McKenzie, D.; Hessl, Amy E.; Peterson, D.L.
2001-01-01
We explored spatial patterns of low-frequency variability in radial tree growth among western North American conifer species and identified predictors of the variability in these patterns. Using 185 sites from the International Tree-Ring Data Bank, each of which contained 10a??60 raw ring-width series, we rebuilt two chronologies for each site, using two conservative methods designed to retain any low-frequency variability associated with recent environmental change. We used factor analysis to identify regional low-frequency patterns in site chronologies and estimated the slope of the growth trend since 1850 at each site from a combination of linear regression and time-series techniques. This slope was the response variable in a regression-tree model to predict the effects of environmental gradients and species-level differences on growth trends. Growth patterns at 27 sites from the American Southwest were consistent with quasi-periodic patterns of drought. Either 12 or 32 of the 185 sites demonstrated patterns of increasing growth between 1850 and 1980 A.D., depending on the standardization technique used. Pronounced growth increases were associated with high-elevation sites (above 3000 m) and high-latitude sites in maritime climates. Future research focused on these high-elevation and high-latitude sites should address the precise mechanisms responsible for increased 20th century growth.
1987-12-01
assessment of data collection techniques *quantification of temporal and spatial patterns of variables *assessment of end point variability...nutrient variables are also being examined as covarlates. Development of a model to test for differences in growth patterns is continuing. At each of...condition. These variables are recorded at the end of each growing season. For evaluation of height growth patterns , a subsample of 100 seedlings per
How long bones grow children: Mechanistic paths to variation in human height growth.
Lampl, Michelle; Schoen, Meriah
2017-03-01
Eveleth and Tanner's descriptive documentation of worldwide variability in human growth provided evidence of the interaction between genetics and environment during development that has been foundational to the science of human growth. There remains a need, however, to describe the mechanistic foundations of variability in human height growth patterns. A review of research documenting cellular activities at the endochondral growth plate aims to show how the unique microenvironment and cell functions during the sequential phases of the chondrocyte lifecycle affect long bone elongation, a fundamental source of height growth. There are critical junctures within the chondrocytic differentiation cascade at which environmental influences are integrated and have the ability to influence progression to the hypertrophic chondrocyte phase, the primary driver of long bone elongation. Phenotypic differences in height growth patterns reflect variability in amplitude and frequency of discretely timed hypertrophic cellular expansion events, the cellular basis of saltation and stasis growth biology. Final height is a summary of the dynamic processes carried out by the growth plate cellular machinery. As these cell-level mechanisms unfold in an individual, time-specific manner, there are many critical points at which a genetic growth program can be enhanced or perturbed. Recognizing both the complexity and fluidity of this adaptive system questions the likelihood of a single, optimal growth pattern and instead identifies a larger bandwidth of saltatory frequencies for "normal" growth. Further inquiry into mechanistic sources of variability acting at critical organizational points of chondrogenesis can provide new opportunities for growth interventions. © 2017 Wiley Periodicals, Inc.
Dong, Shirley Xiaobi; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Supardi, M N Nur; Kassim, Abd Rahman; Tan, Sylvester; Moorcroft, Paul R
2012-10-07
The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.
Spatio-temporal error growth in the multi-scale Lorenz'96 model
NASA Astrophysics Data System (ADS)
Herrera, S.; Fernández, J.; Rodríguez, M. A.; Gutiérrez, J. M.
2010-07-01
The influence of multiple spatio-temporal scales on the error growth and predictability of atmospheric flows is analyzed throughout the paper. To this aim, we consider the two-scale Lorenz'96 model and study the interplay of the slow and fast variables on the error growth dynamics. It is shown that when the coupling between slow and fast variables is weak the slow variables dominate the evolution of fluctuations whereas in the case of strong coupling the fast variables impose a non-trivial complex error growth pattern on the slow variables with two different regimes, before and after saturation of fast variables. This complex behavior is analyzed using the recently introduced Mean-Variance Logarithmic (MVL) diagram.
Variability in winter climate and winter extremes reduces population growth of an alpine butterfly.
Roland, Jens; Matter, Stephen F
2013-01-01
We examined the long-term, 15-year pattern of population change in a network of 21 Rocky Mountain populations of Parnassius smintheus butterflies in response to climatic variation. We found that winter values of the broadscale climate variable, the Pacific Decadal Oscillation (PDO) index, were a strong predictor of annual population growth, much more so than were endogenous biotic factors related to population density. The relationship between PDO and population growth was nonlinear. Populations declined in years with extreme winter PDO values, when there were either extremely warm or extremely cold sea surface temperatures in the eastern Pacific relative to that in the western Pacific. Results suggest that more variable winters, and more frequent extremely cold or warm winters, will result in more frequent decline of these populations, a pattern exacerbated by the trend for increasingly variable winters seen over the past century.
Carroll, Michael L.; Johnson, Beverly J.; Henkes, Gregory A.; McMahon, Kelton W.; Voronkov, Andrey; Ambrose, William G.; Denisenko, Stanislav G.
2009-01-01
Identifying patterns and drivers of natural variability in populations is necessary to gauge potential effects of climatic change and the expected increases in commercial activities in the Arctic on communities and ecosystems. We analyzed growth rates and shell geochemistry of the circumpolar Greenland smooth cockle, Serripes groenlandicus, from the southern Barents Sea over almost 70 years between 1882 and 1968. The datasets were calibrated via annually-deposited growth lines, and growth, stable isotope (δ18O, δ13C), and trace elemental (Mg, Sr, Ba, Mn) patterns were linked to environmental variations on weekly to decadal scales. Standardized growth indices revealed an oscillatory growth pattern with a multi-year periodicity, which was inversely related to the North Atlantic Oscillation Index (NAO), and positively related to local river discharge. Up to 60% of the annual variability in the Ba/Ca could be explained by variations in river discharge at the site closest to the rivers, but the relationship disappeared at a more distant location. Patterns of δ18O, δ13C, and Sr/Ca together provide evidence that bivalve growth ceases at elevated temperatures during the fall and recommences at the coldest temperatures in the early spring, with the implication that food, rather than temperature, is the primary driver of bivalve growth. The multi-proxy approach of combining the annually integrated information from the growth results and higher resolution geochemical results yielded a robust interpretation of biophysical coupling in the region over temporal and spatial scales. We thus demonstrate that sclerochronological proxies can be useful retrospective analytical tools for establishing a baseline of ecosystem variability in assessing potential combined impacts of climatic change and increasing commercial activities on Arctic communities. PMID:19394657
Goertler, Pascale A L; Scheuerell, Mark D; Simenstad, Charles A; Bottom, Daniel L
2016-01-01
Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010-2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity.
Scheuerell, Mark D.; Simenstad, Charles A.; Bottom, Daniel L.
2016-01-01
Life history variation in Pacific salmon (Oncorhynchus spp.) supports species resilience to natural disturbances and fishery exploitation. Within salmon species, life-history variation often manifests during freshwater and estuarine rearing, as variation in growth. To date, however, characterizing variability in growth patterns within and among individuals has been difficult via conventional sampling methods because of the inability to obtain repeated size measurements. In this study we related otolith microstructures to growth rates of individual juvenile Chinook salmon (O. tshawytscha) from the Columbia River estuary over a two-year period (2010–2012). We used dynamic factor analysis to determine whether there were common patterns in growth rates within juveniles based on their natal region, capture location habitat type, and whether they were wild or of hatchery origin. We identified up to five large-scale trends in juvenile growth rates depending on month and year of capture. We also found that hatchery fish had a narrower range of trend loadings for some capture groups, suggesting that hatchery fish do not express the same breadth of growth variability as wild fish. However, we were unable to resolve a relationship between specific growth patterns and habitat transitions. Our study exemplifies how a relatively new statistical analysis can be applied to dating or aging techniques to summarize individual variation, and characterize aspects of life history diversity. PMID:27695094
NASA Astrophysics Data System (ADS)
Ong, Joyce J. L.; Rountrey, Adam N.; Marriott, Ross J.; Newman, Stephen J.; Meeuwig, Jessica J.; Meekan, Mark G.
2017-03-01
Biochronologies provide important insights into the growth responses of fishes to past variability in physical and biological environments and, in so doing, allow modelling of likely responses to climate change in the future. We examined spatial variability in the key drivers of inter-annual growth patterns of a widespread, tropical snapper, Lutjanus bohar, at similar tropical latitudes on the north-western and north-eastern coasts of the continent of Australia. For this study, we developed biochronologies from otoliths that provided proxies of somatic growth and these were analysed using mixed-effects models to examine the historical drivers of growth. Our analyses demonstrated that growth patterns of fish were driven by different climatic and biological factors in each region, including Pacific Ocean climate indices, regional sea level and the size structure of the fish community. Our results showed that the local oceanographic and biological context of reef systems strongly influenced the growth of L. bohar and that a single age-related growth trend cannot be assumed for separate populations of this species that are likely to experience different environmental conditions. Generalised predictions about the growth response of fishes to climate change will thus require adequate characterisation of the spatial variability in growth determinants likely to be found throughout the range of species that have cosmopolitan distributions.
Boat, Ruth; Taylor, Ian M
2015-06-01
The study explored patterns of change in a number of potentially performance-related variables (i.e., fatigue, social support, self-efficacy, autonomous motivation, mental skills) during the lead-up to a competitive triathlon, and whether these patterns of change differed for relatively superior versus inferior performers. Forty-two triathletes completed an inventory measuring the study variables every other day during a 2-week period leading up to competition. Performance was assessed using participants' race time, and using a self-referenced relative score compared with personal best times. Multilevel growth curve analyses revealed significant differences in growth trajectories over the 2-week period in mental skills use, social support, and fatigue. The results provide novel insight into how athletes' fluctuating psychological state in the 2 weeks before competition may be crucial in determining performance.
Uniform modeling of bacterial colony patterns with varying nutrient and substrate
NASA Astrophysics Data System (ADS)
Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil
2016-04-01
Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.
Göritz, M; Müller, K; Krastel, D; Staudacher, G; Schmidt, P; Kühn, M; Nickel, R; Schoon, H-A
2013-07-01
Splenic haemangiosarcomas (HSAs) from 122 dogs were characterized and classified according to their patterns of growth, survival time post splenectomy, metastases and chemotherapy. The most common pattern of growth was a mixture of cavernous, capillary and solid tumour tissue. Survival time post splenectomy was independent of the growth pattern; however, it was influenced by chemotherapy and metastases. Immunohistochemical assessment of the expression of angiogenic factors (fetal liver kinase-1, angiopoietin-2, angiopoietin receptor-2 and vascular endothelial growth factor A) and conventional endothelial markers (CD31, factor VIII-related antigen) revealed variable expression, particularly in undifferentiated HSAs. Therefore, a combination of endothelial markers should be used to confirm the endothelial origin of splenic tumours. Copyright © 2012 Elsevier Ltd. All rights reserved.
Environmental influence on mussel (Mytilus edulis) growth - A quantile regression approach
NASA Astrophysics Data System (ADS)
Bergström, Per; Lindegarth, Mats
2016-03-01
The need for methods for sustainable management and use of coastal ecosystems has increased in the last century. A key aspect for obtaining ecologically and economically sustainable aquaculture in threatened coastal areas is the requirement of geographic information of growth and potential production capacity. Growth varies over time and space and depends on a complex pattern of interactions between the bivalve and a diverse range of environmental factors (e.g. temperature, salinity, food availability). Understanding these processes and modelling the environmental control of bivalve growth has been central in aquaculture. In contrast to the most conventional modelling techniques, quantile regression can handle cases where not all factors are measured and provide the possibility to estimate the effect at different levels of the response distribution and give therefore a more complete picture of the relationship between environmental factors and biological response. Observation of the relationships between environmental factors and growth of the bivalve Mytilus edulis revealed relationships that varied both among level of growth rate and within the range of environmental variables along the Swedish west coast. The strongest patterns were found for water oxygen concentration level which had a negative effect on growth for all oxygen levels and growth levels. However, these patterns coincided with differences in growth among periods and very little of the remaining variability within periods could be explained indicating that interactive processes masked the importance of the individual variables. By using quantile regression and local regression (LOESS) this study was able to provide valuable information on environmental factors influencing the growth of M. edulis and important insight for the development of ecosystem based management tools of aquaculture activities, its use in mitigation efforts and successful management of human use of coastal areas.
Spatiotemporal patterns of ring-width variability in the northern interior west
R. Justin DeRose; John D. Shaw; James N. Long
2015-01-01
A fundamental goal of forest biogeography is to understand the factors that drive spatiotemporal variability in forest growth across large areas (e.g., states or regions). The ancillary collection of increment cores as part of the IW FIA Program represents an important non-traditional role for the development of unprecedented data sets. Individual-tree growth data from...
Growth pattern from birth to adulthood in African pygmies of known age.
Rozzi, Fernando V Ramirez; Koudou, Yves; Froment, Alain; Le Bouc, Yves; Botton, Jérémie
2015-07-28
The African pygmy phenotype stems from genetic foundations and is considered to be the product of a disturbance in the growth hormone-insulin-like growth factor (GH-IGF) axis. However, when and how the pygmy phenotype is acquired during growth remains unknown. Here we describe growth patterns in Baka pygmies based on two longitudinal studies of individuals of known age, from the time of birth to the age of 25 years. Body size at birth among the Baka is within standard limits, but their growth rate slows significantly during the first two years of life. It then more or less follows the standard pattern, with a growth spurt at adolescence. Their life history variables do not allow the Baka to be distinguished from other populations. Therefore, the pygmy phenotype in the Baka is the result of a change in growth that occurs during infancy, which differentiates them from East African pygmies revealing convergent evolution.
Clones of cells switch from reduction to enhancement of size variability in Arabidopsis sepals
Tsugawa, Satoru; Hervieux, Nathan; Kierzkowski, Daniel; Routier-Kierzkowska, Anne-Lise; Sapala, Aleksandra; Hamant, Olivier; Smith, Richard S.; Boudaoud, Arezki
2017-01-01
Organs form with remarkably consistent sizes and shapes during development, whereas a high variability in growth is observed at the cell level. Given this contrast, it is unclear how such consistency in organ scale can emerge from cellular behavior. Here, we examine an intermediate scale, the growth of clones of cells in Arabidopsis sepals. Each clone consists of the progeny of a single progenitor cell. At early stages, we find that clones derived from a small progenitor cell grow faster than those derived from a large progenitor cell. This results in a reduction in clone size variability, a phenomenon we refer to as size uniformization. By contrast, at later stages of clone growth, clones change their growth pattern to enhance size variability, when clones derived from larger progenitor cells grow faster than those derived from smaller progenitor cells. Finally, we find that, at early stages, fast growing clones exhibit greater cell growth heterogeneity. Thus, cellular variability in growth might contribute to a decrease in the variability of clones throughout the sepal. PMID:29183944
J.M. Warren; F.C. Meinzer; J.R. Brooks; J.-C. Domec; R. Coulombe
2006-01-01
We incorporated soil/plant biophysical properties into a simple model to predict seasonal trajectories of hydraulic redistribution (HR). We measured soil water content, water potential root conductivity, and climate across multiple years in two old-growth coniferous forests. The HR variability within sites (0 to 0.5 mm/d) was linked to spatial patterns of roots, soil...
Lauren S. Urgenson; Charles B. Halpern; Paul D. Anderson
2013-01-01
We studied patterns of conifer regeneration over 12 years as part of a regional-scale experiment in variable-retention harvest in the Pacific Northwest, the DEMO Study. We compared survival and height growth of planted conifers and density and seral composition of natural regeneration among treatments with differing retention levels (15% versus 40%) and patterns (...
Global linkages between teleconnection patterns and the terrestrial biosphere
NASA Astrophysics Data System (ADS)
Dahlin, Kyla M.; Ault, Toby R.
2018-07-01
Interannual variability in the global carbon cycle is largely due to variations in carbon uptake by terrestrial ecosystems, yet linkages between climate variability and variability in the terrestrial carbon cycle are not well understood at the global scale. Using a 30-year satellite record of semi-monthly leaf area index (LAI), we show that four modes of climate variability - El Niño/Southern Oscillation, the North Atlantic Oscillation, the Atlantic Meridional Mode, and the Indian Ocean Dipole Mode - strongly impact interannual vegetation growth patterns, with 68% of the land surface impacted by at least one of these teleconnection patterns, yet the spatial distribution of these impacts is heterogeneous. Considering the patterns' impacts by biome, none has an exclusively positive or negative relationship with LAI. Our findings imply that future changes in the frequency and/or magnitude of teleconnection patterns will lead to diverse changes to the terrestrial biosphere and the global carbon cycle.
Main, Russell P
2007-01-01
Vertebrate long bone form, at both the gross and the microstructural level, is the result of many interrelated influences. One factor that is considered to have a significant effect on bone form is the mechanical environment experienced by the bone during growth. The work presented here examines the possible relationships between in vivo bone strains, bone geometry and histomorphology in the radii of three age/size groups of domestic goats. In vivo bone strain data were collected from the radii of galloping goats, and the regional cortical distribution of peak axial strain magnitudes, radial and circumferential strain gradients, and longitudinal strain rates related to regional patterns in cortical growth, porosity, remodelling and collagen fibre orientation. Although porosity and remodelling decreased and increased with age, respectively, these features showed no significant regional differences and did not correspond to regional patterns in the mechanical environment. Thicker regions of the radius's cortex were significantly related to high strain levels and higher rates of periosteal, but not endosteal, growth. However, cortical growth and strain environment were not significantly related. Collagen fibre orientation varied regionally, with a higher percentage of transverse fibres in the caudal region of the radius and primarily longitudinal fibres elsewhere, and, although consistent through growth, also did not generally correspond to regional strain patterns. Although strain magnitudes increased during ontogeny and regional strain patterns were variable over the course of a stride, mean regional strain patterns were generally consistent with growth, suggesting that regional growth patterns and histomorphology, in combination with external loads, may play some role in producing a relatively ‘predictable’ strain environment within the radius. It is further hypothesized that the absence of correlation between regional histomorphometric patterns and the measured strain environments is the result of the variable mechanical environment. However, the potential effects of other physiological and mechanical factors, such as skeletal metabolism and adjacent muscle insertions, that can influence the gross and microstructural morphology of the radius during ontogeny, cannot be ignored. PMID:17331177
Growth pattern from birth to adulthood in African pygmies of known age
Rozzi, Fernando V. Ramirez; Koudou, Yves; Froment, Alain; Le Bouc, Yves; Botton, Jérémie
2015-01-01
The African pygmy phenotype stems from genetic foundations and is considered to be the product of a disturbance in the growth hormone–insulin-like growth factor (GH–IGF) axis. However, when and how the pygmy phenotype is acquired during growth remains unknown. Here we describe growth patterns in Baka pygmies based on two longitudinal studies of individuals of known age, from the time of birth to the age of 25 years. Body size at birth among the Baka is within standard limits, but their growth rate slows significantly during the first two years of life. It then more or less follows the standard pattern, with a growth spurt at adolescence. Their life history variables do not allow the Baka to be distinguished from other populations. Therefore, the pygmy phenotype in the Baka is the result of a change in growth that occurs during infancy, which differentiates them from East African pygmies revealing convergent evolution. PMID:26218408
Economic growth and energy regulation in the environmental Kuznets curve.
Lorente, Daniel Balsalobre; Álvarez-Herranz, Agustín
2016-08-01
This study establishes the existence of a pattern of behavior, between economic growth and environmental degradation, consistent with the environmental Kuznets curve (EKC) hypothesis for 17 Organization for Economic Cooperation and Development (OECD) countries between 1990 and 2012. Based on this EKC pattern, it shows that energy regulation measures help reduce per capita greenhouse gas (GHG) emissions. To validate this hypothesis, we also add the explanatory variables: renewable energy promotion, energy innovation processes, and the suppression effect of income level on the contribution of renewable energy sources to total energy consumption. It aims to be a tool for decision-making regarding energy policy. This paper provides a two-stage econometric analysis of instrumental variables with the aim of correcting the existence of endogeneity in the variable GDP per capita, verifying that the instrumental variables used in this research are appropriate for our aim. To this end, it first makes a methodological contribution before incorporating additional variables associated with environmental air pollution into the EKC hypothesis and showing how they positively affect the explanation of the correction in the GHG emission levels. This study concludes that air pollution will not disappear on its own as economic growth increases. Therefore, it is necessary to promote energy regulation measures to reduce environmental pollution.
Height and seasonal growth pattern of jack pine full-sib families
Don E. Riemenschneider
1981-01-01
Total tree height, seasonal shoot elongation, dates of growth initiation and cessation, and mean daily growth rate were measured and analyzed for a population of jack pine full-sib families derived from inter-provenance crosses. Parental provenance had no effect on these variables although this may have been due to small sample size. Progenies differed significantly...
Forest tree growth response to hydroclimate variability in the southern Appalachians
Katherine J. Elliott; Chelcy Ford Miniat; Neil Pederson; Stephanie H. Laseter
2015-01-01
Climate change will affect tree species growth and distribution; however, under the same climatic conditions species may differ in their response according to site conditions. We evaluated the climate-driven patterns of growth for six dominant deciduous tree species in the southern Appalachians. We categorized species into two functional groups based on their stomatal...
NASA Astrophysics Data System (ADS)
Bergström, Per; Lindegarth, Susanne; Lindegarth, Mats
2013-10-01
Human pressures on coastal seas are increasing and methods for sustainable management, including spatial planning and mitigative actions, are therefore needed. In coastal areas worldwide, the development of mussel farming as an economically and ecologically sustainable industry requires geographic information on the growth and potential production capacity. In practice this means that coherent maps of temporally stable spatial patterns of growth need to be available in the planning process and that maps need to be based on mechanistic or empirical models. Therefore, as a first step towards development of models of growth, we assessed empirically the fundamental requirement that there are temporally consistent spatial patterns of growth in the blue mussel, Mytilus edulis. Using a pilot study we designed and dimensioned a transplant experiment, where the spatial consistency in the growth of mussels was evaluated at two resolutions. We found strong temporal and scale-dependent spatial variability in growth but patterns suggested that spatial patterns were uncoupled between growth of shell and that of soft tissue. Spatial patterns of shell growth were complex and largely inconsistent among years. Importantly, however, the growth of soft tissue was qualitatively consistent among years at the scale of km. The results suggest that processes affecting the whole coastal area cause substantial differences in growth of soft tissue among years but that factors varying at the scale of km create strong and persistent spatial patterns of growth, with a potential doubling of productivity by identifying the most suitable locations. We conclude that the observed spatial consistency provides a basis for further development of predictive modelling and mapping of soft tissue growth in these coastal areas. Potential causes of observed patterns, consequences for mussel-farming as a tool for mitigating eutrophication, aspects of precision of modelling and sampling of mussel growth as well as ecological functions in general are discussed.
Influence of infant feeding patterns over the first year of life on growth from birth to 5 years.
Betoko, A; Lioret, S; Heude, B; Hankard, R; Carles, S; Forhan, A; Regnault, N; Botton, J; Charles, M A; de Lauzon-Guillain, B
2017-08-01
As early-life feeding experiences may influence later health, we aimed to examine relations between feeding patterns over the first year of life and child's growth in the first 5 years of life. Our analysis included 1022 children from the EDEN mother-child cohort. Three feeding patterns were previously identified, i.e. 'Later dairy products introduction and use of ready-prepared baby foods' (pattern-1), 'Long breastfeeding, later main meal food introduction and use of home-made foods' (pattern-2) and 'Use of ready-prepared adult foods' (pattern-3). Associations between the feeding patterns and growth [weight, height and body mass index {BMI}] were analysed by multivariable linear regressions. Anthropometric changes were assessed by the final value adjusted for the initial value. Even though infant feeding patterns were not related to anthropometric measurements at 1, 3 and 5 years, high scores on pattern-1 were associated with higher 1-3 years weight and height changes. High scores on pattern-2 were related to lower 0-1 year weight and height changes, higher 1-5 years weight and height changes but not to BMI changes, after controlling for a wide range of potential confounding variables including parental BMI. Scores on pattern-3 were not significantly related to growth. Additional adjustment for breastfeeding duration reduced the strength of the associations between pattern-2 and growth but not those between pattern-1 and height growth. Our findings emphasize the relevance of considering infant feeding patterns including breastfeeding duration, age of complementary foods introduction as well as type of foods used when examining effects of early infant feeding practices on later health. © 2017 World Obesity Federation. © 2017 World Obesity Federation.
Alexander K. Anning; Darrin L. Rubino; Elaine K. Sutherland; Brian C. McCarthy
2013-01-01
Moisture availability is a key factor that influences white oak (Quercus alba L.) growth and wood production. In unglaciated eastern North America, available soil moisture varies greatly along topographic and edaphic gradients. This study was aimed at determining the effects of soil moisture variability and macroclimate on white oak growth in mixed-oak forests of...
Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the megalopal stage. Growth in...
Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28?C; 20o/ooS) from hatching to the megalopa stage. Growth in...
Massie, Danielle L.; Smith, Geoffrey; Bonvechio, Timothy F.; Bunch, Aaron J.; Lucchesi, David O.; Wagner, Tyler
2018-01-01
Quantifying spatial variability in fish growth and identifying large‐scale drivers of growth are fundamental to many conservation and management decisions. Although fish growth studies often focus on a single population, it is becoming increasingly clear that large‐scale studies are likely needed for addressing transboundary management needs. This is particularly true for species with high recreational value and for those with negative ecological consequences when introduced outside of their native range, such as the Flathead Catfish Pylodictis olivaris. This study quantified growth variability of the Flathead Catfish across a large portion of its contemporary range to determine whether growth differences existed between habitat types (i.e., reservoirs and rivers) and between native and introduced populations. Additionally, we investigated whether growth parameters varied as a function of latitude and time since introduction (for introduced populations). Length‐at‐age data from 26 populations across 11 states in the USA were modeled using a Bayesian hierarchical von Bertalanffy growth model. Population‐specific growth trajectories revealed large variation in Flathead Catfish growth and relatively high uncertainty in growth parameters for some populations. Relatively high uncertainty was also evident when comparing populations and when quantifying large‐scale patterns. Growth parameters (Brody growth coefficient [K] and theoretical maximum average length [L∞]) were not different (based on overlapping 90% credible intervals) between habitat types or between native and introduced populations. For populations within the introduced range of Flathead Catfish, latitude was negatively correlated with K. For native populations, we estimated an 85% probability that L∞ estimates were negatively correlated with latitude. Contrary to predictions, time since introduction was not correlated with growth parameters in introduced populations of Flathead Catfish. Results of this study suggest that Flathead Catfish growth patterns are likely shaped more strongly by finer‐scale processes (e.g., exploitation or prey abundances) as opposed to macro‐scale drivers.
Black, Bryan A.; Dunham, Jason B.; Blundon, Brett W.; Brim-Box, Jayne; Tepley, Alan J.
2015-01-01
Analyses of how organisms are likely to respond to a changing climate have focused largely on the direct effects of warming temperatures, though changes in other variables may also be important, particularly the amount and timing of precipitation. Here, we develop a network of eight growth-increment width chronologies for freshwater mussel species in the Pacific Northwest, United States and integrate them with tree-ring data to evaluate how terrestrial and aquatic indicators respond to hydroclimatic variability, including river discharge and precipitation. Annual discharge averaged across water years (October 1–September 30) was highly synchronous among river systems and imparted a coherent pattern among mussel chronologies. The leading principal component of the five longest mussel chronologies (1982–2003; PC1mussel) accounted for 47% of the dataset variability and negatively correlated with the leading principal component of river discharge (PC1discharge; r = −0.88; P < 0.0001). PC1mussel and PC1discharge were closely linked to regional wintertime precipitation patterns across the Pacific Northwest, the season in which the vast majority of annual precipitation arrives. Mussel growth was also indirectly related to tree radial growth, though the nature of the relationships varied across the landscape. Negative correlations occurred in forests where tree growth tends to be limited by drought while positive correlations occurred in forests where tree growth tends to be limited by deep or lingering snowpack. Overall, this diverse assemblage of chronologies illustrates the importance of winter precipitation to terrestrial and freshwater ecosystems and suggests that a complexity of climate responses must be considered when estimating the biological impacts of climate variability and change.
Black, Bryan A; Dunham, Jason B; Blundon, Brett W; Brim-Box, Jayne; Tepley, Alan J
2015-02-01
Analyses of how organisms are likely to respond to a changing climate have focused largely on the direct effects of warming temperatures, though changes in other variables may also be important, particularly the amount and timing of precipitation. Here, we develop a network of eight growth-increment width chronologies for freshwater mussel species in the Pacific Northwest, United States and integrate them with tree-ring data to evaluate how terrestrial and aquatic indicators respond to hydroclimatic variability, including river discharge and precipitation. Annual discharge averaged across water years (October 1-September 30) was highly synchronous among river systems and imparted a coherent pattern among mussel chronologies. The leading principal component of the five longest mussel chronologies (1982-2003; PC1(mussel)) accounted for 47% of the dataset variability and negatively correlated with the leading principal component of river discharge (PC1(discharge); r = -0.88; P < 0.0001). PC1(mussel) and PC1(discharge) were closely linked to regional wintertime precipitation patterns across the Pacific Northwest, the season in which the vast majority of annual precipitation arrives. Mussel growth was also indirectly related to tree radial growth, though the nature of the relationships varied across the landscape. Negative correlations occurred in forests where tree growth tends to be limited by drought while positive correlations occurred in forests where tree growth tends to be limited by deep or lingering snowpack. Overall, this diverse assemblage of chronologies illustrates the importance of winter precipitation to terrestrial and freshwater ecosystems and suggests that a complexity of climate responses must be considered when estimating the biological impacts of climate variability and change. © 2014 John Wiley & Sons Ltd.
How does tooth eruption relate to vertical mandibular growth displacement?
Liu, Sean Shih-Yao; Buschang, Peter H
2011-06-01
Our objectives were to investigate the eruptive patterns of the mandibular teeth and assess their associations with mandibular growth displacements. Cephalograms for a mixed-longitudinal sample of 124 French-Canadian girls were evaluated between 10 and 15 years of age. Vertical mandibular displacement and mandibular eruption were evaluated by using cranial and mandibular superimpositions, respectively. Multilevel modeling procedures were used to estimate each subject's growth change over time. Stepwise multiple regressions were used to determine the amount and relative magnitudes of variations in mandibular eruption explained by mandibular growth displacement, controlling for vertical maxillary tooth movements. Cubic polynomial models explained between 91% and 98% of the variations in eruption and vertical growth displacement. All curves showed acceleration of eruption until approximately 12 years of age, after which eruption decelerated. The eruption of the mandibular teeth demonstrated greater relative variability than did vertical mandibular growth displacements. Independent of the overall movements of the maxillary molars, inferior mandibular growth displacement explained approximately 54% of the variation in mandibular molar eruption between 10.5 and 14.5 years of age. Inferior mandibular growth displacement and dental eruption followed similar patterns of change during adolescence. Based on their associations and the differences in variability identified, mandibular eruption appears to compensate for or adapt to growth displacements. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Dietary habits and growth: an urban/rural comparison in the Andean region of Apurimac, Peru.
Andrissi, Laura; Mottini, Giovanni; Sebastiani, Valeria; Boldrini, Laura; Giuliani, Alessandro
2013-01-01
The efficacy of interventions against children malnutrition crucially depends on a myriad of factors other than the simple food intake, that must be carefully studied in order to plan a balanced policy. The relation between dietary patterns and growth is at the very heart of the problem, especially in consideration of the fact that dietary pattern involves dimension other than pure caloric intake in its definition. In this work we investigated the relations between dietary pattern and growth comparing children from a rural and a urban area in Andean Peru, in terms of food habits and anthropometric variables to develop a model usable in context interventions against malnutrition. A sample of 159 children (80 from urban, 79 from rural area), aged from 4 to 120 months (72.7 ± 37.5 SD) was collected. The data were investigated by a multidimensional (principal component analysis followed by inferential approach) analysis to correlate the different hidden dimensions of both anthropometric and dietary observables. The correlation between these dimensions (in the form of principal components) were computed and contrasted with the effects of age and urban/rural environments. Caloric intake and growth were not linearly correlated in our data set. Moreover urban and rural environment were demonstrated to show very different patterns of both dietary and anthropometric variables pointing to the marked effect of dietary habits and demographic composition of the analyzed populations. The relation between malnutrition and overweight was at the same time demonstrated to follow a strict area-dependent distribution. We gave a proof-of-concept of the non-linear character of the relation between malnutrition (in terms of caloric intake) and growth, pointing to the need to calibrate interventions on food pattern and not only quantity to contrast malnutrition effects on growth. The education toward a balanced diet must go hand-in-hand with the intervention on caloric intake in order to prevent effects on health.
NASA Astrophysics Data System (ADS)
Chamidah, Nur; Rifada, Marisa
2016-03-01
There is significant of the coeficient correlation between weight and height of the children. Therefore, the simultaneous model estimation is better than partial single response approach. In this study we investigate the pattern of sex difference in growth curve of children from birth up to two years of age in Surabaya, Indonesia based on biresponse model. The data was collected in a longitudinal representative sample of the Surabaya population of healthy children that consists of two response variables i.e. weight (kg) and height (cm). While a predictor variable is age (month). Based on generalized cross validation criterion, the modeling result based on biresponse model by using local linear estimator for boy and girl growth curve gives optimal bandwidth i.e 1.41 and 1.56 and the determination coefficient (R2) i.e. 99.99% and 99.98%,.respectively. Both boy and girl curves satisfy the goodness of fit criterion i.e..the determination coefficient tends to one. Also, there is difference pattern of growth curve between boy and girl. The boy median growth curves is higher than those of girl curve.
Nath, Cheryl D; Dattaraja, H S; Suresh, H S; Joshi, N V; Sukumar, R
2006-12-01
Tree diameter growth is sensitive to environmental fluctuations and tropical dry forests experience high seasonal and inter-annual environmental variation. Tree growth rates in a large permanent plot at Mudumalai, southern India, were examined for the influences of rainfall and three intrinsic factors (size, species and growth form) during three 4-year intervals over the period 1988-2000. Most trees had lowest growth during the second interval when rainfall was lowest, and skewness and kurtosis of growth distributions were reduced during this interval. Tree diameter generally explained less than 10% of growth variation and had less influence on growth than species identity or time interval. Intraspecific variation was high, yet species identity accounted for up to 16% of growth variation in the community. There were no consistent differences between canopy and understory tree growth rates; however, a few subgroups of species may potentially represent canopy and understory growth guilds. Environmentally-induced temporal variations in growth generally did not reduce the odds of subsequent survival. Growth rates appear to be strongly influenced by species identity and environmental variability in the Mudumalai dry forest. Understanding and predicting vegetation dynamics in the dry tropics thus also requires information on temporal variability in local climate.
Secondary Growth and Carbohydrate Storage Patterns Differ between Sexes in Juniperus thurifera
DeSoto, Lucía; Olano, José M.; Rozas, Vicente
2016-01-01
Differences in reproductive costs between male and female plants have been shown to foster sex-related variability in growth and C-storage patterns. The extent to which differential secondary growth in dioecious trees is associated with changes in stem carbohydrate storage patterns, however, has not been fully assessed. We explored the long-term radial growth and the seasonal variation of non-structural carbohydrate (NSC) content in sapwood of 40 males and 40 females Juniperus thurifera trees at two sites. NSC content was analyzed bimonthly for 1 year, and tree-ring width was measured for the 1931–2010 period. Sex-related differences in secondary growth and carbohydrate storage were site-dependent. Under less restrictive environmental conditions females grew more and stored more non-soluble sugars than males. Our results reinforce that sex-related differences in growth and resource storage may be a consequence of local adaptation to environmental conditions. Seasonal variation in soluble sugars concentration was opposite to cambial activity, with minima seen during periods of maximal secondary growth, and did not differ between the sexes or sites. Trees with higher stem NSC levels at critical periods showed higher radial growth, suggesting a common mechanism irrespective of site or sex. Sex-related patterns of secondary growth were linked to differences in non-soluble sugars content indicating sex-specific strategies of long-term performance. PMID:27303418
NASA Astrophysics Data System (ADS)
Rodríguez-Valentino, Camilo; Landaeta, Mauricio F.; Castillo-Hidalgo, Gissella; Bustos, Claudia A.; Plaza, Guido; Ojeda, F. Patricio
2015-09-01
The interannual variation (2010-2013) of larval abundance, growth and hatching patterns of the Chilean sand stargazer Sindoscopus australis (Pisces: Dactyloscopidae) was investigated through otolith microstructure analysis from samples collected nearshore (<500 m from shore) during austral late winter-early spring off El Quisco bay, central Chile. In the studied period, the abundance of larval stages in the plankton samples varied from 2.2 to 259.3 ind. 1000 m-3; larval abundance was similar between 2010 and 2011, and between 2012 and 2013, but increased significantly from 2011 to 2012. The estimated growth rates increased twice, from 0.09 to 0.21 mm day-1, between 2011 and 2013. Additionally, otolith size (radius, perimeter and area), related to body length of larvae, significantly decreased from 2010 to 2012, but increases significantly in 2013. Although the mean values of microincrement widths of sagitta otoliths were similar between 2010 and 2011 (around 0.6-0.7 μm), the interindividual variability increases in 2011 and 2013, suggesting large environmental variability experienced by larvae during these years. Finally, the hatching pattern of S. australis changed significantly from semi-lunar to lunar cycle after 2012.
Growth patterns of an intertidal gastropod as revealed by oxygen isotope analysis
NASA Astrophysics Data System (ADS)
Bean, J. R.; Hill, T. M.; Guerra, C.
2007-12-01
The size and morphology of mollusk shells are affected by environmental conditions. As a result, it is difficult to assess growth rate, population age structure, shell morphologies associated with ontogenetic stages, and to compare life history patterns across various environments. Oxygen isotope analysis is a useful tool for estimating minimum ages and growth rates of calcium carbonate secreting organisms. Calcite shell material from members of two northern California populations of the intertidal muricid gastropod Acanthinucella spirata was sampled for isotopic analysis. Individual shells were sampled from apex to margin, thus providing a sequential record of juvenile and adult growth. A. spirata were collected from a sheltered habitat in Tomales Bay and from an exposed reef in Bolinas. Abiotic factors, such as temperature, wave exposure, and substrate consistency, and biotic composition differ significantly between these sites, possibly resulting in local adaptations and variation in life history and growth patterns. Shell morphology of A. spirata changes with age as internal shell margin thickenings of denticle rows associated with external growth bands are irregularly accreted. It is not known when, either seasonally and/or ontogentically, these thickenings and bands form or whether inter or intra-populational variation exists. Preliminary results demonstrate the seasonal oxygen isotopic variability present at the two coastal sites, indicating 5-6 degC changes from winter to summertime temperatures; these data are consistent with local intertidal temperature records. Analysis of the seasonal patterns indicate that: 1) differences in growth rate and seasonal growth patterns at different ontogenetic stages within populations, and 2) differences in growth patterns and possibly age structure between the two A. spirata populations. These findings indicate that isotopic analyses, in addition to field observations and morphological measurements, are necessary to assess life history strategies and compare population dynamics under varying environmental conditions.
Directionality theory and the evolution of body size.
Demetrius, L
2000-12-07
Directionality theory, a dynamic theory of evolution that integrates population genetics with demography, is based on the concept of evolutionary entropy, a measure of the variability in the age of reproducing individuals in a population. The main tenets of the theory are three principles relating the response to the ecological constraints a population experiences, with trends in entropy as the population evolves under mutation and natural selection. (i) Stationary size or fluctuations around a stationary size (bounded growth): a unidirectional increase in entropy; (ii) prolonged episodes of exponential growth (unbounded growth), large population size: a unidirectional decrease in entropy; and (iii) prolonged episodes of exponential growth (unbounded growth), small population size: random, non-directional change in entropy. We invoke these principles, together with an allometric relationship between entropy, and the morphometric variable body size, to provide evolutionary explanations of three empirical patterns pertaining to trends in body size, namely (i) Cope's rule, the tendency towards size increase within phyletic lineages; (ii) the island rule, which pertains to changes in body size that occur as species migrate from mainland populations to colonize island habitats; and (iii) Bergmann's rule, the tendency towards size increase with increasing latitude. The observation that these ecotypic patterns can be explained in terms of the directionality principles for entropy underscores the significance of evolutionary entropy as a unifying concept in forging a link between micro-evolution, the dynamics of gene frequency change, and macro-evolution, dynamic changes in morphometric variables.
Andrew L. Rypel
2009-01-01
The role of climate variability in the ecology of freshwater fishes is of increasing interest. However, there are relatively few tools available for examining how freshwater fish populations respond to climate variations. Here, I apply tree-ring techniques to incremental growth patterns in largemouth bass (Micropterus salmoides Lacepe`de) otoliths to explore...
James Grogana; Mark S. Ashtona; Galv& atilde; Jurandir oc
2003-01-01
Adult populations of big-leaf mahogany (Swietenia macrophylla) occur in aggregations along seasonal streams in transitional evergreen forests of southeast Pará, Brazil. To test whether variable seedling survival and growth across topography may underlie this observed distribution pattern, we planted nursery-grown seedlings in the...
Ground-flora communities of headwater riparian areas in an old-growth central hardwood forest
P. Charles Goebel; David M. Hix; Clayton E. Dygert; Kathryn L. Holmes
2003-01-01
The composition and structure of ground-flora vegetation was examined across headwater riparian areas of Johnson Woods, an old-growth forest located in northcentral Ohio. While the distribution patterns of these species groups is variable, classification and gradient analyses indicate that ground-flora vegetation is related strongly to landform and distance from the...
Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...
Girardin, Martin P; Bouriaud, Olivier; Hogg, Edward H; Kurz, Werner; Zimmermann, Niklaus E; Metsaranta, Juha M; de Jong, Rogier; Frank, David C; Esper, Jan; Büntgen, Ulf; Guo, Xiao Jing; Bhatti, Jagtar
2016-12-27
Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada's boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada's National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO 2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO 2 concentration.
Bone microstructure and developmental plasticity in birds and other dinosaurs.
Starck, J Matthias; Chinsamy, Anusuya
2002-12-01
Patterns of bone microstructure have frequently been used to deduce dynamics and processes of growth in extant and fossil tetrapods. Often, the various types of primary bone tissue have been associated with different bone deposition rates and more recently such deductions have extended to patterns observed in dinosaur bone microstructure. These previous studies are challenged by the findings of the current research, which integrates an experimental neontological approach and a paleontological comparison. We use tetracycline labeling and morphometry to study the variability of bone deposition rates in Japanese quail (Coturnix japonica) growing under different experimental conditions. We compare resulting patterns in bone microstructure with those found in fossil birds and other dinosaurs. We found that a single type of primary bone varies significantly in rates of growth in response to environmental conditions. Ranging between 10-50 microm per day, rates of growth overlap with the full range of bone deposition rates that were previously associated with different patterns of bone histology. Bone formation rate was significantly affected by environmental/experimental conditions, skeletal element, and age. In the quail, the experimental conditions did not result in formation of lines of arrested growth (LAGs). Because of the observed variation of bone deposition rates in response to variation in environmental conditions, we conclude that bone deposition rates measured in extant birds cannot simply be extrapolated to their fossil relatives. Additionally, we observe the variable incidence of LAGs and annuli among several dinosaur species, including fossil birds, extant sauropsids, as well as nonmammalian synapsids, and some extant mammals. This suggests that the ancestral condition of the response of bone to environmental conditions was variable. We propose that such developmental plasticity in modern birds may be reduced in association with the shortened developmental time during the later evolution of the ornithurine birds. Copyright 2002 Wiley-Liss, Inc.
Spatial and seasonal variability of forested headwater stream temperatures in western Oregon, USA
J. A. Leach; D. H. Olson; P. D. Anderson; B. N. I. Eskelson
2017-01-01
Thermal regimes of forested headwater streams control the growth and distribution of various aquatic organisms. In a western Oregon, USA, case study we examined: (1) forested headwater stream temperature variability in space and time; (2) relationships between stream temperature patterns and weather, above-stream canopy cover, and geomorphic attributes; and (3) the...
NASA Astrophysics Data System (ADS)
Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.
2015-04-01
The development of European surface wind storms out of normal mid-latitude cyclones is substantially influenced by upstream tropospheric growth factors over the Northern Atlantic. The main factors include divergence and vorticity advection in the upper troposphere, latent heat release and the presence of instabilities of short baroclinic waves of suitable wave lengths. In this study we examine a subset of these potential growth factors and their related influences on the transformation of extra-tropical cyclones into severe damage prone surface storm systems. Previous studies have shown links between specific growth factors and surface wind storms related to extreme cyclones. In our study we investigate in further detail spatial and temporal variability patterns of these upstream processes at different vertical levels of the troposphere. The analyses will comprise of the three growth factors baroclinicity, latent heat release and upper tropospheric divergence. Our definition of surface wind storms is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. We also make use of a well-established extra-tropical cyclone identification and tracking algorithm. These cyclone tracks form the base for a composite analysis of the aforementioned growth factors using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM). Our composite analysis corroborates previous similar studies but extends them by using an impact based algorithm for the identification of strong wind systems. Based on this composite analysis we further identify variability patterns for each growth factor most important for the transformation of a cyclone into a surface wind storm. We thus also address the question whether the link between storm intensity and related growth factor anomaly taking into account its spatial variability is stable and can be quantified. While the robustness of our preliminary results is generally dependent on the growth factor investigated, some examples include i) the overall availability of latent heat seems to be less important than its spatial structure around the cyclone core and ii) the variability of upper-tropospheric baroclinicity appears to be highest north of the surface position of the cyclone, especially for those that transform into a surface storm.
A synthesis of radial growth patterns preceding tree mortality
Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M.R.; Desoto, Lucia; Aakala, Tuomas; Antos, Joseph A.; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Cada, Vojtech; Camarero, Jesus J.; Cherubini, Paolo; Cochard, Herve; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vyacheslav I.; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Calderon, Juan C. Linares; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; Lopez Rodriguez, Rosana; Makinen, Harri; Mayr, Stefan; Meszaros, IIona; Metsaranta, Juha M.; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M.; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M.; Stan, Amanda B.; Sterck, Frank; Stojanovic, Dejan B.; Suarez, Maria L.; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, Jose M.; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R.; Wyckoff, Peter H.; Zafirov, Nikolay; Martinez-Vilalta, Jordi
2017-01-01
Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1–100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.
A synthesis of radial growth patterns preceding tree mortality.
Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M R; Desoto, Lucía; Aakala, Tuomas; Antos, Joseph A; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Čada, Vojtěch; Camarero, Jesus J; Cherubini, Paolo; Cochard, Hervé; Coyea, Marie R; Čufar, Katarina; Das, Adrian J; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J; Hartmann, Henrik; Hereş, Ana-Maria; Hultine, Kevin R; Janda, Pavel; Kane, Jeffrey M; Kharuk, Vyacheslav I; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Linares Calderon, Juan C; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; López Rodríguez, Rosana; Mäkinen, Harri; Mayr, Stefan; Mészáros, Ilona; Metsaranta, Juha M; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M; Rohner, Brigitte; Sangüesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M; Stan, Amanda B; Sterck, Frank; Stojanović, Dejan B; Suarez, Maria L; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, José M; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R; Wyckoff, Peter H; Zafirov, Nikolay; Martínez-Vilalta, Jordi
2017-04-01
Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks. © 2016 John Wiley & Sons Ltd.
Marwan, Ahmed I.; Shabeka, Uladzimir; Dobrinskikh, Evgenia
2018-01-01
In this article, we report an up-to-date summary on tracheal occlusion (TO) as an approach to drive accelerated lung growth and strive to review the different maternal- and fetal-derived local and systemic signals and mechanisms that may play a significant biological role in lung growth and formation of heterogeneous topological zones following TO. Pulmonary hypoplasia is a condition whereby branching morphogenesis and embryonic pulmonary vascular development are globally affected and is classically seen in congenital diaphragmatic hernia. TO is an innovative approach aimed at driving accelerated lung growth in the most severe forms of diaphragmatic hernia and has been shown to result in improved neonatal outcomes. Currently, most research on mechanisms of TO-induced lung growth is focused on mechanical forces and is viewed from the perspective of homogeneous changes within the lung. We suggest that the key principle in understanding changes in fetal lungs after TO is taking into account formation of unique variable topological zones. Following TO, fetal lungs might temporarily look like a dynamically changing topologic mosaic with varying proliferation rates, dissimilar scale of vasculogenesis, diverse patterns of lung tissue damage, variable metabolic landscape, and different structures. The reasons for this dynamic topological mosaic pattern may include distinct degree of increased hydrostatic pressure in different parts of the lung, dissimilar degree of tissue stress/damage and responses to this damage, and incomparable patterns of altered lung zones with variable response to systemic maternal and fetal factors, among others. The local interaction between these factors and their accompanying processes in addition to the potential role of other systemic factors might lead to formation of a common vector of biological response unique to each zone. The study of the interaction between various networks formed after TO (action of mechanical forces, activation of mucosal mast cells, production and secretion of damage-associated molecular pattern substances, low-grade local pulmonary inflammation, and cardiac contraction-induced periodic agitation of lung tissue, among others) will bring us closer to an appreciation of the biological phenomenon of topological heterogeneity within the fetal lungs. PMID:29376042
Linking crop yield anomalies to large-scale atmospheric circulation in Europe.
Ceglar, Andrej; Turco, Marco; Toreti, Andrea; Doblas-Reyes, Francisco J
2017-06-15
Understanding the effects of climate variability and extremes on crop growth and development represents a necessary step to assess the resilience of agricultural systems to changing climate conditions. This study investigates the links between the large-scale atmospheric circulation and crop yields in Europe, providing the basis to develop seasonal crop yield forecasting and thus enabling a more effective and dynamic adaptation to climate variability and change. Four dominant modes of large-scale atmospheric variability have been used: North Atlantic Oscillation, Eastern Atlantic, Scandinavian and Eastern Atlantic-Western Russia patterns. Large-scale atmospheric circulation explains on average 43% of inter-annual winter wheat yield variability, ranging between 20% and 70% across countries. As for grain maize, the average explained variability is 38%, ranging between 20% and 58%. Spatially, the skill of the developed statistical models strongly depends on the large-scale atmospheric variability impact on weather at the regional level, especially during the most sensitive growth stages of flowering and grain filling. Our results also suggest that preceding atmospheric conditions might provide an important source of predictability especially for maize yields in south-eastern Europe. Since the seasonal predictability of large-scale atmospheric patterns is generally higher than the one of surface weather variables (e.g. precipitation) in Europe, seasonal crop yield prediction could benefit from the integration of derived statistical models exploiting the dynamical seasonal forecast of large-scale atmospheric circulation.
Simulation of crop yield variability by improved root-soil-interaction modelling
NASA Astrophysics Data System (ADS)
Duan, X.; Gayler, S.; Priesack, E.
2009-04-01
Understanding the processes and factors that govern the within-field variability in crop yield has attached great importance due to applications in precision agriculture. Crop response to environment at field scale is a complex dynamic process involving the interactions of soil characteristics, weather conditions and crop management. The numerous static factors combined with temporal variations make it very difficult to identify and manage the variability pattern. Therefore, crop simulation models are considered to be useful tools in analyzing separately the effects of change in soil or weather conditions on the spatial variability, in order to identify the cause of yield variability and to quantify the spatial and temporal variation. However, tests showed that usual crop models such as CERES-Wheat and CERES-Maize were not able to quantify the observed within-field yield variability, while their performance on crop growth simulation under more homogeneous and mainly non-limiting conditions was sufficent to simulate average yields at the field-scale. On a study site in South Germany, within-field variability in crop growth has been documented since years. After detailed analysis and classification of the soil patterns, two site specific factors, the plant-available-water and the O2 deficiency, were considered as the main causes of the crop growth variability in this field. Based on our measurement of root distribution in the soil profile, we hypothesize that in our case the insufficiency of the applied crop models to simulate the yield variability can be due to the oversimplification of the involved root models which fail to be sensitive to different soil conditions. In this study, the root growth model described by Jones et al. (1991) was adapted by using data of root distributions in the field and linking the adapted root model to the CERES crop model. The ability of the new root model to increase the sensitivity of the CERES crop models to different enviromental conditions was then evaluated by means of comparison of the simualtion results with measured data and by scenario calculations.
Tree Growth Response to Drought Along a Depth to Groundwater Gradient in Northern Wisconsin
NASA Astrophysics Data System (ADS)
Ciruzzi, D. M.; Loheide, S. P., II
2017-12-01
Understanding complex spatial and temporal patterns of drought-induced forest stress requires knowledge of the physiological drivers and ecosystem attributes that lead to or inhibit tree mortality. Prevailing meteorological conditions leading to drought may have lesser effect on vegetation that has evolved to avoid drought by accessing deeper soil moisture reserves or shallow groundwater to meet evapotranspiration demand. This is especially true in arid and semi-arid regions, yet groundwater use by trees is rarely explored in temperate systems and the extent to which groundwater use reduces drought vulnerability in these climates and regions is unknown. We explored responses of radial growth in temperate tress to wet and dry years across a depth to groundwater gradient from 1 to 9 meters in sandy forests in northern Wisconsin. The spatial patterns of tree growth in this watershed show areas where tree growth is influenced by depth to groundwater. Preliminary results showed trees in areas of shallower groundwater with low variability in tree growth and indicated that tree growth remains consistent during both wet and dry years. Conversely, trees in areas of deeper groundwater showed higher variability in tree growth during wet and dry years. We hypothesize that even in this humid region, the sandy soils do not retain sufficient moisture leading to potentially frequent water stress in trees and reductions in productivity. However, where and when accessible, we suspect trees use shallow groundwater to sustain evapotranspiration and maintain consistent growth during dry periods.
A computational model of cerebral cortex folding.
Nie, Jingxin; Guo, Lei; Li, Gang; Faraco, Carlos; Stephen Miller, L; Liu, Tianming
2010-05-21
The geometric complexity and variability of the human cerebral cortex have long intrigued the scientific community. As a result, quantitative description of cortical folding patterns and the understanding of underlying folding mechanisms have emerged as important research goals. This paper presents a computational 3D geometric model of cerebral cortex folding initialized by MRI data of a human fetal brain and deformed under the governance of a partial differential equation modeling cortical growth. By applying different simulation parameters, our model is able to generate folding convolutions and shape dynamics of the cerebral cortex. The simulations of this 3D geometric model provide computational experimental support to the following hypotheses: (1) Mechanical constraints of the skull regulate the cortical folding process. (2) The cortical folding pattern is dependent on the global cell growth rate of the whole cortex. (3) The cortical folding pattern is dependent on relative rates of cell growth in different cortical areas. (4) The cortical folding pattern is dependent on the initial geometry of the cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Understanding tree growth responses after partial cuttings: A new approach
Rossi, Sergio; Lussier, Jean-Martin; Walsh, Denis; Morin, Hubert
2017-01-01
Forest ecosystem management heads towards the use of partial cuttings. However, the wide variation in growth response of residual trees remains unexplained, preventing a suitable prediction of forest productivity. The aim of the study was to assess individual growth and identify the driving factors involved in the responses of residual trees. Six study blocks in even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands of the eastern Canadian boreal forest were submitted to experimental shelterwood and seed-tree treatments. Individual-tree models were applied to 1039 trees to analyze their patterns of radial growth during the 10 years after partial cutting by using the nonlinear Schnute function on tree-ring series. The trees exhibited different growth patterns. A sigmoid growth was detected in 32% of trees, mainly in control plots of older stands. Forty-seven percent of trees located in the interior of residual strips showed an S-shape, which was influenced by stand mortality, harvested intensity and dominant height. Individuals showing an exponential pattern produced the greatest radial growth after cutting and were edge trees of younger stands with higher dominant height. A steady growth decline was observed in 4% of trees, represented by the individuals suppressed and insensitive to the treatment. The analyses demonstrated that individual nonlinear models are able to assess the variability in growth within the stand and the factors involved in the occurrence of the different growth patterns, thus improving understanding of the tree responses to partial cutting. This new approach can sustain forest management strategies by defining the best conditions to optimize the growth yield of residual trees. PMID:28222200
Understanding tree growth responses after partial cuttings: A new approach.
Montoro Girona, Miguel; Rossi, Sergio; Lussier, Jean-Martin; Walsh, Denis; Morin, Hubert
2017-01-01
Forest ecosystem management heads towards the use of partial cuttings. However, the wide variation in growth response of residual trees remains unexplained, preventing a suitable prediction of forest productivity. The aim of the study was to assess individual growth and identify the driving factors involved in the responses of residual trees. Six study blocks in even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands of the eastern Canadian boreal forest were submitted to experimental shelterwood and seed-tree treatments. Individual-tree models were applied to 1039 trees to analyze their patterns of radial growth during the 10 years after partial cutting by using the nonlinear Schnute function on tree-ring series. The trees exhibited different growth patterns. A sigmoid growth was detected in 32% of trees, mainly in control plots of older stands. Forty-seven percent of trees located in the interior of residual strips showed an S-shape, which was influenced by stand mortality, harvested intensity and dominant height. Individuals showing an exponential pattern produced the greatest radial growth after cutting and were edge trees of younger stands with higher dominant height. A steady growth decline was observed in 4% of trees, represented by the individuals suppressed and insensitive to the treatment. The analyses demonstrated that individual nonlinear models are able to assess the variability in growth within the stand and the factors involved in the occurrence of the different growth patterns, thus improving understanding of the tree responses to partial cutting. This new approach can sustain forest management strategies by defining the best conditions to optimize the growth yield of residual trees.
A reexamination of age-related variation in body weight and morphometry of Maryland nutria
Sherfy, M.H.; Mollett, T.A.; McGowan, K.R.; Daugherty, S.L.
2006-01-01
Age-related variation in morphometry has been documented for many species. Knowledge of growth patterns can be useful for modeling energetics, detecting physiological influences on populations, and predicting age. These benefits have shown value in understanding population dynamics of invasive species, particularly in developing efficient control and eradication programs. However, development and evaluation of descriptive and predictive models is a critical initial step in this process. Accordingly, we used data from necropsies of 1,544 nutria (Myocastor coypus) collected in Maryland, USA, to evaluate the accuracy of previously published models for prediction of nutria age from body weight. Published models underestimated body weights of our animals, especially for ages <3. We used cross-validation procedures to develop and evaluate models for describing nutria growth patterns and for predicting nutria age. We derived models from a randomly selected model-building data set (n = 192-193 M, 217-222 F) and evaluated them with the remaining animals (n = 487-488 M, 642-647 F). We used nonlinear regression to develop Gompertz growth-curve models relating morphometric variables to age. Predicted values of morphometric variables fell within the 95% confidence limits of their true values for most age classes. We also developed predictive models for estimating nutria age from morphometry, using linear regression of log-transformed age on morphometric variables. The evaluation data set corresponded with 95% prediction intervals from the new models. Predictive models for body weight and length provided greater accuracy and less bias than models for foot length and axillary girth. Our growth models accurately described age-related variation in nutria morphometry, and our predictive models provided accurate estimates of ages from morphometry that will be useful for live-captured individuals. Our models offer better accuracy and precision than previously published models, providing a capacity for modeling energetics and growth patterns of Maryland nutria as well as an empirical basis for determining population age structure from live-captured animals.
Patterned growth of individual and multiple vertically aligned carbon nanofibers
NASA Astrophysics Data System (ADS)
Merkulov, V. I.; Lowndes, D. H.; Wei, Y. Y.; Eres, G.; Voelkl, E.
2000-06-01
The results of studies of patterned growth of vertically aligned carbon nanofibers (VACNFs) prepared by plasma-enhanced chemical vapor deposition are reported. Nickel (Ni) dots of various diameters and Ni lines with variable widths and shapes were fabricated using electron beam lithography and evaporation, and served for catalytic growth of VACNFs whose structure was determined by high resolution transmission electron microscopy. It is found that upon plasma pre-etching and heating up to 600-700 °C, thin films of Ni break into droplets which initiate the growth of VACNFs. Above a critical dot size multiple droplets are formed, and consequently multiple VACNFs grow from a single evaporated dot. For dot sizes smaller than the critical size only one droplet is formed, resulting in a single VACNF. In the case of a patterned line, the growth mechanism is similar to that from a dot. VACNFs grow along the line, and above a critical linewidth multiple VACNFs are produced across the line. The mechanism of the formation of single and multiple catalyst droplets and subsequently of VACNFs is discussed.
Gerald Rehfeldt
1991-01-01
Models were developed to describe genetic variation among 201 seedling populations of Pinus ponderosa var. ponderosa in the Inland Northwest of the United States. Common-garden studies provided three variables Jhat reflected growth and development in field environments and three principal components of six variables that reflected patterns of shoot elongation....
Hiroaki Ishii; Ken-Ichi Yoshimura; Akira Mori
2009-01-01
The branching pattern of A. amabilis was regular (normal shoot-length distribution, less variable branching angle and bifurcation ratio), whereas that of T. heterophylla was more plastic (positively skewed shoot-length distribution, more variable branching angle and bifurcation ratio). The two species had similar shoot...
NASA Astrophysics Data System (ADS)
Thomas, Yoann; Dumas, Franck; Andréfouët, Serge
2016-12-01
The black-lip pearl oyster (Pinctada margaritifera) is cultured extensively to produce black pearls, especially in French Polynesia atoll lagoons. This aquaculture relies on spat collection, a process that experiences spatial and temporal variability and needs to be optimized by understanding which factors influence recruitment. Here, we investigate the sensitivity of P. margaritifera larval dispersal to both physical and biological factors in the lagoon of Ahe atoll. Coupling a validated 3D larval dispersal model, a bioenergetics larval growth model following the Dynamic Energy Budget (DEB) theory, and a population dynamics model, the variability of lagoon-scale connectivity patterns and recruitment potential is investigated. The relative contribution of reared and wild broodstock to the lagoon-scale recruitment potential is also investigated. Sensitivity analyses pointed out the major effect of the broodstock population structure as well as the sensitivity to larval mortality rate and inter-individual growth variability to larval supply and to the subsequent settlement potential. The application of the growth model clarifies how trophic conditions determine the larval supply and connectivity patterns. These results provide new cues to understand the dynamics of bottom-dwelling populations in atoll lagoons, their recruitment, and discuss how to take advantage of these findings and numerical models for pearl oyster management.
Girardin, Martin P.; Hogg, Edward H.; Kurz, Werner; Zimmermann, Niklaus E.; Metsaranta, Juha M.; de Jong, Rogier; Frank, David C.; Esper, Jan; Büntgen, Ulf; Guo, Xiao Jing; Bhatti, Jagtar
2016-01-01
Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada’s boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada’s National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO2 concentration. PMID:27956624
The mechanics behind plant development.
Hamant, Olivier; Traas, Jan
2010-01-01
Morphogenesis in living organisms relies on the integration of both biochemical and mechanical signals. During the last decade, attention has been mainly focused on the role of biochemical signals in patterning and morphogenesis, leaving the contribution of mechanics largely unexplored. Fortunately, the development of new tools and approaches has made it possible to re-examine these processes. In plants, shape is defined by two local variables: growth rate and growth direction. At the level of the cell, these variables depend on both the cell wall and turgor pressure. Multidisciplinary approaches have been used to understand how these cellular processes are integrated in the growing tissues. These include quantitative live imaging to measure growth rate and direction in tissues with cellular resolution. In parallel, stress patterns have been artificially modified and their impact on strain and cell behavior been analysed. Importantly, computational models based on analogies with continuum mechanics systems have been useful in interpreting the results. In this review, we will discuss these issues focusing on the shoot apical meristem, a population of stem cells that is responsible for the initiation of the aerial organs of the plant.
NASA Astrophysics Data System (ADS)
Wise, E.
2007-12-01
Much of the western United States is in the midst of a multi-year drought that has placed a renewed sense of urgency on water availability issues. The characterization of variability over relevant space and time scales has emerged as one of the top needs concerning the hydrological cycle, but understanding hydroclimatic variability at decadal and longer time scales has been limited by instrumental data that are both spatially and temporally inadequate. The reconstruction of moisture variables from tree-rings has been recognized as an important source of information on long-term water supply variability. Moisture variables of interest may include annual precipitation, snowpack, summer precipitation, and streamflow. Trees in closely co-located sites can vary widely in the signal they reflect, particularly in a region with the complex topography and hydroclimatic variability that is seen in the north-central Rocky Mountains. In this study, climatic and geospatial information was combined with tree-ring chronologies in order to better-understand factors determining variations in the response of tree growth to a particular precipitation signal. Resulting spatial variability in moisture seasonality and growth response provide insight into the region's moisture patterns and better characterization of the region's hydroclimatic variability.
Wills, Andrew K; Strand, Bjørn Heine; Glavin, Kari; Silverwood, Richard J; Hovengen, Ragnhild
2016-04-08
Regression models are widely used to link serial measures of anthropometric size or changes in size to a later outcome. Different parameterisations of these models enable one to target different questions about the effect of growth, however, their interpretation can be challenging. Our objective was to formulate and classify several sets of parameterisations by their underlying growth pattern contrast, and to discuss their utility using an expository example. We describe and classify five sets of model parameterisations in accordance with their underlying growth pattern contrast (conditional growth; being bigger v being smaller; becoming bigger and staying bigger; growing faster v being bigger; becoming and staying bigger versus being bigger). The contrasts are estimated by including different sets of repeated measures of size and changes in size in a regression model. We illustrate these models in the setting of linking infant growth (measured on 6 occasions: birth, 6 weeks, 3, 6, 12 and 24 months) in weight-for-height-for-age z-scores to later childhood overweight at 8y using complete cases from the Norwegian Childhood Growth study (n = 900). In our expository example, conditional growth during all periods, becoming bigger in any interval and staying bigger through infancy, and being bigger from birth were all associated with higher odds of later overweight. The highest odds of later overweight occurred for individuals who experienced high conditional growth or became bigger in the 3 to 6 month period and stayed bigger, and those who were bigger from birth to 24 months. Comparisons between periods and between growth patterns require large sample sizes and need to consider how to scale associations to make comparisons fair; with respect to the latter, we show one approach. Studies interested in detrimental growth patterns may gain extra insight from reporting several sets of growth pattern contrasts, and hence an approach that incorporates several sets of model parameterisations. Co-efficients from these models require careful interpretation, taking account of the other variables that are conditioned on.
Topography alters tree growth–climate relationships in a semi-arid forested catchment
Adams, Hallie R.; Barnard, Holly R.; Loomis, Alexander K.
2014-11-26
Topography and climate play an integral role in the spatial variability and annual dynamics of aboveground carbon sequestration. Despite knowledge of vegetation–climate–topography relationships on the landscape and hillslope scales, little is known about the influence of complex terrain coupled with hydrologic and topoclimatic variation on tree growth and physiology at the catchment scale. Climate change predictions for the semi-arid, western United States include increased temperatures, more frequent and extreme drought events, and decreases in snowpack, all of which put forests at risk of drought induced mortality and enhanced susceptibility to disturbance events. In this study, we determine how species-specific treemore » growth patterns and water use efficiency respond to interannual climate variability and how this response varies with topographic position. We found that Pinus contorta and Pinus ponderosa both show significant decreases in growth with water-limiting climate conditions, but complex terrain mediates this response by controlling moisture conditions in variable topoclimates. Foliar carbon isotope analyses show increased water use efficiency during drought for Pinus contorta, but indicate no significant difference in water use efficiency of Pinus ponderosa between a drought year and a non-drought year. The responses of the two pine species to climate indicate that semi-arid forests are especially susceptible to changes and risks posed by climate change and that topographic variability will likely play a significant role in determining the future vegetation patterns of semi-arid systems.« less
Do Vampires Exist? Using Spreadsheets To Investigate a Common Folktale.
ERIC Educational Resources Information Center
Drier, Hollylynne Stohl
1999-01-01
Describes the use of spreadsheets in a third grade class to teach basic mathematical concepts by investigating the existence of vampires. Incorporates addition and multiplication skills, patterning, variables, formulas, exponential growth, and proof by contradiction. (LRW)
Simulating historical variability in the amount of old forests in the Oregon Coast Range.
M.C. Wimberly; T.M. Spies; C.J. Long; C. Whitlock
2000-01-01
We developed the landscape age-class demographics simulator (LADS) to model historical variability in the amount of old-growth and late-successional forest in the Oregon Coast Range over the past 3,000 years. The model simulated temporal and spatial patterns of forest fires along with the resulting fluctuations in the distribution of forest age classes across the...
Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K
2013-09-15
The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
Stature of sub-arctic birch in relation to growth rate, lifespan and tree form.
Jónsson, Thorbergur Hjalti
2004-11-01
Sub-arctic mountain birch Betula pubescens var. pumila communities in the North Atlantic region are of variable stature, ranging from prostrate scrubs to forests with trees up to 12 m high. Four hypotheses were tested, relating growth and population characteristics of sub-arctic birch woodland and scrub to tree stature; i.e. the variable stature of birch woods is due to differences in (1) the mean growth rate; (2) the age-related patterns of growth rate; (3) the life expectancy of stems; or (4) the tree form. A stratified random sample of 300 birch trees was drawn from the total population of indigenous birch woodlands and scrub in Iceland, yielding 286 valid sample genets. The population was divided into three sub-populations with dominant trees 0-2, 2-4 and 4-12 m tall, referred to as birch scrub, birch scrub-woodland and birch forest, respectively. Trees in the scrub population were of more contorted growth form than birch in the scrub-woodland and forest populations. Mean growth rates, mean age and median life expectancies increased significantly with sub-population of greater tree stature. At the population level, annual increment and longevity of birch stems was apparently interrelated as the stems in vigorously growing birch sub-populations had a longer life expectancy than those of slower growth. However, no difference was observed between sub-populations in age-related patterns of extension growth rate. The results were consistent with hypotheses (1), (3) and (4), but hypothesis (2) was rejected. Hence, mountain birch of more vigorous growth attains a greater stature than birch of lesser increment due to faster extension growth rate and a longer lifespan. In addition, the more contorted stem form of scrub populations contributes to their low stature.
URLACHER, SAMUEL S.; BLACKWELL, AARON D.; LIEBERT, MELISSA A.; MADIMENOS, FELICIA C.; CEPON-ROBINS, TARA J.; GILDNER, THERESA E.; SNODGRASS, J. JOSH; SUGIYAMA, LAWRENCE S.
2015-01-01
Objectives Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Methods Mixed-longitudinal measures of height, weight, and BMI were collected from Shuar participants (n = 2,463; age 0–29 years). Centile growth curves and tables were created for each anthropometric variable of interest using GAMLSS. Pseudo-velocity and LMS curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with U.S. CDC and multinational WHO growth references. Results The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Conclusions Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. PMID:26126793
Sonia Wharton; Laura Chasmer; Matthias Falk; Kyaw Tha Paw U
2009-01-01
Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and EI Nino-Southern Oscillation (ENSO). We use 9 years of eddy covariance...
