6 truss element. Scheduled to launch on the STS-119 mission, space shuttle Discovery will carry the S6 truss segment to complete the 361-foot-long backbone of the International Space Station. The truss includes the fourth pair of solar array wings and electronics that convert sunlight to power for the orbiting laboratory. Launch is targeted for Feb. 12, 2009. Photo credit: NASA/Troy Cryder

  9. KSC-00pp1387

    NASA Image and Video Library

    2000-09-07

    In the Space Station Processing Facility, the Integrated Truss Structure Z1, an element of the International Space Station, is lifted for moving to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program

  10. KSC-00pp1356

    NASA Image and Video Library

    2000-09-13

    KENNEDY SPACE CENTER, Fla. -- With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  11. KSC-00pp1389

    NASA Image and Video Library

    2000-09-07

    In the Space Station Processing Facility, workers watch as the Integrated Truss Structure Z1, an element of the International Space Station, is moved to another stand to check its weight and balance. The Z1 truss is the first of 10 trusses that will become the backbone of the Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Space Shuttle Discovery Oct. 5 at 9:38 p.m. EDT. The launch will be the 100th in the Shuttle program

  12. KSC00pp1356

    NASA Image and Video Library

    2000-09-13

    KENNEDY SPACE CENTER, Fla. -- With its umbilical hoses stretched out, the payload canister (left) with the Integrated Truss Structure Z1 inside nears the top of the passage to the Payload Changeout Room. There the Z1 truss will be removed and later transferred to Space Shuttle Discovery’s payload bay. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT

  13. Ground vibration tests of a high fidelity truss for verification of on orbit damage location techniques

    NASA Technical Reports Server (NTRS)

    Kashangaki, Thomas A. L.

    1992-01-01

    This paper describes a series of modal tests that were performed on a cantilevered truss structure. The goal of the tests was to assemble a large database of high quality modal test data for use in verification of proposed methods for on orbit model verification and damage detection in flexible truss structures. A description of the hardware is provided along with details of the experimental setup and procedures for 16 damage cases. Results from selected cases are presented and discussed. Differences between ground vibration testing and on orbit modal testing are also described.

  14. KSC-03pd1179

    NASA Image and Video Library

    2003-04-17

    KENNEDY SPACE CENTER, FLA. - At SPACEHAB, Port Canaveral, Fla., STS-116 Mission Specialist Christer Fuglesang (left) and Pilot Michael Oelefein share a laugh during a break in training. Fuglesang is with the European Space Agency. Not seen are Commander Terrence Wilcutt and Mission Specialist Robert Curbeam. Objective of their mission to the International Space Station is to deliver and attach the third port truss segment, the P5 Truss, deactivate and retract the P6 Truss Channel 4B (port-side) solar array, and reconfigure station power from 2A and 4A solar arrays. A launch date is under review.

  15. Graphite composite truss welding and cap section forming subsystems. Volume 1: Executive summary. [large space structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A rolltrusion process was developed for forming of a hybrid, single-ply woven graphite and glass fiber cloth, impregnated with a polysulfone resin and coated with TI02 pigmented P-1700 resin into strips for the on-orbit fabrication of triangular truss segments. Ultrasonic welding in vacuum showed no identifiable effects on weld strength or resin flow characteristics. An existing bench model cap roll forming machine was modified and used to roll form caps for the prototype test truss and for column test specimens in order to test local buckling and torsional instability characteristics.

  16. Astronaut Sellers Performs STS-112 EVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard Side Integrated Truss Structure (S1) and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. In this photograph, Astronaut Piers J. Sellers uses both a handrail on the Destiny Laboratory and a foot restraint on the Space Station Remote Manipulator System or Canadarm2 to remain stationary while performing work at the end of the STS-112 mission's second space walk. A cloud-covered Earth provides the backdrop for the scene.