Passot, Sixtine; Moreno-Ortega, Beatriz; Moukouanga, Daniel; Balsera, Crispulo; Guyomarc'h, Soazig; Lucas, Mikael; Lobet, Guillaume; Laplaze, Laurent; Muller, Bertrand; Guédon, Yann
2018-05-11
Recent progress in root phenotyping has focused mainly on increasing throughput for genetic studies while identifying root developmental patterns has been comparatively underexplored. We introduce a new phenotyping pipeline for producing high-quality spatio-temporal root system development data and identifying developmental patterns within these data. The SmartRoot image analysis system and temporal and spatial statistical models were applied to two cereals, pearl millet (Pennisetum glaucum) and maize (Zea mays). Semi-Markov switching linear models were used to cluster lateral roots based on their growth rate profiles. These models revealed three types of lateral roots with similar characteristics in both species. The first type corresponds to fast and accelerating roots, the second to rapidly arrested roots, and the third to an intermediate type where roots cease elongation after a few days. These types of lateral roots were retrieved in different proportions in a maize mutant affected in auxin signaling, while the first most vigorous type was absent in maize plants exposed to severe shading. Moreover, the classification of growth rate profiles was mirrored by a ranking of anatomical traits in pearl millet. Potential dependencies in the succession of lateral root types along the primary root were then analyzed using variable-order Markov chains. The lateral root type was not influenced by the shootward neighbor root type or by the distance from this root. This random branching pattern of primary roots was remarkably conserved, despite the high variability of root systems in both species. Our phenotyping pipeline opens the door to exploring the genetic variability of lateral root developmental patterns. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Disease and thermal acclimation in a more variable and unpredictable climate
NASA Astrophysics Data System (ADS)
Raffel, Thomas R.; Romansic, John M.; Halstead, Neal T.; McMahon, Taegan A.; Venesky, Matthew D.; Rohr, Jason R.
2013-02-01
Global climate change is shifting the distribution of infectious diseases of humans and wildlife with potential adverse consequences for disease control. As well as increasing mean temperatures, climate change is expected to increase climate variability, making climate less predictable. However, few empirical or theoretical studies have considered the effects of climate variability or predictability on disease, despite it being likely that hosts and parasites will have differential responses to climatic shifts. Here we present a theoretical framework for how temperature variation and its predictability influence disease risk by affecting host and parasite acclimation responses. Laboratory experiments conducted in 80 independent incubators, and field data on disease-associated frog declines in Latin America, support the framework and provide evidence that unpredictable temperature fluctuations, on both monthly and diurnal timescales, decrease frog resistance to the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Furthermore, the pattern of temperature-dependent growth of the fungus on frogs was opposite to the pattern of growth in culture, emphasizing the importance of accounting for the host-parasite interaction when predicting climate-dependent disease dynamics. If similar acclimation responses influence other host-parasite systems, as seems likely, then present models, which generally ignore small-scale temporal variability in climate, might provide poor predictions for climate effects on disease.
Singh, Aditya Abha; Agrawal, S B; Shahi, J P; Agrawal, Madhoolika
2014-02-01
Rapid industrialization and economic developments have increased the tropospheric ozone (O3) budget since preindustrial times, and presently, it is supposed to be a major threat to crop productivity. Maize (Zea mays L.), a C4 plant is the third most important staple crop at global level with a great deal of economic importance. The present study was conducted to evaluate the performance of two maize cultivars [HQPM1: quality protein maize (QPM)] and [DHM117: nonquality protein maize (NQPM)] to variable O3 doses. Experimental setup included filtered chambers, nonfiltered chambers (NFC), and two elevated doses of O3 viz. NFC+15 ppb O3 (NFC+15) and NFC+30 ppb O3 (NFC+30). During initial growth period, both QPM and NQPM plants showed hormetic effect that is beneficial due to exposure of low doses of a toxicant (NFC and NFC+15 ppb O3), but at later stages, growth attributes were negatively affected by O3. Growth indices showed the variable pattern of photosynthate translocation under O3 stress. Foliar injury in the form of interveinal chlorosis and reddening of leaves due to increased production of anthocyanin pigments was observed at higher concentrations of O3. One-dimensional gel electrophoresis of leaves taken from NFC+30 showed reductions of major photosynthetic proteins, and differential response was observed between the two test cultivars. Decline in the number of male flowers at elevated O3 doses suggested damaging effect of O3 on reproductive structures which might be a cause of productivity losses. Variable carbon allocation pattern particularly to husk leaves, foliar injury, and damage of photosynthetic proteins led to significant reductions in economic yield at higher O3 doses. PCA showed that both the cultivars responded more or less similarly to O3 stress in their respective groupings of growth and yield parameters, but magnitude of their response was variable. It is further supported by difference in the significance of correlations between variables of yield and AOT40. Cultivar response reflects that QPM performed better than NQPM against elevated O3.
Effect of Domestication on the Spread of the [PIN+] Prion in Saccharomyces cerevisiae
Kelly, Amy C.; Busby, Ben; Wickner, Reed B.
2014-01-01
Prions (infectious proteins) cause fatal neurodegenerative diseases in mammals. In the yeast Saccharomyces cerevisiae, many toxic and lethal variants of the [PSI+] and [URE3] prions have been identified in laboratory strains, although some commonly studied variants do not seem to impair cell growth. Phylogenetic analysis has revealed four major clades of S. cerevisiae that share histories of two prion proteins and largely correspond to different ecological niches of yeast. The [PIN+] prion was most prevalent in commercialized niches, infrequent among wine/vineyard strains, and not observed in ancestral isolates. As previously reported, the [PSI+] and [URE3] prions are not found in any of these strains. Patterns of heterozygosity revealed genetic mosaicism and indicated extensive outcrossing among divergent strains in commercialized environments. In contrast, ancestral isolates were all homozygous and wine/vineyard strains were closely related to each other and largely homozygous. Cellular growth patterns were highly variable within and among clades, although ancestral isolates were the most efficient sporulators and domesticated strains showed greater tendencies for flocculation. [PIN+]-infected strains had a significantly higher likelihood of polyploidy, showed a higher propensity for flocculation compared to uninfected strains, and had higher sporulation efficiencies compared to domesticated, uninfected strains. Extensive phenotypic variability among strains from different environments suggests that S. cerevisiae is a niche generalist and that most wild strains are able to switch from asexual to sexual and from unicellular to multicellular growth in response to environmental conditions. Our data suggest that outbreeding and multicellular growth patterns adapted for domesticated environments are ecological risk factors for the [PIN+] prion in wild yeast. PMID:24812307
Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders
2013-01-01
Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree competition studies, in which tree spatial patterning is typically not taken into account. Our findings highlight the importance of forest structure – particularly the spatial arrangement of trees – in regulating inter-tree competition and growth in structurally diverse forests, and they provide insight into the causes and consequences of heterogeneity in this old-growth system.
Zang, Christian; Hartl-Meier, Claudia; Dittmar, Christoph; Rothe, Andreas; Menzel, Annette
2014-12-01
The future performance of native tree species under climate change conditions is frequently discussed, since increasingly severe and more frequent drought events are expected to become a major risk for forest ecosystems. To improve our understanding of the drought tolerance of the three common European temperate forest tree species Norway spruce, silver fir and common beech, we tested the influence of climate and tree-specific traits on the inter and intrasite variability in drought responses of these species. Basal area increment data from a large tree-ring network in Southern Germany and Alpine Austria along a climatic cline from warm-dry to cool-wet conditions were used to calculate indices of tolerance to drought events and their variability at the level of individual trees and populations. General patterns of tolerance indicated a high vulnerability of Norway spruce in comparison to fir and beech and a strong influence of bioclimatic conditions on drought response for all species. On the level of individual trees, low-growth rates prior to drought events, high competitive status and low age favored resilience in growth response to drought. Consequently, drought events led to heterogeneous and variable response patterns in forests stands. These findings may support the idea of deliberately using spontaneous selection and adaption effects as a passive strategy of forest management under climate change conditions, especially a strong directional selection for more tolerant individuals when frequency and intensity of summer droughts will increase in the course of global climate change. © 2014 John Wiley & Sons Ltd.
Built environment and Property Crime in Seattle, 1998-2000: A Bayesian Analysis.
Matthews, Stephen A; Yang, Tse-Chuan; Hayslett-McCall, Karen L; Ruback, R Barry
2010-06-01
The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998-2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary.
Built environment and Property Crime in Seattle, 1998–2000: A Bayesian Analysis
Matthews, Stephen A.; Yang, Tse-chuan; Hayslett-McCall, Karen L.; Ruback, R. Barry
2014-01-01
The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998–2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary. PMID:24737924
Díaz, Patricio A.; Reguera, Beatriz; Ruiz-Villarreal, Manuel; Pazos, Yolanda; Velo-Suárez, Lourdes; Berger, Henrick; Sourisseau, Marc
2013-01-01
In 2012, there were exceptional blooms of D. acuminata in early spring in what appeared to be a mesoscale event affecting Western Iberia and the Bay of Biscay. The objective of this work was to identify common climatic patterns to explain the observed anomalies in two important aquaculture sites, the Galician Rías Baixas (NW Spain) and Arcachon Bay (SW France). Here, we examine climate variability through physical-biological couplings, Sea Surface Temperature (SST) anomalies and time of initiation of the upwelling season and its intensity over several decades. In 2012, the mesoscale features common to the two sites were positive anomalies in SST and unusual wind patterns. These led to an atypical predominance of upwelling in winter in the Galician Rías, and increased haline stratification associated with a southward advection of the Gironde plume in Arcachon Bay. Both scenarios promoted an early phytoplankton growth season and increased stability that enhanced D. acuminata growth. Therefore, a common climate anomaly caused exceptional blooms of D. acuminata in two distant regions through different triggering mechanisms. These results increase our capability to predict intense diarrhetic shellfish poisoning outbreaks in the early spring from observations in the preceding winter. PMID:23959151
Urlacher, Samuel S; Blackwell, Aaron D; Liebert, Melissa A; Madimenos, Felicia C; Cepon-Robins, Tara J; Gildner, Theresa E; Snodgrass, J Josh; Sugiyama, Lawrence S
2016-01-01
Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Mixed-longitudinal measures of height, weight, and body mass index (BMI) were collected from Shuar participants (n = 2,463; age: 0-29 years). Centile growth curves and tables were created for each anthropometric variable of interest using Generalized Additive Models for Location, Scale, and Shape (GAMLSS). Pseudo-velocity and Lambda-Mu-Sigma curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with United States Center for Disease Control and Prevention and multinational World Health Organization growth references. The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. © 2015 Wiley Periodicals, Inc.
Developmental Transitions as Successive Reorganizations of a Control Hierarchy.
ERIC Educational Resources Information Center
Plooij, Frans X.; And Others
1990-01-01
Describes two studies involving chimpanzee mother-infant pairs in Tanzania between 1980 and 1987 that implemented control theory concepts. The first identified behavioral development in infant chimps; the second observed the growth of independence and parenting patterns. Concludes that the hierarchy of controlled variables develops consecutively…
Disease in a more variable and unpredictable climate
NASA Astrophysics Data System (ADS)
McMahon, T. A.; Raffel, T.; Rohr, J. R.; Halstead, N.; Venesky, M.; Romansic, J.
2014-12-01
Global climate change is shifting the dynamics of infectious diseases of humans and wildlife with potential adverse consequences for disease control. Despite this, the role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial. Climate change is expected to increase climate variability in addition to increasing mean temperatures, making climate less predictable. However, few empirical or theoretical studies have considered the effects of climate variability or predictability on disease, despite it being likely that hosts and parasites will have differential responses to climatic shifts. Here we present a theoretical framework for how temperature variation and its predictability influence disease risk by affecting host and parasite acclimation responses. Laboratory experiments and field data on disease-associated frog declines in Latin America support this framework and provide evidence that unpredictable temperature fluctuations, on both monthly and diurnal timescales, decrease frog resistance to the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Furthermore, the pattern of temperature-dependent growth of the fungus on frogs was inconsistent with the pattern of Bd growth in culture, emphasizing the importance of accounting for the host-parasite interaction when predicting climate-dependent disease dynamics. Consistent with our laboratory experiments, increased regional temperature variability associated with global El Niño climatic events was the best predictor of widespread amphibian losses in the genus Atelopus. Thus, incorporating the effects of small-scale temporal variability in climate can greatly improve our ability to predict the effects of climate change on disease.
NASA Astrophysics Data System (ADS)
Cardoso, Ricardo S.; Defeo, Omar
2004-11-01
Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis were analyzed to determine latitudinal variations along its distribution, from tropical (9°N) to temperate (39°S) sandy beaches in Atlantic and Pacific oceans. Population features exhibited systematic geographical patterns of variation: (1) an increase in individual sizes and growth rates towards temperate beaches, following an inverse relationship with mean water temperature of the surf zone; (2) a shift from almost continuous to seasonal growth from subtropical to temperate Atlantic beaches and a positive relationship between amplitude of intra-annual growth oscillations and temperature range; (3) a linear decrease in life span and an increase in natural mortality from temperate to subtropical beaches; and (4) an increase in the individual mass-at-size (length-mass relationship) from subtropical to temperate beaches. Analyses discriminated by sex were consistent with the patterns illustrated above. Local effects of temperature and beach morphodynamics are discussed. Our results demonstrate that the population dynamics of E. braziliensis is highly plastic over latitudinal gradients, with large-scale variations in temperature and concurrent environmental variables leading to an adjustment of the phenotype-environment relationship.
Longitudinal Growth Curves of Brain Function Underlying Inhibitory Control through Adolescence
Foran, William; Velanova, Katerina; Luna, Beatriz
2013-01-01
Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indicated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability decreased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capacities and suggest that some executive control regions may buttress immature networks as error processing continues to mature. PMID:24227721
Findlay, S; Sinsabaugh, R L
2006-10-01
We examined bacterial metabolic activity and community similarity in shallow subsurface stream sediments distributed across three regions of the eastern United States to assess whether there were parallel changes in functional and structural attributes at this large scale. Bacterial growth, oxygen consumption, and a suite of extracellular enzyme activities were assayed to describe functional variability. Community similarity was assessed using randomly amplified polymorphic DNA (RAPD) patterns. There were significant differences in streamwater chemistry, metabolic activity, and bacterial growth among regions with, for instance, twofold higher bacterial production in streams near Baltimore, MD, compared to Hubbard Brook, NH. Five of eight extracellular enzymes showed significant differences among regions. Cluster analyses of individual streams by metabolic variables showed clear groups with significant differences in representation of sites from different regions among groups. Clustering of sites based on randomly amplified polymorphic DNA banding resulted in groups with generally less internal similarity although there were still differences in distribution of regional sites. There was a marginally significant (p = 0.09) association between patterns based on functional and structural variables. There were statistically significant but weak (r2 approximately 30%) associations between landcover and measures of both structure and function. These patterns imply a large-scale organization of biofilm communities and this structure may be imposed by factor(s) such as landcover and covariates such as nutrient concentrations, which are known to also cause differences in macrobiota of stream ecosystems.
Seed transfer zones for a native grass Festuca roemeri: genecological evidence
Barbara L. Wilson; Dale C. Darris; Rob Fiegener; Matthew E. Horning; Keli Kuykendall
2008-01-01
A common-garden study of Festuca roemeri (Pavlick) E. B. Alexeev (Poaceae) revealed substantial genetic variation within and among 47 populations from throughout its range in the Pacific Northwest, USA, for growth, fitness, phenological, and morphological traits. Using climatic and physiographic variables, genetic patterns over the landscape were...
A Political-Ecological Analysis of Income Inequality in the Metropolitan Area.
ERIC Educational Resources Information Center
Bollens, Scott A.
1986-01-01
Metropolitan development is not simply a result of ecological factors. Governmental organization affects the incentives of localities and helps determine patterns of growth. This study updates previous studies on factors influencing residential area income inequality. Modification of the variables in the ecological explanation will increase…
Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof
2017-10-01
Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide-ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short- and long-term tree growth responses, focusing on among-tree variability and potential feedback effects. Although among-tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth-climate relationships. We compiled tree-ring data including almost 600 trees of major treeline species ( Larix decidua , Picea abies , Pinus cembra , and Pinus mugo ) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among-tree variability, we employed information-theoretic model selections based on linear mixed-effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long-term trends in ring-width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among-tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall ( L. decidua ) and current year's spring ( L. decidua , P. abies ). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies , P. cembra , and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time, but also reveals first signs of long-suspected negative and positive feedback of climate change on stand dynamics at treeline.
NASA Astrophysics Data System (ADS)
Ghosh, Prosenjit; Rangarajan, Ravi; Thirumalai, Kaustubh; Naggs, Fred
2017-11-01
Indian summer monsoon (ISM) rainfall lasts for a period of 4 months with large variations recorded in terms of rainfall intensity during its period between June and September. Proxy reconstructions of past ISM rainfall variability are required due to the paucity of long instrumental records. However, reconstructing subseasonal rainfall is extremely difficult using conventional hydroclimate proxies due to inadequate sample resolution. Here, we demonstrate the utility of the stable oxygen isotope composition of gastropod shells in reconstructing past rainfall on subseasonal timescales. We present a comparative isotopic study on present day rainwater and stable isotope ratios of precipitate found in the incremental growth bands of giant African land snail Lissachatina fulica (Bowdich) from modern day (2009) and in the historical past (1918). Isotopic signatures present in the growth bands allowed for the identification of ISM rainfall variability in terms of its active and dry spells in the modern as well as past gastropod record. Our results demonstrate the utility of gastropod growth band stable isotope ratios in semiquantitative reconstructions of seasonal rainfall patterns. High resolution climate records extracted from gastropod growth band stable isotopes (museum and archived specimens) can expand the scope for understanding past subseasonal-to-seasonal climate variability.
Epitaxy: Programmable Atom Equivalents Versus Atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mary X.; Seo, Soyoung E.; Gabrys, Paul A.
The programmability of DNA makes it an attractive structure-directing ligand for the assembly of nanoparticle superlattices in a manner that mimics many aspects of atomic crystallization. However, the synthesis of multilayer single crystals of defined size remains a challenge. Though previous studies considered lattice mismatch as the major limiting factor for multilayer assembly, thin film growth depends on many interlinked variables. Here, a more comprehensive approach is taken to study fundamental elements, such as the growth temperature and the thermodynamics of interfacial energetics, to achieve epitaxial growth of nanoparticle thin films. Under optimized equilibrium conditions, single crystal, multilayer thin filmsmore » can be synthesized over 500 × 500 μm2 areas on lithographically patterned templates. Importantly, these superlattices follow the same patterns of crystal growth demonstrated in thin film atomic deposition, allowing for these processes to be understood in the context of well-studied atomic epitaxy, and potentially enabling a nanoscale model to study fundamental crystallization processes.« less
Stature of Sub-arctic Birch in Relation to Growth Rate, Lifespan and Tree Form
JÓNSSON, THORBERGUR HJALTI
2004-01-01
• Background and Aims Sub-arctic mountain birch Betula pubescens var. pumila communities in the North Atlantic region are of variable stature, ranging from prostrate scrubs to forests with trees up to 12 m high. Four hypotheses were tested, relating growth and population characteristics of sub-arctic birch woodland and scrub to tree stature; i.e. the variable stature of birch woods is due to differences in (1) the mean growth rate; (2) the age-related patterns of growth rate; (3) the life expectancy of stems; or (4) the tree form. • Methods A stratified random sample of 300 birch trees was drawn from the total population of indigenous birch woodlands and scrub in Iceland, yielding 286 valid sample genets. The population was divided into three sub-populations with dominant trees 0–2, 2–4 and 4–12 m tall, referred to as birch scrub, birch scrub-woodland and birch forest, respectively. • Key Results Trees in the scrub population were of more contorted growth form than birch in the scrub-woodland and forest populations. Mean growth rates, mean age and median life expectancies increased significantly with sub-population of greater tree stature. At the population level, annual increment and longevity of birch stems was apparently interrelated as the stems in vigorously growing birch sub-populations had a longer life expectancy than those of slower growth. However, no difference was observed between sub-populations in age-related patterns of extension growth rate. • Conclusions The results were consistent with hypotheses (1), (3) and (4), but hypothesis (2) was rejected. Hence, mountain birch of more vigorous growth attains a greater stature than birch of lesser increment due to faster extension growth rate and a longer lifespan. In addition, the more contorted stem form of scrub populations contributes to their low stature. PMID:15374837
Fishing, fast growth and climate variability increase the risk of collapse
Pinsky, Malin L.; Byler, David
2015-01-01
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. PMID:26246548
Fishing, fast growth and climate variability increase the risk of collapse.
Pinsky, Malin L; Byler, David
2015-08-22
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Corbineau, A.; Rouyer, T.; Fromentin, J.-M.; Cazelles, B.; Fonteneau, A.; Ménard, F.
2010-07-01
Catch data of large pelagic fish such as tuna, swordfish and billfish are highly variable ranging from short to long term. Based on fisheries data, these time series are noisy and reflect mixed information on exploitation (targeting, strategy, fishing power), population dynamics (recruitment, growth, mortality, migration, etc.), and environmental forcing (local conditions or dominant climate patterns). In this work, we investigated patterns of variation of large pelagic fish (i.e. yellowfin tuna, bigeye tuna, swordfish and blue marlin) in Japanese longliners catch data from 1960 to 2004. We performed wavelet analyses on the yearly time series of each fish species in each biogeographic province of the tropical Indian and Atlantic Oceans. In addition, we carried out cross-wavelet analyses between these biological time series and a large-scale climatic index, i.e. the Southern Oscillation Index (SOI). Results showed that the biogeographic province was the most important factor structuring the patterns of variability of Japanese catch time series. Relationships between the SOI and the fish catches in the Indian and Atlantic Oceans also pointed out the role of climatic variability for structuring patterns of variation of catch time series. This work finally confirmed that Japanese longline CPUE data poorly reflect the underlying population dynamics of tunas.
Mackenzie, I C; Gao, Z
2001-04-01
Keratinocyte growth factor (KGF) is a stromally derived growth factor of the fibroblast growth factor (FGF) family with paracrine effects targeted to influence the growth and differentiation of epithelia. Regional and temporal changes in KGF expression play important roles in the development and maintenance of epithelial structures and in epithelial wound healing. Differing patterns of expression of KGF by fibroblasts in the gingival region could therefore be related to the observed regional variation in the differentiation and behavior of gingival epithelia. The in vitro and in vivo patterns of expression of KGF mRNA in human gingival and periodontal fibroblasts were examined using reverse transcription polymerase chain reactions (RT-PCR) and in situ hybridization with digoxigenin-labeled riboprobes. The patterns observed for human gingiva were compared with those for human skin and for murine tissues. Gingival and periodontal fibroblasts showed expression of KGF transcripts in vitro, and the degree of expression was markedly influenced by the presence of retinoic acid, an agent known to influence patterns of epithelial differentiation. Sections of human and murine gingiva and skin showed regionally variable expression of transcripts with the cells expressing KGF in the subepithelial, rather than the deeper, connective tissues and periodontium. The results point to a role of KGF in the maintenance of normal growth and differentiation of gingival epithelia. A lack of KGF expression by periodontal fibroblasts in vivo is expected to hinder apical epithelial migration and thus stabilize the epithelial attachment. The effects of retinoic acid (RA) on KGF expression in vitro provide an indirect mechanism by which RA may regulate the growth and differentiation of gingival epithelia.
Sorted bed forms as self-organized patterns: 2. complex forcing scenarios
Coco, Giovanni; Murray, A. Brad; Green, Malcom O.; Thieler, E. Robert; Hume, T.M.
2007-01-01
We employ a numerical model to study the development of sorted bed forms under a variety of hydrodynamic and sedimentary conditions. Results indicate that increased variability in wave height decreases the growth rate of the features and can potentially give rise to complicated, a priori unpredictable, behavior. This happens because the system responds to a change in wave characteristics by attempting to self-organize into a patterned seabed of different geometry and spacing. The new wavelength might not have enough time to emerge before a new change in wave characteristics occurs, leading to less regular seabed configurations. The new seabed configuration is also highly dependent on the preexisting morphology, which further limits the possibility of predicting future behavior. For the same reasons, variability in the mean current magnitude and direction slows down the growth of features and causes patterns to develop that differ from classical sorted bed forms. Spatial variability in grain size distribution and different types of net sediment aggradation/degradation can also result in the development of sorted bed forms characterized by a less regular shape. Numerical simulations qualitatively agree with observed geometry (spacing and height) of sorted bed forms. Also in agreement with observations is that at shallower depths, sorted bed forms are more likely to be affected by changes in the forcing conditions, which might also explain why, in shallow waters, sorted bed forms are described as ephemeral features. Finally, simulations indicate that the different sorted bed form shapes and patterns observed in the field might not necessarily be related to diverse physical mechanisms. Instead, variations in sorted bed form characteristics may result from variations in local hydrodynamic and/or sedimentary conditions.
Growth perturbations in a phenotype with rapid fetal growth preceding preterm labor and term birth.
Lampl, Michelle; Kusanovic, Juan Pedro; Erez, Offer; Gotsch, Francesca; Espinoza, Jimmy; Goncalves, Luis; Lee, Wesley; Gomez, Ricardo; Nien, Jyh Kae; Frongillo, Edward A; Romero, Roberto
2009-01-01
The variability in fetal growth rates and gestation duration in humans is not well understood. Of interest are women presenting with an episode of preterm labor and subsequently delivering a term neonate, who is small relative to peers of similar gestational age. To further understand these relationships, fetal growth patterns predating an episode of preterm labor were investigated. Retrospective analysis of fetal biometry assessed by serial ultrasound in a prospectively studied sample of pregnancies in Santiago, Chile, tested the hypothesis that fetal growth patterns among uncomplicated pregnancies (n = 3,706) and those with an episode of preterm labor followed by term delivery (n = 184) were identical across the time intervals 16-22 weeks, 22-28 weeks, and 28-34 weeks in a multilevel mixed-effects regression. The hypothesis was not supported. Fetal weight growth rate was faster from 16 weeks among pregnancies with an episode of preterm labor (P < 0.05), declined across midgestation (22-28 weeks, P < 0.05), and rebounded between 28 and 34 weeks (P = 0.06). This was associated with perturbations in abdominal circumference growth and proportionately larger biparietal diameter from 22 gestational weeks (P = 0.03), greater femur (P = 0.01), biparietal diameter (P = 0.001) and head circumference (P = 0.02) dimensions relative to abdominal circumference across midgestation (22-28 weeks), followed by proportionately smaller femur diaphyseal length (P = 0.02) and biparietal diameter (P = 0.03) subsequently. A distinctive rapid growth phenotype characterized fetal growth preceding an episode of preterm labor among this sample of term-delivered neonates. Perturbations in abdominal circumference growth and patterns of proportionality suggest an altered growth strategy pre-dating the preterm labor episode.
Yang, Bao; He, Minhui; Melvin, Thomas M.; Zhao, Yan; Briffa, Keith R.
2013-01-01
It is generally hypothesized that tree growth at the upper treeline is normally controlled by temperature while that at the lower treeline is precipitation limited. However, uniform patterns of inter-annual ring-width variations along altitudinal gradients are also observed in some situations. How changing elevation influences tree growth in the cold and arid Qilian Mountains, on the northeastern Tibetan Plateau, is of considerable interest because of the sensitivity of the region’s local climate to different atmospheric circulation patterns. Here, a network of four Qilian juniper (Sabina przewalskii Kom.) ring-width chronologies was developed from trees distributed on a typical mountain slope at elevations ranging from 3000 to 3520 m above sea level (a.s.l.). The statistical characteristics of the four tree-ring chronologies show no significant correlation with increasing elevation. All the sampled tree growth was controlled by a common climatic signal (local precipitation) across the investigated altitudinal gradient (520 m). During the common reliable period, covering the past 450 years, the four chronologies have exhibited coherent growth patterns in both the high- and low-frequency domains. These results contradict the notion of contrasting climate growth controls at higher and lower elevations, and specifically the assumption that inter-annual tree-growth variability is controlled by temperature at the upper treeline. It should be stressed that these results relate to the relatively arid conditions at the sampling sites in the Qilian Mountains. PMID:23874871
Wells, Jonathan C K
2017-03-01
In their seminal book "Worldwide variation in human growth," published in 1976, Eveleth and Tanner highlighted substantial variability within and between populations in the magnitude and schedule of human growth. In the four decades since then, research has clarified why growth variability is so closely associated with human health. First, growth patterns are strongly associated with body composition, both in the short- and long-term. Poor growth in early life constrains the acquisition of lean tissue, while compensatory "catch-up" growth may elevate body fatness. Second, these data are examples of the fundamental link between growth and developmental plasticity. Growth is highly sensitive to ecological stresses and stimuli during early "critical windows," but loses much of this sensitivity as it undergoes canalization during early childhood. Crucially, the primary source of stimuli during early "critical windows" is not the external environment itself, but rather maternal phenotype, which transduces the impact of ecological conditions. Maternal phenotype, representing many dimensions of "capital," thus generates a powerful impact on the developmental trajectory of the offspring. There is increasing evidence that low levels of maternal capital impact the offspring's size at birth, schedule of maturation, and body composition and physiological function in adulthood. While evidence has accrued of substantial heritability in adult height, it is clear that the pathway through which it is attained has major implications for metabolic phenotype. Integrating these perspectives is important for understanding how developmental plasticity may on the one hand contribute to adaptation, while on the other shape susceptibility to non-communicable disease. © 2017 Wiley Periodicals, Inc.
Li, Song; Avera, Bethany N.; Strahm, Brian D.; Badgley, Brian D.
2017-01-01
ABSTRACT Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. PMID:28476769
Sun, Shan; Li, Song; Avera, Bethany N; Strahm, Brian D; Badgley, Brian D
2017-07-15
Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities. IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages. Copyright © 2017 American Society for Microbiology.
Siddon, Elizabeth Calvert; Kristiansen, Trond; Mueter, Franz J; Holsman, Kirstin K; Heintz, Ron A; Farley, Edward V
2013-01-01
Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth 'hot spots', for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth 'hot spots' in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.
Dominant inheritance of cerebral gigantism.
Zonana, J; Sotos, J F; Romshe, C A; Fisher, D A; Elders, M J; Rimoin, D L
1977-08-01
Cerebral gigantism is a syndrome consisting of characteristic dysmorphic features, accelerated growth in early childhood, and variable degrees of mental retardation. Its etiology and pathogenesis have not been defined. Three families are presented with multiple affected members. The vertical transmission of the trait and equal expression in both sexes in these families indicates a genetic etiology with a dominant pattern of inheritance, probably autosomal. As in previously reported cases, extensive endocrine evaluation failed to define the pathogenesis of the accelerated growth present in this disorder.
NASA Astrophysics Data System (ADS)
Fisher, Jeremy Isaac
Important systematic shifts in ecosystem function are often masked by natural variability. The rich legacy of over two decades of continuous satellite observations provides an important database for distinguishing climatological and anthropogenic ecosystem changes. Examples from semi-arid Sudanian West Africa and New England (USA) illustrate the response of vegetation to climate and land-use. In Burkina Faso, West Africa, pastoral and agricultural practices compete for land area, while degradation may follow intensification. The Nouhao Valley is a natural experiment in which pastoral and agricultural land uses were allocated separate, coherent reserves. Trajectories of annual net primary productivity were derived from 18 years of coarse-grain (AVHRR) satellite data. Trends suggested that pastoral lands had responded rigorously to increasing rainfall after the 1980's droughts. A detailed analysis at Landsat resolution (30m) indicated that the increased vegetative cover was concentrated in the river basins of the pastoral region, implying a riparian wood expansion. In comparison, riparian cover was reduced in agricultural regions. We suggest that broad-scale patterns of increasing semi-arid West African greenness may be indicative of climate variability, whereas local losses may be anthropogenic in nature. The contiguous deciduous forests, ocean proximity, topography, and dense urban developments of New England provide an ideal landscape to examine influences of climate variability and the impact of urban development vegetation response. Spatial and temporal patterns of interannual climate variability were examined via green leaf phenology. Phenology, or seasonal growth and senescence, is driven by deficits of light, temperature, and water. In temperate environments, phenology variability is driven by interannual temperature and precipitation shifts. Average and interannual phenology analyses across southern New England were conducted at resolutions of 30m (Landsat) and 500m Moderate Resolution Imaging Spectrometer (MODIS). A robust logistic-growth model of canopy cover was employed to determine phenological characteristics at each forest stand. The duel analyses revealed important findings: (a) local phenological gradients from microclimatic structures are highly influential in broad-scale phenological observations; (b) satellite observed phenology reflects observations of canopy growth from field studies; (c) phenological anomalies in urban areas which were previously attributed to urban heat may be a function of urban-specific land cover (i.e. green lawns); and (d) patterns of interannual variability in phenology at the regional scale have high spatial coherency and appear to be driven by broad-scale climatic change. Satellite-observed phenology may reflect temperatures during spring and provides a proxy of climate variability.
Genetic variation, climate models and the ecological genetics of Larix occidentalis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehfeldt, G.E.
1995-12-31
Provenance tests of 138 populations of Larix occidentalis revealed genetic differentiation for eight variables describing growth, phenology, tolerance to spring frosts, effects of Meria laricis needle cast, and survival. Geographic variables accounted for as much as 34% of the variance among Rocky Mountain populations. Patterns of genetic variation were dominated by the effects of latitude and elevation, with populations from the north and from high elevations having the lowest growth potential, the least tolerance to the needle cast, and the lowest survival. However, the slope of the geographic clines was relatively flat. Populations in the same geographic area, for instance,more » need to be separated by about 500 m in elevation before genetic differentiation can be expected.« less
Ng, Elizabeth L.; Fredericks, Jim P.; Quist, Michael C.
2016-01-01
Non-native piscivores can alter food web dynamics; therefore, evaluating interspecific relationships is vital for conservation and management of ecosystems with introduced fishes. Priest Lake, Idaho, supports a number of introduced species, including lake troutSalvelinus namaycush, brook trout S. fontinalis and opossum shrimp Mysis diluviana. In this study, we used stable isotopes (δ13C and δ15N) to describe the food web structure of Priest Lake and to test hypotheses about apparent patterns in lake trout growth. We found that isotopic niches of species using pelagic-origin carbon did not overlap with those using more littoral-origin carbon. Species using more littoral-origin carbon, such as brook trout and westslope cutthroat trout Oncorhynchus clarki lewisi, exhibited a high degree of isotopic niche overlap and high intrapopulation variability in resource use. Although we hypothesised that lake trout would experience an ontogenetic diet shift, no such patterns were apparent in isotopic signatures. Lake trout growth rates were not associated with patterns in δ15N, indicating that variation in adult body composition may not be related to adult diet. Understanding trophic relationships at both the individual and species levels provides a more complete understanding of food webs altered by non-native species.
Rissech, Carme; López-Costas, Olalla; Turbón, Daniel
2013-01-01
The goal of the present study is to examine cross-sectional information on the growth of the humerus based on the analysis of four measurements, namely, diaphyseal length, transversal diameter of the proximal (metaphyseal) end of the shaft, epicondylar breadth and vertical diameter of the head. This analysis was performed in 181 individuals (90 ♂ and 91 ♀) ranging from birth to 25 years of age and belonging to three documented Western European skeletal collections (Coimbra, Lisbon and St. Bride). After testing the homogeneity of the sample, the existence of sexual differences (Student's t- and Mann-Whitney U-test) and the growth of the variables (polynomial regression) were evaluated. The results showed the presence of sexual differences in epicondylar breadth above 20 years of age and vertical diameter of the head from 15 years of age, thus indicating that these two variables may be of use in determining sex from that age onward. The growth pattern of the variables showed a continuous increase and followed first- and second-degree polynomials. However, growth of the transversal diameter of the proximal end of the shaft followed a fourth-degree polynomial. Strong correlation coefficients were identified between humeral size and age for each of the four metric variables. These results indicate that any of the humeral measurements studied herein is likely to serve as a useful means of estimating sub-adult age in forensic samples.
Dynamic patterns of cortical expansion during folding of the preterm human brain.
Garcia, Kara E; Robinson, Emma C; Alexopoulos, Dimitrios; Dierker, Donna L; Glasser, Matthew F; Coalson, Timothy S; Ortinau, Cynthia M; Rueckert, Daniel; Taber, Larry A; Van Essen, David C; Rogers, Cynthia E; Smyser, Christopher D; Bayly, Philip V
2018-03-20
During the third trimester of human brain development, the cerebral cortex undergoes dramatic surface expansion and folding. Physical models suggest that relatively rapid growth of the cortical gray matter helps drive this folding, and structural data suggest that growth may vary in both space (by region on the cortical surface) and time. In this study, we propose a unique method to estimate local growth from sequential cortical reconstructions. Using anatomically constrained multimodal surface matching (aMSM), we obtain accurate, physically guided point correspondence between younger and older cortical reconstructions of the same individual. From each pair of surfaces, we calculate continuous, smooth maps of cortical expansion with unprecedented precision. By considering 30 preterm infants scanned two to four times during the period of rapid cortical expansion (28-38 wk postmenstrual age), we observe significant regional differences in growth across the cortical surface that are consistent with the emergence of new folds. Furthermore, these growth patterns shift over the course of development, with noninjured subjects following a highly consistent trajectory. This information provides a detailed picture of dynamic changes in cortical growth, connecting what is known about patterns of development at the microscopic (cellular) and macroscopic (folding) scales. Since our method provides specific growth maps for individual brains, we are also able to detect alterations due to injury. This fully automated surface analysis, based on tools freely available to the brain-mapping community, may also serve as a useful approach for future studies of abnormal growth due to genetic disorders, injury, or other environmental variables.
Seasonal and spatial patterns of growth of rainbow trout in the Colorado River in Grand Canyon, AZ
Yard, Micheal D.; Korman, Josh; Walters, Carl J.; Kennedy, T.A.
2016-01-01
Rainbow trout (Oncorhynchus mykiss) have been purposely introduced in many regulated rivers, with inadvertent consequences on native fishes. We describe how trout growth rates and condition could be influencing trout population dynamics in a 130 km section of the Colorado River below Glen Canyon Dam based on a large-scale mark–recapture program where ∼8000 rainbow trout were recaptured over a 3-year period (2012–2014). There were strong temporal and spatial variations in growth in both length and weight as predicted from von Bertalanffy and bioenergetic models, respectively. There was more evidence for seasonal variation in the growth coefficient and annual variation in the asymptotic length. Bioenergetic models showed more variability for growth in weight across seasons and years than across reaches. These patterns were consistent with strong seasonal variation in invertebrate drift and effects of turbidity on foraging efficiency. Highest growth rates and relative condition occurred in downstream reaches with lower trout densities. Results indicate that reduction in rainbow trout abundance in Glen Canyon will likely increase trout size in the tailwater fishery and may reduce downstream dispersal into Grand Canyon.
Metastasising pilar tumour of scalp.
Batman, P A; Evans, H J
1986-01-01
A case of pilar tumour of the scalp, treated by local excision and radiotherapy, later metastasised to the neck. The variable histological growth patterns of the primary tumour and its metastases are described. It is concluded that the pilar tumour is a genuine neoplasm of the hair follicle that is occasionally capable of malignant behaviour. Images PMID:3734112
ERIC Educational Resources Information Center
van der Ven, Sanne H. G.; Boom, Jan; Kroesbergen, Evelyn H.; Leseman, Paul P. M.
2012-01-01
Variability in strategy selection is an important characteristic of learning new skills such as mathematical skills. Strategies gradually come and go during this development. In 1996, Siegler described this phenomenon as ''overlapping waves.'' In the current microgenetic study, we attempted to model these overlapping waves statistically. In…
Patterns of Student Growth in Reasoning about Multivariate Correlational Problems.
ERIC Educational Resources Information Center
Ross, John A.; Cousins, J. Bradley
Previous studies of the development of correlational reasoning have focused on the interpretation of relatively simple data sets contained in 2 X 2 tables. In contrast, this study examined age trends in subjects' responses to problems involving more than two continuous variables. The research is part of a multi-year project to conceptualize…
Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia
NASA Astrophysics Data System (ADS)
Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil
2017-09-01
Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.
Botha-Brink, Jennifer
2014-01-01
Therocephalians were a speciose clade of nonmammalian therapsids whose ecological diversity and survivorship of the end-Permian mass extinction offer the potential to investigate the evolution of growth patterns across the clade and their underlying influences on post-extinction body size reductions, or ‘Lilliput effects’. We present a phylogenetic survey of limb bone histology and growth patterns in therocephalians from the Middle Permian through Middle Triassic of the Karoo Basin, South Africa. Histologic sections were prepared from 80 limb bones representing 11 genera of therocephalians. Histologic indicators of skeletal growth, including cortical vascularity (%CV) and mean primary osteon diameters (POD), were evaluated in a phylogenetic framework and assessed for correlations with other biologically significant variables (e.g., size and robusticity). Changes in %CV and POD correlated strongly with evolutionary changes in body size (i.e., smaller-bodied descendants tended to have lower %CV than their larger-bodied ancestors across the tree). Bone wall thickness tended to be high in early therocephalians and lower in the gracile-limbed baurioids, but showed no general correlation with cross-sectional area or degree of vascularity (and, thus, growth). Clade-level patterns, however, deviated from previously studied within-lineage patterns. For example, Moschorhinus, one of few therapsid genera to have survived the extinction boundary, demonstrated higher %CV in the Triassic than in the Permian despite its smaller size in the extinction aftermath. Results support a synergistic model of size reductions for Triassic therocephalians, influenced both by within-lineage heterochronic shifts in survivor taxa (as reported in Moschorhinus and the dicynodont Lystrosaurus) and phylogenetically inferred survival of small-bodied taxa that had evolved short growth durations (e.g., baurioids). These findings mirror the multi-causal Lilliput patterns described in marine faunas, but contrast with skeletochronologic studies that suggest slow, prolonged shell secretion over several years in marine benthos. Applications of phylogenetic comparative methods to new histologic data will continue to improve our understanding of the evolutionary dynamics of growth and body size shifts during mass extinctions and recoveries. PMID:24765566
NASA Technical Reports Server (NTRS)
Ishikawa, H.; Evans, M. L.
1997-01-01
In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.
Spatial patterns of cyanobacterial mat growth on sand ripples
NASA Astrophysics Data System (ADS)
Mariotti, G.; Klepac-Ceraj, V.; Perron, J. T.; Bosak, T.
2016-02-01
Photosynthetic microbial mats produce organic matter, cycle nutrients, bind pollutants and stabilize sediment in sandy marine environments. Here, we investigate the influence of bedforms and wave motion on the growth rate, composition and spatial variability of microbial mats by growing cyanobacterial mats on a rippled bed of carbonate sand in a wave tank. The tank was forced with an oscillatory flow with velocities below the threshold for sediment motion yet able to induce a porewater flow within the sediment. Different spatial patterns developed in mats depending on the initial biochemistry of the water medium. When growing in a medium rich in nitrogen, phosphorous and micronutrients, mats grew faster on ripple troughs than on ripple crests. After two months, mats covered the bed surface uniformly, and the microbial communities on the crests and in the troughs had similar compositions. Differences in bed shear stress and nutrient availability between crests and troughs were not able to explain the faster growth in the troughs. We hypothesize that this growth pattern is due to a "strainer" effect, i.e. the suspended bacteria from the inoculum were preferentially delivered to troughs by the wave-induced porewater flow. In the experiments initiated in a medium previously used up by a microbial mat and thus depleted in nutrients, mats grew preferentially on the ripple crests. This spatial pattern persisted for nearly two years, and the microbial composition on troughs and crests was different. We attribute this pattern to the upwelling of porewater in the crests, which increased the delivery of nutrients from sediment to the cyanobacteria on the bed surface. Thus, the macroscopic patterns formed by photosynthetic microbial mats on sand ripples may be used to infer whether mats are nutrient-limited and whether they are recently colonized or older than a month.
Joganic, Jessica L
2016-01-01
Non-human primate growth trajectories are often used to estimate the age and life history traits of fossil taxa. The exclusive use of chimpanzee growth patterns to estimate developmental stages for the earliest hominins is problematic because incomplete lineage sorting in the hominoid clade has produced a mosaic human genome that contains different regions shared with any one of the great apes. The accidental death of a sub-adult male western lowland gorilla (Gorilla gorilla gorilla) provides not only an opportunity to compare the degree of dentoskeletal maturation in this individual with published data from conspecifics, but also insight into gorilla growth and development as it applies to modeling that of early hominins. Dental stage was assessed for a sub-adult male western lowland gorilla by comparing dental eruption and calcification to established relative age categories. Ectocranial suture fusion, epiphyseal union, and long bone dimensions were compared to growth standards for wild male gorillas of a similar dental stage to determine developmental timing variability. Results suggest that greater variability exists in developmental rates and patterns and in morphological parameters than is often acknowledged. These results have implications for selecting appropriate models for studying extinct taxa. Ecological and physical characteristics shared between humans and gorillas may make gorilla life history equally valid in a comparative framework and encourage non-exclusive use of chimpanzee life history for paleoanthropological models. © 2015 Wiley Periodicals, Inc.
FORAST Database: Forest Responses to Anthropogenic Stress (FORAST)
McLaughlin, S. B. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Downing, D. J. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Blasing, T. J. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Jackson, B. L. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Pack, D. J. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Duvick, D. N. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Mann, L. K. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Doyle, T. W. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)
1995-01-01
The Forest Responses to Anthropogenic Stress (FORAST) project was designed to determine whether evidence of alterations of long-term growth patterns of several species of eastern forest trees was apparent in tree-ring chronologies from within the region and to identify environmental variables that were temporally or spatially correlated with any observed changes. The project was supported principally by the U.S. Environmental Protection Agency (EPA) with additional support from the National Park Service. The FORAST project was initiated in 1982 as exploratory research to document patterns of radial growth of forest trees during the previous 50 or more years within 15 states in the northeastern United States. Radial growth measurements from more than 7,000 trees are provided along with data on a variety of measured and calculated indices of stand characteristics (basal area, density, and competitive indices); climate (temperature, precipitation, and drought); and anthropogenic pollutants (state and regional emissions of SO2 and NOX, ozone monitoring data, and frequency of atmospheric-stagnation episodes and atmospheric haze). These data were compiled into a single database to facilitate exploratory analysis of tree growth patterns and responses to local and regional environmental conditions. The project objectives, experimental design, and documentation of procedures for assessing data collected in the 3-year research project are reported in McLaughlin et al. (1986).
Lek, E; Fairclough, D V; Hall, N G; Hesp, S A; Potter, I C
2012-11-01
The size and age data and patterns of growth of three abundant, reef-dwelling and protogynous labrid species (Coris auricularis, Notolabrus parilus and Ophthalmolepis lineolata) in waters off Perth at c. 32° S and in the warmer waters of the Jurien Bay Marine Park (JBMP) at c. 30° S on the lower west coast of Australia are compared. Using data for the top 10% of values and a randomization procedure, the maximum total length (L(T) ) and mass of each species and the maximum age of the first two species were estimated to be significantly greater off Perth than in the JBMP (all P < 0.001) and the maximum ages of O. lineolata in the two localities did not differ significantly (P > 0.05). These latitudinal trends, thus, typically conform to those frequently exhibited by fish species and the predictions of the metabolic theory of ecology (MTE). While, in terms of mass, the instantaneous growth rates of each species were similar at both latitudes during early life, they were greater at the higher latitude throughout the remainder and thus much of life, which is broadly consistent with the MTE. When expressed in terms of L(T), however, instantaneous growth rates did not exhibit consistent latitudinal trends across all three species. The above trends with mass, together with those for reproductive variables, demonstrate that a greater amount of energy is directed into somatic growth and gonadal development by each of these species at the higher latitude. The consistency of the direction of the latitudinal trends for maximum body size and age and pattern of growth across all three species implies that each species is responding in a similar manner to differences between the environmental characteristics, such as temperature, at those two latitudes. The individual maximum L(T), mass and age and pattern of growth of O. lineolata at a higher and thus cooler latitude on the eastern Australian coast are consistent with the latitudinal trends exhibited by those characteristics for this species in the two western Australian localities. The implications of using mass rather than length as the indicator variable when comparing the maximum sizes of the three species and the trends exhibited by the instantaneous growth rates of those species at different latitudes are explored. Although growth curves fitted to both the L(T) and masses at age for the males of each species lay above those for their females, this would not have influenced the conclusions drawn from common curves for both sexes. © 2012 Murdoch University. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Eye Size at Birth in Prosimian Primates: Life History Correlates and Growth Patterns
Cummings, Joshua R.; Muchlinski, Magdalena N.; Kirk, E. Christopher; Rehorek, Susan J.; DeLeon, Valerie B.; Smith, Timothy D.
2012-01-01
Background Primates have large eyes relative to head size, which profoundly influence the ontogenetic emergence of facial form. However, growth of the primate eye is only understood in a narrow taxonomic perspective, with information biased toward anthropoids. Methodology/Principal Findings We measured eye and bony orbit size in perinatal prosimian primates (17 strepsirrhine taxa and Tarsius syrichta) to infer the extent of prenatal as compared to postnatal eye growth. In addition, multiple linear regression was used to detect relationships of relative eye and orbit diameter to life history variables. ANOVA was used to determine if eye size differed according to activity pattern. In most of the species, eye diameter at birth measures more than half of that for adults. Two exceptions include Nycticebus and Tarsius, in which more than half of eye diameter growth occurs postnatally. Ratios of neonate/adult eye and orbit diameters indicate prenatal growth of the eye is actually more rapid than that of the orbit. For example, mean neonatal transverse eye diameter is 57.5% of the adult value (excluding Nycticebus and Tarsius), compared to 50.8% for orbital diameter. If Nycticebus is excluded, relative gestation age has a significant positive correlation with relative eye diameter in strepsirrhines, explaining 59% of the variance in relative transverse eye diameter. No significant differences were found among species with different activity patterns. Conclusions/Significance The primate developmental strategy of relatively long gestations is probably tied to an extended period of neural development, and this principle appears to apply to eye growth as well. Our findings indicate that growth rates of the eye and bony orbit are disassociated, with eyes growing faster prenatally, and the growth rate of the bony orbit exceeding that of the eyes after birth. Some well-documented patterns of orbital morphology in adult primates, such as the enlarged orbits of nocturnal species, mainly emerge during postnatal development. PMID:22567127
Relationships between climate and growth of Gymnocypris selincuoensis in the Tibetan Plateau.
Tao, Juan; Chen, Yifeng; He, Dekui; Ding, Chengzhi
2015-04-01
The consequences of climate change are becoming increasingly evident in the Tibetan Plateau, represented by glaciers retreating and lakes expanding, but the biological response to climate change by plateau-lake ecosystems is poorly known. In this study, we applied dendrochronology methods to develop a growth index chronology with otolith increment widths of Selincuo naked carp (Gymnocypris selincuoensis), which is an endemic species in Lake Selincuo (4530 m), and investigated the relationships between fish growth and climate variables (regional and global) in the last three decades. A correlation analysis and principle component regression analysis between regional climate factors and the growth index chronology indicated that the growth of G. selincuoensis was significantly and positively correlated with length of the growing season and temperature-related variables, particularly during the growing season. Most of global climate variables, which are relevant to the Asian monsoon and the midlatitude westerlies, such as El Nino Southern Oscillation Index, the Arctic Oscillation, North Atlantic Oscillation, and North America Pattern, showed negative but not significant correlations with the annual growth of Selincuo naked carp. This may have resulted from the high elevation of the Tibetan Plateau and the high mountains surrounding this area. In comparison, the Pacific Decade Oscillation (PDO) negatively affected the growth of G. selincuoensis. The reason maybe that enhancement of the PDO can lead to cold conditions in this area. Taken together, the results indicate that the Tibetan Plateau fish has been affected by global climate change, particularly during the growing season, and global climate change likely has important effects on productivity of aquatic ecosystems in this area.
Cousminer, Diana L; Berry, Diane J; Timpson, Nicholas J; Ang, Wei; Thiering, Elisabeth; Byrne, Enda M; Taal, H Rob; Huikari, Ville; Bradfield, Jonathan P; Kerkhof, Marjan; Groen-Blokhuis, Maria M; Kreiner-Møller, Eskil; Marinelli, Marcella; Holst, Claus; Leinonen, Jaakko T; Perry, John R B; Surakka, Ida; Pietiläinen, Olli; Kettunen, Johannes; Anttila, Verneri; Kaakinen, Marika; Sovio, Ulla; Pouta, Anneli; Das, Shikta; Lagou, Vasiliki; Power, Chris; Prokopenko, Inga; Evans, David M; Kemp, John P; St Pourcain, Beate; Ring, Susan; Palotie, Aarno; Kajantie, Eero; Osmond, Clive; Lehtimäki, Terho; Viikari, Jorma S; Kähönen, Mika; Warrington, Nicole M; Lye, Stephen J; Palmer, Lyle J; Tiesler, Carla M T; Flexeder, Claudia; Montgomery, Grant W; Medland, Sarah E; Hofman, Albert; Hakonarson, Hakon; Guxens, Mònica; Bartels, Meike; Salomaa, Veikko; Murabito, Joanne M; Kaprio, Jaakko; Sørensen, Thorkild I A; Ballester, Ferran; Bisgaard, Hans; Boomsma, Dorret I; Koppelman, Gerard H; Grant, Struan F A; Jaddoe, Vincent W V; Martin, Nicholas G; Heinrich, Joachim; Pennell, Craig E; Raitakari, Olli T; Eriksson, Johan G; Smith, George Davey; Hyppönen, Elina; Järvelin, Marjo-Riitta; McCarthy, Mark I; Ripatti, Samuli; Widén, Elisabeth
2013-07-01
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10(-8)) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.
Cousminer, Diana L.; Berry, Diane J.; Timpson, Nicholas J.; Ang, Wei; Thiering, Elisabeth; Byrne, Enda M.; Taal, H. Rob; Huikari, Ville; Bradfield, Jonathan P.; Kerkhof, Marjan; Groen-Blokhuis, Maria M.; Kreiner-Møller, Eskil; Marinelli, Marcella; Holst, Claus; Leinonen, Jaakko T.; Perry, John R.B.; Surakka, Ida; Pietiläinen, Olli; Kettunen, Johannes; Anttila, Verneri; Kaakinen, Marika; Sovio, Ulla; Pouta, Anneli; Das, Shikta; Lagou, Vasiliki; Power, Chris; Prokopenko, Inga; Evans, David M.; Kemp, John P.; St Pourcain, Beate; Ring, Susan; Palotie, Aarno; Kajantie, Eero; Osmond, Clive; Lehtimäki, Terho; Viikari, Jorma S.; Kähönen, Mika; Warrington, Nicole M.; Lye, Stephen J.; Palmer, Lyle J.; Tiesler, Carla M.T.; Flexeder, Claudia; Montgomery, Grant W.; Medland, Sarah E.; Hofman, Albert; Hakonarson, Hakon; Guxens, Mònica; Bartels, Meike; Salomaa, Veikko; Murabito, Joanne M.; Kaprio, Jaakko; Sørensen, Thorkild I.A.; Ballester, Ferran; Bisgaard, Hans; Boomsma, Dorret I.; Koppelman, Gerard H.; Grant, Struan F.A.; Jaddoe, Vincent W.V.; Martin, Nicholas G.; Heinrich, Joachim; Pennell, Craig E.; Raitakari, Olli T.; Eriksson, Johan G.; Smith, George Davey; Hyppönen, Elina; Järvelin, Marjo-Riitta; McCarthy, Mark I.; Ripatti, Samuli; Widén, Elisabeth
2013-01-01
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10−8) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits. PMID:23449627
Rico Gazal; Michael A. White; Robert Gillies; Eli Rodemakers; Elena Sparrow; Leslie Gordon
2008-01-01
The urban heat island effect, classically associated with high impervious surface area (ISA), low vegetation fractional cover (Fr), and high land surface temperature (LST), has been linked to changing patterns of vegetation phenology, especially spring growth. In this study, a collaboration with the Global Learning and Observations to Benefit the Environment (GLOBE)...
Hernandez, Rebecca R; Allen, Michael F
2013-10-01
Arbuscular mycorrhizal (AM) fungi are the most abundant plant symbiont and a major pathway of carbon sequestration in soils. However, their basic biology, including their activity throughout a 24-h day : night cycle, remains unknown. We employed the in situ Soil Ecosystem Observatory to quantify the rates of diurnal growth, dieback and net productivity of extra-radical AM fungi. AM fungal hyphae showed significantly different rates of growth and dieback over a period of 24 h and paralleled the circadian-driven photosynthetic oscillations observed in plants. The greatest rates (and incidences) of growth and dieback occurred between noon and 18:00 h. Growth and dieback events often occurred simultaneously and were tightly coupled with soil temperature and moisture, suggesting a rapid acclimation of the external phase of AM fungi to the immediate environment. Changes in the environmental conditions and variability of the mycorrhizosphere may alter the diurnal patterns of productivity of AM fungi, thereby modifying soil carbon sequestration, nutrient cycling and host plant success. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Hernandez, Rebecca R; Allen, Michael F
2013-01-01
Arbuscular mycorrhizal (AM) fungi are the most abundant plant symbiont and a major pathway of carbon sequestration in soils. However, their basic biology, including their activity throughout a 24-h day : night cycle, remains unknown. We employed the in situ Soil Ecosystem Observatory to quantify the rates of diurnal growth, dieback and net productivity of extra-radical AM fungi. AM fungal hyphae showed significantly different rates of growth and dieback over a period of 24 h and paralleled the circadian-driven photosynthetic oscillations observed in plants. The greatest rates (and incidences) of growth and dieback occurred between noon and 18:00 h. Growth and dieback events often occurred simultaneously and were tightly coupled with soil temperature and moisture, suggesting a rapid acclimation of the external phase of AM fungi to the immediate environment. Changes in the environmental conditions and variability of the mycorrhizosphere may alter the diurnal patterns of productivity of AM fungi, thereby modifying soil carbon sequestration, nutrient cycling and host plant success. PMID:23844990
Barros, Breno; Sakai, Yoichi; Pereira, Pedro H. C.; Gasset, Eric; Buchet, Vincent; Maamaatuaiahutapu, Moana; Ready, Jonathan S.; Oliveira, Yrlan; Giarrizzo, Tommaso; Vallinoto, Marcelo
2015-01-01
Mimesis is a relatively widespread phenomenon among reef fish, but the ontogenetic processes relevant for mimetic associations in fish are still poorly understood. In the present study, the allometric growth of two allopatric leaf-mimetic species of ephippid fishes, Chaetodipterus faber from the Atlantic and Platax orbicularis from the Indo-Pacific, was analyzed using ten morphological variables. The development of fins was considered owing to the importance of these structures for mimetic behaviors during early life stages. Despite the anatomical and behavioral similarities in both juvenile and adult stages, C. faber and P. orbicularis showed distinct patterns of growth. The overall shape of C. faber transforms from a rounded-shape in mimetic juveniles to a lengthened profile in adults, while in P. orbicularis, juveniles present an oblong profile including dorsal and anal fins, with relative fin size diminishing while the overall profile grows rounder in adults. Although the two species are closely-related, the present results suggest that growth patterns in C. faber and P. orbicularis are different, and are probably independent events in ephippids that have resulted from similar selective processes. PMID:26630347
Barros, Breno; Sakai, Yoichi; Pereira, Pedro H C; Gasset, Eric; Buchet, Vincent; Maamaatuaiahutapu, Moana; Ready, Jonathan S; Oliveira, Yrlan; Giarrizzo, Tommaso; Vallinoto, Marcelo
2015-01-01
Mimesis is a relatively widespread phenomenon among reef fish, but the ontogenetic processes relevant for mimetic associations in fish are still poorly understood. In the present study, the allometric growth of two allopatric leaf-mimetic species of ephippid fishes, Chaetodipterus faber from the Atlantic and Platax orbicularis from the Indo-Pacific, was analyzed using ten morphological variables. The development of fins was considered owing to the importance of these structures for mimetic behaviors during early life stages. Despite the anatomical and behavioral similarities in both juvenile and adult stages, C. faber and P. orbicularis showed distinct patterns of growth. The overall shape of C. faber transforms from a rounded-shape in mimetic juveniles to a lengthened profile in adults, while in P. orbicularis, juveniles present an oblong profile including dorsal and anal fins, with relative fin size diminishing while the overall profile grows rounder in adults. Although the two species are closely-related, the present results suggest that growth patterns in C. faber and P. orbicularis are different, and are probably independent events in ephippids that have resulted from similar selective processes.
Metropolitan population growth in Arab countries.
Vaidyanathan, K E
1977-01-01
A study or urban population growth in Arab countries has 3 objectives: 1) examination at the micro level of recent demographic trends in selected metropolitan areas of the Arab world and their relationship to changes in the total and urban populations in the respective countries; 2) estimation of net migration by sex and broad age groups for each metropolitan area; and 3) analysis of the pattern of variation in the metropolitan growth rates and their components, migration and natural increase. The study covers the cities proper or urban agglomerations, which includes the suburbs, whose population exceeded 100,000 in the most recent census. Altogether, the study covers 49 metropolitan areas from 9 Arab countries--Algeria; Morocco; Tunisia; Libya; Egypt; Sudan; Syria; Iraq; and Kuwait. Analysis revealed that metropolitan growth rates do follow geographic patterns. In countries with an oil-based economy, metropolitan growth rates are high; in countries with unexploited resources they are slightly below the 1st group; and countries which have pressure on land have low metropolitan growth rates. Population size of the metropolitan area appears to be an important factor associated with variations in metropolitan growth rates and net migration rates. Natural increase emerges as the predominant factor in metropolitan growth, but the differentials in the growth rates are more clearly associated with variations in net migration rates. As all the possibilities of analysis of relationships of metropolitan growth have not been exhausted, it is proposed to examine additional variables as possible factors associated with the speed of metropolitan growth.
Muñoz, David J.; Miller Hesed, Kyle; Grant, Evan H. Campbell; Miller, David A.W.
2016-01-01
Multiple pathways exist for species to respond to changing climates. However, responses of dispersal-limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal-limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5-year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size-specific fecundity, potentially reducing population-level persistence. To better understand within-population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph-specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species' responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.
Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela
2017-01-01
Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles. PMID:29270186
Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela
2017-01-01
Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.
Annual growth patterns of baldcypress (Taxodium distichum) along salinity gradients
Thomas, Brenda L.; Doyle, Thomas W.; Krauss, Ken W.
2015-01-01
The effects of salinity on Taxodium distichum seedlings have been well documented, but few studies have examined mature trees in situ. We investigated the environmental drivers of T. distichum growth along a salinity gradient on the Waccamaw (South Carolina) and Savannah (Georgia) Rivers. On each river, T. distichum increment cores were collected from a healthy upstream site (Upper), a moderately degraded mid-reach site (Middle), and a highly degraded downstream site (Lower). Chronologies were successfully developed for Waccamaw Upper and Middle, and Savannah Middle. Correlations between standardized chronologies and environmental variables showed significant relationships between T. distichum growth and early growing season precipitation, temperature, and Palmer Drought Severity Index (PDSI). Savannah Middle chronology correlated most strongly with August river salinity levels. Both lower sites experienced suppression/release events likely in response to local anthropogenic impacts rather than regional environmental variables. The factors that affect T. distichum growth, including salinity, are strongly synergistic. As sea-level rise pushes the freshwater/saltwater interface inland, salinity becomes more limiting to T. distichum growth in tidal freshwater swamps; however, salinity impacts are exacerbated by locally imposed environmental modifications.
Optimization of biomass composition explains microbial growth-stoichiometry relationships
Franklin, O.; Hall, E.K.; Kaiser, C.; Battin, T.J.; Richter, A.
2011-01-01
Integrating microbial physiology and biomass stoichiometry opens far-reaching possibilities for linking microbial dynamics to ecosystem processes. For example, the growth-rate hypothesis (GRH) predicts positive correlations among growth rate, RNA content, and biomass phosphorus (P) content. Such relationships have been used to infer patterns of microbial activity, resource availability, and nutrient recycling in ecosystems. However, for microorganisms it is unclear under which resource conditions the GRH applies. We developed a model to test whether the response of microbial biomass stoichiometry to variable resource stoichiometry can be explained by a trade-off among cellular components that maximizes growth. The results show mechanistically why the GRH is valid under P limitation but not under N limitation. We also show why variability of growth rate-biomass stoichiometry relationships is lower under P limitation than under N or C limitation. These theoretical results are supported by experimental data on macromolecular composition (RNA, DNA, and protein) and biomass stoichiometry from two different bacteria. In addition, compared to a model with strictly homeostatic biomass, the optimization mechanism we suggest results in increased microbial N and P mineralization during organic-matter decomposition. Therefore, this mechanism may also have important implications for our understanding of nutrient cycling in ecosystems.
Fishman, Tomer; Schandl, Heinz; Tanikawa, Hiroki
2016-04-05
The recent acceleration of urbanization and industrialization of many parts of the developing world, most notably in Asia, has resulted in a fast-increasing demand for and accumulation of construction materials in society. Despite the importance of physical stocks in society, the empirical assessment of total material stock of buildings and infrastructure and reasons for its growth have been underexplored in the sustainability literature. We propose an innovative approach for explaining material stock dynamics in society and create a country typology for stock accumulation trajectories using the ARIMA (Autoregressive Integrated Moving Average) methodology, a stochastic approach commonly used in business studies and economics to inspect and forecast time series. This enables us to create scenarios for future demand and accumulation of building materials in society, including uncertainty estimates. We find that the so-far overlooked aspect of acceleration trends of material stock accumulation holds the key to explaining material stock growth, and that despite tremendous variability in country characteristics, stock accumulation is limited to only four archetypal growth patterns. The ability of nations to change their pattern will be a determining factor for global sustainability.
Upper air teleconnections to Ob River flows and tree rings
NASA Astrophysics Data System (ADS)
Meko, David; Panyushkina, Irina; Agafonov, Leonid
2015-04-01
The Ob River, one of the world's greatest rivers, with a catchment basin about the size of Western Europe, contributes 12% or more of the annual freshwater inflow to the Arctic Ocean. The input of heat and fresh water is important to the global climate system through effects on sea ice, salinity, and the thermohaline circulation of the ocean. As part of a tree-ring project to obtain multi-century long information on variability of Ob River flows, a network of 18 sites of Pinus, Larix, Populus and Salix has been collected along the Ob in the summers of 2013 and 2014. Analysis of collections processed so far indicates a significant relationship of tree-growth to river discharge. Moderation of the floodplain air temperature regime by flooding appears to be an important driver of the tree-ring response. In unraveling the relationship of tree-growth to river flows, it is important to identify atmospheric circulation features directly linked to observed time series variations of flow and tree growth. In this study we examine statistical links between primary teleconnection modes of Northern Hemisphere upper-air (500 mb) circulation, Ob River flow, and tree-ring chronologies. Annual discharge at the mouth of the Ob River is found to be significantly positively related to the phase of the East Atlantic (EA) pattern, the second prominent mode of low-frequency variability over the North Atlantic. The EA pattern, consisting of a north-south dipole of pressure-anomaly centers spanning the North Atlantic from east to west, is associated with a low-pressure anomaly centered over the Ob River Basin, and with a pattern of positive precipitation anomaly of the same region. The positive correlation of discharge and EA is consistent with these know patterns, and is contrasted with generally negative (though smaller) correlations between EA and tree-ring chronologies. The signs of correlations are consistent with a conceptual model of river influence on tree growth through air temperature. Future work aims at combining the tree-ring samples from living trees and remnant wood to reconstruction to quantitiative reconstruction of annual flow over the past millennium.
Bond-Lamberty, Ben; Rocha, Adrian V; Calvin, Katherine; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L
2014-01-01
Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term studies in a longer term context, and particularly important for the carbon-dense, fire-prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4 ± 0.6% yr-(1), with most mortality occurring in medium-sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old-growth stands in a disturbance-prone landscape, and the sustainable management of regional forests in a changing climate.
NASA Astrophysics Data System (ADS)
Song, C.; Sheng, Y.
2015-12-01
High-altitude lakes in the Tibetan Plateau (TP) showed strong spatio-temporal variability during past decades. The lake dynamics can be associated with several key factors including lake type, supply of glacial meltwater, local climate variations. It is important to differentiate these factors when analyzing the driving force of lakes dynamics. With a focus on lakes over the Tanggula Mountains of the central TP, this study investigates the temporal evolution patterns of lake area and water level of different types: glacier-fed closed lake, non-glacier-fed closed lake and upstream lake (draining into closed lakes). We collected all available Landsat archive data and quantified the inter-annual variability of lake extents. Results show accelerated expansions of both glacier-fed and non-glacier-fed lakes during 1970s-2013, and different temporal patterns of the two types of lakes: the non-glacier-fed lakes displayed a batch-wise growth pattern, with obvious growth in 2002, 2005 and 2011 and slight changes in other years, while glacier-fed lakes showed steady expanding tendency. The contrasting patterns are confirmed by the distinction of lake level change between the two groups derived from satellite altimetry during 2003-2009. The upstream lakes remained largely stable due to natural drainage regulation. The intermittent expansions for non-glacier-fed lakes were found to be related to excessive precipitation events and positive "precipitation-evaporation". In contrast, glacier-fed lake changes showed weak correlations with precipitation variations, which imply a joint contribution from glacial meltwater to water budgets. A simple estimation reveals that the increased water storage for all of examined lakes contributed from precipitation/evaporation (0.31±0.09 Gt/yr) slightly overweighed the glacial meltwater supply (0.26±0.08 Gt/yr).
From stage to age in variable environments: life expectancy and survivorship.
Tuljapurkar, Shripad; Horvitz, Carol C
2006-06-01
Stage-based demographic data are now available on many species of plants and some animals, and they often display temporal and spatial variability. We provide exact formulas to compute age-specific life expectancy and survivorship from stage-based data for three models of temporal variability: cycles, serially independent random variation, and a Markov chain. These models provide a comprehensive description of patterns of temporal variation. Our formulas describe the effects of cohort (birth) environmental condition on mortality at all ages, and of the effects on survivorship of environmental variability experienced over the course of life. This paper complements existing methods for time-invariant stage-based data, and adds to the information on population growth and dynamics available from stochastic demography.
The study of craniofacial growth patterns using 3D laser scanning and geometric morphometrics
NASA Astrophysics Data System (ADS)
Friess, Martin
2006-02-01
Throughout childhood, braincase and face grow at different rates and therefore exhibit variable proportions and positions relative to each other. Our understanding of the direction and magnitude of these growth patterns is crucial for many ergonomic applications and can be improved by advanced 3D morphometrics. The purpose of this study is to investigate this known growth allometry using 3D imaging techniques. The geometry of the head and face of 840 children, aged 2 to 19, was captured with a laser surface scanner and analyzed statistically. From each scan, 18 landmarks were extracted and registered using General Procrustes Analysis (GPA). GPA eliminates unwanted variation due to position, orientation and scale by applying a least-squares superimposition algorithm to individual landmark configurations. This approach provides the necessary normalization for the study of differences in size, shape, and their interaction (allometry). The results show that throughout adolescence, boys and girls follow a different growth trajectory, leading to marked differences not only in size but also in shape, most notably in relative proportions of the braincase. These differences can be observed during early childhood, but become most noticeable after the age of 13 years, when craniofacial growth in girls slows down significantly, whereas growth in boys continues for at least 3 more years.
Forests synchronize their growth in contrasting Eurasian regions in response to climate warming.
Shestakova, Tatiana A; Gutiérrez, Emilia; Kirdyanov, Alexander V; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A; Linares, Juan Carlos; Resco de Dios, Víctor; Sánchez-Salguero, Raúl; Voltas, Jordi
2016-01-19
Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales.
Forests synchronize their growth in contrasting Eurasian regions in response to climate warming
Shestakova, Tatiana A.; Gutiérrez, Emilia; Kirdyanov, Alexander V.; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A.; Linares, Juan Carlos; Sánchez-Salguero, Raúl; Voltas, Jordi
2016-01-01
Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales. PMID:26729860
Growth Mixture Modeling of Academic Achievement in Children of Varying Birth Weight Risk
Espy, Kimberly Andrews; Fang, Hua; Charak, David; Minich, Nori; Taylor, H. Gerry
2009-01-01
The extremes of birth weight and preterm birth are known to result in a host of adverse outcomes, yet studies to date largely have used cross-sectional designs and variable-centered methods to understand long-term sequelae. Growth mixture modeling (GMM) that utilizes an integrated person- and variable-centered approach was applied to identify latent classes of achievement from a cohort of school-age children born at varying birth weights. GMM analyses revealed two latent achievement classes for calculation, problem-solving, and decoding abilities. The classes differed substantively and persistently in proficiency and in growth trajectories. Birth weight was a robust predictor of class membership for the two mathematics achievement outcomes and a marginal predictor of class membership for decoding. Neither visuospatial-motor skills nor environmental risk at study entry added to class prediction for any of the achievement skills. Among children born preterm, neonatal medical variables predicted class membership uniquely beyond birth weight. More generally, GMM is useful in revealing coherence in the developmental patterns of academic achievement in children of varying weight at birth, and is well suited to investigations of sources of heterogeneity. PMID:19586210
United States geological survey's reserve-growth models and their implementation
Klett, T.R.
2005-01-01
The USGS has developed several mathematical models to forecast reserve growth of fields both in the United States (U.S.) and the world. The models are based on historical reserve growth patterns of fields in the U.S. The patterns of past reserve growth are extrapolated to forecast future reserve growth. Changes of individual field sizes through time are extremely variable, therefore, the reserve growth models take on a statistical approach whereby volumetric changes for populations of fields are used in the models. Field age serves as a measure of the field-development effort that is applied to promote reserve growth. At the time of the USGS World Petroleum Assessment 2000, a reserve growth model for discovered fields of the world was not available. Reserve growth forecasts, therefore, were made based on a model of historical reserve growth of fields of the U.S. To test the feasibility of such an application, reserve growth forecasts were made of 186 giant oil fields of the world (excluding the U.S. and Canada). In addition, forecasts were made for these giant oil fields subdivided into those located in and outside of Organization of Petroleum Exporting Countries (OPEC). The model provided a reserve-growth forecast that closely matched the actual reserve growth that occurred from 1981 through 1996 for the 186 fields as a whole, as well as for both OPEC and non-OPEC subdivisions, despite the differences in reserves definition among the fields of the U.S. and the rest of the world. ?? 2005 International Association for Mathematical Geology.
Infant feeding patterns over the first year of life: influence of family characteristics
Betoko, Aisha; Charles, Marie-Aline; Hankard, Régis; Forhan, Anne; Bonet, Mercedes; Saurel-Cubizolles, Marie-Josephe; Heude, Barbara; De Lauzon-Guillain, Blandine
2013-01-01
Background/Objectives Early eating patterns and behaviors can determine later eating habits and food preferences and they have been related to the development of childhood overweight and obesity. We aimed to identify patterns of feeding in the first year of life and to examine their associations with family characteristics. Subjects/Methods Our analysis included 1004 infants from the EDEN mother-child cohort. Feeding practices were assessed through maternal self-report at birth, 4, 8 and 12 months. Principal component analysis was applied to derive patterns from breastfeeding duration, age at complementary food (CF) introduction and type of food used at 1y. Associations between patterns and family characteristics were analyzed by linear regressions. Results The main source of variability in infant feeding was characterized by a pattern labeled ‘Late CF introduction and use of ready-prepared baby foods’. Older, more educated, primiparous women with high monthly income ranked high on this pattern. The second pattern, labeled ‘Longer breastfeeding, late CF introduction and use of home-made foods’ was the closest to infant feeding guidelines. Mothers ranking high on this pattern were older and more educated. The third pattern, labeled ‘Use of adults’ foods’ suggests a less age-specific diet for the infants. Mothers ranking high on this pattern were often younger and multiparous. Recruitment center was related to all patterns. Conclusion Not only maternal education level and age but also parity and region are important contributors to the variability in patterns. Further studies are needed to describe associations between these patterns and infant growth and later food preferences. PMID:23299715
Infant feeding patterns over the first year of life: influence of family characteristics.
Betoko, A; Charles, M-A; Hankard, R; Forhan, A; Bonet, M; Saurel-Cubizolles, M-J; Heude, B; de Lauzon-Guillain, B
2013-06-01
Early eating patterns and behaviors can determine later eating habits and food preferences and they have been related to the development of childhood overweight and obesity. We aimed to identify patterns of feeding in the first year of life and to examine their associations with family characteristics. Our analysis included 1004 infants from the EDEN mother-child cohort. Feeding practices were assessed through maternal self-report at birth, 4, 8 and 12 months. Principal component analysis was applied to derive patterns from breastfeeding duration, age at complementary food (CF) introduction and type of food used at 1 year. Associations between patterns and family characteristics were analyzed by linear regressions. The main source of variability in infant feeding was characterized by a pattern labeled 'late CF introduction and use of ready-prepared baby foods'. Older, more educated, primiparous women with high monthly income ranked high on this pattern. The second pattern, labeled 'longer breastfeeding, late CF introduction and use of home-made foods' was the closest to infant feeding guidelines. Mothers ranking high on this pattern were older and more educated. The third pattern, labeled 'use of adults' foods' suggests a less age-specific diet for the infants. Mothers ranking high on this pattern were often younger and multiparous. Recruitment center was related to all patterns. Not only maternal education level and age, but also parity and region are important contributors to the variability in patterns. Further studies are needed to describe associations between these patterns and infant growth and later food preferences.
Murray, Kris A; Skerratt, Lee F; Garland, Stephen; Kriticos, Darren; McCallum, Hamish
2013-01-01
The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ~72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian decline.
Modelling spatial patterns of urban growth in Africa
Linard, Catherine; Tatem, Andrew J.; Gilbert, Marius
2013-01-01
The population of Africa is predicted to double over the next 40 years, driving exceptionally high urban expansion rates that will induce significant socio-economic, environmental and health changes. In order to prepare for these changes, it is important to better understand urban growth dynamics in Africa and better predict the spatial pattern of rural-urban conversions. Previous work on urban expansion has been carried out at the city level or at the global level with a relatively coarse 5–10 km resolution. The main objective of the present paper was to develop a modelling approach at an intermediate scale in order to identify factors that influence spatial patterns of urban expansion in Africa. Boosted Regression Tree models were developed to predict the spatial pattern of rural-urban conversions in every large African city. Urban change data between circa 1990 and circa 2000 available for 20 large cities across Africa were used as training data. Results showed that the urban land in a 1 km neighbourhood and the accessibility to the city centre were the most influential variables. Results obtained were generally more accurate than results obtained using a distance-based urban expansion model and showed that the spatial pattern of small, compact and fast growing cities were easier to simulate than cities with lower population densities and a lower growth rate. The simulation method developed here will allow the production of spatially detailed urban expansion forecasts for 2020 and 2025 for Africa, data that are increasingly required by global change modellers. PMID:25152552
Dendroagricultural Signal in Algeria
NASA Astrophysics Data System (ADS)
Touchan, R.; Kherchouche, D.; Anchukaitis, K. J.; Oudjehih, B.; Touchane, H.; Slimani, S.; Meko, D. M.
2015-12-01
Dalila Kherchouche2, Kevin J. Anchukaitis3, Bachir Oudjehih2, Hayat Touchan4, Said Slimani5, and David M. Meko1Drought is one of the main natural factors in declining tree-ring growth and the production of agricultural crops in Algeria. Here we will address the variability of growing conditions for wheat in Algeria with climatic data and a tree-ring reconstruction of January-June precipitation from ten Pinus halepensis tree-ring chronologies. A regression-based reconstruction equation explains up to 74% of the variance of precipitation in the 1970-2011 calibration period and cross validates well. Classification of dry years by the 30% percentile of observed precipitation (131 mm) yields a maximum length of drought of five years (1877-1881) and increasing frequency of dry years in the late 20th and early 21stcenturies. A correlation-based sensitivity analysis shows a similar pattern of dependence of tree-growth and wheat production on monthly and seasonal precipitation, but contrasting patterns of dependence on temperature. The patterns are interpreted by reference to phenology, growth phases, and - for wheat agricultural practices. We apply these interpretations to understand possible impacts of climate variability on the agricultural productivity of past civilizations in the Mediterranean. 2Institute of Veterinary and Agronomy Sciences, The University Hadj-Lakhdar, Batna 05000, Algeria, d.kherchouche@yahoo.fr and oudjehihbachir@yahoo.fr3University of Arizona, ENR2 Building, 1064 E Lowell Street, PO Box 210137, Tucson, AZ 85721-0137, kanchukaitis@email.arizona.edu4Faculty of Agriculture, University of Aleppo, Aleppo-Syria, dr.htouchan@gmail.com5Faculty of Biological Sciences and Agronomy, The University Mouloud Mammeri, Tizi Ouzou 15000, Algeria, slimanisaid@yahoo.fr1Laboratory of Tree Ring Research, The University of Arizona, 1215 E. Lowell St. Bldg. 45B, Tucson, AZ 85721, USA, dmeko@ltrr.arizona.edu
Soil Water and Temperature Explain Canopy Phenology and Onset of Spring in a Semiarid Steppe
Lynn M. Moore; William K. Lauenroth; David M. Bell; Daniel R. Schlaepfer
2015-01-01
It is well known that the timing of growth and development influences critical life stages of all organisms. ÂThe seasonal dynamics of ecosystems are usually well explained by photoperiod and temperature. However, phenological patterns in water-limited ecosystems are rarely studied and insufficiently explained by these two variables. We tested how onset (i.e.,...
Tara L. Keyser; Peter M. Brown
2014-01-01
Forecasted changes in climate across the southeastern US include an increase in temperature along with more variable precipitation patterns, including an increase in the severity and frequency of drought events. As such, the management of forests for increased resistance or resilience to the direct and indirect effects of climate change, including decreased tree- and...
Patterns of nutrient utilization in the needle-feeding guild
Thomas Secher Jensen
1991-01-01
It is well known that large differences in performance parameters such as growth rate, survival rate, or fecundity rate are found between various insect guilds, e.g. root feeders and sapsuckers (Slansky and Rodriguez 1987, Slansky and Scriber 1985). Within guilds and even within a given host plant, the variability of the plant material may also result in considerable...
Julianna M. A. Jenkins; Frank R. Thompson; John Faaborg
2016-01-01
We can improve our ability to assess population viability and forecast population growth under different scenarios by understanding factors that limit population parameters in each stage of the annual cycle. Postfledging mortality rates may be as variable as nest survival across regions and fragmentation gradients, although factors that negatively impact nest survival...
Mohring, Margaret B.; Kendrick, Gary A.; Wernberg, Thomas; Rule, Michael J.; Vanderklift, Mathew A.
2013-01-01
Most kelps (order Laminariales) exhibit distinct temporal patterns in zoospore production, gametogenesis and gametophyte reproduction. Natural fluctuations in ambient environmental conditions influence the intrinsic characteristics of gametes, which define their ability to tolerate varied conditions. The aim of this work was to document seasonal patterns in reproduction and gametophyte growth and survival of Ecklonia radiata (C. Agardh) J. Agardh in south-western Australia. These results were related to patterns in local environmental conditions in an attempt to ascertain which factors explain variation throughout the season. E. radiata was fertile (produced zoospores) for three and a half months over summer and autumn. Every two weeks during this time, gametophytes were grown in a range of temperatures (16–22°C) in the laboratory. Zoospore densities were highly variable among sample periods; however, zoospores released early in the season produced gametophytes which had greater rates of growth and survival, and these rates declined towards the end of the reproductive season. Growth rates of gametophytes were positively related to day length, with the fastest growing recruits released when the days were longest. Gametophytes consistently survived best in the lowest temperature (16°C), yet exhibited optimum growth in higher culture temperatures (20–22°C). These results suggest that E. radiata releases gametes when conditions are favourable for growth, and E. radiata gametophytes are tolerant of the range of temperatures observed at this location. E. radiata releases the healthiest gametophytes when day length and temperature conditions are optimal for better germination, growth, and sporophyte production, perhaps as a mechanism to help compete against other species for space and other resources. PMID:23755217
Tondjo, Kodjo; Brancheriau, Loïc; Sabatier, Sylvie; Kokutse, Adzo Dzifa; Kokou, Kouami; Jaeger, Marc; de Reffye, Philippe; Fourcaud, Thierry
2018-06-08
For a given genotype, the observed variability of tree forms results from the stochasticity of meristem functioning and from changing and heterogeneous environmental factors affecting biomass formation and allocation. In response to climate change, trees adapt their architecture by adjusting growth processes such as pre- and neoformation, as well as polycyclic growth. This is the case for the teak tree. The aim of this work was to adapt the plant model, GreenLab, in order to take into consideration both these processes using existing data on this tree species. This work adopted GreenLab formalism based on source-sink relationships at organ level that drive biomass production and partitioning within the whole plant over time. The stochastic aspect of phytomer production can be modelled by a Bernoulli process. The teak model was designed, parameterized and analysed using the architectural data from 2- to 5-year-old teak trees in open field stands. Growth and development parameters were identified, fitting the observed compound organic series with the theoretical series, using generalized least squares methods. Phytomer distributions of growth units and branching pattern varied depending on their axis category, i.e. their physiological age. These emerging properties were in accordance with the observed growth patterns and biomass allocation dynamics during a growing season marked by a short dry season. Annual growth patterns observed on teak, including shoot pre- and neoformation and polycyclism, were reproduced by the new version of the GreenLab model. However, further updating is discussed in order to ensure better consideration of radial variation in basic specific gravity of wood. Such upgrading of the model will enable teak ideotypes to be defined for improving wood production in terms of both volume and quality.
Way, Danielle A; Yamori, Wataru
2014-02-01
While interest in photosynthetic thermal acclimation has been stimulated by climate warming, comparing results across studies requires consistent terminology. We identify five types of photosynthetic adjustments in warming experiments: photosynthesis as measured at the high growth temperature, the growth temperature, and the thermal optimum; the photosynthetic thermal optimum; and leaf-level photosynthetic capacity. Adjustments of any one of these variables need not mean a concurrent adjustment in others, which may resolve apparently contradictory results in papers using different indicators of photosynthetic acclimation. We argue that photosynthetic thermal acclimation (i.e., that benefits a plant in its new growth environment) should include adjustments of both the photosynthetic thermal optimum (T opt) and photosynthetic rates at the growth temperature (A growth), a combination termed constructive adjustment. However, many species show reduced photosynthesis when grown at elevated temperatures, despite adjustment of some photosynthetic variables, a phenomenon we term detractive adjustment. An analysis of 70 studies on 103 species shows that adjustment of T opt and A growth are more common than adjustment of other photosynthetic variables, but only half of the data demonstrate constructive adjustment. No systematic differences in these patterns were found between different plant functional groups. We also discuss the importance of thermal acclimation of respiration for net photosynthesis measurements, as respiratory temperature acclimation can generate apparent acclimation of photosynthetic processes, even if photosynthesis is unaltered. We show that while dark respiration is often used to estimate light respiration, the ratio of light to dark respiration shifts in a non-predictable manner with a change in leaf temperature.
Correlation between frontal sinus dimensions and cephalometric indices: A cross-sectional study
Tehranchi, Azita; Motamedian, Saeed Reza; Saedi, Sara; Kabiri, Sattar; Shidfar, Shireen
2017-01-01
Objective: Growth prediction plays a significant role in accurate diagnosis and treatment planning of orthodontics patients. It was hypothesized that the unique pattern of pneumatization of the frontal sinus as a component of craniofacial structure would influence the skeletal growth pattern and may be used as a growth predictor. Materials and Methods: A total of 144 subjects (78 females and 66 males) with a mean age of 19.26 ± 4.66 years were included in this retrospective study. Posterior-anterior and lateral cephalograms (LCs) were used to measure the frontal sinus dimensions. The skeletal growth pattern and relations of craniofacial structures were analyzed on LC using variables for sagittal and vertical analyses. Correlation between the frontal sinus dimensions and cephalometric indices was assessed by the Pearson's correlation coefficient. Results: The SN-FH and SNA angles had significant associations with frontal sinus dimensions in all enrolled subjects (P < 0.05). In males, the SN-FH, sum of posterior angles, Pal-SN, and Jarabak index were significantly associated with the size of frontal sinus (P < 0.05). In females, the associations of SN-FH and gonial angles with frontal sinus dimensions were significant (P < 0.05). Conclusion: The results show that larger size of frontal sinus was associated with reduced inclination of the anterior cranial base, increased anterior facial height (in males), and increased gonial angle (in females) in the study population. PMID:28435368
Growth charts for non-growth hormone treated Prader-Willi syndrome.
Butler, Merlin G; Lee, Jaehoon; Manzardo, Ann M; Gold, June-Anne; Miller, Jennifer L; Kimonis, Virginia; Driscoll, Daniel J
2015-01-01
The goal of this study was to generate and report standardized growth curves for weight, height, head circumference, and BMI for non-growth hormone-treated white male and female US subjects with Prader-Willi syndrome (PWS) between 3 and 18 years of age and develop standardized growth charts. Anthropometric measures (N = 133) were obtained according to standard methods from 120 non-growth hormone-treated white subjects (63 males and 57 females) with PWS between 3 and 18 years of age. Standardized growth curves were developed for the third, 10th, 25th, 50th, 75th, 90th, and 97th percentiles by using the LMS method for weight, height, head circumference, and BMI for PWS subjects along with the normative third, 50th, and 97th percentiles from national and international growth data. The LMS smoothing procedure summarized the distribution of the anthropometric variables at each age using three parameters: power of the Box-Cox transformation λ (L), median μ (M) and coefficient of variation δ (S). Weight, height, head circumference, and BMI standardized growth charts representing 7 percentile ranges were developed from 120 non-growth hormone-treated white male and female US subjects with PWS (age range: 3-18 years) and normative third, 50th, and 97th percentiles from national and international data. We encourage the use of syndrome-specific growth standards to examine and evaluate subjects with PWS when monitoring growth patterns and determining nutritional and obesity status. These variables can be influenced by culture, individual medical care, diet intervention, and physical activity plans. Copyright © 2015 by the American Academy of Pediatrics.
Sass, G.G.; Hewett, S.W.; Beard, T.D.; Fayram, A.H.; Kitchell, J.F.
2004-01-01
We assessed density-related changes in growth of walleye Sander vitreus in the ceded territory of northern Wisconsin from 1977 to 1999. We used asymptotic length (Lz), growth rate near t0 (??), and body condition as measures of walleye growth to determine the relationship between growth and density. Among lakes, there was weak evidence of density-dependent growth: adult density explained only 0-6% of the variability in the growth metrics. Within lakes, growth was density dependent. Lz, ??, and body condition of walleyes changing with density for 69, 28, and 62% of the populations examined, respectively. Our results suggest that walleye growth was density dependent within individual lakes. However, growth was not coherently density dependent among lakes, which was possibly due to inherent differences in the productivity, surface area, forage base, landscape position, species composition, and management regime of lakes in the ceded territory. Densities of adult walleyes averaged 8.3 fish/ha and did not change significantly during 1990-1999. Mean Lz and body condition of walleyes were signilicantly higher before 1990 than after 1990, which may indicate an increase in density due to changes in management regimes. The observed growth changes do not appear to be a consequence of the statewide 15-in minimum size limit adopted in 1990 but rather a response to the treaty rights management regime. We conclude that walleye growth has the potential to predict regional-scale adult walleye densities if lake-specific variables are included in a model to account for regional-scale differences among walleye populations and lakes.
The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id; Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id
Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data.more » Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.« less
NASA Astrophysics Data System (ADS)
Verma, Manish K.
Terrestrial gross primary productivity (GPP) is the largest and most variable component of the carbon cycle and is strongly influenced by phenology. Realistic characterization of spatio-temporal variation in GPP and phenology is therefore crucial for understanding dynamics in the global carbon cycle. In the last two decades, remote sensing has become a widely-used tool for this purpose. However, no study has comprehensively examined how well remote sensing models capture spatiotemporal patterns in GPP, and validation of remote sensing-based phenology models is limited. Using in-situ data from 144 eddy covariance towers located in all major biomes, I assessed the ability of 10 remote sensing-based methods to capture spatio-temporal variation in GPP at annual and seasonal scales. The models are based on different hypotheses regarding ecophysiological controls on GPP and span a range of structural and computational complexity. The results lead to four main conclusions: (i) at annual time scale, models were more successful capturing spatial variability than temporal variability; (ii) at seasonal scale, models were more successful in capturing average seasonal variability than interannual variability; (iii) simpler models performed as well or better than complex models; and (iv) models that were best at explaining seasonal variability in GPP were different from those that were best able to explain variability in annual scale GPP. Seasonal phenology of vegetation follows bounded growth and decay, and is widely modeled using growth functions. However, the specific form of the growth function affects how phenological dynamics are represented in ecosystem and remote sensing-base models. To examine this, four different growth functions (the logistic, Gompertz, Mirror-Gompertz and Richards function) were assessed using remotely sensed and in-situ data collected at several deciduous forest sites. All of the growth functions provided good statistical representation of in-situ and remote sensing time series. However, the Richards function captured observed asymmetric dynamics that were not captured by the other functions. The timing of key phenophase transitions derived using the Richards function therefore agreed best with observations. This suggests that ecosystem models and remote-sensing algorithms would benefit from using the Richards function to represent phenological dynamics.
Goshe, Lisa R.; Coggins, Lewis; Shaver, Donna J.; Higgins, Ben; Landry, Andre M.; Bailey, Rhonda
2017-01-01
Effective management of protected sea turtle populations requires knowledge not only of mean values for demographic and life-history parameters, but also temporal and spatial trends, variability, and underlying causes. For endangered Kemp’s ridley sea turtles (Lepidochelys kempii), the need for baseline information of this type has been emphasized during attempts to understand causes underlying the recent truncation in the recovery trajectory for nesting females. To provide insight into variability in age and size at sexual maturation (ASM and SSM) and long-term growth patterns likely to influence population trends, we conducted skeletochronological analysis of humerus bones from 333 Kemp’s ridleys stranded throughout the Gulf of Mexico (GOM) from 1993 to 2010. Ranges of possible ASMs (6.8 to 21.8 yr) and SSMs (53.3 to 68.3 cm straightline carapace length (SCL)) estimated using the “rapprochement” skeletal growth mark associated with maturation were broad, supporting incorporation of a maturation schedule in Kemp’s ridley population models. Mean ASMs estimated from rapprochement and by fitting logistic, generalized additive mixed, and von Bertalanffy growth models to age and growth data ranged from 11 to 13 yr; confidence intervals for the logistic model predicted maturation of 95% of the population between 11.9 and 14.8 yr. Early juvenile somatic growth rates in the GOM were greater than those previously reported for the Atlantic, indicating potential for differences in maturation trajectories between regions. Finally, long-term, significant decreases in somatic growth response were found for both juveniles and adults, which could influence recruitment to the reproductive population and observed nesting population trends. PMID:28333937
Avens, Larisa; Goshe, Lisa R; Coggins, Lewis; Shaver, Donna J; Higgins, Ben; Landry, Andre M; Bailey, Rhonda
2017-01-01
Effective management of protected sea turtle populations requires knowledge not only of mean values for demographic and life-history parameters, but also temporal and spatial trends, variability, and underlying causes. For endangered Kemp's ridley sea turtles (Lepidochelys kempii), the need for baseline information of this type has been emphasized during attempts to understand causes underlying the recent truncation in the recovery trajectory for nesting females. To provide insight into variability in age and size at sexual maturation (ASM and SSM) and long-term growth patterns likely to influence population trends, we conducted skeletochronological analysis of humerus bones from 333 Kemp's ridleys stranded throughout the Gulf of Mexico (GOM) from 1993 to 2010. Ranges of possible ASMs (6.8 to 21.8 yr) and SSMs (53.3 to 68.3 cm straightline carapace length (SCL)) estimated using the "rapprochement" skeletal growth mark associated with maturation were broad, supporting incorporation of a maturation schedule in Kemp's ridley population models. Mean ASMs estimated from rapprochement and by fitting logistic, generalized additive mixed, and von Bertalanffy growth models to age and growth data ranged from 11 to 13 yr; confidence intervals for the logistic model predicted maturation of 95% of the population between 11.9 and 14.8 yr. Early juvenile somatic growth rates in the GOM were greater than those previously reported for the Atlantic, indicating potential for differences in maturation trajectories between regions. Finally, long-term, significant decreases in somatic growth response were found for both juveniles and adults, which could influence recruitment to the reproductive population and observed nesting population trends.
Relationships between climate and growth of Gymnocypris selincuoensis in the Tibetan Plateau
Tao, Juan; Chen, Yifeng; He, Dekui; Ding, Chengzhi
2015-01-01
The consequences of climate change are becoming increasingly evident in the Tibetan Plateau, represented by glaciers retreating and lakes expanding, but the biological response to climate change by plateau–lake ecosystems is poorly known. In this study, we applied dendrochronology methods to develop a growth index chronology with otolith increment widths of Selincuo naked carp (Gymnocypris selincuoensis), which is an endemic species in Lake Selincuo (4530 m), and investigated the relationships between fish growth and climate variables (regional and global) in the last three decades. A correlation analysis and principle component regression analysis between regional climate factors and the growth index chronology indicated that the growth of G. selincuoensis was significantly and positively correlated with length of the growing season and temperature-related variables, particularly during the growing season. Most of global climate variables, which are relevant to the Asian monsoon and the midlatitude westerlies, such as El Nino Southern Oscillation Index, the Arctic Oscillation, North Atlantic Oscillation, and North America Pattern, showed negative but not significant correlations with the annual growth of Selincuo naked carp. This may have resulted from the high elevation of the Tibetan Plateau and the high mountains surrounding this area. In comparison, the Pacific Decade Oscillation (PDO) negatively affected the growth of G. selincuoensis. The reason maybe that enhancement of the PDO can lead to cold conditions in this area. Taken together, the results indicate that the Tibetan Plateau fish has been affected by global climate change, particularly during the growing season, and global climate change likely has important effects on productivity of aquatic ecosystems in this area. PMID:25937912
NASA Astrophysics Data System (ADS)
Ogle, K.
2011-12-01
Many plant and ecosystem processes in arid and semiarid systems may be affected by antecedent environmental conditions (e.g., precipitation patterns, soil water availability, temperature) that integrate over past days, weeks, months, seasons, or years. However, the importance of such antecedent exogenous effects relative to conditions occurring at the time of the observed process is relatively unexplored. Even less is known about the potential importance of antecedent endogenous effects that describe the influence of past ecosystem states on the current ecosystem state; e.g., how is current ecosystem productivity related to past productivity patterns? We hypothesize that incorporation of antecedent exogenous and endogenous factors can improve our predictive understanding of many plant and ecosystem processes, especially in arid and semiarid ecosystems. Furthermore, the common approach to quantifying the effects of antecedent (exogenous) variables relies on arbitrary, deterministic definitions of antecedent variables that (1) may not accurately describe the role of antecedent conditions and (2) ignore uncertainty associated with applying deterministic definitions. In this study, we employ a stochastic framework for (1) computing the antecedent variables that estimates the relative importance of conditions experienced each time unit into the past, also providing insight into potential lag responses, and (2) estimating the effect of antecedent factors on the response variable of interest. We employ this approach to explore the potential roles of antecedent exogenous and endogenous influences in three settings that illustrate the: (1) importance of antecedent precipitation for net primary productivity in the shortgrass steppe in northern Colorado, (2) dependency of tree growth on antecedent precipitation and past growth states for pinyon growing in western Colorado, and (3) influence of antecedent soil water and prior root status on observed root growth in the Mojave Desert FACE experiment. All three examples suggest that antecedent conditions are critical to predicting different indices of productivity such that the incorporation of antecedent effects explained an additional 20-40% of the variation in the productivity responses. Antecedent endogenous factors were important for understanding tree and root growth, suggesting a potential biological inertia effect that is likely linked to labile carbon storage and allocation strategies. The role of antecedent exogenous (water) variables suggests a lag response whose duration and timing differs according to the time scale of the response variable. In summary, antecedent water availability and past endogenous states appear critical to understanding plant and ecosystem productivity in arid and semiarid systems, and this study describes a stochastic framework for quantifying the potential influence of such antecedent conditions.
Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth
Marañón, Emilio; Cermeño, Pedro; Huete-Ortega, María; López-Sandoval, Daffne C.; Mouriño-Carballido, Beatriz; Rodríguez-Ramos, Tamara
2014-01-01
The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO2 between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated. PMID:24921945
NASA Astrophysics Data System (ADS)
Weiss, S. B.; Bunn, A. G.; Tran, T. J.; Bruening, J. M.; Salzer, M. W.; Hughes, M. K.
2016-12-01
The interpretation of ring-width patterns in high elevation Great Basin bristlecone pine is hampered by the presence of sharp ecophysiological gradients that can lead to mixed growth signals depending on topographic setting of individual trees. We have identified a temperature threshold near the upper forest border above which trees are limited more strongly by temperature, and below which trees tend to be moisture limited. We combined temperature loggers and GIS modeling at a scale of tens of meters to examine trees with different limiting factors. We found that the dual-signal patterns in radial growth can be partially explained by the topoclimate setting of individual trees, with trees in locations where growing season mean temperatures below about 7.4°C to 8°C were more strongly associated with temperature variability than with moisture availability. Using this threshold we show that it is possible to build both temperature and drought reconstructions over the common era from bristlecone pine near the alpine treeline. While our findings might allow for a better physiological understanding of bristlecone pine growth, they also raise questions about the interpretation of temperature reconstructions given the threshold nature of the growth response and the dynamic nature of the treeline ecotone over past millennia.
Factors driving mortality and growth at treeline: a 30-year experiment of 92 000 conifers.
Barbeito, Ignacio; Dawes, Melissa A; Rixen, Christian; Senn, Josef; Bebi, Peter
2012-02-01
Understanding the interplay between environmental factors contributing to treeline formation and how these factors influence different life stages remains a major research challenge. We used an afforestation experiment including 92 000 trees to investigate the spatial and temporal dynamics of tree mortality and growth at treeline in the Swiss Alps. Seedlings of three high-elevation conifer species (Larix decidua, Pinus mugo ssp. uncinata, and Pinus cembra) were systematically planted along an altitudinal gradient at and above the current treeline (2075 to 2230 m above sea level [a.s.l.]) in 1975 and closely monitored during the following 30 years. We used decision-tree models and generalized additive models to identify patterns in mortality and growth along gradients in elevation, snow duration, wind speed, and solar radiation, and to quantify interactions between the different variables. For all three species, snowmelt date was always the most important environmental factor influencing mortality, and elevation was always the most important factor for growth over the entire period studied. Individuals of all species survived at the highest point of the afforestation for more than 30 years, although mortality was greater above 2160 m a.s.l., 50-100 m above the current treeline. Optimal conditions for height growth differed from those for survival in all three species: early snowmelt (ca. day of year 125-140 [where day 1 is 1 January]) yielded lowest mortality rates, but relatively later snowmelt (ca. day 145-150) yielded highest growth rates. Although snowmelt and elevation were important throughout all life stages of the trees, the importance of radiation decreased over time and that of wind speed increased. Our findings provide experimental evidence that tree survival and height growth require different environmental conditions and that even small changes in the duration of snow cover, in addition to changes in temperature, can strongly impact tree survival and growth patterns at treeline. Further, our results show that the relative importance of different environmental variables for tree seedlings changes during the juvenile phase as they grow taller.
Genetic differentiation among populations of Pinus ponderosa from the upper Colorado River Basin
Gerald Rehfeldt
1990-01-01
Genetic variation among 62 populations of ponderosa pine was studied by comparing seedlings from all populations according to (1) growth and development of 4-yr-old seedlings in three disparate common gardens and (2) patterns of shoot elongation of 2-yr-old seedlings in a greenhouse. Genetic variation was detected among populations for 19 of the variables, most of...
Turner Tomaszewicz, Calandra N.; Seminoff, Jeffrey A.; Peckham, S. Hoyt; Avens, Larisa; Kurle, Carolyn M.
2016-01-01
Summary Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat use patterns is especially difficult for remote oceanic species.To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ15N) patterns that differentiate distinct ocean regions to create a “regional isotope characterization”, analyzed the δ15N values from annual bone growth layer rings from dead-stranded animals, then combined the bone and regional isotope data to track individual animal movement patterns over multiple years.We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life history parameters.We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42.7±7.2 vs. 68.3±3.4 cm carapace length, 7.5±2.7 vs. 15.6±1.7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements, and threats, and these differences can influence life history parameters such as growth, survival, and future fecundity. This is the first evidence of alternative ontogenetic shifts and habitat use patterns for juveniles foraging in the eastern NPO.We combine two techniques, skeletochronology and stable isotope analysis, to reconstruct multi-year habitat use patterns of a remote migratory species, linked to estimated ages and body sizes of individuals, to reveal variable ontogeny during the juvenile life stage that could drive alternate life histories and that has the potential to illuminate the migration patterns for other species with accretionary tissues. PMID:28075017
Lu, Yong-Ming; Zhang, Hui-Zhi; Wang, Tao; Yang, Xiao-Qun; Sun, Meng-Hong; Wang, Chao-Fu
2015-01-01
Urothelial carcinoma (UC) comprises a heterogeneous group of epithelial neoplasms with diverse biological behaviors and variable clinical outcomes. Distinguishing UC histological subtypes has become increasingly important because prognoses and therapy can dramatically differ among subtypes. In clinical work, overlapping morphological findings between low-grade noninvasive UC (LGNUC), which exhibits an inverted growth pattern, and inverted urothelial papilloma (IUP) can make subclassification difficult. We propose a combination of immunohistochemistry (IHC) and molecular cytogenetics for subtyping these clinical entities. In our study, tissue microarray immunohistochemical profiles of Ki-67, p53, cytokeratin 20 (CK20) and cyclinD1 were assessed. Molecular genetic alterations such as the gain of chromosomes 3, 7 or 17 or the homozygous loss of 9p21 were also assessed for their usefulness in differentiating these conditions. Based on our analysis, Ki-67 and CK20 may be useful for the differential diagnosis of these two tumor types. Fluorescence in situ hybridization (FISH) can also provide important data in cases in which the malignant nature of an inverted urothelial neoplasm is unclear. LGNUC with an inverted growth pattern that is negative for both Ki-67 and CK20 can be positively detected using FISH. PMID:26208279
Inferring the Limit Behavior of Some Elementary Cellular Automata
NASA Astrophysics Data System (ADS)
Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.
Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.
Promoting dietary diversity to improve child growth in less-resourced rural settings in Uganda.
Kabahenda, M K; Andress, E L; Nickols, S Y; Kabonesa, C; Mullis, R M
2014-04-01
Analyses of global trends indicate that childhood undernutrition is more prevalent in rural areas, and also that maternal education and decision-making power are among the key factors significantly associated with child growth. The present study comprised a controlled longitudinal study aiming to assess the effectiveness of nutrition education with respect to improving growth patterns of young children of less-literate, low income caregivers in a rural subsistence farming community. Caregivers in the intervention group (n = 52) attended a structured nutrition education programme, whereas the control group (n = 45) participated in sewing classes. Weights and lengths/heights were measured for children in the intervention and control groups every month for 1 year to assess changes in growth patterns. Repeated measures analysis of covariance was used to access differences between the two groups over time and across age groups. Variability in growth patterns of individual children and clustering of caregiver effects were controlled for during the statistical analysis. After 12 months, children in the intervention group had significant improvements in weight-for-age compared to the controls [mean (SD): 0.61 (0.15) versus -0.99 (0.16), P = 0.038]. Changes in height-for-age, weight-for-height and mid-upper arm circumference-for-age showed a positive trend for children in the intervention group. Changes in weight-for-height were statistically significant across age groups and negatively related to caregiver's age. Educating caregivers has the potential to improve young children's nutritional status and growth, especially among less literate populations where households subsist on what they produce. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.
Peña Rivera, Adriana Graciela; Vásquez Garibay, Edgar Manuel; Troyo Sanromán, Rogelio; Romero Velarde, Enrique; Caro Sabido, Erika; Ramírez Díaz, Joanie
2015-06-01
To compare the indicator height for age in Mexican children with Down Syndrome (DS) with two different reference patterns of growth (American and Spanish) that might be suitable for the Mexican population. A cross-sectional study was performed including 235 Mexican children and adolescents of both sexes with DS aged 45 days to 16 years enrolled in two specialized schools in the metropolitan area of Guadalajara. The dependent variables were weight/age; height/age; weight/ height and BMI. The data expressed was percentiles and the chi-square test was used to compare the distribution of the height/age index with American and Spanish reference patterns. In addition, a chi-square test was performed for the goodness of fit of the height/age index, with breakpoints lower and greater than the 50th percentile. The percentage of participants who were below the 50th percentile in the height/age index was significantly higher with the Spanish vs. the American reference pattern. The chi-square test for goodness of fit showed that the frequency of cases located below the 50th percentile in the height/age index was significantly higher with the American pattern in the age groups of 0 to 36 months (p = 0.022) and 37 to 72 months (p <0.001), but it was not significant (p = 0.225) in the older than 72 months age group. The American reference pattern is a better fit for the growth of Mexican children with DS compared with the Spanish reference pattern, and the distribution profile obtained with the standard growth and WHO reference was not suitable for the assessment of children with Down syndrome. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
High Carbon Use Efficiency is Not Explained by Production of Storage Compounds
NASA Astrophysics Data System (ADS)
Dijkstra, Paul; van Groenigen, Kees-Jan
2015-04-01
The efficiency with which microbes use substrate to make new microbial biomass (Carbon Use Efficiency or CUE; mol C / mol C) is an important variable in soil and ecosystem C cycling models. Estimates of CUE in soil microbial communities vary widely. It has been hypothesized that high values of CUE are associated with production of storage compounds following a sudden increases in substrate availability during CUE measurements. In that case, these high CUE values would not be representative for balanced microbial growth (i.e. the production of all compounds needed to make new microbial cells). To test this hypothesis, we added position-specific 13C-labeled glucose isotopomers in parallel incubations of a ponderosa pine and piñon-juniper soil. We compared the measured pattern of CO2 release for the six glucose C atoms with patterns of CO2 production expected for balanced growth with a low, medium, or high CUE, and with CO2 production patterns associated with production of storage compounds (glycogen, lipids, or polyhydroxybutyrate). The measured position-specific CO2 production did not match that for production of glycogen, lipids, or polyhydroxybutyrate, but agreed closely with that expected for balanced growth at high CUE and high pentose phosphate pathway activity. We conclude that soil microbial communities utilize glucose substrate for biomass growth with high CUE, and that addition of small amounts of 13C-labeled glucose tracers do not affect CUE or induce storage compounds production. We submit that the measurement of position-specific CO2 production offers a quick and easy way to test biochemically explicit hypotheses concerning microbial growth metabolism.
Fraker, Michael E.; Anderson, Eric J.; May, Cassandra J.; Chen, Kuan-Yu; Davis, Jeremiah J.; DeVanna, Kristen M.; DuFour, Mark R.; Marschall, Elizabeth A.; Mayer, Christine M.; Miner, Jeffery G.; Pangle, Kevin L.; Pritt, Jeremy J.; Roseman, Edward F.; Tyson, Jeffrey T.; Zhao, Yingming; Ludsin, Stuart A
2015-01-01
Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In turn, individuals from different stocks that are produced in different spawning locations or at different times may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval growth and survival. While such physically-mediated variation has been shown to be important in driving intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection, growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-based model to explore how the timing and location of larval walleye emergence from several spawning sites in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection pathways and mixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal habitat can influence stock-specific larval growth. While basin-wide advection patterns were fairly similar during 2011 and 2012, smaller scale advection patterns and the degree of stock mixing varied both within and between years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss the value of linked physical–biological models for understanding the recruitment process and addressing fisheries management problems in the world's Great Lakes.
Meng, Ling; Buchanan, Bob B; Feldman, Lewis J; Luan, Sheng
2012-01-31
CLE peptides, named for the CLV3/ESR-related peptide family, participate in intercellular-signaling pathways. Here we investigated members of the CLE-like (CLEL) gene family that encode peptide precursors recently designated as root growth factors [Matsuzaki Y et al. (2010) Science 329:1065-1067]. CLEL precursors share a similar domain structure with CLE precursors (i.e., they contain a putative N-terminal signal peptide and a C-terminal conserved 13-amino-acid CLEL motif with a variable middle portion). Our evidence shows that, unlike root growth factor, CLEL peptides are (i) unmodified and (ii) function in the regulation of the direction of root growth and lateral root development. Overexpression of several CLEL genes in Arabidopsis resulted in either long roots or long and wavy roots that also showed altered lateral root patterning. Exogenous application of unmodified synthetic 13-amino-acid peptides derived from two CLEL motifs resulted in similar phenotypic changes in roots of wild-type plants. In CLEL peptide-induced long roots, the root apical meristem (RAM) was enlarged and consisted of an increased number of cells, compared with wild-type root apical meristems. The wavy-root phenotype appeared to be independent of other responses of the roots to the environment (e.g., gravitropism, phototropism, and thigmotropism). Results also showed that the inhibition of lateral initiation by CLEL overexpression was not overcome by the application of auxin. These findings establish CLEL as a peptide family with previously unrecognized regulatory functions controlling the pattern of root growth and lateral root development in plants.
Demonstration of SST value as EBVs descriptor in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Valentini, E.; Filipponi, F.; Nguyen Xuan, A.; Taramelli, A.
2017-12-01
Sea Surface Temperature is an Essential Climate and Ocean Variable (ECV - EOV) able to capture critical scales in the seascape warming patterns and to highlight the exceeding of thresholds. This presentation addresses the changes of the SST in the last three decades over the Mediterranean Sea, a "Large Marine Ecosystem (LME)", in order to speculate the value of such powerful variable, as proxy for the assessment of ecosystem state in terms of ecosystem structures, functions and composition key descriptor. Time series of daily SST for the period 1982-2016, estimated from multi-sensor satellite data and provided by Copernicus Marine Environment Monitoring Service (CMEMS-EU) are used to perform different statistical analysis on common fish species. Results highlight the critical conditions, the general trends as well as the spatial and temporal patterns, in terms of thermal growth, vitality and stress influence on selected fish species. Results confirm a constant increasing trend in SST with an average rise of 1.4° C in the past thirty years. The variance associated to the average trend is not constant across the entire Mediterranean Sea opening the way to multiple scenarios for fish growth and vitality in the diverse sub-basins. A major effort is oriented in addressing the cross-scale ecological interactions to assess the feasibility of using SST as descriptor for Essential Biodiversity Variables, able to prioritize areas and to feed operational tools for planning and management in the Mediterranean LME.
Brenten, Thomas; Morris, Penelope J; Salt, Carina; Raila, Jens; Kohn, Barbara; Brunnberg, Leo; Schweigert, Florian J; Zentek, Jürgen
2014-06-28
Research in rodents has shown that dietary vitamin A reduces body fat by enhancing fat mobilisation and energy utilisation; however, their effects in growing dogs remain unclear. In the present study, we evaluated the development of body weight and body composition and compared observed energy intake with predicted energy intake in forty-nine puppies from two breeds (twenty-four Labrador Retriever (LAB) and twenty-five Miniature Schnauzer (MS)). A total of four different diets with increasing vitamin A content between 5·24 and 104·80 μmol retinol (5000-100 000 IU vitamin A)/4184 kJ (1000 kcal) metabolisable energy were fed from the age of 8 weeks up to 52 (MS) and 78 weeks (LAB). The daily energy intake was recorded throughout the experimental period. The body condition score was evaluated weekly using a seven-category system, and food allowances were adjusted to maintain optimal body condition. Body composition was assessed at the age of 26 and 52 weeks for both breeds and at the age of 78 weeks for the LAB breed only using dual-energy X-ray absorptiometry. The growth curves of the dogs followed a breed-specific pattern. However, data on energy intake showed considerable variability between the two breeds as well as when compared with predicted energy intake. In conclusion, the data show that energy intakes of puppies particularly during early growth are highly variable; however, the growth pattern and body composition of the LAB and MS breeds are not affected by the intake of vitamin A at levels up to 104·80 μmol retinol (100 000 IU vitamin A)/4184 kJ (1000 kcal).
Climate-growth relationships of Abies spectabilis in a central Himalayan treeline ecotone
NASA Astrophysics Data System (ADS)
Schwab, Niels; Kaczka, Ryszard J.; Schickhoff, Udo
2017-04-01
Climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines as well as rather insignificant responses. The large spectrum of responses is not fully understood. In the framework of investigating the sensitivity and response of a near-natural treeline ecotone in Rolwaling Himal, Nepal, to climate warming we present results from dendroclimatological analyses of Abies spectabilis (Himalayan Fir) increment cores. Tree ring width was measured and cross-dated. After standardization, the chronology was correlated with temperature and precipitation variables. Preliminary results point to positive correlations with autumn temperature and precipitation. We will present improved climate-growth relationships. The resulting climate - tree growth relationships may be used as an indication of future growth patterns and treeline dynamics under climate change conditions.
Chen, Wenhui; Lei, Yalin
2017-02-01
Identifying the impact path on factors of CO 2 emissions is crucial for the government to take effective measures to reduce carbon emissions. The most existing research focuses on the total influence of factors on CO 2 emissions without differentiating between the direct and indirect influence. Moreover, scholars have addressed the relationships among energy consumption, economic growth, and CO 2 emissions rather than estimating all the causal relationships simultaneously. To fill this research gaps and explore overall driving factors' influence mechanism on CO 2 emissions, this paper utilizes a path analysis model with latent variables (PA-LV) to estimate the direct and indirect effect of factors on China's energy-related carbon emissions and to investigate the causal relationships among variables. Three key findings emanate from the analysis: (1) The change in the economic growth pattern inhibits the growth rate of CO 2 emissions by reducing the energy intensity; (2) adjustment of industrial structure contributes to energy conservation and CO 2 emission reduction by raising the proportion of the tertiary industry; and (3) the growth of CO 2 emissions impacts energy consumption and energy intensity negatively, which results in a negative impact indirectly on itself. To further control CO 2 emissions, the Chinese government should (1) adjust the industrial structure and actively develop its tertiary industry to improve energy efficiency and develop low-carbon economy, (2) optimize population shifts to avoid excessive population growth and reduce energy consumption, and (3) promote urbanization steadily to avoid high energy consumption and low energy efficiency.
Evidence for climate-driven synchrony of marine and terrestrial ecosystems in northwest Australia.
Ong, Joyce J L; Rountrey, Adam N; Zinke, Jens; Meeuwig, Jessica J; Grierson, Pauline F; O'Donnell, Alison J; Newman, Stephen J; Lough, Janice M; Trougan, Mélissa; Meekan, Mark G
2016-08-01
The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long-term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate-driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analyzed existing growth chronologies of the marine fish Lutjanus argentimaculatus, the coral Porites spp. and the tree Callitris columellaris and developed a new chronology for another marine fish, Lethrinus nebulosus. Principal components analysis and linear model selection showed evidence of ENSO-driven synchrony in growth among all four taxa at interannual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures, and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees, and corals. All four taxa had negative relationships with the Niño-4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree-ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation. © 2016 John Wiley & Sons Ltd.
Takenaka, Chiemi; Miyajima, Hiroshi; Yoda, Yusuke; Imazato, Hideo; Yamamoto, Takako; Gomi, Shinichi; Ohshima, Yasuhiro; Kagawa, Kenichi; Sasaki, Tetsuji; Kawamata, Shin
2015-01-01
Here, we introduce a new serum-free defined medium (SPM) that supports the cultivation of human pluripotent stem cells (hPSCs) on recombinant human vitronectin-N (rhVNT-N)-coated dishes after seeding with either cell clumps or single cells. With this system, there was no need for an intervening sequential adaptation process after moving hPSCs from feeder layer-dependent conditions. We also introduce a micropatterned dish that was coated with extracellular matrix by photolithographic technology. This procedure allowed the cultivation of hPSCs on 199 individual rhVNT-N-coated small round spots (1 mm in diameter) on each 35-mm polystyrene dish (termed “patterned culture”), permitting the simultaneous formation of 199 uniform high-density small-sized colonies. This culture system supported controlled cell growth and maintenance of undifferentiated hPSCs better than dishes in which the entire surface was coated with rhVNT-N (termed “non-patterned cultures”). Non-patterned cultures produced variable, unrestricted cell proliferation with non-uniform cell growth and uneven densities in which we observed downregulated expression of some self-renewal-related markers. Comparative flow cytometric studies of the expression of pluripotency-related molecules SSEA-3 and TRA-1-60 in hPSCs from non-patterned cultures and patterned cultures supported this concept. Patterned cultures of hPSCs allowed sequential visual inspection of every hPSC colony, giving an address and number in patterned culture dishes. Several spots could be sampled for quality control tests of production batches, thereby permitting the monitoring of hPSCs in a single culture dish. Our new patterned culture system utilizing photolithography provides a robust, reproducible and controllable cell culture system and demonstrates technological advantages for the mass production of hPSCs with process quality control. PMID:26115194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graumlich, L.J.
1991-02-01
Five tree-ring series from foxtail pine (Pinus balfouriana), lodgepole pine (P. murrayana), and western juniper (Juniperus occidentalis) collected in the Sierra Nevada, California, were analyzed to determine if the temporal and spatial patterns of recent growth were consistent with the hypothesized CO{sub 2}-induced growth enhancement. Specifically, the author addresses the following questions: (1) can growth trends be explained solely in terms of climatic variation; (2) are recent growth trends unusual with respect to long-term growth records While the results offer no support for the hypothesized CO{sub 2} fertilization effect, they do provide insights into the response of subalpine conifers tomore » climatic variation. Response surfaces demonstrate that precipitation during previous winter and temperature during the current summer interact in controlling growth and that the response can be nonlinear. Although maximum growth rates occur under conditions of high winter precipitation and warm summers for all three species, substantial species-to-species variation occurs in the response to these two variables.« less
Characterization of the perinatal mandible growth pattern: preliminary results.
Remy, F; Godio-Raboutet, Y; Verna, E; Gorincour, G; Bonnaure, P; Adalian, P; Guyot, L; Thollon, L
2018-06-01
The fetal development of the mandible is nowadays quite understood, and it is already known that craniofacial growth reaches its highest rate during the first 5 years of postnatal life. However, there are very few data focusing on the perinatal period. Thus, the present article is addressing this concern by studying the mandible morphology and its evolution around the birth with a morphometric method. Thirty-one mandibles modelled in three dimensions from post-mortem CT-scans were analyzed. This sample was divided into two subgroups composed of, respectively, 15 fetuses (aged from 36 gestational weeks), and 16 infants (aged to 12 postnatal weeks). 17 distances, 3 angles, and 8 thicknesses were measured via the prior set of 14 landmarks, illustrating the whole mandible morphology. Although this methodology may depend on the image reconstruction quality, its reliability was demonstrated with low variability in the results. It highlighted two distinct growth patterns around birth: fetuses mandibles do not significantly evolve during the perinatal period, whereas, from the second postnatal weeks, most of the measurements increased in a homogeneous tendency and in correlation with age. The protocol developed in this study highlighted the morphologic evolution of the mandible around birth, identifying a different growth pattern from 2 postnatal weeks, probably because of the progressive activation of masticatory muscles and tongue. However, considering the small sample size, these results should be thorough, so identification and management of anatomic abnormalities could eventually be achieved.
Cheniclet, Catherine; Rong, Wen Ying; Causse, Mathilde; Frangne, Nathalie; Bolling, Laurence; Carde, Jean-Pierre; Renaudin, Jean-Pierre
2005-01-01
Postanthesis growth of tomato (Solanum lycopersicon) as of many types of fruit relies on cell division and cell expansion, so that some of the largest cells to be found in plants occur in fleshy fruit. Endoreduplication is known to occur in such materials, which suggests its involvement in cell expansion, although no data have demonstrated this hypothesis as yet. We have analyzed pattern formation, cell size, and ploidy in tomato fruit pericarp. A first set of data was collected in one cherry tomato line throughout fruit development. A second set of data was obtained from 20 tomato lines displaying a large weight range in fruit, which were compared as ovaries at anthesis and as fully grown fruit at breaker stage. A remarkable conservation of pericarp pattern, including cell layer number and cell size, is observed in all of the 20 tomato lines at anthesis, whereas large variations of growth occur afterward. A strong, positive correlation, combining development and genetic diversity, is demonstrated between mean cell size and ploidy, which holds for mean cell diameters from 10 to 350 μm (i.e. a 32,000-times volume variation) and for mean ploidy levels from 3 to 80 C. Fruit weight appears also significantly correlated with cell size and ploidy. These data provide a framework of pericarp patterning and growth. They strongly suggest the quantitative importance of polyploidy-associated cell expansion as a determinant of fruit weight in tomato. PMID:16306145
Effects of Topography-driven Micro-climatology on Evaporation
NASA Astrophysics Data System (ADS)
Adams, D. D.; Boll, J.; Wagenbrenner, N. S.
2017-12-01
The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.
1984-09-01
are: I. Pursue a highly conservative policy toward alterations in the quantity of freshwater inflow, recognizing the high biological value of Chesapeake...particular area. Regional development policies could be implemented to control growth patterns and associated water uses. Or, regulations could...changes in other relevant variables such as technology, consumer behavior, unanticipated shifts in agricultural irrigation policy or demands for water
Constance I. Millar; Robert D. Westfall; Diane L. Delany; Alan L. Flint; Lorraine E. Flint
2015-01-01
Over the period 1883â2013, recruitment of subalpine limber pine (Pinus flexilis E. James) and Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) above the upper tree line, below the lower tree line, and across middle-elevation forest borders occurred at localized sites across four mountain ranges in the western Great...
Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution
Xu, Yixiao; Richlen, Mindy L.; Liefer, Justin D.; Robertson, Alison; Kulis, David; Smith, Tyler B.; Parsons, Michael L.; Anderson, Donald M.
2016-01-01
Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4–5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0–0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110–400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1–38.5 and 23.8–29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may explain their broad geographic distribution. In contrast, G. silvae and Gambierdiscus sp. types 4–5 all displayed a comparatively narrow range of tolerance to temperature, salinity, and irradiance. PMID:27074134
Brown, L A; Lawson, V A
1989-01-01
"This article examines polarization reversal in terms of changing human resource profiles related to migration and to national policies affecting the spatial pattern of economic growth. It first demonstrates the relationship between these elements through a review that integrates three distinct themes in earlier research. Attention then turns to an empirical study of human resource variation among eight urban districts and the rest of Venezuela treated as a single unit. This comparison utilizes age, gender, educational attainment, and occupational status variables provided by individual records of Venezuela's 1971 Population Census. A concluding section relates empirical findings to policy alternatives." excerpt
Hominin life history: reconstruction and evolution
Robson, Shannen L; Wood, Bernard
2008-01-01
In this review we attempt to reconstruct the evolutionary history of hominin life history from extant and fossil evidence. We utilize demographic life history theory and distinguish life history variables, traits such as weaning, age at sexual maturity, and life span, from life history-related variables such as body mass, brain growth, and dental development. The latter are either linked with, or can be used to make inferences about, life history, thus providing an opportunity for estimating life history parameters in fossil taxa. We compare the life history variables of modern great apes and identify traits that are likely to be shared by the last common ancestor of Pan-Homo and those likely to be derived in hominins. All great apes exhibit slow life histories and we infer this to be true of the last common ancestor of Pan-Homo and the stem hominin. Modern human life histories are even slower, exhibiting distinctively long post-menopausal life spans and later ages at maturity, pointing to a reduction in adult mortality since the Pan-Homo split. We suggest that lower adult mortality, distinctively short interbirth intervals, and early weaning characteristic of modern humans are derived features resulting from cooperative breeding. We evaluate the fidelity of three life history-related variables, body mass, brain growth and dental development, with the life history parameters of living great apes. We found that body mass is the best predictor of great ape life history events. Brain growth trajectories and dental development and eruption are weakly related proxies and inferences from them should be made with caution. We evaluate the evidence of life history-related variables available for extinct species and find that prior to the transitional hominins there is no evidence of any hominin taxon possessing a body size, brain size or aspects of dental development much different from what we assume to be the primitive life history pattern for the Pan-Homo clade. Data for life history-related variables among the transitional hominin grade are consistent and none agrees with a modern human pattern. Aside from mean body mass, adult brain size, crown and root formation times, and the timing and sequence of dental eruption of Homo erectus are inconsistent with that of modern humans. Homo antecessor fossil material suggests a brain size similar to that of Homo erectus s. s., and crown formation times that are not yet modern, though there is some evidence of modern human-like timing of tooth formation and eruption. The body sizes, brain sizes, and dental development of Homo heidelbergensis and Homo neanderthalensis are consistent with a modern human life history but samples are too small to be certain that they have life histories within the modern human range. As more life history-related variable information for hominin species accumulates we are discovering that they can also have distinctive life histories that do not conform to any living model. At least one extinct hominin subclade, Paranthropus, has a pattern of dental life history-related variables that most likely set it apart from the life histories of both modern humans and chimpanzees. PMID:18380863
Macalady, Alison K.; Bugmann, Harald
2014-01-01
The processes leading to drought-associated tree mortality are poorly understood, particularly long-term predisposing factors, memory effects, and variability in mortality processes and thresholds in space and time. We use tree rings from four sites to investigate Pinus edulis mortality during two drought periods in the southwestern USA. We draw on recent sampling and archived collections to (1) analyze P. edulis growth patterns and mortality during the 1950s and 2000s droughts; (2) determine the influence of climate and competition on growth in trees that died and survived; and (3) derive regression models of growth-mortality risk and evaluate their performance across space and time. Recent growth was 53% higher in surviving vs. dying trees, with some sites exhibiting decades-long growth divergences associated with previous drought. Differential growth response to climate partly explained growth differences between live and dead trees, with responses wet/cool conditions most influencing eventual tree status. Competition constrained tree growth, and reduced trees’ ability to respond to favorable climate. The best predictors in growth-mortality models included long-term (15–30 year) average growth rate combined with a metric of growth variability and the number of abrupt growth increases over 15 and 10 years, respectively. The most parsimonious models had high discriminatory power (ROC>0.84) and correctly classified ∼70% of trees, suggesting that aspects of tree growth, especially over decades, can be powerful predictors of widespread drought-associated die-off. However, model discrimination varied across sites and drought events. Weaker growth-mortality relationships and higher growth at lower survival probabilities for some sites during the 2000s event suggest a shift in mortality processes from longer-term growth-related constraints to shorter-term processes, such as rapid metabolic decline even in vigorous trees due to acute drought stress, and/or increases in the attack rate of both chronically stressed and more vigorous trees by bark beetles. PMID:24786646
Macalady, Alison K; Bugmann, Harald
2014-01-01
The processes leading to drought-associated tree mortality are poorly understood, particularly long-term predisposing factors, memory effects, and variability in mortality processes and thresholds in space and time. We use tree rings from four sites to investigate Pinus edulis mortality during two drought periods in the southwestern USA. We draw on recent sampling and archived collections to (1) analyze P. edulis growth patterns and mortality during the 1950s and 2000s droughts; (2) determine the influence of climate and competition on growth in trees that died and survived; and (3) derive regression models of growth-mortality risk and evaluate their performance across space and time. Recent growth was 53% higher in surviving vs. dying trees, with some sites exhibiting decades-long growth divergences associated with previous drought. Differential growth response to climate partly explained growth differences between live and dead trees, with responses wet/cool conditions most influencing eventual tree status. Competition constrained tree growth, and reduced trees' ability to respond to favorable climate. The best predictors in growth-mortality models included long-term (15-30 year) average growth rate combined with a metric of growth variability and the number of abrupt growth increases over 15 and 10 years, respectively. The most parsimonious models had high discriminatory power (ROC>0.84) and correctly classified ∼ 70% of trees, suggesting that aspects of tree growth, especially over decades, can be powerful predictors of widespread drought-associated die-off. However, model discrimination varied across sites and drought events. Weaker growth-mortality relationships and higher growth at lower survival probabilities for some sites during the 2000s event suggest a shift in mortality processes from longer-term growth-related constraints to shorter-term processes, such as rapid metabolic decline even in vigorous trees due to acute drought stress, and/or increases in the attack rate of both chronically stressed and more vigorous trees by bark beetles.
Murray, Kris A.; Skerratt, Lee F.; Garland, Stephen; Kriticos, Darren; McCallum, Hamish
2013-01-01
The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ∼72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian decline. PMID:23613783
Key variables influencing patterns of lava dome growth and collapse
NASA Astrophysics Data System (ADS)
Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.
2013-12-01
Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a transition in the growth pattern, while a decrease in infusion rate results in larger crystals causing the material to stiffen leading to formation of spines. Material stiffness controls the growth direction of the viscous plug in the lava dome interior. Material strength and stiffness controled by rate of infusion influence lava dome growth more significantly than coefficient of frictional of the talus.
Modeling Physiological Processes That Relate Toxicant Exposure and Bacterial Population Dynamics
Klanjscek, Tin; Nisbet, Roger M.; Priester, John H.; Holden, Patricia A.
2012-01-01
Quantifying effects of toxicant exposure on metabolic processes is crucial to predicting microbial growth patterns in different environments. Mechanistic models, such as those based on Dynamic Energy Budget (DEB) theory, can link physiological processes to microbial growth. Here we expand the DEB framework to include explicit consideration of the role of reactive oxygen species (ROS). Extensions considered are: (i) additional terms in the equation for the “hazard rate” that quantifies mortality risk; (ii) a variable representing environmental degradation; (iii) a mechanistic description of toxic effects linked to increase in ROS production and aging acceleration, and to non-competitive inhibition of transport channels; (iv) a new representation of the “lag time” based on energy required for acclimation. We estimate model parameters using calibrated Pseudomonas aeruginosa optical density growth data for seven levels of cadmium exposure. The model reproduces growth patterns for all treatments with a single common parameter set, and bacterial growth for treatments of up to 150 mg(Cd)/L can be predicted reasonably well using parameters estimated from cadmium treatments of 20 mg(Cd)/L and lower. Our approach is an important step towards connecting levels of biological organization in ecotoxicology. The presented model reveals possible connections between processes that are not obvious from purely empirical considerations, enables validation and hypothesis testing by creating testable predictions, and identifies research required to further develop the theory. PMID:22328915
Food resource effects on diel movements and body size of cisco in north-temperate lakes.
Ahrenstorff, Tyler D; Hrabik, Thomas R; Jacobson, Peter C; Pereira, Donald L
2013-12-01
The movement patterns and body size of fishes are influenced by a host of physical and biological conditions, including temperature and oxygen, prey densities and foraging potential, growth optimization, and predation risk. Our objectives were to (1) investigate variability in vertical movement patterns of cisco (Coregonus artedi) in a variety of inland lakes using hydroacoustics, (2) explore the causal mechanisms influencing movements through the use of temperature/oxygen, foraging, growth, and predation risk models, and (3) examine factors that may contribute to variations in cisco body size by considering all available information. Our results show that cisco vertical movements vary substantially, with different populations performing normal diel vertical migrations (DVM), no DVM, and reverse DVM in lakes throughout Minnesota and northern Wisconsin, USA. Cisco populations with the smallest body size were found in lakes with lower zooplankton densities. These smaller fish showed movements to areas of highest foraging or growth potential during the day and night, despite moving out of preferred temperature and oxygen conditions and into areas of highest predation risk. In lakes with higher zooplankton densities, cisco grew larger and had movements more consistent with behavioral thermoregulation and predator avoidance, while remaining in areas with less than maximum foraging and growth potential. Furthermore, the composition of potential prey items present in each lake was also important. Cisco that performed reverse DVM consumed mostly copepods and cladocerans, while cisco that exhibited normal DVM or no migration consumed proportionally more macro-zooplankton species. Overall, our results show previously undocumented variation in migration patterns of a fish species, the mechanisms underlying those movements, and the potential impact on their growth potential.
NASA Astrophysics Data System (ADS)
Gamboa, G.; Hetzinger, S.; Halfar, J.; Zack, T.; Kunz, B.; Adey, W.
2009-05-01
Marine ecosystems and fishery productivity in the Northwestern Atlantic have been considerably affected by regional climate and oceanographic changes. Fluctuations of North Atlantic marine climate have been linked in part to a dominant pattern of atmospheric circulation known as the North Atlantic Oscillation, which has a strong influence on transport variability of the Labrador Current (LC). The cold LC originates in the Labrador Sea and flows southbound along the Eastern Canadian coastline causing an important cooling effect on marine waters off the Canadian Atlantic provinces. Although interdecadal and interannual variability of sea surface temperatures (SST) in the LC system have been documented, a long-term pattern has not been identified. In order to better understand the observed ecosystem changes and their relationship with climate variability in the Northwestern Atlantic, a century-scale reconstruction of spatial and temporal variations of the LC is needed. This, however, requires reliable long-term and high-resolution SST records, which are not available from short instrumental observations. Here we present the first century-scale SST reconstructions from the Northwest Atlantic using long-lived coralline red algae. Coralline red algae have a high-Mg calcite skeleton, live in shallow water worldwide and develop annual growth bands. It has previously been demonstrated that subannual resolution SSTs can be obtained from coralline red algal Mg/Ca ratios, a commonly used paleotemperature proxy. Specimens of the long-lived coralline red algae Clathromorphum compactum were collected alive in August 2008 along a latitudinal transect spanning the southern extent of LC flow in Nova Scotia and Newfoundland. This collection is supplemented with specimens from the same region collected in the 1960's. In order to reconstruct spatial and temporal patterns of the LC, selected samples of C. compactum were analyzed for Mg/Ca using Laser Ablation Inductively-Coupled Plasma Mass Spectrometry (LA-ICP-MS). Mg/Ca ratios range from 0.048 to 0.138 (measured in weight %) and relate to water temperatures of -1 to 16°C. Age models were established by comparing annual growth increments (average increment width 350 microns/year) with Mg/Ca cycles. This yielded subannually-resolved Mg/Ca-based SST reconstructions spanning the past century.
Craniofacial skeletal pattern: is it really correlated with the degree of adenoid obstruction?
Feres, Murilo Fernando Neuppmann; Muniz, Tomas Salomão; de Andrade, Saulo Henrique; Lemos, Maurilo de Mello; Pignatari, Shirley Shizue Nagata
2015-01-01
OBJECTIVE: The aim of this study was to compare the cephalometric pattern of children with and without adenoid obstruction. METHODS: The sample comprised 100 children aged between four and 14 years old, both males and females, subjected to cephalometric examination for sagittal and vertical skeletal analysis. The sample also underwent nasofiberendoscopic examination intended to objectively assess the degree of adenoid obstruction. RESULTS: The individuals presented tendencies towards vertical craniofacial growth, convex profile and mandibular retrusion. However, there were no differences between obstructive and non-obstructive patients concerning all cephalometric variables. Correlations between skeletal parameters and the percentage of adenoid obstruction were either low or not significant. CONCLUSIONS: Results suggest that specific craniofacial patterns, such as Class II and hyperdivergency, might not be associated with adenoid hypertrophy. PMID:26352848
Hess, Carsten; Niemeyer, Thomas; Fichtner, Andreas; Jansen, Kirstin; Kunz, Matthias; Maneke, Moritz; von Wehrden, Henrik; Quante, Markus; Walmsley, David; von Oheimb, Goddert; Härdtle, Werner
2018-02-01
Global change affects the functioning of forest ecosystems and the services they provide, but little is known about the interactive effects of co-occurring global change drivers on important functions such as tree growth and vitality. In the present study we quantified the interactive (i.e. synergistic or antagonistic) effects of atmospheric nitrogen (N) deposition and climatic variables (temperature, precipitation) on tree growth (in terms of tree-ring width, TRW), taking forest ecosystems with European beech (Fagus sylvatica L.) as an example. We hypothesised that (i) N deposition and climatic variables can evoke non-additive responses of the radial increment of beech trees, and (ii) N loads have the potential to strengthen the trees' sensitivity to climate change. In young stands, we found a synergistic positive effect of N deposition and annual mean temperature on TRW, possibly linked to the alleviation of an N shortage in young stands. In mature stands, however, high N deposition significantly increased the trees' sensitivity to increasing annual mean temperatures (antagonistic effect on TRW), possibly due to increased fine root dieback, decreasing mycorrhizal colonization or shifts in biomass allocation patterns (aboveground vs. belowground). Accordingly, N deposition and climatic variables caused both synergistic and antagonistic effects on the radial increment of beech trees, depending on tree age and stand characteristics. Hence, the nature of interactions could mediate the long-term effects of global change drivers (including N deposition) on forest carbon sequestration. In conclusion, our findings illustrate that interaction processes between climatic variables and N deposition are complex and have the potential to impair growth and performance of European beech. This in turn emphasises the importance of multiple-factor studies to foster an integrated understanding and models aiming at improved projections of tree growth responses to co-occurring drivers of global change. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structure and dynamics of an upland old- growth forest at Redwood National Park, California
van Mantgem, Philip J.; Stuart, John D.
2011-01-01
Many current redwood forest management targets are based on old-growth conditions, so it is critical that we understand the variability and range of conditions that constitute these forests. Here we present information on the structure and dynamics from six one-hectare forest monitoring plots in an upland old-growth forest at Redwood National Park, California. We surveyed all stems =20 cm DBH in 1995 and 2010, allowing us to estimate any systematic changes in these stands. Stem size distributions for all species and for redwood (Sequoia sempervirens (D. Don) Endl.) alone did not appreciably change over the 15 year observation interval. Recruitment and mortality rates were roughly balanced, as were basal area dynamics (gains from recruitment and growth versus losses from mortality). Similar patterns were found for Sequoia alone. The spatial structure of stems at the plots suggested a random distribution of trees, though the pattern for Sequoia alone was found to be significantly clumped at small scales (< 5 m) at three of the six plots. These results suggest that these forests, including populations of Sequoia, have been generally stable over the past 15 years at this site, though it is possible that fire exclusion may be affecting recruitment of smaller Sequoia (< 20 cm DBH). The non-uniform spatial arrangement of stems also suggests that restoration prescriptions for second-growth redwood forests that encourage uniform spatial arrangements do not appear to mimic current upland old-growth conditions.
NASA Astrophysics Data System (ADS)
Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario
2016-01-01
We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.