  17. Wireless Laser Range Finder System for Vertical Displacement Monitoring of Mega-Trusses during Construction

    PubMed Central

    Park, Hyo Seon; Son, Sewook; Choi, Se Woon; Kim, Yousok

    2013-01-01

    As buildings become increasingly complex, construction monitoring using various sensors is urgently needed for both more systematic and accurate safety management and high-quality productivity in construction. In this study, a monitoring system that is composed of a laser displacement sensor (LDS) and a wireless sensor node was proposed and applied to an irregular building under construction. The subject building consists of large cross-sectional members, such as mega-columns, mega-trusses, and edge truss, which secured the large spaces. The mega-trusses and edge truss that support this large space are of the cantilever type. The vertical displacement occurring at the free end of these members was directly measured using an LDS. To validate the accuracy and reliability of the deflection data measured from the LDS, a total station was also employed as a sensor for comparison with the LDS. In addition, the numerical simulation result was compared with the deflection obtained from the LDS and total station. Based on these investigations, the proposed wireless displacement monitoring system was able to improve the construction quality by monitoring the real-time behavior of the structure, and the applicability of the proposed system to buildings under construction for the evaluation of structural safety was confirmed. PMID:23648650

  18. Application of truss analysis for the quantification of changes in fish condition

    USGS Publications Warehouse

    Fitzgerald, Dean G.; Nanson, Jeffrey W.; Todd, Thomas N.; Davis, Bruce M.

    2002-01-01

    Conservation of skeletal structure and unique body ratios in fishes facilitated the development of truss analysis as a taxonomic tool to separate physically-similar species. The methodology is predicated on the measurement of across-body distances from a sequential series of connected polygons. Changes in body shape or condition among members of the same species can be quantified with the same technique, and we conducted a feeding experiment using yellow perch (Perca flavescens) to examine the utility of this approach. Ration size was used as a surrogate for fish condition, with fish receiving either a high (3.0% body wt/d) or a low ration (0.5%). Sequentially over our 11-week experiment, replicate ration groups of fish were removed and photographed while control fish were repeatedly weighed and measured. Standard indices of condition (total lipids, weight-length ratios, Fulton's condition) were compared to truss measurements determined from digitized pictures of fish. Condition indices showed similarity between rations while truss measures from the caudal region were important for quantifying changing body shape. These findings identify truss analysis as having use beyond traditional applications. It can potentially be used as a cheap, accurate, and precise descriptor of fish condition in the lab as shown here, and we hypothesize that it would be applicable in field studies.

  19. STS-110 Atlantis Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Space Shuttle Orbiter Atlantis STS-110, embarking on its 25th flight, lifts off from launch pad 39B at Kennedy Space Center at 3:44 p.m. CDT April 8, 2002. The STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines.

  20. STS-110 Atlantis Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Space Shuttle Orbiter Atlantis STS-110, embarking on its 25th flight, lifts off from launch pad 39B at Kennedy Space Center at 3:44 p.m. CDT April 8, 2002. The STS-110 mission prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The 27,000 pound S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines.

  1. STS-113 Astronauts Work on Port One (P1) Truss on International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 16th American assembly flight and 112th overall American flight to the International Space Station (ISS) launched on November 23, 2002 from Kennedy's launch pad 39A aboard the Space Shuttle Orbiter Endeavor STS-113. Mission objectives included the delivery of the Expedition Six Crew to the ISS, the return of Expedition Five crew back to Earth, and the installation and activation of the Port 1 Integrated Truss Assembly (P1). The first major component installed on the left side of the Station, the P1 truss provides an additional three External Thermal Control System radiators. Weighing in at 27,506 pounds, the P1 truss is 45 feet (13.7 meters) long, 15 feet (4.6 meters) wide, and 13 feet (4 meters) high. Three space walks, aided by the use of the Robotic Manipulator Systems of both the Shuttle and the Station, were performed in the installation of P1. In this photograph, astronauts Michael E. Lopez-Alegria (above) and John B. Herrington (below) work on the newly installed P1 truss during the mission's second scheduled session of extravehicular activity. The space walk lasted 6 hours, 10 minutes. The end effector of the Canadarm2 or Space Station Remote Manipulator System (SSRMS) and Earth's horizon are visible in the bottom of frame.

  2. Choice of rational structural solution for smart innovative suspension structure

    NASA Astrophysics Data System (ADS)

    Goremikins, V.; Serdjuks, D.; Buka-Vaivade, K.; Pakrastins, L.