NASA Astrophysics Data System (ADS)
Trofimova, Tamara; Andersson, Carin
2015-04-01
Paleo archives are fundament in improving our knowledge of the natural climate variability. Established marine proxy records for the ocean, especially for high latitudes, are both sparsely distributed and are poorly resolved in time. The identification and development of new archives and proxies for studying key ocean processes at annual to sub-annual resolution that can extend the marine instrumental record is therefore a clear priority for marine climate science. The bivalve species Arctica islandica is a unique paleoclimatic archive with an exceptional longevity combined with high temporal resolution, due to accretion of annual growth increments. The aim of this study is to use sclerochronological records of A. islandica to extend instrumental hydrographic records and increase our understanding of a variability of a Norwegian Coastal Current (NCC). The NCC transports warm, low-salinity water northwards, which eventually plays role for the Arctic halocline. Moreover, previous investigations showed the connection of properties and variability of the NCC with catches of commercially valuable fishes. The knowledge of the variability of the NCC is also essential for possible future prediction climate conditions and fish stock variability in the region. In this study we use shells of Arctica islandica collected off the coast of Eggum (Lofoten, Norway). The material was obtained from the depth 5-10 m by dredging along the seabed and by means of scuba divers. We examine the growth patterns of living and subfossil shells. Ongoing work mainly focuses on the construction of a composite growth chronology based on increment-width time series. The results we will compare with existing time series of the environment and climatic parameters to determine the controlling factors and test the applicability of growth chronology in a climate reconstruction. Furthermore, we will perform geochemical analyses of the stable isotope composition (δ18O and δ13C) in shell carbonate to identify seasonal signals and reconstruct the surface water temperature on a sub-annual time-scale.
Bradley, Darcy; Conklin, Eric; Papastamatiou, Yannis P.; McCauley, Douglas J.; Pollock, Kydd; Kendall, Bruce E.; Gaines, Steven D.; Caselle, Jennifer E.
2017-01-01
For broadly distributed, often overexploited species such as elasmobranchs (sharks and rays), conservation management would benefit from understanding how life history traits change in response to local environmental and ecological factors. However, fishing obfuscates this objective by causing complex and often mixed effects on the life histories of target species. Disentangling the many drivers of life history variability requires knowledge of elasmobranch populations in the absence of fishing, which is rarely available. Here, we describe the growth, maximum size, sex ratios, size at maturity, and offer a direct estimate of survival of an unfished population of grey reef sharks (Carcharhinus amblyrhynchos) using data from an eight year tag-recapture study. We then synthesized published information on the life history of C. amblyrhynchos from across its geographic range, and for the first time, we attempted to disentangle the contribution of fishing from geographic variation in an elasmobranch species. For Palmyra’s unfished C. amblyrhynchos population, the von Bertalanffy growth function (VBGF) growth coefficient k was 0.05 and asymptotic length L∞ was 163.3 cm total length (TL). Maximum size was 175.5 cm TL from a female shark, length at maturity was estimated at 116.7–123.2 cm TL for male sharks, maximum lifespan estimated from VBGF parameters was 18.1 years for both sexes combined, and annual survival was 0.74 year-1. Consistent with findings from studies on other elasmobranch species, we found significant intraspecific variability in reported life history traits of C. amblyrhynchos. However, contrary to what others have reported, we did not find consistent patterns in life history variability as a function of biogeography or fishing. Ultimately, the substantial, but not yet predictable variability in life history traits observed for C. amblyrhynchos across its geographic range suggests that regional management may be necessary to set sustainable harvest targets and to recover this and other shark species globally. PMID:28207874
Bradley, Darcy; Conklin, Eric; Papastamatiou, Yannis P; McCauley, Douglas J; Pollock, Kydd; Kendall, Bruce E; Gaines, Steven D; Caselle, Jennifer E
2017-01-01
For broadly distributed, often overexploited species such as elasmobranchs (sharks and rays), conservation management would benefit from understanding how life history traits change in response to local environmental and ecological factors. However, fishing obfuscates this objective by causing complex and often mixed effects on the life histories of target species. Disentangling the many drivers of life history variability requires knowledge of elasmobranch populations in the absence of fishing, which is rarely available. Here, we describe the growth, maximum size, sex ratios, size at maturity, and offer a direct estimate of survival of an unfished population of grey reef sharks (Carcharhinus amblyrhynchos) using data from an eight year tag-recapture study. We then synthesized published information on the life history of C. amblyrhynchos from across its geographic range, and for the first time, we attempted to disentangle the contribution of fishing from geographic variation in an elasmobranch species. For Palmyra's unfished C. amblyrhynchos population, the von Bertalanffy growth function (VBGF) growth coefficient k was 0.05 and asymptotic length L∞ was 163.3 cm total length (TL). Maximum size was 175.5 cm TL from a female shark, length at maturity was estimated at 116.7-123.2 cm TL for male sharks, maximum lifespan estimated from VBGF parameters was 18.1 years for both sexes combined, and annual survival was 0.74 year-1. Consistent with findings from studies on other elasmobranch species, we found significant intraspecific variability in reported life history traits of C. amblyrhynchos. However, contrary to what others have reported, we did not find consistent patterns in life history variability as a function of biogeography or fishing. Ultimately, the substantial, but not yet predictable variability in life history traits observed for C. amblyrhynchos across its geographic range suggests that regional management may be necessary to set sustainable harvest targets and to recover this and other shark species globally.
NASA Astrophysics Data System (ADS)
Groß, Jasmin; Konar, Brenda; Brey, Thomas; Grebmeier, Jacqueline M.
2017-10-01
The snow crab Chionoecetes opilio and Arctic lyre crab Hyas coarctatus are prominent members of the Chukchi Sea epifaunal community. A better understanding of their life history will aid in determining their role in this ecosystem in light of the changing climate and resource development. In this study, the size frequency distribution, growth, and mortality of these two crab species was examined in 2009, 2010, 2012, and 2013 to determine temporal and spatial patterns within the eastern Chukchi Sea, and to identify potential environmental drivers of the observed patterns. Temporally, the mean size of both sexes of C. opilio and H. coarctatus decreased significantly from 2009 to 2013, with the number of rare maximum sized organisms decreasing significantly to near absence in the latter two study years. Spatially, the mean size of male and female crabs of both species showed a latitudinal trend, decreasing from south to north in the investigation area. Growth of both sexes of C. opilio and H. coarctatus was linear over the sampled size range, and mortality was highest in the latter two study years. Life history features of both species related to different environmental parameters in different years, ranging from temperature, the sediment carbon to nitrogen ratio of the organic content, and sediment grain size distribution. Likely explanations for the observed temporal and spatial variability are ontogenetic migrations of mature crabs to warmer areas possibly due to cooler water temperatures in the latter two study years, or interannual fluctuations, which have been reported for C. opilio populations in other areas where successful waves of recruitment were estimated to occur in eight year intervals. Further research is suggested to determine if the spatial and temporal patterns found in this study are part of the natural variability in this system or if they are an indication of long-term trends.
Review and classification of variability analysis techniques with clinical applications.
Bravi, Andrea; Longtin, André; Seely, Andrew J E
2011-10-10
Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis.
Review and classification of variability analysis techniques with clinical applications
2011-01-01
Analysis of patterns of variation of time-series, termed variability analysis, represents a rapidly evolving discipline with increasing applications in different fields of science. In medicine and in particular critical care, efforts have focussed on evaluating the clinical utility of variability. However, the growth and complexity of techniques applicable to this field have made interpretation and understanding of variability more challenging. Our objective is to provide an updated review of variability analysis techniques suitable for clinical applications. We review more than 70 variability techniques, providing for each technique a brief description of the underlying theory and assumptions, together with a summary of clinical applications. We propose a revised classification for the domains of variability techniques, which include statistical, geometric, energetic, informational, and invariant. We discuss the process of calculation, often necessitating a mathematical transform of the time-series. Our aims are to summarize a broad literature, promote a shared vocabulary that would improve the exchange of ideas, and the analyses of the results between different studies. We conclude with challenges for the evolving science of variability analysis. PMID:21985357
Cañavate, José Pedro; Armada, Isabel; Hachero-Cruzado, Ismael
2017-05-01
The high lipid diversity of microalgae has been used to taxonomically differentiate phytoplankton taxa at the class level. However, important lipids such as phospholipids (PL) and betaine lipids (BL) with potential chemotaxonomy application in phytoplankton ecology have been scarcely studied. The chemotaxonomy value of PL and BL depends on their intraspecific extent of variation as microalgae respond to external changing factors. To determine such effects, lipid class changes occurring at different growth stages in 15 microalgae from ten different classes were analyzed. BL occurred in 14 species and were the less affected lipids by growth stage with diacylglyceryl-hydroxymethyl-N,N,N-trimethyl-b-alanine (DGTA) showing the highest stability. PL were more influenced by growth stage with phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidyletanolamine (PE) declining towards older culture stages in some species. Glycolipids were the more common lipids, and no evident age-related variability pattern could be associated to taxonomic diversity. Selecting BL and PL as descriptor variables optimally distinguished microalgae taxonomic variability at all growth stages. Principal coordinate analysis arranged species through a main tendency from diacylglyceryl-hydroxymethyl-N,N,N-trimethyl-b-alanine (DGCC) containing species (mainly dinoflagellates and haptophytes) to DGTA or PC containing species (mainly cryptophytes). Two diatom classes with similar fatty acid profiles could be distinguished from their respective content in DGTA (Bacillariophyceae) or DGCC (Mediophyceae). In green lineage classes (Trebouxiophyceae, Porphyridophyceae, and Chlorodendrophyceae), PC was a better descriptor than BL. BL and PL explained a higher proportion of microalgae taxonomic variation than did fatty acids and played a complementary role as lipid markers.
Ma, Yongyong; Liu, Yu; Song, Huiming; Sun, Junyan; Lei, Ying; Wang, Yanchao
2015-01-01
Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) that were collected in the Taihe Mountains on the western Loess Plateau, China, were used to analyze the effects of climate and drought on radial growth and to reconstruct the mean April-June Standardized Precipitation Evapotranspiration Index (SPEI) during the period 1730-2012 AD. Precipitation positively affected tree growth primarily during wet seasons, while temperature negatively affected tree growth during dry seasons. Tree growth responded positively to SPEI at long time scales most likely because the trees were able to withstand water deficits but lacked a rapid response to drought. The 10-month scale SPEI was chosen for further drought reconstruction. A calibration model for the period 1951-2011 explained 51% of the variance in the modeled SPEI data. Our SPEI reconstruction revealed long-term patterns of drought variability and captured some significant drought events, including the severe drought of 1928-1930 and the clear drying trend since the 1950s which were widespread across northern China. The reconstruction was also consistent with two other reconstructions on the western Loess Plateau at both interannual and decadal scales. The reconstructed SPEI series showed synchronous variations with the drought/wetness indices and spatial correlation analyses indicated that this reconstruction could be representative of large-scale SPEI variability in northern China. Period analysis discovered 128-year, 25-year, 2.62-year, 2.36-year, and 2.04-year cycles in this reconstruction. The time-dependency of the growth response to drought should be considered in further studies of the community dynamics. The SPEI reconstruction improves the sparse network of long-term climate records for an enhanced understanding of climatic variability on the western Loess Plateau, China.
Ma, Yongyong; Liu, Yu; Song, Huiming; Sun, Junyan; Lei, Ying; Wang, Yanchao
2015-01-01
Tree-ring samples from Chinese Pine (Pinus tabulaeformis Carr.) that were collected in the Taihe Mountains on the western Loess Plateau, China, were used to analyze the effects of climate and drought on radial growth and to reconstruct the mean April-June Standardized Precipitation Evapotranspiration Index (SPEI) during the period 1730–2012 AD. Precipitation positively affected tree growth primarily during wet seasons, while temperature negatively affected tree growth during dry seasons. Tree growth responded positively to SPEI at long time scales most likely because the trees were able to withstand water deficits but lacked a rapid response to drought. The 10-month scale SPEI was chosen for further drought reconstruction. A calibration model for the period 1951–2011 explained 51% of the variance in the modeled SPEI data. Our SPEI reconstruction revealed long-term patterns of drought variability and captured some significant drought events, including the severe drought of 1928–1930 and the clear drying trend since the 1950s which were widespread across northern China. The reconstruction was also consistent with two other reconstructions on the western Loess Plateau at both interannual and decadal scales. The reconstructed SPEI series showed synchronous variations with the drought/wetness indices and spatial correlation analyses indicated that this reconstruction could be representative of large-scale SPEI variability in northern China. Period analysis discovered 128-year, 25-year, 2.62-year, 2.36-year, and 2.04-year cycles in this reconstruction. The time-dependency of the growth response to drought should be considered in further studies of the community dynamics. The SPEI reconstruction improves the sparse network of long-term climate records for an enhanced understanding of climatic variability on the western Loess Plateau, China. PMID:26207621
Díaz Bonilla, Edilberto; Torres Galvis, Claudia L; Gómez Campos, Rossana; de Arruda, Miguel; Pacheco Carrillo, Jaime; Cossio Bolaños, Marco
2018-04-01
There is increasing concern over the study of physical growth in different regions of the world, although altitude is not considered an adjustment factor. Compare physical growth variables and body mass index (BMI) patterns with the Centers for Disease Control and Prevention (CDC) 2012 reference data and develop percentiles for children and adolescents. School children living at moderate altitude in Bogotá (Colombia) were studied. Their weight and height were evaluated and their BMI was calculated. Anthropometric variables were compared against reference data of the CDC-2012, Brazil, Peru and Argentina. Curves were constructed using the least mean square (LMS) method. A total of 2241 school children (1159 girls) aged 6.0 to 17.9 years were included. There were no significant differences in weight and BMI in 6 to 8 year-olds relative to CDC-2012 reference data; in 9 to 17 year-old children, however, this sample evidenced lower values in terms of weight and BMI as compared to those of the CDC-2012. As far as height is concerned, in both sexes, values were lower than those of the CDC-2012. Comparisons against the regional curves of Argentina, Peru and Brazil yielded relatively similar results, with the exception of girls' BMI, as 13 to 17 year-old girls exhibited lower values. Growth variables of school children were lower relative to the CDC-2012 reference data. There were slight discrepancies in physical growth and BMI in relation to the curves of Argentina, Peru and Brazil. Curves were constructed to evaluate growth in school children living at moderate altitude in Colombia. Sociedad Argentina de Pediatría.
NASA Astrophysics Data System (ADS)
Douglas, P. M.; Eiler, J. M.; Sessions, A. L.; Dawson, K.; Walter Anthony, K. M.; Smith, D. A.; Lloyd, M. K.; Yanay, E.
2016-12-01
Microbially produced methane is a globally important greenhouse gas, energy source, and biological substrate. Methane clumped isotope measurements have recently been developed as a new analytical tool for understanding the source of methane in different environments. When methane forms in isotopic equilibrium clumped isotope values are determined by formation temperature, but in many cases microbial methane clumped isotope values deviate strongly from expected equilibrium values. Indeed, we observe a very wide range of clumped isotope values in microbial methane, which are likely strongly influenced by kinetic isotope effects, but thus far the biological and environmental parameters controlling this variability are not understood. We will present data from both culture experiments and natural environments to explore patterns of variability in non-equilibrium clumped isotope values on temporal and spatial scales. In methanogen batch cultures sampled at different time points along a growth curve we observe significant variability in clumped isotope values, with values decreasing from early to late exponential growth. Clumped isotope values then increase during stationary growth. This result is consistent with previous work suggesting that differences in the reversibility of methanogenesis related to metabolic rates control non-equilibrium clumped isotope values. Within single lakes in Alaska and Sweden we observe substantial variability in clumped isotope values on the order of 5‰. Lower clumped isotope values are associated with larger 2H isotopic fractionation between water and methane, which is also consistent with a kinetic isotope effect determined by the reversibility of methanogenesis. Finally, we analyzed a time-series clumped isotope compositions of methane emitted from two seeps in an Alaskan lake over several months. Temporal variability in these seeps is on the order of 2‰, which is much less than the observed spatial variability within the lake. Comparing carbon isotope fractionation between CO2 and CH4 with clumped isotope data suggests the temporal variability may result from changes in methane oxidation.
Fernández-Chacón, Albert; Genovart, Meritxell; Álvarez, David; Cano, José M; Ojanguren, Alfredo F; Rodriguez-Muñoz, Rolando; Nicieza, Alfredo G
2015-06-01
In organisms such as fish, where body size is considered an important state variable for the study of their population dynamics, size-specific growth and survival rates can be influenced by local variation in both biotic and abiotic factors, but few studies have evaluated the complex relationships between environmental variability and size-dependent processes. We analysed a 6-year capture-recapture dataset of brown trout (Salmo trutta) collected at 3 neighbouring but heterogeneous mountain streams in northern Spain with the aim of investigating the factors shaping the dynamics of local populations. The influence of body size and water temperature on survival and individual growth was assessed under a multi-state modelling framework, an extension of classical capture-recapture models that considers the state (i.e. body size) of the individual in each capture occasion and allows us to obtain state-specific demographic rates and link them to continuous environmental variables. Individual survival and growth patterns varied over space and time, and evidence of size-dependent survival was found in all but the smallest stream. At this stream, the probability of reaching larger sizes was lower compared to the other wider and deeper streams. Water temperature variables performed better in the modelling of the highest-altitude population, explaining over a 99 % of the variability in maturation transitions and survival of large fish. The relationships between body size, temperature and fitness components found in this study highlight the utility of multi-state approaches to investigate small-scale demographic processes in heterogeneous environments, and to provide reliable ecological knowledge for management purposes.
Five species, many genotypes, broad phenotypic diversity: When agronomy meets functional ecology.
Prieto, Ivan; Litrico, Isabelle; Violle, Cyrille; Barre, Philippe
2017-01-01
Current ecological theory can provide insight into the causes and impacts of plant domestication. However, just how domestication has impacted intraspecific genetic variability (ITV) is unknown. We used 50 ecotypes and 35 cultivars from five grassland species to explore how selection drives functional trait coordination and genetic differentiation. We quantified the extent of genetic diversity among different sets of functional traits and determined how much genetic diversity has been generated within populations of natural ecotypes and selected cultivars. In general, the cultivars were larger (e.g., greater height, faster growth rates) and had larger and thinner leaves (greater SLA). We found large (average 63%) and trait-dependent (ranging from 14% for LNC to 95.8% for growth rate) genetic variability. The relative extent of genetic variability was greater for whole-plant than for organ-level traits. This pattern was consistent within ecotypes and within cultivars. However, ecotypes presented greater ITV variability. The results indicated that genetic diversity is large in domesticated species with contrasting levels of heritability among functional traits and that selection for high yield has led to indirect selection of some associated leaf traits. These findings open the way to define which target traits should be the focus in selection programs, especially in the context of community-level selection. © 2017 Botanical Society of America.
NASA Astrophysics Data System (ADS)
Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.
2017-11-01
An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.
Fluvial-Deltaic Strata as a High-Resolution Recorder of Fold Growth and Fault Slip
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Kodama, K. P.; Pazzaglia, F. P.
2008-12-01
Fluvial-deltaic systems characterize the depositional record of most wedge-top and foreland basins, where the synorogenic stratigraphy responds to interactions between sediment supply driven by tectonic uplift, climate modulated sea level change and erosion rate variability, and fold growth patterns driven by unsteady fault slip. We integrate kinematic models of fault-related folds with growth strata and fluvial terrace records to determine incremental rates of shortening, rock uplift, limb tilting, and fault slip with 104-105 year temporal resolution in the Pyrenees and Apennines. At Pico del Aguila anticline, a transverse dècollement fold along the south Pyrenean mountain front, formation-scale synorogenic deposition and clastic facies patterns in prodeltaic and slope facies reflect tectonic forcing of sediment supply, sea level variability controlling delta front position, and climate modulated changes in terrestrial runoff. Growth geometries record a pinned anticline and migrating syncline hinges during folding above the emerging Guarga thrust sheet. Lithologic and anhysteretic remanent magnetization (ARM) data series from the Eocene Arguis Fm. show cyclicity at Milankovitch frequencies allowing detailed reconstruction of unsteady fold growth. Multiple variations in limb tilting rates from <8° to 28°/my over 7my are attributed to unsteady fault slip along the roof ramp and basal dècollement. Along the northern Apennine mountain front, the age and geometry of strath terraces preserved across the Salsomaggiore anticline records the Pleistocene-Recent kinematics of the underlying fault-propagation fold as occurring with a fixed anticline hinge, a rolling syncline hinge, and along-strike variations in uplift and forelimb tilting. The uplifted intersection of terrace deposits documents syncline axial surface migration and underlying fault-tip propagation at a rate of ~1.4 cm/yr since the Middle Pleistocene. Because this record of fault slip coincides with the well-known large amplitude oscillations in global climate that contribute to the filling and deformation of the Po foreland, we hypothesize that climatically-modulated surface processes are reflected in the observed rates of fault slip and fold growth.
Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Peckham, S Hoyt; Avens, Larisa; Kurle, Carolyn M
2017-05-01
Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species. To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ 15 N) patterns that differentiate distinct ocean regions to create a 'regional isotope characterization', analysed the δ 15 N values from annual bone growth layer rings from dead-stranded animals, and then combined the bone and regional isotope data to track individual animal movement patterns over multiple years. We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life-history parameters. We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42·7 ± 7·2 vs. 68·3 ± 3·4 cm carapace length, 7·5 ± 2·7 vs. 15·6 ± 1·7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements and threats, and these differences can influence life-history parameters such as growth, survival and future fecundity. This is the first evidence of alternative ontogenetic shifts and habitat-use patterns for juveniles foraging in the eastern NPO. We combine two techniques, skeletochronology and stable isotope analysis, to reconstruct multi-year habitat-use patterns of a remote migratory species, linked to estimated ages and body sizes of individuals, to reveal variable ontogeny during the juvenile life stage that could drive alternate life histories and that has the potential to illuminate the migration patterns for other species with accretionary tissues. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Characterizing growth patterns in longitudinal MRI using image contrast
NASA Astrophysics Data System (ADS)
Vardhan, Avantika; Prastawa, Marcel; Vachet, Clement; Piven, Joseph; Gerig, Guido
2014-03-01
Understanding the growth patterns of the early brain is crucial to the study of neuro-development. In the early stages of brain growth, a rapid sequence of biophysical and chemical processes take place. A crucial component of these processes, known as myelination, consists of the formation of a myelin sheath around a nerve fiber, enabling the effective transmission of neural impulses. As the brain undergoes myelination, there is a subsequent change in the contrast between gray matter and white matter as observed in MR scans. In this work, gray-white matter contrast is proposed as an effective measure of appearance which is relatively invariant to location, scanner type, and scanning conditions. To validate this, contrast is computed over various cortical regions for an adult human phantom. MR (Magnetic Resonance) images of the phantom were repeatedly generated using different scanners, and at different locations. Contrast displays less variability over changing conditions of scan compared to intensity-based measures, demonstrating that it is less dependent than intensity on external factors. Additionally, contrast is used to analyze longitudinal MR scans of the early brain, belonging to healthy controls and Down's Syndrome (DS) patients. Kernel regression is used to model subject-specific trajectories of contrast changing with time. Trajectories of contrast changing with time, as well as time-based biomarkers extracted from contrast modeling, show large differences between groups. The preliminary applications of contrast based analysis indicate its future potential to reveal new information not covered by conventional volumetric or deformation-based analysis, particularly for distinguishing between normal and abnormal growth patterns.
Identification of posttraumatic growth trajectories in the first year after breast cancer surgery.
Wang, Ashley Wei-Ting; Chang, Cheng-Shyong; Chen, Shou-Tung; Chen, Dar-Ren; Hsu, Wen-Yau
2014-12-01
Empirical studies of the relationship between posttraumatic growth (PTG) and adjustment outcomes reveal a fairly inconclusive picture. We argue that the inconsistent findings are likely due to the heterogeneity of the PTG experience over time. In this regard, we predicted that individuals with different PTG trajectories vary in the level of adjustment and the correlational patterns between PTG and adjustment. Participants were 124 Taiwanese women who underwent surgery for breast cancer. Measures of PTG and adjustment variables, including positive affect, negative affect, mental and physical quality of life, anxiety, and depression, were assessed at 1 day and 3, 6, and 12 months after surgery. A group-based trajectory model was used to identify subpopulations of individuals who shared homogenous growth patterns. Then, we determined whether the trajectory predicted adjustment at 12 months after surgery. The correlations between PTG and adjustment outcomes were computed in each subpopulation across every time point. The patients were categorized into the following four groups, which showed very different patterns of PTG change over the first year after breast cancer surgery: stable high (27.4%), high decreasing (39.4%), low increasing (16.9%), and low decreasing (16.9%). Differences in the level of adjustment at 12 months and the patterns of the correlations across time were found among these latent subgroups This study was the first longitudinal examination of PTG trajectories and their different levels of adjustment. The findings support our argument that identifying distinct PTG trajectories can better determine the nature of the relationship between PTG and adjustment. Copyright © 2014 John Wiley & Sons, Ltd.
Eckert, Andrew J; Shahi, Hurshbir; Datwyler, Shannon L; Neale, David B
2012-08-01
Plant populations arrayed across sharp environmental gradients are ideal systems for identifying the genetic basis of ecologically relevant phenotypes. A series of five uplifted marine terraces along the northern coast of California represents one such system where morphologically distinct populations of lodgepole pine (Pinus contorta) are distributed across sharp soil gradients ranging from fertile soils near the coast to podzolic soils ca. 5 km inland. A total of 92 trees was sampled across four coastal marine terraces (N = 10-46 trees/terrace) located in Mendocino County, California and sequenced for a set of 24 candidate genes for growth and responses to various soil chemistry variables. Statistical analyses relying on patterns of nucleotide diversity were employed to identify genes whose diversity patterns were inconsistent with three null models. Most genes displayed patterns of nucleotide diversity that were consistent with null models (N = 19) or with the presence of paralogs (N = 3). Two genes, however, were exceptional: an aluminum responsive ABC-transporter with F(ST) = 0.664 and an inorganic phosphate transporter characterized by divergent haplotypes segregating at intermediate frequencies in most populations. Spatially variable natural selection along gradients of aluminum and phosphate ion concentrations likely accounted for both outliers. These results shed light on some of the genetic components comprising the extended phenotype of this ecosystem, as well as highlight ecotones as fruitful study systems for the detection of adaptive genetic variants.
NASA Astrophysics Data System (ADS)
Wharton, S.; Chasmer, L.; Falk, M.; Paw U, K.
2007-12-01
In this study, year-to-year variability in three of the major Pacific teleconnection patterns were examined to determine if CO2 and H2O fluxes at an old-growth forest in the Pacific Northwest were affected by climatic changes associated with these patterns. The three cycles examined are the Pacific Decadal Oscillation, Pacific/North American Oscillation and El Niño-Southern Oscillation. We centered our study on the Wind River Canopy Crane, an AmeriFlux tower located in a 500 year old conifer forest in southern Washington State. CO2 and H2O fluxes have been measured continuously for six years using the eddy covariance method. The objectives of this study are to: 1. determine to what extent teleconnection patterns influence measured CO2 and H2O fluxes through mechanistic anomalies; 2. ascertain if climatic shifts affect annual vegetation canopy characteristics; and 3. make comparisons at the local and regional scales using MODIS. The ecosystem was a significant sink of carbon (-207 gC m-2 year-1) in 1999 but turned into a large carbon source (+ 100 gC m-2 year-1) in 2003. NEE significantly (above the 95th CI) lags the PNA, ENSO and PDO indicating that these patterns affect the forest carbon budget across overlapping time scales. To ascertain the influence of atmospheric patterns on fluxes, we categorized the flux measurement years based on in-phase climate events (1999 = La Niña/cool PDO, 2003 = El Niño/warm PDO, 2000-2002, 2004 = neutral ENSO years). The results of this analysis indicate that the Pacific Ocean/atmospheric oscillation anomalies explain much of variance in annual NEE (R2 = 0.78 between NEE and the PDO, R2 = 0.87 for the PNA, and R2 = 0.56 for ENSO). Teleconnection patterns are found to be associated mostly with air temperature, precipitation, and incoming light radiation (cloudy vs. sunny conditions). Important meteorological driving mechanisms of fluxes include: water- use efficiency (WUE), light-use efficiency (LUE) and canopy structure parameters (e.g., fPAR). Tower-based fPAR was strongly related to NEE (R2 = 0.78) and climatic patterns (R2 = 0.84 with ENSO and R2 = 0.76 with PDO). Variability in fluxes may be a result of changes in the canopy structural characteristics; for example higher, fPAR (e.g., 2003) correlated well with increased respiration fluxes. MODIS data (200 km X 200 km area) were obtained to determine if anomalies in vegetation indices and canopy structure could be linked to teleconnection patterns at the site level and across the region. The MODIS-derived Enhanced Vegetation Index (EVI) correlated well with yearly cumulative NEE at the tower and regional EVI anomalies were strongly negatively correlated with the annual PDO index (R2 = 0.9). MODIS-derived fPAR product correlated with yearly variability in the PDO (R2 = 0.34) at the site level. Therefore, there is reasonable expectation that structural changes, as a result of climate variability during strongly positive or negative teleconnection patterns, will be observed in other parts of the Pacific Northwest. MODIS data is useful for identifying the effects of teleconnections across a regional scale.
Patterns of postnatal weight changes in infants with very low and extremely low birth weights.
Smith, S L; Kirchhoff, K T; Chan, G M; Squire, S J
1994-01-01
To describe (1) short-term postnatal weight loss and gain patterns in infants with very low and extremely low birth weights and (2) the variables that may affect these weight change patterns. Descriptive, retrospective review. University hospital in the intermountain western United States. Sixty-two charts of infants admitted to a university neonatal intensive care unit from July 1990 through November 1992 were reviewed. Infants who weighed 1000 grams or less were categorized as extremely low birth weight (ELBW) and infants weighing 1001 to 1500 grams were categorized as very low birth weight (VLBW). Each group was comprised of 31 infants. Fifty percent of the sample were male, and 50% were female. Eighty-five percent of the sample were Anglo-American, and 15% were non-Anglo-American. Data were collected on a three-part data collection tool and included demographic and treatment variables. A significant difference was found in the maximum percent weight lost between the two groups, with the ELBW group losing a mean of 14.77% of birth weight and the VLBW group losing a mean of 11.35% of birth weight (t = 2.45, p < 0.05). The day the infants reached their nadir weight was significantly different between the two groups. The ELBW group reached their nadir on day of life 7, and the VLBW group reached their nadir on day of life 6 (t = 2.00, p < 0.05). No significant difference was noted in the time to return to birth weight between the two groups, with a mean of 15 days to return to birth weight. Factors associated with postnatal weight changes were intraventricular hemorrhage, use of diuretics and steroids, day of life when nadir weight occurred, and maximum percent of weight lost. Many of the independent variables were significantly interrelated to each other (r = -0.90 to r = 0.91, p < 0.01 to p < 0.001). However, only the variables that correlated with time to return to birth weight were entered into the regression analysis. These variables included number of days diuretics were given before return to birth weight, maximum percent of weight lost, and day of life the infants reached their nadir weight. Number of days diuretics were given before return to birth weight correlated significantly with time to return to birth weight (r = 0.77, F = 26.66, p < 0.0001) although maximum percent of weight lost and day of life the infants reached their nadir weight had a minimal effect. Further research into the effects of diuretic therapy on weight changes in this population of infants may lead to interventions to minimize the negative effects of diuretics on return to birth weight. In addition, the older growth charts may not be applicable to this population of infants. Generation of new growth charts that provide growth curves based on these data could be useful in developing nutritional therapies that would promote growth and possibly decrease the length of hospital stay for these infants.
NASA Astrophysics Data System (ADS)
Anger, K.; Harms, J.; Püschel, C.; Seeger, B.
1989-06-01
Larvae of the spider crab Hyas araneus were reared in the laboratory at constant conditions (12°C; 32‰S), and their feeding rate ( F), oxygen consumption ( R), nitrogen excretion ( U), and growth were measured in regular intervals of time during development from hatching to metamorphosis. Growth was measured as dry weight ( W), carbon ( C), nitrogen ( N), hydrogen ( H) protein, and lipid. All these physiological and biochemical traits revealed significant changes both from instar to instar and during individual larval moult cycles. Average F was low in the zoea I, reached a maximum in the zoea II, and decreased again in the megalopa. In the zoeal instars, it showed a bell-shaped pattern, with a maximum in the middle (zoea I) or during the first half of the moult cycle (zoea II). Maximum F in the megalopa was observed still earlier, during postmoult. Respiration ( R) increased in the zoeal instars as a linear function of time, whereas it showed a sinusoidal pattern in the megalopa. These findings on variation in F and R during larval development confirm results obtained in previous studies on H. araneus and other decapod species. Excretion ( U) was measured for the first time with a high temporal resolution in crab larvae. It showed in all three larval instars a bell-shaped variation pattern, with a maximum near the middle of the moult cycle, and significantly increasing average values from instar to instar. The atomic O/N ratio followed an inverse pattern, suggesting a maximum utilization of protein as a metabolic substrate during intermoult. Growth data from the present study and from a number of previous studies were compiled, showing consistency of growth patterns, but a considerable degree of variability between larvae from different hatches reared under identical conditions. The data show the following consistent tendencies: during the first part of each larval moult cycle (in postmoult, partly in intermoult), lipids are accumulated at a higher rate than protein, whereas an inverse growth patterns is typical of the later (premoult) stages. These two different growth phases are interpreted as periods dominated by reserve accumulation in the hepatopancreas, and epidermal growth and reconstruction (morphogenesis), respectively. Differences between individual larval instars in average biochemical composition and growth patterns may be related to different strategies: the zoeal instars and the early megalopa are pelagic feeding stages, accumulating energy reserves (principally lipids) necessary for the completion of larval development, whereas the later (premoult) megalopa is a semibenthic settling stage that converts a significant part of this energy to epidermal protein. The megalopa shifts in behaviour and energy partitioning from intense feeding activity and body growth to habitat selection and morphogenesis, preparing itself for metamorphosis, i.e. it shows an increasing degree of lecithotrophy. Data from numerous parallel elemental and biochemical analyses are compiled to show quantitative relationships between W, C, N, H, lipid, and protein. These regressions may be used as empirical conversion equations for estimates of single chemical components in larval Hyas araneus, and, possibly, other decapods.
Yoshioka, Reyn M; Kim, Catherine J S; Tracy, Allison M; Most, Rebecca; Harvell, C Drew
2016-03-15
Sewage pollution threatens the health of coastal populations and ecosystems, including coral reefs. We investigated spatial patterns of sewage pollution in Puako, Hawaii using enterococci concentrations and δ(15)N Ulva fasciata macroalgal bioassays to assess relationships with the coral disease Porites lobata growth anomalies (PGAs). PGA severity and enterococci concentrations were high, spatially variable, and positively related. Bioassay algal δ(15)N showed low sewage pollution at the reef edge while high values of resident algae indicated sewage pollution nearshore. Neither δ(15)N metric predicted PGA measures, though bioassay δ(15)N was negatively related to coral cover. Furthermore, PGA prevalence was much higher than previously recorded in Hawaii and the greater Indo-Pacific, highlighting Puako as an area of concern. Although further work is needed to resolve the relationship between sewage pollution and coral cover and disease, these results implicate sewage pollution as a contributor to diminished reef health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Growth Modeling with Non-Ignorable Dropout: Alternative Analyses of the STAR*D Antidepressant Trial
Muthén, Bengt; Asparouhov, Tihomir; Hunter, Aimee; Leuchter, Andrew
2011-01-01
This paper uses a general latent variable framework to study a series of models for non-ignorable missingness due to dropout. Non-ignorable missing data modeling acknowledges that missingness may depend on not only covariates and observed outcomes at previous time points as with the standard missing at random (MAR) assumption, but also on latent variables such as values that would have been observed (missing outcomes), developmental trends (growth factors), and qualitatively different types of development (latent trajectory classes). These alternative predictors of missing data can be explored in a general latent variable framework using the Mplus program. A flexible new model uses an extended pattern-mixture approach where missingness is a function of latent dropout classes in combination with growth mixture modeling using latent trajectory classes. A new selection model allows not only an influence of the outcomes on missingness, but allows this influence to vary across latent trajectory classes. Recommendations are given for choosing models. The missing data models are applied to longitudinal data from STAR*D, the largest antidepressant clinical trial in the U.S. to date. Despite the importance of this trial, STAR*D growth model analyses using non-ignorable missing data techniques have not been explored until now. The STAR*D data are shown to feature distinct trajectory classes, including a low class corresponding to substantial improvement in depression, a minority class with a U-shaped curve corresponding to transient improvement, and a high class corresponding to no improvement. The analyses provide a new way to assess drug efficiency in the presence of dropout. PMID:21381817
NASA Astrophysics Data System (ADS)
McPherson, Dacia; Zhu, Chenhui; Yi, Youngwoo; Clark, Noel
2007-03-01
In this study the elastic spring constant of the yeast cell wall is probed with the atomic force microscope (AFM) under variable conditions. Cells were sequentially analyzed in rich growth medium (YPD), a 0.8 M NaCl rich growth medium solution and an injection of 0.01% sodium azide solution. Cells in late log phase, which have variable diameters within three to five microns, were immobilized on a patterned silicon substrate with holes approximately 3.8um in diameter and 1.5um deep that was functionalized with polyethylenimine prior to cell application. Force curves were taken moving laterally across the cell in one dimension after exposure to each medium. Spring constants of the cells, calculated from force curves, displayed a positional dependency and marked differences in high osmolarity medium and after the injection of sodium azide. This study demonstrates the ability of the AFM to investigate changes in cell morphology and correlate those findings to underlying physiological processes.
Futter, M N; Löfgren, S; Köhler, S J; Lundin, L; Moldan, F; Bringmark, L
2011-12-01
Surface water concentrations of dissolved organic carbon ([DOC]) are changing throughout the northern hemisphere due to changes in climate, land use and acid deposition. However, the relative importance of these drivers is unclear. Here, we use the Integrated Catchments model for Carbon (INCA-C) to simulate long-term (1996-2008) streamwater [DOC] at the four Swedish integrated monitoring (IM) sites. These are unmanaged headwater catchments with old-growth forests and no major changes in land use. Daily, seasonal and long-term variations in streamwater [DOC] driven by runoff, seasonal temperature and atmospheric sulfate (SO₄(2-)) deposition were observed at all sites. Using INCA-C, it was possible to reproduce observed patterns of variability in streamwater [DOC] at the four IM sites. Runoff was found to be the main short-term control on [DOC]. Seasonal patterns in [DOC] were controlled primarily by soil temperature. Measured SO₄(2-) deposition explained some of the long-term [DOC] variability at all sites.
Landsat thematic mapper (TM) soil variability analysis over Webster County, Iowa
NASA Technical Reports Server (NTRS)
Thompson, D. R.; Henderson, K. E.; Pitts, D. E.
1984-01-01
Thematic mapper simulator (TMS) data acquired June 7, June 23, and July 31, 1982, and Landsat thematic mapper (TM) data acquired August 2, September 3, and October 21, 1982, over Webster County, Iowa, were examined for within-field soil effects on corn and soybean spectral signatures. It was found that patterns displayed on various computer-generated map products were in close agreement with the detailed soil survey of the area. The difference in spectral values appears to be due to a combination of subtle soil properties and crop growth patterns resulting from the different soil properties. Bands 4 (0.76-.90 micron), 5 (1.55-1.75 micron), and 7 (2.08-2.35 micron) were found to be responding to the within-field soil variability even with increasing ground cover. While these results are preliminary, they do indicate that the soil influence on the vegetation is being detected by TM and should provide improved information relating to crop and soil properties.
Proceedings of a Seminar on Water Quality Data Interpretation, 8-9 February 1978, Atlanta, Georgia.
1978-01-01
patterns of growth are confused by variable rates of mortality and internal translocations of mass above and below ground. The oxygen technique...top of the heavier 40 C water. Second and more important, the density of water decreases with an escalating rate with increasing temperatures above...including the amount of oxidizable material, the settling rate of the oxidizable material, the water temperature, and the bottom profile and depth of
Coral calcifying fluid pH dictates response to ocean acidification.
Holcomb, M; Venn, A A; Tambutté, E; Tambutté, S; Allemand, D; Trotter, J; McCulloch, M
2014-06-06
Ocean acidification driven by rising levels of CO2 impairs calcification, threatening coral reef growth. Predicting how corals respond to CO2 requires a better understanding of how calcification is controlled. Here we show how spatial variations in the pH of the internal calcifying fluid (pHcf) in coral (Stylophora pistillata) colonies correlates with differential sensitivity of calcification to acidification. Coral apexes had the highest pHcf and experienced the smallest changes in pHcf in response to acidification. Lateral growth was associated with lower pHcf and greater changes with acidification. Calcification showed a pattern similar to pHcf, with lateral growth being more strongly affected by acidification than apical. Regulation of pHcf is therefore spatially variable within a coral and critical to determining the sensitivity of calcification to ocean acidification.
NASA Astrophysics Data System (ADS)
Mantua, N. J.
2004-12-01
Many investigators have examined historical surface climate records from the Pacific sector and identified a relatively small number of spatial patterns varying at decadal to interdecadal time scales. "Pacific Decadal Variability" (PDV) is a label that has been used to describe this family of climate variations. Some patterns of PDV are contained completely within the northern extratropics, while others have signatures throughout the Pacific hemisphere on both sides of the equator. Mechanisms for observed patterns of PDV are not yet known, though a wide variety of hypotheses have been proposed. Various ocean-atmosphere mechanisms for PDV are contained within the extratropics, others within the tropics, while others involve tropical-extratropical interactions. Some investigators have proposed external forcing (solar, lunar, or volcanic) as potentially important for driving PDV. A relatively simple hypothesis couples ENSO forcing with upper ocean heat storage for extratropical PDV, and it suggests PDV predictability may be limited to ~2 year lead times. Paleo-PDV reconstructions have been based on materials throughout the Pacific sector using such things as extratropical tree-rings, tropical corals, extratropical clam shell growth rings, and ice cores. These different proxy records have generally provided different perspectives on paleo-PDV behavior.
Early markers of adult obesity: a review
Brisbois, T D; Farmer, A P; McCargar, L J
2012-01-01
Summary The purpose of this review was to evaluate factors in early childhood (≤5 years of age) that are the most significant predictors of the development of obesity in adulthood. Factors of interest included exposures/insults in the prenatal period, infancy and early childhood, as well as other socio-demographic variables such as socioeconomic status (SES) or birth place that could impact all three time periods. An extensive electronic and systematic search initially resulted in 8,880 citations, after duplicates were removed. Specific inclusion and exclusion criteria were set, and following two screening processes, 135 studies were retained for detailed abstraction and analysis. A total of 42 variables were associated with obesity in adulthood; however, of these, only seven variables may be considered as potential early markers of obesity based on the reported associations. Possible early markers of obesity included maternal smoking and maternal weight gain during pregnancy. Probable early markers of obesity included maternal body mass index, childhood growth patterns (early rapid growth and early adiposity rebound), childhood obesity and father's employment (a proxy measure for SES in many studies). Health promotion programmes/agencies should consider these factors as reasonable targets to reduce the risk of adult obesity. PMID:22171945
Early-warning signals for catastrophic soil degradation
NASA Astrophysics Data System (ADS)
Karssenberg, Derek
2010-05-01
Many earth systems have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been described, among others, for climate, vegetation, animal populations, and geomorphology. Predicting the timing of critical transitions before they are reached is of importance because of the large impact on nature and society associated with the transition. However, it is notably difficult to predict the timing of a transition. This is because the state variables of the system show little change before the threshold is reached. As a result, the precision of field observations is often too low to provide predictions of the timing of a transition. A possible solution is the use of spatio-temporal patterns in state variables as leading indicators of a transition. It is becoming clear that the critically slowing down of a system causes spatio-temporal autocorrelation and variance to increase before the transition. Thus, spatio-temporal patterns are important candidates for early-warning signals. In this research we will show that these early-warning signals also exist in geomorphological systems. We consider a modelled vegetation-soil system under a gradually increasing grazing pressure causing an abrupt shift towards extensive soil degradation. It is shown that changes in spatio-temporal patterns occur well ahead of this catastrophic transition. A distributed model describing the coupled processes of vegetation growth and geomorphological denudation is adapted. The model uses well-studied simple process representations for vegetation and geomorphology. A logistic growth model calculates vegetation cover as a function of grazing pressure and vegetation growth rate. Evolution of the soil thickness is modelled by soil creep and wash processes, as a function of net rain reaching the surface. The vegetation and soil system are coupled by 1) decreasing vegetation growth with decreasing soil thickness and 2) increasing soil wash with decreasing vegetation cover. The model describes a critical, catastrophic transition of an underexploited system with low grazing pressure towards an overexploited system. The underexploited state has high vegetation cover and well developed soils, while the overexploited state has low vegetation cover and largely degraded soils. We first show why spatio-temporal patterns in vegetation cover, morphology, erosion rate, and sediment load should be expected to change well before the critical transition towards the overexploited state. Subsequently, spatio-temporal patterns are quantified by calculating statistics, in particular first order statistics and autocorrelation in space and time. It is shown that these statistics gradually change before the transition is reached. This indicates that the statistics may serve as early-warning signals in real-world applications. We also discuss the potential use of remote sensing to predict the critical transition in real-world landscapes.
Turing patterns and a stochastic individual-based model for predator-prey systems
NASA Astrophysics Data System (ADS)
Nagano, Seido
2012-02-01
Reaction-diffusion theory has played a very important role in the study of pattern formations in biology. However, a group of individuals is described by a single state variable representing population density in reaction-diffusion models and interaction between individuals can be included only phenomenologically. Recently, we have seamlessly combined individual-based models with elements of reaction-diffusion theory. To include animal migration in the scheme, we have adopted a relationship between the diffusion and the random numbers generated according to a two-dimensional bivariate normal distribution. Thus, we have observed the transition of population patterns from an extinction mode, a stable mode, or an oscillatory mode to the chaotic mode as the population growth rate increases. We show our phase diagram of predator-prey systems and discuss the microscopic mechanism for the stable lattice formation in detail.
Dynamos driven by weak thermal convection and heterogeneous outer boundary heat flux
NASA Astrophysics Data System (ADS)
Sahoo, Swarandeep; Sreenivasan, Binod; Amit, Hagay
2016-01-01
We use numerical dynamo models with heterogeneous core-mantle boundary (CMB) heat flux to show that lower mantle lateral thermal variability may help support a dynamo under weak thermal convection. In our reference models with homogeneous CMB heat flux, convection is either marginally supercritical or absent, always below the threshold for dynamo onset. We find that lateral CMB heat flux variations organize the flow in the core into patterns that favour the growth of an early magnetic field. Heat flux patterns symmetric about the equator produce non-reversing magnetic fields, whereas anti-symmetric patterns produce polarity reversals. Our results may explain the existence of the geodynamo prior to inner core nucleation under a tight energy budget. Furthermore, in order to sustain a strong geomagnetic field, the lower mantle thermal distribution was likely dominantly symmetric about the equator.
Radial growth of Qilian juniper on the Northeast Tibetan Plateau and potential climate associations.
Qin, Chun; Yang, Bao; Melvin, Thomas M; Fan, Zexin; Zhao, Yan; Briffa, Keith R
2013-01-01
There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110-2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes.
Radial Growth of Qilian Juniper on the Northeast Tibetan Plateau and Potential Climate Associations
Qin, Chun; Yang, Bao; Melvin, Thomas M.; Fan, Zexin; Zhao, Yan; Briffa, Keith R.
2013-01-01
There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110–2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes. PMID:24244488
Advances in pubertal growth and factors influencing it: Can we increase pubertal growth?
Soliman, Ashraf; De Sanctis, Vincenzo; Elalaily, Rania; Bedair, Said
2014-01-01
Puberty is a period of development characterized by partially concurrent changes which includes growth acceleration, alteration in body composition and appearance of secondary sex characteristics. Puberty is characterized by an acceleration and then deceleration in skeletal growth. The initiation, duration and amount of growth vary considerably during the growth spurt. Pubertal growth and biological maturation are dynamic processes regulated by a variety of genetic and environmental factors. Changes in skeletal maturation and bone mineral accretion concomitant with the stage of pubertal development constitute essential components in the evaluation of growth during this pubertal period. Genetic, endocrine and nutritional factors and ethnicity contribute variably to the amount of growth gained during this important period of rapid changes. Many studies investigated the possibility of increasing pubertal growth to gain taller final adult height in adolescents with idiopathic short stature (ISS). The pattern of pubertal growth, its relation to sex maturity rating and factors affecting them has been addressed in this review. The results of different trials to increase final adult height of adolescents using different hormones have been summarized. These data enables Endocrinologists to give in-depth explanations to patients and families about the efficacy and clinical significance as well as the safety of using these therapies in the treatment of adolescents with ISS. PMID:25538878
Short stature in children: Pattern and frequency in a pediatric clinic, Riyadh, Saudi Arabia.
Al-Jurayyan N, Nasir A; Mohamed, Sarar H; Al Otaibi, Hessah M; Al Issa, Sharifah T; Omer, Hala G
2012-01-01
Longitudinal growth assessment is essential in child care. Short stature can be promptly recognized only with accurate measurements of growth and critical analysis of growth data. The objective of this study was to determine the pattern of short stature among patients referred to an endocrine pediatric clinic, King Khalid University Hospital (KKUH), Riyadh, Saudi Arabia and to ascertain the aetiological profile of short stature. This is a retrospective review of patients referred to a pediatric endocrine clinic with short stature during the period January 1990 and December 2009. After a proper detailed medical history, growth analysis and physical examination, followed by a radiological (bone age) and laboratory screening (complete blood count and thyroid function). Growth hormone stimulation tests were performed when indicated. Magnetic resonance imaging (MRI) of the pituitary was performed when necessary. As well, celiac screening and small bowel biopsy were performed when appropriate. During the period under review, hundred and ten patients were evaluated for short stature. Their age ranged from 2 years and six months to 4 years. The male to female ratio was 1.3:1. The commonest etiology was genetic short stature found in 57 (51.8%) patients, while in the other 53 (48.2%) patients, variable endocrine and nutritional causes were noted. Short stature was a common referral. A wide variety of etiological diagnosis was noticed with genetic short stature being the commonest. A wide variety of endocrine causes were evident, with growth hormone deficiency, as a results of different etiologies, being the commonest.
NASA Astrophysics Data System (ADS)
Anderson, Donald M.; Couture, Darcie A.; Kleindinst, Judith L.; Keafer, Bruce A.; McGillicuddy, Dennis J., Jr.; Martin, Jennifer L.; Richlen, Mindy L.; Hickey, J. Michael; Solow, Andrew R.
2014-05-01
A major goal in harmful algal bloom (HAB) research has been to identify mechanisms underlying interannual variability in bloom magnitude and impact. Here the focus is on variability in Alexandrium fundyense blooms and paralytic shellfish poisoning (PSP) toxicity in Maine, USA, over 34 years (1978-2011). The Maine coastline was divided into two regions - eastern and western Maine, and within those two regions, three measures of PSP toxicity (the percent of stations showing detectable toxicity over the year, the cumulative amount of toxicity per station measured in all shellfish (mussel) samples during that year, and the duration of measurable toxicity) were examined for each year in the time series. These metrics were combined into a simple HAB Index that provides a single measure of annual toxin severity across each region. The three toxin metrics, as well as the HAB Index that integrates them, reveal significant variability in overall toxicity between individual years as well as long-term, decadal patterns or regimes. Based on different conceptual models of the system, we considered three trend formulations to characterize the long-term patterns in the Index - a three-phase (mean-shift) model, a linear two-phase model, and a pulse-decline model. The first represents a “regime shift” or multiple equilibria formulation as might occur with alternating periods of sustained high and low cyst abundance or favorable and unfavorable growth conditions, the second depicts a scenario of more gradual transitions in cyst abundance or growth conditions of vegetative cells, and the third characterizes a ”sawtooth” pattern in which upward shifts in toxicity are associated with major cyst recruitment events, followed by a gradual but continuous decline until the next pulse. The fitted models were compared using both residual sum of squares and Akaike's Information Criterion. There were some differences between model fits, but none consistently gave a better fit than the others. This statistical underpinning can guide efforts to identify physical and/or biological mechanisms underlying the patterns revealed by the HAB Index. Although A. fundyense cyst survey data (limited to 9 years) do not span the entire interval of the shellfish toxicity records, this analysis leads us to hypothesize that major changes in the abundance of A. fundyense cysts may be a primary factor contributing to the decadal trends in shellfish toxicity in this region. The HAB Index approach taken here is simple but represents a novel and potentially useful tool for resource managers in many areas of the world subject to toxic HABs.
Anderson, Donald M.; Couture, Darcie A.; Kleindinst, Judith L.; Keafer, Bruce A.; McGillicuddy, Dennis J.; Martin, Jennifer L.; Richlen, Mindy L.; Hickey, J. Michael; Solow, Andrew R.
2013-01-01
A major goal in harmful algal bloom (HAB) research has been to identify mechanisms underlying interannual variability in bloom magnitude and impact. Here the focus is on variability in Alexandrium fundyense blooms and paralytic shellfish poisoning (PSP) toxicity in Maine, USA, over 34 years (1978 – 2011). The Maine coastline was divided into two regions -eastern and western Maine, and within those two regions, three measures of PSP toxicity (the percent of stations showing detectable toxicity over the year, the cumulative amount of toxicity per station measured in all shellfish (mussel) samples during that year, and the duration of measurable toxicity) were examined for each year in the time series. These metrics were combined into a simple HAB Index that provides a single measure of annual toxin severity across each region. The three toxin metrics, as well as the HAB Index that integrates them, reveal significant variability in overall toxicity between individual years as well as long-term, decadal patterns or regimes. Based on different conceptual models of the system, we considered three trend formulations to characterize the long-term patterns in the Index – a three-phase (mean-shift) model, a linear two-phase model, and a pulse-decline model. The first represents a “regime shift” or multiple equilibria formulation as might occur with alternating periods of sustained high and low cyst abundance or favorable and unfavorable growth conditions, the second depicts a scenario of more gradual transitions in cyst abundance or growth conditions of vegetative cells, and the third characterizes a ”sawtooth” pattern in which upward shifts in toxicity are associated with major cyst recruitment events, followed by a gradual but continuous decline until the next pulse. The fitted models were compared using both residual sum of squares and Akaike's Information Criterion. There were some differences between model fits, but none consistently gave a better fit than the others. This statistical underpinning can guide efforts to identify physical and/or biological mechanisms underlying the patterns revealed by the HAB Index. Although A. fundyense cyst survey data (limited to 9 years) do not span the entire interval of the shellfish toxicity records, this analysis leads us to hypothesize that major changes in the abundance of A. fundyense cysts may be a primary factor contributing to the decadal trends in shellfish toxicity in this region. The HAB Index approach taken here is simple but represents a novel and potentially useful tool for resource managers in many areas of the world subject to toxic HABs. PMID:24948849
NASA Astrophysics Data System (ADS)
Macalady, Alison Kelly
Forests play an important role in the earth system, regulating climate, maintaining biodiversity, and provisioning human communities with water, food and fuel. Interactions between climate and forest dynamics are not well constrained, and high uncertainty characterizes projections of global warming impacts on forests and associated ecosystem services. Recently observed tree mortality and forest die-off forewarn an acceleration of forest change with rising temperature and increased drought. However, the processes leading to tree death during drought are poorly understood, limiting our ability to anticipate future forest dynamics. The objective of this dissertation was to improve understanding of drought-associated tree mortality through literature synthesis and tree-ring studies on trees that survived and died during droughts in the southwestern USA. Specifically, this dissertation 1) documented global tree mortality patterns and identified emerging trends and research gaps; 2) quantified relationships between growth, climate, competition and mortality of pinon pine during droughts in New Mexico; 3) investigated tree defense anatomy as a potentially key element in pinon avoidance of death; and, 4) characterized the climate sensitivity of pinon resin ducts in order to gain insight into potential trends in tree defenses with climate variability and change. There has been an increase in studies reporting tree mortality linked to drought, heat, and the associated activity of insects and pathogens. Cases span the forested continents and occurred in water, light and temperature-limited forests. We hypothesized that increased tree mortality may be an emerging global phenomenon related to rising temperatures and drought (Appendix A). Recent radial growth was 53% higher on average in pinon that survived versus died during two episodes of drought-associated mortality, and statistical models of mortality risk based on average growth, growth variability, and abrupt growth changes correctly classified the status of ˜70% of trees. Climate responses and competitive interactions partly explained growth differences between dying and surviving trees, with muted response to wet/cool conditions and enhanced sensitivity to competition from congeners linked to growth patterns associated with death. Discrimination and validation of models of mortality risk varied widely across sites and drought events, indicating shifting growth-mortality relationships and differences in mortality processes across space and time (Appendix B). Pre-formed defense anatomy is strongly associated with pinon survivorship over a range of sites and stand conditions. Models of mortality risk that account for both growth and resin duct attributes had ≈10 19 more support than models that contained only growth. The greatest improvement in classification was among trees from the 2000s drought, suggesting an enhanced role for tree defense allocation and/or bark beetle activity during recent warm versus historic cool drought. Accounting for defense characteristics and growth-defense allocation is likely to be important for improving representation of drought-associated mortality (Appendix C). Pinon resin duct chronologies contain climate responses that are coherent and distinct from those of radial growth. Growth responds positively and strongly to previous fall and current winter precipitation, and negatively to late spring and early summer temperature. A relatively equal positive resin duct response to winter precipitation and positive response to mid-to-late summer drought suggests that changes in climate will affect tree defense anatomy in complex ways, with the outcome determined by seasonal changes in precipitation and temperature (Appendix D).
Batchwise growth of silica cone patterns via self-assembly of aligned nanowires.
Luo, Shudong; Zhou, Weiya; Chu, Weiguo; Shen, Jun; Zhang, Zengxing; Liu, Lifeng; Liu, Dongfang; Xiang, Yanjuan; Ma, Wenjun; Xie, Sishen
2007-03-01
Silica-cone patterns self-assembled from well-aligned nanowires are synthesized using gallium droplets as the catalyst and silicon wafers as the silicon source. The cones form a triangular pattern array radially on almost the whole surface of the molten Ga ball. Detailed field-emission scanning electron microscopy (SEM) analysis shows that the cone-pattern pieces frequently slide off and are detached from the molten Ga ball surface, which leads to the exposure of the catalyst surface and the growth of a new batch of silicon oxide nanowires as well as the cone patterns. The processes of growth and detachment alternate, giving rise to the formation of a volcano-like or a flower-like structure with bulk-quantity pieces of cone patterns piled up around the Ga ball. Consequently, the cone-patterned layer grows batch by batch until the reaction is terminated. Different to the conventional metal-catalyzed growth model, the batch-by-batch growth of the triangular cone patterns proceeds on the molten Ga balls via alternate growth on and detachment from the catalyst surface of the patterns; the Ga droplet can be used continuously and circularly as an effective catalyst for the growth of amorphous SiO(x) nanowires during the whole growth period. The intriguing batchwise growth phenomena may enrich our understanding of the vapour-liquid-solid (VLS) growth mechanism for the catalyst growth of nanowires or other nanostructures and may offer a different way of self-assembling novel silica nanostructures.
Liang, Liang; Schwartz, Mark D
2014-10-01
Variation in the timing of plant phenology caused by phenotypic plasticity is a sensitive measure of how organisms respond to weather and climate variability. Although continental-scale gradients in climate and consequential patterns in plant phenology are well recognized, the contribution of underlying genotypic difference to the geography of phenology is less well understood. We hypothesize that different temperate plant genotypes require varying amount of heat energy for resuming annual growth and reproduction as a result of adaptation and other ecological and evolutionary processes along climatic gradients. In particular, at least for some species, the growing degree days (GDD) needed to trigger the same spring phenology events (e.g., budburst and flower bloom) may be less for individuals originated from colder climates than those from warmer climates. This variable intrinsic heat energy requirement in plants can be characterized by the term growth efficiency and is quantitatively reflected in the timing of phenophases-earlier timing indicates higher efficiency (i.e., less heat energy needed to trigger phenophase transitions) and vice versa compared to a standard reference (i.e., either a uniform climate or a uniform genotype). In this study, we tested our hypothesis by comparing variations of budburst and bloom timing of two widely documented plants from the USA National Phenology Network (i.e., red maple-Acer rubrum and forsythia-Forsythia spp.) with cloned indicator plants (lilac-Syringa x chinensis 'Red Rothomagensis') at multiple eastern US sites. Our results indicate that across the accumulated temperature gradient, the two non-clonal plants showed significantly more gradual changes than the cloned plants, manifested by earlier phenology in colder climates and later phenology in warmer climates relative to the baseline clone phenological response. This finding provides initial evidence supporting the growth efficiency hypothesis, and suggests more work is warranted. More studies investigating genotype-determined phenological variations will be useful for better understanding and prediction of the continental-scale patterns of biospheric responses to climate change.
A model of clearance rate regulation in mussels
NASA Astrophysics Data System (ADS)
Fréchette, Marcel
2012-10-01
Clearance rate regulation has been modelled as an instantaneous response to food availability, independent of the internal state of the animals. This view is incompatible with latent effects during ontogeny and phenotypic flexibility in clearance rate. Internal-state regulation of clearance rate is required to account for these patterns. Here I develop a model of internal-state based regulation of clearance rate. External factors such as suspended sediments are included in the model. To assess the relative merits of instantaneous regulation and internal-state regulation, I modelled blue mussel clearance rate and growth using a DEB model. In the usual standard feeding module, feeding is governed by a Holling's Type II response to food concentration. In the internal-state feeding module, gill ciliary activity and thus clearance rate are driven by internal reserve level. Factors such as suspended sediments were not included in the simulations. The two feeding modules were compared on the basis of their ability to capture the impact of latent effects, of environmental heterogeneity in food abundance and of physiological flexibility on clearance rate and individual growth. The Holling feeding module was unable to capture the effect of any of these sources of variability. In contrast, the internal-state feeding module did so without any modification or ad hoc calibration. Latent effects, however, appeared transient. With simple annual variability in temperature and food concentration, the relationship between clearance rate and food availability predicted by the internal-state feeding module was quite similar to that observed in Norwegian fjords. I conclude that in contrast with the usual Holling feeding module, internal-state regulation of clearance rate is consistent with well-documented growth and clearance rate patterns.
Stature estimation from the lengths of the growing foot-a study on North Indian adolescents.
Krishan, Kewal; Kanchan, Tanuj; Passi, Neelam; DiMaggio, John A
2012-12-01
Stature estimation is considered as one of the basic parameters of the investigation process in unknown and commingled human remains in medico-legal case work. Race, age and sex are the other parameters which help in this process. Stature estimation is of the utmost importance as it completes the biological profile of a person along with the other three parameters of identification. The present research is intended to formulate standards for stature estimation from foot dimensions in adolescent males from North India and study the pattern of foot growth during the growing years. 154 male adolescents from the Northern part of India were included in the study. Besides stature, five anthropometric measurements that included the length of the foot from each toe (T1, T2, T3, T4, and T5 respectively) to pternion were measured on each foot. The data was analyzed statistically using Student's t-test, Pearson's correlation, linear and multiple regression analysis for estimation of stature and growth of foot during ages 13-18 years. Correlation coefficients between stature and all the foot measurements were found to be highly significant and positively correlated. Linear regression models and multiple regression models (with age as a co-variable) were derived for estimation of stature from the different measurements of the foot. Multiple regression models (with age as a co-variable) estimate stature with greater accuracy than the regression models for 13-18 years age group. The study shows the growth pattern of feet in North Indian adolescents and indicates that anthropometric measurements of the foot and its segments are valuable in estimation of stature in growing individuals of that population. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Poirier, Clément; Tessier, Bernadette; Chaumillon, Éric; Bertin, Xavier; Fruergaard, Mikkel; Mouazé, Dominique; Noël, Suzanne; Weill, Pierre; Wöppelmann, Guy
2017-03-01
Present-day coastal barriers represent around 15% of the world's oceanic shorelines, and play an important role as early warning indicators of environmental change. Among them, wave-dominated barriers are dynamic landforms that tend to migrate landward in response to storms and sea-level change. High rates of sediment supply can locally offset the global retrogradation trend, providing valuable records of past environmental change occurring on transgressive coasts. However, geochronological control limits the temporal resolution of such records to millennial or centennial timescales, and the decadal or even faster response of wave-built barriers to historical climate changes is therefore poorly understood. In this study, we show that shoreline dynamics of sand spits reconstructed from old cartographic documents has been synchronous on both margins of the North Atlantic Ocean since about 1800 CE. Spit growth accelerated drastically during three periods lasting about 15 years, characterised by positive North Atlantic Oscillation (NAO) and negative East Atlantic-West Russia (EA-WR) atmospheric circulation patterns. These changes are in phase with periods of increased volcanic activity. We use a high-resolution wave hindcast (1948-2014 CE) in a reference area to confirm the association between NAO and EA-WR as a proxy for offshore and nearshore wave height and for associated longshore sediment transport (LST) involved in spit growth. A 24-month lagged correlation between sediment transport and volcanic aerosol optical thickness (concentration of ashes in the atmosphere) is observed, suggesting that spit shoreline dynamics at the decadal timescale is partially forced by external climate drivers via cascading effects on atmospheric circulation patterns and wave climate. Our results imply that NAO variability alone is not sufficient to understand the evolution of wave-built coastal environments. The associated sediment record can be used to reconstruct multi-decadal variability of other climate patterns.
Wells, Jonathan C K; Figueiroa, José N; Alves, Joao G
2017-01-01
Patterns of fetal growth predict non-communicable disease risk in adult life, but fetal growth variability appears to have a relatively weak association with maternal nutritional dynamics during pregnancy. This challenges the interpretation of fetal growth variability as 'adaptation'. We hypothesized that associations of maternal size and nutritional status with neonatal size are mediated by the dimensions of the maternal pelvis. We analysed data on maternal height, body mass index (BMI) and pelvic dimensions (conjugate, inter-spinous and inter-cristal diameters) and neonatal gestational age, weight, length, thorax girth and head girth ( n = 224). Multiple regression analysis was used to identify independent maternal predictors of neonatal size, and the mediating role of neonatal head girth in these associations. Pelvic dimensions displaced maternal BMI as a predictor of birth weight, explaining 11.6% of the variance. Maternal conjugate and inter-spinous diameters predicted neonatal length, thorax girth and head girth, whereas inter-cristal diameter only predicted neonatal length. Associations of pelvic dimensions with birth length, but not birth weight, were mediated by neonatal head girth. Pelvic dimensions predicted neonatal size better than maternal BMI, and these associations were mostly independent of maternal height. Sensitivity of fetal growth to pelvic dimensions reduces the risk of cephalo-pelvic disproportion, potentially a strong selective pressure during secular trends in height. Selection on fetal adaptation to relatively inflexible components of maternal phenotype, rather than directly to external ecological conditions, may help explain high levels of growth plasticity during late fetal life and early infancy.
Population growth, human development, and deforestation in biodiversity hotspots.
Jha, S; Bawa, K S
2006-06-01
Human population and development activities affect the rate of deforestation in biodiversity hotspots. We quantified the effect of human population growth and development on rates of deforestation and analyzed the relationship between these causal factors in the 1980s and 1990s. We compared the averages of population growth, human development index (HDI, which measures income, health, and education), and deforestation rate and computed correlations among these variables for countries that contain biodiversity hotspots. When population growth was high and HDI was low there was a high rate of deforestation, but when HDI was high, rate of deforestation was low, despite high population growth. The correlation among variables was significant for the 1990s but not for the 1980s. The relationship between population growth and HDI had a regional pattern that reflected the historical process of development. Based on the changes in HDI and deforestation rate over time, we identified two drivers of deforestation: policy choice and human-development constraints. Policy choices that disregard conservation may cause the loss of forests even in countries that are relatively developed. Lack of development in other countries, on the other hand, may increase the pressure on forests to meet the basic needs of the human population. Deforestation resulting from policy choices may be easier to fix than deforestation arising from human development constraints. To prevent deforestation in the countries that have such constraints, transfer of material and intellectual resources from developed countries may be needed. Popular interest in sustainable development in developed countries can facilitate the transfer of these resources.
Liu, Bingxuan; Liu, Haiquan; Pan, Yingjie; Xie, Jing; Zhao, Yong
2016-01-01
Microbial growth variability plays an important role on food safety risk assessment. In this study, the growth kinetic characteristics corresponding to maximum specific growth rate (μmax) of 50 V. parahaemolyticus isolates from different sources and genotypes were evaluated at different temperatures (10, 20, 30, and 37°C) and salinity (0.5, 3, 5, 7, and 9%) using the automated turbidimetric system Bioscreen C. The results demonstrated that strain growth variability increased as the growth conditions became more stressful both in terms of temperature and salinity. The coefficient of variation (CV) of μmax for temperature was larger than that for salinity, indicating that the impact of temperature on strain growth variability was greater than that of salinity. The strains isolated from freshwater aquatic products had more conspicuous growth variations than those from seawater. Moreover, the strains with tlh (+) /tdh (+) /trh (-) exhibited higher growth variability than tlh (+) /tdh (-) /trh (-) or tlh (+) /tdh (-) /trh (+), revealing that gene heterogeneity might have possible relations with the growth variability. This research illustrates that the growth environments, strain sources as well as genotypes have impacts on strain growth variability of V. parahaemolyticus, which can be helpful for incorporating strain variability in predictive microbiology and microbial risk assessment.
Liu, Bingxuan; Liu, Haiquan; Pan, Yingjie; Xie, Jing; Zhao, Yong
2016-01-01
Microbial growth variability plays an important role on food safety risk assessment. In this study, the growth kinetic characteristics corresponding to maximum specific growth rate (μmax) of 50 V. parahaemolyticus isolates from different sources and genotypes were evaluated at different temperatures (10, 20, 30, and 37°C) and salinity (0.5, 3, 5, 7, and 9%) using the automated turbidimetric system Bioscreen C. The results demonstrated that strain growth variability increased as the growth conditions became more stressful both in terms of temperature and salinity. The coefficient of variation (CV) of μmax for temperature was larger than that for salinity, indicating that the impact of temperature on strain growth variability was greater than that of salinity. The strains isolated from freshwater aquatic products had more conspicuous growth variations than those from seawater. Moreover, the strains with tlh+/tdh+/trh− exhibited higher growth variability than tlh+/tdh−/trh− or tlh+/tdh−/trh+, revealing that gene heterogeneity might have possible relations with the growth variability. This research illustrates that the growth environments, strain sources as well as genotypes have impacts on strain growth variability of V. parahaemolyticus, which can be helpful for incorporating strain variability in predictive microbiology and microbial risk assessment. PMID:27446034
An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico.
Guillette, E A; Meza, M M; Aquilar, M G; Soto, A D; Garcia, I E
1998-01-01
In this comparative study, we compensated for many of the known variables that influence children's growth and development by selecting two groups of 4-5-year-old Yaqui children who reside in the Yaqui Valley of northwestern Mexico. These children share similar genetic backgrounds, diets, water mineral contents, cultural patterns, and social behaviors. The major difference was their exposure to pesticides. Pesticides have been applied to the agricultural area of the valley since the late 1940s. In 1990, high levels of multiple pesticides were found in the cord blood of newborns and in breast milk. Building on anthropological methods for rapid rural appraisal of problems within the environment, a Rapid Assessment Tool for Preschool Children (RATPC) was developed to measure growth and development. The children of the agrarian region were compared to children living in the foothills, where pesticide use is avoided. The RATPC measured varied aspects of physical growth and abilities to perform, or function in, normal childhood activities. No differences were found in growth patterns. Functionally, the exposed children demonstrated decreases in stamina, gross and fine eye-hand coordination, 30-minute memory, and the ability to draw a person. The RATPC also pointed out areas in which more in-depth research on the toxicology of pesticides would be valuable. Images Figure 1 Figure 2 PMID:9618351
Phenology, growth, and fecundity as determinants of distribution in closely related nonnative taxa
Marushia, Robin G.; Brooks, Matthew L.; Holt, Jodie S.