    2017-10-01

    Choice of the rational structural solution for smart innovative suspension structure was carried out. The prestressed cable trusses and cross-laminated timber panels were considered as the main load bearing members for the smart innovative suspension structure. The FEM model, which enables to predict behaviours of the structure, was developed in the programme ANSYS v12. Structural solutions that are differed by the lattice configuration of the cable truss and placement of cross-laminated timber panels were considered. The variant of the cable truss with the vertical suspenders and chords joined in the middle of the span was chosen as the best one. It was shown, that placement of cross-laminated timber panels by the bottom chord of the prestressed cable truss enables to decrease materials consumption by 16.7% in comparison with the variant, where the panels are placed by the top chord. It was stated, that the materials consumption decrease by 17.3% in the case, when common work of the prestressed cable trusses and cross-laminated timber panels is taken into account. The cross-laminated timber panels are working in the both directions. Physical model of the structure with the span equal to 2 m was developed for checking of numerically obtained results.

  3. Development of a verification program for deployable truss advanced technology

    NASA Technical Reports Server (NTRS)

    Dyer, Jack E.

    1988-01-01

    Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.

  4. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, William K.

    1992-12-01

    In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station.

  5. High cycle fatigue crack modeling and analysis for deck truss flooring connection details : final report.

    DOT National Transportation Integrated Search

    1997-07-01

    The Oregon Department of Transportation is responsible for many steel deck truss bridges containing connection details that are fatigue prone. A typical bridge, the Winchester Bridge in Roseburg, Oregon, was analyzed to assess the loading conditions,...

  6. 1. Title Sheet; Door Profiles; Roof Truss, Protestant Chapel; Mess ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Title Sheet; Door Profiles; Roof Truss, Protestant Chapel; Mess Hall/Corridor Window Jamb; Circular Stair Newel Post and Balustrade - National Home for Disabled Volunteer Soldiers - Battle Mountain Sanitarium, Mess Hall, 500 North Fifth Street, Hot Springs, Fall River County, SD

  7. DETAIL ELEVATION SHOWING THE ROOF TRUSSES, PURLINS, AND SKYLIGHT. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL ELEVATION SHOWING THE ROOF TRUSSES, PURLINS, AND SKYLIGHT. NOTE THE DOORS TO THE WEIGHTLIFTING ROOM. VIEW FACING SOUTHEAST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI

  8. 8. DETAIL OF NORTH END OF EAST TRUSS, SHOWING END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL OF NORTH END OF EAST TRUSS, SHOWING END POST, TOP AND LOWER CHORDS, AND DIAGONAL EYE BARS, SEEN FROM NORTHEAST. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD

  9. Best management practices for storage of historic metal truss bridges.

    DOT National Transportation Integrated Search

    2014-07-01

    As part of a 2002 agreement with the FHWA, GDOT has committed to consider storing metal truss : bridges of historic value in lieu of demolition, until a recipient could be located. This research addresses the most : effective processes for storage of...

  10. Digital image rectification tool for metrification of gusset plate connections in steel truss bridges.

    DOT National Transportation Integrated Search

    2009-03-01

    A method was developed to obtain dimensional data from photographs for analyzing steel truss gusset plate : connections. The method relies on a software application to correct photographic distortion and to scale the : photographs for analysis. The a...

  11. Detail of old rain shed (Building No. 43) showing truss ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of old rain shed (Building No. 43) showing truss type B at wall post. New aluminum roofing seen in comparison with older galvanized steel siding. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  12. 346. Caltrans, Photographer July 8, 1935 "PIER El"; VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    346. Caltrans, Photographer July 8, 1935 "PIER E-l"; VIEW OF PIER E-I, DECK TRUSS, AND CANTILEVER TRUSS ANCHOR ARM UNDER CONSTRUCTION. 5-1583 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  13. Best practices for the rehabilitation and moving of historic metal truss bridges.

    DOT National Transportation Integrated Search

    2006-01-01

    The Virginia Department of Transportation and the Department of Historic Resources are responsible for the management of about 30 historic truss bridges. All too often, these structures do not meet today's traffic demands or safety standards. Their g...

  14. A comparison of transient vehicle performance using a fixed geometry, wastegated turbocharger and a variable geometry turbocharger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, R.R.; Gall, J.M.