2012-01-01
Invasive species researchers often ask: Why do some species invade certain habitats while others do not? Ecological theories predict that taxonomically related species may invade similar habitats, but some related species exhibit contrasting invasion patterns. Brassica nigra, Brassica tournefortii, and Hirschfeldia incana are dominant, closely related nonnative species that have overlapping, but dissimilar, distributions. Brassica tournefortii is rapidly spreading in warm deserts of the southwestern United States, whereas B. nigra and H. incana are primarily limited to semiarid and mesic regions. We compared traits of B. tournefortii that might confer invasiveness in deserts with those of related species that have not invaded desert ecosystems. Brassica tournefortii, B. nigra and H. incana were compared in controlled experiments conducted outdoors in a mesic site (Riverside, CA) and a desert site (Blue Diamond, NV), and in greenhouses, over 3 yr. Desert and mesic B. tournefortii populations were also compared to determine whether locally adapted ecotypes contribute to desert invasion. Experimental variables included common garden sites and soil water availability. Response variables included emergence, growth, phenology, and reproduction. There was no evidence for B. tournefortii ecotypes, but B. tournefortii had a more rapid phenology than B. nigra or H. incana. Brassica tournefortii was less affected by site and water availability than B. nigra and H. incana, but was smaller and less fecund regardless of experimental conditions. Rapid phenology allows B. tournefortii to reproduce consistently under variable, stressful conditions such as those found in Southwestern deserts. Although more successful in milder, mesic ecosystems, B. nigra and H. incana may be limited by their ability to reproduce under desert conditions. Rapid phenology and drought response partition invasion patterns of nonnative mustards along a gradient of aridity in the southwestern United States, and may serve as a predictive trait for other potential invaders of arid and highly variable ecosystems.
Madrigal-González, Jaime; Andivia, Enrique; Zavala, Miguel A; Stoffel, Markus; Calatayud, Joaquín; Sánchez-Salguero, Raúl; Ballesteros-Cánovas, Juan
2018-06-14
Climate change can impair ecosystem functions and services in extensive dry forests worldwide. However, attribution of climate change impacts on tree growth and forest productivity is challenging due to multiple inter-annual patterns of climatic variability associated with atmospheric and oceanic circulations. Moreover, growth responses to rising atmospheric CO 2 , namely carbon fertilization, as well as size ontogenetic changes can obscure the climate change signature as well. Here we apply Structural Equation Models (SEM) to investigate the relative role of climate change on tree growth in an extreme Mediterranean environment (i.e., extreme in terms of the combination of sandy-unconsolidated soils and climatic aridity). Specifically, we analyzed potential direct and indirect pathways by which different sources of climatic variability (i.e. warming and precipitation trends, the North Atlantic Oscillation, [NAO]; the Mediterranean Oscillation, [MOI]; the Atlantic Mediterranean Oscillation, [AMO]) affect aridity through their control on local climate (in terms of mean annual temperature and total annual precipitation), and subsequently tree productivity, in terms of basal area increments (BAI). Our results support the predominant role of Diameter at Breast Height (DHB) as the main growth driver. In terms of climate, NAO and AMO are the most important drivers of tree growth through their control of aridity (via effects of precipitation and temperature, respectively). Furthermore and contrary to current expectations, our findings also support a net positive role of climate warming on growth over the last 50 years and suggest that impacts of climate warming should be evaluated considering multi-annual and multi-decadal periods of local climate defined by atmospheric and oceanic circulation in the North Atlantic. Copyright © 2018 Elsevier B.V. All rights reserved.
Wines, Michael P; Johnson, Valerie M; Lock, Brad; Antonio, Fred; Godwin, James C; Rush, Elizabeth M; Guyer, Craig
2015-01-01
Optimal husbandry techniques are desirable for any headstart program, but frequently are unknown for rare species. Here we describe key reproductive variables and determine optimal incubation temperature and diet diversity for Eastern Indigo Snakes (Drymarchon couperi) grown in laboratory settings. Optimal incubation temperature was estimated from two variables dependent on temperature, shell dimpling, a surrogate for death from fungal infection, and deviation of an egg from an ovoid shape, a surrogate for death from developmental anomalies. Based on these relationships and size at hatching we determined optimal incubation temperature to be 26°C. Additionally, we used incubation data to assess the effect of temperature on duration of incubation and size of hatchlings. We also examined hatchling diets necessary to achieve optimal growth over a 21-month period. These snakes exhibited a positive linear relationship between total mass eaten and growth rate, when individuals were fed less than 1711 g of prey, and displayed constant growth for individuals exceeding 1711 g of prey. Similarly, growth rate increased linearly with increasing diet diversity up to a moderately diverse diet, followed by constant growth for higher levels of diet diversity. Of the two components of diet diversity, diet evenness played a stronger role than diet richness in explaining variance in hatchling growth. These patterns document that our goal of satiating snakes was achieved for some individuals but not others and that diets in which total grams consumed over the first 21 months of life is distributed equivalently among at least three prey genera yielded the fastest growth rates for hatchling snakes. © 2015 Wiley Periodicals, Inc.
2011-01-01
Background Overweight and obesity are highly prevalent among American Indian children, especially those living on reservations. There is little scientific evidence about the effects of summer vacation on obesity development in children. The purpose of this study was to investigate the effects of summer vacation between kindergarten and first grade on growth in height, weight, and body mass index (BMI) for a sample of American Indian children. Methods Children had their height and weight measured in four rounds of data collection (yielded three intervals: kindergarten, summer vacation, and first grade) as part of a school-based obesity prevention trial (Bright Start) in a Northern Plains Indian Reservation. Demographic variables were collected at baseline from parent surveys. Growth velocities (Z-score units/year) for BMI, weight, and height were estimated and compared for each interval using generalized linear mixed models. Results The children were taller and heavier than median of same age counterparts. Height Z-scores were positively associated with increasing weight status category. The mean weight velocity during summer was significantly less than during the school year. More rapid growth velocity in height during summer than during school year was observed. Obese children gained less adjusted-BMI in the first grade after gaining more than their counterparts during the previous two intervals. No statistically significant interval effects were found for height and BMI velocities. Conclusions There was no indication of a significant summer effect on children's BMI. Rather than seasonal or school-related patterns, the predominant pattern indicated by weight-Z and BMI-Z velocities might be related to age or maturation. Trial registration Bright Start: Obesity Prevention in American Indian Children Clinical Trial Govt ID# NCT00123032 PMID:22192795
Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Stockwell, Jason D.; Yule, Daniel L.; Sass, Greg G.
2011-01-01
Diel vertical migrations are common among many aquatic species and are often associated with changing light levels. The underlying mechanisms are generally attributed to optimizing foraging efficiency or growth rates and avoiding predation risk (μ). The objectives of this study were to (1) assess seasonal and interannual changes in vertical migration patterns of three trophic levels in the Lake Superior pelagic food web and (2) examine the mechanisms underlying the observed variability by using models of foraging, growth, and μ. Our results suggest that the opossum shrimp Mysis diluviana, kiyi Coregonus kiyi, and siscowet lake trout Salvelinus namaycush migrate concurrently during each season, but spring migrations are less extensive than summer and fall migrations. In comparison with M. diluviana, kiyis, and siscowets, the migrations by ciscoes C. artedi were not as deep in the water column during the day, regardless of season. Foraging potential and μ probably drive the movement patterns of M. diluviana, while our modeling results indicate that movements by kiyis and ciscoes are related to foraging opportunity and growth potential and receive a lesser influence from μ. The siscowet is an abundant apex predator in the pelagia of Lake Superior and probably undertakes vertical migrations in the water column to optimize foraging efficiency and growth. The concurrent vertical movement patterns of most species are likely to facilitate nutrient transport in this exceedingly oligotrophic ecosystem, and they demonstrate strong linkages between predators and prey. Fishery management strategies should use an ecosystem approach and should consider how altering the densities of long-lived top predators produces cascading effects on the nutrient cycling and energy flow in lower trophic levels.
2015-01-01
The impact of living abroad is a topic that has intrigued researchers for almost a century, if not longer. While many acculturation phenomena have been studied over this time, the development of new research methods and statistical software in recent years means that these can be revisited and examined in a more rigorous manner. In the present study we were able to follow approximately 2,500 intercultural exchange students situated in over 50 different countries worldwide, over time both before and during their travel using online surveys. Advanced statistical analyses were employed to examine the course of sojourners stress and adjustment over time, its antecedents and consequences. By comparing a sojourner sample with a control group of nonsojourning peers we were able to highlight the uniqueness of the sojourn experience in terms of stress variability over time. Using Latent Class Growth Analysis to examine the nature of this variability revealed 5 distinct patterns of change in stress experienced by sojourners over the course of their exchange: a reverse J-curve, inverse U-curve, mild stress, minor relief, and resilience pattern. Antecedent explanatory variables for stress variability were examined using both variable-centered and person-centered analyses and evidence for the role of personality, empathy, cultural adaptation, and coping strategies was found in each case. Lastly, we examined the relationship between stress abroad with behavioral indicators of (mal)adjustment: number of family changes and early termination of the exchange program. PMID:26191963
Baumrind, S; Korn, E L; Isaacson, R J; West, E E; Molthen, R
1983-12-01
This article analyzes differences in the measured displacement of the condyle and of progonion when different vectors of force are delivered to the maxilla in the course of non-full-banded, Phase 1, mixed-dentition treatment for the correction of Class II malocclusion. The 238-case sample is identical to that for which changes in other parameters of facial form have been reported previously. Relative to superimposition on anterior cranial base and measured in a Frankfort-plane-determined coordinate system, we have attempted to identify and quantitate (1) the displacement of each structure which results from local remodeling and (2) the displacement of each structure which occurs as a secondary consequence of changes in other regions of the skull. We have also attempted to isolate treatment effects from those attributable to spontaneous growth and development. At the condyle, we note that in all three treatment groups and in the control group there is a small but real downward and backward displacement of the glenoid fossa. This change is not treatment induced but, rather, is associated with spontaneous growth and development. (See Fig. 5.) Some interesting differences in pattern of "growth at the condyle" were noted between samples. In the intraoral (modified activator) sample, there were small but statistically significant increases in growth rate as compared to the untreated group of Class II controls. To our surprise, similar statistically significant increases over the growth rate of the control group were noted in the cervical sample. (See Table III, variables 17 and 18.) Small but statistically significant differences between treatments were also noted in the patterns of change at pogonion. As compared to the untreated control group, the rate of total displacement in the modified activator group was significantly greater in the forward direction, while the rate of total displacement in the cervical group was significantly greater in the downward direction. There were no statistically significant differences in the rate of total displacement of pogonion between the high-pull sample and the control sample. (See Table IV, variables 21 and 22.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2012-12-01
Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil moisture remained in contrast to the measurements very responsive to precipitation with high soil moisture after precipitation events. This behavior indicates that the soil properties might have changed due to the formation of a surface crust or seal towards the end of the growing season. Spatial soil moisture patterns were investigated using a grid resolution of 150 meter. Spatial autocorrelation was computed on a daily basis using patterns of soil texture as well as transpiration and precipitation indices as co-variables. Spatial patterns of surface soil moisture are mostly determined by the structure of the soil properties (soil type) during winter, early growing season and after harvest of all crops. Later in the growing season, after establishment of a closed canopy the dependence of the soil moisture patterns on soil texture patterns becomes smaller and diminishes quickly after precipitation events, due to differences of the transpiration rate of the different crops. When changing the spatial scale of the analysis, the highest autocorrelation values can be found on a grid cell size between 450 and 1200 meters. Thus, small scale variability of transpiration induced by the land use pattern almost averages out, leaving the larger scale structure of soil properties to explain the soil moisture patterns.
NASA Astrophysics Data System (ADS)
Sarkar, Subhendu Sinha; Katiyar, Ajit K.; Sarkar, Arijit; Dhar, Achintya; Rudra, Arun; Khatri, Ravinder K.; Ray, Samit Kumar
2018-04-01
It is important to investigate the growth dynamics of Ge adatoms under different surface stress regimes of the patterned dielectric to control the selective growth of self-assembled Ge nanostructures on silicon. In the present work, we have studied the growth of Ge by molecular beam epitaxy on nanometer scale patterned Si3N4/Si(001) substrates generated using electron beam lithography. The pitch of the patterns has been varied to investigate its effect on the growth of Ge in comparison to un-patterned Si3N4. For the patterned Si3N4 film, Ge did not desorbed completely from the Si3N4 film and hence no site selective growth pattern is observed. Instead, depending upon the pitch, Ge growth has occurred in different growth modes around the openings in the Si3N4. For the un-patterned substrate, the morphology exhibits the occurrence of uniform 3D clustering of Ge adatoms on Si3N4 film. This variation in the growth modes of Ge is attributed to the variation of residual stress in the Si3N4 film for different pitch of holes, which has been confirmed theoretically through Comsol Multiphysics simulation. The variation in stress for different pitches resulted in modulation of surface energy of the Si3N4 film leading to the different growth modes of Ge.
Pattern formation with proportionate growth
NASA Astrophysics Data System (ADS)
Dhar, Deepak
It is a common observation that as baby animals grow, different body parts grow approximately at same rate. This property, called proportionate growth is remarkable in that it is not encountered easily outside biology. The models of growth that have been studied in Physics so far, e.g diffusion -limited aggregation, surface deposition, growth of crystals from melt etc. involve only growth at the surface, with the inner structure remaining frozen. Interestingly, patterns formed in growing sandpiles provide a very wide variety of patterns that show proportionate growth. One finds patterns with different features, with sharply defined boundaries. In particular, even with very simple rules, one can produce patterns that show striking resemblance to those seen in nature. We can characterize the asymptotic pattern exactly in some special cases. I will discuss in particular the patterns grown on noisy backgrounds. Supported by J. C. Bose fellowship from DST (India).
Weber, Denis; Schaefer, Dieter; Dorgerloh, Michael; Bruns, Eric; Goerlitz, Gerhard; Hammel, Klaus; Preuss, Thomas G; Ratte, Hans Toni
2012-04-01
A flow-through system was developed to investigate the effects of time-variable exposure of pesticides on algae. A recently developed algae population model was used for simulations supported and verified by laboratory experiments. Flow-through studies with Desmodesmus subspicatus and Pseudokirchneriella subcapitata under time-variable exposure to isoproturon were performed, in which the exposure patterns were based on the results of FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) model calculations for typical exposure situations via runoff or drain flow. Different types of pulsed exposure events were realized, including a whole range of repeated pulsed and steep peaks as well as periods of constant exposure. Both species recovered quickly in terms of growth from short-term exposure and according to substance dissipation from the system. Even at a peak 10 times the maximum predicted environmental concentration of isoproturon, only transient effects occurred on algae populations. No modified sensitivity or reduced growth was observed after repeated exposure. Model predictions of algal growth in the flow-through tests agreed well with the experimental data. The experimental boundary conditions and the physiological properties of the algae were used as the only model input. No calibration or parameter fitting was necessary. The combination of the flow-through experiments with the algae population model was revealed to be a powerful tool for the assessment of pulsed exposure on algae. It allowed investigating the growth reduction and recovery potential of algae after complex exposure, which is not possible with standard laboratory experiments alone. The results of the combined approach confirm the beneficial use of population models as supporting tools in higher-tier risk assessments of pesticides. Copyright © 2012 SETAC.
Family Planning and Deforestation: Evidence from the Ecuadorian Amazon.
Sellers, Samuel
2017-06-01
Despite an abundant body of literature exploring the relationship between population growth and forest cover change, comparatively little research has explored the forest cover impacts of family planning use, which is a key determinant of the rate of population growth in many developing country contexts. Using data from a farm-level panel survey in the Northern Ecuadorian Amazon, this paper addresses whether family planning use impacts forest cover change. Longitudinal model results show that after controlling for household life cycle and land use variables, family planning use did not have an independent effect on deforestation, reforestation, or net forest loss between 1990 and 2008. Forest cover change patterns appear indicative of farm life cycle effects. However, family planning use is associated with reduced subsequent fertility among households, suggesting that the relationship between population growth from births and forest cover change may be limited in this setting.
Family Planning and Deforestation: Evidence from the Ecuadorian Amazon
Sellers, Samuel
2017-01-01
Despite an abundant body of literature exploring the relationship between population growth and forest cover change, comparatively little research has explored the forest cover impacts of family planning use, which is a key determinant of the rate of population growth in many developing country contexts. Using data from a farm-level panel survey in the Northern Ecuadorian Amazon, this paper addresses whether family planning use impacts forest cover change. Longitudinal model results show that after controlling for household life cycle and land use variables, family planning use did not have an independent effect on deforestation, reforestation, or net forest loss between 1990 and 2008. Forest cover change patterns appear indicative of farm life cycle effects. However, family planning use is associated with reduced subsequent fertility among households, suggesting that the relationship between population growth from births and forest cover change may be limited in this setting. PMID:29056808
Adewoye, L O; Worobec, E A
1999-12-01
In response to low extracellular glucose concentration, Pseudomonas aeruginosa induces the expression of the outer membrane carbohydrate-selective OprB porin. The promoter region of the oprB gene was cloned into a lacZ transcriptional fusion vector, and the construct was mobilized into P. aeruginosa OprB-deficient strain, WW100, to evaluate additional environmental factors that influence OprB porin gene expression. Growth temperature, pH of the growth medium, salicylate concentration, and carbohydrate source were found to differentially influence porin expression. This expression pattern was compared to those of whole-cell [14C]glucose uptake under conditions of high osmolarity, ionicity, variable pH, growth temperatures, and carbohydrate source. These studies revealed that the high-affinity glucose transport genes are down-regulated by salicylic acid, differentially regulated by pH and temperature, and are specifically responsive to exogenous glucose induction.
Fundamental trade-offs generating the worldwide leaf economics spectrum.
Shipley, Bill; Lechowicz, Martin J; Wright, Ian; Reich, Peter B
2006-03-01
Recent work has identified a worldwide "economic" spectrum of correlated leaf traits that affects global patterns of nutrient cycling and primary productivity and that is used to calibrate vegetation-climate models. The correlation patterns are displayed by species from the arctic to the tropics and are largely independent of growth form or phylogeny. This generality suggests that unidentified fundamental constraints control the return of photosynthates on investments of nutrients and dry mass in leaves. Using novel graph theoretic methods and structural equation modeling, we show that the relationships among these variables can best be explained by assuming (1) a necessary trade-off between allocation to structural tissues versus liquid phase processes and (2) an evolutionary tradeoff between leaf photosynthetic rates, construction costs, and leaf longevity.
Moriya, Aya; Fukuwatari, Tsutomu; Shibata, Katsumi
2013-01-01
B-vitamins are important for producing energy from amino acids, fatty acids, and glucose. The aim of this study was to elucidate the effects of excess vitamin intake before starvation on body mass, organ mass, blood, and biological variables as well as on urinary excretion of riboflavin in rats. Adult rats were fed two types of diets, one with a low vitamin content (minimum vitamin diet for optimum growth) and one with a sufficient amount of vitamins (excess vitamin diet). Body mass, organ mass, and blood variables were not affected by excess vitamin intake before starvation. Interestingly, urinary riboflavin excretion showed a different pattern. Urine riboflavin in the excess vitamin intake group declined gradually during starvation, whereas it increased in the low vitamin intake group. Excess vitamin intake before starvation does not affect body mass, organ mass, or blood variables but does affect the urinary excretion of riboflavin in starving rats.
Cohort profile: Pacific Islands Families (PIF) growth study, Auckland, New Zealand
Rush, E; Oliver, M; Plank, L D; Taylor, S; Iusitini, L; Jalili-Moghaddam, S; Savila, F; Paterson, J; Tautolo, E
2016-01-01
Purpose This article profiles a birth cohort of Pacific children participating in an observational prospective study and describes the study protocol used at ages 14–15 years to investigate how food and activity patterns, metabolic risk and family and built environment are related to rates of physical growth of Pacific children. Participants From 2000 to 2015, the Pacific Islands Families Study has followed, from birth, the growth and development of over 1000 Pacific children born in Auckland, New Zealand. In 2014, 931 (66%) of the original cohort had field measures of body composition, blood pressure and glycated haemoglobin. A nested subsample (n=204) was drawn by randomly selecting 10 males and 10 females from each decile of body weight. These participants had measurement of body composition by dual-energy X-ray absorptiometry, food frequency, 6 min walk test and accelerometer-determined physical activity and sedentary behaviours, and blood biomarkers for metabolic disease such as diabetes. Built environment variables were generated from individual addresses. Findings to date Compared to the Centres for Disease Control and Prevention (CDC) reference population with mean SD scores (SDS) of 0, this cohort of 931 14-year-olds was taller, weighed more and had a higher body mass index (BMI) (mean SDS height >0.6, weight >1.6 and BMI >1.4). 7 of 10 youth were overweight or obese. The nested-sampling frame achieved an even distribution by body weight. Future plans Cross-sectional relationships between body size, fatness and growth rate, food patterns, activity patterns, pubertal development, risks for diabetes and hypertension and the family and wider environment will be examined. In addition, analyses will investigate relationships with data collected earlier in the life course and measures of the cohort in the future. Understanding past and present influences on child growth and health will inform timely interventions to optimise future health and reduce inequalities for Pacific people. PMID:27807091
NASA Astrophysics Data System (ADS)
McCaffrey, D. R.; Hopkinson, C.
2017-12-01
Alpine Treeline Ecotone (ATE), the transition zone between closed canopy forest and alpine tundra, is a prominent vegetation pattern in mountain regions. At continental scales, the elevation of ATE is negatively correlated with latitude and is generally explained by thermal limitations. However, at landscape scales, precipitation and moisture regimes can suppress ATE elevation below thermal limits, causing variability and patterning in ATE position. Recent studies have investigated the relative effects of hydroclimatic variables on ATE position at multiple scales, but less attention has been given to interactions between hydroclimatic variables and disturbance agents, such as fire. Observing change in the ATE at sufficient spatial resolution and temporal extent to identify correlations between topographic variables and disturbance agents has proved challenging. Recent advances in monoplotting have enabled the extraction of canopy cover information from oblique photography, at a resolution of 20 m. Using airborne lidar and repeat photography from the Mountain Legacy Project, we observed canopy cover change in West Castle Watershed (Alberta, Canada; 103 km2; 49.3° N, 114.4° W) over a 92-year period (i.e. 1914-2006). Two wildfires, occurring 1934 and 1936, affected 63% of the watershed area, providing an opportunity to contrast topographic patterns of mortality and succession in the ATE, while factoring by exposure to fire. Slope aspect was a strong predictor of mortality and succession: the frequency of mortality was four times higher in fire-exposed areas, with 72% of all mortality occurring on south- and east-facing slope aspects; the frequency of succession was balanced between fire-exposed and unexposed areas, with 66% of all succession occurred on north- and east-facing slope aspects. Given previous experiments have demonstrated that moisture limitation inhibits tree establishment, suppressing elevation of ATE below thermal growth boundaries, we hypothesize that moisture limitation is selectively acting on warm slope aspects to inhibit tree establishment, post-fire. Support for this hypothesis is provided by comparing hydrometeorological variable importance in a random forest model of land cover change in the watershed.
Patterns and controls of inter-annual variability in the terrestrial carbon budget
NASA Astrophysics Data System (ADS)
Marcolla, Barbara; Rödenbeck, Christian; Cescatti, Alessandro
2017-08-01
The terrestrial carbon fluxes show the largest variability among the components of the global carbon cycle and drive most of the temporal variations in the growth rate of atmospheric CO2. Understanding the environmental controls and trends of the terrestrial carbon budget is therefore essential to predict the future trajectories of the CO2 airborne fraction and atmospheric concentrations. In the present work, patterns and controls of the inter-annual variability (IAV) of carbon net ecosystem exchange (NEE) have been analysed using three different data streams: ecosystem-level observations from the FLUXNET database (La Thuile and 2015 releases), the MPI-MTE (model tree ensemble) bottom-up product resulting from the global upscaling of site-level fluxes, and the Jena CarboScope Inversion, a top-down estimate of surface fluxes obtained from observed CO2 concentrations and an atmospheric transport model. Consistencies and discrepancies in the temporal and spatial patterns and in the climatic and physiological controls of IAV were investigated between the three data sources. Results show that the global average of IAV at FLUXNET sites, quantified as the standard deviation of annual NEE, peaks in arid ecosystems and amounts to ˜ 120 gC m-2 y-1, almost 6 times more than the values calculated from the two global products (15 and 20 gC m-2 y-1 for MPI-MTE and the Jena Inversion, respectively). Most of the temporal variability observed in the last three decades of the MPI-MTE and Jena Inversion products is due to yearly anomalies, whereas the temporal trends explain only about 15 and 20 % of the variability, respectively. Both at the site level and on a global scale, the IAV of NEE is driven by the gross primary productivity and in particular by the cumulative carbon flux during the months when land acts as a sink. Altogether these results offer a broad view on the magnitude, spatial patterns and environmental drivers of IAV from a variety of data sources that can be instrumental to improve our understanding of the terrestrial carbon budget and to validate the predictions of land surface models.
Hübner, Tom R.
2012-01-01
Background Dysalotosaurus lettowvorbecki is a small ornithopod dinosaur known from thousands of bones and several ontogenetic stages. It was found in a single locality within the Tendaguru Formation of southeastern Tanzania, possibly representing a single herd. Dysalotosaurus provides an excellent case study for examining variation in bone microstructure and life history and helps to unravel the still mysterious growth pattern of small ornithopods. Methodology/Principal Findings Five different skeletal elements were sampled, revealing microstructural variation between individuals, skeletal elements, cross sectional units, and ontogenetic stages. The bone wall consists of fibrolamellar bone with strong variability in vascularization and development of growth cycles. Larger bones with a high degree of utilization have high relative growth rates and seldom annuli/LAGs, whereas small and less intensively used bones have lower growth rates and a higher number of these resting lines. Due to the scarcity of annuli/LAGs, the reconstruction of the life history of Dysalotosaurus was carried out using regularly developed and alternating slow and fast growing zones. Dysalotosaurus was a precocial dinosaur, which experienced sexual maturity at ten years, had an indeterminate growth pattern, and maximum growth rates comparable to a large kangaroo. Conclusions/Significance The variation in the bone histology of Dysalotosaurus demonstrates the influence of size, utilization, and shape of bones on relative growth rates. Annuli/LAGs are not the only type of annual growth cycles that can be used to reconstruct the life history of fossil vertebrates, but the degree of development of these lines may be of importance for the reconstruction of paleobehavior. The regular development of annuli/LAGs in subadults and adults of large ornithopods therefore reflects higher seasonal stress due to higher food demands, migration, and altricial breeding behavior. Small ornithopods often lack regularly developed annuli/LAGs due to lower food demands, no need for migration, and precocial behavior. PMID:22238683
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention. PMID:26000951
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention.
Sahoo, Subhashree; Baliarsingh, S K; Lotliker, Aneesh A; Pradhan, Umesh K; Thomas, C S; Sahu, K C
2017-04-01
A comprehensive analysis on spatiotemporal variation in physico-chemical variables and their control on chlorophyll-a during 2013-14 was carried out in the Chilika Lagoon. Spatiotemporal variation in physico-chemical regimes significantly controlled the phytoplankton biomass of the lagoon. Further, precipitation-induced river/terrestrial freshwater influx and marine influence controlled the physico-chemical regimes of the Chilika Lagoon, such as nutrients (NH 4 + , NO 3 - , NO 2 - , PO 4 3- and Si(OH) 4 ), temperature, salinity, total suspended matter and dissolved oxygen. This study revealed significant effects of tropical cyclones Phailin (2013) and Hudhud (2014) on physico-chemical regimes and in turn the phytoplankton biomass of the lagoon. Although both cyclones Phailin (2013) and Hudhud (2014) were intense, Phailin (2013) had a greater impact on the Chilika Lagoon due to the proximity of its landfall. Heavy precipitation caused an influx of nutrient-rich freshwater, both during each cyclone's passage, through rainfall, and after, through increased river flow and terrestrial run-off. The increase in nutrients, carried by the run-off, promoted phytoplankton growth, albeit in lag phase. In general, phytoplankton growth was controlled by nitrogenous nutrients. However, the addition of SiO 4 through terrigenous run-off fuelled preferential growth of diatoms. The salinity pattern (which can be considered a proxy for fresh and marine water influx) indicated injection of freshwater nutrients into the northern, southern and central sectors of the lagoon through riverine/terrestrial freshwater run-off; marine influx was restricted to the mouth of the lagoon. Present and past magnitudes of salinity and chlorophyll-a were also compared to better understand the pattern of variability. A significant change in salinity pattern was noticed after the opening of an artificial inlet, because of the resulting higher influx of marine water. The overall phytoplankton biomass (using chlorophyll-a concentration as a proxy) remained consistent in the lagoon pre- and post-restoration. Due to the wide range of salinity and temperature tolerance, diatoms remained dominant in both pre- and post-restoration periods, but the overall phytoplankton diversity increased after the artificial inlet was dredged.
NASA Astrophysics Data System (ADS)
Ren, Jeffrey S.; Barr, Neill G.; Scheuer, Kristin; Schiel, David R.; Zeldis, John
2014-07-01
A dynamic growth model of macroalgae was developed to predict growth of the green macroalga Ulva sp. in response to changes in environmental variables. The model is based on common physiological behaviour of macroalgae and hence has general applicability to macroalgae. Three state variables (nitrogen, carbon and phosphorus) were used to describe physiological processes and functional differences between nutrient and carbon uptakes. Carbon uptake is modelled as a function of temperature, light, algal internal state and water current, while nutrient uptake depends on internal state, temperature and environmental nutrient level. Growth can only occur when nutrients in the environment and in the internal storage pools (N-quota and P-quota) reach threshold levels. Physiological rates follow the Arrhenius relationship and increase exponentially with increasing temperature within the temperature tolerance range of a species. When parameterised and applied to Ulva sp. in the eutrophic Avon-Heathcote Estuary, New Zealand, the model generally reproduced field observations of Ulva sp. growth and abundance. Growth followed a clear seasonal cycle with biomass increasing from early-middle summer, reaching peak values in early autumn and then decreasing. Conversely, N-quotient levels were maximal during the winter months, declining during summer peak growth. These seasonal patterns were collectively driven by temperature, light intensity and nutrients. The model captured the N-quota and growth responses of Ulva sp. to the N-reduction arising from diversion of treated wastewater from the Avon-Heathcote Estuary to an offshore outfall in 2010, and of raw sewage N-discharges resulting from wastewater infrastructure damage caused by the Canterbury earthquakes in 2011. Sensitivity analyses revealed that temperature-related parameters and maximum uptake rate of C were among the most sensitive parameters in predicting biomass. In addition, the earthquake-derived changes in reduction of immersion time and decrease in the start biomass prior to summer blooms were shown to drive considerable declines in summer growth and biomass of Ulva sp.
Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; Bokkers, Eddie A M
2018-07-01
Domesticated pigs, Sus scrofa, vary considerably in feeding, social interaction and growth patterns. This variation originates partly from genetic variation that affects physiological factors and partly from behavioural strategies (avoid or approach) in competitive food resource situations. Currently, it is unknown how variation in physiological factors and in behavioural strategies among animals contributes to variation in feeding, social interaction and growth patterns in animals. The aim of this study was to unravel causation of variation in these patterns among pigs. We used an agent-based model to explore the effects of physiological factors and behavioural strategies in pigs on variation in feeding, social interaction and growth patterns. Model results show that variation in feeding, social interaction and growth patterns are caused partly by chance, such as time effects and coincidence of conflicts. Furthermore, results show that seemingly contradictory empirical findings in literature can be explained by variation in pig characteristics (i.e. growth potential, positive feedback, dominance, and coping style). Growth potential mainly affected feeding and growth patterns, whereas positive feedback, dominance and coping style affected feeding patterns, social interaction patterns, as well as growth patterns. Variation in behavioural strategies among pigs can reduce aggression at group level, but also make some pigs more susceptible to social constraints inhibiting them from feeding when they want to, especially low-ranking pigs and pigs with a passive coping style. Variation in feeding patterns, such as feeding rate or meal frequency, can indicate social constraints. Feeding patterns, however, can say something different about social constraints at group versus individual level. A combination of feeding patterns, such as a decreased feed intake, an increased feeding rate, and an increased meal frequency might, therefore, be needed to measure social constraints at individual level. Copyright © 2018 Elsevier Inc. All rights reserved.
Braicovich, P E; Ieno, E N; Sáez, M; Despos, J; Timi, J T
2016-11-01
In order to identify the best tools for stock assessment studies using fish parasites as biological indicators, different host traits (size, mass and age and their interaction with sex) were evaluated as descriptors of cumulative patterns of both parasite abundance and infracommunity species richness. The effect of such variables was analysed for a sample of 265 specimens of Percophis brasiliensis caught in the Argentine Sea. The abundances and species richness were modelled using generalized linear mixed models (GLMMs) with negative binomial and Poisson distribution respectively. Due to collinearity, separate models were fitted for each of the three main explanatory variables (length, mass and age) to identify the optimal set of factors determining the parasite burdens. Optimal GLMMs were selected on the basis of the lowest Akaike information criteria, residual information and simulation studies based on 10 000 iterations. Results indicated that the covariates length and sex consistently appeared in the most parsimonious models suggesting that fish length seems to be a slightly better predictor than age or mass. The biological causes of these patterns are discussed. It is recommended to use fish length as a measure of growth and to restrict comparisons with fish of similar length or to incorporate length as covariate when comparing parasite burdens. Host sex should be also taken into account for those species sexually dimorphic in terms of morphology, behaviour or growth rates. © 2016 The Fisheries Society of the British Isles.
Tang, Hao; Dubayah, Ralph
2017-03-07
Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.
Climate change effects on beneficial plant-microorganism interactions.
Compant, Stéphane; van der Heijden, Marcel G A; Sessitsch, Angela
2010-08-01
It is well known that beneficial plant-associated microorganisms may stimulate plant growth and enhance resistance to disease and abiotic stresses. The effects of climate change factors such as elevated CO(2), drought and warming on beneficial plant-microorganism interactions are increasingly being explored. This now makes it possible to test whether some general patterns occur and whether different groups of plant-associated microorganisms respond differently or in the same way to climate change. Here, we review the results of 135 studies investigating the effects of climate change factors on beneficial microorganisms and their interaction with host plants. The majority of studies showed that elevated CO(2) had a positive influence on the abundance of arbuscular and ectomycorrhizal fungi, whereas the effects on plant growth-promoting bacteria and endophytic fungi were more variable. In most cases, plant-associated microorganisms had a beneficial effect on plants under elevated CO(2). The effects of increased temperature on beneficial plant-associated microorganisms were more variable, positive and neutral, and negative effects were equally common and varied considerably with the study system and the temperature range investigated. Moreover, numerous studies indicated that plant growth-promoting microorganisms (both bacteria and fungi) positively affected plants subjected to drought stress. Overall, this review shows that plant-associated microorganisms are an important factor influencing the response of plants to climate change.
Quantifying Variability in Growth and Thermal Inactivation Kinetics of Lactobacillus plantarum.
Aryani, D C; den Besten, H M W; Zwietering, M H
2016-08-15
The presence and growth of spoilage organisms in food might affect the shelf life. In this study, the effects of experimental, reproduction, and strain variabilities were quantified with respect to growth and thermal inactivation using 20 Lactobacillus plantarum strains. Also, the effect of growth history on thermal resistance was quantified. The strain variability in μmax was similar (P > 0.05) to reproduction variability as a function of pH, aw, and temperature, while being around half of the reproduction variability (P < 0.05) as a function of undissociated lactic acid concentration [HLa]. The cardinal growth parameters were estimated for the L. plantarum strains, and the pHmin was between 3.2 and 3.5, the aw,min was between 0.936 and 0.953, the [HLamax], at pH 4.5, was between 29 and 38 mM, and the Tmin was between 3.4 and 8.3°C. The average D values ranged from 0.80 min to 19 min at 55°C, 0.22 to 3.9 min at 58°C, 3.1 to 45 s at 60°C, and 1.8 to 19 s at 63°C. In contrast to growth, the strain variability in thermal resistance was on average six times higher than the reproduction variability and more than ten times higher than the experimental variability. The strain variability was also 1.8 times higher (P < 0.05) than the effect of growth history. The combined effects of strain variability and growth history on D value explained all of the variability as found in the literature, although with bias. Based on an illustrative milk-processing chain, strain variability caused ∼2-log10 differences in growth between the most and least robust strains and >10-log10 differences after thermal treatment. Accurate control and realistic prediction of shelf life is complicated by the natural diversity among microbial strains, and limited information on microbiological variability is available for spoilage microorganisms. Therefore, the objectives of the present study were to quantify strain variability, reproduction (biological) variability, and experimental variability with respect to the growth and thermal inactivation kinetics of Lactobacillus plantarum and to quantify the variability in thermal resistance attributed to growth history. The quantitative knowledge obtained on experimental, reproduction, and strain variabilities can be used to improve experimental designs and to adequately select strains for challenge growth and inactivation tests. Moreover, the integration of strain variability in prediction of microbial growth and inactivation kinetics will result in more realistic predictions of L. plantarum dynamics along the food production chain. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Fajardo, A
2018-05-01
The wood economics spectrum provides a general framework for interspecific trait-trait coordination across wide environmental gradients. Whether global patterns are mirrored within species constitutes a poorly explored subject. In this study, I first determined whether wood density co-varies together with elevation, tree growth and height at the within-species level. Second, I determined the variation of wood density in different stem parts (trunk, branch and twigs). In situ trunk sapwood, trunk heartwood, branch and twig densities, in addition to stem growth rates and tree height were determined in adult trees of Nothofagus pumilio at four elevations in five locations spanning 18° of latitude. Mixed effects models were fitted to test relationships among variables. The variation in wood density reported in this study was narrow (ca. 0.4-0.6 g cm -3 ) relative to global density variation (ca. 0.3-1.0 g cm -3 ). There was no significant relationship between stem growth rates and wood density. Furthermore, the elevation gradient did not alter the wood density of any stem part. Trunk sapwood density was negatively related to tree height. Twig density was higher than branch and trunk densities. Trunk heartwood density was always significantly higher than sapwood density. Negative across-species trends found in the growth-wood density relationship may not emerge as the aggregate of parallel intraspecific patterns. Actually, trees with contrasting growth rates show similar wood density values. Tree height, which is tightly related to elevation, showed a negative relationship with sapwood density. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
McLaughlin, Samuel B; Wullschleger, Stan D; Nosal, Miloslav
2003-11-01
To evaluate indicators of whole-tree physiological responses to climate stress, we determined seasonal, daily and diurnal patterns of growth and water use in 10 yellow poplar (Liriodendron tulipifera L.) trees in a stand recently released from competition. Precise measurements of stem increment and sap flow made with automated electronic dendrometers and thermal dissipation probes, respectively, indicated close temporal linkages between water use and patterns of stem shrinkage and swelling during daily cycles of water depletion and recharge of extensible outer-stem tissues. These cycles also determined net daily basal area increment. Multivariate regression models based on a 123-day data series showed that daily diameter increments were related negatively to vapor pressure deficit (VPD), but positively to precipitation and temperature. The same model form with slight changes in coefficients yielded coefficients of determination of about 0.62 (0.57-0.66) across data subsets that included widely variable growth rates and VPDs. Model R2 was improved to 0.75 by using 3-day running mean daily growth data. Rapid recovery of stem diameter growth following short-term, diurnal reductions in VPD indicated that water stored in extensible stem tissues was part of a fast recharge system that limited hydration changes in the cambial zone during periods of water stress. There were substantial differences in the seasonal dynamics of growth among individual trees, and analyses indicated that faster-growing trees were more positively affected by precipitation, solar irradiance and temperature and more negatively affected by high VPD than slower-growing trees. There were no negative effects of ozone on daily growth rates in a year of low ozone concentrations.
Demographic patterns in the peacock grouper (Cephalopholis argus), an introduced Hawaiian reef fish
Donovan, Mary K.; Friedlander, Alan M.; DeMartini, Edward E.; Donahue, Megan J.; Williams, Ivor D.
2013-01-01
This study took advantage of a unique opportunity to collect large sample sizes of a coral reef fish species across a range of physical and biological features of the Hawaiian Archipelago to investigate variability in the demography of an invasive predatory coral reef fish, Cephalopholis argus (Family: Epinephelidae). Age-based demographic analyses were conducted at 10 locations in the main Hawaiian Islands and estimates of weight-at-length, size-at-age, and longevity were compared among locations. Each metric differed among locations, although patterns were not consistent across metrics. Length-weight relationships for C. argus differed among locations and individuals weighed less at a given length at Hilo, the southernmost location studied. Longevity differed among and within islands and was greater at locations on Maui and Hawaii compared to the more northern locations on Oahu and Kauai. Within-island growth patterns differed at Kauai, Oahu, and Hawaii. This work provides a case study of fundamental life history information from distant and/or spatially limited locations that are critical for developing robust fishery models. The differences observed both among and within islands indicate that variability may be driven by cross-scale mechanisms that need to be considered in fisheries stock assessments and ecosystem-based management.
Post-partum weight change patterns in the WHO Multicentre Growth Reference Study.
Onyango, Adelheid W; Nommsen-Rivers, Laurie; Siyam, Amani; Borghi, Elaine; de Onis, Mercedes; Garza, Cutberto; Lartey, Anna; Baerug, Anne; Bhandari, Nita; Dewey, Kathryn G; Araújo, Cora Luiza; Mohamed, Ali Jaffer; Van den Broeck, Jan
2011-07-01
The interplay of factors that affect post-partum loss or retention of weight gained during pregnancy is not fully understood. The objective of this paper is to describe patterns of weight change in the six sites of the World Health Organization (WHO) Multicentre Growth Reference Study (MGRS) and explore variables that explain variation in weight change within and between sites. Mothers of 1743 breastfed children enrolled in the MGRS had weights measured at days 7, 14, 28 and 42 post-partum, monthly from 2 to 12 months and bimonthly thereafter until 24 months post-partum. Height, maternal age, parity and employment status were recorded and breastfeeding was monitored throughout the follow-up. Weight change patterns varied significantly among sites. Ghanaian and Omani mothers lost little or gained weight post-partum. In Brazil, India, Norway and USA, mothers on average lost weight during the first year followed by stabilization in the second year. Lactation intensity and duration explained little of the variation in weight change patterns. In most sites, obese mothers tended to lose less weight than normal-weight mothers. In Brazil and Oman, primiparous mothers lost about 1 kg more than multiparous mothers in the first 6 months. In India and Ghana, multiparous mothers lost about 0.6 kg more than primiparas in the second 6 months. Culturally defined mother-care practices probably play a role in weight change patterns among lactating women. This hypothesis should stimulate investigation into gestational weight gain and post-partum losses in different ethnocultural contexts. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Maupin, C. R.; Partin, J. W.; Quinn, T. M.; Shen, C.; Lin, K.; Taylor, F. W.; Sinclair, D. J.; Banner, J. L.
2010-12-01
The potential response of the tropical Pacific to ongoing anthropogenic global warming conditions is informed by instrumental data, model predictions and climate proxy evidence. However, these distinct lines of evidence lead to opposing predictions in terms of the nature of interannual (ENSO) variability in a warming world. Interpreted in an ENSO framework, warming in the tropical Pacific may elicit a zonally asymmetrical response and lead to an intensified Walker Circulation (more ‘La Niña - like’). Alternatively, discrepancies in the increasing rates of latent heat flux and rainfall due to warming conditions may in fact reduce Walker Circulation (more ‘El Niño - like’). However, in order for such a framework to be useful in the context of future climate change, some knowledge of the natural variability in the strength of Walker Circulation components is required. The extant instrumental data are not of sufficient temporal length to fully assess the spectrum of natural variability in such climate components. Oxygen isotope records from tropical speleothems have been successfully used to document the nature of precessional forcing on precipitation and atmospheric circulation patterns throughout the tropics. Typical stalagmite growth rates of 10-100 μm yr-1 allow decadally resolved records of δ18O variability on time scales of centuries to millennia and beyond. Here we present the initial results from calcite stalagmites of heretofore unprecedented growth rates (~1-4 mm yr-1) in a cave in northwest Guadalcanal, Solomon Islands (~9°S, 160°E). These stalagmites have been absolutely dated by U-Th techniques and indicate stalagmite growth spanning ~1650 to 2010 CE. The δ18O records from stalagmites provide evidence for changes in convection in the equatorial WPWP region of the SPCZ: the rising limb of the Pacific Walker Circulation, and therefore provide critical insight into changes in zonal atmospheric circulation across the Pacific.
Staudhammer, Christina L; Wadt, Lúcia H O; Kainer, Karen A
2013-09-01
Understanding of the extent to which reproductive costs drive growth largely derives from reproductively mature temperate trees in masting and non-masting years. We modeled basal area increment (BAI) and explored current growth-reproduction tradeoffs and changes in such allocation over the life span of a long-lived, non-masting tropical tree. We integrated rainfall and soil variables with data from 190 Bertholletia excelsa trees of different diameter at breast height (DBH) sizes, crown characteristics, and liana loads, quantifying BAI and reproductive output over 4 and 6 years, respectively. While rainfall explains BAI in all models, regardless of DBH class or ontogenic stage, light (based on canopy position and crown form) is most critical in the juvenile (5 cm ≤ DBH < 50 cm) phase. Suppressed trees are only present as juveniles and grow ten times slower (1.45 ± 2.73 m(2) year(-1)) than trees in dominant and co-dominant positions (13.25 ± 0.82 and 12.90 ± 1.35 m(2) year(-1), respectively). Additionally, few juvenile trees are reproductive, and those that are, demonstrate reduced growth, as do reproductive trees in the next 50 to 100 cm DBH class, suggesting growth-reproduction tradeoffs. Upon reaching the canopy, however, and attaining a sizeable girth, this pattern gradually shifts to one where BAI and reproduction are influenced independently by variables such as liana load, crown size and soil properties. At this stage, BAI is largely unaffected by fruit production levels. Thus, while growth-reproduction tradeoffs clearly exist during early life stages, effects of reproductive allocation diminish as B. excelsa increases in size and maturity.
NASA Experimental Program to Stimulate Competitive Research: South Carolina
NASA Technical Reports Server (NTRS)
Sutton, Michael A.
2004-01-01
The use of an appropriate relationship model is critical for reliable prediction of future urban growth. Identification of proper variables and mathematic functions and determination of the weights or coefficients are the key tasks for building such a model. Although the conventional logistic regression model is appropriate for handing land use problems, it appears insufficient to address the issue of interdependency of the predictor variables. This study used an alternative approach to simulation and modeling urban growth using artificial neural networks. It developed an operational neural network model trained using a robust backpropagation method. The model was applied in the Myrtle Beach region of South Carolina, and tested with both global datasets and areal datasets to examine the strength of both regional models and areal models. The results indicate that the neural network model not only has many theoretic advantages over other conventional mathematic models in representing the complex urban systems, but also is practically superior to the logistic model in its capability to predict urban growth with better - accuracy and less variation. The neural network model is particularly effective in terms of successfully identifying urban patterns in the rural areas where the logistic model often falls short. It was also found from the area-based tests that there are significant intra-regional differentiations in urban growth with different rules and rates. This suggests that the global modeling approach, or one model for the entire region, may not be adequate for simulation of a urban growth at the regional scale. Future research should develop methods for identification and subdivision of these areas and use a set of area-based models to address the issues of multi-centered, intra- regionally differentiated urban growth.
Impact of Nutrition and Salinity Changes on Biological Performances of Green and White Sturgeon
Vaz, Pedro G.; Kebreab, Ermias; Hung, Silas S. O.; Fadel, James G.; Lee, Seunghyung; Fangue, Nann A.
2015-01-01
Green and white sturgeon are species of high conservational and economic interest, particularly in the San Francisco Bay Delta (SFBD) for which significant climate change-derived alterations in salinity and nutritional patterns are forecasted. Although there is paucity of information, it is critical to test the network of biological responses underlying the capacity of animals to tolerate current environmental changes. Through nutrition and salinity challenges, climate change will likely have more physiological effect on young sturgeon stages, which in turn may affect growth performance. In this study, the two species were challenged in a multiple-factor experimental setting, first to levels of feeding rate, and then to salinity levels for different time periods. Data analysis included generalized additive models to select predictors of growth performance (measured by condition factor) among the environmental stressors considered and a suite of physiological variables. Using structural equation modeling, a path diagram is proposed to quantify the main linkages among nutrition status, salinity, osmoregulation variables, and growth performances. Three major trends were anticipated for the growth performance of green and white sturgeon in the juvenile stage in the SFBD: (i) a decrease in prey abundance will be highly detrimental for the growth of both species; (ii) an acute increase in salinity within the limits studied can be tolerated by both species but possibly the energy spent in osmoregulation may affect green sturgeon growth within the time window assessed; (iii) the mechanism of synergistic effects of nutrition and salinity changes will be more complex in green sturgeon, with condition factor responding nonlinearly to interactions of salinity and nutrition status or time of salinity exposure. Green sturgeon merits special scientific attention and conservation effort to offset the effects of feed restriction and salinity as key environmental stressors in the SFBD. PMID:25830227
Impact of nutrition and salinity changes on biological performances of green and white sturgeon.
Vaz, Pedro G; Kebreab, Ermias; Hung, Silas S O; Fadel, James G; Lee, Seunghyung; Fangue, Nann A
2015-01-01
Green and white sturgeon are species of high conservational and economic interest, particularly in the San Francisco Bay Delta (SFBD) for which significant climate change-derived alterations in salinity and nutritional patterns are forecasted. Although there is paucity of information, it is critical to test the network of biological responses underlying the capacity of animals to tolerate current environmental changes. Through nutrition and salinity challenges, climate change will likely have more physiological effect on young sturgeon stages, which in turn may affect growth performance. In this study, the two species were challenged in a multiple-factor experimental setting, first to levels of feeding rate, and then to salinity levels for different time periods. Data analysis included generalized additive models to select predictors of growth performance (measured by condition factor) among the environmental stressors considered and a suite of physiological variables. Using structural equation modeling, a path diagram is proposed to quantify the main linkages among nutrition status, salinity, osmoregulation variables, and growth performances. Three major trends were anticipated for the growth performance of green and white sturgeon in the juvenile stage in the SFBD: (i) a decrease in prey abundance will be highly detrimental for the growth of both species; (ii) an acute increase in salinity within the limits studied can be tolerated by both species but possibly the energy spent in osmoregulation may affect green sturgeon growth within the time window assessed; (iii) the mechanism of synergistic effects of nutrition and salinity changes will be more complex in green sturgeon, with condition factor responding nonlinearly to interactions of salinity and nutrition status or time of salinity exposure. Green sturgeon merits special scientific attention and conservation effort to offset the effects of feed restriction and salinity as key environmental stressors in the SFBD.
Oláh, Viktor; Hepp, Anna; Gaibor Vaca, Norma Yolanda; Tamás, Marianna; Mészáros, Ilona
2018-05-28
High growth potential of duckweed species (Lemnaceae family) has been utilized in wide range of research and practical applications. Based on literature data, however, it can be assumed that duckweed populations maintain constant growth rates only when short periods are considered but can vary over longer time scales. This intrinsic instability in growth can affect the interpretation of growth data. Duckweed phytotoxicity tests are usually performed according to highly standardized protocols. Therefore the archive data provide an opportunity for retrospective comparisons. In the present study we collected growth (frond number- and frond area-based relative growth rates) and morphology (average frond and colony sizes) data from control treatments of phytotoxicity tests. All the analyzed tests were carried out with the same Spirodela polyrhiza (L.) Schleid. (giant duckweed) clone (RDSC ID No. 5501) under the same experimental conditions over more than four years. We aimed to assess the overall variability of the above parameters and to test if intrinsic growth patterns affect growth data in short-term. In general, the results reflected high stability of the measured parameters in long term but also indicated that some temporal variability is inevitable which can bias the comparability of growth tests. The frond area-based relative growth rate resulted in smaller coefficient of variation than the usually preferred frond number-based one. The results also revealed a negative correlation between mean growth rates and their coefficients of variation. Therefore, it would be advisable to introduce higher minimal growth rates and/or maximized tolerable coefficients of variation for control cultures into the standard duckweed growth inhibition tests. Analyses of growth data aggregated on seasonal basis indicated faster growth and larger mean frond size in laboratory duckweed cultures from mid-autumn till mid-spring than during summer and early autumn. But, in shorter term (∼50 days) we did not observe distinct trends in growth suggesting that the successive frond generations have no effect on growth traits within this time-scale. Our results point to the importance of assessing intrinsic growth dynamics in duckweed cultures and also to the re-usability of the already collected phytotoxicity data in addressing new research questions. Copyright © 2018. Published by Elsevier B.V.
Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches
Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D.; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel
2016-01-01
Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for adding value to existing observational data in agriculture by allowing embedded knowledge to be quickly leveraged. It generates site-specific information on cultivar response to climatic factors and supports on-farm management decisions for adaptation to climate variability. PMID:27560980
Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches.
Delerce, Sylvain; Dorado, Hugo; Grillon, Alexandre; Rebolledo, Maria Camila; Prager, Steven D; Patiño, Victor Hugo; Garcés Varón, Gabriel; Jiménez, Daniel
2016-01-01
Seasonal and inter-annual climate variability have become important issues for farmers, and climate change has been shown to increase them. Simultaneously farmers and agricultural organizations are increasingly collecting observational data about in situ crop performance. Agriculture thus needs new tools to cope with changing environmental conditions and to take advantage of these data. Data mining techniques make it possible to extract embedded knowledge associated with farmer experiences from these large observational datasets in order to identify best practices for adapting to climate variability. We introduce new approaches through a case study on irrigated and rainfed rice in Colombia. Preexisting observational datasets of commercial harvest records were combined with in situ daily weather series. Using Conditional Inference Forest and clustering techniques, we assessed the relationships between climatic factors and crop yield variability at the local scale for specific cultivars and growth stages. The analysis showed clear relationships in the various location-cultivar combinations, with climatic factors explaining 6 to 46% of spatiotemporal variability in yield, and with crop responses to weather being non-linear and cultivar-specific. Climatic factors affected cultivars differently during each stage of development. For instance, one cultivar was affected by high nighttime temperatures in the reproductive stage but responded positively to accumulated solar radiation during the ripening stage. Another was affected by high nighttime temperatures during both the vegetative and reproductive stages. Clustering of the weather patterns corresponding to individual cropping events revealed different groups of weather patterns for irrigated and rainfed systems with contrasting yield levels. Best-suited cultivars were identified for some weather patterns, making weather-site-specific recommendations possible. This study illustrates the potential of data mining for adding value to existing observational data in agriculture by allowing embedded knowledge to be quickly leveraged. It generates site-specific information on cultivar response to climatic factors and supports on-farm management decisions for adaptation to climate variability.
NASA Astrophysics Data System (ADS)
Amorim, Ana L.; León, Pablo; Mercado, Jesús M.; Cortés, Dolores; Gómez, Francisco; Putzeys, Sebastien; Salles, Soluna; Yebra, Lidia
2016-06-01
The Alboran Sea is a highly dynamic basin which exhibits a high spatio-temporal variability of hydrographic structures (e.g. fronts, gyres, coastal upwellings). This work compares the abundance and composition of picophytoplankton observed across the northern Alboran Sea among eleven cruises between 2008 and 2012 using flow cytometry. We evaluate the seasonal and longitudinal variability of picophytoplankton on the basis of the circulation regimes at a regional scale and explore the presence of cyanobacteria ecotypes in the basin. The maximal abundances obtained for Prochlorococcus, Synechococcus and picoeukaryotes (12.7 × 104, 13.9 × 104 and 8.6 × 104 cells mL- 1 respectively) were consistent with those reported for other adjacent marine areas. Seasonal changes in the abundance of the three picophytoplankton groups were highly significant although they did not match the patterns described for other coastal waters. Higher abundances of Prochlorococcus were obtained in autumn-winter while Synechococcus and picoeukaryotes exhibited a different seasonal abundance pattern depending on the sector (e.g. Synechococcus showed higher abundance in summer in the west sector and during winter in the eastern study area). Additionally, conspicuous longitudinal gradients were observed for Prochlorococcus and Synechococcus, with Prochlorococcus decreasing from west to east and Synechococcus following the opposite pattern. The analysis of environmental variables (i.e. temperature, salinity and inorganic nutrients) and cell abundances indicates that Prochlorococcus preferred high salinity and nitrate to phosphate ratio. On the contrary, temperature did not seem to play a role in Prochlorococcus distribution as it was numerically important during the whole seasonal cycle. Variability in Synechococcus abundance could not be explained by changes in any environmental variable suggesting that different ecotypes were sampled during the surveys. In particular, our data would indicate the presence of at least two ecotypes of Synechococcus: a summer ecotype widely distributed in the whole Alboran Sea and a winter ecotype adapted to lower temperature and higher nutrient concentration whose growth is favoured in the eastern sector.
Hormone-Mediated Pattern Formation in Seedling of Plants: a Competitive Growth Dynamics Model
NASA Astrophysics Data System (ADS)
Kawaguchi, Satoshi; Mimura, Masayasu; Ohya, Tomoyuki; Oikawa, Noriko; Okabe, Hirotaka; Kai, Shoichi
2001-10-01
An ecologically relevant pattern formation process mediated by hormonal interactions among growing seedlings is modeled based on the experimental observations on the effects of indole acetic acid, which can act as an inhibitor and activator of root growth depending on its concentration. In the absence of any lateral root with constant hormone-sensitivity, the edge effect phenomenon is obtained depending on the secretion rate of hormone from the main root. Introduction of growth-stage-dependent hormone-sensitivity drastically amplifies the initial randomness, resulting in spatially irregular macroscopic patterns. When the lateral root growth is introduced, periodic patterns are obtained whose periodicity depends on the length of lateral roots. The growth-stage-dependent hormone-sensitivity and the lateral root growth are crucial for macroscopic periodic-pattern formation.
Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma.
McGeachie, M J; Yates, K P; Zhou, X; Guo, F; Sternberg, A L; Van Natta, M L; Wise, R A; Szefler, S J; Sharma, S; Kho, A T; Cho, M H; Croteau-Chonka, D C; Castaldi, P J; Jain, G; Sanyal, A; Zhan, Y; Lajoie, B R; Dekker, J; Stamatoyannopoulos, J; Covar, R A; Zeiger, R S; Adkinson, N F; Williams, P V; Kelly, H W; Grasemann, H; Vonk, J M; Koppelman, G H; Postma, D S; Raby, B A; Houston, I; Lu, Q; Fuhlbrigge, A L; Tantisira, K G; Silverman, E K; Tonascia, J; Weiss, S T; Strunk, R C
2016-05-12
Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.).
[Relationship between fetus growth and maternal anthropometrics in Uruguay].
Bove, Isabel; Mardones Santander, Francisco; Domínguez de Landa, Angélica
2014-09-01
There are no data available about the combined influence of the pregestational body mass index (PG-BMI) and the gestational weight gain (GWG) on the birth-weight (<3000 g, ≥4000 g) in Uruguay. To determine the prevalence of different categories of PG-BMI and GWG and then find out combined and independent risk at birth: <3000 g or intrauterine growth restriction (IUGR) and ≥ 4000 g (macrosomia) on a nationwide sample of mothers and newborns. Cohort study with prospective data from 23,832 pregnant women, with classification of the pregestational nutrition status according to the US PG-BMI pattern. GWG was classified according to a proposal from Denmark. The independent and combined risks from the different categories of PG-BMI and GWG with IUGR and macrosomia were determined by means of relative risk (RR). RR for RCIU and macrosomia were statistically relevant in their independent association with PGBMI and GWG. A high risk for IUGR was identified in pregnant women with low PG-BMI and a high risk for macrosomia in those with a high PG-BMI (overweight or obesity). Also the analysis of the combined influence revealed significant associations between PG-BMI and GWG. There is an independent and combined effect of the mothers variables on the perinatal results. We suggest comparing this study results, where categories were taken from the US PG-BMI pattern and from the Danish GWG pattern, with other patterns. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
NASA Technical Reports Server (NTRS)
Noever, David A.
1990-01-01
With and without bioconvective pattern formation, a theoretical model predicts growth in light-limited cultures of motile algae. At the critical density for pattern formation, the resulting doubly exponential population curves show an inflection. Such growth corresponds quantitatively to experiments in mechanically unstirred cultures. This attaches survival value to synchronized pattern formation.
Environmental characteristics drive variation in Amazonian understorey bird assemblages
Magnusson, William E.; Anderson, Marti J.; Schlegel, Martin; Pe’er, Guy; Henle, Klaus
2017-01-01
Tropical bird assemblages display patterns of high alpha and beta diversity and, as tropical birds exhibit strong habitat specificity, their spatial distributions are generally assumed to be driven primarily by environmental heterogeneity and interspecific interactions. However, spatial distributions of some Amazonian forest birds are also often restricted by large rivers and other large-scale topographic features, suggesting that dispersal limitation may also play a role in driving species’ turnover. In this study, we evaluated the effects of environmental characteristics, topographic and spatial variables on variation in local assemblage structure and diversity of birds in an old-growth forest in central Amazonia. Birds were mist-netted in 72 plots distributed systematically across a 10,000 ha reserve in each of three years. Alpha diversity remained stable through time, but species composition changed. Spatial variation in bird-assemblage structure was significantly related to environmental and topographic variables but not strongly related to spatial variables. At a broad scale, we found bird assemblages to be significantly distinct between two watersheds that are divided by a central ridgeline. We did not detect an effect of the ridgeline per se in driving these patterns, indicating that most birds are able to fly across it, and that differences in assemblage structure between watersheds may be due to unmeasured environmental variables or unique combinations of measured variables. Our study indicates that complex geography and landscape features can act together with environmental variables to drive changes in the diversity and composition of tropical bird assemblages at local scales, but highlights that we still know very little about what makes different parts of tropical forest suitable for different species. PMID:28225774
Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes
NASA Astrophysics Data System (ADS)
Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.
2017-12-01
Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation differences amplify the soil moisture variability of semi-arid landscapes.
Non-linearities in Theory-of-Mind Development.
Blijd-Hoogewys, Els M A; van Geert, Paul L C
2016-01-01
Research on Theory-of-Mind (ToM) has mainly focused on ages of core ToM development. This article follows a quantitative approach focusing on the level of ToM understanding on a measurement scale, the ToM Storybooks, in 324 typically developing children between 3 and 11 years of age. It deals with the eventual occurrence of developmental non-linearities in ToM functioning, using smoothing techniques, dynamic growth model building and additional indicators, namely moving skewness, moving growth rate changes and moving variability. The ToM sum-scores showed an overall developmental trend that leveled off toward the age of 10 years. Within this overall trend two non-linearities in the group-based change pattern were found: a plateau at the age of around 56 months and a dip at the age of 72-78 months. These temporary regressions in ToM sum-score were accompanied by a decrease in growth rate and variability, and a change in skewness of the ToM data, all suggesting a developmental shift in ToM understanding. The temporary decreases also occurred in the different ToM sub-scores and most clearly so in the core ToM component of beliefs. It was also found that girls had an earlier growth spurt than boys and that the underlying developmental path was more salient in girls than in boys. The consequences of these findings are discussed from various theoretical points of view, with an emphasis on a dynamic systems interpretation of the underlying developmental paths.
Non-linearities in Theory-of-Mind Development
Blijd-Hoogewys, Els M. A.; van Geert, Paul L. C.
2017-01-01
Research on Theory-of-Mind (ToM) has mainly focused on ages of core ToM development. This article follows a quantitative approach focusing on the level of ToM understanding on a measurement scale, the ToM Storybooks, in 324 typically developing children between 3 and 11 years of age. It deals with the eventual occurrence of developmental non-linearities in ToM functioning, using smoothing techniques, dynamic growth model building and additional indicators, namely moving skewness, moving growth rate changes and moving variability. The ToM sum-scores showed an overall developmental trend that leveled off toward the age of 10 years. Within this overall trend two non-linearities in the group-based change pattern were found: a plateau at the age of around 56 months and a dip at the age of 72–78 months. These temporary regressions in ToM sum-score were accompanied by a decrease in growth rate and variability, and a change in skewness of the ToM data, all suggesting a developmental shift in ToM understanding. The temporary decreases also occurred in the different ToM sub-scores and most clearly so in the core ToM component of beliefs. It was also found that girls had an earlier growth spurt than boys and that the underlying developmental path was more salient in girls than in boys. The consequences of these findings are discussed from various theoretical points of view, with an emphasis on a dynamic systems interpretation of the underlying developmental paths. PMID:28101065
Using structural equation modeling to investigate relationships among ecological variables
Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.
2000-01-01
Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0.1258. Natural variability had a positive direct effect on biodiversity of magnitude 0.5347 and a negative indirect effect mediated through growth potential of magnitude -0.1105 yielding a positive total effects of magnitude 0.4242. Sediment contamination had a negative direct effect on biodiversity of magnitude -0.1956 and a negative indirect effect on growth potential via biodiversity of magnitude -0.067. Biodiversity had a positive effect on growth potential of magnitude 0.8432, and growth potential had a positive effect on biodiversity of magnitude 0.3398. The correlation between biodiversity and growth potential was estimated at 0.7658 and that between sediment contamination and natural variability at -0.3769.
NASA Astrophysics Data System (ADS)
Blackett, Michael; Licandro, Priscilla; Coombs, Steve H.; Lucas, Cathy H.
2014-11-01
We investigated long-term variability of the calycophoran siphonophores Muggiaea atlantica and Muggiaea kochi in the Western English Channel (WEC) between 1930 and 2011. Our aims were to describe long-term changes in abundance and temporal distribution in relation to local environmental dynamics. In order to better understand mechanisms that regulate the species' populations, we identified periods that were characteristic of in situ population growth and the environmental optima associated with these events. Our results show that between 1930 and the 1960s both M. atlantica and M. kochi were transient components of the WEC ecosystem. In the late 1960s M. atlantica, successfully established a resident population in the WEC, while the occurrence of M. kochi became increasingly sporadic. Once established as a resident species, the seasonal abundance and distribution of M. atlantica increased. Analysis of environmental conditions associated with in situ population growth revealed that temperature and prey were key determinants of the seasonal distribution and abundance of M. atlantica. Salinity was shown to have an indirect effect, likely representing a proxy for water circulation in the WEC. Anomalies in the seasonal cycle of salinity, indicating deviation from the usual circulation pattern in the WEC, were negatively associated with in situ growth, suggesting dispersal of the locally developing M. atlantica population. However, our findings identified complexity in the relationship between characteristics of the environment and M. atlantica variability. The transition from a period of transiency (1930-1968) to residency (1969-2011) was tentatively attributed to structural changes in the WEC ecosystem that occurred under the forcing of wider-scale hydroclimatic changes.
Mitchell, Christine C; Ashley, Stanley W; Zinner, Michael J; Moore, Francis D
2007-04-01
To develop a model to predict future staffing for the surgery service at a teaching hospital. Tertiary hospital. A computer model with potential future variables was constructed. Some of the variables were distribution of resident staff, fellows, and physician extenders; salary/wages; work hours; educational value of rotations; work units, inpatient wards, and clinics; future volume growth; and efficiency savings. Outcomes Number of staff to be hired, staffing expense, and educational impact. On a busy general surgery service, we estimated the impact of changes in resident work hours, service growth, and workflow efficiency in the next 5 years. Projecting a reduction in resident duty hours to 60 hours per week will require the hiring of 10 physician assistants at a cost of $1 134 000, a cost that is increased by $441 000 when hiring hospitalists instead. Implementing a day of didactic and simulator time (10 hours) will further increase the costs by $568 000. A 10% improvement in the efficiency of floor care, as might be gained by advanced information technology capability or by regionalization of patients, can mitigate these expenses by as much as 21%. On the other hand, a modest annual growth of 2% will increase the costs by $715 000 to $2 417 000. To simply replace residents with alternative providers requires large amounts of human and fiscal capital. The potential for simple efficiencies to mitigate some of this expense suggests that traditional patterns of care in teaching hospitals will have to change in response to educational mandates.
Remote sensing of land surface phenology
Meier, G.A.; Brown, Jesslyn F.
2014-01-01
Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.
Kweldam, Charlotte F; Nieboer, Daan; Algaba, Ferran; Amin, Mahul B; Berney, Dan M; Billis, Athanase; Bostwick, David G; Bubendorf, Lukas; Cheng, Liang; Compérat, Eva; Delahunt, Brett; Egevad, Lars; Evans, Andrew J; Hansel, Donna E; Humphrey, Peter A; Kristiansen, Glen; van der Kwast, Theodorus H; Magi-Galluzzi, Cristina; Montironi, Rodolfo; Netto, George J; Samaratunga, Hemamali; Srigley, John R; Tan, Puay H; Varma, Murali; Zhou, Ming; van Leenders, Geert J L H
2016-09-01
To assess the interobserver reproducibility of individual Gleason grade 4 growth patterns. Twenty-three genitourinary pathologists participated in the evaluation of 60 selected high-magnification photographs. The selection included 10 cases of Gleason grade 3, 40 of Gleason grade 4 (10 per growth pattern), and 10 of Gleason grade 5. Participants were asked to select a single predominant Gleason grade per case (3, 4, or 5), and to indicate the predominant Gleason grade 4 growth pattern, if present. 'Consensus' was defined as at least 80% agreement, and 'favoured' as 60-80% agreement. Consensus on Gleason grading was reached in 47 of 60 (78%) cases, 35 of which were assigned to grade 4. In the 13 non-consensus cases, ill-formed (6/13, 46%) and fused (7/13, 54%) patterns were involved in the disagreement. Among the 20 cases where at least one pathologist assigned the ill-formed growth pattern, none (0%, 0/20) reached consensus. Consensus for fused, cribriform and glomeruloid glands was reached in 2%, 23% and 38% of cases, respectively. In nine of 35 (26%) consensus Gleason grade 4 cases, participants disagreed on the growth pattern. Six of these were characterized by large epithelial proliferations with delicate intervening fibrovascular cores, which were alternatively given the designation fused or cribriform growth pattern ('complex fused'). Consensus on Gleason grade 4 growth pattern was predominantly reached on cribriform and glomeruloid patterns, but rarely on ill-formed and fused glands. The complex fused glands seem to constitute a borderline pattern of unknown prognostic significance on which a consensus could not be reached. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Huan, Qing; Hu, Hao; Pan, Li-Da; Xiao, Jiang; Du, Shi-Xuan; Gao, Hong-Jun
2010-08-01
Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal “two-branch" model is proposed to simulate the growth process of the seahorse pattern.
Schmutz, Joel A.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.