    1986-01-01

    The use of an exhaust-driven boosting device can significantly improve the performance of a vehicle using a small displacement engine. One of the concerns relative to the performance of vehicles using these devices is ''turbo lag,'' or the period of time during which no boost is generated. This paper presents the results of designed experiments comparing the performance of a fixed geometry, wastegated turbocharger to a variable geometry turbocharger incorporating a low-loss bearing system. In addition, experimental tests are presented for the naturally aspirated engine in the same vehicle. The results of the experiments show improvements with the use ofmore » pressure boosting and that there are signifcant differences in the boosting devices tested; specifically, the use of a variable geometry turbocharger demonstrates significant reduction in the length of time required to reach boost and reduced acceleration times for the tests conducted.« less

  15. STS-110 Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  16. 26. Detail of south granite pier revealing riveted truss ends ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Detail of south granite pier revealing riveted truss ends and iron footing plates on top of granite cap stones. View north - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  17. Fracture critical analysis procedures and design and retrofit approaches for pony truss bridges in Ohio.

    DOT National Transportation Integrated Search

    2016-10-01

    The study outlined in this report aimed to quantify the available redundancy in pony truss bridge systems : constructed using standard designs and practices in the state of Ohio. A method of conducting refined : three-dimensional nonlinear finite ele...

  18. 300. Frank Deras Jr., Photographer June 1998 VIEW OF THROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    300. Frank Deras Jr., Photographer June 1998 VIEW OF THROUGH TRUSS AND DECK TRUSS SPANS AT PIERS E-8 THROUGH E-l 1, SOUTH SIDE, FACING NORTH-NORTHEAST. - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  19. Advanced bridge safety initiative : investigation of floor beam performance in three steel through-truss bridges - task 7.

    DOT National Transportation Integrated Search

    2014-08-01

    The Advanced Structures and Composites Center at the University of Maine (UMaine) performed live load testing : and rating adjustment factor analysis for three truss bridges. The Maine Department of Transportation (DOT) : indicated that the floor bea...

  20. Onsite Fabrication of Trusses and Structures

    NASA Technical Reports Server (NTRS)

    Bodle, J. G.; Browning, D. L.; Fisher, J. G.; Hujsak, E. J.; Kleidon, E. H.; Siden, L. E.; Tremblay, G. A.

    1982-01-01

    Tribeam truss that is strong and light made at site where used. Reinforced plastic members are fabricated by beam-making machine and assembled by assembly and welding machines. Although proposed for space-platform assembly, concept may be useful in terrestrial applications in remote or inaccessible places.

  1. Detail of "pin" or large bolt used to assemble the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of "pin" or large bolt used to assemble the truss pieces. This "pin" is on pony truss; similar pins were used on movable span. - Naval Supply Annex Stockton, Daggett Road Bridge, Daggett Road traversing Burns Cut Off, Stockton, San Joaquin County, CA

  2. Mir 21 cosmonauts assemble a truss during EVA

    NASA Image and Video Library

    1996-10-01

    NM21-382-008 (For Release October 1996) --- Cosmonaut Yury I. Onufrienko, Mir 21 commander, wearing a red stripe on his Russian Orlan spacesuit, and Mir 21 flight engineer Yuri V. Usachev (blue stripe on Orlan) work to install the truss on the module.

  3. Performance and quality-control standards for composite floor, wall, and truss framing

    Treesearch

    Gerald A. Koenigshof

    1985-01-01

    Users must be assured that composite structural members are satisfactory for their intended purposes. Standards are provided for strength, stiffness, durability, and dimensional stability of composite floor, wall, and truss-framing members. Methods for enforcing compliance with the standards are suggested.

  4. Topology optimization under stochastic stiffness

    NASA Astrophysics Data System (ADS)

    Asadpoure, Alireza

    Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations for the response quantities allow for efficient and accurate calculation of sensitivities of response statistics with respect to the design variables. The proposed methods are shown to be successful at generating robust optimal topologies. Examples from topology optimization in continuum and discrete domains (truss structures) under uncertainty are presented. It is also shown that proposed methods lead to significant computational savings when compared to Monte Carlo-based optimization which involve multiple formations and inversions of the global stiffness matrix and that results obtained from the proposed method are in excellent agreement with those obtained from a Monte Carlo-based optimization algorithm.

  5. STS-112 crew walks out of O&C building before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-112 crew wave to spectators as they exit the Operations and Checkout Building for their ride to Launch Pad 39B and the launch scheduled 3:46 p.m. EDT. Leading the way are Pilot Pamela Melroy and Commander Jeffrey Ashby. In the second row are Mission Specialists David Wolf (left) and Sandra Magnus. Behind them are Mission Specialists Fyodor Yurchikhin and Piers Sellers. Sellers, Magnus and Yurchikhin are making their first Shuttle flights. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station.

  6. STS-112 Crew exit O&C building before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-112 crew eagerly exit the Operations and Checkout Building for their ride to Launch Pad 39B and the launch scheduled 3:46 p.m. EDT. Leading the way are Pilot Pamela Melroy and Commander Jeffrey Ashby. In the second row are Mission Specialists David Wolf (left) and Sandra Magnus. Behind them are Mission Specialists Fyodor Yurchikhin and Piers Sellers. Sellers, Magnus and Yurchikhin are making their first Shuttle flights. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. [Photo courtesy of Scott Andrews

  7. Shear properties evaluation of a truss core of sandwich beams

    NASA Astrophysics Data System (ADS)

    Wesolowski, M.; Ludewicz, J.; Domski, J.; Zakrzewski, M.

    2017-10-01

    The open-cell cores of sandwich structures are locally bonded to the face layers by means of adhesive resin. The sandwich structures composed of different parent materials such as carbon fibre composites (laminated face layers) and metallic core (aluminium truss core) brings the need to closely analyse their adhesive connections which strength is dominated by the shear stress. The presented work considers sandwich beams subjected to the static tests in the 3-point bending with the purpose of estimation of shear properties of the truss core. The main concern is dedicated to the out-of plane shear modulus and ultimate shear stress of the aluminium truss core. The loading of the beam is provided by a static machine. For the all beams the force - deflection history is extracted by means of non-contact optical deflection measurement using PONTOS system. The mode of failure is identified for each beam with the corresponding applied force. A flexural rigidity of the sandwich beams is also discussed based on force - displacement plots.

  8. STS-112 Crew Interviews: Sellers

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Piers Sellers is an Astronaut from Crowborough, UK. His Bachelor of Science degree is in Ecological science from Scotland's University of Edinburgh and his doctorate is in biometeorology from Leeds University in the UK. After two years of intense training, Sellers's first assignment as a Mission Specialist is on Flight 111 STS-112. The goal of this flight is to continue building the International Space Station. Sellers, accompanied by five astronauts, will install the S1 truss of the space station which will take three EVA's, or Extra Vehicular Activities to complete. In EVA 1, the highest priority, the S1 truss will be attached to the space station. EVA 2, the electrical work, will set up the radiator and cooling equipment for the station. EVA 3, the final process of the flight, will prepare the station for the next mission. The primary reason for installing the truss is to change the center of gravity of the station so when the next truss is installed, it will be at a symmetrical point.

  9. Mobile Transporter

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Space Shuttle Atlantis, STS-110 mission, deployed this railcar, called the Mobile Transporter, and an initial 43-foot section of track, the S0 (S-zero) truss, preparing the International Space Station (ISS) for future spacewalks. The first railroad in space, the Mobile Transporter will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The 27,000-pound S0 truss is the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002. STS-110's Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station.

  10. Verification Test of Automated Robotic Assembly of Space Truss Structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1995-01-01

    A multidisciplinary program has been conducted at the Langley Research Center to develop operational procedures for supervised autonomous assembly of truss structures suitable for large-aperture antennas. The hardware and operations required to assemble a 102-member tetrahedral truss and attach 12 hexagonal panels were developed and evaluated. A brute-force automation approach was used to develop baseline assembly hardware and software techniques. However, as the system matured and operations were proven, upgrades were incorporated and assessed against the baseline test results. These upgrades included the use of distributed microprocessors to control dedicated end-effector operations, machine vision guidance for strut installation, and the use of an expert system-based executive-control program. This paper summarizes the developmental phases of the program, the results of several assembly tests, and a series of proposed enhancements. No problems that would preclude automated in-space assembly or truss structures have been encountered. The test system was developed at a breadboard level and continued development at an enhanced level is warranted.

  11. Evaluation of boron-epoxy-reinforced titanium tubular truss for application to a space shuttle booster thrust structure

    NASA Technical Reports Server (NTRS)

    Corvelli, N.; Carri, R.