2009-01-01
Stochastic variation in survival rates is expected to decrease long-term population growth rates. This expectation influences both life-history theory and the conservation of species. From this expectation, Pfister (1998) developed the important life-history prediction that natural selection will have minimized variability in those elements of the annual life cycle (such as adult survival rate) with high sensitivity. This prediction has not been rigorously evaluated for bird populations, in part due to statistical difficulties related to variance estimation. I here overcome these difficulties, and in an analysis of 62 populations, I confirm her prediction by showing a negative relationship between the proportional sensitivity (elasticity) of adult survival and the proportional variance (CV) of adult survival. However, several species deviated significantly from this expectation, with more process variance in survival than predicted. For instance, projecting the magnitude of process variance in annual survival for American redstarts (Setophaga ruticilla) for 25 years resulted in a 44% decline in abundance without assuming any change in mean survival rate. For most of these species with high process variance, recent changes in harvest, habitats, or changes in climate patterns are the likely sources of environmental variability causing this variability in survival. Because of climate change, environmental variability is increasing on regional and global scales, which is expected to increase stochasticity in vital rates of species. Increased stochasticity in survival will depress population growth rates, and this result will magnify the conservation challenges we face.
Brian R Lockhart; Emile S Gardiner; Theran Stautz; Theodor D. Leininger
2012-01-01
Lindera melissifolia (Walt.) Blume seedlings were raised in a growth chamber to determine the effects of light availability on shoot growth pattern, and basic leaf and stem growth. Lindera melissifolia seedlings exhibited a sympodial shoot growth pattern for 3 months following emergence from the soil medium, but this pattern was characterized by a reduction in leaf...
ERIC Educational Resources Information Center
Ghadirian, Hajar; Ayub, Ahmad Fauzi Mohd; Bakar, Kamariah Binti Abu; Hassanzadeh, Maryam
2016-01-01
This study presents a case study of asynchronous online discussions' (AOD) growth patterns in an undergraduate blended course to address the gap in our current understanding of how threads are developed in peer-moderated AODs. Building on a taxonomy of thread pattern proposed by Chan, Hew and Cheung (2009), growth patterns of thirty-six forums…
Jörn, H; Morgenstern, B; Wassenberg, B; Rath, W
2004-08-01
Is it useful to further analyse foetal heart rate to improve the prediction of pregnancy complications? The analysis of the foetal heart rate is usually based on the variability of the heart rate, i. e. the more variable the heart rate presents - except a decrease - the better the condition of the foetus is. The same concept is applied in our own analysis which differs only in the presentation of the data. We analysed 25 non-stress-tests from unselected third trimester pregnancies using sophisticated software. The recurrence plot (RP) is able to rearrange data from foetal heart rate monitoring in order to make the heart rate variability visible. We developed criteria for a normal and an abnormal test result describing the structure of the diagram to predict an uneventful and a high-risk pregnancy, respectively. 11 out of 11 patients with uneventful course and outcome of pregnancy showed a coarse and blurred RP pattern. 12 out of 14 (86 %) patients developing either intrauterine growth retardation or preeclampsia and requiring caesarean section because of foetal heart rate abnormalities showed a fine and clear RP pattern. Our preliminary results show that it makes sense to further evaluate foetal heart rate variability in order to predict pregnancy complications. Computer programs including the algorithms needed (calculation of the recurrence plot) are not expensive and easy to handle. A widespread use of these programs represents the basis requirement for large controlled clinical trials.
Smadi, Hanan; Sargeant, Jan M; Shannon, Harry S; Raina, Parminder
2012-12-01
Growth and inactivation regression equations were developed to describe the effects of temperature on Salmonella concentration on chicken meat for refrigerated temperatures (⩽10°C) and for thermal treatment temperatures (55-70°C). The main objectives were: (i) to compare Salmonella growth/inactivation in chicken meat versus laboratory media; (ii) to create regression equations to estimate Salmonella growth in chicken meat that can be used in quantitative risk assessment (QRA) modeling; and (iii) to create regression equations to estimate D-values needed to inactivate Salmonella in chicken meat. A systematic approach was used to identify the articles, critically appraise them, and pool outcomes across studies. Growth represented in density (Log10CFU/g) and D-values (min) as a function of temperature were modeled using hierarchical mixed effects regression models. The current meta-analysis analysis found a significant difference (P⩽0.05) between the two matrices - chicken meat and laboratory media - for both growth at refrigerated temperatures and inactivation by thermal treatment. Growth and inactivation were significantly influenced by temperature after controlling for other variables; however, no consistent pattern in growth was found. Validation of growth and inactivation equations against data not used in their development is needed. Copyright © 2012 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.
2015-01-01
Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. PMID:26410303
Sundareswaran, Shobha; Kumar, Vinay
2015-01-01
Introduction: Beta angle as a skeletal anteroposterior dysplasia indicator is known to be useful in evaluating normodivergent growth patterns. Hence, we compared and verified the accuracy of Beta angle in predicting sagittal jaw discrepancy among subjects with hyperdivergent, hypodivergent and normodivergent growth patterns. Materials and Methods: Lateral cephalometric radiographs of 179 patients belonging to skeletal Classes I, II, and III were further divided into normodivergent, hyperdivergent, and hypodivergent groups based on their vertical growth patterns. Sagittal dysplasia indicators - angle ANB, Wits appraisal, and Beta angle values were measured and tabulated. The perpendicular point of intersection on line CB (Condylion-Point B) in Beta angle was designated as ‘X’ and linear dimension XB was evaluated. Results: Statistically significant increase was observed in the mean values of Beta angle and XB distance in the vertical growth pattern groups of both skeletal Class I and Class II patients thus pushing them toward Class III and Class I, respectively. Conclusions: Beta angle is a reliable indicator of sagittal dysplasia in normal and horizontal patterns of growth. However, vertical growth patterns significantly increased Beta angle values, thus affecting their reliability as a sagittal discrepancy assessment tool. Hence, Beta angle may not be a valid tool for assessment of sagittal jaw discrepancy in patients exhibiting vertical growth patterns with skeletal Class I and Class II malocclusions. Nevertheless, Class III malocclusions having the highest Beta angle values were unaffected. PMID:25810649
Infant obesity and severe obesity growth patterns in the first two years of life.
Gittner, Lisaann S; Ludington-Hoe, Susan M; Haller, Harold S
2014-04-01
Distinguishing an obesity growth pattern that originates during infancy is clinically important. Infancy based obesity prevention interventions may be needed while precursors of later health are forming. Infant obesity and severe obesity growth patterns in the first 2-years are described and distinguished from a normal weight growth pattern. A retrospective chart review was conducted. Body mass index (BMI) growth patterns from birth to 2-years are described for children categorized at 5-years as normal weight (n = 61), overweight (n = 47), obese (n = 41) and severely obese (n = 72) cohorts using WHO reference standards. BMI values were calculated at birth, 1-week; 2-, 4-, 6-, 9-, 12-, 15-, 18-months; and 2- and 5-years. Graphs of the longitudinal Analysis of Variance of Means of BMI values identified the earliest significant divergence of a cohort's average BMI pattern from other cohorts' patterns. ANOVA and Pearson Product Moment correlations were also performed. Statistically significant differences in BMI values and differences in growth patterns between cohorts were evident as early as 2-6 months post-birth. Children who were obese or severely obese at 5-years demonstrated a BMI pattern that differed within the first 2-years of life from that of children who were normal weight at 5-years. The earliest significant correlation between early BMI values and 5-year BMI value was at 4-months post-birth. The study fills an important gap by demonstrating early onset of an infant obesity growth pattern in full-term children who were healthy throughout their first 5 years of life.
Humphries, Debbie L; Dearden, Kirk A; Crookston, Benjamin T; Woldehanna, Tassew; Penny, Mary E; Behrman, Jere R
2017-08-01
Population-level analysis of dietary influences on nutritional status is challenging in part due to limitations in dietary intake data. Household expenditure surveys, covering recent household expenditures and including key food groups, are routinely conducted in low- and middle-income countries. These data may help identify patterns of food expenditure that relate to child growth. We investigated the relationship between household food expenditures and child growth using factor analysis. We used data on 6993 children from Ethiopia, India, Peru and Vietnam at ages 5, 8 and 12y from the Young Lives cohort. We compared associations between household food expenditures and child growth (height-for-age z scores, HAZ; body mass index-for-age z scores, BMI-Z) using total household food expenditures and the "household food group expenditure index" (HFGEI) extracted from household expenditures with factor analysis on the seven food groups in the child dietary diversity scale, controlling for total food expenditures, child dietary diversity, data collection round, rural/urban residence and child sex. We used the HFGEI to capture households' allocations of their finances across food groups in the context of local food pricing, availability and pReferences RESULTS: The HFGEI was associated with significant increases in child HAZ in Ethiopia (0.07), India (0.14), and Vietnam (0.07) after adjusting for all control variables. Total food expenditures remained significantly associated with increases in BMI-Z for India (0.15), Peru (0.11) and Vietnam (0.06) after adjusting for study round, HFGEI, dietary diversity, rural residence, and whether the child was female. Dietary diversity was inversely associated with BMI-Z in India and Peru. Mean dietary diversity increased from age 5y to 8y and decreased from age 8y to 12y in all countries. Household food expenditure data provide insights into household food purchasing patterns that significantly predict HAZ and BMI-Z. Including food expenditure patterns data in analyses may yield important information about child nutritional status and linear growth. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Human Population: Fundamentals of Growth and Change.
ERIC Educational Resources Information Center
Stauffer, Cheryl Lynn, Ed.
This booklet focuses on eight elements of population dynamics: "Population Growth and Distribution"; "Natural Increase and Future Growth"; "Effect of Migration on Population Growth"; "Three Patterns of Population Change"; "Patterns of World Urbanization"; "The Status of Women";…
Development of disease-specific growth charts in Turner syndrome and Noonan syndrome.
Isojima, Tsuyoshi; Yokoya, Susumu
2017-12-01
Many congenital diseases are associated with growth failure, and patients with these diseases have specific growth patterns. As the growth patterns of affected individuals differ from those of normal populations, it is challenging to detect additional conditions that can influence growth using standard growth charts. Disease-specific growth charts are thus very useful tools and can be helpful for understanding the growth pattern and pathogenesis of congenital diseases. In addition, disease-specific growth charts allow doctors to detect deviations from the usual growth patterns for early diagnosis of an additional condition and can be used to evaluate the effects of growth-promoting treatment for patients. When developing these charts, factors that can affect the reliability of the charts should be considered. These factors include the definition of the disease with growth failure, selection bias in the measurements used to develop the charts, secular trends of the subjects, the numbers of subjects of varying ages and ethnicities, and the statistical method used to develop the charts. In this review, we summarize the development of disease-specific growth charts for Japanese individuals with Turner syndrome and Noonan syndrome and evaluate the efforts to collect unbiased measurements of subjects with these diseases. These charts were the only available disease-specific growth charts of Turner syndrome and Noonan syndrome for Asian populations and were developed using a Japanese population. Therefore, when these charts are adopted for Asian populations other than Japanese, different growth patterns should be considered.
Genetics and Genomics of Longitudinal Lung Function Patterns in Individuals with Asthma
Yates, Katherine P.; Zhou, Xiaobo; Guo, Feng; Sternberg, Alice L.; Van Natta, Mark L.; Wise, Robert A.; Szefler, Stanley J.; Sharma, Sunita; Kho, Alvin T.; Cho, Michael H.; Croteau-Chonka, Damien C.; Castaldi, Peter J.; Jain, Gaurav; Sanyal, Amartya; Zhan, Ye; Lajoie, Bryan R.; Dekker, Job; Stamatoyannopoulos, John; Covar, Ronina A.; Zeiger, Robert S.; Adkinson, N. Franklin; Williams, Paul V.; Kelly, H. William; Grasemann, Hartmut; Vonk, Judith M.; Koppelman, Gerard H.; Postma, Dirkje S.; Raby, Benjamin A.; Houston, Isaac; Lu, Quan; Fuhlbrigge, Anne L.; Tantisira, Kelan G.; Silverman, Edwin K.; Tonascia, James; Strunk, Robert C.; Weiss, Scott T.
2016-01-01
Rationale: Patterns of longitudinal lung function growth and decline in childhood asthma have been shown to be important in determining risk for future respiratory ailments including chronic airway obstruction and chronic obstructive pulmonary disease. Objectives: To determine the genetic underpinnings of lung function patterns in subjects with childhood asthma. Methods: We performed a genome-wide association study of 581 non-Hispanic white individuals with asthma that were previously classified by patterns of lung function growth and decline (normal growth, normal growth with early decline, reduced growth, and reduced growth with early decline). The strongest association was also measured in two additional cohorts: a small asthma cohort and a large chronic obstructive pulmonary disease metaanalysis cohort. Interaction between the genomic region encompassing the most strongly associated single-nucleotide polymorphism and nearby genes was assessed by two chromosome conformation capture assays. Measurements and Main Results: An intergenic single-nucleotide polymorphism (rs4445257) on chromosome 8 was strongly associated with the normal growth with early decline pattern compared with all other pattern groups (P = 6.7 × 10−9; odds ratio, 2.8; 95% confidence interval, 2.0–4.0); replication analysis suggested this variant had opposite effects in normal growth with early decline and reduced growth with early decline pattern groups. Chromosome conformation capture experiments indicated a chromatin interaction between rs4445257 and the promoter of the distal CSMD3 gene. Conclusions: Early decline in lung function after normal growth is associated with a genetic polymorphism that may also protect against early decline in reduced growth groups. Clinical trial registered with www.clinicaltrials.gov (NCT00000575). PMID:27367781
NASA Astrophysics Data System (ADS)
Meyer, Nele; Bornemann, Ludger; Welp, Gerhard; Amelung, Wulf
2015-04-01
Bare fallow management goes along with lacking supply of new C sources; yet, little is known on the spatio-temporal controls of microbial adaptation processes. Here we hypothesized that microbial activity parameters decline upon bare fallow but that their spatial patterns are increasingly controlled by nutrient status as fallow management proceeds. To test these hypotheses, we investigated spatial and temporal patterns of substrate-induced respiration (SIR) and basal respiration curves in an arable field after 1, 3, and 7 years of bare fallow but with large within-field heterogeneity of physicochemical soil parameters. The analyses comprised the contents of SOC, mineral nitrogen (Nmin), particulate organic matter (POM), texture of the fine earth, and the proportion of rock fragments as well as basal respiration and several SIR fitting parameters (microbial biomass, microbial growth rates, peak respiration rates, cumulative CO2 release) each with and without additions of mineral N and P. We also repeated substrate (i.e. glucose) additions following the first SIR measurement. The results revealed that most respiration parameters like basal respiration, microbial biomass, and growth rates showed no or inconsistent responses to spatial and temporal patterns of basic soil properties like SOC, Nmin or texture. However, bare fallow changed the shape of the SIR curves; it developed two distinct microbial growth peaks at advanced stages of fallow, i.e. a delayed CO2 release. Likewise, the maximum respiration rate during the first growth phase declined during 7 years of fallow by 47% but its spatial distribution was always correlated with Nmin contents (r = 0.43 - 0.79). The nutrient additions suggested that these changes in SIR curves were caused by N deficiency; the first peak increased after N additions while the second growth phase diminished. Intriguingly, a repeated glucose addition had a similar effect on the SIR curves as the glucose+N addition. Thus, N deficiency apparently subsided during SIR. The results suggested that soil microbes acquire nitrogen from refractory SOM pools (i.e. microbial nitrogen mining). Hence, there was no significant decrease in cumulative CO2 evolution with proceeding time of fallow. As soil microorganisms maintained their functionality there was no overall loss in potential microbial activity, irrespective of the spatial patterns of other soil properties.
Biopsy variability of lymphocytic infiltration in breast cancer subtypes and the ImmunoSkew score
NASA Astrophysics Data System (ADS)
Khan, Adnan Mujahid; Yuan, Yinyin
2016-11-01
The number of tumour biopsies required for a good representation of tumours has been controversial. An important factor to consider is intra-tumour heterogeneity, which can vary among cancer types and subtypes. Immune cells in particular often display complex infiltrative patterns, however, there is a lack of quantitative understanding of the spatial heterogeneity of immune cells and how this fundamental biological nature of human tumours influences biopsy variability and treatment resistance. We systematically investigate biopsy variability for the lymphocytic infiltrate in 998 breast tumours using a novel virtual biopsy method. Across all breast cancers, we observe a nonlinear increase in concordance between the biopsy and whole-tumour score of lymphocytic infiltrate with increasing number of biopsies, yet little improvement is gained with more than four biopsies. Interestingly, biopsy variability of lymphocytic infiltrate differs considerably among breast cancer subtypes, with the human epidermal growth factor receptor 2-positive (HER2+) subtype having the highest variability. We subsequently identify a quantitative measure of spatial variability that predicts disease-specific survival in HER2+ subtype independent of standard clinical variables (node status, tumour size and grade). Our study demonstrates how systematic methods provide new insights that can influence future study design based on a quantitative knowledge of tumour heterogeneity.
The Uniform Pattern of Growth and Skeletal Maturation during the Human Adolescent Growth Spurt.
Sanders, James O; Qiu, Xing; Lu, Xiang; Duren, Dana L; Liu, Raymond W; Dang, Debbie; Menendez, Mariano E; Hans, Sarah D; Weber, David R; Cooperman, Daniel R
2017-12-01
Humans are one of the few species undergoing an adolescent growth spurt. Because children enter the spurt at different ages making age a poor maturity measure, longitudinal studies are necessary to identify the growth patterns and identify commonalities in adolescent growth. The standard maturity determinant, peak height velocity (PHV) timing, is difficult to estimate in individuals due to diurnal, postural, and measurement variation. Using prospective longitudinal populations of healthy children from two North American populations, we compared the timing of the adolescent growth spurt's peak height velocity to normalized heights and hand skeletal maturity radiographs. We found that in healthy children, the adolescent growth spurt is standardized at 90% of final height with similar patterns for children of both sexes beginning at the initiation of the growth spurt. Once children enter the growth spurt, their growth pattern is consistent between children with peak growth at 90% of final height and skeletal maturity closely reflecting growth remaining. This ability to use 90% of final height as easily identified important maturity standard with its close relationship to skeletal maturity represents a significant advance allowing accurate prediction of future growth for individual children and accurate maturity comparisons for future studies of children's growth.
Quantifying Forest Soil Physical Variables Potentially Important for Site Growth Analyses
John S. Kush; Douglas G. Pitt; Phillip J. Craul; William D. Boyer
2004-01-01
Accurate mean plot values of forest soil factors are required for use as independent variables in site-growth analyses. Adequate accuracy is often difficult to attain because soils are inherently widely variable. Estimates of the variability of appropriate soil factors influencing growth can be used to determine the sampling intensity required to secure accurate mean...
NASA Astrophysics Data System (ADS)
Stella, John C.; Riddle, Jess; Piégay, Hervé; Gagnage, Matthieu; Trémélo, Marie-Laure
2013-11-01
Dynamic fluvial processes strongly influence ecological communities and ecosystem health in riverine and riparian ecosystems, particularly in drought-prone regions. In these systems, there is a need to develop tools to measure impacts from local and regional hydrogeomorphic changes on the key biological and physical processes that sustain riparian ecosystem health and potential recovery. We used dendrochronology of Populus nigra, a riparian tree that is vulnerable to changes in local hydrology, to analyze ecosystem response following channel incision due to gravel mining along the Drôme River, a Mediterranean Basin stream in southern France. We cored 55 trees at seven floodplain sites, measured ring widths, and calculated basal area growth to compare the severity and timing of local growth decline along the river. Current basal area increment (BAI) growth per tree ranged almost 10-fold among sites (7.7 ± 1.3 to 63.9 ± 15.2 cm2 year- 1, mean ± SE) and these differences were significant. Mean BAI was correlated positively with the proportion of healthy trees at a site, and negatively with proportion of dead canopy area. Regime shift analysis of the tree-ring series indicates that tree growth declined significantly at four sites since 1978, coincident with documented channel incision. In addition, patterns of low growth and crown dieback are consistent with stress due to reduced water supply. The most impaired sites were not directly adjacent to local mining pits visible on aerial photographs, nor did the sequence of growth regime shifts suggest a pattern of channel incision progressing from these areas. The initiation of site growth declines was most typically associated with drought years, and the most impaired sites were spatially distributed to suggest the influence of local bedrock controls on soil depth. Climate in the Drôme basin and in the Mediterranean region is trending significantly toward hotter growing seasons with a decrease in summer river discharge, and this will increase both chronic and acute water shortage for riparian trees. This study shows that drought-prone riparian forests are vulnerable to hydrogeomorphological changes, but the severity of impacts is conditioned by interactions between drivers at different scales, including regional climate variability, reach-based geomorphic alteration, and local lithological controls.
NASA Astrophysics Data System (ADS)
Muthiga, N. A.; Kawaka, J. A.; Ndirangu, S.
2009-09-01
The sea cucumber Holothuria scabra is a widely distributed and economically important species that has been harvested in Kenya for decades. No previous studies have been carried out on the reproduction of this species in Kenya. Standard gonad index methods were used to analyze reproductive patterns of individuals collected monthly in 1998-1999, 2000-2001 and 2006-2007. Morphological characteristics, gonad tubule lengths and fecundity were also measured. Mean monthly gonad indices were significantly correlated between males and females indicating synchronous gonad development between the sexes. Gonad indices showed a biannual pattern that was consistent in all three years with a minor spawning event occurring between August and September and a major spawning event between November and December. The pattern of gonad growth showed significant variability between years and between months. Temporal changes in gonad growth correlated significantly with gonad tubule length and absolute fecundity. Monthly gonad indices also correlated significantly with monthly measurements of air temperature and light suggesting a possible role for both factors in timing gametogenesis and spawning. There was a shift in sex ratio from unity in the 1998-1999 and 2000-2001 samples to significantly more males in the 2006-2007 samples, as well as a significant reduction in mean sizes (body wall weight) and reproductive output (gonad index) which suggests that the reproductive success of this species is potentially negatively affected by fishing.
Varella, Marcia H; Moss, William J
2015-08-01
To assess whether patterns of growth trajectory during infancy are associated with intelligence quotient (IQ) scores at 4 years of age in children born small-for-gestational age (SGA). Children in the Collaborative Perinatal Project born SGA were eligible for analysis. The primary outcome was the Stanford-Binet IQ score at 4 years of age. Growth patterns were defined based on changes in weight-for-age z-scores from birth to 4 months and 4 to 12 months of age and consisted of steady, early catch-up, late catch-up, constant catch-up, early catch-down, late catch-down, constant catch-down, early catch-up & late catch-down, and early catch-down & late catch-up. Multivariate linear regression was used to assess associations between patterns of growth and IQ. We evaluated patterns of growth and IQ in 5640 children. Compared with children with steady growth, IQ scores were 2.9 [standard deviation (SD)=0.54], 1.5 (SD=0.63), and 2.2 (SD=0.9) higher in children with early catch-up, early catch-up and later catch-down, and constant catch-up growth patterns, respectively, and 4.4 (SD=1.4) and 3.9 (SD=1.5) lower in children with early catch-down & late catch-up, and early catch-down growth patterns, respectively. Patterns in weight gain before 4 months of age were associated with differences in IQ scores at 4 years of age, with children with early catch-up having slightly higher IQ scores than children with steady growth and children with early catch-down having slightly lower IQ scores. These findings have implications for early infant nutrition in children born SGA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Time Is Brain: The Stroke Theory of Relativity.
Gomez, Camilo R
2018-04-25
Since the introduction of the philosophical tenet "Time is Brain!," multiple lines of research have demonstrated that other factors contribute to the degree of ischemic injury at any one point in time, and it is now clear that the therapeutic window of acute ischemic stroke is more protracted than it was first suspected. To define a more realistic relationship between time and the ischemic process, we used computational modeling to assess how these 2 variables are affected by collateral circulatory competence. Starting from the premise that the expression "Time=Brain" is mathematically false, we reviewed the existing literature on the attributes of cerebral ischemia over time, with particular attention to relevant clinical parameters, and the effect of different variables, particularly collateral circulation, on the time-ischemia relationship. We used this information to construct a theoretical computational model and applied it to categorically different yet abnormal cerebral perfusion scenarios, allowing comparison of their behavior both overall (i.e., final infarct volume) and in real-time (i.e., instantaneous infarct growth rate). Optimal collateral circulatory competence was predictably associated with slower infarct growth rates and prolongation of therapeutic window. Modeling of identifiable specific types of perfusion maps allows forecasting of the fate of the ischemic process over time. Distinct cerebral perfusion map patterns can be readily identified in patients with acute ischemic stroke. These patterns have inherently different behaviors relative to the time-ischemia construct, allowing the possibility of improving parsing and treatment allocation. It is clearly evident that the effect of time on the ischemic process is relative. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Yurk, Brian P
2018-07-01
Animal movement behaviors vary spatially in response to environmental heterogeneity. An important problem in spatial ecology is to determine how large-scale population growth and dispersal patterns emerge within highly variable landscapes. We apply the method of homogenization to study the large-scale behavior of a reaction-diffusion-advection model of population growth and dispersal. Our model includes small-scale variation in the directed and random components of movement and growth rates, as well as large-scale drift. Using the homogenized model we derive simple approximate formulas for persistence conditions and asymptotic invasion speeds, which are interpreted in terms of residence index. The homogenization results show good agreement with numerical solutions for environments with a high degree of fragmentation, both with and without periodicity at the fast scale. The simplicity of the formulas, and their connection to residence index make them appealing for studying the large-scale effects of a variety of small-scale movement behaviors.
Shoaf, S A; Conway, K; Hunt, R K
1984-08-07
We have examined the behavior of two reaction-diffusion models, originally proposed by Gierer & Meinhardt (1972) and by Kauffman, Shymko & Trabert (1978), for biological pattern formation. Calculations are presented for pattern formation on a disc (approximating the geometry of a number of embryonic anlagen including the frog eye rudiment), emphasizing the sensitivity of patterns to changes in initial conditions and to perturbations in the geometry of the morphogen-producing space. Analysis of the linearized equations from the models enabled us to select appropriate parameters and disc size for pattern growth. A computer-implemented finite element method was used to solve the non-linear model equations reiteratively. For the Gierer-Meinhardt model, initial activation (varying in size over two orders of magnitude) of one point on the disc's edge was sufficient to generate the primary gradient. Various parts of the disc were removed (remaining only as diffusible space) from the morphogen-producing cycle to investigate the effects of cells dropping out of the cycle due to cell death or malfunction (single point removed) or differentiation (center removed), as occur in the Xenopus eye rudiment. The resulting patterns had the same general shape and amplitude as normal gradients. Nor did a two-fold increase in disc size affect the pattern-generating ability of the model. Disc fragments bearing their primary gradient patterns were fused (with gradients in opposite directions, but each parallel to the fusion line). The resulting patterns generated by the model showed many similarities to results of "compound eye" experiments in Xenopus. Similar patterns were obtained with the model of Kauffman's group (1978), but we found less stability of the pattern subject to simulations of central differentiation. However, removal of a single point from the morphogen cycle (cell death) did not result in any change. The sensitivity of the Kauffman et al. model to shape perturbations is not surprising since the model was originally designed to use shape and increasing size during growth to generate a sequence of transient patterns. However, the Gierer-Meinhardt model is remarkably stable even when subjected to a wide range of perturbations in the diffusible space, thus allowing it to cope with normal biological variability, and offering an exciting range of possibilities for reaction-diffusion models as mechanisms underlying the spatial patterns of tissue structures.
Plant developmental responses to climate change.
Gray, Sharon B; Brady, Siobhan M
2016-11-01
Climate change is multi-faceted, and includes changing concentrations of greenhouse gases in the atmosphere, rising temperatures, changes in precipitation patterns, and increasing frequency of extreme weather events. Here, we focus on the effects of rising atmospheric CO 2 concentrations, rising temperature, and drought stress and their interaction on plant developmental processes in leaves, roots, and in reproductive structures. While in some cases these responses are conserved across species, such as decreased root elongation, perturbation of root growth angle and reduced seed yield in response to drought, or an increase in root biomass in shallow soil in response to elevated CO 2 , most responses are variable within and between species and are dependent on developmental stage. These variable responses include species-specific thresholds that arrest development of reproductive structures, reduce root growth rate and the rate of leaf initiation and expansion in response to elevated temperature. Leaf developmental responses to elevated CO 2 vary by cell type and by species. Variability also exists between C 3 and C 4 species in response to elevated CO 2 , especially in terms of growth and seed yield stimulation. At the molecular level, significantly less is understood regarding conservation and variability in molecular mechanisms underlying these traits. Abscisic acid-mediated changes in cell wall expansion likely underlie reductions in growth rate in response to drought, and changes in known regulators of flowering time likely underlie altered reproductive transitions in response to elevated temperature and CO 2 . Genes that underlie most other organ or tissue-level responses have largely only been identified in a single species in response to a single stress and their level of conservation is unknown. We conclude that there is a need for further research regarding the molecular mechanisms of plant developmental responses to climate change factors in general, and that this lack of data is particularly prevalent in the case of interactive effects of multiple climate change factors. As future growing conditions will likely expose plants to multiple climate change factors simultaneously, with a sum negative influence on global agriculture, further research in this area is critical. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Climate indices strongly influence old-growth forest carbon exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, Sonia; Falk, Matthias
We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (F NEE) at Wind River AmeriFlux was –32 ± 84 g C m –2 yr –1 indicating that the late seral forest is on average a small net sink of atmosphericmore » carbon. However, interannual variability is high (>300 g C m –2 yr –1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean F NEE = –90 g C m –2 yr –1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean F NEE = +17 g C m –2 yr –1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (F ANPP) is associated with cool phases of both the PNA and PDO. Furthermore, these measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.« less
Corcuera, Leyre; Gil-Pelegrín, Eustaquio; Notivol, Eduardo
2012-12-01
We studied the intraspecific variability of maritime pine in a set of morphological and physiological traits: soil-to-leaf hydraulic conductance, intrinsic water-use efficiency (WUE, estimated by carbon isotope composition, δ(13)C), root morphology, xylem anatomy, growth and carbon allocation patterns. The data were collected from Pinus pinaster Aiton seedlings (25 half-sib families from five populations) grown in a greenhouse and subjected to water and water-stress treatments. The aims were to relate this variability to differences in water availability at the geographic location of the populations, and to study the potential trade-offs among traits. The drought-stressed seedlings demonstrated a decrease in hydraulic conductance and root surface area and increased WUE and root tip number. The relationships among the growth, morphological, anatomical and physiological traits changed with the scale of study: within the species, among/within populations. The populations showed a highly significant relationship between the percentage reduction in whole-plant hydraulic conductance and WUE. The differences among the populations in root morphology, whole-plant conductance, carbon allocation, plant growth and WUE were significant and consistent with dryness of the site of seed origin. The xeric populations exhibited lower growth and a conservative water use, as opposed to the fast-growing, less water-use-efficient populations from mesic habitats. The xeric and mesic populations, Tamrabta and San Cipriano, respectively, showed the most contrasting traits and were clustered in opposite directions along the main axis in the canonical discriminant analysis under both the control and drought treatments. The results suggest the possibility of selecting the Arenas population, which presents a combination of traits that confer increased growth and drought resistance.
Climate indices strongly influence old-growth forest carbon exchange
Wharton, Sonia; Falk, Matthias
2016-04-13
We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (F NEE) at Wind River AmeriFlux was –32 ± 84 g C m –2 yr –1 indicating that the late seral forest is on average a small net sink of atmosphericmore » carbon. However, interannual variability is high (>300 g C m –2 yr –1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean F NEE = –90 g C m –2 yr –1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean F NEE = +17 g C m –2 yr –1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (F ANPP) is associated with cool phases of both the PNA and PDO. Furthermore, these measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.« less
Majewsky, Vera; Scherr, Claudia; Arlt, Sebastian Patrick; Kiener, Jonas; Frrokaj, Kristina; Schindler, Tobias; Klocke, Peter; Baumgartner, Stephan
2014-04-01
Reproducibility of basic research investigations in homeopathy is challenging. This study investigated if formerly observed effects of homeopathically potentised gibberellic acid (GA3) on growth of duckweed (Lemna gibba L.) were reproducible. Duckweed was grown in potencies (14x-30x) of GA3 and one time succussed and unsuccussed water controls. Outcome parameter area-related growth rate was determined by a computerised image analysis system. Three series including five independent blinded and randomised potency experiments (PE) each were carried out. System stability was controlled by three series of five systematic negative control (SNC) experiments. Gibbosity (a specific growth state of L. gibba) was investigated as possibly essential factor for reactivity of L. gibba towards potentised GA3 in one series of potency and SNC experiments, respectively. Only in the third series with gibbous L. gibba L. we observed a significant effect (p = 0.009, F-test) of the homeopathic treatment. However, growth rate increased in contrast to the former study, and most biologically active potency levels differed. Variability in PE was lower than in SNC experiments. The stability of the experimental system was verified by the SNC experiments. Gibbosity seems to be a necessary condition for reactivity of L. gibba to potentised GA3. Further still unknown conditions seem to govern effect direction and the pattern of active and inactive potency levels. When designing new reproducibility studies, the physiological state of the test organism must be considered. Variability might be an interesting parameter to investigate effects of homeopathic remedies in basic research. Copyright © 2014 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Das Gupta, Mainak; Nath, Utpal
2015-10-01
Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. © 2015 American Society of Plant Biologists. All rights reserved.
Bowsher, Julia H; Wray, Gregory A; Abouheif, Ehab
2007-12-15
Over the last decade, it has become clear that organismal form is largely determined by developmental and evolutionary changes in the growth and pattern formation of tissues. Yet, there is little known about how these two integrated processes respond to environmental cues or how they evolve relative to one another. Here, we present the discovery of vestigial wing imaginal discs in worker larvae of the red imported fire ant, Solenopsis invicta. These vestigial wing discs are present in all worker larvae, which is uncommon for a species with a large worker size distribution. Furthermore, the growth trajectory of these vestigial discs is distinct from all of the ant species examined to date because they grow at a rate slower than the leg discs. We predicted that the growth trajectory of the vestigial wing discs would be mirrored by evolutionary changes in their patterning. We tested this prediction by examining the expression of three patterning genes, extradenticle, ultrabithorax, and engrailed, known to underlie the wing polyphenism in ants. Surprisingly, the expression patterns of these three genes in the vestigial wing discs was the same as those found in ant species with different worker size distributions and wing disc growth than fire ants. We conclude that growth and patterning are evolutionarily dissociated in the vestigial wing discs of S. invicta because patterning in these discs is conserved, whereas their growth trajectories are not. The evolutionary dissociation of growth and patterning may be an important feature of gene networks that underlie polyphenic traits. 2007 Wiley-Liss, Inc
Selective LPCVD growth of graphene on patterned copper and its growth mechanism
NASA Astrophysics Data System (ADS)
Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.
2016-12-01
Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.
Jones, Aaron A.; Bennett, Philip C.
2017-01-01
This study tests the hypothesis that surface composition influences microbial community structure and growth of biofilms. We used laboratory biofilm reactors (inoculated with a diverse subsurface community) to explore the phylogenetic and taxonomic variability in microbial communities as a function of surface type (carbonate, silicate, aluminosilicate), media pH, and carbon and phosphate availability. Using high-throughput pyrosequencing, we found that surface type significantly controlled ~70–90% of the variance in phylogenetic diversity regardless of environmental pressures. Consistent patterns also emerged in the taxonomy of specific guilds (sulfur-oxidizers/reducers, Gram-positives, acidophiles) due to variations in media chemistry. Media phosphate availability was a key property associated with variation in phylogeny and taxonomy of whole reactors and was negatively correlated with biofilm accumulation and α-diversity (species richness and evenness). However, mineral-bound phosphate limitations were correlated with less biofilm. Carbon added to the media was correlated with a significant increase in biofilm accumulation and overall α-diversity. Additionally, planktonic communities were phylogenetically distant from those in biofilms. All treatments harbored structurally (taxonomically and phylogenetically) distinct microbial communities. Selective advantages within each treatment encouraged growth and revealed the presence of hundreds of additional operational taxonomix units (OTU), representing distinct consortiums of microorganisms. Ultimately, these results provide evidence that mineral/rock composition significantly influences microbial community structure, diversity, membership, phylogenetic variability, and biofilm growth in subsurface communities. PMID:28400754
Metals Electroprocessing in Molten Salts
NASA Technical Reports Server (NTRS)
Sadoway, D. R.
1985-01-01
The present study seeks to explain the poor quality of solid electrodeposits in molten salts through a consideration of the effects of fluid flow of the electrolyte. Transparent cells allow observation of electrolyte circulation by a laser schlieren optical technique during the electrodeposition of solid zinc from the molten salt electrolyte, ZnCl2 - LiCl-KCl. Experimental variables are current, density, electrolyte composition, and cell geometry. Based on the results of earlier electrodeposition studies as well as reports in the literature, these parameters are identified as having the primary influence on cell performance and deposit quality. Experiments are conducted to measure the fluid flow patterns and the electrochemical cell characteristics, and to correlate this information with the morphology of the solid electrodeposit produced. Specifically, cell voltage, cell current, characteristic time for dendrite evolution, and dendrite growth directions are noted. Their relationship to electrolyte flow patterns and the morphology of the resulting electrodeposit are derived. Results to date indicate that laser schlieren imaging is capable of revealing fluid flow patterns in a molten salt electrolyte.
[Type 2 Diabetes and Dietary Patterns 1961 to 2009: Some Social Determinants in Mexico].
Moreno-Altamirano, Laura; Silberman, Martín; Hernández-Montoya, Dewi; Capraro, Santiago; Soto-Estrada, Guadalupe; García-García, Juan José; Sandoval-Bosh, Elvira
2015-01-01
In order to analyze whether the increase in mortality from diabetes in Mexico is related to changes in eating patterns over the period 1961 to 2009, and if they in turn could be explained in the Mexican socioeconomic context, we conducted an ecological study with information from the Food Balance Sheets FAO. A cluster analysis was performed to shape eating patterns (three) and some socioeconomic variables were analyzed. It was observed that the energy derived from cereals and legumes (beans) was significantly reduced, and simultaneously, energy from sugars, animal foods, and vegetable fats had a significant increase. Various socioeconomic conditions may have favored changes in diet and increased mortality from diabetes. These conditions are: trade liberalization, low growth, rising inequality and informal work, declining agriculture, falling real wages in relation to the value of what is called the “basic food and non-food baskets”, increasing prices of healthy food,low cost of processed foods and beverages, and the lack of control in the food market.
Hug, François; Drouet, Jean Marc; Champoux, Yvan; Couturier, Antoine; Dorel, Sylvain
2008-11-01
The aim of this study was to determine whether high inter-individual variability of the electromyographic (EMG) patterns during pedaling is accompanied by variability in the pedal force application patterns. Eleven male experienced cyclists were tested at two submaximal power outputs (150 and 250 W). Pedal force components (effective and total forces) and index of mechanical effectiveness were measured continuously using instrumented pedals and were synchronized with surface electromyography signals measured in ten lower limb muscles. The intersubject variability of EMG and mechanical patterns was assessed using standard deviation, mean deviation, variance ratio and coefficient of cross-correlation (_R(0), with lag time = 0). The results demonstrated a high intersubject variability of EMG patterns at both exercise intensities for biarticular muscles as a whole (and especially for Gastrocnemius lateralis and Rectus femoris) and for one monoarticular muscle (Tibialis anterior). However, this heterogeneity of EMG patterns is not accompanied by a so high intersubject variability in pedal force application patterns. A very low variability in the three mechanical profiles (effective force, total force and index of mechanical effectiveness) was obtained in the propulsive downstroke phase, although a greater variability in these mechanical patterns was found during upstroke and around the top dead center, and at 250 W when compared to 150 W. Overall, these results provide additional evidence for redundancy in the neuromuscular system.
Anticipatory Water Management in Phoenix using Advanced Scenario Planning and Analyses: WaterSim 5
NASA Astrophysics Data System (ADS)
Sampson, D. A.; Quay, R.; White, D. D.; Gober, P.; Kirkwood, C.
2013-12-01
Complexity, uncertainty, and variability are inherent properties of linked social and natural processes; sustainable resource management must somehow consider all three. Typically, a decision support tool (using scenario analyses) is used to examine management alternatives under suspected trajectories in driver variables (i.e., climate forcing's, growth or economic projections, etc.). This traditional planning focuses on a small set of envisioned scenarios whose outputs are compared against one-another in order to evaluate their differing impacts on desired metrics. Human cognition typically limits this to three to five scenarios. However, complex and highly uncertain issues may require more, often much more, than five scenarios. In this case advanced scenario analysis provides quantitative or qualitative methods that can reveal patterns and associations among scenario metrics for a large ensemble of scenarios. From this analysis, then, a smaller set of heuristics that describe the complexity and uncertainty revealed provides a basis to guide planning in an anticipatory fashion. Our water policy and management model, termed WaterSim, permits advanced scenario planning and analysis for the Phoenix Metropolitan Area. In this contribution we examine the concepts of advanced scenario analysis on a large scale ensemble of scenarios using our work with WaterSim as a case study. For this case study we created a range of possible water futures by creating scenarios that encompasses differences in water supplies (our surrogates for climate change, drought, and inherent variability in riverine flows), population growth, and per capital water consumption. We used IPCC estimates of plausible, future, alterations in riverine runoff, locally produced and vetted estimates of population growth projections, and empirical trends in per capita water consumption for metropolitan cities. This ensemble consisted of ~ 30, 700 scenarios (~575 k observations). We compared and contrasted two metropolitan communities that exhibit differing growth projections and water portfolios; moderate growth with a diverse portfolio versus high growth for a more restrictive portfolio. Results illustrate that both communities exhibited an expanding envelope of possible, future water outcomes with rational water management trajectories. However, a more diverse portfolio resulted in a broad, time-insensitive decision space for management interventions. The reverse was true for the more restrictive water portfolio with high growth projections.
Changing and Differentiated Urban Landscape in China: Spatiotemporal Patterns and Driving Forces.
Fang, Chuanglin; Li, Guangdong; Wang, Shaojian
2016-03-01
Urban landscape spatiotemporal change patterns and their driving mechanisms in China are poorly understood at the national level. Here we used remote sensing data, landscape metrics, and a spatial econometric model to characterize the spatiotemporal patterns of urban landscape change and investigate its driving forces in China between 1990 and 2005. The results showed that the urban landscape pattern has experienced drastic changes over the past 15 years. Total urban area has expanded approximately 1.61 times, with a 2.98% annual urban-growth rate. Compared to previous single-city studies, although urban areas are expanding rapidly, the overall fragmentation of the urban landscape is decreasing and is more irregular and complex at the national level. We also found a stair-stepping, urban-landscape changing pattern among eastern, central, and western counties. In addition, administrative level, urban size, and hierarchy have effects on the urban landscape pattern. We also found that a combination of landscape metrics can be used to supplement our understanding of the pattern of urbanization. The changes in these metrics are correlated with geographical indicators, socioeconomic factors, infrastructure variables, administrative level factors, policy factors, and historical factors. Our results indicate that the top priority should be strengthening the management of urban planning. A compact and congregate urban landscape may be a good choice of pattern for urban development in China.
Does the terrestrial phenology concept apply in water?
NASA Astrophysics Data System (ADS)
Winder, M.; Cloern, J. E.
2009-12-01
Terrestrial plants have a life history that has evolved to a circannual rhythm in concert with the seasonal climate system and overall biomass follows a regular cycle of growth and senescence having a period of 1 year. Consistency in phase and amplitude render terrestrial plant activity an effective tool to observe shifts in the seasonal life cycle in response to climate change. The other half of Earth’s primary production occurs in aquatic systems, dominated by unicellular algae having the capacity to divide daily under optimal conditions and population changes can, in principle, occur any time within a year. Given that periods of life cycles differ on land compared to aquatic systems, it can be expected that patterns of seasonal variability might differ between terrestrial and pelagic plants. We compiled 121 phytoplankton biomass time series with a median length of 16 years from estuarine-coastal and lake ecosystems in the temperate and subtropical zone and address three questions: Do aquatic pelagic plants follow the canonical seasonal pattern of terrestrial plants? What are the dominant periodicities of aquatic primary producers? How recurrent are cyclical patterns from year to year? We applied wavelet analysis to extract the phase and amplitude of these long-term phytoplankton time series. The data revealed that in about 45 % of the aquatic sites an annual cycle of 12-month periodicity was strongest expressed, corresponding to one peak per year. In about 20 % the 6-month periodicity dominated, characteristic of two peaks within a year, and about 35 % showed a pattern best attributed to the 2-5 month band periodicity and for 2 % no consistent periodicity emerged. The reoccurrence of the seasonal fluctuations varied however greatly from year to year, ranging from more predictable patterns to irregular patterns in other sites. These findings suggest that seasonal activity of chlorophyll a can be unpredictable and variable. We propose drivers that give rise to the broad pattern of seasonal phytoplankton fluctuations and discuss advantages and limitations of using phytoplankton phenology as indicators of climate change.
NASA Astrophysics Data System (ADS)
Sofyanti, Ervina; Boel, Trelia; Soegiharto, Benny; Ilyas, Syafruddin; Irani Nainggolan, Lidya; Auerkari, Elza Ibrahim
2018-03-01
Pituitary Homeobox 2 (PITX2), is an active gene as a paired-related homeobox gene that encodes multiple isoforms. Its Nodal pathway in determination of left-right patterning during embryogenesis has been reported in satellite cells and expressed in adult human skeletal muscle. PITX2A and PITX2B are produced by alternative splicing and used of different promoters. PITX2C uses an alternative promoter located upstream of exon 4. PITX2D is produced by PITX2C alternative promoter and differential splicing. The 5’-primers and 3’- antisense primer were unique for each isoforms. Variability measurement in vertical dimension showed stronger genetic component than sagittal. This study aims to obtain the genotype marker of vertical mandibular asymmetry related to PITX2A and PITX2D isoform by visualization of the amplified product on stained gel to allele specific oligonucleotide between the case and control with Restriction Fragment Length Polymorphism (RFLP). Determination of vertical mandibular asymmetry based on condylar height asymmetry index of pre-treatment panoramic radiograph using Kjellberg’s technique whilst vertical mandibular growth pattern using lateral cephalogram. The differences of condylar height asymmetry in case-control based on vertical growth pattern was compared using Pearson’s chi-squared test. DNA extraction of 129 out-coming orthodontic patients in Universitas Sumatera Utara Dental Hospital were obtained from Buccal swab. Then DNA samples were amplified by Polymerase chain reaction (PCR) and digested with NciI restriction enzyme prior to electrophoresis visualization. There was no significant statistical difference in vertical mandibular asymmetry compared to vertical mandibular growth pattern. The RFLP analysis did not show any polymorphism for PITX2A and PITX2D isoform. All of the samples showed wild type homozygote. Further analysis method, except RFLP, were required to understand the genetic factor in the variance of vertical mandibular asymmetry.
NASA Astrophysics Data System (ADS)
Yang, Lei; Chen, Liding; Wei, Wei
2017-04-01
Soil water stored below rainfall infiltration depth is a reliable water resource for plant growth in arid and semi-arid regions. For decreasing serious soil erosion, large-scale human-introduced vegetation restoration was initiated in Chinese Loess Plateau in late 1990s. However, these activities may result in excessive water consumption and soil water deficit if no appropriate scientific guidance were offered. This in turn impacts the regional ecological restoration and sustainable management of water resources. In this study, soil water content data in depth of 0-5 m was obtained by long-term field observation and geostatistical method in 6 small watersheds covered with different land use pattern. Profile characteristics and spatial-temporal patterns of soil water were compared between different land use types, hillslopes, and watersheds. The results showed that: (1) Introduced vegetation consumed excessive amount of water when compared with native grassland and farmland, and induced temporally stable soil desiccation in depth of 0-5 m. The introduced vegetation decreased soil water content to levels lower than the reference value representing no human impact in all soil layers. (2) The analysis of differences in soil water at hillslope and watershed scales indicated that land use determined the spatial and temporal variability of soil water. Soil water at watershed scale increased with the increasing area of farmland, and decreased with increasing percentage of introduced vegetation. Land use structure determined the soil water condition and land use pattern determined the spatial-temporal variability of soil water at watershed scale. (3) Large-scale revegetation with introduced vegetation diminished the spatial heterogeneity of soil water at different scales. Land use pattern adjustment could be used to improve the water resources management and maintain the sustainability of vegetation restoration.
NASA Astrophysics Data System (ADS)
Ospina-Alvarez, Andres; Catalán, Ignacio A.; Bernal, Miguel; Roos, David; Palomera, Isabel
2015-11-01
We show the application of a Spatially-Explicit Individual-Based Model (SEIBM) to understand the recruitment process of European anchovy. The SEIBM is applied to simulate the effects of inter-annual variability in parental population spawning behavior and intensity, and ocean dynamics, on the dispersal of eggs and larvae from the spawning area in the Gulf of Lions (GoL) towards the coastal nursery areas in the GoL and Catalan Sea (northwestern Mediterranean Sea). For each of seven years (2003-2009), we initialize the SEIBM with the real positions of anchovy eggs during the spawning peak, from an acoustics-derived eggs production model. We analyze the effect of spawners' distribution, timing of spawning, and oceanographic conditions on the connectivity patterns, growth, dispersal distance and late-larval recruitment (14 mm larva recruits, R14) patterns. The area of influence of the Rhône river plume was identified as having a high probability of larval recruitment success (64%), but up to 36% of R14 larvae end up in the Catalan Coast. We demonstrate that the spatial paths of larvae differ dramatically from year to year, and suggest potential offshore nursery grounds. We showed that our simulations are coherent with existing recruitment proxies and therefore open new possibilities for fisheries management.
Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan
2017-04-01
Research has demonstrated that the feeding pattern of synthetic wastewater plays an important role in sludge characteristics during biological wastewater treatment. Although considerable research has been devoted to synthetic wastewater, less attention has been paid to industrial wastewater. In this research, three different feeding strategies were applied during the treatment of tank truck cleaning (TTC) water. This industry produces highly variable wastewaters that are often loaded with hazardous chemicals, which makes them challenging to treat with activated sludge (AS). In this study, it is shown that the feeding pattern has a significant influence on the settling characteristics. Pulse feeding resulted in AS with a sludge volume index (SVI) of 68 ± 15 mL gMLSS -1 . Slowly and continuously fed AS had to contend with unstable SVI values that fluctuated between 100 and 600 mL gMLSS -1 . These fluctuations were clearly caused by the feeding solution. The obtained settling characteristics are being supported by the microscopic analysis, which revealed a clear floc structure for the pulse fed AS. Ecotoxicological effluent assessment with bacteria, Crustacea and algae identified algae as the most sensitive organism for all effluents from all different reactors. Variable algae growth inhibitions were measured between the different reactors. The chemical and ecotoxicological effluent quality was comparable between the reactors.
NASA Technical Reports Server (NTRS)
Knox, J.
1986-01-01
A higher plant growth system for Controlled Ecological Life Support System (CELSS) applications is described. The system permits independent movement of individual plants during growth. Enclosed within variable geometry growth chambers, the system allocates only the volume required by the growing plants. This variable spacing system maintains isolation between root and shoot environments, providing individual control for optimal growth. The advantages of the system for hydroponic and aeroponic growth chambers are discussed. Two applications are presented: (1) the growth of soybeans in a space station common module, and (2) in a terrestrial city greenhouse.
NASA Astrophysics Data System (ADS)
Oster, J. L.; Weisman, I. E.; Sharp, W. D.; Ibarra, D. E.
2017-12-01
The synthesis of hydrologically sensitive proxy records across western North America reveals spatial patterns of variability that persist, with some variation, over multiple temporal scales. For example, tree ring records from the last century highlight a distinct north-south dipole pattern in the response of regional precipitation anomalies to ENSO and the PDO, while a similar dipole pattern of wet and dry precipitation anomalies developed across the region in response to climate forcing at the Last Glacial Maximum (LGM). Hydrologically sensitive proxy records from the intervening transition zone can shed light on the stationarity and spatial scale of this pattern over time. Here we present records of δ18O and δ13C from a Lake Shasta Caverns stalagmite (LSC3) from Northern California that grew from 36 to 14 ka. This cave, located at 40.8°N, is situated within the transition zone and is well-positioned to enhance our understanding of regional precipitation patterns and moisture transport variability during the last glacial period and deglaciation. Six years of weekly rain isotope data indicate that varying atmospheric temperatures and moisture sources are primary controls on δ18O in Northern California precipitation. Increased δ18O and δ13C in LSC3 and slower stalagmite growth rates during MIS 2 suggest increased subtropical moisture but also dry conditions in Northern California. The δ13C record displays distinct millennial-scale oscillations during MIS 3, suggesting drier conditions also occurred during interstadials associated with Dansgaard-Oeschger cycles. The LSC3 δ18O record documents changes synchronous with δ18O in the Fort Stanton stalagmite in New Mexico, though sometimes in phase (e.g. during Heinrich Stadial 1; HS1) and sometimes anti-phased (e.g. during the Bölling-Alleröd). Likewise, the LSC3 δ13C record suggests a transition from wet to drier conditions during HS1 in marked contrast to many more southerly records that indicate wetter conditions later in HS1. These comparisons show that changes in Northern California climate were both in and out of phase with hydroclimate variations occurring to the south and southeast. Thus, the LSC3 record refines our understanding of spatial patterns of hydroclimatic change in western North America.
Population dynamics coded in DNA: genetic traces of the expansion of modern humans
NASA Astrophysics Data System (ADS)
Kimmel, Marek
1999-12-01
It has been proposed that modern humans evolved from a small ancestral population, which appeared several hundred thousand years ago in Africa. Descendants of the founder group migrated to Europe and then to Asia, not mixing with the pre-existing local populations but replacing them. Two demographic elements are present in this “out of Africa” hypothesis: numerical growth of the modern humans and their migration into Eurasia. Did these processes leave an imprint in our DNA? To address this question, we use the classical Fisher-Wright-Moran model of population genetics, assuming variable population size and two models of mutation: the infinite-sites model and the stepwise-mutation model. We use the coalescence theory, which amounts to tracing the common ancestors of contemporary genes. We obtain mathematical formulae expressing the distribution of alleles given the time changes of population size . In the framework of the infinite-sites model, simulations indicate that the pattern of past population size change leaves its signature on the pattern of DNA polymorphism. Application of the theory to the published mitochondrial DNA sequences indicates that the current mitochondrial DNA sequence variation is not inconsistent with the logistic growth of the modern human population. In the framework of the stepwise-mutation model, we demonstrate that population bottleneck followed by growth in size causes an imbalance between allele-size variance and heterozygosity. We analyze a set of data on tetranucleotide repeats which reveals the existence of this imbalance. The pattern of imbalance is consistent with the bottleneck being most ancient in Africans, most recent in Asians and intermediate in Europeans. These findings are consistent with the “out of Africa” hypothesis, although by no means do they constitute its proof.
Conspecific Plant-Soil Feedbacks of Temperate Tree Species in the Southern Appalachians, USA
Reinhart, Kurt O.; Johnson, Daniel; Clay, Keith
2012-01-01
Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be spatially variable. PMID:22808231
Conspecific plant-soil feedbacks of temperate tree species in the southern Appalachians, USA.
Reinhart, Kurt O; Johnson, Daniel; Clay, Keith
2012-01-01
Many tree species have seedling recruitment patterns suggesting that they are affected by non-competitive distance-dependent sources of mortality. We conducted an experiment, with landscape-level replication, to identify cases of negative distance-dependent effects and whether variation in these effects corresponded with tree recruitment patterns in the southern Appalachian Mountains region. Specifically, soil was collected from 14 sites and used as inocula in a 62 day growth chamber experiment determining whether tree seedling growth was less when interacting with soil from conspecific (like) than heterospecific (other) tree species. Tests were performed on six tree species. Three of the tree species had been previously described as having greater recruitment around conspecifics (i.e. facilitator species group) compared to the other half (i.e. inhibitor species group). We were then able to determine whether variation in negative distance-dependent effects corresponded with recruitment patterns in the field. Across the six species, none were negatively affected by soil inocula from conspecific relative to heterospecific sources. Most species (four of six) were unaffected by soil source. Two species (Prunus serotina and Tsuga canadensis) had enhanced growth in pots inoculated with soil from conspecific trees vs. heterospecifics. Species varied in their susceptibility to soil pathogens, but trends across all species revealed that species classified as inhibitors were not more negatively affected by conspecific than heterospecific soil inocula or more susceptible to pathogenic effects than facilitators. Although plant-soil biota interactions may be important for individual species and sites, it may be difficult to scale these interactions over space or levels of ecological organization. Generalizing the importance of plant-soil feedbacks or other factors across regional scales may be especially problematic for hyperdiverse temperate forests where interactions may be spatially variable.
Lease, Richard O.; Haeussler, Peter J.; O'Sullivan, Paul
2016-01-01
Cenozoic growth of the Alaska Range created the highest topography in North America, but the space-time pattern and drivers of exhumation are poorly constrained. We analyzed U/Pb and fission-track double dates of detrital zircon and apatite grains from 12 catchments that span a 450 km length of the Alaska Range to illuminate the timing and extent of exhumation during different periods. U/Pb ages indicate a dominant Late Cretaceous to Oligocene plutonic provenance for the detrital grains, with only a small percentage of grains recycled from the Mesozoic and Paleozoic sedimentary cover. Fission-track ages record exhumation during Alaska Range growth and incision and reveal three distinctive patterns. First, initial Oligocene exhumation was focused in the central Alaska Range at ~30 Ma and expanded outward along the entire length of the range until 18 Ma. Oligocene exhumation, coeval with initial Yakutat microplate collision >600 km to the southeast, suggests a far-field response to collision that was localized by the Denali Fault within a weak Mesozoic suture zone. Second, the variable timing of middle to late Miocene exhumation suggests independently evolving histories influenced by local structures. Time-transgressive cooling ages suggest successive rock uplift and erosion of Mounts Foraker (12 Ma) through Denali (6 Ma) as crust was advected through a restraining bend in the Denali Fault and indicate a long-term slip rate ~4 mm/yr. Third, Pliocene exhumation is synchronous (3.7–2.7 Ma) along the length of the Alaska Range but only occurs in high-relief, glacier-covered catchments. Pliocene exhumation may record an acceleration in glacial incision that was coincident with the onset of Northern Hemisphere glaciation.
NASA Astrophysics Data System (ADS)
A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Njoku, E. G.; Colliander, A.
2016-12-01
We combine soil moisture (SM) data from AMSR-E, AMSR-2 and SMAP, terrestrial water storage (TWS) changes from GRACE and precipitation measurements from GPCP to delineate and characterize drought and water supply pattern and its impact on vegetation growth. GRACE TWS provides spatially continuous observations of total terrestrial water storage changes and regional drought extent, persistence and severity, while satellite derived soil moisture estimates provide enhanced delineation of plant-available soil moisture. Together these data provide complementary metrics quantifying available plant water supply and have important implications for water resource management. We use these data to investigate the supply changes from different water components in relation to satellite based vegetation productivity metrics from MODIS, before, during and following the major drought events observed in the continental US during the past 13 years. We observe consistent trends and significant correlations between monthly time series of TWS, SM, and vegetation productivity. In Texas and surrounding semi-arid areas, we find that the spatial pattern of the vegetation-moisture relation follows the gradient in mean annual precipitation. In Texas, GRACE TWS and surface SM show strong coupling and similar characteristic time scale in relatively normal years, while during the 2011 onward hydrological drought, GRACE TWS manifests a longer time scale than that of surface SM, implying stronger drought persistence in deeper water storage. In the Missouri watershed, we find a spatially varying vegetation-moisture relationship where in the drier northwestern portion of the basin, the inter-annual variability in summer vegetation productivity is closely associated with changes in carry-on GRACE TWS from spring, whereas in the moist southeastern portion of the basin, summer precipitation is the dominant controlling factor on vegetation growth.
Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg
2015-01-01
We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750–900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843
de la Bastide, P Y; Kropp, B R; Piché, Y
1995-01-01
An in vitro study investigated mechanisms for the development of genetically variable mycorrhizal mycelia for Laccaria bicolor. Seedlings of jack pine (Pinus banksiana) grown nonaseptically in an autoclaved soil substrate were given different L. bicolor inoculum treatments. These included (i) a dikaryotic mycelium genotype (D); (ii) D and basidiospores collected from one group of five sporophores (T1); (iii) D and basidiospores collected from 10 sporophores, two from each of five different groups (T5); (iv) T1 alone; (v) T5 alone; and (vi) a noninoculated control. Dikaryotic mycelial inoculum was provided at the time of sowing, while basidiospore inoculum was added at 10 weeks after seed germination. Sporophore formation was induced after 20 weeks of growth, and dikaryotic cultures were isolated from their tissue. Seedlings were harvested, and growth and mycorrhization were assessed. Levels of both were generally lower for T1-treated seedlings, compared with seedlings receiving D, while levels for T5-treated seedlings were intermediate. Sporophore genotype variability was assessed for inoculum treatments by using the isoenzymatic marker leucine aminopeptidase. The greatest genetic variability was seen with the basidiospore treatments T1 and T5, with up to four leucine aminopeptidase patterns per seedling. The mixed treatments D plus T1 and D plus T5 produced most frequently, but not exclusively, the inoculated dikaryon genotype. After isoenzyme results were assessed, variable sporophore isolates of mixed treatments were analyzed with randomly amplified polymorphic DNA and PCR mitochondrial DNA markers to determine if they were formed by dikaryon-monokaryon crosses between the inoculated dikaryon and monosporous mycelia.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7486997
NASA Astrophysics Data System (ADS)
Delmas, Magali; Gunnell, Yanni; Calvet, Marc
2015-01-01
When considering the morphometric attributes of a glacial cirque, imbalances between length, width, and amplitude have been deemed relevant tools for discriminating between two possible pathways of cirque growth: downwearing by glaciers or backwearing by freeze-thaw processes. Based on a sample of 1071 cirques in the French Pyrenees, we reframe the concern for climatic variables by also granting systematic consideration to cirque lithology. Insight into the factors that control cirque shape is gained from Principal Component Analysis, where maps of eigenvalues assigned to six classes of bedrock display spatial patterns of cirque form as a function of position along the regional climatic gradient. Among crystalline rocks (granite, gneiss, migmatite), cirque form is predominantly determined by climatic controls. This is highlighted in the contrast between the elevated core of the Pleistocene icefield, where cirque isometry prevails, and the more peripheral areas (external sierras of the Atlantic precipitation zone and high sierras of the drier Mediterranean zone) where the lighter imprint of glaciation on the landscape has failed to erase (through glacial deepening) the allometric signature of pre-Pleistocene topographic features such as shallow valley heads and etch-basins. As a result, wide and shallow cirques occur in these settings. Among schist outcrops, in contrast, cirque form appears randomly distributed, suggesting that bedrock characteristics (e.g., structure) rather than climate are the key controls on cirque growth patterns. Given the importance of geological structure and preglacial topographic inheritance, cirques are complex landforms for which assumptions of allometric growth may be spurious. It follows that form is not always a reliable guide to process.
Local-scale drivers of tree survival in a temperate forest.
Wang, Xugao; Comita, Liza S; Hao, Zhanqing; Davies, Stuart J; Ye, Ji; Lin, Fei; Yuan, Zuoqiang
2012-01-01
Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1-20 cm dbh) and medium trees (20-40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management.
Local-Scale Drivers of Tree Survival in a Temperate Forest
Wang, Xugao; Comita, Liza S.; Hao, Zhanqing; Davies, Stuart J.; Ye, Ji; Lin, Fei; Yuan, Zuoqiang
2012-01-01
Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1–20 cm dbh) and medium trees (20–40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management. PMID:22347996
NASA Astrophysics Data System (ADS)
Jurasinski, Gerald; Scharnweber, Tobias; Schröder, Christian; Lennartz, Bernd; Bauwe, Andreas
2017-04-01
Tree growth depends, among other factors, largely on the prevailing climatic conditions. Therefore, tree growth patterns are to be expected under climate change. Here, we analyze the tree-ring growth response of three major European tree species to projected future climate across a climatic (mostly precipitation) gradient in northeastern Germany. We used monthly data for temperature, precipitation, and the standardized precipitation evapotranspiration index (SPEI) over multiple time scales (1, 3, 6, 12, and 24 months) to construct models of tree-ring growth for Scots pine (Pinus syl- vestris L.) at three pure stands, and for Common beech (Fagus sylvatica L.) and Pedunculate oak (Quercus robur L.) at three mature mixed stands. The regression models were derived using a two-step approach based on partial least squares regression (PLSR) to extract potentially well explaining variables followed by ordinary least squares regression (OLSR) to consolidate the models to the least number of variables while retaining high explanatory power. The stability of the models was tested with a comprehensive calibration-verification scheme. All models were successfully verified with R2s ranging from 0.21 for the western pine stand to 0.62 for the beech stand in the east. For growth prediction, climate data forecasted until 2100 by the regional climate model WETTREG2010 based on the A1B Intergovernmental Panel on Climate Change (IPCC) emission scenario was used. For beech and oak, growth rates will likely decrease until the end of the 21st century. For pine, modeled growth trends vary and range from a slight growth increase to a weak decrease in growth rates depending on the position along the climatic gradient. The climatic gradient across the study area will possibly affect the future growth of oak with larger growth reductions towards the drier east. For beech, site-specific adaptations seem to override the influence of the climatic gradient. We conclude that in Northeastern Germany Scots pine has great potential to remain resilient to projected climate change without any greater impairment, whereas Common beech and Pedunculate oak will likely face lesser growth under the expected warmer and dryer climate conditions. The results call for an adaptation of forest management to mitigate the negative effects of climate change for beech and oak in the region.
Pomo, Joseph M; Taylor, Robert M; Gullapalli, Rama R
2016-01-01
Spheroid based culture methods are gaining prominence to elucidate the role of the microenvironment in liver carcinogenesis. Additionally, the phenomenon of epithelial-mesenchymal transition also plays an important role in determining the metastatic potential of liver cancer. Tumor spheroids are thus important models to understand the basic biology of liver cancer. We cultured, characterized and examined the formation of compact 3-D micro-tumor spheroids in five hepatocellular carcinoma (HCC) cell lines, each with differing TP53 mutational status (wt vs mutant vs null). Spheroid viability and death was systematically measured over a course of a 10 day growth period using various assays. We also examined the TP53 and E-cadherin (CDH1) mRNA and protein expression status in each cell line of the 2-D and 3-D cell models. A novel finding of our study was the identification of variable 3-D spheroid morphology in individual cell lines, ranging from large and compact, to small and unstable spheroid morphologies. The observed morphological differences between the spheroids were robust and consistent over the duration of spheroid culture growth of 10 days in a repeatable manner. Highly variable CDH1 expression was identified depending on the TP53 mutational status of the individual HCC cell line, which may explain the variable spheroid morphology. We observed consistent patterns of TP53 and CDH1 expression in both 2-D and 3-D culture models. In conclusion, we show that 3-D spheroids are a useful model to determine the morphological growth characteristics of cell lines which are not immediately apparent in routine 2-D culture methods. 3-D culture methods may provide a better alternative to study the process of epithelial-mesenchymal transition (EMT) which is important in the process of liver cancer metastasis.
Legros, S.; Mialet-Serra, I.; Caliman, J.-P.; Siregar, F. A.; Clément-Vidal, A.; Dingkuhn, M.
2009-01-01
Background and Aims Oil palm flowering and fruit production show seasonal maxima whose causes are unknown. Drought periods confound these rhythms, making it difficult to analyse or predict dynamics of production. The present work aims to analyse phenological and growth responses of adult oil palms to seasonal and inter-annual climatic variability. Methods Two oil palm genotypes planted in a replicated design at two sites in Indonesia underwent monthly observations during 22 months in 2006–2008. Measurements included growth of vegetative and reproductive organs, morphology and phenology. Drought was estimated from climatic water balance (rainfall – potential evapotranspiration) and simulated fraction of transpirable soil water. Production history of the same plants for 2001–2005 was used for inter-annual analyses. Key Results Drought was absent at the equatorial Kandista site (0°55′N) but the Batu Mulia site (3°12′S) had a dry season with variable severity. Vegetative growth and leaf appearance rate fluctuated with drought level. Yield of fruit, a function of the number of female inflorescences produced, was negatively correlated with photoperiod at Kandista. Dual annual maxima were observed supporting a recent theory of circadian control. The photoperiod-sensitive phases were estimated at 9 (or 9 + 12 × n) months before bunch maturity for a given phytomer. The main sensitive phase for drought effects was estimated at 29 months before bunch maturity, presumably associated with inflorescence sex determination. Conclusion It is assumed that seasonal peaks of flowering in oil palm are controlled even near the equator by photoperiod response within a phytomer. These patterns are confounded with drought effects that affect flowering (yield) with long time-lag. Resulting dynamics are complex, but if the present results are confirmed it will be possible to predict them with models. PMID:19748909
Trajectories of Ethnoracial Diversity in American Communities, 1980–2010*
Hall, Matthew; Tach, Laura; Lee, Barrett A.
2017-01-01
The ethnoracial makeup of the U.S. population has undergone transformative change during recent decades, with the non-Hispanic white share of the population shrinking while the minority shares expand. Yet this trend toward greater racial diversity is not universal throughout the nation. Here we propose a framework of segmented change, which incorporates both spatial assimilation and ethnic stratification theories, to better understand variation in patterns of diversification across American communities. Our research applies growth mixture models to decennial census data on places for the 1980–2010 period, finding that trajectories of ethnoracial diversity are much more uneven than popularly claimed. Moreover, types of diversity change are stratified by initial racial composition. While places with mostly-white populations in 1980 underwent extensive diversification, places with larger shares of Hispanics and (especially) blacks in 1980 exhibited less uniform movement toward diversity and were more likely to remain racially homogeneous. Analysis of the underlying group-specific pathways of change indicates that the diversification of white communities was driven largely by Hispanic growth; when areas with a black presence did diversify, it occurred via contracting white populations. These racially conditioned and locally variable patterns emphasize the segmented nature of diversity change in American society. PMID:29398737
Clark, Jo-Anna B J; Tully, Sara J; Dawn Marshall, H
2014-12-01
Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive disease that presents with progressive gingival proliferation in farmed silver foxes. Hereditary gingival fibromatosis (HGF) is an analogous condition in humans that is genetically heterogeneous with several known autosomal dominant loci. For one locus the causative mutation is in the Son of sevenless homologue 1 (SOS1) gene. For the remaining loci, the molecular mechanisms are unknown but Ras pathway involvement is suspected. Here we compare sequences for the SOS1 gene, and two adjacent genes in the Ras pathway, growth receptor bound protein 2 (GRB2) and epidermal growth factor receptor (EGFR), between HHG-affected and unaffected foxes. We conclude that the known HGF causative mutation does not cause HHG in foxes, nor do the coding regions or intron-exon boundaries of these three genes contain any candidate mutations for fox gum disease. Patterns of molecular evolution among foxes and other mammals reflect high conservation and strong functional constraints for SOS1 and GRB2 but reveal a lineage-specific pattern of variability in EGFR consistent with mutational rate differences, relaxed functional constraints, and possibly positive selection.
Hope, A.S.; Boynton, W.L.; Stow, D.A.; Douglas, David C.