    1972-01-01

    Results of a study to demonstrate the applicability of boron-epoxy-composite-reinforced titanium tubular members to a space shuttle booster thrust structure are presented and discussed. The experimental results include local buckling of all-composite and composite-reinforced-metal cylinders with low values of diameter-thickness ratio, static tests on composite-to-metal bonded step joints, and a test to failure of a boron-epoxy-reinforced titanium demonstration truss. The demonstration truss failed at 118 percent of design ultimate load. Test results and analysis for all specimens and the truss are compared. Comparing an all-titanium design and a boron-epoxy-reinforced-titanium (75 percent B-E and 25 percent Ti) design for application to the space shuttle booster thrust structure indicates that the latter would weigh approximately 24 percent less. Experimental data on the local buckling strength of cylinders with a diameter-thickness ratio of approximately 50 are needed to insure that undue conservatism is not used in future designs.

  12. The Researches on Damage Detection Method for Truss Structures

    NASA Astrophysics Data System (ADS)

    Wang, Meng Hong; Cao, Xiao Nan

    2018-06-01

    This paper presents an effective method to detect damage in truss structures. Numerical simulation and experimental analysis were carried out on a damaged truss structure under instantaneous excitation. The ideal excitation point and appropriate hammering method were determined to extract time domain signals under two working conditions. The frequency response function and principal component analysis were used for data processing, and the angle between the frequency response function vectors was selected as a damage index to ascertain the location of a damaged bar in the truss structure. In the numerical simulation, the time domain signal of all nodes was extracted to determine the location of the damaged bar. In the experimental analysis, the time domain signal of a portion of the nodes was extracted on the basis of an optimal sensor placement method based on the node strain energy coefficient. The results of the numerical simulation and experimental analysis showed that the damage detection method based on the frequency response function and principal component analysis could locate the damaged bar accurately.

  13. Multidisciplinary optimization of controlled space structures with global sensitivity equations

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.

    1991-01-01

    A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.

  14. A new look at the simultaneous analysis and design of structures

    NASA Technical Reports Server (NTRS)

    Striz, Alfred G.

    1994-01-01

    The minimum weight optimization of structural systems, subject to strength and displacement constraints as well as size side constraints, was investigated by the Simultaneous ANalysis and Design (SAND) approach. As an optimizer, the code NPSOL was used which is based on a sequential quadratic programming (SQP) algorithm. The structures were modeled by the finite element method. The finite element related input to NPSOL was automatically generated from the input decks of such standard FEM/optimization codes as NASTRAN or ASTROS, with the stiffness matrices, at present, extracted from the FEM code ANALYZE. In order to avoid ill-conditioned matrices that can be encountered when the global stiffness equations are used as additional nonlinear equality constraints in the SAND approach (with the displacements as additional variables), the matrix displacement method was applied. In this approach, the element stiffness equations are used as constraints instead of the global stiffness equations, in conjunction with the nodal force equilibrium equations. This approach adds the element forces as variables to the system. Since, for complex structures and the associated large and very sparce matrices, the execution times of the optimization code became excessive due to the large number of required constraint gradient evaluations, the Kreisselmeier-Steinhauser function approach was used to decrease the computational effort by reducing the nonlinear equality constraint system to essentially a single combined constraint equation. As the linear equality and inequality constraints require much less computational effort to evaluate, they were kept in their previous form to limit the complexity of the KS function evaluation. To date, the standard three-bar, ten-bar, and 72-bar trusses have been tested. For the standard SAND approach, correct results were obtained for all three trusses although convergence became slower for the 72-bar truss. When the matrix displacement method was used, correct results were still obtained, but the execution times became excessive due to the large number of constraint gradient evaluations required. Using the KS function, the computational effort dropped, but the optimization seemed to become less robust. The investigation of this phenomenon is continuing. As an alternate approach, the code MINOS for the optimization of sparse matrices can be applied to the problem in lieu of the Kreisselmeier-Steinhauser function. This investigation is underway.

  15. The development of a fiber optics communication network for controlling a Multidegree-Of-Freedom Serpentine Truss

    NASA Astrophysics Data System (ADS)

    Andrawis, Alfred S.