2003-01-01
Interannual above-ground production patterns are characterized for three tundra ecosystems in the Kuparuk River watershed of Alaska using NOAA-AVHRR Normalized Difference Vegetation Index (NDVI) data. NDVI values integrated over each growing season (SINDVI) were used to represent seasonal production patterns between 1989 and 1996. Spatial differences in ecosystem production were expected to follow north-south climatic and soil gradients, while interannual differences in production were expected to vary with variations in seasonal precipitation and temperature. It was hypothesized that the increased vegetation growth in high latitudes between 1981 and 1991 previously reported would continue through the period of investigation for the study watershed. Zonal differences in vegetation production were confirmed but interannual variations did not covary with seasonal precipitation or temperature totals. A sharp reduction in the SINDVI in 1992 followed by a consistent increase up to 1996 led to a further hypothesis that the interannual variations in SINDVI were associated with variations in stratospheric optical depth. Using published stratospheric optical depth values derived from the SAGE and SAGE-II satellites, it is demonstrated that variations in these depths are likely the primary cause of SINDVI interannual variability.
Spectral variations of canopy reflectance in support of precision agriculture
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana; Georgiev, Georgi; Borisova, Denitsa; Nikolov, Hristo
2014-05-01
Agricultural monitoring is an important and continuously spreading activity in remote sensing and applied Earth observations. It supplies precise, reliable and valuable information on current crop condition and growth processes. In agriculture, the timing of seasonal cycles of crop activity is important for species classification and evaluation of crop development, growing conditions and potential yield. The correct interpretation of remotely sensed data, however, and the increasing demand for data reliability require ground-truth knowledge of the seasonal spectral behavior of different species and their relation to crop vigor. For this reason, we performed ground-based study of the seasonal response of winter wheat reflectance patterns to crop growth patterns. The goal was to quantify crop seasonality by establishing empirical relationships between plant biophysical and spectral properties in main ontogenetic periods. Phenology and agro-specific relationships allow assessing crop condition during different portions of the growth cycle and thus effectively tracking plant development, and finally make yield predictions. The applicability of a number of vegetation indices (VIs) for monitoring crop seasonal dynamics, its health condition, and yield potential was examined. Special emphasis we put on narrow-band indices as the availability of data from hyperspectral imagers is unavoidable future. The temporal behavior of vegetation indices revealed increased sensitivity to crop growth. The derived spectral-biophysical relationships allowed extraction of quantitative information about crop variables and yield at different stages of the phenological development. Relating plant spectral and biophysical variables in a phenology-based manner allows crop monitoring, that is crop diagnosis and predictions to be performed multiple times during plant ontogenesis. During active vegetative periods spectral data was highly indicative of plant growth trends and yield potential. The VIs values contributed to reliable yield prediction and showed very good correspondence with the estimates from biophysical models. For dates before full maturity most of the examined VIs proved to be meaningful statistical predictors of crop state-indicative biophysical variables. High correlations were obtained for canopy cover fraction, LAI, and biomass. Sensitivity to red, near-infrared and green reflectance showed both vigorous and stressed plants. As crops attained advanced growth stages, decreased sensitivity of VIs and weaker correlations with bioparameters were observed, yet still significant in a statistical sense. The results highlight the capability of the presented approach to track the dynamics of crop growth from multitemporal spectral data, and illustrate the prediction accuracy of the spectral models. The results are useful in assessing the efficiency of various spectral band ratios and other vegetation indices often used in remote sensing studies of natural and agricultural vegetation. They suggest that the used algorithm for data processing is particularly suitable for airborne cropland monitoring and could be expanded to sites at farm or municipality scale. The results reported are from pilot study carried out on a plot located in one of the established polygons for experimental crop monitoring. In the mentioned research GIS database is established for supporting the experiments and modelling process. Recommendations on good farming practices for medium sized farms for monitoring stress conditions such as drought and overfertilizing are developed.
Tutkuviene, Janina; Cattaneo, Cristina; Obertová, Zuzana; Ratnayake, Melanie; Poppa, Pasquale; Barkus, Arunas; Khalaj-Hedayati, Kerstin; Schroeder, Inge; Ritz-Timme, Stefanie
2016-11-01
Craniofacial growth changes in young children are not yet completely understood. Up-to-date references for craniofacial measurements are crucial for clinical assessment of orthodontic anomalies, craniofacial abnormalities and subsequent planning of interventions. To provide normal reference data and to identify growth patterns for craniofacial dimensions of European boys and girls aged 3-6 years. Using standard anthropometric methodology, body weight, body height and 23 craniofacial measurements were acquired for a cross-sectional sample of 681 healthy children (362 boys and 319 girls) aged 3-6 years from Germany, Italy and Lithuania. Descriptive statistics, correlation coefficients, percentage annual changes and percentage growth rates were used to analyse the dataset. Between the ages of 3-6 years, craniofacial measurements showed age- and sex-related patterns independent from patterns observed for body weight and body height. Sex-related differences were observed in the majority of craniofacial measurements. In both sexes, face heights and face depths showed the strongest correlation with age. Growth patterns differed by craniofacial measurement and can be summarised into eight distinct age- and sex-related patterns. This study provided reference data and identified sex- and age-related growth patterns of the craniofacial complex of young European children, which may be used for detailed assessment of normal growth in paediatrics, maxillofacial reconstructive surgery and possibly for forensic age assessment.
The annual cycles of phytoplankton biomass
Winder, M.; Cloern, J.E.
2010-01-01
Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine-coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chloro-phyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six-or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to signal ratio is high. ?? 2010 The Royal Society.
Lakshmi, K Bhagya; Yelchuru, Sri Harsha; Chandrika, V; Lakshmikar, O G; Sagar, V Lakshmi; Reddy, G Vivek
2018-01-01
The main aim is to determine whether growth pattern had an effect on the upper airway by comparing different craniofacial patterns with pharyngeal widths and its importance during the clinical examination. Sixty lateral cephalograms of patients aged between 16 and 24 years with no pharyngeal pathology or nasal obstruction were selected for the study. These were divided into skeletal Class I ( n = 30) and skeletal Class II ( n = 30) using ANB angle subdivided into normodivergent, hyperdivergent, and hypodivergent facial patterns based on SN-GoGn angle. McNamara's airway analysis was used to determine the upper- and lower-airway dimensions. One-way ANOVA was used to do the intergroup comparisons and the Tukey's test as the secondary statistical analysis. Statistically significant difference exists between the upper-airway dimensions in both the skeletal malocclusions with hyperdivergent growth patterns when compared to other growth patterns. In both the skeletal malocclusions, vertical growers showed a significant decrease in the airway size than the horizontal and normal growers. There is no statistical significance between the lower airway and craniofacial growth pattern.
NASA Astrophysics Data System (ADS)
Inkoom, J. N.; Nyarko, B. K.
2014-12-01
The integration of geographic information systems (GIS) and agent-based modelling (ABM) can be an efficient tool to improve spatial planning practices. This paper utilizes GIS and ABM approaches to simulate spatial growth patterns of settlement structures in Shama. A preliminary household survey on residential location decision-making choice served as the behavioural rule for household agents in the model. Physical environment properties of the model were extracted from a 2005 image implemented in NetLogo. The resulting growth pattern model was compared with empirical growth patterns to ascertain the model's accuracy. The paper establishes that the development of unplanned structures and its evolving structural pattern are a function of land price, proximity to economic centres, household economic status and location decision-making patterns. The application of the proposed model underlines its potential for integration into urban planning policies and practices, and for understanding residential decision-making processes in emerging cities in developing countries. Key Words: GIS; Agent-based modelling; Growth patterns; NetLogo; Location decision making; Computational Intelligence.
Cohort profile: Pacific Islands Families (PIF) growth study, Auckland, New Zealand.
Rush, E; Oliver, M; Plank, L D; Taylor, S; Iusitini, L; Jalili-Moghaddam, S; Savila, F; Paterson, J; Tautolo, E
2016-11-02
This article profiles a birth cohort of Pacific children participating in an observational prospective study and describes the study protocol used at ages 14-15 years to investigate how food and activity patterns, metabolic risk and family and built environment are related to rates of physical growth of Pacific children. From 2000 to 2015, the Pacific Islands Families Study has followed, from birth, the growth and development of over 1000 Pacific children born in Auckland, New Zealand. In 2014, 931 (66%) of the original cohort had field measures of body composition, blood pressure and glycated haemoglobin. A nested subsample (n=204) was drawn by randomly selecting 10 males and 10 females from each decile of body weight. These participants had measurement of body composition by dual-energy X-ray absorptiometry, food frequency, 6 min walk test and accelerometer-determined physical activity and sedentary behaviours, and blood biomarkers for metabolic disease such as diabetes. Built environment variables were generated from individual addresses. Compared to the Centres for Disease Control and Prevention (CDC) reference population with mean SD scores (SDS) of 0, this cohort of 931 14-year-olds was taller, weighed more and had a higher body mass index (BMI) (mean SDS height >0.6, weight >1.6 and BMI >1.4). 7 of 10 youth were overweight or obese. The nested-sampling frame achieved an even distribution by body weight. Cross-sectional relationships between body size, fatness and growth rate, food patterns, activity patterns, pubertal development, risks for diabetes and hypertension and the family and wider environment will be examined. In addition, analyses will investigate relationships with data collected earlier in the life course and measures of the cohort in the future. Understanding past and present influences on child growth and health will inform timely interventions to optimise future health and reduce inequalities for Pacific people. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Perspectives on massive coral growth rates in a changing ocean.
Lough, Janice M; Cantin, Neal E
2014-06-01
The tropical ocean environment is changing at an unprecedented rate, with warming and severe tropical cyclones creating obvious impacts to coral reefs within the last few decades and projections of acidification raising concerns for the future of these iconic and economically important ecosystems. Documenting variability and detecting change in global and regional climate relies upon high-quality observational records of climate variables supplemented, prior to the mid-19th century, with reconstructions from various sources of proxy climate information. Here we review how annual density banding patterns that are recorded in the skeletons of massive reef-building corals have been used to document environmental change and impacts within coral reefs. Massive corals provide a historical perspective of continuous calcification processes that pre-date most ecological observations of coral reefs. High-density stress bands, abrupt declines in annual linear extension, and evidence of partial mortality within the skeletal growth record reveal signatures of catastrophic stress events that have recently been attributed to mass bleaching events caused by unprecedented thermal stress. Comparison of recent trends in annual calcification with century-scale baseline calcification rates reveals that the frequency of growth anomalies has increased since the late 1990s throughout most of the world's coral reef ecosystems. Continuous coral growth histories provide valuable retrospective information on the coral response to environmental change and the consequences of anthropogenic climate change. Co-ordinated efforts to synthesize and combine global calcification histories will greatly enhance our understanding of current calcification responses to a changing ocean. © 2014 Marine Biological Laboratory.
Rita, Angelo; Cherubini, Paolo; Leonardi, Stefano; Todaro, Luigi; Borghetti, Marco
2015-08-01
The present study assessed the effects of climatic conditions on radial growth and functional anatomical traits, including ring width, vessel size, vessel frequency and derived variables, i.e., potential hydraulic conductivity and xylem vulnerability to cavitation in Ilex aquifolium L. trees using long-term tree-ring time series obtained at two climatically contrasting sites, one mesic site in Switzerland (CH) and one drought-prone site in Italy (ITA). Relationships were explored by examining different xylem traits, and point pattern analysis was applied to investigate vessel clustering. We also used generalized additive models and bootstrap correlation functions to describe temperature and precipitation effects. Results indicated modified radial growth and xylem anatomy in trees over the last century; in particular, vessel frequency increased markedly at both sites in recent years, and all xylem traits examined, with the exception of xylem cavitation vulnerability, were higher at the CH mesic compared with the ITA drought site. A significant vessel clustering was observed at the ITA site, which could contribute to an enhanced tolerance to drought-induced embolism. Flat and negative relationships between vessel size and ring width were observed, suggesting carbon was not allocated to radial growth under conditions which favored stem water conduction. Finally, in most cases results indicated that climatic conditions influenced functional anatomical traits more substantially than tree radial growth, suggesting a crucial role of functional xylem anatomy in plant acclimation to future climatic conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Trees tell of past climates: but are they speaking less clearly today?
Briffa, K. R.
1998-01-01
The annual growth of trees, as represented by a variety of ring-width, densitometric, or chemical parameters, represents a combined record of different environmental forcings, one of which is climate. Along with climate, relatively large-scale positive growth influences such as hypothesized 'fertilization' due to increased levels of atmospheric carbon dioxide or various nitrogenous compounds, or possibly deleterious effects of 'acid rain' or increased ultra-violet radiation, might all be expected to exert some influence on recent tree growth rates. Inferring the details of past climate variability from tree-ring data remains a largely empirical exercise, but one that goes hand-in-hand with the development of techniques that seek to identify and isolate the confounding influence of local and larger-scale non-climatic factors. By judicious sampling, and the use of rigorous statistical procedures, dendroclimatology has provided unique insight into the nature of past climate variability, but most significantly at interannual, decadal, and centennial timescales. Here, examples are shown that illustrate the reconstruction of annually resolved patterns of past summer temperature around the Northern Hemisphere, as well as some more localized reconstructions, but ones which span 1000 years or more. These data provide the means of exploring the possible role of different climate forcings; for example, they provide evidence of the large-scale effects of explosive volcanic eruptions on regional and hemispheric temperatures during the last 400 years. However, a dramatic change in the sensitivity of hemispheric tree-growth to temperature forcing has become apparent during recent decades, and there is additional evidence of major tree-growth (and hence, probably, ecosystem biomass) increases in the northern boreal forests, most clearly over the last century. These possibly anthropogenically related changes in the ecology of tree growth have important implications for modelling future atmospheric CO2 concentrations. Also, where dendroclimatology is concerned to reconstruct longer (increasingly above centennial) temperature histories, such alterations of 'normal' (pre-industrial) tree-growth rates and climate-growth relationships must be accounted for in our attempts to translate the evidence of past tree growth changes.
Expression of endogenous proteins in maize hybrids in a multi-location field trial in India.
Gutha, Linga R; Purushottam, Divakar; Veeramachaneni, Aruna; Tigulla, Sarita; Kodappully, Vikas; Enjala, Chandana; Rajput, Hitendrasinh; Anderson, Jennifer; Hong, Bonnie; Schmidt, Jean; Bagga, Shveta
2018-05-17
Genetically modified (GM) crops undergo large scale multi-location field trials to characterize agronomics, composition, and the concentration of newly expressed protein(s) [herein referred to as transgenic protein(s)]. The concentration of transgenic proteins in different plant tissues and across the developmental stages of the plant is considered in the safety assessment of GM crops. Reference or housekeeping proteins are expected to maintain a relatively stable expression pattern in healthy plants given their role in cellular functions. Understanding the effects of genotype, growth stage and location on the concentration of endogenous housekeeping proteins may provide insight into the contribution these factors could have on transgenic protein concentrations in GM crops. The concentrations of three endogenous proteins (actin, elongation factor 1-alpha, and glyceraldehyde 3-phosphate dehydrogenase) were measured in several different maize hybrids grown across multiple field locations over 2 years. Leaf samples were collected from healthy plants at three developmental stages across the growing seasons, and protein concentrations were quantified by indirect enzyme-linked immunosorbent assay (ELISA) for each protein. In general, the concentrations of these three endogenous proteins were relatively consistent across hybrid backgrounds, when compared within one growth stage and location (2-26%CV), whereas the concentrations of proteins in the same hybrid and growth stage across different locations were more variable (12-64%CV). In general, the protein concentrations in 2013 and 2014 show similar trends in variability. Some degree of variability in protein concentrations should be expected for both transgenic and endogenous plant-expressed proteins. In the case of GM crops, the potential variation in protein concentrations due to location effects is captured in the current model of multi-location field testing.
Bi, Zedong; Zhou, Changsong
2016-01-01
Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations) influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP) and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded), by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy). PMID:27555816
De Lara, Michel
2006-05-01
In their 1990 paper Optimal reproductive efforts and the timing of reproduction of annual plants in randomly varying environments, Amir and Cohen considered stochastic environments consisting of i.i.d. sequences in an optimal allocation discrete-time model. We suppose here that the sequence of environmental factors is more generally described by a Markov chain. Moreover, we discuss the connection between the time interval of the discrete-time dynamic model and the ability of the plant to rebuild completely its vegetative body (from reserves). We formulate a stochastic optimization problem covering the so-called linear and logarithmic fitness (corresponding to variation within and between years), which yields optimal strategies. For "linear maximizers'', we analyse how optimal strategies depend upon the environmental variability type: constant, random stationary, random i.i.d., random monotonous. We provide general patterns in terms of targets and thresholds, including both determinate and indeterminate growth. We also provide a partial result on the comparison between ;"linear maximizers'' and "log maximizers''. Numerical simulations are provided, allowing to give a hint at the effect of different mathematical assumptions.
Different techniques of multispectral data analysis for vegetation fraction retrieval
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana; Georgiev, Georgi
2012-07-01
Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires. PMID:24465492
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires.
Vitelli, Francesca; Zhang, Zhen; Huynh, Tuong; Sobotka, Angela; Mupo, Annalisa; Baldini, Antonio
2007-01-01
Fgf8 and Tbx1 have been shown to interact in patterning the aortic arch, and both genes are required in formation and growth of the outflow tract of the heart. However, the nature of the interaction of the two genes is unclear. We have utilized a novel Tbx1Fgf8 allele which drives Fgf8 expression in Tbx1-positive cells and an inducible Cre-LoxP recombination system to address the role of Fgf8 in Tbx1 positive cells in modulating cardiovascular development. Results support a requirement of Fgf8 in Tbx1 expressing cells to finely control patterning of the aortic arch and great arteries specifically during the pharyngeal arch artery remodeling process and indicate that the endoderm is the most likely site of this interaction. Furthermore, our data suggest that Fgf8 and Tbx1 play independent roles in regulating outflow tract development. This finding is clinically relevant since TBX1 is the candidate for DGS/VCFS, characterized clinically by variable expressivity and reduced penetrance of cardiovascular defects; Fgf8 gene variants may provide molecular clues to this variability. PMID:16696966
Vanden Hole, Charlotte; Goyens, Jana; Prims, Sara; Fransen, Erik; Ayuso Hernando, Miriam; Van Cruchten, Steven; Aerts, Peter; Van Ginneken, Chris
2017-08-01
Locomotion is one of the most important ecological functions in animals. Precocial animals, such as pigs, are capable of independent locomotion shortly after birth. This raises the question whether coordinated movement patterns and the underlying muscular control in these animals is fully innate or whether there still exists a rapid maturation. We addressed this question by studying gait development in neonatal pigs through the analysis of spatio-temporal gait characteristics during locomotion at self-selected speed. To this end, we made video recordings of piglets walking along a corridor at several time points (from 0 h to 96 h). After digitization of the footfalls, we analysed self-selected speed and spatio-temporal characteristics (e.g. stride and step lengths, stride frequency and duty factor) to study dynamic similarity, intralimb coordination and interlimb coordination. To assess the variability of the gait pattern, left-right asymmetry was studied. To distinguish neuromotor maturation from effects caused by growth, both absolute and normalized data (according to the dynamic similarity concept) were included in the analysis. All normalized spatio-temporal variables reached stable values within 4 h of birth, with most of them showing little change after the age of 2 h. Most asymmetry indices showed stable values, hovering around 10%, within 8 h of birth. These results indicate that coordinated movement patterns are not entirely innate, but that a rapid neuromotor maturation, potentially also the result of the rearrangement or recombination of existing motor modules, takes place in these precocial animals. © 2017. Published by The Company of Biologists Ltd.
ERIC Educational Resources Information Center
Phatak, Pramila; And Others
This study reports various aspects of the analyses carried out on the longitudinal data reported in a previous study (PS 007 345) for determining the general growth patterns and growth velocity of mental and motor development. Preliminary analyses focused on the selection of the growth curve, its evaluation in the 208 individual cases, and the…
Making a stand: five centuries of population growth in colonizing populations of Pinus ponderosa.
Lesser, Mark R; Jackson, Stephen T
2012-05-01
The processes underlying the development of new populations are important for understanding how species colonize new territory and form viable long-term populations. Life-history-mediated processes such as Allee effects and dispersal capability may interact with climate variability and site-specific factors to govern population success and failure over extended time frames. We studied four disjunct populations of ponderosa pine in the Bighorn Basin of north-central Wyoming to examine population growth spanning more than five centuries. The study populations are separated from continuous ponderosa pine forest by distances ranging from 15 to >100 km. Strong evidence indicates that the initial colonizing individuals are still present, yielding a nearly complete record of population history. All trees in each population were aged using dendroecological techniques. The populations were all founded between 1530 and 1655 cal yr CE. All show logistic growth patterns, with initial exponential growth followed by a slowing during the mid to late 20th century. Initial population growth was slower than expectations from a logistic regression model at all four populations, but increased during the mid-18th century. Initial lags in population growth may have been due to strong Allee effects. A combination of overcoming Allee effects and a transition to favorable climate conditions may have facilitated a mid-18th century pulse in population growth rate.
Steele, James; Bruce-Low, Stewart; Smith, Dave; Jessop, David; Osborne, Neil
2014-12-01
Chronic low back pain is a multifactorial condition with many dysfunctions including gait variability. The lumbar spine and its musculature are involved during gait and in chronic low back pain the lumbar extensors are often deconditioned. It was therefore of interest to examine relationships between lumbar kinematic variability during gait, with pain, disability and isolated lumbar extension strength in participants with chronic low back pain. Twenty four participants with chronic low back pain were assessed for lumbar kinematics during gait, isolated lumbar extension strength, pain, and disability. Angular displacement and kinematic waveform pattern and offset variability were examined. Angular displacement and kinematic waveform pattern and offset variability differed across movement planes; displacement was highest and similar in frontal and transverse planes, and pattern variability and offset variability higher in the sagittal plane compared to frontal and transverse planes which were similar. Spearman's correlations showed significant correlations between transverse plane pattern variability and isolated lumbar extension strength (r=-.411) and disability (r=.401). However, pain was not correlated with pattern variability in any plane. The r(2) values suggested 80.5% to 86.3% of variance was accounted for by other variables. Considering the lumbar extensors role in gait, the relationship between both isolated lumbar extension strength and disability with transverse plane pattern variability suggests that gait variability may result in consequence of lumbar extensor deconditioning or disability accompanying chronic low back pain. However, further study should examine the temporality of these relationships and other variables might account for the unexplained variance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Retrieving pace in vegetation growth using precipitation and soil moisture
NASA Astrophysics Data System (ADS)
Sohoulande Djebou, D. C.; Singh, V. P.
2013-12-01
The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and NDVI. The analysis is performed by combining both scenes 7 and 8 data. Schematic illustration of the two dimension transinformation entropy approach. T(P,SM;VI) stand for the transinformation contained in the couple soil moisture (SM)/precipitation (P) and explaining vegetation growth (VI).
Cranial suture biology of the Aleutian Island inhabitants.
Cray, James; Mooney, Mark P; Siegel, Michael I
2011-04-01
Research on cranial suture biology suggests there is biological and taxonomic information to be garnered from the heritable pattern of suture synostosis. Suture synostosis along with brain growth patterns, diet, and biomechanical forces influence phenotypic variability in cranial vault morphology. This study was designed to determine the pattern of ectocranial suture synostosis in skeletal populations from the Aleutian Islands. We address the hypothesis that ectocranial suture synostosis pattern will differ according to cranial vault shape. Ales Hrdlicka identified two phenotypes in remains excavated from the Aleutian Island. The Paleo-Aleutians, exhibiting a dolichocranic phenotype with little prognathism linked to artifacts distinguished from later inhabitants, Aleutians, who exhibited a brachycranic phenotype with a greater amount of prognathism. A total of 212 crania representing Paleo-Aleuts and Aleutian as defined by Hrdlicka were investigated for suture synostosis pattern following standard methodologies. Comparisons were performed using Guttmann analyses. Results revealed similar suture fusion patterns for the Paleo-Aleut and Aleutian, a strong anterior to posterior pattern of suture fusion for the lateral-anterior suture sites, and a pattern of early termination at the sagittal suture sites for the vault. These patterns were found to differ from that reported in the literature. Because these two populations with distinct cranial shapes exhibit similar patterns of suture synostosis it appears pattern is independent of cranial shape in these populations of Homo sapiens. These findings suggest that suture fusion patterns may be population dependent and that a standardized methodology, using suture fusion to determine age-at-death, may not be applicable to all populations. Copyright © 2011 Wiley-Liss, Inc.
Nash, Andrea; Dunn, Michael; Asztalos, Elizabeth; Corey, Mary; Mulvihill-Jory, Bridget; O'Connor, Deborah L
2011-08-01
Several Canadian professional organizations recently recommended that the growth of preterm infants be monitored using the World Health Organization Growth Standards (WHO-GS) after hospital discharge. The WHO-GS are a prescriptive set of growth charts that describe how term infants should grow under ideal environmental conditions. Whether preterm infants following this pattern of growth have better outcomes than infants that do not has yet to be evaluated. Our aim was to determine whether the pattern of growth of very low birth weight (VLBW) infants during the first 2 years, assessed using the WHO-GS or the traditional Centers for Disease Control and Prevention reference growth charts (CDC-RGC), is associated with neurodevelopment. Pattern of weight, length, and head circumference gain of appropriate-for-gestation VLBW preterm infants (n = 289) from birth to 18-24 months corrected age was classified, using the WHO-GS and CDC-RGC, as sustained (change in Z-score ≤1 SD), decelerated (decline >1 SD), or accelerated (incline >1 SD). Development was assessed using the Bayley Scales of Infant and Toddler Development (BSID)-III at 18-24 months corrected age. Using the WHO-GS, children with a decelerated pattern of weight gain had lower cognitive (10 points), language (6 points), and motor (4 points) scores than infants with sustained weight gain (p < 0.05), even after adjustment for morbidities. No association was found using the CDC-RGC. In conclusion, a decelerated pattern of weight gain, determined with the WHO-GS, but not the CDC-GRC, is associated with poorer neurodevelopment scores on the BSID-III than a pattern of sustained growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, S; Chasmer, L; Falk, M
2009-03-12
Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and El Nino-Southern Oscillation (ENSO). We use nine years of eddy covariance CO{sub 2}, H{sub 2}O and energy fluxes measured at the Wind River AmeriFlux site, Washington, USA and eight years of tower-pixel remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to address this question. We compute a new Composite Climate Index (CCI) based on the three Pacific Oscillationsmore » to divide the measurement period into positive- (2003 and 2005), negative- (1999 and 2000) and neutral-phase climate years (2001, 2002, 2004, 2006 and 2007). The forest transitioned from an annual net carbon sink (NEP = + 217 g C m{sup -2} year{sup -1}, 1999) to a source (NEP = - 100 g C m{sup -2} year{sup -1}, 2003) during two dominant teleconnection patterns. Net ecosystem productivity (NEP), water use efficiency (WUE) and light use efficiency (LUE) were significantly different (P < 0.01) during positive (NEP = -0.27 g C m{sup -2} day{sup -1}, WUE = 4.1 mg C/g H{sub 2}O, LUE = 0.94 g C MJ{sup -1}) and negative (NEP = +0.37 g C m{sup -2} day{sup -1}, WUE = 3.4 mg C/g H{sub 2}O, LUE = 0.83 g C MJ{sup -1}) climate phases. The CCI was linked to variability in the MODIS Enhanced Vegetation Index (EVI) but not to MODIS Fraction of absorbed Photosynthetically Active Radiation (FPAR). EVI was highest during negative climate phases (1999 and 2000) and was positively correlated with NEP and showed potential for using MODIS to estimate teleconnection-driven anomalies in ecosystem CO{sub 2} exchange in old-growth forests. This work suggests that any increase in the strength or frequency of ENSO coinciding with in-phase, low frequency Pacific oscillations (PDO and PNA) will likely increase CO{sub 2} uptake variability in Pacific Northwest conifer forests.« less
Output variability across animals and levels in a motor system
Norris, Brian J; Günay, Cengiz; Kueh, Daniel
2018-01-01
Rhythmic behaviors vary across individuals. We investigated the sources of this output variability across a motor system, from the central pattern generator (CPG) to the motor plant. In the bilaterally symmetric leech heartbeat system, the CPG orchestrates two coordinations in the bilateral hearts with different intersegmental phase relations (Δϕ) and periodic side-to-side switches. Population variability is large. We show that the system is precise within a coordination, that differences in repetitions of a coordination contribute little to population output variability, but that differences between bilaterally homologous cells may contribute to some of this variability. Nevertheless, much output variability is likely associated with genetic and life history differences among individuals. Variability of Δϕ were coordination-specific: similar at all levels in one, but significantly lower for the motor pattern than the CPG pattern in the other. Mechanisms that transform CPG output to motor neurons may limit output variability in the motor pattern. PMID:29345614
PATTERN PREDICTION OF ACADEMIC SUCCESS.
ERIC Educational Resources Information Center
LUNNEBORG, CLIFFORD E.; LUNNEBORG, PATRICIA W.
A TECHNIQUE OF PATTERN ANALYSIS WHICH EMPHASIZES THE DEVELOPMENT OF MORE EFFECTIVE WAYS OF SCORING A GIVEN SET OF VARIABLES WAS FORMULATED. TO THE ORIGINAL VARIABLES WERE SUCCESSIVELY ADDED TWO, THREE, AND FOUR VARIABLE PATTERNS AND THE INCREASE IN PREDICTIVE EFFICIENCY ASSESSED. RANDOMLY SELECTED HIGH SCHOOL SENIORS WHO HAD PARTICIPATED IN THE…
Critical Point in Self-Organized Tissue Growth
NASA Astrophysics Data System (ADS)
Aguilar-Hidalgo, Daniel; Werner, Steffen; Wartlick, Ortrud; González-Gaitán, Marcos; Friedrich, Benjamin M.; Jülicher, Frank
2018-05-01
We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We apply this theory to the biological model system of the developing wing of the fruit fly Drosophila melanogaster and quantitatively identify signatures of the critical point.
Oxygen Isotope Variability within Nautilus Shell Growth Bands
2016-01-01
Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands. PMID:27100183
Martin, O; Sauvant, D
2010-12-01
The prediction of the control of nutrient partitioning, particularly energy, is a major issue in modelling dairy cattle performance. The proportions of energy channelled to physiological functions (growth, maintenance, gestation and lactation) change as the animal ages and reproduces, and according to its genotype and nutritional environment. This is the first of two papers describing a teleonomic model of individual performance during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. The conceptual framework is based on the coupling of a regulating sub-model providing teleonomic drives to govern the work of an operating sub-model scaled with genetic parameters. The regulating sub-model describes the dynamic partitioning of a mammal female's priority between life functions targeted to growth (G), ageing (A), balance of body reserves (R) and nutrient supply of the unborn (U), newborn (N) and suckling (S) calf. The so-called GARUNS dynamic pattern defines a trajectory of relative priorities, goal directed towards the survival of the individual for the continuation of the specie. The operating sub-model describes changes in body weight (BW) and composition, foetal growth, milk yield and composition and food intake in dairy cows throughout their lifespan, that is, during growth, over successive reproductive cycles and through ageing. This dynamic pattern of performance defines a reference trajectory of a cow under normal husbandry conditions and feed regimen. Genetic parameters are incorporated in the model to scale individual performance and simulate differences within and between breeds. The model was calibrated for dairy cows with literature data. The model was evaluated by comparison with simulations of previously published empirical equations of BW, body condition score, milk yield and composition and feed intake. This evaluation showed that the model adequately simulates these production variables throughout the lifespan, and across a range of dairy cattle genotypes.
Oxygen isotope variability within Nautilus shell growth bands
Linzmeier, Benjamin J.; Kozdon, Reinhard; Peters, Shanan E.; ...
2016-04-21
Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis ofmore » oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ 18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ 18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. In addition, to create the observed range of δ 18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.« less
Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla-Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo
2015-01-01
It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2.
Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla- Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo
2015-01-01
It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2. PMID:25806946
Tineshev, Slavi At
2010-01-01
It is impossible to give an objective anthropologic assessment of the overall physical development of a child's body during the time of intensive growth (7-17 years) without taking into account the age and gender changes in the absolute and relative head and face measurements. Head growth has specific characteristics that makes it different from the growth of other parts of the body. The head of a child differs from the head of an adult not only by metric characteristics but also by the proportions between the different head measurements. Growth and proportionality of the head comply with the general growth pattern, but there are also certain regional, populational and temporal differences. That was the reason why we conducted a study targeted at children and adolescents from the region of the Eastern Rhodopes. The aim Of the present study was to determine the growth dynamics in between-gender and between-age aspects of the variables characterizing the neurocranium and facial cranium, and establish the tendency and direction of the secular changes, The study included 1481 children and adolescents (699 boys and 782 girls) aged 7 to 17 years that were examined using the classical methodology of Martin-Saller (1957). Head length, width, height and circumference, as well as face width, mandible width, morphological and physiognomic height of the face were measured. Head index, morphological face index and jugulormandibular index were calculated using standard formulas. The secular changes were analyzed comparing data from 1907 and 1960 with the data of the present study. The head index classified the children from both genders and all age groups as mesocephals. The girls from the study region had a relatively greater mandible width and boys - relatively greater face width. In the beginning of the growth period wider face forms prevailed especially in the girls, while narrower face forms were more characteristic for the adolescence and postadolescence and better manifested in the boys. Throughout the entire study period the boys presented with greater measurements of the neurocranium and facial cranium than the girls. For both genders the increase in the neurocranium measurements anticipates that in the facial cranium measurements. In the examined children and adolescents the width cephalometric variables complete their growth earlier than the height variables. The head circumference and head width decrease, while the differences in the head length and facial height increase in both genders and all age groups in the end of the 20th and beginning of the 21st century.
Nijhout, H Frederik; Cinderella, Margaret; Grunert, Laura W
2014-03-01
The wings of butterflies and moths develop from imaginal disks whose structure is always congruent with the final adult wing. It is therefore possible to map every point on the imaginal disk to a location on the adult wing throughout ontogeny. We studied the growth patterns of the wings of two distantly related species with very different adult wing shapes, Junonia coenia and Manduca sexta. The shape of the wing disks change throughout their growth phase in a species-specific pattern. We measured mitotic densities and mitotic orientation in successive stages of wing development approximately one cell division apart. Cell proliferation was spatially patterned, and the density of mitoses was highly correlated with local growth. Unlike other systems in which the direction of mitoses has been viewed as the primary determinant of directional growth, we found that in these two species the direction of growth was only weakly correlated with the orientation of mitoses. Directional growth appears to be imposed by a constantly changing spatial pattern of cell division coupled with a weak bias in the orientation of cell division. Because growth and cell division in imaginal disk require ecdysone and insulin signaling, the changing spatial pattern of cell division may due to a changing pattern of expression of receptors or downstream elements in the signaling pathways for one or both of these hormones. Evolution of wing shape comes about by changes in the progression of spatial patterns of cell division. © 2014 Wiley Periodicals, Inc.
Modelling foetal growth in a bi-ethnic sample: results from the Born in Bradford (BiB) birth cohort.
Norris, Tom; Tuffnell, Derek; Wright, John; Cameron, Noël
2014-01-01
Attempts to explain the increased risk for metabolic disorders observed in South Asians have focused on the "South Asian" phenotype at birth and subsequent post-natal growth, with little research on pre-natal growth. To identify whether divergent growth patterns exist for foetal weight, head (HC) and abdominal circumferences (AC) in a sample of Pakistani and White British foetuses. Models were based on 5553 (weight), 5154 (HC) and 5099 (AC) foetuses from the Born in Bradford birth cohort. Fractional polynomials and mixed effects models were employed to determine growth patterns from ~15 weeks of gestation-birth. Pakistani foetuses were significantly smaller and lighter as early as 20 weeks. However, there was no ethnic difference in the growth patterns of weight and HC. For AC, Pakistani foetuses displayed a trend for reduced growth in the final trimester. As the pattern of weight and HC growth was not significantly different during the period under investigation, the mechanism culminating in the reduced Pakistani size at birth may act earlier in gestation. Reduced AC growth in Pakistanis may represent reduced growth of the visceral organs, with consequences for post-natal liver metabolism and renal function.
Growth patterns and life-history strategies in Placodontia (Diapsida: Sauropterygia)
Klein, Nicole; Neenan, James M.; Scheyer, Torsten M.; Griebeler, Eva Maria
2015-01-01
Placodontia is a clade of durophagous, near shore marine reptiles from Triassic sediments of modern-day Europe, Middle East and China. Although much is known about their primary anatomy and palaeoecology, relatively little has been published regarding their life history, i.e. ageing, maturation and growth. Here, growth records derived from long bone histological data of placodont individuals are described and modelled to assess placodont growth and life-history strategies. Growth modelling methods are used to confirm traits documented in the growth record (age at onset of sexual maturity, age when asymptotic length was achieved, age at death, maximum longevity) and also to estimate undocumented traits. Based on these growth models, generalized estimates of these traits are established for each taxon. Overall differences in bone tissue types and resulting growth curves indicate different growth patterns and life-history strategies between different taxa of Placodontia. Psephoderma and Paraplacodus grew with lamellar-zonal bone tissue type and show growth patterns as seen in modern reptiles. Placodontia indet. aff. Cyamodus and some Placodontia indet. show a unique combination of fibrolamellar bone tissue regularly stratified by growth marks, a pattern absent in modern sauropsids. The bone tissue type of Placodontia indet. aff. Cyamodus and Placodontia indet. indicates a significantly increased basal metabolic rate when compared with modern reptiles. Double lines of arrested growth, non-annual rest lines in annuli, and subcycles that stratify zones suggest high dependence of placodont growth on endogenous and exogenous factors. Histological and modelled differences within taxa point to high individual developmental plasticity but sexual dimorphism in growth patterns and the presence of different taxa in the sample cannot be ruled out. PMID:26587259
Macintosh, Alison A.; Pinhasi, Ron; Stock, Jay T.
2016-01-01
Early life conditions play an important role in determining adult body size. In particular, childhood malnutrition and disease can elicit growth delays and affect adult body size if severe or prolonged enough. In the earliest stages of farming, skeletal growth impairment and small adult body size are often documented relative to hunter-gatherer groups, though this pattern is regionally variable. In Central/Southeast Europe, it is unclear how early life stress, growth history, and adult body size were impacted by the introduction of agriculture and ensuing long-term demographic, social, and behavioral change. The current study assesses this impact through the reconstruction and analysis of mean stature, body mass, limb proportion indices, and sexual dimorphism among 407 skeletally mature men and women from foraging and farming populations spanning the Late Mesolithic through Early Medieval periods in Central/Southeast Europe (~7100 calBC to 850 AD). Results document significantly reduced mean stature, body mass, and crural index in Neolithic agriculturalists relative both to Late Mesolithic hunter-gatherer-fishers and to later farming populations. This indication of relative growth impairment in the Neolithic, particularly among women, is supported by existing evidence of high developmental stress, intensive physical activity, and variable access to animal protein in these early agricultural populations. Among subsequent agriculturalists, temporal increases in mean stature, body mass, and crural index were more pronounced among Central European women, driving declines in the magnitude of sexual dimorphism through time. Overall, results suggest that the transition to agriculture in Central/Southeast Europe was challenging for early farming populations, but was followed by gradual amelioration across thousands of years, particularly among Central European women. This sex difference may be indicative, in part, of greater temporal variation in the social status afforded to young girls, in their access to resources during growth, and/or in their health status than was experienced by men. PMID:26844892
NASA Astrophysics Data System (ADS)
Gu, Huan
Urban forests play an important role in the urban ecosystem by providing a range of ecosystem services. Characterization of forest structure, species variation and growth in urban forests is critical for understanding the status, function and process of urban ecosystems, and helping maximize the benefits of urban ecosystems through management. The development of methods and applications to quantify urban forests using remote sensing data has lagged the study of natural forests due to the heterogeneity and complexity of urban ecosystems. In this dissertation, I quantify and map forest structure, species gradients and forest growth in an urban area using discrete-return lidar, airborne imaging spectroscopy and thermal infrared data. Specific objectives are: (1) to demonstrate the utility of leaf-off lidar originally collected for topographic mapping to characterize and map forest structure and associated uncertainties, including aboveground biomass, basal area, diameter, height and crown size; (2) to map species gradients using forest structural variables estimated from lidar and foliar functional traits, vegetation indices derived from AVIRIS hyperspectral imagery in conjunction with field-measured species data; and (3) to identify factors related to relative growth rates in aboveground biomass in the urban forests, and assess forest growth patterns across areas with varying degree of human interactions. The findings from this dissertation are: (1) leaf-off lidar originally acquired for topographic mapping provides a robust, potentially low-cost approach to quantify spatial patterns of forest structure and carbon stock in urban areas; (2) foliar functional traits and vegetation indices from hyperspectral data capture gradients of species distributions in the heterogeneous urban landscape; (3) species gradients, stand structure, foliar functional traits and temperature are strongly related to forest growth in the urban forests; and (4) high uncertainties in our ability to map forest structure, species gradient and growth rate occur in residential neighborhoods and along forest edges. Maps generated from this dissertation provide estimates of broad-scale spatial variations in forest structure, species distributions and growth to the city forest managers. The associated maps of uncertainty help managers understand the limitations of the maps and identify locations where the maps are more reliable and where more data are needed.
Amălinei, Cornelia; Aignătoaei, Anda Maria; Balan, Raluca Anca; Giuşcă, Simona Eliza; Lozneanu, Ludmila; Avădănei, Elena Roxana; Căruntu, Irina Draga
2018-01-01
Endometrioid endometrial carcinoma has an overall good prognosis. However, variable five-year survival rates (92%-42%) have been reported in FIGO stage I, suggesting the involvement of other factors related to tumor biological behavior. These may be related to the role played by epithelial-mesenchymal transition (EMT) and cancer stem cells in endometrial carcinogenesis. In this context, our review highlights the prognostic significance of several types of myoinvasion in low grade, low stage endometrioid endometrial carcinoma, as a reflection of these molecular changes at the invasive front. According to recently introduced myoinvasive patterns, the diffusely infiltrating and microcystic, elongated, and fragmented (MELF) patterns show loss of hormone receptors, along with EMT and high expression of cancer stem cell markers, being associated with a poor prognosis. Additionally, MELF pattern exhibits a high incidence of lymphovascular invasion and lymph node metastases. Conversely, the broad front pattern has a good prognosis and a low expression of EMT and stem cells markers. Similarly, the adenomyosis (AM)-like and adenoma malignum patterns of invasion are associated to a favorable prognosis, but nevertheless, they raise diagnostic challenges. AM-like pattern must be differentiated from carcinoma invasion of AM foci, while adenoma malignum pattern creates difficulties in appreciating the depth of myoinvasion and requires differential diagnosis with other conditions. Another pattern expecting its validation and prognostic significance value is the nodular fasciitis-like stroma and large cystic growth pattern. In practice, the knowledge of these patterns of myoinvasion may be valuable for the correct assessment of stage, may improve prognosis evaluation and may help identify molecules for future targeted therapies.
NASA Astrophysics Data System (ADS)
Lagzi, István; Ueyama, Daishin
2009-01-01
The pattern transition between periodic precipitation pattern formation (Liesegang phenomenon) and pure crystal growth regimes is investigated in silver nitrate and potassium dichromate system in mixed agarose-gelatin gel. Morphologically different patterns were found depending on the quality of the gel, and transition between these typical patterns can be controlled by the concentration of gelatin in mixed gel. Effect of temperature and hydrodynamic force on precipitation pattern structure was also investigated.
Gentilesca, Tiziana; Rita, Angelo; Brunetti, Michele; Giammarchi, Francesco; Leonardi, Stefano; Magnani, Federico; van Noije, Twan; Tonon, Giustino; Borghetti, Marco
2018-07-01
In this study, we investigated the role of climatic variability and atmospheric nitrogen deposition in driving long-term tree growth in canopy beech trees along a geographic gradient in the montane belt of the Italian peninsula, from the Alps to the southern Apennines. We sampled dominant trees at different developmental stages (from young to mature tree cohorts, with tree ages spanning from 35 to 160 years) and used stem analysis to infer historic reconstruction of tree volume and dominant height. Annual growth volume (G V ) and height (G H ) variability were related to annual variability in model simulated atmospheric nitrogen deposition and site-specific climatic variables, (i.e. mean annual temperature, total annual precipitation, mean growing period temperature, total growing period precipitation, and standard precipitation evapotranspiration index) and atmospheric CO 2 concentration, including tree cambial age among growth predictors. Generalized additive models (GAM), linear mixed-effects models (LMM), and Bayesian regression models (BRM) were independently employed to assess explanatory variables. The main results from our study were as follows: (i) tree age was the main explanatory variable for long-term growth variability; (ii) GAM, LMM, and BRM results consistently indicated climatic variables and CO 2 effects on G V and G H were weak, therefore evidence of recent climatic variability influence on beech annual growth rates was limited in the montane belt of the Italian peninsula; (iii) instead, significant positive nitrogen deposition (N dep ) effects were repeatedly observed in G V and G H ; the positive effects of N dep on canopy height growth rates, which tended to level off at N dep values greater than approximately 1.0 g m -2 y -1 , were interpreted as positive impacts on forest stand above-ground net productivity at the selected study sites. © 2018 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branstator, Grant
The overall aim of our project was to quantify and characterize predictability of the climate as it pertains to decadal time scale predictions. By predictability we mean the degree to which a climate forecast can be distinguished from the climate that exists at initial forecast time, taking into consideration the growth of uncertainty that occurs as a result of the climate system being chaotic. In our project we were especially interested in predictability that arises from initializing forecasts from some specific state though we also contrast this predictability with predictability arising from forecasting the reaction of the system to externalmore » forcing – for example changes in greenhouse gas concentration. Also, we put special emphasis on the predictability of prominent intrinsic patterns of the system because they often dominate system behavior. Highlights from this work include: • Development of novel methods for estimating the predictability of climate forecast models. • Quantification of the initial value predictability limits of ocean heat content and the overturning circulation in the Atlantic as they are represented in various state of the art climate models. These limits varied substantially from model to model but on average were about a decade with North Atlantic heat content tending to be more predictable than North Pacific heat content. • Comparison of predictability resulting from knowledge of the current state of the climate system with predictability resulting from estimates of how the climate system will react to changes in greenhouse gas concentrations. It turned out that knowledge of the initial state produces a larger impact on forecasts for the first 5 to 10 years of projections. • Estimation of the predictability of dominant patterns of ocean variability including well-known patterns of variability in the North Pacific and North Atlantic. For the most part these patterns were predictable for 5 to 10 years. • Determination of especially predictable patterns in the North Atlantic. The most predictable of these retain predictability substantially longer than generic patterns, with some being predictable for two decades.« less
Persistent Environmental Toxicants in Breast Milk and Rapid Infant Growth.
Criswell, Rachel; Lenters, Virissa; Mandal, Siddhartha; Stigum, Hein; Iszatt, Nina; Eggesbø, Merete
2017-01-01
Many environmental toxicants are passed to infants in utero and through breast milk. Exposure to toxicants during the perinatal period can alter growth patterns, impairing growth or increasing obesity risk. Previous studies have focused on only a few toxicants at a time, which may confound results. We investigated levels of 26 toxicants in breast milk and their associations with rapid infant growth, a risk factor for later obesity. We used data from the Norwegian HUMIS study, a multi-center cohort of 2,606 mothers and newborns enrolled between 2002 and 2008. Milk samples collected 1 month after delivery from a subset of 789 women oversampled by overweight were analyzed for toxicants including polychlorinated biphenyls (PCBs), heavy metals, and pesticides. Growth was defined as change in weight-for-age z-score between 0 and 6 months among the HUMIS population, and rapid growth was defined as change in z-score above 0.67. We used a Bayesian variable selection method to determine the exposures that most explained variation in the outcome. Identified toxicants were included in logistic and linear regression models to estimate associations with growth, adjusting for maternal age, smoking, education, pre-pregnancy body mass index (BMI), gestational weight gain, parity, child sex, cumulative breastfeeding, birth weight, gestational age, and preterm status. Of 789 infants, 19.2% displayed rapid growth. The median maternal age was 29.6 years, and the median pre-pregnancy BMI was 24.0 kg/m2, with 45.3% of mothers overweight or obese. Rapid growers were more likely to be firstborn. Hexachlorobenzene, β-hexachlorocyclohexane (β-HCH), and PCB-74 were identified in the variable selection method. An interquartile range (IQR) increase in β-HCH exposure was associated with a lower odds of rapid growth (OR 0.63, 95% CI 0.42-0.94). Newborns exposed to high levels of β-HCH showed reduced infant growth (β = -0.03, 95% CI -0.05 to -0.01 for IQR increase in breast milk concentration). No other significant associations were found. Our results suggest that early life β-HCH exposure may be linked to slowed growth. Further research is warranted on the potential mechanism behind this association and the longer-term metabolic effects of perinatal β-HCH exposure. © 2017 S. Karger AG, Basel.
Variation in Protein and Calorie Consumption Following Protein Malnutrition in Rattus norvegicus
Jones, Donna C.; German, Rebecca Z.
2013-01-01
Simple Summary Catch-up growth following malnutrition is likely influenced by available protein and calories. We measured calorie and protein consumption following the removal of protein malnutrition after 40, 60 and 90 days, in laboratory rats. Following the transition in diet, animals self-selected fewer calories, implying elevated protein is sufficient to fuel catch-up growth, eventually resulting in body weights and bone lengths greater or equal to those of control animals. Rats rehabilitated at younger ages, had more drastic alterations in consumption. Variable responses in different ages and sex highlight the plasticity of growth and how nutrition affects body form. This work furthers our understanding of how humans and livestock can recover from protein-restriction malnutrition, which seems to employ different biological responses. Abstract Catch-up growth rates, following protein malnutrition, vary with timing and duration of insult, despite unlimited access to calories. Understanding changing patterns of post-insult consumption, relative rehabilitation timing, can provide insight into the mechanisms driving those differences. We hypothesize that higher catch-up growth rates will be correlated with increased protein consumption, while calorie consumption could remain stable. As catch-up growth rates decrease with age/malnutrition duration, we predict a dose effect in protein consumption with rehabilitation timing. We measured total and protein consumption, body mass, and long bone length, following an increase of dietary protein at 40, 60 and 90 days, with two control groups (chronic reduced protein or standard protein) for 150+ days. Immediately following rehabilitation, rats’ food consumption decreased significantly, implying that elevated protein intake is sufficient to fuel catch-up growth rates that eventually result in body weights and long bone lengths greater or equal to final measures of chronically fed standard (CT) animals. The duration of protein restriction affected consumption: rats rehabilitated at younger ages had more drastic alterations in consumption of both calories and protein. While rehabilitated animals did compensate with greater protein consumption, variable responses in different ages and sex highlight the plasticity of growth and how nutrition affects body form. PMID:26487308
NASA Astrophysics Data System (ADS)
Westbrook, J. A.; Guilderson, T.; Colinvaux, P. A.; D'Arrigo, R.
2004-12-01
Instrumental records of environmental variables such as temperature and precipitation are necessary to understand climate patterns and variability. In general, such observations from the tropics do not exist prior to the late 19th century, and existing records contain large spatial and temporal gaps and are sparsely distributed. An important source of annual temperature and precipitation proxy-data comes from the regular annual growth rings of wood formed by trees. Tree growth rings occur in response to periodic seasonal changes in the environment. Although expansive and diverse in number and ecology, a vast majority of tropical trees do not produce distinct annual growth rings. Because of this, tropical dendrochronology and paleoclimate reconstructions have lagged behind their temperate and higher latitude cousins. Distinct secondary growth rings were investigated in a single individual of the tropical hardwood legume Hymenaea courbaril felled within the City of David, Republic of Panama. Rings that maintained circuitry were considered annual and were sampled for 14C. Radiocarbon values from the secondary growth rings from this specimen were compared with annual reference radiocarbon values from wood and air in North America, New Zealand and Germany. This comparison demonstrated that the secondary growth rings formed by H. courbaril were determined to be annual in nature in this one stem disk specimen. To confirm the consistency of the annual nature of the secondary growth rings in H. courbaril, nine (9) additional specimens were recovered from the small hamlet of San Carlos y Algarobbo in western Panama between the town of David and the cordillera approximately ~30km from the site of the first tree sample. Of the nine specimens, four were chosen for ring counts and isotope analyses. "Annual" rings were counted and samples corresponding to the equivalent time of the bomb-14C peak were sampled. In addition a small subset of years within one tree specimen were sub-annually sampled for d18O cellulose. Radiocarbon and 18Ocellulose are consistent with the secondary rings being annual. These results imply that H. courbaril may be suitable for extended paleoclimate reconstructions.
Mapping and analyzing urban growth in West Africa
NASA Astrophysics Data System (ADS)
Adhikari, P.; de Beurs, K. M.
2014-12-01
Africa has experienced the highest urban growth (~3.5% per year) in the developing world. West Africa in particular has seen significant urban growth mainly driven by the high natural population growth rate and the increasing percentage of population moving to urban areas. Urban growth in West Africa is expected to continue in decades to come. This study uses Landsat data at five different time steps (1970, 1980, 1990, 2000, and 2010) to map four cities from four different eco-regions of West Africa since the early 1970s. The selected four cities, Kumasi in Ghana, Abuja in Nigeria, Tahoua in Niger and Ouagadoughou in Burkina Faso, are some of the fastest growing cities in the region. We selected the cities in the following ecoregions: Eastern Guinean Forest, Guinean Forest-Savanna Mosaic, Sahelian Acacia Savanna and West Sudanian Savanna. We hypothesize that urban growth in West Africa is different compared to the other parts of the world primarily due to the dependency of about 60 percent of active labor force on subsistence agriculture in the region. As agriculture productivity is dependent on favorable climatic conditions (i.e., good rainfall, suitable temperature), any variability in climate impends the livelihood of subsistence farmers triggering the movements of more people towards the cities. Therefore, studying urban growth based on ecoregions help to better explain the urban development in West Africa. After mapping the urban areas, this study makes a comparative analysis of the temporal and spatial pattern of the urban growths across the ecoregions in West Africa.
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se–Te films
Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.
2013-01-01
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium–tellurium (Se–Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light–matter interactions in the Se–Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617
Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films.
Sadtler, Bryce; Burgos, Stanley P; Batara, Nicolas A; Beardslee, Joseph A; Atwater, Harry A; Lewis, Nathan S
2013-12-03
Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium-tellurium (Se-Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light-matter interactions in the Se-Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns.
Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems
Black, B.A.; Von Biela, V.R.; Zimmerman, C.E.; Brown, Randy J.
2013-01-01
High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p < 0.01), indicating that warmer summers were beneficial for growth, perhaps by increasing fish metabolic rate or lake productivity. Given the broad distribution of lake trout within North America, this study suggests that otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.
Hook, T.O.; Rutherford, E.S.; Brines, Shannon J.; Geddes, C.A.; Mason, D.M.; Schwab, D.J.; Fleischer, G.W.
2004-01-01
The relative quality of a habitat can influence fish consumption, growth, mortality, and production. In order to quantify habitat quality, several authors have combined bioenergetic and foraging models to generate spatially explicit estimates of fish growth rate potential (GRP). However, the capacity of GRP to reflect the spatial distributions of fishes over large areas has not been fully evaluated. We generated landscape scale estimates of steelhead (Oncorhynchus mykiss) GRP throughout Lake Michigan for 1994-1996, and used these estimates to test the hypotheses that GRP is a good predictor of spatial patterns of steelhead catch rates. We used surface temperatures (measured with AVHRR satellite imagery) and acoustically measured steelhead prey densities (alewife, Alosa pseudoharengus) as inputs for the GRP model. Our analyses demonstrate that potential steelhead growth rates in Lake Michigan are highly variable in both space and time. Steelhead GRP tended to increase with latitude, and mean GRP was much higher during September 1995, compared to 1994 and 1996. In addition, our study suggests that landscape scale measures of GRP are not good predictors of steelhead catch rates throughout Lake Michigan, but may provide an index of interannual variation in system-wide habitat quality.
Padilla-Gamiño, Jacqueline L.; Kelly, Morgan W.; Evans, Tyler G.; Hofmann, Gretchen E.
2013-01-01
Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 μatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species. PMID:23536595
NASA Astrophysics Data System (ADS)
Weijers, Stef; Pape, Roland; Löffler, Jörg; Myers-Smith, Isla H.
2018-03-01
The Arctic-alpine biome is warming rapidly, resulting in a gradual replacement of low statured species by taller woody species in many tundra ecosystems. In northwest North America, the remotely sensed normalized difference vegetation index (NDVI), suggests an increase in productivity of the Arctic and alpine tundra and a decrease in productivity of boreal forests. However, the responses of contrasting shrub species growing at the same sites to climate drivers remain largely unexplored. Here, we test growth, climate, and NDVI relationships of two contrasting species: the expanding tall deciduous shrub Salix pulchra and the circumarctic evergreen dwarf shrub Cassiope tetragona from an alpine tundra site in the Pika valley in the Kluane Region, southwest Yukon Territories, Canada. We found that annual growth variability of both species at this site is strongly driven by early summer temperatures, despite their contrasting traits and habitats. Shrub growth chronologies for both species were correlated with the regional climate signal and showed spatial correspondence with interannual variation in NDVI in surrounding alpine and Arctic regions. Our results suggest that early summer warming represents a common driver of vegetation change for contrasting shrub species growing in different habitats in the same alpine environments.
Regional tree growth and inferred summer climate in the Winnipeg River basin, Canada, since AD 1783
NASA Astrophysics Data System (ADS)
St. George, Scott; Meko, David M.; Evans, Michael N.
2008-09-01
A network of 54 ring-width chronologies is used to estimate changes in summer climate within the Winnipeg River basin, Canada, since AD 1783. The basin drains parts of northwestern Ontario, northern Minnesota and southeastern Manitoba, and is a key area for hydroelectric power production. Most chronologies were developed from Pinus resinosa and P. strobus, with a limited number of Thuja occidentalis, Picea glauca and Pinus banksiana. The dominant pattern of regional tree growth can be recovered using only the nine longest chronologies, and is not affected by the method used to remove variability related to age or stand dynamics from individual trees. Tree growth is significantly, but weakly, correlated with both temperature (negatively) and precipitation (positively) during summer. Simulated ring-width chronologies produced by a process model of tree-ring growth exhibit similar relationships with summer climate. High and low growth across the region is associated with cool/wet and warm/dry summers, respectively; this relationship is supported by comparisons with archival records from early 19th century fur-trading posts. The tree-ring record indicates that summer droughts were more persistent in the 19th and late 18th century, but there is no evidence that drought was more extreme prior to the onset of direct monitoring.
Asahi, Hiroko; Izumiyama, Shinji; Tolba, Mohammed Essa Marghany; Kwansa-Bentum, Bethel
2011-03-01
Different combinations of non-esterified fatty acids (NEFA) had variable effects on intraerythrocytic growth of Plasmodium falciparum. All stages of the parasite cultured in medium supplemented with cis-9-octadecenoic acid (C18:1-cis-9), hexadecanoic acid (C16:0), phospholipids (Pld) and bovine albumin free of NEFA were similar to those grown in complete growth medium. Three typical growth patterns indicating suppressed schizogony (SS), suppressed formation of merozoites (SMF), and inhibited invasion of merozoites (IMI) resulted from culture in other combinations of lipids. Unsaturated or saturated NEFA with longer or shorter carbon chains than C18:1-cis-9 or C16:0, higher degree of unsaturation, and trans-forms mainly resulted in SS and SMF effects. However, IMI or partial IMI was observed with tetradecanoic acid or octadecanoic acid enriched with C18:1-cis-9, and cis-9-hexadecenoic acid plus C16:0. Isoforms of C18:1-cis-9 also mainly resulted in partial IMI. SMF also occurred with C18:1-cis-9 plus C16:0 in the absence of Pld. Thus different NEFA exerted distinct roles in erythrocytic growth of the parasite by sustaining development at different stages. Copyright © 2010 Elsevier Inc. All rights reserved.
Ripple/Carcinoid pattern sebaceoma with apocrine differentiation.
Misago, Noriyuki; Narisawa, Yutaka
2011-02-01
Sebaceoma is a benign sebaceous neoplasm, which has been reported to show characteristic growth patterns, such as, ripple, labyrinthine/sinusoidal, and carcinoid-like patterns. Another recent finding regarding in sebaceoma is the observation of apocrine differentiation within the sebaceoma lesion. This report describes a case of carcinoid (a partial ripple and labyrinthine) pattern sebaceoma with apocrine differentiation with a literature review and immunohistochemical studies. The various characteristic growth patterns in sebaceoma were suggested to simply be variations of the same growth pattern arranged in cords, namely, a unified term "ripple/carcinoid pattern." The primitive sebaceous germinative cells in sebaceoma may still have the ability to undergo apocrine differentiation. Most of the reports so far on sebaceoma with apocrine differentiation, including the present case, describe a ripple/carcinoid pattern, thus suggesting that ripple/carcinoid pattern sebaceoma is composed of more primitive sebaceous germinative cells than conventional sebaceoma.
The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation
Thompson, David W. J.; van den Broeke, Michiel R.
2017-01-01
Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735
Yildiz, Bulent O.; Bolour, Sheila; Woods, Keslie; Moore, April; Azziz, Ricardo
2010-01-01
BACKGROUND Hirsutism is the presence of excess body or facial terminal (coarse) hair growth in females in a male-like pattern, affects 5–15% of women, and is an important sign of underlying androgen excess. Different methods are available for the assessment of hair growth in women. METHODS We conducted a literature search and analyzed the published studies that reported methods for the assessment of hair growth. We review the basic physiology of hair growth, the development of methods for visually quantifying hair growth, the comparison of these methods with objective measurements of hair growth, how hirsutism may be defined using a visual scoring method, the influence of race and ethnicity on hirsutism, and the impact of hirsutism in diagnosing androgen excess and polycystic ovary syndrome. RESULTS Objective methods for the assessment of hair growth including photographic evaluations and microscopic measurements are available but these techniques have limitations for clinical use, including a significant degree of complexity and a high cost. Alternatively, methods for visually scoring or quantifying the amount of terminal body and facial hair growth have been in use since the early 1920s; these methods are semi-quantitative at best and subject to significant inter-observer variability. The most common visual method of scoring the extent of body and facial terminal hair growth in use today is based on a modification of the method originally described by Ferriman and Gallwey in 1961 (i.e. the mFG method). CONCLUSION Overall, the mFG scoring method is a useful visual instrument for assessing excess terminal hair growth, and the presence of hirsutism, in women. PMID:19567450
Urban growth in Korea, 1970-1980: an application of the human ecological perspective.
Ko, S H
1994-07-01
This study supports the ecological perspective proposed by Duncan (population, environment, organization, and technology) explaining urban population growth. Data were obtained from the 1970 and 1980 Korean Population Census and Korean Municipal Yearbook on cities with a minimum size of 20,000-50,000 people (108 cities and towns). Urban growth is most strongly influenced by indigenous labor surplus and the population potential of the city to be in contact with another city. Nine multiple regression variables explained just under 66% of the variance in urban growth. Net migration was influential among those aged 15-24 years. The extent of differentiation of industry affected net migration only among those aged 15-24 years and those aged 35-44 years. Population redistribution was more affected directly by changes in industrial organization, and migration was affected indirectly by environmental and technological effects on organization. Urban growth through migration of older age groups was affected by government expenditure on public works. Urban growth was not much affected by transportation/communication concentration, manufacturing concentration, urban labor surplus, population size, and site. Urban growth was viewed as the interaction between the unemployment rate and the urban wage, following Todaro's equilibrium models. In Korea, larger cities only grew faster during the 1960s. By the 1970s, upper middle-sized cities grew faster. Location was not a significant factor in explaining urban growth, but growth was rapid along a corridor within 100 km from Seoul and 50 km from Pusan, the second largest city in Korea. Caution was urged in interpreting Korea's ecological urban growth patterns as indicative of developing countries.
Intrinsic Variability in Shell and Soft Tissue Growth of the Freshwater Mussel Lampsilis siliquoidea
Larson, James H.; Eckert, Nathan L.; Bartsch, Michelle R.
2014-01-01
Freshwater mussels are ecologically and economically important members of many aquatic ecosystems, but are globally among the most imperiled taxa. Propagation techniques for mussels have been developed and used to boost declining and restore extirpated populations. Here we use a cohort of propagated mussels to estimate the intrinsic variability in size and growth rate of Lampsilis siliquoidea (a commonly propagated species). Understanding the magnitude and pattern of variation in data is critical to determining whether effects observed in nature or experimental treatments are likely to be important. The coefficient of variation (CV) of L. siliquoidea soft tissues (6.0%) was less than the CV of linear shell dimensions (25.1–66.9%). Size-weight relationships were best when mussel width (the maximum left-right dimension with both valves appressed) was used as a predictor, but 95% credible intervals on these predictions for soft tissues were ∼145 mg wide (about 50% of the mean soft tissue mass). Mussels in this study were treated identically, raised from a single cohort and yet variation in soft tissue mass at a particular size class (as determined by shell dimensions) was still high. High variability in mussel size is often acknowledged, but seldom discussed in the context of mussel conservation. High variability will influence the survival of stocked juvenile cohorts, may affect the ability to experimentally detect sublethal stressors and may lead to incongruities between the effects that mussels have on structure (via hard shells) and biogeochemical cycles (via soft tissue metabolism). Given their imperiled status and longevity, there is often reluctance to destructively sample unionid mussel soft tissues even in metabolic studies (e.g., studies of nutrient cycling). High intrinsic variability suggests that using shell dimensions (particularly shell length) as a response variable in studies of sublethal stressors or metabolic processes will make confident identifications of smaller effect sizes difficult. PMID:25411848
Intrinsic variability in shell and soft tissue growth of the freshwater mussel Lampsilis siliquoidea
Larson, James H.; Eckert, Nathan L.; Bartsch, Michelle
2014-01-01
Freshwater mussels are ecologically and economically important members of many aquatic ecosystems, but are globally among the most imperiled taxa. Propagation techniques for mussels have been developed and used to boost declining and restore extirpated populations. Here we use a cohort of propagated mussels to estimate the intrinsic variability in size and growth rate of Lampsilis siliquoidea (a commonly propagated species). Understanding the magnitude and pattern of variation in data is critical to determining whether effects observed in nature or experimental treatments are likely to be important. The coefficient of variation (CV) of L. siliquoidea soft tissues (6.0%) was less than the CV of linear shell dimensions (25.1-66.9%). Size-weight relationships were best when mussel width (the maximum left-right dimension with both valves appressed) was used as a predictor, but 95% credible intervals on these predictions for soft tissues were ~145 mg wide (about 50% of the mean soft tissue mass). Mussels in this study were treated identically, raised from a single cohort and yet variation in soft tissue mass at a particular size class (as determined by shell dimensions) was still high. High variability in mussel size is often acknowledged, but seldom discussed in the context of mussel conservation. High variability will influence the survival of stocked juvenile cohorts, may affect the ability to experimentally detect sublethal stressors and may lead to incongruities between the effects that mussels have on structure (via hard shells) and biogeochemical cycles (via soft tissue metabolism). Given their imperiled status and longevity, there is often reluctance to destructively sample unionid mussel soft tissues even in metabolic studies (e.g., studies of nutrient cycling). High intrinsic variability suggests that using shell dimensions (particularly shell length) as a response variable in studies of sublethal stressors or metabolic processes will make confident identifications of smaller effect sizes difficult.
Caldwell, Timothy J; Rosen, Michael R.; Chandra, Sudeep; Acharya, Kumud; Caires, Andrea M; Davis, Clinton J.; Thaw, Melissa; Webster, Daniel M.
2015-01-01
Invasive quagga (Dreissena bugnesis) and zebra (Dreissena ploymorpha) mussels have rapidly spread throughout North America. Understanding the relationships between environmental variables and quagga mussels during the early stages of invasion will help management strategies and allow researchers to predict patterns of future invasions. Quagga mussels were detected in Lake Mead, NV/AZ in 2007, we monitored early invasion dynamics in 3 basins (Boulder Basin, Las Vegas Bay, Overton Arm) bi-annually from 2008-2011. Mean quagga density increased over time during the first year of monitoring and stabilized for the subsequent two years at the whole-lake scale (8 to 132 individuals·m-2, geometric mean), in Boulder Basin (73 to 875 individuals·m-2), and in Overton Arm(2 to 126 individuals·m-2). In Las Vegas Bay, quagga mussel density was low (9 to 44 individuals·m-2), which was correlated with high sediment metal concentrations and warmer (> 30°C) water temperatures associated with that basin. Carbon content in the sediment increased with depth in Lake Mead and during some sampling periods quagga density was also positively correlated with depth, but more research is required to determine the significance of this interaction. Laboratory growth experiments suggested that food quantity may limit quagga growth in Boulder Basin, indicating an opportunity for population expansion in this basin if primary productivity were to increase, but was not the case in Overton Arm. Overall quagga mussel density in Lake Mead is highly variable and patchy, suggesting that temperature, sediment size, and sediment metal concentrations, and sediment carbon content all contribute to mussel distribution patterns. Quagga mussel density in the soft sediment of Lake Mead expanded during initial colonization, and began to stabilize approximately 3 years after the initial invasion.
Ďurkovič, J; Čaňová, I; Kardošová, M; Kurjak, D
2014-09-01
Seasonal effects of environmental variables on photosynthetic activity and secondary xylem formation provide data to demonstrate how environmental factors together with leaf ageing during the season control tree growth. In this study, we assessed physiological responses in photosynthetic behaviour to seasonal climate changes, and also identified seasonal differences in vascular traits within differentiating secondary xylem tissue from three diploid species of the taxonomically complex genus Sorbus. From sampling day 150, a clear physiological segregation of S. chamaemespilus from S. torminalis and S. aria was evident. The shrubby species S. chamaemespilus could be distinguished by a higher photosynthetic capacity between days 150 and 206. This was reflected in its associations with net CO2 assimilation rate (PN), maximum photochemical efficiency of PSII (F(v)/F(m)), variable-to-initial fluorescence ratio (F(v)/F(0)), potential electron acceptor capacity ('area') in multivariate space, and also its associations with log-transformed vessel area and log-transformed relative conductivity between days 239 and 268. The maximum segregation and differentiation among the examined Sorbus species was on sampling day 206. The largest differences between S. torminalis and S. aria were found on day 115, when the latter species clearly showed closer associations with high values of vessel density and transpiration (E). Sampling day clusters were arranged along an arch-like gradient that reflected the positioning of the entire growing season in multivariate space. This arch-like pattern was most apparent in the case of S. chamaemespilus, but was also observed in S. torminalis and S. aria. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
The pollutants from livestock and poultry farming in China-geographic distribution and drivers.