    1994-10-01

    The problem addressed by this report is the large size and heavy weight of the cable bundle, used for controlling a Multidegree-Of-Freedom Serpentine Truss Manipulator arm, which imposes limitations on the manipulator arm maneuverability. This report covers a design of an optical fiber network to replace the existing copper wire network of the Serpentine Truss Manipulator. This report proposes a fiber network design which significantly reduces the bundle size into two phases. The first phase does not require any modifications for the manipulator architecture, while the other requires major modifications. Design philosophy, hardware details and schematic diagrams are presented.

  16. The development of a fiber optics communication network for controlling a Multidegree-Of-Freedom Serpentine Truss

    NASA Technical Reports Server (NTRS)

    Andrawis, Alfred S.

    1994-01-01

    The problem addressed by this report is the large size and heavy weight of the cable bundle, used for controlling a Multidegree-Of-Freedom Serpentine Truss Manipulator arm, which imposes limitations on the manipulator arm maneuverability. This report covers a design of an optical fiber network to replace the existing copper wire network of the Serpentine Truss Manipulator. This report proposes a fiber network design which significantly reduces the bundle size into two phases. The first phase does not require any modifications for the manipulator architecture, while the other requires major modifications. Design philosophy, hardware details and schematic diagrams are presented.

  17. STS-119 Extravehicular Activity (EVA) 1 S6 Truss Umbilical Mate OPS

    NASA Image and Video Library

    2009-03-19

    S119-E-006674 (19 March 2009) --- Astronaut Steve Swanson (center), STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  18. STS-119 Extravehicular Activity (EVA) 1 S6 Truss Umbilical Mate OPS

    NASA Image and Video Library

    2009-03-19

    S119-E-006675 (19 March 2009) --- Astronaut Steve Swanson (center right), STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  19. STS-119 Extravehicular Activity (EVA) 1 S6 Truss Umbilical Mate OPS

    NASA Image and Video Library

    2009-03-19

    S119-E-006673 (19 March 2009) --- Astronauts Steve Swanson (center) and Richard Arnold (partially obscured above Swanson), both STS-119 mission specialists, participate in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and Arnold connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  20. KSC-02pd1314

    NASA Image and Video Library

    2002-09-16

    KENNEDY SPACE CENTER, Fla. - STS-112 Mission Specialist David Wolf is ready for his practice run driving the M-113 armored personnel carrier. Wolf and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  1. STS-112 crew during TCDT activities with M-113 carrier

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, Fla. - STS-112 Commander Jeffrey Ashby drives the M-113 armored personnel carrier during Terminal Countdown Demonstration Test activities. At the far left is Mission Specialist Sandra Magnus. The TCDT also includes a simulated launch countdown. The mission aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment. The S1 will be attached to the central truss segment, S0, during the 11-day mission.

  2. KSC-02pd1704

    NASA Image and Video Library

    2002-11-10

    KENNEDY SPACE CENTER, FLA. - STS-113 Commander James Wetherbee is happy to suit up before launch. Wetherbee will be making his sixth Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  3. STS-113 Mission Specialist Michael Lopez-Alegria suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist Michael Lopez-Alegria suits up before launch. This will be his third Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  4. STS-113 Mission Specialist Michael Lopez-Alegria suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist Michael Lopez-Alegria suits up for launch. He will be making his third Shuttle flight. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for 8:15 p.m. EST.

  5. STS-113 Mission Specialist John Herrington suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington suits up before launch. This will be his first Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 p.m. EST.

  6. Detailed view of one (1) end of the swing span, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detailed view of one (1) end of the swing span, supported on a rest pier, with the span in the closed position and in the train operational mode. Note the end truss bearing where a steel wedge is in the driven position to complete the end bearing arrangement. The wedges are power-driven through the machinery crank arms shown, thus forcing the ends of the swing span truss upward. Note: The top of the old stone pies has been encased with a concrete collar to hold stone masonry together and strengthen truss bearing points. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  7. Expedition 6 flight engineer Donald Pettit suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition 6 flight engineer Donald Pettit relaxes during suitup for launch. Pettit will be making his first Shuttle flight. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for 8:15 p.m. EST.