Gan, Ling; Hu, Xisheng
2016-05-01
Livestock and poultry farming is a major source of agricultural pollution. However, our knowledge of the constraining factors of the geographic distribution of pollutants from livestock and poultry farming is still limited. In this study, using the optimized pollutant generation coefficients, we estimated the annual pollutant productions of eight livestock and poultry species at the provincial level in 2005 and 2013 and their growth rates during the study period in China; using canonical correlation analysis, we also explored the association between the eight pollutant measurements as dependent variables and 14 factors (including resource endowment, developmental level, and economic structure factors) as independent variables. Results indicate that there exist spatial disparity in the distribution of pollutants from livestock and poultry farming across regions, with provinces in the Huang-Huai-Hai region and the southwestern region accounting for approximately 50 % of the total productions in the nation. Cattle, pig, and poultry constitute the primary pollution sources in terms of livestock and poultry farming not only at the national level but also at the province level. While the species constitute and their respective growth rates of the pollutants can be also characterized by spatial disparity across regions, canonical correlation analysis shows that the observed regional patterns of the pollutants can be largely explained by the resource endowment factors (positive effects) and the developmental level factors (negative effects). In addition, we found that the development of livestock and poultry farming is negatively associated with the growing rate of both the resource endowment and the socioeconomic factors. This indicates that there exist different driving patterns in the gross and increment of the pollutant productions. Our research has significant implications for the appropriate environmental protection policy formulation and implementation in livestock sector.
NASA Astrophysics Data System (ADS)
Lotout, Caroline; Pitra, Pavel; Poujol, Marc; Anczkiewicz, Robert; Van Den Driessche, Jean
2018-05-01
Accurate dating of eclogite-facies metamorphism is of paramount importance in order to understand the tectonic evolution of an orogen. An eclogite sample from the Najac Massif (French Massif Central, Variscan belt) displays a zircon-bearing garnet-omphacite-amphibole-rutile-quartz peak assemblage. Pseudosection modeling suggests peak pressure conditions of 15-20 kbar, 560-630 °C. Eclogite-facies garnet displays Lu-enriched cores and Sm-rich rims and yields a Lu-Hf age of 382.8 ± 1.0 Ma and a Sm-Nd age of 376.7 ± 3.3 Ma. The ages are interpreted as marking the beginning of the prograde garnet growth during the initial stages of the eclogite-facies metamorphism, and the high-pressure (and temperature) peak reached by the rock, respectively. Zircon grains display chondrite-normalized REE spectra with variably negative, positive or no Eu anomalies and are characterized by either enriched or flat HREE patterns. However, they yield a well constrained in situ LA-ICP-MS U-Pb age of 385.5 ± 2.3 Ma, despite this REE pattern variability. Zr zonation in garnet, Y content in zircon and the diversity of zircon HREE spectra may suggest that zircon crystallized prior to and during incipient garnet growth on the prograde P-T path, recording the initial stages of the eclogite-facies conditions. Consequently, the zircon age of 385.5 ± 2.3 Ma, comparable within error with the Lu-Hf age obtained on garnet, is interpreted as dating the beginning of the eclogite-facies metamorphism. Accordingly, the duration of the prograde part of the eclogite-facies event is estimated at 6.1 ± 4.3 Myr. Subsequent exhumation is constrained by an apatite U-Pb age at 369 ± 13 Ma.
Weber, Jost; Georgiev, Vasil; Pavlov, Atanas; Bley, Thomas
2008-10-01
Plant in vitro systems are valuable sources for the production of biological active substances. However, changed profiles of secondary metabolites, and low, variable yields possibly caused by genetic instabilities complicate their industrial implementation. DNA profiling of plant in vitro cultures may provide data for the selection of highly producing in vitro cultures. Diploid and tetraploid Datura stramonium and Hyoscyamus niger plant as well as calli, and hairy root lines derived from them were analyzed by flow cytometry. Plant in vitro cultures undergo several cycles of endoreduplication more than the explants from which they were obtained. The highest cycle values were observed in calli (e.g. 1.19 for diploid H. niger) possibly induced by the growth factors. However, hairy roots cultivated without growth factor exhibited significant degrees of endoreduplication (cycle value 0.88 for diploid H. niger). Sets of five hairy root lines from each plant and ploidy level showed consistent within-set ploidy patterns. The ploidy profiles of investigated plant in vitro and in vivo differ. For the first time we report that hairy roots of two Solanaceae species undergo endoreduplication. Theploidy profiles of in vitro cultures (hairy roots and calli) seem to be influenced by the genome size, the growth factors applied, and the type of in vitro culture. The transformation of several hairy root lines showed no differences in the ploidy patterns. Copyright 2008 International Society for Advancement of Cytometry.
Beverage consumption patterns at age 13–17 are associated with weight, height, and BMI at age 17
Marshall, Teresa A.; Van Buren, John M.; Warren, John J.; Cavanaugh, Joseph E.; Levy, Steven M.
2017-01-01
Background Sugar-sweetened beverages (SSBs) have been associated with obesity in children and adults; however, associations between beverage patterns and obesity are not understood. Objective To describe beverage patterns during adolescence, and the associations between adolescent beverage patterns and age 17 anthropometric measures. Design Cross-sectional analyses of longitudinally-collected data. Participants/setting Participants in the longitudinal Iowa Fluoride Study having at least one beverage questionnaire completed between ages 13.0 and 14.0 years, having a second questionnaire completed between 16.0 and 17.0 years and attending an age 17 clinic exam for weight and height measurements (n=369). Exposure Beverages were collapsed into 4 categories {i.e., 100% juice, milk, water and other sugar-free beverages (water/SFB), and SSBs} for the purpose of clustering. Five beverage clusters were identified from standardized age 13–17 mean daily beverage intakes and named by the authors for the dominant beverage: juice, milk, water/SFB, neutral and SSB. Outcome Age 17 weight, height and BMI. Statistical analyses Ward’s method for clustering of beverage variables. One-way ANOVA and chi-square tests for bivariable associations. Gamma regression for associations of weight or BMI (outcomes) with beverage clusters and demographic variables. Linear regression for associations of height (outcome) with beverage clusters and demographic variables. Results Participants with family incomes < $60,000 trended shorter (1.5±0.8 cm; P=0.070) and were heavier (2.0±0.7 BMI units; P=0.002) than participants with family incomes ≥ 60,000/year. Adjusted mean weight, height and BMI estimates differed by beverage cluster membership. For example, on average, male and female members of the neutral cluster were 4.5 cm (P=0.010) and 4.2 (P=0.034) cm shorter, respectively, than members of the milk cluster. For members of the juice cluster, the mean BMI was lower than for members of the milk cluster (by 2.4 units), water/SFB cluster (3.5 units), neutral cluster (2.2 units) and SSB cluster (3.2 units) (all Ps<0.05). Conclusions Age 13–17 year beverage patterns were associated with age 17 anthropometric measures and BMI in this sample. Beverage patterns might be characteristic of overall food choices and dietary behaviors that influence growth. PMID:28259744
Toll-like receptors 3, 7, and 9 in Juvenile nasopharyngeal angiofibroma.
Renkonen, Suvi; Cardell, Lars-Olaf; Mattila, Petri; Lundberg, Marie; Haglund, Caj; Hagström, Jaana; Mäkitie, Antti A
2015-05-01
Juvenile nasopharyngeal angiofibroma (JNA) is a rare, benign tumor affecting adolescent males. The etiology of JNA as well as the causes determining the variable growth patterns of individual tumors remains unknown. Toll-like receptors (TLRs) are part of the innate immune response to microbes; by recognition of distinct features, they link to induction of pro-inflammatory signaling pathways. We immunostained TLR 3, 7, and 9 in 27 JNA specimens of patients treated at the Helsinki University Central Hospital, Helsinki, Finland, during the years 1970-2009. TLR 3, 7, and 9 expressions were found in stromal and endothelial cells of JNA, and their expression levels varied from negative to very strong positive. TLR 3 expression was found to have a significant correlation with the clinical stage of JNA. The present results propose a putative role of TLRs in the growth process of JNA. © 2015 APMIS. Published by John Wiley & Sons Ltd.
Arctic sea ice is an important temporal sink and means of transport for microplastic.
Peeken, Ilka; Primpke, Sebastian; Beyer, Birte; Gütermann, Julia; Katlein, Christian; Krumpen, Thomas; Bergmann, Melanie; Hehemann, Laura; Gerdts, Gunnar
2018-04-24
Microplastics (MP) are recognized as a growing environmental hazard and have been identified as far as the remote Polar Regions, with particularly high concentrations of microplastics in sea ice. Little is known regarding the horizontal variability of MP within sea ice and how the underlying water body affects MP composition during sea ice growth. Here we show that sea ice MP has no uniform polymer composition and that, depending on the growth region and drift paths of the sea ice, unique MP patterns can be observed in different sea ice horizons. Thus even in remote regions such as the Arctic Ocean, certain MP indicate the presence of localized sources. Increasing exploitation of Arctic resources will likely lead to a higher MP load in the Arctic sea ice and will enhance the release of MP in the areas of strong seasonal sea ice melt and the outflow gateways.
Understanding fast macroscale fracture from microcrack post mortem patterns
Guerra, Claudia; Scheibert, Julien; Bonamy, Daniel; Dalmas, Davy
2012-01-01
Dynamic crack propagation drives catastrophic solid failures. In many amorphous brittle materials, sufficiently fast crack growth involves small-scale, high-frequency microcracking damage localized near the crack tip. The ultrafast dynamics of microcrack nucleation, growth, and coalescence is inaccessible experimentally and fast crack propagation was therefore studied only as a macroscale average. Here, we overcome this limitation in polymethylmethacrylate, the archetype of brittle amorphous materials: We reconstruct the complete spatiotemporal microcracking dynamics, with micrometer/nanosecond resolution, through post mortem analysis of the fracture surfaces. We find that all individual microcracks propagate at the same low, load-independent velocity. Collectively, the main effect of microcracks is not to slow down fracture by increasing the energy required for crack propagation, as commonly believed, but on the contrary to boost the macroscale velocity through an acceleration factor selected on geometric grounds. Our results emphasize the key role of damage-related internal variables in the selection of macroscale fracture dynamics. PMID:22203962
Gerstein, A C; Kuzmin, A; Otto, S P
2014-05-07
Haldane's sieve posits that the majority of beneficial mutations that contribute to adaptation should be dominant, as these are the mutations most likely to establish and spread when rare. It has been argued, however, that if the dominance of mutations in their current and previous environments are correlated, Haldane's sieve could be eliminated. We constructed heterozygous lines of Saccharomyces cerevisiae containing single adaptive mutations obtained during exposure to the fungicide nystatin. Here we show that no clear dominance relationship exists across environments: mutations exhibited a range of dominance levels in a rich medium, yet were exclusively recessive under nystatin stress. Surprisingly, heterozygous replicates exhibited variable-onset rapid growth when exposed to nystatin. Targeted Sanger sequencing demonstrated that loss-of-heterozygosity (LOH) accounted for these growth patterns. Our experiments demonstrate that recessive beneficial mutations can avoid Haldane's sieve in clonal organisms through rapid LOH and thus contribute to rapid evolutionary adaptation.
Dubowitz syndrome: review of 141 cases including 36 previously unreported patients.
Tsukahara, M; Opitz, J M
1996-05-03
We review clinical information on 141 individuals with Dubowitz syndrome, 105 reported since 1965, and 36 previously unreported. We define the Dubowitz syndrome phenotype on the basis of clinical descriptions. The facial appearance is characteristic and present in most patients with Dubowitz syndrome. The phenotypic spectrum is quite variable and ranges from normal growth and head circumference with mild psychomotor retardation and lack of eczema to a condition of severe growth retardation, mental retardation, microcephaly, and eczema. Overall, the condition may involve the cutaneous, ocular, dental, digestive, musculoskeletal, urogenital, cardiovascular, neurological, hematological, and immune systems. Characteristic behavior patterns which have not been cited previously are present in our cases; most patients are hyperactive, shy, hate crowds, and like music, rhythm, and vibrations from music speakers, tape recorders, or transmitted through floors. Dubowitz syndrome is an autosomal recessive disorder with possibly increased frequency of parental consanguinity. Heterogeneity cannot be excluded at this time.
Elsner, Joanna; Lipowczan, Marcin; Kwiatkowska, Dorota
2018-02-01
In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth. © 2018 Botanical Society of America.
Teets, Aaron; Fraver, Shawn; Weiskittel, Aaron R; Hollinger, David Y
2018-03-11
A range of environmental factors regulate tree growth; however, climate is generally thought to most strongly influence year-to-year variability in growth. Numerous dendrochronological (tree-ring) studies have identified climate factors that influence year-to-year variability in growth for given tree species and location. However, traditional dendrochronology methods have limitations that prevent them from adequately assessing stand-level (as opposed to species-level) growth. We argue that stand-level growth analyses provide a more meaningful assessment of forest response to climate fluctuations, as well as the management options that may be employed to sustain forest productivity. Working in a mature, mixed-species stand at the Howland Research Forest of central Maine, USA, we used two alternatives to traditional dendrochronological analyses by (1) selecting trees for coring using a stratified (by size and species), random sampling method that ensures a representative sample of the stand, and (2) converting ring widths to biomass increments, which once summed, produced a representation of stand-level growth, while maintaining species identities or canopy position if needed. We then tested the relative influence of seasonal climate variables on year-to-year variability in the biomass increment using generalized least squares regression, while accounting for temporal autocorrelation. Our results indicate that stand-level growth responded most strongly to previous summer and current spring climate variables, resulting from a combination of individualistic climate responses occurring at the species- and canopy-position level. Our climate models were better fit to stand-level biomass increment than to species-level or canopy-position summaries. The relative growth responses (i.e., percent change) predicted from the most influential climate variables indicate stand-level growth varies less from to year-to-year than species-level or canopy-position growth responses. By assessing stand-level growth response to climate, we provide an alternative perspective on climate-growth relationships of forests, improving our understanding of forest growth dynamics under a fluctuating climate. © 2018 John Wiley & Sons Ltd.
Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.
Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun
2015-06-01
The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.
Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns.
Barbagini, Francesca; Bengoechea-Encabo, Ana; Albert, Steven; Martinez, Javier; Sanchez García, Miguel Angel; Trampert, Achim; Calleja, Enrique
2011-12-14
Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials.
Variation in marital quality in a national sample of divorced women.
James, Spencer L
2015-06-01
Previous work has compared marital quality between stably married and divorced individuals. Less work has examined the possibility of variation among divorcés in trajectories of marital quality as divorce approaches. This study addressed that hole by first examining whether distinct trajectories of marital quality can be discerned among women whose marriages ended in divorce and, second, the profile of women who experienced each trajectory. Latent class growth analyses with longitudinal data from a nationally representative sample were used to "look backward" from the time of divorce. Although demographic and socioeconomic variables from this national sample did not predict the trajectories well, nearly 66% of divorced women reported relatively high levels of both happiness and communication and either low or moderate levels of conflict. Future research including personality or interactional patterns may lead to theoretical insights about patterns of marital quality in the years leading to divorce. (c) 2015 APA, all rights reserved).
Generation of shape complexity through tissue conflict resolution
Rebocho, Alexandra B; Southam, Paul; Kennaway, J Richard; Coen, Enrico
2017-01-01
Out-of-plane tissue deformations are key morphogenetic events during plant and animal development that generate 3D shapes, such as flowers or limbs. However, the mechanisms by which spatiotemporal patterns of gene expression modify cellular behaviours to generate such deformations remain to be established. We use the Snapdragon flower as a model system to address this problem. Combining cellular analysis with tissue-level modelling, we show that an orthogonal pattern of growth orientations plays a key role in generating out-of-plane deformations. This growth pattern is most likely oriented by a polarity field, highlighted by PIN1 protein localisation, and is modulated by dorsoventral gene activity. The orthogonal growth pattern interacts with other patterns of differential growth to create tissue conflicts that shape the flower. Similar shape changes can be generated by contraction as well as growth, suggesting tissue conflict resolution provides a flexible morphogenetic mechanism for generating shape diversity in plants and animals. DOI: http://dx.doi.org/10.7554/eLife.20156.001 PMID:28166865
NASA Astrophysics Data System (ADS)
van der Veer, Henk W.; Jung, Alexa Sarina; Freitas, Vânia; Philippart, Catharina J. M.; Witte, Johannes IJ.
2016-05-01
Growth variability within individuals and among groups and locations and the phenomenon of summer growth reduction has been described for juvenile flatfish in a variety of European coastal areas whereby the underlying causes still remain elusive. Potential mechanisms were tested for juvenile plaice Pleuronectes platessa L. in the western Dutch Wadden Sea, by analysing published and unpublished information from long-term investigations (1986-present). Growth variability did occur and could be explained by differences induced by environmental variability (water temperature), and by non-genetic irreversible adaptation and sex. Dynamic Energy Budget analysis indicated that especially sexually-dimorphic growth in combination with variability in sex ratio could explain most of the variability in growth and the increase in the range of the size of individuals within the population over time. Summer growth reduction was not only observed among 0-group plaice in the intertidal, but also in the subtidal and tidal gullies as well as among I- and II-group plaice. Intraspecific competition for food was not detected but some support for interspecific competition with other predators was found. Also resource competition (due to crowding) with the other abundant epibenthic species (0-, I- and II-group flounder Platichthys flesus; the brown shrimp Crangon crangon; the shore crab Carcinus maenas; the goby species Pomatoschistus minutus and Pomatoschistus microps) could not explain the summer growth reduction. The observed growth reduction coincided with a decrease in stomach content, especially of regenerating body parts of benthic prey items. It is hypothesised that macrozoobenthos becomes less active after the spring phytoplankton bloom, reducing prey availability for juvenile plaice in summer, causing a reduction in food intake and hence in growth.
Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling
NASA Astrophysics Data System (ADS)
Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H. Eugene; Grosse, I.
2008-05-01
We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation σ(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation σ(R) on the average value of the wages with a scaling exponent β≈0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation σ(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of σ(R) on the average payroll with a scaling exponent β≈-0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.
Size-dependent standard deviation for growth rates: empirical results and theoretical modeling.
Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H Eugene; Grosse, I
2008-05-01
We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation sigma(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation sigma(R) on the average value of the wages with a scaling exponent beta approximately 0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation sigma(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of sigma(R) on the average payroll with a scaling exponent beta approximately -0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.
Network patterns in exponentially growing two-dimensional biofilms
NASA Astrophysics Data System (ADS)
Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos
2017-10-01
Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.
NASA Astrophysics Data System (ADS)
Angers, V. A.; Bergeron, Y.; Drapeau, P.
2013-12-01
Dendrochronological crossdating of dead trees is commonly used to reconstruct mortality patterns over time. This method assumes that the year of formation of the last growth ring corresponds to the year of the death of the tree. Trees experiencing important stress, such as defoliation, drought or senescence, may rely on very few resources to allocate to growth and may favour other vital physiological functions over growth. Even if the tree is still living, growth may thus be reduced or even supressed during a stressful event. When a tree dies following this event and that there is a lag between year of last ring production and year of actual death, crossdating underestimates the actual year of death. As ring formation is not uniform across the bole, growth may occur only in some parts of the tree and may be detectable only if multiple bole samples are analysed. In this study, we wanted to investigate how the growth patterns of dying trees influence estimation of year of death when crossdating. Our research questions were the following 1) Is there a difference (hereafter referred as 'lag') between the last year of growth ring formation in disc samples collected at different heights in dead trees? 2) If so, what is the range of magnitude of these lags? and 3) Is this magnitude range influenced by the causes of death? Sampled sites were located in northwestern Quebec (Canada), over an area overlapping the eastern mixedwood and coniferous boreal forests. Four tree species were examined: Trembling aspen (Populus tremuloides Michx.), balsam fir (Abies balsamea (L.) Mill.), jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana (Mill.) BSP). Trees that died following fire, self-thinning, defoliation and senescence were sampled. Two to three discs were collected on each dead tree (snags and logs) at different heights. Dendrochronological analyses were conducted to determine year of last growth ring production by crossdating. The more severe the disturbance, the narrower the lag between years of last ring production among samples collected in a given tree. In fire-induced death, lag was whether absent or very narrow, usually no more than one year. In defoliation-induced death, most lags were under two years. In competition-induced death, the vast majority of lags were shorter than 5 years. In old, senescent black spruce trees, lags were considerably longer as compared to other causes of death, exceeding 10 years in numerous cases. Based on these results, we suggest that investigators should consider collecting samples at different heights along the stem when reconstructing fine patterns of senescence-induced mortality using crossdating in order to avoid as much as possible bias due to variable growth in dying trees.
Imsirovic, Jasmin; Derricks, Kelsey; Buczek-Thomas, Jo Ann; Rich, Celeste B; Nugent, Matthew A; Suki, Béla
2013-01-01
A broad range of cells are subjected to irregular time varying mechanical stimuli within the body, particularly in the respiratory and circulatory systems. Mechanical stretch is an important factor in determining cell function; however, the effects of variable stretch remain unexplored. In order to investigate the effects of variable stretch, we designed, built and tested a uniaxial stretching device that can stretch three-dimensional tissue constructs while varying the strain amplitude from cycle to cycle. The device is the first to apply variable stretching signals to cells in tissues or three dimensional tissue constructs. Following device validation, we applied 20% uniaxial strain to Gelfoam samples seeded with neonatal rat lung fibroblasts with different levels of variability (0%, 25%, 50% and 75%). RT-PCR was then performed to measure the effects of variable stretch on key molecules involved in cell-matrix interactions including: collagen 1α, lysyl oxidase, α-actin, β1 integrin, β3 integrin, syndecan-4, and vascular endothelial growth factor-A. Adding variability to the stretching signal upregulated, downregulated or had no effect on mRNA production depending on the molecule and the amount of variability. In particular, syndecan-4 showed a statistically significant peak at 25% variability, suggesting that an optimal variability of strain may exist for production of this molecule. We conclude that cycle-by-cycle variability in strain influences the expression of molecules related to cell-matrix interactions and hence may be used to selectively tune the composition of tissue constructs.
Serra-Maluquer, X; Mencuccini, M; Martínez-Vilalta, J
2018-05-01
Understanding which variables affect forest resilience to extreme drought is key to predict future dynamics under ongoing climate change. In this study, we analyzed how tree resistance, recovery and resilience to drought have changed along three consecutive droughts and how they were affected by species, tree size, plot basal area (as a proxy for competition) and climate. We focused on the three most abundant pine species in the northeast Iberian Peninsula: Pinus halepensis, P. nigra and P. sylvestris during the three most extreme droughts recorded in the period 1951-2010 (occurred in 1986, 1994, and 2005-2006). We cored trees from permanent sample plots and used dendrochronological techniques to estimate resistance (ability to maintain growth level during drought), recovery (growth increase after drought) and resilience (capacity to recover pre-drought growth levels) in terms of tree stem basal area increment. Mixed-effects models were used to determine which tree- and plot-level variables were the main determinants of resistance, recovery and resilience, and to test for differences among the studied droughts. Larger trees were significantly less resistant and resilient. Plot basal area effects were only observed for resilience, with a negative impact only during the last drought. Resistance, recovery and resilience differed across the studied drought events, so that the studied populations became less resistant, less resilient and recovered worse during the last two droughts. This pattern suggests an increased vulnerability to drought after successive drought episodes.
NASA Technical Reports Server (NTRS)
Cullen, John J.; Lewis, Marlon R.; Davis, Curtiss O.; Barber, Richard T.
1992-01-01
Macronutrients persist in the surface layer of the equatorial Pacific because the production of phytoplankton is limited; the nature of this limitation has yet to be resolved. Measurements of photosynthesis as a function of irradiance (P-I) provide information on the control of primary productivity, a question of great biogeochemical importance. Accordingly, P-I was measured in the equatorial Pacific along 150 deg W, during February-March 1988. Diel variability of P-I showed a pattern consistent with nocturnal vertical mixing in the upper 20 m followed by diurnal stratification, causing photoinhibition near the surface at midday. Otherwise, the distribution of photosynthetic parameters with depth and the stability of P-I during simulated in situ incubations over 2 days demonstrated that photoadaptation was nearly complete at the time of sampling: photoadaptation had not been effectively countered by upwelling or vertical mixing. Measurements of P-I and chlorophyll during manipulations of trace elements showed that simple precautions to minimize contamination were sufficient to obtain valid rate measurements and that the specific growth rates of phytoplankton were fairly high in situ, a minimum of 0.6/d. Diel variability of beam attenuation also indicated high specific growth rates of phytoplankton and a strong coupling of production with grazing. It appears that grazing is the proximate control on the standing crop of phytoplankton. Nonetheless, the supply of a trace nutrient such as iron might ultimately regulate productivity by influencing species composition and food-web structure.
Accessing key steps of human tumor progression in vivo by using an avian embryo model
NASA Astrophysics Data System (ADS)
Hagedorn, Martin; Javerzat, Sophie; Gilges, Delphine; Meyre, Aurélie; de Lafarge, Benjamin; Eichmann, Anne; Bikfalvi, Andreas
2005-02-01
Experimental in vivo tumor models are essential for comprehending the dynamic process of human cancer progression, identifying therapeutic targets, and evaluating antitumor drugs. However, current rodent models are limited by high costs, long experimental duration, variability, restricted accessibility to the tumor, and major ethical concerns. To avoid these shortcomings, we investigated whether tumor growth on the chick chorio-allantoic membrane after human glioblastoma cell grafting would replicate characteristics of the human disease. Avascular tumors consistently formed within 2 days, then progressed through vascular endothelial growth factor receptor 2-dependent angiogenesis, associated with hemorrhage, necrosis, and peritumoral edema. Blocking of vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor signaling pathways by using small-molecule receptor tyrosine kinase inhibitors abrogated tumor development. Gene regulation during the angiogenic switch was analyzed by oligonucleotide microarrays. Defined sample selection for gene profiling permitted identification of regulated genes whose functions are associated mainly with tumor vascularization and growth. Furthermore, expression of known tumor progression genes identified in the screen (IL-6 and cysteine-rich angiogenic inducer 61) as well as potential regulators (lumican and F-box-only 6) follow similar patterns in patient glioma. The model reliably simulates key features of human glioma growth in a few days and thus could considerably increase the speed and efficacy of research on human tumor progression and preclinical drug screening. angiogenesis | animal model alternatives | glioblastoma
Spatial Growth of Informal Settlements in Delhi; An Application of Remote Sensing
NASA Astrophysics Data System (ADS)
Prakash, Mihir
Slum development and growth is quite popular in developing countries. Many studies have been done on what social and economic factors are the drivers in establishment of informal settlements at a single cross-section of time, however limited work has been done in studying their spatial growth patterns over time. This study attempts to study a sample of 30 informal settlements that exist in the National Capital Territory of India over a period of 40 years and identify relationships between the spatial growth rates and relevant factors identified in previous socio-economic studies of slums using advanced statistical methods. One of the key contributions of this paper is indicating the usefulness of satellite imagery or remote sensing data in spatial-longitudinal studies. This research utilizes readily available LANDSAT images to recognize the decadal spatial growth from 1970 to 2000, and also in extension, calculate the BI (transformed NDVI) as a proxy for the intensity of development for the settlements. A series of regression models were run after processing the data, and the levels of significance were then studied and compared to see which relationships indicated the highest levels of significance. It was observed that the change in BI had a higher strength of relationships with the change in independent variables than the settlement area growth. Also, logarithmic and cubic models showed the highest R-Square values than any other tested models.
Liu, Yang; El-Kassaby, Yousry A
2018-05-29
While temperature and precipitation comprise important ecological filtering for native ranges of forest trees and are predisposing factors underlying forest ecosystem dynamics, the extent and severity of drought raises reasonable concerns for carbon storage and species diversity. Based on historical data from common garden experiments across the Pacific Northwest region, we developed non-linear niche models for height-growth trajectories of conifer trees at the sapling stage using annual or seasonal climatic variables. The correlations between virtual tree height for each locality and ecosystem functions were respectively assessed. Best-fitted models were composed of two distinct components: evapotranspiration and the degree-days disparity for temperature regimes between 5 °C and 18 °C (effective temperature sum and growth temperature, respectively). Tree height prediction for adaptive generalists (e.g., Pinus monticola, Thuja plicata) had smaller residuals than for specialists (e.g., Pinus contorta, Pseudotsuga menziesii), albeit a potential confounding factor - tree age. Discernably, there were linearly positive patterns between tree height growth and ecosystem functions (productivity, biomass and species diversity). Additionally, there was a minor effect of tree diversity on height growth in coniferous forests. This study uncovers the implication of key ecological filtering and increases our integrated understanding of how environmental cues affect tree stand growth, species dominance and ecosystem functions.
Drury, Crawford; Manzello, Derek; Lirman, Diego
2017-01-01
The relationship between the coral genotype and the environment is an important area of research in degraded coral reef ecosystems. We used a reciprocal outplanting experiment with 930 corals representing ten genotypes on each of eight reefs to investigate the influence of genotype and the environment on growth and survivorship in the threatened Caribbean staghorn coral, Acropora cervicornis. Coral genotype and site were strong drivers of coral growth and individual genotypes exhibited flexible, non-conserved reaction norms, complemented by ten-fold differences in growth between specific G-E combinations. Growth plasticity may diminish the influence of local adaptation, where foreign corals grew faster than native corals at their home sites. Novel combinations of environment and genotype also significantly affected disturbance response during and after the 2015 bleaching event, where these factors acted synergistically to drive variation in bleaching and recovery. Importantly, small differences in temperature stress elicit variable patterns of survivorship based on genotype and illustrate the importance of novel combinations of coral genetics and small differences between sites representing habitat refugia. In this context, acclimatization and flexibility is especially important given the long lifespan of corals coping with complex environmental change. The combined influence of site and genotype creates short-term differences in growth and survivorship, contributing to the standing genetic variation needed for adaptation to occur over longer timescales and the recovery of degraded reefs through natural mechanisms.
Turan, Serap; Ozdemir, Nihal; Güran, Tülay; Akalın, Figen; Akçay, Teoman; Ayabakan, Canan; Yılmaz, Yüksel; Bereket, Abdullah
2008-01-01
We report two patients with velo-cardio-facial syndrome (VCFS) who were admitted to our pediatric endocrinology clinic because of short stature and followed longitudinally until attainment of final height. Both patients followed a growth pattern consistent with constitutional delay of puberty with normal and near normal final height. Case 2 also had partial growth hormone (GH) deficiency and severe short stature (height SDS -3.4 SDS), but showed spontaneous catch-up and ended up with a final height of -2 SDS. These cases suggest that short stature in children with VCFS is due to a pattern of growth similar to that observed in constitutional delay of growth and puberty.
Spatial variability in forest growthclimate relationships in the Olympic Mountains, Washington.
Jill M. Nakawatase; David L. Peterson
2006-01-01
For many Pacific Northwest forests, little is known about the spatial and temporal variability in tree growth - climate relationships, yet it is this information that is needed to predict how forests will respond to future climatic change. We studied the effects of climatic variability on forest growth at 74 plots in the western and northeastern Olympic Mountains....
A probabilistic fatigue analysis of multiple site damage
NASA Technical Reports Server (NTRS)
Rohrbaugh, S. M.; Ruff, D.; Hillberry, B. M.; Mccabe, G.; Grandt, A. F., Jr.
1994-01-01
The variability in initial crack size and fatigue crack growth is incorporated in a probabilistic model that is used to predict the fatigue lives for unstiffened aluminum alloy panels containing multiple site damage (MSD). The uncertainty of the damage in the MSD panel is represented by a distribution of fatigue crack lengths that are analytically derived from equivalent initial flaw sizes. The variability in fatigue crack growth rate is characterized by stochastic descriptions of crack growth parameters for a modified Paris crack growth law. A Monte-Carlo simulation explicitly describes the MSD panel by randomly selecting values from the stochastic variables and then grows the MSD cracks with a deterministic fatigue model until the panel fails. Different simulations investigate the influences of the fatigue variability on the distributions of remaining fatigue lives. Six cases that consider fixed and variable conditions of initial crack size and fatigue crack growth rate are examined. The crack size distribution exhibited a dominant effect on the remaining fatigue life distribution, and the variable crack growth rate exhibited a lesser effect on the distribution. In addition, the probabilistic model predicted that only a small percentage of the life remains after a lead crack develops in the MSD panel.
Envisioning, quantifying, and managing thermal regimes on river networks
Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.
2017-01-01
Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.
Coscollá, Mireia; Gosalbes, María José; Catalán, Vicente; González-Candelas, Fernando
2006-06-01
Legionella pneumophila is associated to recurrent outbreaks in several Comunidad Valenciana (Spain) localities, especially in Alcoi, where social and climatic conditions seem to provide an excellent environment for bacterial growth. We have analysed the nucleotide sequences of three loci from 25 environmental isolates from Alcoi and nearby locations sampled over 3 years. The analysis of these isolates has revealed a substantial level of genetic variation, with consistent patterns of variability across loci, and comparable to that found in a large, European-wide sampling of clinical isolates. Among the tree loci studied, fliC showed the highest level of nucleotide diversity. The analysis of isolates sampled in different years revealed a clear differentiation, with samples from 2001 being significantly distinct from those obtained in 2002 and 2003. Furthermore, although linkage disequilibrium measures indicate a clonal nature for population structure in this sample, the presence of some recombination events cannot be ruled out.
Imprint of the Atlantic Multidecadal Oscillation on Tree-Ring Widths in Northeastern Asia since 1568
Wang, Xiaochun; Brown, Peter M.; Zhang, Yanni; Song, Laiping
2011-01-01
We present a new tree-ring reconstruction of the Atlantic Multidecadal Oscillation (AMO) spanning 1568–2007 CE from northeast Asia. Comparison of the instrumental AMO index, an existing tree-ring based AMO reconstruction, and this new record show strongly similar annual to multidecadal patterns of variation over the last 440 years. Warm phases of the AMO are related to increases in growth of Scots pine trees and moisture availability in northeast China and central eastern Siberia. Multi-tape method (MTM) and cross-wavelet analyses indicate that robust multidecadal (∼64–128 years) variability is present throughout the new proxy record. Our results have important implications concerning the influence of North Atlantic sea surface temperatures on East Asian climate, and provide support for the possibility of an AMO signature on global multidecadal climate variability. PMID:21818380
Tumilowicz, Alison; Habicht, Jean-Pierre; Pelto, Gretel; Pelletier, David L
2015-11-01
Nearly one-half of Guatemalan children experience growth faltering, more so in indigenous than in nonindigenous children. On the basis of ethnographic interviews in Totonicapán, Guatemala, which revealed differences in maternal perceptions about food needs in infant girls and boys, we predicted a cumulative sex difference in favor of girls that occurred at ∼6 mo of age and diminished markedly thereafter. We examined whether the predicted differences in age-sex patterns were observed in the village, replicated the examination nationally for indigenous children, and examined whether the pattern in nonindigenous children was different. Ethnographic interviews (n = 24) in an indigenous village were conducted. Anthropometric measurements of the village children aged 0-35 mo (n = 119) were obtained. National-level growth patterns were analyzed for indigenous (n = 969) and nonindigenous (n = 1374) children aged 0-35 mo with the use of Demographic and Health Survey (DHS) data. Mothers reported that, compared with female infants, male infants were hungrier, were not as satisfied with breastfeeding alone, and required earlier complementary feeding. An anthropometric analysis confirmed the prediction of healthier growth in indigenous girls than in indigenous boys throughout the first year of life, which resulted in a 2.98-cm height-for-age difference (HAD) between sexes in the village and a 1.61-cm HAD (P < 0.001) in the DHS data between 6 and 17 mo of age in favor of girls. In both data sets, the growth sex differences diminished in the second year of life (P < 0.05). No such pattern was seen in nonindigenous children. We propose that the differences in the HAD that first favor girls and then favor boys in the indigenous growth patterns are due to feeding patterns on the basis of gendered cultural perceptions. Circumstances that result in differential sex growth patterns need to be elucidated, in particular the favorable growth in girls in the first year of life. © 2015 American Society for Nutrition.
Krauss, Ken W.; Duberstein, Jamie A.; Cormier, Nicole; Young, Hillary S.; Hathaway, Stacie A.
2015-01-01
Competition for fresh water between native and introduced plants is one important challenge facing native forests as rainfall variability increases. Competition can be especially acute for vegetation on Pacific atolls, which depend upon consistent rainfall to replenish shallow groundwater stores. Patterns of sap flow, water use, and diameter growth of Pisonia grandis trees were investigated on Sand Islet, Palmyra Atoll, Line Islands, during a period of low rainfall. Sap flow in the outer sapwood was reduced by 53% for P. grandis trees growing within coconut palm (Cocos nucifera) stands (n = 9) versus away from coconut palm (n = 9). This suggested that water uptake was being limited by coconut palm. Radial patterns of sap flow into the sapwood of P. grandis also differed between stands with and without coconut palm, such that individual tree water use for P. grandis ranged from 14 to 67 L day−1, averaging 47·8 L day−1 without coconut palm and 23·6 L day−1 with coconut palm. Diameter growth of P. grandis was measured from nine islets. In contrast to sap flow, competition with coconut palm increased diameter growth by 89%, equating to an individual tree basal area increment of 5·4 versus 10·3 mm2 day−1. Greater diameter growth countered by lower rates of water use by P. grandis trees growing in competition with coconut palm suggests that stem swell may be associated with water storage when positioned in the understory of coconut palm, and may facilitate survival when water becomes limiting until too much shading overwhelms P. grandis.
Cryptic impacts of temperature variability on amphibian immune function.
Terrell, Kimberly A; Quintero, Richard P; Murray, Suzan; Kleopfer, John D; Murphy, James B; Evans, Matthew J; Nissen, Bradley D; Gratwicke, Brian
2013-11-15
Ectothermic species living in temperate regions can experience rapid and potentially stressful changes in body temperature driven by abrupt weather changes. Yet, among amphibians, the physiological impacts of short-term temperature variation are largely unknown. Using an ex situ population of Cryptobranchus alleganiensis, an aquatic North American salamander, we tested the hypothesis that naturally occurring periods of temperature variation negatively impact amphibian health, either through direct effects on immune function or by increasing physiological stress. We exposed captive salamanders to repeated cycles of temperature fluctuations recorded in the population's natal stream and evaluated behavioral and physiological responses, including plasma complement activity (i.e. bacteria killing) against Pseudomonas aeruginosa, Escherichia coli and Aeromonas hydrophila. The best-fit model (ΔAICc=0, wi=0.9992) revealed 70% greater P. aeruginosa killing after exposure to variable temperatures and no evidence of thermal acclimation. The same model predicted 50% increased E. coli killing, but had weaker support (ΔAICc=1.8, wi=0.2882). In contrast, plasma defenses were ineffective against A. hydrophila, and other health indicators (leukocyte ratios, growth rates and behavioral patterns) were maintained at baseline values. Our data suggest that amphibians can tolerate, and even benefit from, natural patterns of rapid warming/cooling. Specifically, temperature variation can elicit increased activity of the innate immune system. This immune response may be adaptive in an unpredictable environment, and is undetectable by conventional health indicators (and hence considered cryptic). Our findings highlight the need to consider naturalistic patterns of temperature variation when predicting species' susceptibility to climate change.
Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.
2014-01-01
Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.
Sanchez, Margaux; Bousquet, Jean; Le Moual, Nicole; Jacquemin, Bénédicte; Clavel-Chapelon, Françoise; Humbert, Marc; Kauffmann, Francine; Tubert-Bitter, Pascale; Varraso, Raphaëlle
2013-01-01
Variable expression is one aspect of the heterogeneity of asthma. We aimed to define a variable pattern, which is relevant in general health epidemiological cohorts. Our objectives were to assess whether: 1) asthma patterns defined using simple asthma questions through repeated measurements could reflect disease variability 2) these patterns may further be classified according to asthma severity/control. Among 70,428 French women, we used seven questionnaires (1992–2005) and a comprehensive reimbursement database (2004–2009) to define three reliable asthma patterns based on repeated positive answers to the ever asthma attack question: “never asthma” (n = 64,061); “inconsistent” (“yes” followed by “no”, n = 3,514); “consistent” (fully consistent positive answers, n = 2,853). The “Inconsistent” pattern was related to both long-term (childhood-onset asthma with remission in adulthood) and short-term (reported asthma attack in the last 12 months, associated with asthma medication) asthma variability, showing that repeated questions are relevant markers of the variable expression of asthma. Furthermore, in this pattern, the number of positive responses (1992–2005) predicted asthma drug consumption in subsequent years, a marker of disease severity. The “Inconsistent” pattern is a phenotype that may capture the variable expression of asthma. Repeated answers, even to a simple question, are too often neglected. PMID:23741466
Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M.; Stevenson, Pablo R.; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C.; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M.
2017-01-01
Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage. PMID:28301482
Álvarez-Dávila, Esteban; Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M; Stevenson, Pablo R; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M
2017-01-01
Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.
Patterned solid state growth of barium titanate crystals
NASA Astrophysics Data System (ADS)
Ugorek, Michael Stephen
An understanding of microstructure evolution in ceramic materials, including single crystal development and abnormal/enhanced grain growth should enable more controlled final ceramic element structures. In this study, two different approaches were used to control single crystal development in a patterned array. These two methods are: (1) patterned solid state growth in BaTiO 3 ceramics, and (2) metal-mediated single crystal growth in BaTiO 3. With the patterned solid state growth technique, optical photolithography was used to pattern dopants as well as [001] and [110] BaTiO3 single crystal template arrays with a 1000 microm line pattern array with 1000 microm spacings. These patterns were subsequently used to control the matrix grain growth evolution and single crystal development in BaTiO3. It was shown that the growth kinetics can be controlled by a small initial grain size, atmosphere conditions, and the introduction of a dopant at selective areas/interfaces. By using a PO2 of 1x10-5 atm during high temperature heat treatment, the matrix coarsening has been limited (to roughly 2 times the initial grain size), while retaining single crystal boundary motion up to 0.5 mm during growth for dwell times up to 9 h at 1300°C. The longitudinal and lateral growth rates were optimized at 10--15 microm/h at 1300°C in a PO2 of 1x10 -5 atm for single crystal growth with limited matrix coarsening. Using these conditions, a patterned microstructure in BaTiO3 was obtained. With the metal-mediated single crystal growth technique, a novel approach for fabricating 2-2 single crystal/polymer composites with a kerf < 5 microns was demonstrated. Surface templated grain growth was used to propagate a single crystal interface into a polycrystalline BaTiO3 or Ba(Zr0.05 Ti0.95)O3 matrix with lamellar nickel layers. The grain growth evolution and texture development were studied using both [001] and [110] BaTiO3 single crystals templates. By using a PO 2 of 1x10-11 atm during high temperature heat treatment, matrix coarsening was limited while enabling single crystal boundary motion up to 0.35 mm during growth between 1250°C and 1300°C with growth rates ˜ 3--4 microm/h for both single crystal orientations. By removing the inner electrodes, 2-2 single crystal (or ceramic) composites were prepared. The piezoelectric and dielectric properties of the composites of the two compositions were measured. The d33 and d31 of the composites were similar to the polycrystalline ceramic of the same composition.
Development of the sphagnoid areolation pattern in leaves of Palaeozoic protosphagnalean mosses.
Ivanov, Oleg V; Maslova, Elena V; Ignatov, Michael S
2018-04-11
Protosphagnalean mosses constitute the largest group of extinct mosses of still uncertain affinity. Having the general morphology of the Bryopsida, some have leaves with an areolation pattern characteristic of modern Sphagna. This study describes the structure and variation of these patterns in protosphagnalean mosses and provides a comparison with those of modern Sphagna. Preparations of fossil mosses showing preserved leaf cell structure were obtained by dissolving rock, photographed, and the resulting images were transformed to graphical format and analysed with Areoana computer software. The sphagnoid areolation pattern is identical in its basic structure for both modern Sphagnum and Palaeozoic protosphagnalean mosses. However, in the former group the pattern develops through unequal oblique cell divisions, while in the latter the same pattern is a result of equal cell divisions taking place in a specific order with subsequent uneven cell growth. The protosphagnalean pathway leads to considerable variability in leaf structure. Protosphagnalean mosses had a unique ability to switch the development of leaf areolation between a pathway unique to Sphagnum and another one common to all other mosses. This developmental polyvariancy hinders attempts to classify these mosses, as characters previously considered to be of generic significance can be shown to co-occur in one individual leaf. New understanding of the ontogeny has allowed us to re-evaluate the systematic significance of such diagnostic characters in these Palaeozoic plants, showing that their similarity to Sphagnum is less substantial.
NASA Astrophysics Data System (ADS)
Cook, Edward R.; Buckley, Brendan M.; Palmer, Jonathan G.; Fenwick, Pavla; Peterson, Michael J.; Boswijk, Gretel; Fowler, Anthony
2006-10-01
Progress in the development of millennia-long tree-ring chronologies from Australia and New Zealand is reviewed from the perspective of modelling long-term climate variability there. Three tree species have proved successful in this regard: Huon pine (Lagarostrobos franklinii) from Tasmania, silver pine (L. colensoi) from the South Island of New Zealand, and kauri (Agathis australis) from the North Island of New Zealand. Each of these species is very long-lived and produces abundant quantities of well-preserved wood for extending their tree-ring chronologies back several millennia into the past. The growth patterns on these chronologies strongly correlate with both local and regional warm-season temperature changes over significant areas of the Southern Hemisphere (especially Huon and silver pine) and to ENSO variability emanating from the equatorial Pacific region (especially kauri). In addition, there is evidence for significant, band-limited, multi-decadal and centennial timescale variability in the warm-season temperature reconstruction based on Huon pine tree rings that may be related to slowly varying changes in ocean circulation dynamics in the southern Indian Ocean. This suggests the possibility of long-term climate predictability there. Copyright
A Fast Track approach to deal with the temporal dimension of crop water footprint
NASA Astrophysics Data System (ADS)
Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2017-07-01
Population growth, socio-economic development and climate changes are placing increasing pressure on water resources. Crop water footprint is a key indicator in the quantification of such pressure. It is determined by crop evapotranspiration and crop yield, which can be highly variable in space and time. While the spatial variability of crop water footprint has been the objective of several investigations, the temporal variability remains poorly studied. In particular, some studies approached this issue by associating the time variability of crop water footprint only to yield changes, while considering evapotranspiration patterns as marginal. Validation of this Fast Track approach has yet to be provided. In this Letter we demonstrate its feasibility through a comprehensive validation, an assessment of its uncertainty, and an example of application. Our results show that the water footprint changes are mainly driven by yield trends, while evapotranspiration plays a minor role. The error due to considering constant evapotranspiration is three times smaller than the uncertainty of the model used to compute the crop water footprint. These results confirm the suitability of the Fast Track approach and enable a simple, yet appropriate, evaluation of time-varying crop water footprint.
Villarreal, Miguel; Labiosa, Bill; Aiello, Danielle
2017-05-23
The Puget Sound Basin, Washington, has experienced rapid urban growth in recent decades, with varying impacts to local ecosystems and natural resources. To plan for future growth, land managers often use scenarios to assess how the pattern and volume of growth may affect natural resources. Using three different land-management scenarios for the years 2000–2060, we assessed various spatial patterns of urban growth relative to maps depicting a model-based characterization of the ecological integrity and recent development pressure of individual land parcels. The three scenarios depict future trajectories of land-use change under alternative management strategies—status quo, managed growth, and unconstrained growth. The resulting analysis offers a preliminary assessment of how future growth patterns in the Puget Sound Basin may impact land targeted for conservation and how short-term metrics of land-development pressure compare to longer term growth projections.
Evidence for a Time-Invariant Phase Variable in Human Ankle Control
Gregg, Robert D.; Rouse, Elliott J.; Hargrove, Levi J.; Sensinger, Jonathon W.
2014-01-01
Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms). In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control. PMID:24558485
Modelling the Composition of Outgassing Bubbles at Basaltic Open Vent Volcanoes
NASA Astrophysics Data System (ADS)
Edmonds, M.; Clements, N.; Houghton, B. F.; Oppenheimer, C.; Jones, R. L.; Burton, M. R.
2015-12-01
Basaltic open vent volcanoes exhibit a wide range in eruption styles, from passive outgassing to Strombolian and Hawaiian explosive activity. Transitions between these styles are linked to contrasting two-phase (melt and gas) flow regimes in the conduit system. A wealth of data now exists characterising the fluxes and compositions of gases emitted from these volcanoes, alongside detailed observations of patterns of outgassing at the magma free surfaces. Complex variations in gas composition are apparent from high temporal resolution measurement techniques such as open path spectroscopy. This variability with time is likely a function of individual bubbles' histories of growth during ascent, with variable degrees of kinetic inhibition. Our previous studies at Kilauea and Stromboli have, for example, linked CO2-rich gases with the bursting of bubbles that last equilibrated at some depth beneath the surface. However, very few studies have attempted to reconcile such observations with quantitative models of diffusion-limited bubble growth in magmas prior to eruption. We present here an analytical model that simulates the growth of populations of bubbles by addition of volatile mass during decompression, with growth limited by diffusion. The model simulates a range of behaviors between the end members of separated two-phase flow and homogeneous bubbly flow in the conduit, tied to thermodynamic models of solubility and partitioning of volatile species (carbon, water, sulfur). We explore the effects of the form of bubble populations at depth, melt viscosity, total volatile content, magma decompression rate and other intrinsic parameters on expected gas compositions at the surface and consider implications for transitions between eruption styles. We compare the the model to data suites from Stromboli and Kilauea.
Dermatoscopic features of cutaneous non-facial non-acral lentiginous growth pattern melanomas
Keir, Jeff
2014-01-01
Background: The dermatoscopic features of facial lentigo maligna (LM), facial lentigo maligna melanoma (LMM) and acral lentiginous melanoma (ALM) have been well described. This is the first description of the dermatoscopic appearance of a clinical series of cutaneous non-facial non-acral lentiginous growth pattern melanomas. Objective: To describe the dermatoscopic features of a series of cutaneous non-facial non-acral lentiginous growth pattern melanomas in an Australian skin cancer practice. Method: Single observer retrospective analysis of dermatoscopic images of a one-year series of cutaneous non-facial, non-acral melanomas reported as having a lentiginous growth pattern detected in an open access primary care skin cancer clinic in Australia. Lesions were scored for presence of classical criteria for facial LM; modified pattern analysis (“Chaos and Clues”) criteria; and the presence of two novel criteria: a lentigo-like pigment pattern lacking a lentigo-like border, and large polygons. Results: 20 melanomas occurring in 14 female and 6 male patients were included. Average patient age was 64 years (range: 44–83). Lesion distribution was: trunk 35%; upper limb 40%; and lower limb 25%. The incidences of criteria identified were: asymmetry of color or pattern (100%); lentigo-like pigment pattern lacking a lentigo-like border (90%); asymmetrically pigmented follicular openings (APFO’s) (70%); grey blue structures (70%); large polygons (45%); eccentric structureless area (15%); bright white lines (5%). 20% of the lesions had only the novel criteria and/or APFO’s. Limitations: Single observer, single center retrospective study. Conclusions: Cutaneous non-facial non-acral melanomas with a lentiginous growth pattern may have none or very few traditional criteria for the diagnosis of melanoma. Criteria that are logically expected in lesions with a lentiginous growth pattern (lentigo-like pigment pattern lacking a lentigo-like border, APFO’s) and the novel criterion of large polygons may be useful in increasing sensitivity and specificity of diagnosis of these lesions. Further study is required to establish the significance of these observations. PMID:24520520
Dermatoscopic features of cutaneous non-facial non-acral lentiginous growth pattern melanomas.
Keir, Jeff
2014-01-01
The dermatoscopic features of facial lentigo maligna (LM), facial lentigo maligna melanoma (LMM) and acral lentiginous melanoma (ALM) have been well described. This is the first description of the dermatoscopic appearance of a clinical series of cutaneous non-facial non-acral lentiginous growth pattern melanomas. To describe the dermatoscopic features of a series of cutaneous non-facial non-acral lentiginous growth pattern melanomas in an Australian skin cancer practice. Single observer retrospective analysis of dermatoscopic images of a one-year series of cutaneous non-facial, non-acral melanomas reported as having a lentiginous growth pattern detected in an open access primary care skin cancer clinic in Australia. Lesions were scored for presence of classical criteria for facial LM; modified pattern analysis ("Chaos and Clues") criteria; and the presence of two novel criteria: a lentigo-like pigment pattern lacking a lentigo-like border, and large polygons. 20 melanomas occurring in 14 female and 6 male patients were included. Average patient age was 64 years (range: 44-83). Lesion distribution was: trunk 35%; upper limb 40%; and lower limb 25%. The incidences of criteria identified were: asymmetry of color or pattern (100%); lentigo-like pigment pattern lacking a lentigo-like border (90%); asymmetrically pigmented follicular openings (APFO's) (70%); grey blue structures (70%); large polygons (45%); eccentric structureless area (15%); bright white lines (5%). 20% of the lesions had only the novel criteria and/or APFO's. Single observer, single center retrospective study. Cutaneous non-facial non-acral melanomas with a lentiginous growth pattern may have none or very few traditional criteria for the diagnosis of melanoma. Criteria that are logically expected in lesions with a lentiginous growth pattern (lentigo-like pigment pattern lacking a lentigo-like border, APFO's) and the novel criterion of large polygons may be useful in increasing sensitivity and specificity of diagnosis of these lesions. Further study is required to establish the significance of these observations.
Phenotype-genotype correlations in congenital isolated growth hormone deficiency (IGHD).
Alatzoglou, Kyriaki S; Dattani, Mehul T
2012-01-01
Isolated growth hormone deficiency (IGHD) may be congenital, often due to genetic mutations, or acquired as a result of other factors such as cranial irradiation. The commonest genes implicated in its genetic etiology are those encoding growth hormone (GH1) and the receptor for GH-releasing hormone (GHRHR). Rarely, IGHD may be caused by mutations in transcription factors (HESX1, SOX3, OTX2) or be the first presentation before the development of other pituitary hormone deficiencies. IGHD has been classified in four genetic forms (type IA, IB, II and III). Despite the increasing number of genes implicated in the etiology of IGHD, mutations in known genes account only for a small percentage of cases; therefore, other as yet unidentified factors may be implicated in its etiology. Although there is no strict genotype/phenotype correlation in patients with IGHD, there are some emerging patterns that may guide us towards a genetic diagnosis of the condition. There is increasing understanding that the phenotype of patients with IGHD is highly variable and sometimes even evolving, dictating the need for long term follow-up in these cases.
Delpierre, Nicolas; Berveiller, Daniel; Granda, Elena; Dufrêne, Eric
2016-04-01
Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr time series of carbon fluxes and aboveground wood growth (AWG), reconstructed at a weekly time-scale through the combination of dendrometer and wood density data. Carbon inputs and AWG anomalies appeared to be uncorrelated from the seasonal to interannual scales. More than 90% of the interannual variability of AWG was explained by a combination of the growth intensity during a first 'critical period' of the wood growing season, occurring close to the seasonal maximum, and the timing of the first summer growth halt. Both atmospheric and soil water stress exerted a strong control on the interannual variability of AWG at the study site, despite its mesic conditions, whilst not affecting carbon inputs. Carbon sink activity, not carbon inputs, determined the interannual variations in wood growth at the study site. Our results provide a functional understanding of the dependence of radial growth on precipitation observed in dendrological studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Tansu, Nelson; Chan, Helen M; Vinci, Richard P; Ee, Yik-Khoon; Biser, Jeffrey
2013-09-24
The use of an abbreviated GaN growth mode on nano-patterned AGOG sapphire substrates, which utilizes a process of using 15 nm low temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of high-quality GaN template on nano-patterned AGOG sapphire. The GaN template grown on nano-patterned AGOG sapphire by employing abbreviated growth mode has two orders of magnitude lower threading dislocation density than that of conventional GaN template grown on planar sapphire. The use of abbreviated growth mode also leads to significant reduction in cost of the epitaxy. The growths and characteristics of InGaN quantum wells (QWs) light emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano-patterned AGOG sapphire demonstrated at least a 24% enhancement of output power enhancement over that of LEDs grown on conventional GaN templates.
Gaucher, Catherine; Gougeon, Sébastien; Mauffette, Yves; Messier, Christian
2005-01-01
We investigated seasonal patterns of biomass and carbohydrate partitioning in relation to shoot growth phenology in two age classes of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) seedlings growing in the understory of a partially harvested forest. The high root:shoot biomass ratio and carbohydrate concentration of sugar maple are characteristic of species with truncated growth patterns (i.e., cessation of aboveground shoot growth early in the growing season), a conservative growth strategy and high shade tolerance. The low root:shoot biomass ratio and carbohydrate concentration of yellow birch are characteristic of species with continuous growth patterns, an opportunistic growth strategy and low shade tolerance. In both species, starch represented up to 95% of total nonstructural carbohydrates and was mainly found in the roots. Contrary to our hypothesis, interspecific differences in shoot growth phenology (i.e., continuous versus truncated) did not result in differences in seasonal patterns of carbohydrate partitioning. Our results help explain the niche differentiation between sugar maple and yellow birch in temperate, deciduous understory forests.
Cocozza, Claudia; Palombo, Caterina; Tognetti, Roberto; La Porta, Nicola; Anichini, Monica; Giovannelli, Alessio; Emiliani, Giovanni
2016-07-01
Seasonal analyses of cambial cell production and day-by-day stem radial increment can help to elucidate how climate modulates wood formation in conifers. Intra-annual dynamics of wood formation were determined with microcores and dendrometers and related to climatic signals in Norway spruce (Picea abies (L.) Karst.). The seasonal dynamics of these processes were observed at two sites of different altitude, Savignano (650 m a.s.l.) and Lavazè (1800 m a.s.l.) in the Italian Alps. Seasonal dynamics of cambial activity were found to be site specific, indicating that the phenology of cambial cell production is highly variable and plastic with altitude. There was a site-specific trend in the number of cells in the wall thickening phase, with the maximum cell production in early July (DOY 186) at Savignano and in mid-July (DOY 200) at Lavazè. The formation of mature cells showed similar trends at the two sites, although different numbers of cells and timing of cell differentiation were visible in the model shapes; at the end of ring formation in 2010, the number of cells was four times higher at Savignano (106.5 cells) than at Lavazè (26.5 cells). At low altitudes, microcores and dendrometers described the radial growth patterns comparably, though the dendrometer function underlined the higher upper asymptote of maximum growth in comparison with the cell production function. In contrast, at high altitude, these functions exhibited different trends. The best model was obtained by fitting functions of the Gompertz model to the experimental data. By combining radial growth and cambial activity indices we defined a model system able to synchronize these processes. Processes of adaptation of the pattern of xylogenesis occurred, enabling P. abies to occupy sites with contrasting climatic conditions. The use of daily climatic variables in combination with plant functional traits obtained by sensors and/or destructive sampling could provide a suitable tool to better investigate the effect of disturbances on response strategies in trees and, consequently, contribute to improving our prediction of tree growth and species resilience based on climate scenarios. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns
2011-01-01
Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials. PMID:22168918
Growth-mediated autochemotactic pattern formation in self-propelling bacteria
NASA Astrophysics Data System (ADS)
Mukherjee, Mrinmoy; Ghosh, Pushpita
2018-01-01
Bacteria, while developing a multicellular colony or biofilm, can undergo pattern formation by diverse intricate mechanisms. One such route is directional movement or chemotaxis toward or away from self-secreted or externally employed chemicals. In some bacteria, the self-produced signaling chemicals or autoinducers themselves act as chemoattractants or chemorepellents and thereby regulate the directional movements of the cells in the colony. In addition, bacteria follow a certain growth kinetics which is integrated in the process of colony development. Here, we study the interplay of bacterial growth dynamics, cell motility, and autochemotactic motion with respect to the self-secreted diffusive signaling chemicals in spatial pattern formation. Using a continuum model of motile bacteria, we show growth can act as a crucial tuning parameter in determining the spatiotemporal dynamics of a colony. In action of growth dynamics, while chemoattraction toward autoinducers creates arrested phase separation, pattern transitions and suppression can occur for a fixed chemorepulsive strength.
Hulshof, Catherine M; Stegen, James C; Swenson, Nathan G; Enquist, Carolyn A F; Enquist, Brian J
2012-01-01
Plants are expected to differentially allocate resources to reproduction, growth, and survival in order to maximize overall fitness. Life history theory predicts that the allocation of resources to reproduction should occur at the expense of vegetative growth. Although it is known that both organism size and resource availability can influence life history traits, few studies have addressed how size dependencies of growth and reproduction and variation in resource supply jointly affect the coupling between growth and reproduction. In order to understand the relationship between growth and reproduction in the context of resource variability, we utilize a long-term observational data set consisting of 670 individual trees over a 10-year period within a local population of Bursera simaruba (L.) Sarg. We (1) quantify the functional form and variability in the growth-reproduction relationship at the population and individual-tree level and (2) develop a theoretical framework to understand the allometric dependence of growth and reproduction. Our findings suggest that the differential responses of allometric growth and reproduction to resource availability, both between years and between microsites, underlie the apparent relationship between growth and reproduction. Finally, we offer an alternative approach for quantifying the relationship between growth and reproduction that accounts for variation in allometries.
Froehle, Andrew W; Nahhas, Ramzi W; Sherwood, Richard J; Duren, Dana L
2013-05-01
Walking gait is generally held to reach maturity, including walking at adult-like velocities, by 7-8 years of age. Lower limb length, however, is a major determinant of gait, and continues to increase until 13-15 years of age. This study used a sample from the Fels Longitudinal Study (ages 8-30 years) to test the hypothesis that walking with adult-like velocity on immature lower limbs results in the retention of immature gait characteristics during late childhood and early adolescence. There was no relationship between walking velocity and age in this sample, whereas the lower limb continued to grow, reaching maturity at 13.2 years in females and 15.6 years in males. Piecewise linear mixed models regression analysis revealed significant age-related trends in normalized cadence, initial double support time, single support time, base of support, and normalized step length in both sexes. Each trend reached its own, variable-specific age at maturity, after which the gait variables' relationships with age reached plateaus and did not differ significantly from zero. Offsets in ages at maturity occurred among the gait variables, and between the gait variables and lower limb length. The sexes also differed in their patterns of maturation. Generally, however, immature walkers of both sexes took more frequent and relatively longer steps than did mature walkers. These results support the hypothesis that maturational changes in gait accompany ongoing lower limb growth, with implications for diagnosing, preventing, and treating movement-related disorders and injuries during late childhood and early adolescence. Copyright © 2012 Elsevier B.V. All rights reserved.
Annual primary production: Patterns and mechanisms of change in a nutrient-rich tidal ecosystem
Jassby, Alan D.; Cloern, James E.; Cole, B.E.
2002-01-01
Although nutrient supply often underlies long-term changes in aquatic primary production, other regulatory processes can be important. The Sacramento-San Joaquin River Delta, a complex of tidal waterways forming the landward portion of the San Francisco Estuary, has ample nutrient supplies, enabling us to examine alternate regulatory mechanisms over a 21-yr period. Delta-wide primary productivity was reconstructed from historical water quality data for 1975–1995. Annual primary production averaged 70 g C m−2, but it varied by over a factor of five among years. At least four processes contributed to this variability: (1) invasion of the clam Potamocorbula amurensis led to a persistent decrease in phytoplankton biomass (chlorophyll a) after 1986; (2) a long-term decline in total suspended solids—probably at least partly because of upstream dam construction—increased water transparency and phytoplankton growth rate; (3) river inflow, reflecting climate variability, affected biomass through fluctuations in flushing and growth rates through fluctuations in total suspended solids; and (4) an additional pathway manifesting as a long-term decline in winter phytoplankton biomass has been identified, but its genesis is uncertain. Overall, the Delta lost 43% in annual primary production during the period. Given the evidence for food limitation of primary consumers, these findings provide a partial explanation for widespread Delta species declines over the past few decades. Turbid nutrient-rich systems such as the Delta may be inherently more variable than other tidal systems because certain compensatory processes are absent. Comparisons among systems, however, can be tenuous because conclusions about the magnitude and mechanisms of variability are dependent on length of data record.
Fuemmeler, Bernard; Lee, Chien-Ti; Ranby, Krista W; Clark, Trenette; McClernon, F Joseph; Yang, Chongming; Kollins, Scott H
2013-09-01
Characterizing smoking behavior is important for informing etiologic models and targeting prevention efforts. This study explored the effects of both individual- and community-level variables in predicting cigarette use vs. non-use and level of use among adolescents as they transition into adulthood. Data on 14,779 youths (53% female) were drawn from the National Longitudinal Study of Adolescent Health (Add Health); a nationally representative longitudinal cohort. A cohort sequential design allowed for examining trajectories of smoking typologies from age 13 to 32 years. Smoking trajectories were evaluated by using a zero-inflated Poisson (ZIP) latent growth analysis and latent class growth analysis modeling approach. Significant relationships emerged between both individual- and community-level variables and smoking outcomes. Maternal and peer smoking predicted increases in smoking over development and were associated with a greater likelihood of belonging to any of the four identified smoking groups versus Non-Users. Conduct problems and depressive symptoms during adolescence were related to cigarette use versus non-use. State-level prevalence of adolescent smoking was related to greater cigarette use during adolescence. Individual- and community-level variables that distinguish smoking patterns within the population aid in understanding cigarette use versus non-use and the quantity of cigarette use into adulthood. Our findings suggest that efforts to prevent cigarette use would benefit from attention to both parental and peer smoking and individual well-being. Future work is needed to better understand the role of variables in the context of multiple levels (individual and community-level) on smoking trajectories. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
True, Lawrence D
2014-03-01
Paralleling the growth of ever more cost efficient methods to sequence the whole genome in minute fragments of tissue has been the identification of increasingly numerous molecular abnormalities in cancers--mutations, amplifications, insertions and deletions of genes, and patterns of differential gene expression, i.e., overexpression of growth factors and underexpression of tumor suppressor genes. These abnormalities can be translated into assays to be used in clinical decision making. In general terms, the result of such an assay is subject to a large number of variables regarding the characteristics of the available sample, particularities of the used assay, and the interpretation of the results. This review discusses the effects of these variables on assays of tissue-based biomarkers, classified by macromolecule--DNA, RNA (including micro RNA, messenger RNA, long noncoding RNA, protein, and phosphoprotein). Since the majority of clinically applicable biomarkers are immunohistochemically detectable proteins this review focuses on protein biomarkers. However, the principles outlined are mostly applicable to any other analyte. A variety of preanalytical variables impacts on the results obtained, including analyte stability (which is different for different analytes, i.e., DNA, RNA, or protein), period of warm and of cold ischemia, fixation time, tissue processing, sample storage time, and storage conditions. In addition, assay variables play an important role, including reagent specificity (notably but not uniquely an issue concerning antibodies used in immunohistochemistry), technical components of the assay, quantitation, and assay interpretation. Finally, appropriateness of an assay for clinical application is an important issue. Reference is made to publicly available guidelines to improve on biomarker development in general and requirements for clinical use in particular. Strategic goals are formulated in order to improve on the quality of biomarker reporting, including issues of analyte quality, experimental detail, assay efficiency and precision, and assay appropriateness.
Huang, Xiaodong; Mengersen, Kerrie; Milinovich, Gabriel; Hu, Wenbiao
2017-06-01
The effects of weather variability on seasonal influenza among different age groups remain unclear. The comparative study aims to explore the differences in the associations between weather variability and seasonal influenza, and growth rates of seasonal influenza epidemics among different age groups in Queensland, Australia. Three Bayesian spatiotemporal conditional autoregressive models were fitted at the postal area level to quantify the relationships between seasonal influenza and monthly minimum temperature (MIT), monthly vapor pressure, school calendar pattern, and Index of Relative Socio-Economic Advantage and Disadvantage for 3 age groups (<15, 15-64, and ≥65 years). The results showed that the expected decrease in monthly influenza cases was 19.3% (95% credible interval [CI], 14.7%-23.4%), 16.3% (95% CI, 13.6%-19.0%), and 8.5% (95% CI, 1.5%-15.0%) for a 1°C increase in monthly MIT at <15, 15-64, and ≥65 years of age, respectively, while the average increase in the monthly influenza cases was 14.6% (95% CI, 9.0%-21.0%), 12.1% (95% CI, 8.8%-16.1%), and 9.2% (95% CI, 1.4%-16.9%) for a 1-hPa increase in vapor pressure. Weather variability appears to be more influential on seasonal influenza transmission in younger (0-14) age groups. The growth rates of influenza at postal area level were relatively small for older (≥65) age groups in Queensland, Australia. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Alternative metrics for real-ear-to-coupler difference average values in children.
Blumsack, Judith T; Clark-Lewis, Sandra; Watts, Kelli M; Wilson, Martha W; Ross, Margaret E; Soles, Lindsey; Ennis, Cydney
2014-10-01
Ideally, individual real-ear-to-coupler difference (RECD) measurements are obtained for pediatric hearing instrument-fitting purposes. When RECD measurements cannot be obtained, age-related average RECDs based on typically developing North American children are used. Evidence suggests that these values may not be appropriate for populations of children with retarded growth patterns. The purpose of this study was to determine if another metric, such as head circumference, height, or weight, can be used for prediction of RECDs in children. Design was a correlational study. For all participants, RECD values in both ears, head circumference, height, and weight were measured. The sample consisted of 68 North American children (ages 3-11 yr). Height, weight, head circumference, and RECDs were measured and were analyzed for both ears at 500, 750, 1000, 1500, 2000, 3000, 4000, and 6000 Hz. A backward elimination multiple-regression analysis was used to determine if age, height, weight, and/or head circumference are significant predictors of RECDs. For the left ear, head circumference was retained as the only statistically significant variable in the final model. For the right ear, head circumference was retained as the only statistically significant independent variable at all frequencies except at 2000 and 4000 Hz. At these latter frequencies, weight was retained as the only statistically significant independent variable after all other variables were eliminated. Head circumference can be considered as a metric for RECD prediction in children when individual measurements cannot be obtained. In developing countries where equipment is often unavailable and stunted growth can reduce the value of using age as a metric, head circumference can be considered as an alternative metric in the prediction of RECDs. American Academy of Audiology.
NASA Astrophysics Data System (ADS)
De Raedemaecker, F.; Brophy, D.; O'Connor, I.; O'Neill, B.
2012-02-01
This field study showed a lack of a correlation between a morphometric (Fulton's K) and biochemical (RNA:DNA ratio) condition index in juvenile plaice ( Pleuronectes platessa) and dab ( Limanda limanda) studied to assess habitat quality in four sandy beach nursery grounds in Galway Bay, Ireland. Based on monthly surveys from June to September in 2008 and 2009, fish growth, indicated by RNA:DNA ratios and Fulton's K, displayed considerable spatio-temporal variability. Site-related patterns in Fulton's K for plaice and dab were consistent between years whereas RNA:DNA ratios displayed annual and interspecific variability among nursery habitats. This indicates a higher sensitivity of RNA:DNA ratios to short-term environmental fluctuations which is not apparent in Fulton's K measurements of juvenile flatfish. Generalized Additive Modelling (GAM) revealed non-linear relationships between the condition indices and (biotic and abiotic) habitat characteristics as well as diet features, derived from gut content analyses. Density of predators, sediment grain size and salinity were the most important predictors of both condition indices. Temperature also affected condition indices in dab whereas plaice condition indices varied with depth. Diet features did not contribute to the explained variability in the models predicting RNA:DNA ratios whereas certain prey groups significantly improved the explained variability in the models predicting Fulton's K of plaice and dab. The value of both indices for assessing fish condition and habitat quality in field studies is discussed. These findings aid understanding of the biological and physical mechanisms promoting fast growth and high survival which will help to identify high quality nursery areas for juvenile plaice and dab.