  8. Expedition 6 flight engineer Donald Pettit suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Expedition 6 flight engineer Donald Pettit suits up before launch. This will be his first Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  9. The Z1 truss is moved into the Payload Changeout Room

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), workers check the controls on movement of the Integrated Truss Structure Z1 behind them into the PCR from the payload canister. Once sealed inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  10. KSC-07pd0364

    NASA Image and Video Library

    2007-02-12

    KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, the S3/S4 integrated truss is being moved out of the payload canister. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller

  11. KSC-07pd0360

    NASA Image and Video Library

    2007-02-12

    KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, the opening doors of the canister reveal the S3/S4 integrated truss inside. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller

  12. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-19

    Back dropped by the colorful Earth, the International Space Station (ISS) boasts its newest configuration upon the departure of Space Shuttle Endeavor and STS-118 mission. Days earlier, construction resumed on the ISS as STS-118 mission specialists and the Expedition 15 crew completed installation of the Starboard 5 (S-5) truss segment, removed a faulty Control Moment Gyroscope (CMG-3), installed a new CMG into the Z1 truss, relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) to Port 1 (P1) truss, installed a new transponder on P1, retrieved the P6 transponder, and delivered roughly 5,000 pounds of supplies.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-19

    Back dropped by the blue Earth, the International Space Station (ISS) boasts its newest configuration upon the departure of Space Shuttle Endeavor and STS-118 mission. Days earlier, construction resumed on the ISS as STS-118 mission specialists and the Expedition 15 crew completed installation of the Starboard 5 (S-5) truss segment, removed a faulty Control Moment Gyroscope (CMG-3), installed a new CMG into the Z1 truss, relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) to Port 1 (P1) truss, installed a new transponder on P1, retrieved the P6 transponder, and delivered roughly 5,000 pounds of equipment and supplies.

  14. KSC-07pd0358

    NASA Image and Video Library

    2007-02-12

    KENNEDY SPACE CENTER, FLA. -- In the payload changeout room (PCR) on Launch Pad 39A, workers prepare to open the canister containing the S3/S4 integrated truss. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports cargo delivery to the pad and subsequent vertical installation into the orbiter payload bay. The truss is the payload for Space Shuttle Atlantis on mission STS-117 to the International Space Station. The Atlantis crew will install the new truss segment, retract a set of solar arrays and unfold a new set on the starboard side of the station. Launch is targeted for March 15. Photo credit: NASA/Jack Pfaller

  15. The Z1 truss is prepped in the PCR for transfer to Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Payload Changeout Room (PCR), workers prepare to move the Integrated Truss Structure Z1 out of the payload canister. Once inside the PCR, workers will get ready to move the Z1 into the payload bay of Space Shuttle Discovery. The Z1 truss is the first of 10 that will become the backbone of the International Space Station, eventually stretching the length of a football field. Along with its companion payload, the third Pressurized Mating Adapter, the Z1 is scheduled to be launched aboard Discovery Oct. 5 at 9:38 p.m. EDT.

  16. Design, development and fabrication of a deployable/retractable truss beam model for large space structures application

    NASA Technical Reports Server (NTRS)

    Adams, Louis R.

    1987-01-01

    The design requirements for a truss beam model are reviewed. The concept behind the beam is described. Pertinent analysis and studies concerning beam definition, deployment loading, joint compliance, etc. are given. Design, fabrication and assembly procedures are discussed.

  17. 9. Detail of pin truss and floor board system, from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail of pin truss and floor board system, from Minnesota end of the bridge, looking at the bridge's southwest side - Enloe Bridge No. 90021, Spanning Red River of North between Minnesota & North Dakota on County State Aid Highway 28, Wolverton, Wilkin County, MN

  18. KSC-01pp1362

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- The P5 truss rolls into the Spaceport Florida hangar just before a rain storm. The truss eventually will be transported to the Space Station Processing Facility. The P5 is scheduled for delivery to the International Space Station on mission 12A.1 in April 2003

  19. 22. Detail of interior corner showing truss system, dock no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Detail of interior corner showing truss system, dock no. 492. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  20. A Teaching Model for Truss Structures

    ERIC Educational Resources Information Center

    Bigoni, Davide; Dal Corso, Francesco; Misseroni, Diego; Tommasini, Mirko

    2012-01-01

    A classroom demonstration model has been designed, machined and successfully tested in different learning environments to facilitate understanding of the mechanics of truss structures, in which struts are subject to purely axial load and deformation. Gaining confidence with these structures is crucial for the development of lattice models, which…

Top